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liber das Erneuerungsproblem bei Verwen-
dung eines analytischen Sterbegesetzes.

Von Dr. Harald Schulthess, Bern.

Das Erneuerungsproblem nach Moser 1) untersucht
das Verhalten einer urspriinglich gleichaltrigen Personen-
gesamtheit, die einerseits infolge von Todesfillen zahlen-
miigsig abnimmt, andrerseits durch Neuzutritte erweitert
wird. Alle betrachteten Personen sollen im Zeitpunkt
ihres Eintritts in die Gesamtheit ein bestimmtes kon-
stantes Eintrittsalter haben,

Bedeutet A(f) den Bestand zur Zeit ¢, p(t) die ¢
jihrige Sterbewahrscheinlichkeit, ¢(t) die Intensitit der
Erneuerung und ist das einheitliche Fintrittsalter 0,
50 lautet die Gleichung des E1‘neuerung9problems:

A(t) = uf—/-/l @(7) p(t—r7) dv

Wir beschiiftigen uns im folgenden mit dem IFall,
wo der Bestand der betrachteten Gesamtheit konstant
bleiben soll, und untersuchen, mit welcher Intensitit
unter dieser Bedingung Neuzutritte erfolgen miissen.

Als Sterbegesetz legen wir unsern Betrachtungen
das sogenannte Gesetz von Achard zugrunde:

1) Moser: Beitriige zur Darstellung von Vorgiingen bei einer
gich erneuernden Ciesamtheit. M. V. M. Heft 21.
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o ist das Hochstalter und m eine ganze positive Zahl.
Das der Wirklichkeit am nichsten stehende Gesetz von
Makeham ist fir die analytische Ausrechnung zu kom-
pliziert, und die einfachere Hypothese von Dormoy
wiirde der Wirklichkeit widersprechende Resultate
liefern.

1. Gleichung der Erneuerungsfunktion fiir t_/ W,

r { m
Unser Sterbegesetz p(t) = (1 e —--) hat tir ¢t = w

()

den Wert 0 (die Leute erreichen kein hoheres als ein be-
stimmtes Hochstalter) und fiv ¢ > o wiederum von 0
verschiedene positive oder negative Werte. Das ist der
Wirklichkeit widersprechend und sinnlos. Der Giilbig-
keitshereich der Funktion p(f) ist daher auf Werte t << w
beschriinkt. Die Gleichung fiir das Frneuerungsproblem
nach Moser gilt ebenfalls nur fiir Werte ¢ < w. Wir
nennen die Frneuerungsfunktion wegen ihres daherigen
beschriinkten Giiltigkeitsbereiches ¢g; die unabhiingige
Variable wollen wir mit 2 bezeichnen. Die Gleichung
fiir dag Frneuerungsproblem lautet dann

M L= p(a) + [ ple—1) poy) dy
0
Wir differenzieren diese Gleichung nach z:
@) pole) =— /(@) — [ P51 golt) dy
0

Dasg ist eine Volterra’sche Integralgleichung zweiter
Art fiir y(z). Sie kann durch m-malige Differentiation
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in eine lineare Differentialgleichung m-ten Grades iiber-
gefithrt und als solche gelést werden. Durch einmalige
Differentiation und Umgruppierung der einzelnen Glie-
der der Gleichung erhalten wir:

"

90/ (@) + P'(0) ol®) + [ p"(x—1) go(y) dy = — p'(2)
0
Wir differenzieren noch (m — 1) Male weiter nach w:

,’,“j - _ & l
L po " () p (0) + j p" Y (2 —y) o(y) dy = — p" Y (2)
0 0

4 € m
Aus p(x) = (1 —) folgt :
)
p™t h () =0

P (0) = m (m—1)- - - (m—2A-+1) (_ 1*)} )

w

Setzen wir diese Werte in unserer letzten Gileichung ein
und dividieren wir zudem diese Gleichung durch

