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Ein Beitrag zur

Theorie der Äusgleichsrechnung.
Von Dr. W. Schob, Rorschach.

Einleitung.

In den Naturwissenschaften muss man eine Erscheinung

oft auf Grund des Experimentes beurteilen.
Messungen sind vielfach das einzige Mittel, gewisse
Gesetze und Eigenschaften ausfindig zu machen. Die
Grösse der Messungen kann von einer unabhängigen
Variablen abhängig sein, z. B. von der Zeit, Temperatur
usw. Nimmt man nun die Messungen an den

aufeinanderfolgenden Stellen dieser Variablen vor, so erhalten
wir eine Beobnchtungsreihe. Es wird einem bestimmten
Zahlwort (Ordnungszahl) eine durch das Experiment
ermittelte Grösse (Funktion) zugeordnet.

®2> • • • • •®»>

w (at), w (x2), w (xn)

Da solchen Messungen immer Fehler anhaften, deren

Ursachen die Unzulänglichkeiten der Messungen und der

Apparate und Störungen sind, so nimmt man für jeden
Wert von x viele Messungen vor. So erhalten wir eine

Folge von Beobachtungsreihen.

xv x2, xn

w1 {xj, wl (x2) w! (xn)

W2 (&l), ^2 (^2) ^2 (*Bt)

Wm (Xl)> V)m (X2) W„ {Xn)
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Das ist nun nicht immer möglich. Wo es aber

angeht, wird man aus den ra-Beobachtungsreihen nach
den Gesetzen der Wahrscheinlichkeitsrechnung die

wahrscheinlichste Beobachtungsreihe W (x) konstruieren.
Die einfachste Bildung ist das arithmetische Mittel.

Neben dieser Art Beobachtungsreihen, denen das

Experiment zugrunde liegt, gibt es noch eine andere.
An Stelle der experimentellen tritt die statistische
Erfassung. Durch Zählung werden Eigenschaften von
Gesamtheiten ermittelt. (Z. B. das Sterben in Personen-

Gesamtheiten.) Diese zweite Art unterscheidet sich

von der ersten nur hinsichtlich der Entstehungsweise.
Mathematisch stellt so eine Zuordnung von Variable

und Beobachtung einen Verlauf dar. Stellen wir diesen

graphisch dar, erhalten wir die Beobachtungskurve.
Diese weist selten einen regelmässigen Verlauf auf.
Es werden auch bei verhältnismässig grossem
Beobachtungsmaterial Unstetigkeiten auftreten. Zumeist
handelt es sich um Spränge. Das graphische Bild ist
eine gebrochene Linie. Doch kann man bei diesen
Zickzacklinien fast immer eine deutliche Tendenz zur
Zu- oder Abnahme oder zur Periodizität feststellen. Es

kann auch vorkommen, dass diese Tendenz fehlt. Solche

Fälle sind für uns uninteressant.
Die Schwankungen der Beobachtungswerte von

Argument zu Argument sind meistens nicht begründet
in der Natur des beschriebenen Vorganges imd wider-
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sprechen der Erfahrung. Man darf daher annehmen,
dass bei einer grösseren Anzahl von Messungen oder bei

Erweiterung des Beobachtungsmaterials diese Unstetig-
keiten verschwinden würden. Da dieses aber immer im
beschränkten Umfange vorhanden ist, muss man andere

Mittel und Wege finden, der Kurve einen möglichst
glatten Verlauf zu geben.

Nun tritt aber die Erage auf, inwiefern wir Sprünge
als Unstimmigkeiten bezeichnen und sie entfernen
dürfen. Bezeichnen wir eine Zacke in der Beobachtungs-
kurvo als eine Unstimmigkeit, so setzen wir doch einen

gewissen erwarteten, regelmässigen Verlauf voraus.
Wir wollen diesen Idealverlauf Erwartung nennen. Sie

entbehrt jeder strengen Begründung und ist lediglich
in der Erfahrung fundiert. Es stehen sich also Beobachtung

und Erwartung gegenüber. In der Anpassung der
wahrscheinlichsten Bco.bachtungsreihe an die Erwartung
besteht das Wesen der Ausgleichung. Diese Anpassung
nach mathematischen Grundsätzen darzustellen ist
Aufgabo der Ausgleichtheoretiker. — Über die Erwartung

können wir nichts Genaues sagen. In der

Vielgestaltigkeit des Ausdruckes einer Erwartung besteht die

Unbestimmtheit des Ausgleichproblemes.
Dio Methoden, die zur Ausgleichung ausgearbeitet

wurden, lassen sich in drei Gruppen zusammenfassen.

Das graphische Verfahren versucht auf zeichnerischem

Wege die Beobachtungskurve zu glätten. Als Erwartung
betrachtet man den allgemeinen Zug der rohen Wertereihe.

Ein Hauptvertreter dieser Methode ist Bprague 1).

Die analytische Ausgleichung untersucht, ob sich
die Beobachtungsreihe durch eine mathematische Eunlc-

tion: f (a,h, c,....; x, y) ausdrücken lasse. Die

Erfahrung reicht aus, die Konstanten a, b,.... zu bestimmen.

Z. B. dient die Erfahrung dazu, die Makehamsche
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Formel zu begründen. Durch dieses Verfahren wird ein
vollkommen stetiger Verlauf erzielt.

Bei der mechanischen Methode geht man von der

Überlegung aus, dass eine Schwankung an der Stelle x
sich auch an den benachbarten Stellen bemerkbar
machen müsse. Ks werden daher zum Ausgleichen des

einen Wertes x die Nachbarwerte links und rechts

herbeigezogen. Diese letzte Gruppe umfasst eine Anzahl

guter Verfahren. Finen guten Überblick über die
verschiedenen Formeln der mechanischen Ausgleichung
gibt Simonett2).

Die vorliegende Arbeit, hat den Zweck, die Methode
der mechanischen Ausgleichung gemäss der Methode der
kleinsten Quadrate unter allgemeineren Gesichtspunkten
zu betrachten. Wegleitend war eine schöne Arbeit von
Gram3). Ms wird versucht, die Krwartung durch eine

ganz allgemeine Mntwicklung darzustellen. Ferner soll

ausgehend von der Arbeit Grams gezeigt werden, wie
diese mit einer Arbeit von Wirtinger ") zusammenhängt.

Wirtinger hat die Krrungenschafton auf dem Gebiete

der Theorie der linearen Integralgleichungen zur
Darstellung einer Ausgloichmethodo verwendet. Diese wird
näher untersucht und auf ihre Verwendbarkeit geprüft.

I. Theoretischer Teil.

1. Die Fundamentalgleichung der Ausg'leichrechnung.

Ks sei w (x) eine Beobachtungsreihe, die noch

ünstetigkeiten aufweise. Ferner sei W (x) der Ausdruck
der Erwartung, über die wir noch nichts Bestimmtes

aussagen können. Ks soll die Beobachtungskurve an die

Krwartung angepasst werden. An diese Anpassung
stellen wir die folgende Forderung:
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Der ausgeglichene Wert (also der nach irgendeinem
Verfahren abgeänderte Beobachtungswert) soll die
Wahrscheinlichkeit des gleichzeitigen Bestehens aller
Beobachtungswerte hinsichtlich der Erwartung zu einem

Maximum machen. Diese Forderung wird von allen

Ausgleichern als notwendig erachtet. Mathematisch

gefasst bildet sie den Ausgangspunkt der Ausgleichtheorie.

Sic lautet5):
b

(1) g(x) [w(x) — W(s)] dW(x) 0

x—a

g (x) bedeutet dabei das Gewicht, das den einzelnen

Beobachtungen zukommt. Ferner ist (a, b) das

Grundintervall, auf dem die Ausgleichung durchgeführt wird.
Über die Grösse dieses Intervalles wollen wir uns vorderhand

nicht äussern. Wir werden im folgenden von den

Gewichten g (x) absehen, nehmen also an, dass alle

Werte W (x) den auszugleichenden Wert in gleichem
Masse beeinflussen. Wenn wir das Grundintervall nicht

zu gross nehmen, dürfen wir diese Annahme treffen. So

geht Formel (1) über in:

Ii

(1') ^ [w (®) — W(x)| <5 W(x) 0

x=a

Gleichung (1') löst aber das Variationsprobien):

b

(2) ^ \io (x) — W{x) |2 Minimum.

Bemerkung: 2 fr (x) ohne Laufzahl bedeutet im folgenden immer,
dass über alleWerte von x summiert werde. Dagegen bedeutet
n

2 epy (x), dass bei festem x über alle v zu summieren ist.
v=o
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Wir bezeichnen (2) als Ausgleichgleichung. Sie ist
der mathematische Ausdruck der gestellten Forderung
unter der Annahme konstanter Gewichte ij (x) =1. Wir
erkennen das Prinzip der kleinsten Quadrate, das aus

Wahrscheinlichkeitsüberlegungen heraus entstanden ist.
Es existieren viele Ausgleiclnnethoden, die sich auf
dieses Prinzip stützen.

Von hier weg müssen wir bestimmte Annahmen
treffen über die Gestalt der .Erwartung, die wir auch

Ausyleichunysyesetz nennen wollen. Die Unbestimmtheit
dieser Punktion führte dazu, dass man sie einfach als

eine ganze rationale Funktion auft'asste. Man nimmt
z. P. an, die Boo bachtungs reihe lasse sich auf dem

ganzen Grundintervalle mit hinreichender Annäherung
durch eine Parabel n-ter Ordnung darstellen. Etwa in
der Form:

(3) W(x) a„ + at • x + £2 + + an • x"

Die Koeffizienten a0, alt an sind noch völlig
unbestimmt. Hie sind der wesentliche Peil einer

Ausgleichformel. Die Forderung, die an die Ausgleichung
gestellt ist, wird zur .Bestimmung der Koeffizienten
verwendet.

2. Die Ausgleichung Pearsons.

Pearson hat gestützt auf die Ausgleichgleichung (2)

ein Verfahren angegeben, das die Bestimmung der
Parameter av ermöglicht. Er fasst zwar (2) in stetiger Form
auf. Es soll also das Integral über die Fehlerquadrate:

b

Q J [w(x) — W(x)\2dx Minimum.
a
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Die Minimumbedingung heisst dann:
b

J [w (x) — W(x)] cIx d W(x) 0

a

Dabei setzt er voraus, dass sich W (x) in eine Taylors

che Reihe mit rasch abfallenden Gliedern entwickeln
lasse, als Funktion von n Parametern b0, bv bn_t.

(4) W(x) b0 + btx + b2^ + + bn_1~^ + Bn

Der Rest selbst ist auch eine Punktion der n
Parameter :

Rn Bn (K &!>••• &„-|)

Wir bilden nun die erste Variation von W (x) in
bezug auf die Parameter bv:

(5) dW(x) öb0 + db1 x + db2 +
Z!

