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Ober das Erneuerungsproblem bei Verwen

dung eines analytischen Sterbegeselzes.

Von Dr. Harald Schulthess, Dem.

Das Erneuerungsproblem nach Moser *) untersucht
das Verhalten einer ursprünglich gleichaltrigen
Personengesamtheit, die einerseits infolge von Todesfällen zahlen-

mässig abnimmt, andrerseits durch Neuzutritte erweitert
wird. Alle betrachteten Personen sollen im Zeitpunkt
ihres Eintritts in die Gesamtheit ein bestimmtes
konstantes Eintrittsalter haben.

Bedeutet A(t) den Bestand zur Zeit t, p(t) die t-

jährige Sterbewahrscheinlichkeit, <p(t) die Intensität der

Erneuerung und ist das einheitliche Eintrittsalter 0,

so lautet die Gleichung des Erneuerungsproblems:

i

A(t) ^1(0) p(t) + jA(r) cp(t) p(t—t) ch
6

Wir beschäftigen uns im folgenden mit dem Fall,
wo der Bestand der betrachteten Gesamtheit konstant
Ideiben soll, und untersuchen, mit welcher Intensität
unter dieser Bedingung Neuzutritte erfolgen müssen.

Als Sterbegesetz legen wir unserri Betrachtungen
das sogenannte Gesetz von Achard zugrunde:

l) Moser: Beiträge zur Darstellung von Vorgängen bei einer
sich erneuernden Gesamtheit. M. V. M. Tieft 21.
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<o ist das Höchstalter und m eine ganze positive Zahl.
Das der Wirklichkeit am nächsten stehende Gesetz von
Makeham ist für die analytische Ausrechnung zu
kompliziert, und die einfachere Hypothese von Dorrnoy
würde der Wirklichkeit widersprechende Eesultate
liefern.

1. Gleichung der Erneuerungsfunktion für t < w.

I 1Y"
Unser Sterbegesetz f(t) ^1— --I hat für t — a>

den Wert 0 (die Leute erreichen kein höheres als ein
bestimmtes Höchstalter) und für t > co wiederum von 0

verschiedene positive oder negative Werte. Das ist der
Wirklichkeit widersprechend und sinnlos. Der
Gültigkeitsbereich der Funktion y(t) ist daher auf Werte t < w
beschränkt. Die Gleichung für das Erneuerungsproblem
nach Moser gilt ebenfalls nur für Werte t <7 o>. Wir

nennen die Erneuerungsfunktion wegen ihres daherigen
beschränkten Gültigkeitsbereiches <p0; die unabhängige
Variable wollen wir mit x bezeichnen. Die Gleichung
für das Erneuerungsproblem lautet dann

X

(1) 1 p(x) +j p(x — y) <p0(y) äy
0

Wir differenzieren diese Gleichung nach x:
X

(2) <p0{x) — p'(x) —fp'(x y) 9,0(y) dy
o

Das ist eine Volterra'sehe Integralgleichung zweiter
Art für (p0(x). Sie kann durch m-malige Differentiation



in eine lineare Differentialgleichung m-ten Grades

übergeführt und als solche gelöst werden. Durch einmalige
Differentiation und Umgruppierung der einzelnen Glieder

der Gleichung erhalten wir:

n'(x) + p'(o) ?>o(®) +/p"(x—y) vo(y) du — p"(«)
i)

Wir differenzieren noch (m— l) Male weiter nach x:
tn x

^(pnm~'x) ix) (°) + / p("'+1) (x—y) n(y) du — p{,"+1){%)

0

/ X \
Aus p(x) — 11— folgt:

p<""
1 " (x) 0

p(A) (0) m (w—1) • • • (m—A-f-1) (— — Y l)
\ co J

Setzen wir diese Werte in unserer letzten Gleichung ein

und dividieren wir zudem diese Gleichung durch
i Y"

— ml, so erhalten wir
co

'

n {x) _ <*>>
+1! 2! ml

Das ist eine lineare Differenzialgleichung m-ter
Ordnung für die Funktion cp0(x). Ihre Lösung erfordert
die Lösung der sogenannten charakteristischen Gleichung,
die man erhält, wenn man cp^\x) durch z" ersetzt. Ist

l) Kur Vereinfachung der Schreibweise bezeichnen wir Aus-

"i i
clk p(x)

drücke von der Jform —£-y- abkürzend mit p(ü (a).