1 m .
(__ — | m!, so erhalten wir
.o,

o ople) | ot Lo o (@)
)o@ — T BB g R

Das ist eine lineare Differenzialgleichung m-ter
Ordnung fiir die Funktion ¢4(x). Ihre Lésung erfordert
die Liosung der sogenannten charakteristischen Gleichung,
die man erhiilt, wenn man ¢{(z) durch 2" ersetzt. Ist

1) Zar Vereinfachung der Schreibweise bezeichnen wir Aus-

g
: d" p(: :
driicke von der Form @ o) abkiirzend mit pl2) (a).
da® lz=a
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dann 2z = « eine Liésung der charakterigtischen Gleichung,
so ist ¢" ein partikulires Integral der Differential-
gleichung. Unsere charakteristische Gleichung lautet:

Y w? 22 w3 23 gt
e —I-————- Y -_I..< (—-——1)"1-—-7*— —

4) F(z) =1 —
4 FeE TTRRY 31 nl

Die Losung dieser Gleichung auf algebraischem
Wege ist fiir beliebig hohes m nicht mdoglich. Dagegen
konnen iiber ithre Wurzeln folgende Aussagen gemacht
werden:

1. F(z2) = 0 hat keine mehrfachen Wurzeln. Wir
nehmen an, z = « set eine Doppelwurzel. Dann muss fir
diesen Wert sowohl F' selber als auch die erste Ableibung
von F' verschwinden. Die erste Ableibung von I ist

w? 2 w3 72 g™ g

Fo=—otqr——r +— + Vo

darin und in (4) den Wert « ein und addieren die beiden
Gleichungen. Wir finden:

COM’, am .

i -
Fla) + (o) = (1)~

Diese Beziehung ist nur moglich fiir o = 0. Wenn also
o eine mehrfache Wurzel von F' = 0 ist, so hat es den
Wert 0. z = 0 erfiillt jedoch Gleichung (4) nicht, & = 0
ist also keine Wurzel von F(2) = 0. Damit ist bewiesen,
dass F'(z) = 0 keine mehrfache Wurzeln besitzt. Unsere
Differentialgleichung (3) hat dann die allgemeine Losung

m

=
(5) Po(2) = Z A, e"®
1
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Die 4, sind Integrationskonstanten. Auf die Art
threr Berechnung kommen wir in Abschnitt 4 zuriick.

2. Die Gleichung I'(2) = 0 hat bei geradem m keine,
bei ungeradem m eine, aber nur eine reelle Wurzel.

Aus der Theorie der Gammafunktionen ist bekannt,
dass die unvollstindige Gammafunktion der Gleichung
geniigh:

vl h 1
Q,(n)= (n—1)! e (1 e W,-ﬁ‘)

2! (n—1)!,
" / Wz w?2 22 . ™ 2™\
Q_,, (m+1) =m!e* (1-— ir + BT + o4 (—1) o )

Der Ausdruck in der runden Klammer ist unsere Funk-
tion F'(2). Die Gleichung (4): F(z) = 0 ist daher fqui-
valent mit der Beziehung

Q_,, (m+1) =0

Mit andern Worten: Fin z, das diese Beziehung erfiillt,
ist eine Wurzel der Gleichung F(2) = 0. Die Diskussion
der obigen Gleichung wird iibersichtlicher, wenn wir
— wz durch v ersetzen. Ausserdem setzen wir fir
@, (m + 1) den Integralwert ein. Wir erhalten:

o

(OC) Q,, (‘le‘l—l) — /le -y ym (]I/ o2 )

a) Tir gerades m ist der Integrand beireellem und
endlichem ¥ nie negativ, das Integral als Fliche zwischen
der z-Achse und einer nie negativen Kurve also nie null.
Iis gibt demnach bei geradem m keinen reellen endlichen
Wert von v und damit auch keinen reellen endlichen
Wert: von z, der («) erfillt, mithin auch keine reelle
Wurzel der zu («) dquivalenten Gleichung (4).