+5 bn_t — + y— ö b0 + + y • ö bn_i
(n— 1)! db0 db^_t

Setzen wir in der Minimumbedingung ein und
beachten wir, dass die Inkremente öb0....<36„ t,
willkürliche Grössen sind, so erhalten wir ein System von
n- Gleichungen:

b b b

W(x)d x J w(x)dx— J {W{x)—iv (x)) -y—5 d x

xn~l-W(x)dx • w (x)dx—(n—l)\ j {W(x)—iv{x))-~^~ dx
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Da aber einerseits aus der .Minimumbedingung die

Differenzen W (x)—w (x) möglichst klein werden sollen
und anderseits die partiell differenzierten .Reste auch sehr

klein sind, dürfen die Integrale, die diese Ausdrücke

enthalten, vernachlässigt werden. Die n- Gleichungen
werden somit:

I W(x) clx jw(x) dx ;

(ß)

j x" 1

• W(x) dx j x" '1 w (x) dx ;

Dieses System kann nun zur direkten Berechnung
der Parameter br verwendet werden. Theoretisch bietet
sich keine Schwierigkeit. Links stehen die theoretischen
Kurvenmomente und rechts die der rohen Beobachtungs-
reihe. Wie wir sehen, führt die Forderung der Methode
der kleinsten Quadrate auf die Momentenrelationen.
Die erste Relation drückt aus, dass die Pläche unter der

beobachteten Kurve gleich der Fläche unter der

ausgeglichenen Kurve sein müsse.

Praktisch besteht die Schwierigkeit im Übergang

von den Integralen zu den Summen. Pearson hat selbst

[»faktische Vorschläge gemacht, wie dieser Übergang

hergestellt werden kann (l).

3. Die Ausgleichung Grams durch Orthogonalfunktionen.

Gram hat ein Verfahren abgeleitet, das prinzipiell
auf die gleichen Voraussetzungen aufbaut wie Pearsons

Methode, aber wesentlich einfacher ist.
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Es sei wiederum to (x) eine Beobachtungsreihe, die

durch eine stetige Funktion ausgeglichen werden soll.

Gram setzt voraus, dass die gegebene Reihe to (x) in
Teilreihen so aufgeteilt worden sei, dass die Funktion
lo (x) durch die Parabel n-ter Ordnung:

M

(7) W(x) ^a,, x"

v=0

hinreichend angenähert werden kann. Dabei sind die

Parameter an... .ar aus der Bedingung:

(8) & ^ (to (x) — W(x))2 Minimum.

zu bestimmen. Wie wir sehen, sieht Gram ebenfalls von
den Gewichten y (x) ab. Die Minimumbedingung (8)

wird erfüllt, wenn dio n + 1 -Gloichungen:

(to(®) — W{x)) =0

'y
i
x (to (x) — W(x)) 0

y
i

a;" (to (x) — W(x)) 0

erfüllt sind, d. h. es muss für alle >' gelten:

(9) ^V-F(a:)

Es zeigt sich hier die gleiche Bedingung wie bei der

Methode von Pearson. Es wird die Gleichheit der
theoretischen und rohen Momente verlangt. Wir werden
diese Beziehung später im allgemeineren Zusammen-



— 62 —

hange auch noch erhalten finden. Diesem + 1 Beziehungen

reichen aus zur linearen Bestimmung der
Parameter ay.

Setzen wir nun in (9) an Stelle von xv ein Polynom
in x vom Grade so bleiben die Beziehungen wesentlich
erhalten, da wir x' immer als ein Polynom //,, (x)
darstellen können. (9) lautet dann:

(9') s // (x) w (®) 2 nr (x) W{x)

.Hier trifft nun Gram eine Voraussetzimg, die die Rechnung

in verschiedener Plinsicht erleichtert. Es soll
nämlich auf dem Grundintervalle das Polynom üy(x)
so beschaffen sein, dass es für /< 0,1, 2, v—1, der

Orthogonalitätsbedingung:

(10) 2 a?II, (x) 0

genügt. Die Polynome sind von der Form:

V

11(S) 2 ^
1=0

Die Beziehungen (10) reichen aus, die Koeffizienten
b) linear bis auf einen gemeinschaftlichen Faktor zu
berechnen. Speziell wählen wir noch //0(x) 1. Nim
haben wir einfach die Gleichungen (10) explicite
anzuschreiben; sie lauten für v =1,2,:

b0^x° + b^x1 0

b0 2 x° + bx V, x1 + b2 i] x2 0

usw.
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Gleichung (10) können wir noch verallgemeinern, indem
wie an Stelle von ad1 auch ein Polynom llu (x) setzen.
Die Orthogonalitätsbedingungon lauten dann:

(11) 2,n/c(x) II,(x) 0 für /i^v

Man sieht leicht ein, dass man das Ausgleichsgesetz
gleich zu Beginn auch durch Polynome
darstellen kann. Es ändern sich lediglich die Parameter

a,. (7) lautet demnach in allgemeinerer Form:

n

(T) W(x) ^A,II,(x)

Diese Darstellung gewährt nun unerwartete Vorteile
zur Berechnung der Parameter Ersetzen wir in der
Momentenrelation (9') die Erwartung W (x) durch (?'),
so folgt wegen (11):

2 //„ («) w (x) a, s n\ (®)

Der Koeffizient lässt sich also allgemein darstellen

durch den Quotienten:

^ 77„ (x) iv (x)
(12) A„ 'W V

•

2 in (®)

Setzen wir A, in der Formel (7') ein, so erhalten wir das

Itesultat:

\H S//,(«)w(®)
(18) ;

»»=0
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W (x) stellt einen Ausgleich dar nach einer Parabel
w-ter Ordnung gemäss der Methode der kleinsten
Quadrate.

Die Koeffizientendarstellung ist einfach und bietet

grosse Vorteile. Bei der Pearsonschen Darstellung
sind die Parameter av vom Grade des Ausgleichgesetzes

abhängig. Ohne Wiederholung der ganzen Konstantenbestimmung

kann das ursprüngliche Ausgleichgesetz
n-ten Grades nicht in ein solches n -f- lte" Grades

erweitert werden. Es kommt aber oft vor, dass das

gemacht werden muss, um eine Verbesserung des

Ausgleiches zu erzielen. Will man hier das Ausgleichgesetz
erweitern, so hat man nur noch weitere 11,, (m) zu berechnen

und nach der Vorschrift (12) die Koeffizienten Ay

zu bestimmen. Man hat diese neuen Glieder dann
einfach als Korrekturglieder zu addieren. Darin liegt der

grosso Vorteil dieser Methode.
Nachdem wir nun die Koeffizienten Av keimen,

können wir das Abweichungsmass zum voraus berechnen.

Es sei dargestellt als die Summe über die

Kehlerquadrate :

w (®) iw (x) —W{%)) —W(x) (w(x)—W(x))

das letzte Glied rechts wird wogen:

/ j Ily(x) iv (x) /^ Hv (%) W{x)

zu Null, und es bleibt

ß("> 2 w2 (x) —w (x) U1T0 (x) + A! //, (x)+...+A„ 1I„ (®) j
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aber da die Ay von x unabhängig sind:

ß(»> 2] w2 (a) —|mo 2] n0 (x) w («) + ....+ An 2] nn (x) w («)j
Die Glieder in der geschweiften Klammer sind aber
darstellbar durch:

A„ 2^ n*(x); v 0,1,2....»

2_,IIr(x)w(x)
denn: Ay — ;

und: Ay 2] AT2 (®) 2^ 11
* (x) w (x)

Also wird das Abweichungsmass:

n

(id) X/»» 2] w* (®) -2 ^ 277' w
>=0

Fügen wir ein neues Glied hinzu, so wird das

Abweichungsmass :

n -f-1

1> 2] w2 (a) fJ*{x)
r=0

Durch Mitnahme des neuen Gliedes wird das

Abweichungsmass vermindert um:

AQ iP+V— ß<»> Al^nl+! (a)

Es ist also möglich, das Abweichungsmass .O'"1 zum
vornherein zu ermitteln. Man hat so eine gute Handhabe

zur Kontrolle der ausgeführten Rechnung.

11
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Um den Eigentümlichkeiten der Beobachtungsreihe
gerecht zu werden, muss die Ausgleichung in kurzen
Intervallen durchgeführt werden. Man kann z. B. die

Ausgangsreihe in Stücke von 9 Gliedern aufteilen. Als
wirklich ausgeglichen dürfen wir nur den zentralen Wert
betrachten. Man verwendet also um den einen Wert
W (5) auszugleichen links und rechts vier Werte.

Eine Schwierigkeit, auf die Gram selbst aufmerksam
gemacht hat, besteht in der Verknüpfung der Intervalle.
In seiner Arbeit gibt er Wege an, wie dies am einfachsten

geschehen kann.
Gram hat seine Methode an einem Beispiel

erprobt. Die Rechnung ist im praktischen Teil
wiedergegeben. Auch andere haben sich des Verfahrens
bedient. So eignet es sich besonders gut für
Trendberechnungen, die eine Art Ausgleichung im Grossen

sind, im Gegensatz zu der gewöhnlichen Ausgleichung
im Kleinen.

4. Verallgemeinerte und stetige Behandlung.

Das Verfahren, das wir im letzten Abschnitt
kennengelernt haben, bedeutet eine Verallgemeinerung
des Falles, dass man als Ausgleichgesetz eine Parabel
der Form (3) verwendet. Die Voraussetzung der Ortho-

gonalität der Polynome Ilv(x) lässt augenscheinlich
eine Spezialisierung vermuten. Tatsächlich bedeutet
aber diese Voraussetzung keine Einschränkung, sofern
diese Polynome auf dem Grundintervalle stetige und
linear unabhängige Funktionen sind.

Wir betrachten nun wiederum die Beobachtungsreihe

w (x). Sie stellt eine diskrete Punktverteilung auf
dem Grundintervalle dar. w (x) kann noch Unstetig-
keiten aufweisen in Form von Sprüngen. Diese können wir
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uns aber durch geeignete Interpolation beseitigt denken.

An Stelle der Sprünge treten Schwingungen. Wir lassen

daher in der Folge id(x) immer als eine stetige Funktion
auf. Ferner setzen wir Differenzierbarkeit und quadratische

Integrabilität voraus.
Nun gehen wir den gleichen Weg, den Pearson

eingeschlagen hat. Die Forderimg, die wir an die

Ausgleichung stellen, ist wiederum:

b

(15) J (W{x)—iv(x))2dx Minimum.
a

d. h. die erste Variation dieses Integrals muss zu Null
werden.

b

(tf>) j (W(x) — w(x))dxdW(x) =0
a

Als Ausgleichfunktion benützt Pearson eine in
Taylorsche Eeihe entwickelbare Funktion, und die

Konstantenbestimmung geschah durch die
Kurvenmomente.

Wir machen nun über die Ausgleichfunktion
allgemeinere Voraussetzungen. Wir betrachten sie als ein
lineares Aggregat einer endlichen Anzahl auf dem

Grundintervalle stetiger und linear unabhängiger
Funktionen (P,.(x). Sie ist demnach von der Form

(17) W(x) d0 <P0(x) + d, <1\ (x) + + dn <Pn (x)

Vorderhand sehen wir davon ab, das Funktionensystem
(I\ (x) näher zu präzisieren.

Hier müssen wir noch einige Begriffe festhalten,
die wir später immer wieder brauchen und die bei

praktischen Arbeiten von Bedeutung sind.
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Ein Funktionensystem <Py (x) heisst auf dem
Intervalle (a, b) linear unabhängig, wenn unter
Ausschluss der Möglichkeit, dass gleichzeitig alle bi 0

sind, eine Gleichung von der Form:

n

2 («) o

v=0

nicht besteht. Jedes solche System <Py (x) kann durch
geeignete Transformation in ein System <py (x)
umgewandelt werden, das folgende Eigenschaften hat:

I. Die 9>y (x) bilden ein Orthogonalsystem, d. h. die

Fimktionen <py(x) genügen auf dem Grundintervall
der Beziehung

b

J (py (x) cpfl (x) dx — 0 ; für y 4= v
a

II. Das System <py(x) ist normiert, d. h. für alle v gilt
die Beziehung:

b

f q>2y (x) dx — 1 ;

a

III. Die Funktionen cpy{x) sind immer noch linear unab¬

hängig.

