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Ein Beitrag zur
Theorie der Ausgleichsrechnung.

Von Dr. W, Schob, Rorschach.

Einleitung.

In den Naturwissenschaften muss man eine Iirschei-
nung oft auf Grund des Experimentes beurteilen.
Messungen sind vielfach das einzige Mittel, gewisse
(tesetze und Figenschaften ausfindig zu machen. Die
Grosse der Messungen kann von einer unabhiingigen
Variablen abhiingig sein, z. B. von der Zeit, Temperatur
usw. Nimmt man nun die Messungen an den aufein-
anderfolgenden Stellen dieser Variablen vor, so erhalten
wir eine Beobachtungsrethe. s wird einem bestimmten
Zahlwert (Ordnungszahl) eine durch das Hxperiment
ermittelte Grésse (Funktion) zugeordnet.

Bys By o 6w Bih
w (), W (L), «vv. w(x,)

Da solechen Messungen immer Fehler anhatten, deren
Ursachen die Unzuliinglichkeiten der Messungen und der
Apparate und Stérungen sind, so nimmt man fiir jeden
Wert von z viele Messungen vor. So erhalten wir eine
Folge von Beobachtungsreihen.

Ly, Wiy, 5 5 B
Wy (xl)’ Wy (%2) ceee W0y (‘T’n)
Wy (1), Wy (T) « oo Wy ()

wm (wl)’ wm (372) SR wm (L'C")



— 54 —

Das ist nun nicht immer mdoglich. Wo es aber
angeht, wird man aus den m-Beobachtungsreihen nach
den Gesetzen der Wahrscheinlichkeitsrechnung die
wahrscheinlichste Beobachtungsreihe W (z) konstruieren.
Die einfachste Bildung ist das arithmetische Mittel.

W () = ) w, (@)

1
w (wn) — '7; w, (xn)
ye==

Neben dieser Art Beobachtungsreihen, denen dag
Experiment zugrunde liegt, gibt es noch eine andere.
An Stelle der experimentellen tritt die statistische
Erfagsung. Durch Zéhlung werden Figenschaften von
Gesamtheiten ermittelt. (7. B. das Sterben in Personen-
Gesamtheiten.) Diese zweite Art unterscheidet sich
von der ersten nur hingichtlich der Entstehungsweise.

Mathematisch stellt so eine Zuordnung von Variable
und Beobachtung einen Verlauf dar. Stellen wir diesen
graphisch dar, erhalten wir die Beobachtungskurve.
Diese weist selten einen regelméssigen Verlauf auf.
s werden auch bei verhiltnismissig grossem Beob-
achtungsmaterial Unstetigkeiten auftreten. Zumeist
handelt es sich um Spriinge. Das graphische Bild ist
eine gebrochene Linie. Doch kann man bei diesen Zick-
zacklinien fast immer eine deutliche Tendenz zur
Zu- oder Abnahme oder zur Periodizitéit feststellen. Iis
kann auch vorkommen, dass diese Tendenz fehlt. Solche
Hille sind fiir ung uninteressant.

Die Schwankungen der Beobachtungswerte von
Argument zu Argument sind meistens nicht begriindet
in der Natur des beschriebenen Vorganges und wider-
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gprechen der Frfahrung. Man darf daher annehmen,
dass bei einer grosseren Anzahl von Messungen oder bei
Erweiterung des Beobachtungsmaterials diese Unstetig-
keiten verschwinden wiirden. Da dieges aber immer im
beschrinkten Umfange vorhanden ist, muss man andere
Mittel und Wege finden, der Kurve einen moglichst
glatten Verlauf zu geben.