-1
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b) Iir ungerades m hat (4) und damit auch die
dazu dquivalente Gleichung («) nach dem Fundamental-
satz der Algebra wenigstens eine reelle Wurzel. Wir
miissen noch beweisen, dass es hochstens eine reelle
Wurzel gibt. IFir m =1 1st diese Tatsache selbstver-
stiandlich, fir m > 1 (aber ungerade) ist der Integrand

- e y
D M
y

eine links der Ordinatenachse negative, rechts positive
stetige und eindeutige Funktion. Unsere Gleichung ist
erfitllt, wenn wir ein » finden so, dass das I'lichenstiick
links gleich dem endlichen I'lichenstiick rechts (dieses
hat den Wert I'(m-1) = m!) ist. Wir haben erkannt,
dass es ein solches » gibt. Wir nehmen an, dieses v sei ge-
funden, es sei der in obenstehender Figur eingezeichnete
Wert v. Aus der Figur erkennen wir leicht, dags wegen
der Stetigkeit und Eindeutigkeit der Funktion e ¥ y™
jedes andere reelle » > v links ein kleineres, jedes andere
reelle v << v ein grosseres Flichenstiick erzeugt als v, so
dass die Teilflichen links und rechts nicht mehr gleich
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sein kénnen. ks gibt also ausser » kein rveelles » und
, , v
damib auch kem reelles z =— —, das («) erfiillt. Damit
)
ist gezeigt, dass («) und damit (4) bei ungeradem m eine,
aber nur eine reelle Wurzel besitzt.
Die e, in (5) sind also mit Ausnahme eines einzigen
im Ialle, wo m gerade ist, komplexe Zahlen. Diese Tat-
sache werden wir spiter verwenden.

9. Die Gleichung der Erneuerungsfunktion fiir { — .

Zur Berechnung der Frneuerungsfunktion fiir £ > o
teilen wir die Zeit ¢ in Intervalle von der Grosse e ein.
Wir numerieren die einzelnen Intervalle der Reihe nach
mit 0, 1, ... »n und nennen die Frneuerungsfunktion im
n-ten Intervall, wo ¢ einen Wert ne + » (0 <2< w)
hat, ¢,(x). Die Berechnung von ¢, (), der Erneuerungs-
funktion im 0-ten Intervall, wurde im vorigen Abschnitt
dargestellt. Fiir die Berechnung von ¢, (z) fix n >0
gehen wir von folgender Uberlegung aus: Der GGesamt-
bestand 1 besteht zu einer Zeit ¢ = new -+ 2, also im
n-ten Intervall, aus solchen Mitgliedern, die im (n — 1)-
ten und solchen, die im betrachteten Intervall selber ein-
getreten sind. Alle vor der Zeit ¢t = (n—1) @ Kinge-
tretenen sind zur Zeit ne |+ x gestorben.

<— 0 — (y—a) —>

‘ (7a¥1)-tes. Intervall | n-tes Intervall I
(n—1) w nw (n+1) @

Zur Zeit (n—1)w 4y sind ¢, (y) Mitglieder einge-
treten. Davon sind zur Zeit ne + @, d. h. @ — (y—az)
Jahre spiter, noch ¢, () p(o + x— y) Mitglieder
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vorhanden. Die Summe aller dieser Flemente und der
noch vorhandenen im mn-ten Intervall selber Einge-
tretenen ist der Gesamtbestand 1.

/ Pr— J) P( "F:L—y) dJ = / P .L~-lj ®n (y) dJ

Diese Beziehung ist eine Rekursionsformel fiir die
Funktionen @, (x). Durch Differenzieren und Umformen
finden wir

w

(M) @ul@) =— [ g, (1) P’ (0+2—Y) /pbﬂw%wwu

)] l)

Diese Formel, in der wir ¢,(x) als unbekannt und
@, (x) als bekannt annehmen konnen, ist wiederum eine
Volterra’sche Integralgleichung zweiter Art und stimmt
mit (2) bis an die freie Funktion iiberein. Wir lésen sie
wie (2) durch m-maliges Differenzieren. Wir finden

wp, (@) 0 g, () w0 (%) ™ .
® gufe)— 22 L BT 4B BT g @)