IV. Die <py(x) sind lineare Kombinationen der (Py(x),

d. h. die Systeme <Py{x) und <py{x) sind nicht wesentlich

voneinander verschieden.

Allgemeine Bichtlinien solcher Transformationen
sind zu finden bei: Wiarda, Integralgleichungen, unter
besonderer Berücksichtigung der Anwendimgen. Teub-

ner, Leipzig und Berlin 1930.
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Das System <pr (x) konstruiert man aus dem System
<PV (x) nach folgendem Schema:

1

Vo(x) V <UX)

Vi(x)

Vn (X)

1

P\ (x) bi^ 0 (p0 (x)

«—1

<Pn(x) —^ bn
v <pv(x)

Dabei dienen die Koeffizienten cv lediglich zur
Normierung und berechnen sich folgendermassen:

«b=l// ®lix)dx ' °i 1/J[^i(x) — blfiVo(x)]*dx ;

dx ;

Die Koeffizienten bnm ergeben sich aus der Forderung
der Orthogonalität. Sie heissen:

h« j dx

Wir geben diese Formel an, weil wir später bei einer

speziellen Annahme von Pv (x) die Transformation
durchführen werden.

Nun nehmen wir an, das System <Pr (x) sei bereits in
diesem Sinne transformiert worden. Besonders die

Eigenschaften I und II werden ims nützlich sein.
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Das Ausgleichgesetz heisse jetzt:

(18) If (as) a0 cp0 (x) + ax <px (x) + ....+ a„ <pn (®)

Es hängt also W(x) linear von (n -\- 1) Parametern an

ab. Es gilt nun zunächst, diese Parameter zu bestimmen.

Wir bilden die erste Variation:

ÖW(x) ö a0 cp{) {x) + dax-cPl (as) +... + <5 a„ cpn (x)

und setzen in (1') ein:

iv (x) — (a0(p0(x) +... +«,,<?,,(£))}{<5«0<"A)(aO+ • • +dan<pn(x)\dx 0

Diese Gleichung liefert uns die Koeffizienten an.

Beachten wir die Eigenschaften 1 und II des Systems
<p,(x), so werden diese:

b

«o

a
b

(19)
a

b

a

Plätten wir von der Voraussetzung der Normiertheit
abgesehen, so lauteten die Koeffizienten:

/ cpy (x) to (as) dx
a

a
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Wir stellen vollständige Analogie mit den

Entwicklungskoeffizienten von Gram fest. Die Normiertheit
der Eunktionen vereinfacht die Formel beträchtlich.
Setzen wir in (18) ein, so wird das Resultat:

n b

(20) W (x) ^ <pr (x) J (pt, (z) w (z) dz

y=0 a

Es stellt eine Ausgleichung gemäss der Methode der
kleinsten Quadrate dar. Die Formel bietet die gleichen
Vorteile, wie sie schon bei der Formel von Gram
hervorgehoben worden sind. Man kann das Ausgleichgesetz,
ohne die ganze Rechnung zu wiederholen, von der

Ordnung n auf die Ordnung n + 1, n + 2 usw. erweitern.

Die Kurvenmomente.

Bei den Verfahren von Pearson und Gram sind die
Momentenrelationen aufgetreten. Es ist nun von
Interesse zu wissen, wie diese sich in dem allgemeineren
Falle zeigen. Der Koeffizient a,, ist ja schon eine Art
Moment, und zwar das der rohen Werte. Dieses muss
den Momenten in bezug auf die ausgeglichono Reihe

gleich sein. Um das hier zu zeigen, multiplizieren wir
W(x) in (20) mit <p,(x) und integrieren nach x:

b b
n

b

J W(x) <pr (x) dx Jcpv (x) 9\ (x) J w (z) 9?„ (z) dz dx

a a 1a
Rechts fallen wegen der Orthogonalität alle Glieder bis

auf das vt0 weg, und es bleibt:
b b

(21) / W(x) (pr (x) dx / iv (x) <plf(x) dx
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Diese beiden Integrale tragen ganz den Charakter der
Kurvenmomente. Wir wollen sie die verallgemeinerten
Kurvenmomente nennen. Es ist deutlich erkennbar,
dass die übliche Eorm der Kurvenmomente nur ein

Spezialfall dieser verallgemeinerten Momente für
cpy(x) x" sind. Wie wir sehen, ist also die Momentenrelation

erhalten geblieben. Wir stellen auch
vollständige Analogie mit den Resultaten von Gram fest.

Das Abweichungsmass.

Als Abweichungsmass betrachten wir wiederum das

Integral über die Eehlerquadrate:

(22) ß'"» j (W{x) — w (x)Y dx

o o v

J wz (x) dx — 2 J W(x) iv (x) dx -f j W2 (x) dx
a a a

Das erste Integral rechts kann nicht weiter vereinfacht

werden. Dagegen lassen sich die beiden letzten
durch (20) darstellen:

b b n b

2 J W(x) iv (x) dx 2 J iv (x) ^ vpy (x) j (pr (z) iv (z) dz dx

-«2«
r 0

und:
b b

n
b

n//*' f ~| 2 -
W2 (x) dx=J äx=^a2y



— 73 —

Setzen wir oben ein, so wird:

(23) ü{n) /"w2 (x) dx — ^ o:
.2

a

Fügen wir dem Ausgleichgesetz (18) noch ein weiteres
Glied u,1+1 <pn+i (%) an, so lautete die Abweichung:

Durch Hinzufügen dieses neuen Gliedes vermindert
man also das Abweichungsmass um:

Nun wollen wir noch untersuchen, was aus Formel
(20) im Grenzfalle, nämlich wenn man n -> oo streben
lässt, wird. Die Formel umfasst dann unendlich viele
Glieder:

Jetzt stellt (20') eigentlich keinen Ausgleich mehr dar.
Denn durch die Formel mit unendlich vielen Gliedern
wird die Beobachtungsreihe genau reproduziert. Am
deutlichsten sehen wir das ein, wenn wir in (23) auch zur
Grenze übergehen. Der Ausdruck

Q(n+D W2(X)dx—^Pal
a

A Q[n) Q[n) — ü{n+i) a2n+t

(20') W(x) ^(pp(x) / w{z) <p„(z) dz

b
oo

a



ist nichts anderes als die Besseische Identität. Da ferner
ü eine positive Grösse ist, haben wir die Ungleichung:

(24) ^ (i'l / to2 (a:) clx

a

Ist das Orthogonalsystem ein vollständiges, so geht
obige Ungleichung über in die Vollständigkeitsrelation:

d. h. aber, dass das Abweichungsmass Null geworden
ist, die Beobachtungsreihe also reproduziert wurde.
Man erhält also gewissermassen in Formel (20) einen

Ausgleich dadurch, dass man sich mit wenigen Gliedern
der Entwicklung begnügt.

Anwendung der Theorie auf ein Beispiel.

Wir wollen nun die Theorie anhand eines speziellen

Funktionensystems (Pv{x) bzw. cpv{x) erläutern. Gleichzeitig

soll gezeigt werden, was geschieht, wenn wir als

Ausgleichgesetz die ganze rationale Funktion:

W(x) — a-0 + ax x + a2 x2 + + an x"

verwenden. Das System (Pv{x) lautet demnach:

oo

(Parsevalscher Satz)

a

(25)

0O(X) 1

(PL(x) X

(pn{x) x"
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Als Grundintervall wählen wir a —a; b -|-a. Wir
führen die Bechnung Schritt für Schritt so durch, wie
sie vorne angedeutet ist. Es ist also zunächst zu zeigen,
dass die (Pv(x) auf dem gewählten Intervalle linear
unabhängig sind. Wären sie es nicht, so inüsste auf dein

ganzen Intervalle die Beziehung:

identisch erfüllt sein. Speziell auch im Punkte x 0.

Dann werden aber alle b,, zu Null. Dio Potenzen xr sind
daher linear unabhängig.

Durch den nächsten Schritt soll das gewählte
System so transformiert werden, dass es orthogonal
und normiert erscheint. Wir führen die Bechnung
durch für n 0,1, 2 und 3.

Wir setzen also:

n n

1.

(K (®)<pQ{x)

somit:

Eür n 1 bekommen wir:

1
<E>1 (x) — buo <p0 («) 5<Pi(x)
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&i o / <M®) <Po(x)dx xdx 0;

-« y« V 2

c, —

woraus:

Pi(®)
]/«

[(ß1{x) — buo<pü{x)fdx —r

3 a;

2 a

Ganz analog für n 2:

Pa(®) — ^2 (®) &2, 0 Po (®) ^2,1 Pi (®)

Dabei sind die Koeffizienten:

/• 2 1 T/1
h,o jf tf>2(®) p0(®)da:

Ty^ |/ ¥ ;

-h«

^2, 1 ~ J ^ ^ '

-ha

Co — $2 (%) ^2,0 ^oi^) ^2, i 9^1 0*0] 8 ^
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und daher:

<Pz («) '=
]/a

cp3(x) ergibt sieh aus:

%

cp3{x) (I)S iX) — \ 0 <Po (X) — h, 1 9?1 («) — K 2 <?>2 (X)

Die Koeffizienten lauten:

^3,0 — 0

\ t

2 1 1/8
]/«

^3,2 — 0

und der Normierungsfaktor:

2 ra 1/ — a°

Somit wird:

in 5 /»Y 3 (xi «/i 7,

Wir erhalten folgende Zusammenstellung:



Diese vier Funktionen sind so konstruiert, class sie allen

gemachten Voraussetzungen genügen. Sie sind auf dem

Grundintervalle linear 'unabhängig, orthogonal und
normiert, und so für unsere Zwecke verwendbar.

Wir versuchen nun noch das Polynom w-ten Grades

x
zu bestimmen. Setzen wir — x und sehen wir von

a

.1 i /Tden Faktoren — I/-- usw. ab, so erkennen wir, class

V« I 2

die vier Funktionen <p0(x)... (p3(x) gerade die vier
ersten Legendreschen Polynome P darstellen. Diese

Polynome genügen auf dem Intervalle (—1,1) cler

Integralbeziehung:

-i-i

(27) fPn(X)P,n(X)dx=@„ir,
—1

0; für

_
2

2 to +1
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Wir suchen also Polynome Qn(x'), die auf dem Intervall
—a, a) so beschaffen sind, dass sie der Bedingung:

Qn(X')Qm{X')dx' ®n:f,

— 0; für n 4= m

2
— — - ; für n m2 m +1

genügen.

x 1
Setzen wir x' — dx' — — clx so gilt:

a «

&(«') Q,»(x') dx' J dx' (~)n,,

Wir haben also in Pn(x), x durch - zu ersetzen und mit
0C

dem Faktor — - - zu multiplizieren, der die Normiertheit
]/ a

garantiert. Bas gesuchte Polynom ist dann:

(28)

Die vier ersten Legendreschen Polynome lauten ex-

3 1 5
„

8

P0 1; I\=,x; P,= x^ — ; l\ =--x3—- -x2
2 2 2 2

Das allgemeine Polynom lautet:

1 W f n\(1n—2 >•)!\ 1 1 V'/ >. L ~n-2v(29) P„ (x) V (—1)"( " -V- x"' 2"n l_iK \ v j (n— 2)')!
o
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Führen wir die in (28) gegebene Vorschrift aus, so wird:

1 „ / x\ 1

Qo(x')

Qi (x')

Qi (x>)

usw.