— 72

dann z — a eine Lösung der charakteristischen Gleichung,
so ist enx ein partikuläres Integral der Differentialgleichung.

Unsere charakteristische Gleichung lautet:

wz co2 z2 w3 zs w'" zm

(4) F(z) l-— + — — + h(-l)M—; =0
1! 2! <3! m!

Die Lösung dieser Gleichung auf algebraischem
Wege ist für beliebig hohes m nicht möglich. Dagegen
können über ihre Wurzeln folgende Aussagen gemacht
werden:

1. F(z) 0 hat keine mehrfachen Wurzeln. Wir
nehmen an, z a. sei eine Doppelwurzel. Dann muss für
diesen Wert sowohl F selber als auch die erste Ableitung
von F verschwinden. Die erste Ableitung von F ist

w2 z w3 z2 w'" zm~~l

pw - o

Wir dividieren diese Gleichung durch w, setzen für z

darin und in (4) den Wert a ein und addieren die beiden

Gleichungen. Wir finden:

1 (0m

F(a)+ *"(«) (-l)w- r =0
w ml

Diese Beziehung ist nur möglich für a 0. Wenn also

a eine mehrfache Wurzel von F 0 ist, so hat os den

Wert 0. z 0 erfüllt jedoch Gleichung (4) nicht, a 0

ist also keine Wurzel von F(z) 0. Damit ist bewiesen,
dass F(z) 0 keine mehrfache Wurzeln besitzt. Unsere

Differentialgleichung (3) hat dann die allgemeine Lösung

(5) (p0(x) ^ Ä> e">-X
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Die A} sind Integrationskonstanten. Auf die Arl
ihrer Berechnung kommen wir in Abschnitt 4 zurück.

2. Die Gleichung F(z) 0 hat bei geradem m keine,
bei ungeradem m eine, aber nur eine reelle Wurzel.

Aus der Theorie der Gammafunktionen ist bekannt,
dass die unvollständige Gammafunktion der Gleichung

genügt:

e»=<»-i)!.~(i +* + -£+ - + (^,)
/ WZ W2 Z2 w"' z"' \

Der Ausdruck in der runden Klammer ist unsere Funktion

F(z). Die Gleichung (4): F(z) 0 ist daher
äquivalent mit der Beziehung

Q-w (»»+!) 0

Mit andern Worten: Bin z, das diese Beziehung erfüllt,
ist eine Wurzel der Gleichung F(z) 0. Die Diskussion

der obigen Gleichung wird übersichtlicher, wenn wir
- toz durch v ersetzen. Ausserdem setzen wir für

1) den Integralwert ein. Wir erhalten:

oo

(a) gp(m-H)-=/6-»jf <ty 0

V

a) Für gerades m ist der Integrand bei reellem und

endlichem y nie negativ, das Integral als Fläche zwischen

der «-Achse und einer nie negativen Kurve also nie null.
Fs gibt demnach bei geradem m keinen reellen endlichen

Wert von v und damit auch keinen reellen endlichen

Wert von z, der (a) erfüllt, mithin auch keine reelle

Wurzel der zu (a) äquivalenten Gleichung (4).
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b) Für ungerades m hat (4) und damit auch die
dazu äquivalente Gleichung (a) nach dem Fundamentalsatz

der Algebra wenigstens eine reelle Wurzel. Wir
müssen noch beweisen, dass es höchstens eine reelle
Wurzel gibt. Für m 1 ist diese Tatsache
selbstverständlich, für m > 1 (aber ungerade) ist der integrand

eine links der Ordinatenachse negative, rechts positive
stetige und eindeutige Funktion. Unsere Gleichung ist

erfüllt, wenn wir ein v finden so, dass das Flächenstück

links gleich dem endlichen Flächenstück rechts (dieses

hat den Wert /'(m+l) Wir haben erkannt,
dass es ein solches v gibt. Wir nehmen an, dieses v sei

gefunden, es sei der in obenstehender Figur eingezeichnete
Wert v. Aus der Figur erkennen wir leicht, dass wegen
der Stetigkeit und Eindeutigkeit der Funktion e~v y"1

jedes andere reelle v > v links ein kleineres, jedes andere
reelle v < v ein grösseres Flächenstück erzeugt als v, so

dass die Teilflächen links und rechts nicht mehr gleich

t \



- 75 —

sein können. Ks gibt also ausser v kein reelles v und
v

damit auch kein reelles z das (a) erfüllt. Damit
CO

ist gezeigt, class (a) und damit (4) bei ungeradem m eine,
aber nur eine reelle Wurzel besitzt.