Dag ist eine lineare Differentialgleichung, deren
rechte Seite von 0 verschieden ist. Ihr allgemeines
Integral ist die Summe aus dem allgemeinen Integral
ohne rechtes (lied und einem partikuliren Integral mit
dem rechten Glied. Die linke Seite stimmt bis an die
Indices mit (3) itberein. Das allgemeine Integral ohne
rechte Seite ist also ebenfalls Gleichung (5) mit allge-
meinen [ntegrationskonstanten

(@) Vi, ¢
1

Fir n = 1 hat die rechte Seite die Form
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m

\ 7> @ d
A (13 A

1

Die a, sind die Wurzeln der charakteristischen (leichung
der linken Seite von (8). Aus der Theorie der Differen-
tialgleichungen ist bekannt, dass das partikulire Inte-
aral von (8) mit rechter Seite dann die Form

m

N
0 IE, ao

1
hat. Die Addition von («) und (B) liefert ¢,(x). Mit
zweckentsprechender  Umbenennung der Konstanten
erhalten wir:

i
P (0) = D[ By, + By o] e

|

Ifir n = 2 1st die rechte Seite von (8) gerade die
rechte Seite dieser Beziehung. Das partikulire Integral
von (8) mit rechter Seite ist dann eine Funktion von der
Beschatfenheit

m
Z [Ciy @ + Cy a?] e%®
1
Damit wird
i
@, (2) = Z [Ou). + 0z + 0y wz] ¢4
1
Allgemein gilt:
m 1

(9) Pn (CL‘) = E ﬁ

0

< 47

P/ 5
ﬂjll'}. & et

LY
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.., bedeutet daber den konstanten Koeftizienten des
Gliedes 2" e”* im Ausdruck fiir die irneuerungstunktion
des n-ten Intervalls ¢, (x) bei Zugrundelegung des Ab-

4 €T m
sterbegesetzes (1 —w—) . Die «, sind die Wurzeln
der charakteristischen Gleichung (4). Sowohl die 4 als
auch die o haben tiir verschiedene m verschiedene Werte.

Gleichung (5) ist in Gleichung (9) als Spezialfall
(n = 0) ebenfalls enthalten. Also gilt die Gleichung (9)
fiir beliebige n. Sie ist der allgemeinste analytische Aus-
druck fiir die Frneuerungsfunktion bei Annahme einer
Parabel m-ten Grades als Absterbefunktion.

3. Darstellung der Erneuerungsfunktion mit Hilfe trigo-
nometrischer Funktionen.

Wir haben erkannt, dass in (9) alle «; mit Ausnahme
eines einzigen bei ungeradem m komplexe Zahlen sind.
Wenn o, = a - bt eine Liosung von (4) und damit eines
ungerer o«; in (9) 1st, so st es auch «, = a —bi. Dic
Summe (9) fiir ¢ (x) wird daher in Teilglieder von folgen-
der Form zerfallen

x I,:‘Al'l e(cc-}—b,'):c }_ A " ew—--ba)m]

Mit e = cos (bx) + 4 sin (bx) geht dieser Ausdruck
itber 1in

(@) e [A,, cos(bx) +id,, sin(ba) + 4,y cos(bx) —id,, sin (bx)]

Wir wissen, dass unsere Funktion ¢(z) eine be-
stimmte konkrete Bedeutung hat und sicher als reelle
Tunktion existiert. Der analytische Ausdruck fur ¢, (x)
darf also keine imaginiren Glieder aufweisen. Die
Summe aller imaginiiren Glieder in (9) muss fiw beliebige
Werte von = null sein. Das ist wegen der Verschieden-
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heit aller Werte o, nur dann moglich, wenn in allen
Teilgliedern von (9) von der Form (x) die Summe der
beiden imaginiren Glieder null ist. Das 1st der Fall,
wenn A, = A, ist, wenn also die Koeffizienten der-
jenigen partikuliren Integrale unserer Differential-
gleichung (3), die aus konjugiert-komplexen Wurzeln
der charakteristischen Gleichung (4) hervorgehen, paat-
weise gleich sind. («) geht iiber in