Nun tritt aber die Frage auf, inwiefern wir Spriinge
als Unstimmigkeiten bezeichnen und sie entfernen
diirfen. Bezeichnen wir eine Zacke in der Beobachtungs-
kurve als eine Unstimmigkeit, so setzen wir doch einen
gewissen erwarteten, regelméssigen Verlauf voraus.
Wir wollen diesen Idealverlauf Erwartung nennen. Sie
entbehrt jeder strengen Begrimdung und ist lediglich
in der Erfahrung fundiert. Es stehen sich also Beobach-
tung und Drwartung gegeniiber. In der Anpassung der
wahrscheinlichsten Beobachtungsreihe an die Frwartung
besteht das Wesen der Ausgleichung. Diese Anpassung
nach mathematischen Grundsétzen darzustellen ist
Aufgabe der Ausgleichtheoretiker. — Uber die Frwar-
tung konnen wir nichts Genaues sagen. In der Viel-
gestaltigkeit des Ausdruckes einer Erwartung besteht die
Unbestimmtheit des Ausgleichproblemes.

Die Methoden, die zur Ausgleichung ausgearbeitet
wurden, lassen sich in drei Gruppen zusammenfassen.
Das graphische Verfahren versucht auf zeichnerischem
Wege die Beobachtungskurve zu glitten. Als Frwartung
betrachtet man den allgemeinen Zug der rohen Werte-
reihe. Fin Hauptvertreter dieser Methode ist Sprague 1).

Die analytische Ausgleichung untersucht, ob sich
die Beobachtungsreihe durch eine mathematische Funk-
tion: f(a,b,c,....; @, vy) ausdriicken lasse. Die K-
fahrung reicht aus, die Konstanten a, b,. ... zu bestim-
men. 7. B. dient die Erfahrung dazu, die Makehamsche



Formel zu begrimden. Durch dieses Verfahren wird ein
vollkommen stetiger Verlauf ervzielf.

Bet der mechanischen Methode geht man von der
Uberlegung aus, dass eine Schwankung an der Stelle
sich auch an den benachbarten Stellen bemerkbar
machen miisse. s werden daher zum Ausgleichen des
einen Wertes x die Nachbarwerte links und rvechts
herbeigezogen. Diese letzte Gruppe umfasst eine Anzahl
guter Verfahren. Einen guten Uberblick iiber die ver-
schiedenen Formeln der mechanigchen  Ausgleichung
gibt Simonett %),

Die vorliegende Arbeit hat den Zweek, die Methode
der mechanischen Ausgleichung gemiiss der Methode der
kleinsten Quadrate unter allgemeineren Gesichtspunkten
7zt betrachten. Wegleitend war eine schone Arbeit von
Gram ). s wird versucht, die Frwartung durch eine
ganz allgemeine Iintwicklung darzustellen. Ferner soll
ausgehend von der Arbeit Grams gezeigt werden, wie
diese mit einer Arbeit von Wirtinger *) zusammenhingt.

Wirtinger hat die Errungenschaften auf dem Gebiete
der Theorie der linearen I[ntegralgleichungen zur Dar-
stellung einer Ausgleichmethode verwendet. Diese wird
niher untersucht und aut ihre Verwendbarkeit gepriift.

I. Theoretischer Meil.

1. Die Fundamentalgleichung der Ausgleichrechnung.

s sei w (z) eine Beobachtungsreihe, die noch
Unstetigkeiten aufweise. Ierner sei W () der Ausdruck
der Erwartung, iiber die wir noch nichts Bestimmtes
aussagen konnen. s soll die Beobachtungskurve an die
Frwartung angepasst werden. An diese Anpassung
stellen wir die folgende lorderung:
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Der ausgeglichene Wert (also der nach irgendeinem
Verfahren abgeiinderte Beobachtungswert) soll die
Wahrscheinlichkeit des gleichzeitigen Bestehens aller
Beobachtungswerte hinsichtlich der Frwartung zu einem
Maximum machen. Diese Forderung wird von allen
Ausgleichern als notwendig erachtet. Mathematisch
gefasst bildet sie den Ausgangspunkt der Ausgleich-
theorie. Sie lautet 5):

b

M D9@ [wE) — W@]oW() = 0

2=a

g (x) bedeutet dabei das Gewicht, dag den einzelnen
Beobachtungen zukommt. Ferner ist («, b) das Grund-
intervall, auf dem die Ausgleichung durchgefiihrt wird.
Uber die Grosse dieses Intervalles wollen wir uns vorder-
hand nicht dussern. Wir werden im folgenden von den
Gewichten ¢ (z) absehen, nehmen also an, dass alle
Werte W (z) den auszugleichenden Wert in gleichem
Masse beeinflussen. Wenn wir das Grundintervall nicht
zu gross nehmen, diirfen wir diese Annahme treffen. So
geht Formel (1) iber in:

b

(1) > fw (@) — W@)] o W) = 0

L=

Gleichung (1') 16st aber das Variationsproblem:

(2) Z [w(z) — W(z)]* = Minimum.

r=a

Bemerkung: ¥} ¢, (x) ohne Laufzahl bedeutet im folgenden immer,
dass itber alleWerte von a summiert werde. Dagegen bedeutet

n
Y @, (x), dass bei festem z iiber alle » zu summieren ist.

v=0



Wir bezeichnen (2) als Ausgleichgleichung. Sie ist
der mathematische Ausdruck der gestellten Forderung
unter der Annahme konstanter Gewichte ¢ (z) = 1. Wir
erkennen dag Prinzip der kleinsten Quadrate, das aus
Wahrscheinlichkeitsiiberlegungen heraus entstanden ist.
I8 existieren viele Ausgleichmethoden, die sich auf
dieses Prinzip stiitzen.

Von hier weg miissen wir begtimmte Annahmen
treffen iitber die Gestalt der Frwartung, die wir auch
Awsgleichungsgesetz nennen wollen. Die Unbestimmtheit
dieser Iunktion fithrte dazu, dags man sie einfach als
eine ganze rationale Funktion auffasste. Man nimmt
z. B. an, die Beobachtungsreihe lasse sich auf dem
ganzen Grundintervalle mit hinrveichender Anniherung
durch eine Parabel n-ter Ordnung darstellen. Ktwa in
der Iorm:

B Wi = ay+o6-z+ayz?+....4 0, 2"
sind noch vollig

unbestimmt. Sie sind der wesentliche 'Teil eimner Aus-
gleichformel. Die Forderung, die an die Ausgleichung

Die Koeffizienten «, a,, .... a,

gestellt ist, wird zur Bestimmung der Koeffizienten
verwendet.

2. Die Ausgleichung Pearsons.

Pearson hat gestiitzt auf die Ausgleichgleichung (2)
ein Verfahren angegeben, das die Bestimmung der Para-
meter a, ermoglicht. Fr fasst zwar (2) in stetiger Form
auf. Fs soll also das Integral iiber die Fehlerquadrate:

b

O = ] [w(z) — W(z)|]*dz = Minimum,

@
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Die Minimumbedingung heigst dann:

] [w (z) — W(x)] deé W(z) =

Dabei setzt er voraus, dass sich W () in eine Tay-
lorsche Reihe mit rasch abfallenden Gliedern entwickeln
lagse, als Funktion von m Parametern by, by, .... b

oy
5(32 mnﬂi

(4) W) = by by byr oo by T B,

Der Rest selbst ist auch eine Funktion der » Para-

meter:

o, = Rn (boy bl: w8 e bn—l)

n

Wir bilden nun die erste Variation von W (z) in
bezug auf die Parameter b,:

2

H
(5) (ST/V(m):(SbD—f-ablm-]—@bz_éT df
ob @ OR” 5 b+ IR, 5h
. + n—I1 (/n ) ab 0 K abnn—i il

Setzen wir in der Minimumbedingung ein und
beachten wir, dass die Inkremente db,....00b, , will-
kiirliche Grossen sind, so erhalten wir ein System von
n-Gleichungen :

b

./W()dwn—fw da:—mf ) —120 ( ?)i"dm

-----




Da aber einerseits aus der Minimumbedingung die
Differenzen W (x)—w (z) moglichst klein werden sollen
und anderseits die partiell differenzierten Reste auch sehr
klein sind, diirfen die Integrale, die diese Ausdriicke
enthalten, vernachlissigt werden. Die n-Gleichungen
werden somit:

(b ;
[W(@)da = [w(e)dz ;
(6) .
b‘ f.:
[a " W (a) do — j 2w () da ;

Dieses System kann nun zur direkten Berechnung
der Parameter b, verwendet werden. Theoretisch bietet
sich keine Sehwierigkeit. Iinks stehen die theoretischen
Kurvenmomente und rechts die der rohen Beobachtungs-
reithe. Wie wir gehen, fithrt die Forderung der Methode
der kleinsten Quadrate auf die Momentenrelationen.
Die erste Relation driickt aus, dass die Fliche unter der
beobachteten Kurve gleich der I'liche unter der aus-
geglichenen Kurve sein miisse.