Die a, in (5) sind also mit Ausnahme eines einzigen
im Kalle, wo m gerade ist, komplexe Zahlen. Diese
Tatsache werden wir später verwenden.

2. Die Gleichung der Erneuerungsfunktion für l > <».

Zur Berechnung der Erneuerungsfunktion für t > co

teilen wir die Zeit t in Intervalle von der Grösse n> ein.
Wir numerieren die einzelnen Intervalle der Reihe nach
mit 0, 1, n und nennen die Erneuerung«funkt ion im
n-ten Intervall, wo t einen Wert tu» -1-.r (0<a;<co)
hat, <pn(x). Die Berechnung von <pn{x), der Erneuerungsfunktion

im O-ten Intervall, wurde im vorigen Abschnitt
dargestellt. Kur die Berechnung von %,(x) für n > 0

gehen wir von folgender Überlegung aus: Der Gesamt-
bestaud l bestellt zu einer Zeit t tu» + x, also im
n-ten Intervall, aus solchen Mitgliedern, die im (n — l)-
ten und solchen, die im betrachteten Intervall selber

eingetreten sind. Alle vor der Zeit l (n—l)cu
Eingetretenen sind zur Zeit nm -f x gestorben.

<--to — (y—x) —>

x y x
1 i 1

1

I (n—l)-tes Intervall | w-tes Intervall |

(n—1) et tu» (tt+l)co

Zur Zeit (w--l) co + f/ sind <pn_v{y) Mitglieder
eingetreten. Davon sind zur Zeit tu» -f- x, d. h. co — (y —x)

Jahre später, noch (pn__t (y) p(t» -f- x — //) Mitglieder



— 76 —

vorhanden. Die Summe aller dieser Elemente und der

noch vorhandenen im w-ten Intervall selber
Eingetretenen ist der Gesamt bestand 1.

iO X

(6) / <P„ I (y) V (<»+x—y) dy + P (x—y) cpn (y) cly 1

X

Diese Beziehung ist eine Eekursionsformel für die
Punktionen <pn(.x). Durch Differenzieren und Umformen
finden wir

tu X

q>Jix) —J <p„ i (//) p'{a>+x—y) — / p'{x—y) <p„(y) dy
X 1)

Diese Formel, in der wir (pn(x) als unbekannt und

9V-i als bekannt annehmen können, ist wiederum eine

Volterrct'sehe Integralgleichung zweiter Art und stimmt
mit (2) bis an die freie Punktion überein. Wir lösen sie

wie (2) durch m-maliges Differenzieren. Wir finden

cocp' (x) «2 cp'(x) tpf"') (x) rn'"
(8) 9»(*) - -I- Yr2 + • • • + (-1)M --^r - Vn..(*)

Das ist eine lineare Differentialgleichung, deren

rechte Seite von 0 verschieden ist. Ihr allgemeines

Integral ist die Summe aus dem allgemeinen Integral
ohne rechtes Glied und einem partikulären Integral mit
dem rechten Glied. Die linke Seite stimmt bis an die

Indices mit (3) überein. Das allgemeine Integral ohne

rechte Seite ist also ebenfalls Gleichung (5) mit
allgemeinen Integrationskonstanten

(OL) 2^^
1

Für n 1 hat die rechte Seite die Form
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^j.~Kxea>-x

i

Die sind die Wurzeln der charakteristischen Gleichung
der linken Seite von (8). Aus der Theorie der

Differentialgleichungen ist bekannt, dass das partikuläre Integral

von (8) mit rechter Seite dann die Form

m

(ß) hx
I

hat. Die Addition von (oc) und (ß) liefert (pßx). Mit
zweckentsprechender Ilmbenennung der Konstanten
erhalten wir:

m

<P\ (x) ^^ [bm + Ba «]
i

Für n '1 ist die rechte Seite von (8) gerade die
rechte Seite dieser Beziehung. Das partikuläre Integral
von (8) mit rechter Seite ist dann eine Funktion von der