(P)

24,, «" e cos (bx)

%3 lagsen sich also immer zwei Summanden der Reihe (9)
von der Form A, ¢ 2" in einen einzigen von der Form
(B) zusammenfassen. Damit wird die Anzahl der Sum-

™m

manden von (9) fivr gerades m auf —, tiir ungerades m,

m— 1

wo ein o, reell ist, auf 5 reduziert. Wir erhalten

an Stelle von (9) zwet Gleichungen von der Form

(10) 4

m gerade:

m

ER n
» 77 ﬁ I v )a‘x » i b g
(l’})z(‘l’) = /Y ),:-), &L 67 o8 ( ).‘1)
1 0

m ungerade: m- |

&

n n
! &r —; \ Y v 0
Y — i PO LN Tt . o) y ,
Q)”(J/) = : ’ nBrU x" e™* y nBr). z" e"” cos (})A.B)
0 | 0

Dabei bedeutet «, die reelle, @, - b, v zwel konjugiert-

komplexe Wurzeln von (4). Die Bedeutung der Koeffi-
zienten B geht aus der Gleichung (10) selber hervor, Der
Zusammenhang zwischen den Koeffizienten A4 und B ist
der folgende:
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B =+l = 2,4,

(10) ist die allgemeine Gleichung fiwr die Erneuerungs-
funktion ¢(x) in trigonometrischer Form. Dadurch, dass
sich ¢ (z) durch trigonometrische Funktionen darstellen
lisst, tritt der wellenformige Verlauf der Krneuerungs-
funktion deutlich zutage.

4, Uber die Bestimmung der Integrationsko'nstanten A
in (9) bzw. B in (10).

a) n = 1: Die Losung g,(2) der fir n = 1 geltenden
Differentialgleichung (3) weist m Integrationskonstanten
auf, die bestimmbar sein miissen, da @y(x) als Losung
einer Volterra’schen Integralgleichung zweiter Art ein-
deutig bestimmt ist. Die dazu notwendigen Rand-
bedingungen sind die Gleichungen (2) und ihve (m — 1)
ersten Ableitungen, wenn man darin 2z = 0 setzt. Wir
haben erkannt, dass je zwel Integrationskonstanten
gleich gross sein miissen, also geniigen zur Bestimmung

) m m -+ 1
der m Integrationskonstanten o4 bzw. der 01 oder s

, ) m m-+1
Integrationskonstanten (B schon 5 oder 5 der er-
el

withnten Randbedingungen.

b) n >1: Die Konstanten 4, bzaw. B gehen fiir
» >0 bei der Lésung der Differentialgleichung (8) ein-
deutig hervor. Sie sind Funktionen der , A, baw.
w1 B, und konnen durch Rekursion aus diesen bestimmt
werden. Die m Integrationskonstanten ,4, bzw. die
m m 1 ' _
Y oder ——— Integrationskonstanten B, folgen aus
Gleichung (7) und ihren (m—1) ersten Ableitungen fiir
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t = 0. Auch hier geniigen, wie im Fall n = 1, schon
m m-1 .

— bzw. — — dieser Randbedingungen.

2 ‘) - =

“

5. Stetigkeit der Funktion ¢(f).

Die TFunktionen ¢,(2z) verlaufen innerhalb ihres
Geltungsbereichs als ganze transzendente Funktionen
stetig. Noch unbestimmt ist die Stetigkeit der Funktion
¢(f) in den Grenzpunkten der Teilintervalle, d. h. dort,
wo der Geltungsbereich von ¢, () aufhort und der-
jenige von ¢,(x) beginnt, also fiir den Wert ¢ = now.