Praktisch besteht die Schwierigkeit im Ubergang
von den Integralen zu den Summen. Pearson hat selbst
praktische Vorschlige gemacht, wie dieser Ubergang
hergestellt werden kann 8).

3. Die Ausgleichung Grams durch Orthogonalfunktionen.

Gram hat ein Verfahren abgeleitet, das prinzipiell
auf die gleichen Voraussetzungen aufbaut wie Pearsons
Methode, aber wesentlich einfacher ist.
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Es sei wiederum w (x) eine Beobachtungsreihe, die
durch eine stetige Funktion ausgeglichen werden soll.
Gram setzt voraus, dass die gegebene Reihe 1 () in
Teilreithen so aufgeteilt worden sei, dass die Funktion
w () durch die Parabel n-ter Ordnung:

n

(7 W) — Za &

r=(

hinreichend angenihert werden kann. Dabei sind die
Parameter a,....a, aus der Bedingung:

® 2= (w(®)— W) — Minimum.

zu bestimmen. Wie wir sehen, sieht Gram ebenfalls von
den Gewichten ¢ (z) ab. Die Minimumbedingung (8)
wird erfiillt, wenn die n -} 1-Gleichungen:

D () — W) =0
Z x (w(x) —W(z) = 0

D@ (w @) — W) = 0

erfiillt sind, d. h. es muss fiir alle » gelten:

(9) Z @ w(s) = Z x’ - W(x)

Fs zeigt sich hier die gleiche Bedingung wie bei der
Methode von Pearson. Hs wird die Gleichheit der theo-
retischen und rohen Momente verlangt. Wir werden
diese Beziehung spiter im allgemeineren Zusammen-
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hange auch noch erhalten finden. Diese n 4 1 Beziehun-
gen reichen aus zur linearen Bestimmung der Para-
meter «,.

Setzen wir nun in (9) an Stelle von 2" ein Polynom
in ¢ vom Grade 7, so bleiben die Beziehungen wesentlich
erhalten, da wir " immer als ein Polynom 2/, (z) dar-
stellen konnen. (9) lautet dann:

(9) DI () w(x) = X1, (x) W(z)

Hier trifft nun Gram eine Voraussetzung, die die Rech-
nung in verschiedener Hinsicht erleichtert. Tis soll
nédmlich auf dem Grundintervalle das Polynom 17, ()
so beschaffen sein, dass es fir 4 =0,1,2, ..., v—1, der
Orthogonalitiitsbedingung :

(10) 2zt (z) = 0

geniigt. Die Polynome sind von der Form:

(@) = )b,
A=0

Die Beziehungen (10) reichen aus, die Koeffizienten
b, linear bis auf einen gemeinschaftlichen Iaktor zu
berechnen. Speziell wihlen wir noch 7, (z) = 1. Nun
haben wir einfach die Gleichungen (10) explicite anzu-
schreiben; sie lauten fir v =1, 2,:

bOE:EO ‘+'-b1 2‘4561 = 0
by 22 + b, Zat + b 2a% = 0

usw.