Beschaffenheit

M

^ [Cu X + CiX X2| e">-x

1

Damit wird
»»

<pAx)^[Ci)>. + Cax + C.ux*]e"^
I

Allgemein gilt:
m n

0')
1 0
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bedeutet dabei deti konstanten Koeffizienten des

Gliedes xven'-x im Ausdruck für die Frneuerungsfunktioti
des w-ten Intervalls cpn (x) bei Zugrundelegung des

Absterbegesetzes Die a; sind die Wurzeln

der charakteristischen Gleichung (4). Sowohl die A als

auch die a haben für verschiedene m verschiedene Werte.

Gleichung (o) ist in Gleichung (9) als Spezialfall
(n 0) ebenfalls enthalten. Also gilt die Gleichung (9)

für beliebige n. Sie ist der allgemeinste analytische
Ausdruck für die Krneuerungsfunktioti bei Annahme einer

Parabel w-ten Grades als Absterbefunktion.

3. Darstellung der Erneuerungsfunktion mit Hilfe trigo-

Wir haben erkannt, dass in (9) alle a; mit Ausnahme
eines einzigen bei ungeradem m komplexe Zahlen sind.
Wenn a, n -|- bi eine Lösung von (4) und damit eines

unserer a; in (9) ist, so ist es auch a, a — bi. Die

Summe (9) für rpn(x) wird daher in Teilglieder von folgender

Form zerfallen

Mit eibx cos (bx) + i sin (bx) geht dieser Ausdruck
über in

(a) xye"x [/1,,L cos (bx) + iArl sin (bx) + A„ä cos (bx) —iA:,2 sin (bx)

Wir wissen, dass unsere Punktion <p(x) eine

bestimmte konkrete Bedeutung hat und sicher als reelle

Funktion existiert. Der analytische Ausdruck für cpn(x)

darf also keine imaginären Glieder aufweisen. Die

Summe aller imaginären Glieder in (9) muss für beliebige
Werte von x null sein. Das ist wegen der Yerschiedon-

nometrischer Funktionen.

s" [Arl e'"+6,> + A„, eia_W)®|
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heit aller Werte o, mir dann möglich, wenn in allen

Teilgliedern von (0) von der Tonn (a) die Hümme der

beiden imaginären Glieder null ist. Das ist der Tall,
wenn Ari — Ar2 isl, wenn also die Koeffizienten
derjenigen partikulären Integrale unserer Differentialgleichung

(H), die aus konjugierl-komplexen Wurzeln
der charakteristischen Gleichung (4) hervorgehen,
paarweise gleich sind, (a) geht über in

(ß) 2Ay[ xr e"x cos (bx)

Ks lassen sich also immer zwei Summanden der lieiho (0)

von der Torin c"'-x x'' in einen einzigen von der Form

(ß) zusammenfassen. Damit wird die Anzahl der Sum-

m
manden von (9) tur gerades m auf —, fur ungerades m,

2

wo ein a. reell ist, auf reduziert. Wir erhalten
2

an Stelle von (9) zwei Gleichungen von der Form

m gerade:

(10)

V»(X) X' e"''X C0K %x)
I 0

m ungerade: m-1

Ii 2 Ii

<Pn(x) x" e"°* e"lX cos (b>x)

Dabei bedeutet an die reelle, a, j b- i zwei konjugiert-
komplexe Wurzeln von (4). Die Bedeutung der
Koeffizienten B geht aus der Gleichung (10) selber hervor. Der

Zusammenhang zwischen den Koeffizienten A und B ist

der folgende:



— 80 -
»A;. — iA-;.! + nA;.a — 2 nA„^

(10) ist die allgemeine Gleichung für die Erneuerungs-
funktion <p(x) in trigonometrischer Form. Dadurch, dass

sich cp(x) durch trigonometrische Funktionen darstellen
lässt, tritt der wellenförmige Verlauf der Erneuerungsfunktion

deutlich zutage.