@(t) verliuft dann stetig, wenn ¢, (w) = ¢,(0)
oder, gleichbedeutend, ¢, () — ¢,(0) = 0 ist. Das
Analoge kann iber die Stetigkeit der Ableitungen ge-
sagt werden.

1. Wir betrachten zuerst den Ubergangspunkt vom
0-ten zum ersten Intervall (f = m). Wir setzen in (2)
@ = w. Dann ist

Bol@) = — ') — [ p'(0—y) g0 (4) dy

0
Aus (7) folgt fiir m =1 und z = 0:
91 (0) = — [ p'(@—1) @o(y) dy
0
Daraus geht durch Subtraktion die Beziehung
po(@) — @, (0) = — p'(w)

hervor. Die Bedingung fiir Stetigkeit der Funktion
@(t) im Punkt ¢ = o lautet daher:

v ‘ » \ m—1
Mmz_ﬁ@_a)

== ()

o w T=w




Diese Beziehung ist erfiillt fiir m > 1, dagegen nicht fiir
m = 1. Wir finden also

@o(w) + @, (0) fir m =1
(or)
@olw) = @,(0) fiar m > 1.

Zur Untersuchung iber die Stetigkeit der ersten
Ableitung differenzieren wir die Gleichungen (2) und
(7) und setzen in (7) n = 1,

T

(@) = —p" (@) —p'(0) po(2) — | p"(x—y) o () dy
0

P (Z) = — o) p'(w) — @ (x) p'(0) — /‘%( y) p" (x4 w—y) dy

— o) p' (a—y) dy
0

Setzen wir in der obern dieser Gleichungen x = 0 und
in der untern & — o und subtrahieren die untere von
der obern, so folgt:

Po(@) — go(0) = —p"() —p'(0) [wo(e) — #1(0)] —o(0) p' ()

Der Fall m = 1 interessiert uns nicht, da in diesem Ifall
schon g(t) selber unstetig ist. I'tw m > 1 sind die letzten
beiden Summanden der rechten Seite dieser Gleichung
null, da p'(w) = 0 und go(w) = @,(0) ist. Die Bedingungs-
gleichung fiir Stetigkeit der Funktion ¢'(f) im Punkt
t = w lautet dann

1 T m—2
P'(w) = m (m—1) — (l —— )

(0] (3]

== )

ZT==

Diese Gleichung ist erfitllt fie m > 2, dagegen nicht fiir
m = 2. Daraus folgt:
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] po(®) ¥ ¢ (0) fir m = l
v ] @p(@) = @ (w) fix m > 2 ]

So weiterfahrend konnen wir die Stetigkeit der héhern
Ableitungen beurteilen. Wir finden allgemein

W (0) + g (0) fiw m— v+ 1

(D) ,
P (w) = @ (0)  fir m >y -+ 1

9. Wir betrachten den Ubergangspunkt vom ersten
sum zweiten Intervall (f = 2w). — Wir setzen in (7)
guerst » = 1 und = = o und dann n = 2 und 2 = 0.
Die linken Seiten der so entstehenden Gleichungen er-
geben die Werte ¢, (w) und ¢,(0), die rechten Seiten
stimmen aberein. Also ist fiir beliebiges m

(») @1 (@) = ¢,(0)

Die Funktion ¢(f) verliuft also im Punkte t = 2w stetig
fiir beliebige m. Wir untersuchen die Stetigkeit der Ab-
leitungen. Wir differenzieren wiederum (7) nach x:

(p::(d’) = — @ —l(m) P’ (w) o (p“(.'.l)) p, (()) o

“JT%w+w—w)%hdwdy

—J@%wﬁwwdmdy
0

Setzen wir wiederum zuerst n = 1 und = = o und
dann 7 =2 und z =0 und subtrahieren die zwel
(tleichungen voneinander, so finden wir:
Py (®) — @5 (0) = — p' (o) [@g(®) — ¢, (0)] —
— ' (0) [, (@) — @,(0)]
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Stetigkeit ist dann vorhanden, wenn die rechte Seite
dieser Gleichung null ist. Das zweite Glied ist nach (y)
null, das erste ist fir m = 1 nach (I), und weil dann
p'(w) + 0 ist, nicht null, dagegen fiw m > 1. Unser
Resultat lautet daher in Gleichungsform:

' @, (@) £ @, (0) fiir m =1 l

0
) ] @, (w) = @, (0) fix m >1 l

So weiterfahrend kénnen wir die Stetigkeit der
zweiten und der héhern Ableitungen diskutieren. Wir
finden allgemein:

[) I (]9(1") (CO) :F (p(gv) (()) fiir m = » l
(1. ‘ '
l' P () = @ (0)  tir m > l

3. In genau gleicher Weise wiirde fiir den Uber-
gangspunkt vom zweiten zum dritten Intervall (£ = 8m)
die Beziehung resultieren:

e (w) £ e (0) fix m=»—1 ]

(ITI) :
PP (w) = @ (0) e m >»—1 l

4. In analoger Weise gilt allgemein fiir die Stetig-
keit der Frneuerungsfunktion und ihrer Ableitungen in
den Punkten t = nw:

e (o) + «pg’) 0) fix m=»—n42 l
()

(11)
(0) fir m >v —n 4+ 9 '

‘PS:il(a)) ==

Die Bedingung fiir Stetigkeit von ¢(f) im Punkte
t = no lautet, anders ausgedriickt, auch

y<<m-+n—2,
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Wir konnen demnach das Schlussresultat dieses
Abschnitts wie folgt zusammenfassen: Ist das Absterbe-

. 1 m
gesetz eine Parabel m-ten Grades p(f) = (1-----— —ﬁ) g
1 ®

$0 haben im Punkte ¢t = ne die (m + n — 2)-te und alle
hohern Ableitungen der Frneuerungsfunktion eine
Unstetigkeitsstelle, fiix m =1 also bei t = w (n = 1)
die Erneuerungsfunktion selber.

6. Beharrungszustand.

Es ist bekannt, dass nach einer geniigend grossen
Zeitspanne, d.h. im Beharrungszustand, die Krneue-
rungsfunktion zu einer Konstanten wird. Triigt man
dieser Tatsache Rechnung und bezeichnet man die Tir-
neuerungsfunktion im Beharrungszustand mit ¢, so
findet man aus (6):

1
{p - w o -

| plota—y) dy+ [ p(e—y)dy
0

€T

Die Substitution @ -+ & —y =2z fir dag erste und
o — iy = 2 fiir das zweite Integral lietern die Beziehung

1 m -+ 1

(p = —

fp (2) dz
0

(12)

w

7. Spezialfall m — 1 (Hypothese von Moivre).
Nach (9) hat unsere Iirneuerungsfunktion die Form

n

‘P.,,(w) s Grm:‘-: nAv @’
0
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1 .
Aus (4) folgh o = —. Zur Bestimmung der ,4, gehen wir
w

von (leichung (8) aus:

, 1 1
IPH(LL') T ‘Pn(w) y (pnwl(a’l) =0
() w

x

Pn (:E) = C:U“

, g g b S
K — f @, (2) e «de

w

Hieraus folgt fir n = 0, 1, 2 ... n sukzessive:

T

‘pu(l") = e% K(}

(13)

----------------------------

Zur Bestimmung der Konstanten setzen wir & = 0. Wir

finden
K, = ¢,(0)

Aus (2) folgt fiir n =0

, o
Ky=g,(0)=—p (0) = —
w

Setzen wir den fiir ¢y(z) nunmehr gefundenen Werb
k.. &, .