Po i - I

y«

~h Pl
]/« va

-T^p, -i]/a \«.

y<x
7

i X

y« a
>

i 3/f X
N

V 1

1/a 2 V«,' 2

Vergleichen wir mit den gefundenen Funktionen
<p„(x) in (26), so sehen wir, dass:

<p0(x)
1

Q0(x') —=z
2 ]/a

Vi (®) 1/ Y (®') ~!=

<p2(a:)
1

Qn (X') _2 y«

l-p'

Ha
Hi

durch Schluss von n auf n 1 kann leicht bewiesen

werden, dass allgemein gilt:

<Pn (x)

Nun kennen wir das Entwicklungssystem und können
die Koeffizienten a bestimmen; es ist:
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+«

(30) o„ fw (z) <p, (z) dz=-L l/^ti j'w (;} dz

—a
Ä

—«

Setzen wir in der Formel (20) ein, so lautet die
Entwicklung :

(81)
>1

s;Z>+1>p'ITM-
j»= 0

+rt

wenn wir Ar Jiv (z) P,, (~~jdg setzen.

Wir schreiben einige Glieder an:

W(x)
2a

p0 (^) aq+s pa y^y,+5 A2+...

W(x) ist das Resultat einer Ausgleichung mittels
einer Parabel n-ten Grades. Die Entwicklung gilt für
jedes endliche Intervall (—a, +a). Die Anzahl der

Glieder, die man in (31) verwendet, muss sich nach der

Anzahl der verwendeten Beobachtungswerfce richten.
Auf keinen Fall soll diese letztere kleiner sein als die

Anzahl der Glieder in (31). In den meisten Fällen wird
man sich mit einer Parabel zweiten Grades begnügen.
Die ausgeglichenen Werte liegen dann auf dieser Parabel
(vgl. Figur 2 im praktischen Teil). Als wirklich
ausgeglichen dürfen wir aber nicht alle Punkte des Teilinter-
valles betrachten. Gegen die Enden hin sind die Resultate

12



— 82 —

nicht mehr so gut. Der zuverlässigste Wert ist der
zentral gelegene. Die Dechenarbeit von Fall zu Fall
beschränkt sich auf die Berechnung der verallgemeinerten

Momente av. Die Polynome Pv kann man ein für

allemal für bestimmte Intervalle berechnen (vgl. Tabellen

im Anhang). Die direkte Berechnung der höhern

Polynome aus Formel (29) ist etwas umständlich. Kennt

man aber einmal und für ein bestimmtes

Intervall, so kann man die folgenden aus der einfachen
Eekursionsformel:

2 n— 1 n—1
Pn (x) a Pn—i (a) Pn—2 (a)

n n

berechnen. Diese Formel ist gültig für das Intervall
(—1, +1). Die gleiche Eekursion gilt aber für die

Polynome Qn(x):

2 n — 1 n—1
Qn («') «' Qn-1 («') Qu-2 (®0

Da aber Qn(x') — ist, so wird:
]/« V«/

^ i ® —1 f x\ n—1 „ fx
(32) Pn - Pn_l-\ —PnJ~

a /an \ a / n \

Die Berechnung der Pn ^— vereinfacht sich dadurch

erheblich.
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Wir wollen auch hier das Abweichungsmass berechnen.

Es ist

IL Theoretischer Teil.

1. Quellenmässige Darstellung der Erwartung W(x).

Im vorhergehenden Kapitel setzten wir voraus, dass

die Funktion w (x) auf dem Grundintervalle stetig und
samt ihrem Quadrate integrierbar sei. Wir entwickelten
dann W(x) in eine Reihe mittels eines Systems
vorgegebener Punktionen {cpv{x)\ die auf dem
Grundintervalle orthogonal und normiert sind. Durch die

Minimumbedingung gelangten wir zu Formel (20):

n

W(x) =yVr(x)ar
v= 0
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Die ay bedeuten dabei die Fourierkoeffizienten in bezug
auf das System {^„(a;)} und die Funktion io(x). Ferner
haben wir gesehen, dass, falls {q>r(x)} ein vollständiges
oder abgeschlossenes Orthogonalsystem ist, die

Beobachtungsreihe reproduziert wird. Verwenden wir in
(20) die Momentenrelation und lassen wir die n ersten

empirischen Momente gleich den n ersten theoretischen
Momenten werden, so wird:

r
(38) W(x) <pr(x) / W(z) q>v{z) dz

v=Q ^
a

lassen wir n unendlich gross werden, sehen wir deutlich,
dass die Beobachtungsreihe reproduziert wird. Es wird
dann:

" r
(33') W{x) w(x) lim y <P,(%) / w(2) 9?y(2)

n »- co J
y

a

b
n r

lim V cPy(x) / W(z)<pr(z) dz
n— »-co J

a

Die Formeln stellen die allgemeine Entwicklung einer

willkürlichen, stetigen Funktion w(x) in eine nach

<py(x) fortschreitende Reihe dar. Eine wichtigo Frage
stellt sich nun hinsichtlich der Konvergenz. Wir wissen

nicht, wie die Funktion W{x) mit wachsendem n gegen

w(x) strebt. Wir wissen lediglich, dass bei«—>-co die

Vollständigkeitsrelation:
b

CO /»

^ af, / w2 (x) dx

"=°

erfüllt ist.
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Daraus können wir weiter schliessen, class die

Summe der Entwicklungskoeffizienten konvergiert. Die
Entwicklung selbst strebt im Mittel gegen W{x) bzw. w(x).

Um weiter in die Zusammenhänge einzudringen,
stellen wir uns die Frage, wie denn die Funktion W(x)
beschaffen sein müsse, damit sie eine gleichmässig
konvergente Entwicklung zulasse. Sei also:

Hier darf man im allgemeinen die beiden Prozesse

Grenzübergang und Integration nicht vertauschen.
Denn:

wird nicht gleichmässig konvergieren. Der Wert der

Variablen x liegt zwischen a imd b und bleibt fest;
z hingegen variiert zwischen den gleichen Grenzen und
wird einmal den Wert z x annehmen. Das geschieht
aber für jedes v. An diesen Stellen aber, wo z x
wird, kann das allgemeine Glied nicht gleichmässig
kleiner als eine vorgegebene, beliebig kleine positive
Zahl s werden. Um gleichmässige Konvergenz zu

erhalten, müssen wir jedes Produkt <p,,(x) cpv (z) durch
eine geeignete Zahl dividieren. Wir wählen daher
eine Folge gleichmässig wachsender Zahlen:

«

so dass der Ausdruck:
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2P,(*) vM
K

1'=0
1

gleichmässig konvergiert. Es sei dann der Grenzwert
dieser Summe, die eine Funktion von x und z ist:

(34) 1 V ?.('>?.O =K(X^
n—»-oo X

v 0 '

Man nennt dann II(x, z) die zum System {(pr{x)\
gehörige Kernfunktion. In (34) seilen wir deutlich,
dass II(x, z) in x und z symmetrisch ist. Sie genügt ja
der Beziehimg:

II (x, z) Ii (z, x)

Ein wichtiger Zusammenhang zwischen Ii(x, z) und

<pr(x) wird erhalten, indem man (34) mit cpjx)
multipliziert imd über das Grundintervall integriert. Es wird:

»=0 " r

Wegen der Orthogonalität bleibt links allein das Glied:

Vv(®) f a, v
<Pr(X)\f* (x) dx

K J K
a

So ergibt sich die wichtige Funktionalgleichung:

b

(35) cpv{x) X„ j Ii (z, x) (py{z) dz
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Bekanntlich sind die Funktionen cpr{x) die Lösungen der

homogenen linearen Fredholmschen Integralgleichung:

b

cp (x) X jIi (x, z) <p (z) dz

a

Diese Gleichung hat für gewisse Werte von X, die Eigenwerte

heissen, Lösungen: die sogenannten Eigenfunktionen.

Bedeute nun r(z) eine auf (a, b) stetige oder wenigstens

stückweise stetige beliebige Funktion, so können
wir W(x) mit Hilfe von r(z) darstellen. Wir multiplizieren

K(x, z) mit r(z) imd integrieren über (a, b) nach

z; es wird:
b

W(x) jK{x, z) r(z) dz

a

/_, ?,(«) / —i dz
,e0 j K

Der Fourierkoeffizient wird:

wä»

a

Die Fimktion, die eine gleichmässig konvergente

Reihenentwicklung zulässt, ist also von der Form:

b

(86) W{x) — J K(x, z) r(z) dz

a
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wobei K(x,z) die zum Orthogonalsystem {<p,,(:r)}

gehörige Kernfunktion darstellt. Es wird also W(x)
vermöge der beliebigen Belegungsfunktion r(z) quellen-
mässig dargestellt7).

Da nun r(z) eine beliebige Funktion ist, wählen wir
speziell r(z) w(z). Gleichung (36) nimmt dann die

spezielle Form an:

b

(36') W-y(x) — jK(x, z) w(z) dz

a

An dieser Stelle sei die schon erwähnte Studie von
Professor Wirtinger nochmals hervorgehoben. Wirtinger
verwendet Gleichung (36') als Ausgleichgesetz und leitet
aus ihr eine Methode ab, die in kurzen Zügen skizziert sei.

Die Gleichung (36') können wir folgendermassen
interpretieren: Es hängt Wy{x) linear und homogen
von den Funktionswerten der Belegungsfunktion w(x)
ab. Wir können uns also zu Beginn das Verfahren als

durch diese Formel festgelegt denken. Im Hinblick auf
die verschiedenen Methoden der mechanischen
Ausgleichung ist sie durchaus plausibel. Um den einen Wert
Wx(x) darzustellen, wird die Gesamtheit der auf dem

betrachteten Intervalle liegenden Beobachtungsgrössen
w(x) verwendet. Das ist ja charakteristisch für die

Formeln der mechanischen Ausgleichung.