Gleichung (10) konnen wir noch verallgemeinern, indem
wie an Stelle von & auch ein Polynom 1/, (z) setzen.
Die Orthogonalititsbedingungen lauten dann:

(11) 20, (@) I,(2) = 0 fiir wf»

Man sieht. leicht ein, dass man das Ausgleichsgesetz
gleich zu Beginn auch durch Polynome 27, (z) dar-
stellen kann. Is dndern sich lediglich die Parameter
a,. (7) lautet demnach in allgemeinerer Form:

(7) W) = ) 4,11, (a)

py=1{)

Diese Darstellung gewihrt nun unerwartete Vorteile
zur Berechnung der Parameter 4,. Hrsetzen wir in der
Momentenrelation (9') die Erwartung W (z) durch (77),
so folgt wegen (11):

I (2)w(z) = 4,2 IT) (x)

Der Koeffizient lisst sich also allgemein darstellen
durch den Quotienten:

Y () w(x) |

(12) 4 =TI

]

Setzen wir 4, in der Formel (7’) ein, so erhalten wir dag
Resultat

~ > 11
13) W) =) (@) = g? (t)(w) ;
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W (z) stellt einen Ausgleich dar nach einer Parabel
n-ter Ordnung gemiss der Methode der kleinsten
Quadrate.

Die Koeftizientendarstellung ist einfach und bietet
grosse Vorteile. Bei der Pearsonschen Darstellung
sind die Parameter a, vom Grade des Ausgleichgesetzes
abhiingig. Ohne Wiederholung der ganzen Konstanten-
bestimmung kann das wrspriingliche Ausgleichgesetz
n-ten Grades nicht In ein solches = - 1" Grades
erweitert werden. Hs kommt aber oft vor, dass das
gemacht werden muss, um eine Verbesserung des Aus-
gleiches zu erzielen. Will man hier dag Ausgleichgesetz
erweitern, so hat man nur noch weitere 77, () zu berech-
nen und nach der Vorschrift (12) die Koeffizienten 4,
zu bestimmen. Man hat diese neuen Glieder dann ein-
fach als Korrekturglieder zu addieren. Darm liegt der
grosse Vorteil dieser Methode.

Nachdem wir nun die Koeffizienten 4, kennen,
konnen wir das Abweichungsmass zum voraus berech-
nen. s sei dargestellt als die Summe iiber die l'ehler-
quadrate:

Q" = > (w(a) — W(a))?
7
= Z w () (w (x) — W (x)) —~—>_‘ W () (w(x)—W (z))
das letzte Glied rechts wird wegen:

Bl N |
D@ w@ = ) () W)

zu Null, und es bleibt

0 = 3wt (g) —) T (:n){AD I, (2) + A, I, (2) + ...+ 4, 1, (:1:)}



N

aber da die 4, von z unabhiingig sind:

Q0 = Zuﬂ x)m{ ZII () 0 ( . Z :L)'w(a:

Die Glieder in der geschweiften Klammer sind aber
‘darstellbar durch:

4,0 @5 »=0,1,2....n

-
D 11, () w (3)
denn: 4, = - :
21 @)
und: A4, Z I (z) = Z 1, (z) w ()

Also wird das Abweichungsmass:

(14 Q" = Z w? () — Z A2 Z 112 (z)

Fiigen wir ein neues Glied hinzu, so wird das Abwei-
chungsmass:

n-t -l

Qi Z w? (x) — Z AEZ 11’ (z)
r=0

Durch Mitnahme des neuen Gliedes wird das Abwei-
chungsmass vermindert um:

49 = QUHI— QW = A3 13, (2)

Es ist also moglich, das Abwemhungsmass QY gum
- vornherein zu ermitteln. Man hat so eine gute Hand-
habe zur Kontrolle der ausgefithrten Rechnung.

11



Um den Eigentiimlichkeiten der Beobachtungsreihe
gerecht zu werden, muss die Ausgleichung in kurzen
Intervallen durchgefiibrt werden. Man kann z. B. die
Ausgangsreihe in Stiicke von 9 Gliedern aufteilen. Als
wirklich ausgeglichen diirfen wir nur den zentralen Wert
betrachten. Man verwendet also um den einen Wert
W (5) auszugleichen links und rechts vier Werte.

Eine Schwierigkeit, auf die Gram selbst aufmerksam
gemacht hat, besteht in der Verkniipfung der Intervalle.
In seiner Arbeit gibt er Wege an, wie dies am einfachsten
geschehen kann.