— e@ in (7) ein, so folgt daraus

w

1 1
K, = p,(0) = — (e—1) = 1,7188 (—)

0 W



—_ 87 —

In gleicher Weise konnten die hohern K berechnet
werden. Wir bedienen uns jedoch der Uberlegung, dass
fir n >1 ¢, (@) = @,(0) sein muss. Wir haben den
Beweis fiir die Richtigkeit dieser Tatsache im 5. Ab-
schnitt erbracht. Wir erhalten:

1 1
K, = ( ) e (e—2) = 1,9524 (_)
\w/ wl

| 1\ [ 3 &
K—(— e(ez-—«iie—i—-z :1,9958(~)

\ @ L

¢

1) ' i 1
K, = (—) e ((83 — 42 4 4e — M) = 1,9998 ( )
W, 8 w

Die Erneuerungsfunktion nimmt nach (13) cemessen
) te ]

— ), die wir als Einheit der Ordi-

.,

in Vielfachen der Zahl (

natenachse wiihlen, folgende Werte an:

X %o ¥ Pe P
|
0 1,000 1,718 1,952 1,996
) ) : |
o 1,284 1,885 1,996 2,002
2w
—- 1,649 2,009 2,009 2,001
3w .
e 2,117 2,050 2,000 1,999

) 2,718 1,952 1,996 2,001




S -

Im Beharrungszustand strebt ¢(x), wie aus (12)

und ebenso aus der vorhergehenden Tabelle hervorgeht,
L \

dem Wert ( 2) AL

\ ) /

)

i bo

w SNo—""__

g ) 2w Jw
w ] | |

Das durchgerechnete Beispiel zeigt in sehr dent-
licher Weise den charakteristischen Verlauf der Tip-
neuerungstunktion, die sich in geddmptter Schwingung
schliesslich einem konstanten Wert néhert, Die Ab-
weichungen vom Beharrungszustand sind schon bald
nach der Zeit o, d. h. dem Ausscheiden der Ursprungs-
generation aus dem Bestand, nicht mehr bedeutend.
Sie betragen nach

0 ) 20 BT 4w Jahren
50 14,1 2,4 0,2 0,05  Prozente

der Frneuerung im Beharrungszustand.
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8. Zusammenfassung.

Diese Untersuchungen iiber den Verlauf der Iir-
neuerungsfunktion bet Annahme einer Parabel m-ten
Grades als Sterbegesetz sind fiir die Versicherungs-
rechnung nicht praktisch verwertbar, weil das ver-
wendete Sterbegesetz wirklichen Verhiltnissen nur sehr
annihernngsweise gerecht wird und ausserdem die Be-
stimmung der in (9) oder (10) auftretenden Konstanten
o, A und B sehr kompliziert ist. Die Krgebnisse sind
jedoch theoretisch interessant, indem durch das Auf-
treten von trigonometrischen Funktionen in (10) der
Wellencharakter der Erneuerungsfunktion deutlich zu-
tage tritt und das einfachst mogliche und im vorher-
gehenden durchgerechnete Beispiel m = 1 alle charak-
teristischen Merkmale der Erneuerungsfunktion auf-
deckt *). Vom rein mathematischen Standpunkt bieten
die vorliegenden Ausfithrungen auch ein gewisses In-
teresse, indem sie die Liosung zweier Volterra’scher Inte-
gralgleichungen durch Umwandlung in  Differential-
gleichungen untersuchen und eine auch mathematisch
nicht uninteressante Funktion, die durch (1) und (6)
definierte Funktion ¢(f) beschreiben.

Tiir m = 2 erhielte man mittelst der angegebenen
Rechenmethode fiir die beiden ersten Intervalle fiir die
Erneverungsfunktion die Ausdriicke:

g 2 w
@Po(T) = — €% cos (-~-

w w

¢ (x) = 2 e% cos ( ! ) :(3 ccos (1) — [e-sin (1) —1] (g)}

w w

) Die Funktion ¢ (f) ungerer Ausgangsgleichung ist immer
dann eine gedimpfte Schwingung oder eine Konstante, wenn die
Funktion p(t) den Charakter eines Sterbegesetzes hat, also immer
abnimmt und nie negativ wird.

8
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