4. Über die Bestimmung der Integrationskonstanten A
in (9) bzw. B in (10).

a) n t: Die Lösung tp0(x) der für n 1 geltenden
Differentialgleichung (8) weist m Integrations konstanten
auf, die bestimmbar sein müssen, da %(x) als Lösung
einer Volterra'sehen Integralgleichung zweiter Art
eindeutig bestimmt ist. Die dazu notwendigen .Rand¬

bedingungen sind die Gleichungen (2) und ihre (m — t)
ersten Ableitungen, wenn man darin x 0 setzt. Wir
haben erkannt, dass je zwei Integrationskonstanten
gleich gross sein müssen, also genügen zur Bestimmung

m m + t
der 7ti Integrationskonstanten 0A bzw. der - oder —- -

2i 2

in m -|- 1

Integrationskonstanten 0B schon — oder —-— der

erwähnten Randbedingungen.

b) ii > 1: Die Konstanten nAy bzw. nBv gehen fur

r > 0 bei der Lösung der Differentialgleichung (8)

eindeutig hervor. Sie sind Funktionen der „. lAv bzw.

n. lBl, und können durch Rekursion aus diesen bestimmt
werden. Die m Integrationskonstanten nA0 bzw. die

in m -f-1
oder Integrationskonstanten nB0 folgen aus

2 2

Gleichung (7) und ihren (m—1) ersten Ableitungen für
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t 0. Auch hier genügen, wie im Fall n= I, schon

m m -f- 1

^
h/,w. y dieser Randbedingungen.

5. Stetigkeit der Funktion

Die Funktionen tpn{x) verlaufen innerhalb ihres

Geltungsbereichs als ganze transzendente Funktionen
stetig. Noch unbestimmt ist die Stetigkeit der Funktion
<p(t) in den Grenzpunkten der Teilintervalle, d. h. dort,
wo der Geltungsbereich von aufhört und
derjenige von <pn(x) beginnt, also für den Wert t nco.

(p(t) verläuft dann stetig, wenn (tw) tpn(0)

oder, gleichbedeutend, — tpn(0) — 0 ist. Das

Analoge kann über die Stetigkeit der Ableitungen
gesagt werden.

t. Wir betrachten zuerst den Übergangspunkt vom
0-ten zum ersten Intervall (f to). Wir setzen in ('2)

x ca. Dann ist
CO

<PoM — p'H — I p'H-m) n(>J) dlJ
i)

Aus (7) folgt für n 1 und x — 0:

CO

<p\ (0) —/ p'(m—y) <Po(v) dy
0

Daraus geht durch Subtraktion die Beziehung

VoH — <Pi (°) — V'H

hervor. Die Bedingung für Stetigkeit der Funktion
(p(t') im Funkt t to lautet daher:

m / x
1

p'H (1
0) \ 0)

0
X (Ü
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Diese Beziehung ist erfüllt für m > 1, dagegen nicht für
m 1. Wir finden also

fo(®) * 9h(°) für ')» ~ 1

(a)
<Pq (co) — 9?t(0) für m > 1.

Zar Untersuchung über die Stetigkeit der ersten

Ableitung differenzieren wir die Gleichungen (2) und
(7) und setzen in (7) n 1.

X

— v"(%) — p'(°) ?>o(s) — / <Po(y) dv
i)

CO

fp[(x) — <p0{x) p'(ro) — cPl(x) p'(()) —j <p0(y) f(x+o)—y) dy
X

X

—J ?i (y) V (x—y) dy
0

Setzen wir in der obern dieser Gleichungen x 0 und
in der untern x co und subtrahieren die untere von
der obern, so folgt:

<PoM ~ 9>ö(°) — V"(c»)—P'({)) [«PoM — Pi(ü)] — 9>o(°)p'M

Der Fall m 1 interessiert uns nicht, da in diesem Ball
schon <p(t) selber unstetig ist. Mir m > I sind clie letzten
beiden Summanden der rechten Seite dieser Gleichung
null, da p'(co) 0 und cp0(co) <pt(0) ist. Die Bedingungsgleichung

für Stetigkeit der Funktion cp'(t) im Blinkt
t — co lautet dann

1 j
y"(m) m (m—-1) —— I 1

co \
0

x=co

Diese Gleichung ist erfüllt für m > 2, dagegen nicht für
i)i 2. 1 )araus folgt:



— 83

I 9?q(co) ^ (p\{m) für m — 2 I

(ß)
| 9P„(ro) q>\ (co) für m> 2

So weiterfahrend können wir die Stetigkeit der höhern

Ableitungen beurteilen. Wir finden allgemein

ip[ß (co) 4= 94''' (h) für m — v + l

<p},v)(co) 9't")(h) für m > v -\- 1

2. Wir betrachten den Übergangspunkt vorn ersten

üum zweiten Intervall (< 2co). — Wir setzen in (7)

zuerst n l und x — co und dann n 2 und x 0.