Die Schwierigkeiten, die aus einer direkten
Auflösung von (36') entstehen, können umgangen werden.
Wir betrachten Wr{x) als eine beliebige, auf dem
Grundintervall definierte Funktion. Eine Reihenentwicklung
dieser Funktion mit Hilfe des Systems {<y,,(a;)}, das

ein abgeschlossenes sei, heisst:



CO

(37) wx (x) y <pv (x) f cpv (z) wx (z) dz
±7 J

Diese Entwicklung reproduziert genau die erwartete
Punktion, wie sie in (36') definiert ist, nicht aber die
Beobachtungsreihe. Ersetzen wir W,(x) unter dem
Integral durch (36'), so wird:

b b

Wi (x) 2 vAx) Jj <pr{e) K(e, X) IV (x) dx dz
i'= 0 a a

Wir setzen das Doppelintegral:

b b

J JvXz) K{z> x) w(x) — "i'1'

" " >> b

f w(x) dx Jk(z, X) <pXz) dz
a a

Und wegen der Beziehung (85):

1 •

a[l) —- J iv (x) cp„(x) dx
'' a

Es lautet somit das Resultat der ersten Ausgleichung:
b

(38) Wx{x) J /w(«) <pXz) ** J <PXx) u<l)

>=0 '' J »=0

Diese Entwicklung ist gleichmässig konvergent auf
dem Intervalle (a,b). Es ist W1(x) vermöge der
Belegungsfunktion w(x) linear dargestellt. Die Idee
Wirtingers geht nun dahin, das Verfahren in genau gleicher
Weise zu wiederholen.
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Sei W2(x) die Erwartung, die man auf die einmal
ausgeglichene Reihe macht. Diese Erwartung sei in
gleicher Weise darstellbar wie Wl (x). Es hange nämlich
W2{x) linear und homogen von den auf dem
Grundintervalle hegenden Werten Wx{x) ab. Also:

u

W2(x) JK(x, z) Wx (z) dz

Setzen wir aus (38) Wx(z) ein:

b b

W2{x) JK(x, z) ~ JVv® clt dz

a l'~0 «

b b
Ä c l r2 J \K(X' ^ 9''®]dz T J 10 ^ Vr® dt

aber:
b

I K(x, z) yXz) dz — cpXx)

daher :

(39)

b

W2{x) ^^- / w(z)<p,(z)dz
K

v 0 ''

2 V'W a'2>

b

mit
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Dieses Resultat der zweiten Ausgleichung unterscheidet
sich vom ersten nur durch das Auftreten von Xf,.

Das Verfahren kann nun beliebig viele Male wiederholt

werden. Eine n-malige Anwendung gibt:

b

WH(x)= J K{x,z)Wn_l{z)dz
a

und:

CO

(40) =2]
v=0

dabei ist a[,n) — / w(z) <pv(z) dz zu setzen.
* a

Man sieht, dass die wiederholte Ausübung des

Verfahrens nur die Berechnung der Koeffizienten ar
verlangt. Die Rechenarbeit von Fall zu Fall reduziert
sich auf die Berechnung der verallgemeinerten Momente
der Beobachtungsreihe.

Das Abweichungsmass.

Um das Resultat beurteilen zu können, untersuchen

wir, wieviel W1 (x) von der Ausgangsreihe w(x) bzw.

W(x) abweiche. Wir stellen also Formel (20), die die

Beobachtungsreihe im Grenzfalle reproduziert, der
Formel (38) gegenüber. Wir bilden das Integral über
die Fehlerquadrate:
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0 0

/ /i/cp co \ 2

(w (®)—w-t («)fa® / j 2^(®) « — y)
« "=° v'

b
- 00 / 2

a„ /1— —

Wegen der Orthogonalität und wegen der Normiertheit
wird:

"=Z>-~2>'
p=0 y=0

2 1

Ä~~Ü

-£ o? 1 —
1

Analog wird das Abweichungsmass für die w-te
Ausgleichung :

2 1

jjn~ Ite

CO CO

(4i) y—y
r 0 j'= 0

Af

Ferner lautet das Abweichungsmass von W 1{x) direkt
in bezug auf w(x):

0

Q — J\iv(x)— Wx (x))2 dx

oder

(42) Q w

uu

'(a;) dx — y
t
al

2 1

Äf _"Ä!"
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In (41) sehen wir sofort, class das Abweichungsmass ein
Minimum wird, wenn alle Xr — 1 sind. In diesem
günstigsten Falle wird die eckige Klammer in (42) gleich

1 und ü zu Null. Das ist ja der Fall, wenn wir die
nicht gleichmässig konvergente Reihenentwicklung (20)
anwenden. Ferner sehen wir, class bei | X,. | > 1 und
wachsendem n die eckige Klammer in (41) gegen Null
strebt. Das Abweichungsmass konvergiert also bei
wiederholter Ausgleichung gegen v a2.

Denn:
2 1

~K ~ A?"

2A'!-

X2

r 2^-1 0 iri ilim ~~x^~ 7" 0
tt—»-00 Ay n~*»-00 AM Ay A
D-,.i > i Ib.! > 1

Wie wir gesehen haben, vergrössert die Wiederholung
des Verfahrens das Abweichungsmass, bis es schliesslich

gegen l'a* strebt bei n —> oo. Uin aber dennoch das

Verfahren anwenden zu können, müssen wir auf viele
Wiederholungen verzichten. So können wir clas

Abweichungsmass unter einer zulässigen Grenze halten. Wenn

z. B. der kleinste A-Wert gleich eins ist, so wird clas

Abweichungsmass nach «-maligor Wiederholung, wobei
00

n —» oo strebt, nach dem Werte: streben, denn in
i>= 1

(41) wird dann für v 0 die eckige Klammer 1;
es wird also clas Maximum des Abweichungsmasses um
a2 vermindert. Der Vorteil der Wirtingerschen Methode

gegenüber Formel (20) ist die gleichmässige Konvergenz
der Entwicklung. Es lohnt sich im Anschluss an seine

Untersuchungen, diese praktisch brauchbar zu gestalten.
Ich denke dabei vor allem an die Wahl cles Gruncl-
intervalles, die in engster Verbindung mit der Wahl
des Orthogonalsystemes ist.
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Wahl der Orthogonalsysteme.

Wir haben gesehen, class durch eine Zahlenfolge
%v gleichmässige Konvergenz der Entwicklung W(x)
erreicht wird. Es ist nun die Frage offen, wie wir clas

Entwicklungssystem wählen wollen. Wir haben, wie

aus dem Yorhergesagten ersichtlich ist, drei Möglichkeiten.

I. Wir wählen eine zweckentsprechende
Kernfunktion K(x, z) und bestimmen die Eigenfunktionen
und Eigenwerte durch Lösung der linearen
Integralgleichung :

Diese Gleichung gestattet ausser der trivialen Lösung,
die wir nicht als Lösung betrachten wollen, für gewisse
Werte von A Lösungen. Diese Lösungen können ein

System bilden, das alle Voraussetzungen über das

Entwicklungssystem erfüllt.

II. Wir wählen primär das System \fp,,(x) j. Wir
haben ja gesehen, dass die Funktionen eines Systems

{(pr{x)\ auf unendlich viele Arten als Eigenfunktionen
eines symmetrischen Kerns aufgefasst werden können;
das allerdings nur unter der Bedingung, dass die
Funktionen |ip,,(a:)} nach oben beschränkt sind. Es muss
also eine Zahlenfolge Mr so bestimmbar sein, dass auf
clem ganzen Intervalle:

Ist diese Bedingung erfüllt, so lässt sich stets eine Folge
der gewünschten Xr finden. Es genügt z. B. die Wahl:

a

<pAx)\ < Mv gilt.

(43) | Xj>v2Ml
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Denn damit K (x, z) in der Bilinearreihe gleichmässig
konvergiere, muss der Beihenrest der Entwicklung
verschwinden. Er heisst:

_ V V/W ^ ^»~ Zj ' a x>z ^ ®

(.t—n

Sicher ist:

\<Pß(X)\ [?„(*)I

*,1

und a fortiori:

Ml

*<!

Zm:TT7
fi=n

Setzen wir für X den Wert aus (43) ein, so majorieren
wir im Falle, dass wir |A„| >VM2 nehmen. Also:

CO 00

V <pß(x) ?,.(*) < Vi-
fi n ft=n

^

Die rechte Seite ist bei n—+ cd, Null. Die andere Bedingung,

die an die Konvergenz des Kernes gestellt ist,
nämlich:

1

konverg.
X:

p—O

muss natürlich auch erfüllt sein. Es ist also möglich,
für jede beschränkte Funktionenfolge die Zahlenfolge
Xv zu konstruieren. Bei der Durchführung von
Rechnungen ist es übrigens überflüssig, die ausführliche
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Kernbildung vorzunehmen. Denn wie wir gesehen

haben, tritt die Kernfunktion in den Endresultaten
nirgends auf.

III. Eine dritte Möglichkeit bei der Wahl des

Entwicklungssystems besteht darin, dass man eines der
bekannten Lösungssysteme eines gegebenen Kernes
verwendet. So hat z. B. der Kern:

K{x,z)=\ log--"i-
^ sin —j-

auf dem Grundintervalle 0 < x, z <1 n die Eigenwerte:

2 4 G 2n
71 JZ TZ 7Z

und die Eigenfunktionen: sin z, sin 2z, sin nz,

Theoretisch ist das System brauchbar zur
Entwicklung der Funktion W(x). Aber im Hinblick auf die

Praxis wird es sicher nicht sehr geeignet sein. Es

handelt sich ja in den weitaus meisten Fällen darum,
die Ausgleichung für ganze Argumente durchzuführen.

2. Verwendung der Polynome Pn (x).

Praktisch wird sich die unter II. gegebeno Möglichkeit

am einfachsten gestalten. Wir wollen nun
untersuchen, ob die Legendreschen Polynome sich auch für
diese Darstellung verwenden lassen. Wir betrachten
also das normierte Orthogonalsystem:

1 / 2n+l
9»»(®) 1/—g—P"^
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a) Es fragt sich nun, ob diese Funktionen als
Eigenfunktionen eines symmetrischen Kernes K (x, z) auf-
gefasst werden können. Damit dies der Fall sei, müssen

folgende zwei Bedingungen erfüllt sein.

<x) Es muss auf dem Grundintervall —l^Lx,z<Ll
für jedes n eine Zahl Mn so existieren, dass |<pn(x) |

ist. Das ist tatsächlich möglich, denn für die
Legendreschen Polynome gilt allgemein:

—1 < P„ (x) <; 1 oder also | Pn (x) I 1

ß) Es muss eine Zahlenfolge Xn existieren, so dass:

Diese Zahlenfolge erhalten wir aus der Ungleichung (43):
Es genügt somit | Xn \ > m2 M2n zu wählen, damit obige
Summe gleichmässig konvergent sei. Sicher wird also

z. B. die Folge

den gemachten Bedingungen genügen. Wir wählen diese

Form, um keinen Eigenwert XQ 0 zu bekommen.
Denn dann wäre ja die Reihenentwicklung schon beim
ersten Gliede divergent. Führen wir die Rechnung
durch, so lautet das System: q>n(x), Xn:

somit: Mn

cp0(x), (Pl (x),

13
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Man überzeugt sich leicht, dass auch die Reihe:

00

1^ -j2 konvergent ist.
„

AV
v— 0

00

^
Denn ^ — ist eine Majorante, und diese konver-

n=1
71

giert bekanntlich gleichmässig gegen
o

b) Es ist auch hier wieder angenehm, wenn wir uns
von dem speziellen Intervalle (— 1, -(- 1) loslösen
können. Es ist zu eng, und wir ziehen ein allgemeineres
Intervall (—a, a) vor. Wir verwenden also wie in
4. I. Teil die Funktionen:

x -)-o

Es ist nun noch zu untersuchen, wie sich hier die Eigenwerte

gestalten. Variiert x zwischen —a und -|-a,
so gilt wiederum:

P,.
a

<1

Es ist somit: | <pr (x) | < y ^^
,-i/2y+ 1

y 2a
also: M„

Es genügt daher Xv so zu wählen, dass:



und da ferner |a|^>l, so genügt auch:

(2v + 1)UJ> v"
2

•J

Um keinen A-Wert Null zu bekommen, wählen wir:

_ *a(2y + l)
2 +1

So erhalten wir die Folge:

*0, ^1» ^3> ^4» • • • • >

1, -.11, -.78 ,^±Ä+1'22 2

Eine Entwicklung von TU1(a;) nach Wirtinger lautet
demnach:

00 +«

^i(«)=2 J?'(')"(»)&
f-0 "

_a
-{-a -fa

J<py(e) to{z) dz "]JK to(g) dz

— a —«

Und daher:

ffl(l)=IV_k+i_P,(i) DU-W)^1W «^j»>ra, + i)+2 '\«/y ' w w
v=0 _a

cj Die Formel erscheint etwas kompliziert. Von
Fall zu Fall ist aber lediglich der Ausdruck

+°
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zu berechnen. Die übrigen Formelteile lassen sich ein
für allemal tabellieren. Wir setzen der Einfachheit
halber noch:

2" + 1

v2(2v + 1) + 2

+«

Ferner ist: JPv w (2) dz Ay

— a

Es lautet so das Resultat der ersten Ausgleichung:

I *i(D V'p-(7) A-

_____
v 0

Wiederholen wir das Verfahren, so ändert sich ausser
dem Koeffizienten nichts. Im Nenner tritt ein
weiteres Xy als Faktor hinzu. Setzen wir wiederum:

— fcW i %v + 1
_ fc(2)

Xy
"

Xy v"(2r + l)+2
so wird das Residtat der zweiten Ausgleichung:

Zwischen zwei aufeinanderfolgenden Koeffizienten k%" 11

und k(ym) besteht die einfache Rekursion:

feW - - k{m~l)
V + f

Äv

Wir sehen, dass feW von der Ausdehnung des Intervalles
unabhängig ist. Wir können daher die Werte für fcj"1'



ein für allemal berechnen. Es ergibt sich folgende
Tabelle: '

V K
1

X
fed)

2" + 1

Kv -v2(2v+l) + 2 K 'V

0 1,0 1,0000 0,5000 0,5000 0,5000 0,5000
1 2,5 0,4000 0,6000 0,2400 0,0960 0,0384
2 11,0 0,0909 0,2270 0,0200 0,0018 0,0001
3 32,5 0,0307 0,1080 0,0030 0,00009 0,0000
4 73,0 0,0136 0,0620 0,0008 0,00001 —
5 138,5 0,0072 0,0400 0,0002 —. —
6 235,0 0,0042 0,0280 0,0001 —

Wie aus dieser Zusammenstellung ersichtlich ist, streben
die Koeffizienten h[m] mit wachsendem v schnell gegen
Null. Ferner sehen wir, dass diese, abgesehen vom ersten,
mit wachsendem m ebenfalls schnell gegen Null abfallen.

d) Nun können wir auch das Abweichungsmass in
Formel (42) noch praktisch untersuchen. Wir wollen

2 1

den Wert des Ausdruckes: -- — ^
bei wachsendem m für diese Zahlen berechnen. Es

ergibt sich folgende Zusammenstellung:

1 2 1 2 1

V K X K % % K

0 1,0 1,0000 1,0000 1,0000
1 2,5 0,4000 0,6400 0,2940
2 11,0 0,0909 0,1810 0,0165
3 32,5 0,0307 0,0605 0,0018
4 73,0 0,0136 0,0272 0,00036
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Aus dieser Tabelle ist klar ersichtlich, dass die eckigen
Klammern, also die Koeffizienten von a2v im negativen
Teil des Abweichungsmasses schnell gegen Null streben.
Das bewirkt aber, dass bei oftmaliger Wiederholung des

Ausgleichprozesses das Abweichungsmass zunimmt. Aus
Formel (42) ist ferner ersichtlich, welches die obere

Grenze des Abweichungsmasses ist. Es war:

Wird n gross, so reduziert sich die Summe rechts auf das

Glied Uq. Somit ist der höchste Wert des Abweichungsmasses

:

Vergleichen wir ferner mit Formel (41), so sehen wir,

Ferner sieht man aus der Zusammenstellung gleich,
dass die erste Ausgleichung für das Abweichungsmass

am günstigsten ist.
e) Nun haben wir zu entscheiden über die

Ausdehnung der Grundintervalle. Oder, was auf dasselbe

hinauskommt, wir müssen die Grösse der Teilreihen
bestimmen. Wir haben ja die ursprüngliche
Beobachtungsreihe in Teilreihen aufgeteilt und die Ausgleichung
in jedem Intervalle für sich vorgenommen. Wir haben

zur Wahl von (—«, a) keine festen Anhaltspunkte.
Doch können zu dessen Bestimmung folgende
Überlegungen bestimmend sein. Umfasst die Teilreihe nur
wenige Werte (z. B. 3), also a (—1, + 1), so berück-

a

dass das Abweichungsmass nicht unter V1a2v sinken kann.
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sichtigen wir den Verlauf links und rechts des

auszugleichenden Wertes zu wenig. Lokale Schwankungen
treten daher stärker hervor. Nehmen wir aber viele
Glieder, z. B. 9—-11, so werden charakteristische
Eigentümlichkeiten der Ausgangsreihe verwischt, indem die
Enden zu weit vom Zentralwert entfernt liegen. Eine
Ausdehnung des Intervalles auf 5—7 Glieder dürfte am
zweckmässigsten sein. — Als wirklich ausgeglichen
betrachten wir immer nur den Zentralwert. Die rechts
und links von ihm liegenden Werte sind wohl auch
ausgeglichen, aber je mehr man gegen die Enden des

Intervalles kommt, um so schlechter passen sie sich dem
allgemeinen Zuge der Beobachtungsreihe an. Ist einmal
ein Punkt z ausgeglichen, so müssen wir den
nächstfolgenden Punkt 2 + 1 in genau gleicher Weise
behandeln. Man hat nur das Intervall um eine Einheit
nach rechts zu verschieben. Natürlich könnte man sich
wie andere Methoden auch mit der Ausgleichung von
sogenannten Kardinalpunkten begnügen. Z. B. würde

man jeden fünften Wert ausgleichen. Die dazwischen

liegenden Werte würden durch Interpolation bestimmt.

3. Kerndarstellung der Formel (20).

Im vorigen Abschnitt haben wir gesehen, wie

Wirtinger zu seinen Formeln gelangte. Erwartung und

Beobachtung sind verbunden durch die Beziehung:

(36)

a
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Bei der Darstellung der Erwartung durch eine nach

orthogonalen Funktionen fortschreitenden Beihe haben
wir die Formel

n

(20) T7(®) 2^(®)a,
v 0

gefunden, wo:
b

a" Jw ^ (p" ^ äz

a

ist. (Fourierkoeffizient.)
Da in (20) die Summe aus endlich vielen Gliedern
besteht, dürfen wir die Prozesse Summation und
Integration ohne weiteres vertauschen. Eine Konvergenzfrage

tritt ja nicht auf. Führen wir die Vertauschung
durch, so wird:

b

(44) W^(x) fio (z) 2 <py (x) <pv (g) dz

a " o

Betrachten wir die endliche Summe:
i

n

2 fv (X) <Pv (»)

v= 0

so sehen wir, dass diese eine endliche, stetige und
symmetrische Funktion der beiden Variabein x und z
darstellt. Es sei diese Funktion mit Kn (x, z) dargestellt.
Führen wir diese rein formelle Beziehung in (44) ein,
so lautet das Ausgleichgesetz:

b

(45) W(x) J w (z) Iin (x, z) dz

a
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Die Formel ist ganz analog aufgebaut wie diejenige

von Wirtinger. Es stellt w (z) Kn (x, z) dz den Beitrag
dar, den der Funktionswert w (z) zum Funktionswerte

W{x) liefert.

Hier können wir auch sofort sehen, dass eine zweite

Ausgleichung derselben Art das Resultat unverändert
lässt. Nehmen wir nämlich an, es hange Wx{x) linear
und homogen von den Funktionswerten ab, und zwar
in der Form:

b

Wx (x) J W(z) Kn (x, z) dz

a

so wird, wenn wir W (z) aus (45) einführen:

b b

Wx (x) Jw (t) Kn (z, t) dt j Kn (x, z) dz

a a

b b

Jw (<) dt J Kn (z, t) Kn (x, z) dz

a a

Aber:
n n

Kn (z, t) K„ (x, z) =^<pr (z) <pv (t) ^ <pf, ix) <pfl(z)

r 0 f-t=0

Integrieren wir nach z, so fallen alle Glieder, wo /.i 4= v

ist, wegen der Orthogonalität weg. Dort hingegen, wo

f.i v ist, gibt die Integration die Einheit. Also:

b '<

fKn (z, t) K„ (x, z)dz £ V" V* ® (x> z)

{ v=*0
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Somit ist:
b

(46) W1{x) J10 (t) Kn (x, t) dt

a

Wir sehen, dass die Formeln (45) und (46) sich

vollständig decken.

Diese neue Gestalt des Ausgleichgesetzes vereinfacht

die frühere Formel bedeutend. Wir können nämlich

die Funktion Kn (x, z) für beliebiges endliches n
vorausberechnen. An Stelle der Summe tritt dann ein

einziges Integral, n Integrationen werden durch eine

einzige ersetzt. Doch hat diese Formel gegenüber der
früheren einen Nachteil. Wir haben gesehen, dass zur
Berechnung des Abweichungsmasses die Koeffizienten

av bekannt sein müssen. Hier treten diese aber nicht
mehr auf. Bei Ausgleichungen, bei denen man das

Abweichungsmass näher untersuchen muss, wird man
daher vorteilhafter die frühere Fassung verwenden.
Theoretisch ist es ja immerhin möglich, die Koeffizienten

an auch hier zu bestimmen. Betrachten wir nämlich:

b

W{n\x) yw{z) Kn(x, z) dz a0 tp0(x) + cp-^x) + + an <pn (x)
«

unci
b

W^'v'(x)=Jiv(z)Kn_L{x,z)dz a0<p0(x) + a1<p1(x) + ^ (x)
a

so ergibt sich durch Subtraktion:

•ppM (X) _ IFC'-D (a) an <pn (®)

WW(x) — WW(x)
und somit: an —

9>n(s)
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Formel (45) lässt noch weitere Vereinfachungen zu,
wenn wir beachten, class jedesmal nur die Stelle Null
als ausgeglichen betrachtet wird. Wir müssen also nur
die Funktion:

n

Kn (o, z) 2 % (o) <pf (g) &n (g)

kennen. Dadurch wird die Ausgleichformel:
b

(47) W{6) J %v(z) <Pn{z)dz
a

Ist die Funktion einmal für gewisse Intervalle berechnet,
so reduziert sich die Eechenarbeit auf die Ermittlung
dieses Integrals.

Beispiel.