Gram hat seine Methode an einem Beispiel er-
probt. Die Rechnung ist im praktischen Teil wieder-
gegeben. Auch andere haben sich des Verfahrens be-
dient. So eignet es sich besonders gut fiir Trend-
berechnungen, die eine Art Ausgleichung im Grossen
sind, im Gegensatz zu der gewohnlichen Ausgleichung
im Kleinen.

4. Verallgemeinerte und stetige Behandlung.

Das Verfahren, das wir im letzten Abschnitt
kennengelernt haben, bedeutet eine Verallgemeinerung
des Falles, dass man als Ausgleichgesetz eine Parabel
der Form (8) verwendet. Die Voraussetzung der Ortho-
gonalitit der Polynome 7, (z) lisst augenscheinlich
eine Spezialisierung vermuten. Tatsdchlich bedeutet
aber diese Voraussetzung keine Iinschriinkung, sofern
diese Polynome auf dem Grundintervalle stetige und
linear unabhéingige Funktionen sind.

Wir betrachten nun wiederum die Beobachtungs-
rethe w (x). Sie stellt eine diskrete Punktverteilung auf
dem Grundintervalle dar. w (z) kann noch Unstetig-
keiten aufweisen in Form von Spriingen. Diese konnen wir
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uns aber durch geeignete Interpolation beseitigt denken.
An Stelle der Spriinge treten Schwingungen. Wir fassen
daher in der Folge w(z) immer als eine stetige Funktion
auf. Ferner setzen wir Differenzierbarkeit und quadra-
tische Integrabilitit voraus.

Nun gehen wir den gleichen Weg, den Pearson
eingeschlagen hat. Die Forderung, die wir an die Aus-
gleichung stellen, ist wiederum:

(15) f(W(:L‘) —w (1)) de = Minimum.

a

d. h. die erste Variation dieses Integrals muss zu Null
werden.

]
(16) j(W(w) — w (2)) d W (z) = 0

1]

Als  Ausgleichfunktion beniitzt Pearson eine in
Taylorsche Reihe entwickelbare Iunktion, und die
Konstantenbestimmung geschah durch die Kurven-
momente.

Wir machen nun iiber die Ausgleichfunktion all-
gemeinere Voraussetzungen. Wir betrachten sie als ein
lineares Aggregat einer endlichen Anzahl auf dem
Grundintervalle stetiger und linear unabhingiger Funk-
tionen @, (x). Sie ist demnach von der Form

(A7) W(z) = dy Py(z) +dy Py (x) + .... +d, D,(2)

Vorderhand sehen wir davon ab, das Funktionensystem
&, (x) niher zu prizisieren.

Hier miissen wir noch einige Begriffe festhalten,
die wir spiiter immer wieder brauchen und die bei
praktischen Arbeiten von Bedeutung sind.
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Ein Funktionensystem @&, () heisst auf dem
Intervalle (a,b) lmear wnabhdngig, wenn unter Aus-
schluss der Moglichkeit, dass gleichzeitig alle b, = 0
sind, eine Gleichung von der Form:

;m@@m

nicht besteht. Jedes solche System @, (x) kann durch
geeignete Transformation in ein System ¢, (z) um-
gewandelt werden, das folgende Figenschaften hat:

I. Die ¢, (x) bilden ein Orthogonalsystem, d. h. die
Funktionen ¢, (x) geniigen auf dem Grundintervall
der Beziehung

] 7, (@) g (@ ds =05  fir pky

II. Das System ¢, (x) ist normaert, d. h. fiir alle » gilt
die Beziehung:

[(py yde = 1';

III. Die Funktionen ¢, (z) sind vmmer noch linear wnab-
hémngrg.
IV. Die ¢,(x) sind lineare Kombinationen der &,(x),

d. h. die Systeme @, (z) und ¢,(x) sind nicht wesent-
lich voneinander verschieden.