Die linken Seiten der so entstehenden Gleichungen
ergehen die Werte 9>1(ro) und 95ä(0), die rechten Seiten

stimmen überein. Also ist für beliebiges m

(y) <PiW

Die Funktion 95(f) verläuft also im Punkte t 2co stetig
für beliebige m. Wir untersuchen die Stetigkeit der

Ableitungen. Wir differenzieren wiederum (7) nach x:

<p'n(x) — <Pn-i(x) V'H — 9'„(») P'(()) —

W

— I f (x+co—y) 95„_t (//) dry

a:

a:

—I v"ix—u) <p»(y) cJy

0

Setzen wir wiederum zuerst n 1 und a: co und
dann n 2 und a; 0 und subtrahieren die zwei

Gleichungen voneinander, so finden wir:

95; (to) — 9>ö (0) — f (co) [9^0 (co) — 9?t (0)] —

— P'(°) [^1 (f'J) — W-2 (°)]
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Stetigkeit ist dann vorhanden, wenn die rechte Seite
dieser Gleichung null ist. Das zweite Glied ist nach (y)
null, das erste ist für m 1 nach (1), und weil dann
p'(co) 1= 0 ist, nicht null, dagegen für m > 1. Unser
Resultat lautet daher in Gleichungsform:

I <P\M $ <p'a{0) für m 1 |
(d) {

I 99, (co) <y2(0) für m> 1 |

So weiterfahrend können wir die Stetigkeit der
zweiten und der höhern Ableitungen diskutieren. Wir
finden allgemein:

J 9^' (co) ^ (/4"' (0) für v |
| 99(1") (co) <p$> (0) für m > r

3. In genau gleicher Weise würde für den
Übergangspunkt vom zweiten zum dritten Intervall (l 3ro)
die Beziehung resultieren:

9jh' (co) 4= (0) für m — v — 1 |

cp^ (co) 99^' (0) für m > v — 1 J

4. In analoger Weise gilt allgemein für die Stetigkeit

der Erneuerungsfunktion und ihrer Ableitungen in
den Punkten t nco:

I <?«,(«) 4= 9»W (0) für m r - n + 2 j
I cpt] (0) für m>v — n+ 2 |

Die Bedingung für Stetigkeit von cp(t) im Punkte
t nco lautet, anders ausgedrückt, auch

v < m + n — 2.
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Wir können demnach das Schlussresultat dieses

Abschnitts wie folgt zusammenfassen: Ist das Absterbe-
/ 1 V"

gesetz eine Parabel ra-ton Grades v(t) 1——
\ (o /

so haben im Punkte t nco die {tri n — 2)-te und alle

höhern Ableitungen der Erneuerungsfunktion eine

Unstetigkeitsstelle, für rn ----- 1 also hei t — m (n — 1)

die Erneuerungsfunktion selber.

0. Beharrungszustand.

Es ist bekannt, dass nach einer genügend grossen

Zeitspanne, d. h. im Beharrungszustand, die

Erneuerungsfunktion zu einer Konstanten wird. Trägt man
dieser Tatsache Rechnung und bezeichnet man die

Erneuerungsfunktion im Beharrungszustand mit <p, so

findet man aus (fi):
1

cp — -

I <}) (oj+x—y) di) + / V (x—y) dy
X 0

Die Substitution w -f- x — y z für das erste und

x — y z für das zweite Integral liefern die Beziehung

1 m -p 1

(12)
^ _

r
~

(o

fv(*)dz
0

7. Spezialfall m 1 (Hypothese von Moivre).

Nach (D) hat unsere Erneuerungsfunktion die Eonn

n

(pH(x) xr

0
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Aus (4) folgt a — • Zur Bestimmung der nAv gehen wir
CO

von Gleichung (8) aus:

<ph(x) 9»»(«) + - <Pn-l(X) 0
CO CO

K / cp^ix)?. w äx
CO J

<pn(x) r
Hieraus folgt für n 0, 1, 2 n sukzessive:

X

cpn(x) A'0

X

<p, (a) ß»
(18)

K, K0
(0

x
V< K -V„(.r) y (•

a;

tO ;

Zur .Bestimmung der Konstanten setzen wir x --- 0. Wir
finden

Kn <Pn (°)

Aus (2) folgt für n 0

A'„ p„(0) =,-2;'(0)=-
O)

Setzen wir den für cp0(x) nunmehr gefundenen Wert
1 —
— em in (7) ein, so folgt daraus
CO

Ki — (P\ (0) ' (e—1) — 1,7183 —
CO \ CO.
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In gleicher Weise könnten die höhern K,, berechnet
werden. Wir bedienen uns jedoch der Überlegung, dass

für n > 1 9V_i(co) sein niuss. Wir haben den
Beweis für die Leichtigkeit dieser Tatsache im 5.

Abschnitt erbracht. Wir erhalten:

IC, (-1-) c> (e—2) 1,9524 (—)
\ CO \(0 /

*4 (j)«(<"' - ** + «—y) l'ma (~)

Die Erneuerungsfunktion nimmt nach (U5) gemessen

in Vielfachen der Zahl —), die wir als Einheit der Ordi-
V co

natenachse wählen, folgende Werte an:

X <Po <P\ Vi Vi

0 1,000 1,718 1,952 1,99(5

CO

4
1,284 1,885 1,99(5 2,002

2 co

4~
1,(549 2,009 2,009 2,001

3 co

4
2,117 2,050 2,000 1,999

CO 2,718 1,952 1,99(5 2,001
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Im Beharrungszustand strebt cp(x), wie aus (12)
und ebenso aus der vorhergehenden Tabelle hervorgeht,

l 2 \
dem Wert - zu.

\ co

Das durchgerechnete Beispiel zeigt in sehr
deutlicher Weise den charakteristischen Verlauf der Er-
neuerungsfunktion, die sich in gedämpfter Schwingung
schliesslich einem konstanten Wert nähert. Die

Abweichungen vom Beharrungszustand sind schon bald
nach der Zeit co, d. h. dem Ausscheiden der Ursprungsgeneration

aus dem Bestand, nicht mehr bedeutend.
Sie betragen nach

0 co 2 co Bcu 4 co Jahren
50 14,1 2,4 0,2 0,05 Prozente

der Erneuerung im Beharrungszustand.
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8. Zusammenfassung.

Diese Untersuchungen über den Verlauf der Er-

neuerungsfunktion bei Annahme einer Parabel m-ten
Grades als Sterbegesetz sind für die Versicherungsrechnung

nicht praktisch verwertbar, weil das

verwendete Sterbegesetz wirklichen Verhältnissen nur sehr

annäherungsweise gerecht wird und ausserdem die

Bestimmung der in (9) oder (10) auftretenden Konstanten

a, A und B sehr kompliziert ist. Die Ergebnisse sind

jedoch theoretisch interessant, indem durch das

Auftreten von trigonometrischen Punktionen in (10) der

Wellencharakter der Erneuerungsfunktion deutlich
zutage tritt und das einfachst mögliche und im
vorhergehenden durchgerechnete Beispiel m 1 alle
charakteristischen Merkmale der Erneuerungsfunktion
aufdeckt1). Vom rein mathematischen Standpunkt bieten
die vorliegenden Ausführungen auch ein gewisses

Interesse, indem sie die Lösung zweier Volterra'scher

Integralgleichungen durch Umwandlung in Differentialgleichungen

untersuchen und eine auch mathematisch

nicht uninteressante Punktion, die durch (1) und (6)

definierte Punktion <p(t) beschreiben.

Für m ----- 2 erhielte man mittelst der angegebenen

Rechenmethode für die beiden ersten Intervalle für die

Erneuerungsfunktion die Ausdrücke:

2 - x \
w (x) CM COS

0) \ (O /

') Die Punktion >n (t) unserer Ausgangsgleichung ist immer
tlann eine gedämpfte Schwingung oder eine Konstante, wenn die
Funktion p(f) den Charakter eines Sterbegesetzes hat, also immer
abnimmt und nie negativ wird.

8
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