Ein praktisches Beispiel soll die Formel (47)
illustrieren. Wir wenden uns wiederum den Le-
gendreschen Polynomen zu, die uns als Entwicklungssystem

dienen sollen. Es ist:

Verwenden wir eine Parabel n-ter Ordnung zur
Ausgleichung, so lautet Kn (x, z):

v—0

Somit wird die Funktion <Pn(z):

n

(48) 0n(z) Kn(o,z) =^Y.(to + l)Pr(o)PA-)
(~a, a) _a \a/
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Von den Legendreschen Polynomen wissen wir aber, dass

(2 v)!
p2v+i(°) °> «• p2v(°) (— 1)" "häV2 (v !)2

Es fallen daher in (48) alle Glieder mit ungeradem Index

weg. Führen wir ferner den Wert von P2l,(o) ein, so wird:

[Fl
1 (2 v)! / z \

Kn(o,z) $„(*)=—y(- ir.-2 (4»--!-1) pJ~)
(-«,«) UaL-i 22"(i'!)2 \«y

v Q

Setzen wir noch:

(2 v)!

so wird:

® /,'"•<2)="^r2s,'p"U

Kennt man also die Werte der Funktion Z\, so

kann man beliebig hohe Kn berechnen. Für die
Koeffizienten </„ können wir noch eine einfache Rekursion
ableiten. Es ist:

Sk-M (—1)" + 1

2(v + 1)! [4 (r +1) + 1] 22v (* !)2

(— 1)" (2 r)! (4 r +1) 22(>'M) (r + 1)!2

1 iv+5 2v + 1

2 4 v -|— 1 v + 1

Oder also:

1 4r -h 5 2j<+1
SUi —Y ~4 r +T +'lg"
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Da wir g0 1 kennen, können wir die folgenden
Koeffizienten leicht berechnen. So heissen die vier ersten:

9o

0i

92

9a

1

27

8

Es würde so:

1

K„ (o, z)
2a a

65

16

2 +
a

65

16 " 6

Yon dieser Formel können wir nun eine beliebige Anzahl

von Gliedern verwenden. Interessant ist der Fall, wo
wir nur das erste Glied verwenden. Es ist dann:

T>F(1) (o) j w(z)P0
2a J

dz

Da aber P0 (— 1 ist, so wird:

dz}VW (o) — fio(z)
2a J

Das Integral ist die FLäche unter dem zwischen — a
und -f a liegenden Teil der Beobachtungskurve. 2 a
ist die Ausdehnung des ganzen Intervalles. Der Wert
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W{1) (o) ist also das arithmetische Mittel der auf dem

Grundintervalle liegenden Beobachtungswerte.

,vs

»öl. «12

Für a 5 ergab die Berechnung der Funktion
<Pn(z) folgende Resultate:

z <h(z) <h{z) <h(z) <h(z)

5 0,1 — 0,150 0,188 — 0,218
4 0,1 — 0,015 — 0,093 0,066
8 0,1 0,090 — 0,048 — 0,118
2 0,1 0,165 0,127 0,009
1 0,1 0,210 0,288 0,320
0 0,1 0,225 0,351 0,477

4. Kerndarstellung für die Formel von Wirtinger.

Für die Formel von Wirtinger gilt eine analoge

Darstellung. Das Resultat der ersten Ausgleichung hiess:
CO

^

(88) W1 (x) J] Jw (*) % (*) dz

v=0 "
a

a v"° V
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Speziell heisst der Ausgleich für den Zentralwert x 0:

(°) 9, (2)
Wl(o) J dz

KV=0 '

Wir setzen wiederum:

ip{z) Ausgleichfunktion)
v»0 V

so dass schliesslich wird:
b

Wx (°) f w{z) W(z) dz

a

Verwenden wir nun als Entwicklungssystem die
Legendreschen Polynome, so wird die Ausgleichfunktion:

1 V, .« (2v)! ,A iX
11 V~1 (5ä V) 1 Z

r 0

(2v)2 (4v + 1) +2aber: X2l,

Also:

'"<*> -i2 f- 1(7!)=<4-+p-
Führen wir wieder den aus dem vorigen Abschnitt
bekannten Koeffizienten:

12 v)!
ijV(4" + 1)
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ein, so wird das Resultat:

<«> ^
v — 0

und somit der erste Ausgleich:

1
"

(50)

Die Funktion ll'(z) kann man für bestimmte Werte von
a berechnen und in einer Tabelle zusammenstellen. Die
Rechenarbeit von Fall zu Fall reduziert sich so erheblich.
An Stelle von mehreren Integrationen tritt eine einzige.

5. Verfeinerung der Methode.

In den beiden letzten Abschnitten haben wir
Formeln abgeleitet, die uns an der Stelle x 0 einen
Ausgleich liefern. Der ausgeglichene Punkt liegt, wie wir
festgestellt haben, auf einer Parabel. Es liegen aber noch
andere ausgeglichene Punkte auf dieser Parabel. Diese

haben wir bis jetzt ausser acht gelassen. Wir nehmen

an, dass wir mit der Ausgleichung an der Stelle £ begonnen

haben. Die Formel:

+«

W1 (x) J K (x, z) w (z) dz

—'Ct

liefert uns 2 a + 1 ausgeglichene Werte, die alle auf
derselben Parabel liegen. Es seien diese Werte:

(-et) (-a+t) (-a+a-1) (0) (1) (a)

IF(£),I7(£+l),....IF(£ +a-l), IF (£ + «), ^£+a+1),....W(£+2«)
a-Werte Zentralwert a-Werto
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Dor Wort 14'(f (- a) ist jetzt Zentralwort und als

solcher am zuverlässigsten ausgeglichen. Nun
verschieben wir das Intervall um eine Einheit nach rechts.
Nun liegt der Wert 1E(£ |- a -)- 1) zentral. Ms entstehen
überdies von der Stolle £ L hinweg neue ausgeglichene
Werte. Die weiteren Verschiebungen des Intorvalles
nach rechts werden noch mehr übereinanderliegende
Werte liefern. Von der Siehe £ + 2 a hinweg beträgt
die Zahl der Resultate an einer Stelle 2 <x -|- 1. Statt, nun
den zentralen Werf jeweils als Eertigos Ausgloichsresullat
zu betrachten, lassen wir die übrigen Werfe an der

Ausgleichung auch mitwirken. Es sind diese verschiedenen

Werte an einer Stelle linear zu kombinieren.
Natürlich muss das Hauptgewicht immer noch auf den

zentralen Werf gelegt werden. Wir müssen also den

verschiedenen Ordinatenwerten (lewichte beilegen. Die

Korderungen, die wir an die Gewichte </(z) stellen, sind

die folgenden:

l- X^)==l
•2. (j(z)—tj{-z) (Synimetriebedingung)

g. r/(0) Maximum.

4. </ (0) > <) (+ 4) > 0 (+ 2) > >!/(+«)

d. h. die Gewichte sollen gegen die Enden hin abnehmen.

Eine solche Verteilung wäro die Gaussscho. Diese

ist aber in ihrer Anwendung zu kompliziert. Der

Gaussschen Verteilung liegt die Binornialverteilung am
nächsten. Diese wollen wir anwenden. Es stehen uns an

der Stelle £ 4 2 a folgende Werte zur Verfügung:

11



114

TF'(£+2a) lF(|+2a), kF(f+2a), kF(£+2a) TF(|-)- 2a)
(-«) |

(-1)
|

(0)
j

(1)
|

(«)
|

Nun teilen wir die Gewichte zu. Diese sind gegeben durch
die Koeffizienten der Entwicklung: (1 + l)2"

Also erhalten wir folgendes Schema:
I i i

Y Y Y Y
2a\ / 2a \ /2a\ /2a
0 / \a — 1/ \ a / \a + l

Y
2a

Die Bedingungen 2—4 sind erfüllt. Die erste Bedingung
wird erfüllt, indem wir jeden Koeffizienten durch 2 2"

dividieren. Addieren wir nun die mit den Gewichten
versehenen Ausgleichswerte, so entsteht der neue Wert:

>F(|-+2a): 2s

'2aV(
a / (0)

+ 2a) + 2a

1F(| + 2a) + ....+ kF (i + 2 a) +

2a
kF(f + 2a)-{-....+ kF(f+2a)

a+1/ (i) V2a/W

Beispiel: a 2; £ + 2a £ + 4 t

Es sind an der Stelle t die folgenden Werte vorhanden:

!F(Z), W(t), W(t), W(t), W(t)
(-2) H) (0) (I) (2)

Nun teilen wir die Gewichte zu:
I

Y
/'4'

i

Y Y
(4
2'

G =4

Y
4

1

Es lautet dann der ausgeglichene Wert an der Stelle t:

W(t) IG
\W(t) + 4 W{t) + 6 W(t) + 4 W(t) + W(t)

("2) (0) (1) (2)



oder noch:

----0,0625 (W(t) + W(t)\+()M0lW(t) + W(t)\ + (),m\V(1)
\(-2) (3) V(-l) (1) / (0)

Die Summe der Gewichte ist: 2 • 0,0625 -f- 2 • 0,250
-)- 0,375 1. Wir stellen fest, dass die Formel erst
von der Stelle £ + 4 an voll verwendet werden kann.
Es werden also die Werte an den Stellen £, 1 + 1,

| + 2, | + 3 vom Verfahren nicht erfasst. Zu den
Werten an den Stellen £ + 2 und f + 3 ist zu bemerken,
dass sie noch ganz gut ausgeglichen sind. Sie sind ja die
beiden ersten zentral gelegenen Werte. An der Stelle
| + 2 und f + 3 liegen aber noch andere Werte, wie
aus der folgenden Zusammenstellung ersichtlich ist.
An der Stelle 1 + 2 dürfen wir die drei Werte W(0),
W{—1), W(—2) nicht kombinieren, weil die Verteilung
einseitig ist. Hingegen an der Stelle f + 8 dürfen wir
die drei Werte W(1), W(0), W(—1) kombinieren.
W(—2) streichen wir einfach, weil die Verteilung sonst
unsymmetrisch ist. Als Gewichte wählen wir wiederum
die Binomialkoeffizienten 1, 2, 1. Das Resultat lautet:

~W(£ + 3) 0,25 fkF(l) + W{— 1)) + 0,5 W{0)

Die gleichen Feststellungen gelten für das Ende der

auszugleichenden Tafel. Im ganzen würden also vier
Werte von der Methode gar nicht erfasst.



Die 1. Parabel liefert:

Die 2. Parabel liefert:

Die 3. Parabel liefert:

Die 4. Parabel liefert:

Die 5. Parabel liefert:

usw.

£ £-{-1 £+2 S+3 £+4 £+5 £+6 £+7
1

£+8 £+9i
1

i i

|TP(-2) W(-l) TP(O)
1

TF(1)

l
1

W(2) I
j

|

1 i i

W(- 2) T'F(-l) TF(O)
i

1

W{1) TP (2)
1 i

;
;

!tf(- 2); w(i)
i

fF(O) T'F(l) 1 W(2) ;

i 1

<W(- 2) FF(-1)! W(Ü) W(1)
i j

FF(2) i

FF(-2)!lF(-l)i TF(O)
i

IF(1) < W(2)

ilWt*rt 2Werte 3Werte 4Werte 5 Werte immer 5 Werte :

I i!' 1

i
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IT. Praktischer Teil.

Anwendung der Theorie auf numerische Beispiele.

1. Beispiel.

Gram hat in der zitierten Arbeit ein Beispiel
durchgerechnet. Um vergleichen zu können, wollen wir die
gleichen rohen Zahlen mit unserer Formel behandeln.

Es handelt sich um 11 Beobachtungswerte von Log - -
Vx

für die Alter 20 bis 80. Es ist dabei a — 5 gewählt. Wir
verwenden also alle 11 Beobachtung«werte wie Gram
Für die Berechnung müssen wir eine Vereinfachung
treffen hinsichtlich der Ermittlung der Fourierkoeffizienten

ar. [Jm die lange Arbeit der numerischen
Integration zu umgehen, nehmen wir für die

Koeffizienten ar Annäherungen. Wir bedienen uns der Formel:

j I (x) dx ~ / (— a) + / (— a f 1) -f -|-

- r<

+ /(-!) +/(0) +/(0 + ••• f ^ /(«)

Zur Berechnung der Koeffizienten benötigen wir
ausser den Beobachtungszahlen noch die Werte der

Funktion Pr ^ -yj. (Vgl. Tab. 1 im Anhang.) Wir

begnügen uns wie Gram mit einer dreigliedrigen Formel,
d. h. wir legen der Ausgleichung eine Parabel zweiten

Grades zugrunde. Es sind nun die Produkte io(x) P0 ("g"

w(x) Pj und iv (x) P2 zu ^c'en:
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w(x)
'«(»)p, (f) x \

x' X
w(x) P0 (-j) ">(®) p2 yj)

20 -5 0,00 0,000 0,000
21 - 4 5,82 - 4,656 2,677
22 -3 0,00 0,000 0,000
23 2 2,44 0,976 0,634 i

24 — 1 5,04 —1,008 2,218
25 0 0,00 0,000 0,000
26 1 7,80 1,560 - 3,432
27 2 1,24 0,496 — 0,322
28 3 2,12 1,272 0,085
29 4 1,79 1,432 0,823

1

30 5 1,94 1,940 1,940

Nun bilden wir die Summe dieser Kolonnen (vgl. die

Integralbildung oben) und erhalten so die Koeffizienten:

A0 27,22; ^ —0,910; A2 =- 2,050

Nun wenden wir die Formel (31) an:

27,22- 8 • 0,910 P, (j)~ 5- 2,050 P2(| j

Beschränken wir uns zunächst auf ein Glied der Formel,
so wird: W<°'(a:) 2,722

d. h. die ausgeglichenen Werte liegen alle auf einer
Geraden parallel zur a:-Achse. Nehmen wir noch das

zweite Glied mit, so erfährt das erste Resultat keine
wesentliche Abänderung. Der Wert im Nullpunkt bleibt
unverändert. Die übrigen Werte liegen alle auf einer
Geraden (Fig. 2). Da das lineare Glied nur geringen
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>*
Einfluss auf das Resultat hat, werden wir es vernachlässigen

können. Eine wesentliche Änderung bringt die
Verwendung des dritten Gliedes. Es ist:

FF<2)(x) 2,722 — 1,025 P2

Die Werte W^2\x) liegen jetzt auf einer nach unten geöffneten

Parabel zweiten Grades, deren Scheitel im
Nullpunkte liegt. Führen wir die Berechnung punktweise
durch, so erhalten wir folgende Resultate.

X ir(x) R<®(aO Ww{x) W^\x) w(x) —
—W7<a)(s)

(w(x) —

- W^\x)f

— 5

— -<t

— 3

— 2

— 1

0

1

2

a

4

5

0,00
5,82

0,00
2,44
5,04
0,00
7,80
1,24
2,12
1,79

1,94

2,722

2,722
2,722
2,722
2,722
2,722
2,722
2,722
2,722
2,722
2,722

2,995
2,940
2,886
2,8531

2,776
2,722
2,668
2,615!

2,558
2,504
2,449

1,697

2,250
2,681

2,988
5-3,173

3,2534

3,173

2,988
2,681
2,250
1,697

— 1,697
3,570

— 2,681

— 0,548
1,867

-- 3,2534

4,627

— 1,748

- 0,561

— 0,460
0,2453

2,880
12,744

7,188
0,5300

3,486
10,458

21,409
3,056
0,314
0,212
0,059

27,22 27,22 27,22 27,11 — 0,622 60,6536
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Unsere Zusammenstellung enthält noch das Abweichungs-
mass:

+«

j (iv (z) — W{2\z))2 dz (50,636

-«

Wir können es noch anders erhalten durch die

Berechnung des Besseischen Exzesses:

+ « 2

ü — f w2 (z) dz — 'y
i
al

-a "=0

Die a„ berechnen sich aus den Ar folgendermassen:

"2. " ^
somit:

2
1

,2
""2. A'

Es wird daher:

1

„0 - lo (27,22)2 74,092

a\ ^ • (0,910)2 - 0,248

4 jü ' (2,050)2 2)101

X/h 76,441

ha

Anderseits ist: j w2(x) dx 137,183

-a

Somit das Abweichungsmass:

ß 137,183 — 76,441 60,742.
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Wir selten, class sich die Resultate fast decken; so

hat man ein gutes Mittel in der Hand, die Richtigkeit
der Rechnung zu überprüfen. Die folgende Zusammenstellung

soll noch zeigen, class die Resultate von Gram

und dieses hier fast übereinstimmen.

X Wirtinger Gram

20

21

1,697
J3

2,250
i 34

2,100
22 2,681

'

2,640
28 2,988 3,020
24 3,173

3,234

3,240
25 3,320
2(3 3,173 „ 3,240

27 2,988 3,020

28 2,681 2,640

29 2,250 2>100c ä»

30 1,697 1,420'

2. Beispiel.

Als zweites Beispiel wurde die Tafel der

Sterbenswahrscheinlichkeiten Schweiz-Männer 1921/30 gewählt.

Diese praktische Rechnung soll zeigen, class clie

kompliziertere, gleichmässig konvergente Formel -(44) leicht

verwendet werden kann. Es lautet diese: i/< '-D '

(44) !?,(*)
0

Dabei ist;
-{-«

fed) — '— - ; A fPr(—^]w(z) dz
»•2(2r + l)+2 J \*J '
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Um clas Charakteristische der Beobachtungsreihe besser

hervorheben zu können, wählen wir die Teilintervalle
klein. Wir verwenden zur Ausgleichung eines Wertes

w(x) links und rechts von diesem zwei Werte. Im ganzen

wirken also fünf Beobachtungswerte an der

Ausgleichung mit. Es ist a 2. Begnügen wir uns mit
einer Parabel 4-ter Ordnung, so lautet die Formel:

wx (3) } | 4" i\ A0+.... + fc'1' P4 (A, |

Am besten ist der Zentralwert ausgeglichen. Die

links und rechts von ihm gelegenen Werte sind weniger
zuverlässig. In einer guten Ausgleichung wird man
daher nur die Zentralwerte als wirklich ausgeglichen
betrachten, also Werte an der Stelle x — 0. Daher wird:

Y j/4" 7» 4> + Ml) A(o) Ai + h2} p2(o)A2 +

+ fe!/> V3(o)Aa+W P4(oM,j

Da aber Pv(o) für alle ungeraden v zu Null wird, so

vereinfacht sich obige Formel folgendermassen:

Wx(o) |{/4l) P0(o) A0 + fe<" P2(o) /12 + fe'1' P.,(o) A,)

Die Konstanten fe|,'' haben folgende Werte:

fed) 0,500
fcd) 0,227
fei1' 0,002

Ferner ist der Wert der Polynome an der Stelle x --- 0:

P0(0) 1,000

P2(0) - - -0,500

l\{0) 0,375
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Die Ausgleichformel lautet demnach:

(o) Y J 0,500 A0 — 0,113 A2 + 0,023 ,-l4j

0,250 A0 — 0,050 A2 + 0,012 A,t

Es sind also von Fall zu Fall nur die Koeffizienten
A0, A2, /!,, zu berechnen. Es ist:

A0 JPo w {z) dz; A2 jp2( 1.) w (*>) dz

-2 '
-2

-2 (/

A,t Ip^) iv{z) dz; usw.

Als Beispiel der rechnerischen Arbeit sei der
Beobachtungswert an der Stelle x' — 25 ausgeglichen. Wir
brauchen hierzu die Werte von x' 23 bis x' 27.

X1 w(z)

23 — 2 391 391 391 391

24 — 1 394 394 — 49 — 114

*25 *0 399 399 — 200 150

20 1 »OCOCO 385 — 48 — III.
27 2 405 405 405 405

— — 1570 101 323

Es ist also: ^l0 1576; A., — 101; A4 323;

Das Ausgleichresultat wird:

(V^ü) W4(25) 0,25 A„ — 0,050 A2 + 0,012 A.t;
394 — 5,00 + 3,88 392.
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Mail erkennt hieraus, dass die Rochenarbeit gut
übersichtlich ist. Das Ausgleichen nimmt sonst im
allgemeinen sehr viel Zeit in Anspruch. Auch in dieser

Beziehung ist das Resultat der Untersuchung befriedigend.
Zur Ausgleichung von 20 Beobachtungswerten war der

Zeitaufwand eine Stunde.
Die Tafel der Sterbenswahrscheinlichkeiten Schweiz-

Aliinner 1921/150 wurde für alle Alter ausgeglichen. Bin
Vorgleich mit anderen Methoden hat gezeigt, dass das

Wirtingersche Verfahren fur Sterbetafeln sehr gut,
verwendet werden kann.

Schlussbemerkungen.
Wir blicken zurück. Bs wurde gezeigt, wie das

Verfahren von (Irani allgemeiner aufgefasst werden
kann. Die Voraussetzungen, die Gram machte, wurden

verallgemeinert. Bs kam dabei zum Wirschein, wie eng
das Ausgleichsverfahren von Gram mit der allgemeinen
Entwicklung einer willkürlichen Funktion in eine

Fouriersche Reihe verbunden ist. Wir haben dann
unter den beliebigen orthogonalen Entwicklungssystemen
eine Auswahl getroffen. Diese Auswahl wurde im
Hinblick auf die Praxis gemacht. Die Entwicklung, die

gefunden wurde (Eortnel 20), ist konvergent. Doch ist
dio Konvergenz ungleichmässig. An dieser Stolle der
Studie wurde dann die zitierte Arbeit von Wirtinger
näher untersucht. Er machte ähnliche Untersuchungen.
Der grosse Unterschied zwischen der ersten Darstellung
und derjenigen von Wirtinger besteht darin, dass

Wirtingers Formeln gloichmässig konvergent sind. Die

Formeln scheinen kompliziert, und ihre praktische
Anwendung stellte Wirtingor selbst in Frage. Doch

hat es sich nun gezeigt, dass dieses mathematisch schone

Verfahren praktisch verwendbar ist. Die guten Resultate,

die erzielt wurden, sprechen dafür.
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Wertetabelle der Legendreschen Polynome.

Tab. 1. a 1

X P0(s) l\(x) P2(a0 P8(a) Pl(x)

-1
0
1

Tab. 2.

1

1

1

a 2

-1
0

1

1 —1
- - 0,5 0

1 1

1

0,375
1

X '•(T) ".(1) p-(£) '.({) *(t)'
-.'2

— 1

0
1

'2

L

1

1

L

1

1

— 1,000

- 0,500
0 000

0,500
1,000

1,000
— 0,125
— 0,500

— 0,125
1,000

— 1,000

0,438
0,000

— 0,438
1,000

1,000

— 0,289
0,375

— 0,289
1,000

Tab. 3. a 5

X P X-\

w V 5 J \s)
- -5 1 — 1,000 1,000

4 t - 0,800 0,460

- 3 1 — 0,600 0,040

— 2 1 - - 0,400 — 0,260

— 1 1 — 0,200 — 0,440

0 1 0,000 - - 0,500

1 1 0,200 -- 0,440

2 1 0,400 — 0,260

3 1 0,600 0,040

4 1 0,800 0,460

5 1 1,000 1,000
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