Allgemeine Richtlinien solcher Transformationen
sind zu finden bei: Wiarda, Integralgleichungen, unter
besonderer Beriicksichtigung der Anwendungen. Teub-
ner, Leipzig und Berlin 1930.
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Das System ¢, (z) konstruiert man aus dem System
@, (z) nach folgendem Schema :

@y () = —— Dy (2)

@ = o | POt n@

1 n—1
n ) = o |06 =Y b 00

Dabei dienen die Koeffizienten ¢, lediglich zur Nor-
* mierung und berechnen sich folgendermassen:

) . b —

/ (I)g () dx ; ¢, = Vf[@l (ac)—b[,0 Po (w)]2dm :
- ) n—I1 -

0y = / / KACEpIA @' az

Die Koeffizienten b, ,, ergeben sich aus der Forderung
der Orthogonalitét. Sie heissen:

ﬂ m / 'b (Pm

Wir geben diese Formel an, weil wir spéter bei einer
speziellen Annahme von @, () die Transformation durch-
fiihren werden.

Nun nehmen wir an, das System @D, () sei bereits in
diesem Sinne transformiert worden. Besonders die
Eigenschaften I und IT werden uns niitzlich sein.

ch
Il
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Das Ausgleichgesetz heisse jetat:
(18)  W(x) = ag @y (2) + ay py(x) +. ...+ a, ¢, ()

Es héngt also W(z) linear von (n 4 1) Parametern a,
ab. Hs gilt nun zunéchst, diese Parameter zu bestim-
men. Wir bilden die erste Variation:

5PV($) = 0 o * Po (LL’) +9 thy ¢y (ﬂ)) +:ai+d &y Py (3))

und setzen in (1) ein:
b
f{lU (w) —— (a'O ‘PO(“) fI— A #I_a’n (pn(:v))}{éa’ﬂ rp()(a:)_!“ o + (Sa’,, (Pn(m)}dm — 0

(17

Diese Gleichung liefert uns die Koeffizienten a,.
Beachten wir die ligenschaften I und II des Systems
@, (), so werden diese:

Qg = /.¢0 () w(x) do
(19) ) = / (@) w (@) da

; b
4, = [ pu(@)w (@) do

Hitten wir von der Voraussetzung der Normiertheit
abgesehen, so lauteten die Koeffizienten:

a

»

b
j o (2) w(2) da

| 7@ da
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Wir stellen vollstindige Analogie mit den Fntwick-
lungskoeffizienten von Gram fest. Die Normiertheit
der Iunktionen vereinfacht die Formel betrichtlich.
Setzen wir in (18) ein, so wird das Resultat:

” b
(20) W) = D ) [o.@we d

y=0

Big stellt eine Ausgleichung gemiiss der Methode der
kleinsten Quadrate dar. Die Formel bietet die gleichen
Vorteile, wie sie schon bei der Formel von Gram hervor-
gehoben worden sind. Man kann das Ausgleichgesetz,
ohne die ganze Rechnung zu wiederholen, von der
Ordnung n auf die Ordnung n + 1, n - 2 usw. erwei-
tern.
Die Kurvenmomente.

Bei den Verfahren von Pearson und Gram sind die
Momentenrelationen aufgetreten. Iis 18t nun von
Interesse zu wissen, wie diese sich in dem allgemeineren
Falle zeigen. Der Koeffizient a, ist ja schon eine Art
Moment, und zwar das der rohen Werte. Dieses muss
den Momenten in bezug auf die ausgeglichene Reihe
gleich sein. Um das hier zu zeigen, multiplizieren wir
W(x) in (20) mit ¢, (x) und integrieren nach x:

b b

b
f W(x) g, (x) de = / @, (x) Z: @, (7) / w(2) g, (2) dz dz
r=0

a (]

Rechts fallen wegen der Orthogonalitit alle Glieder bis
auf das " weg, und es bleibt:
b b

@) [W@e@d = [0 eEde

o @



Diese beiden Integrale tragen ganz den Charakter der
Kurvenmomente. Wir wollen sie die verallgemeinerten
Kurvenmomente nennen. Ks ist deutlich erkennbar,
dass die tibliche Form der Kurvenmomente nur ein
Spezialfall dieser verallgemeinerten Momente fiir
@, (r) = «” sind. Wie wir sehen, ist also die Momenten-
relation erhalten geblieben. Wir stellen auch voll-
stindige Analogie mit den Resultaten von Gram fest.

Das Abweichungsmass.

Als Abweichungsmass betrachten wir wiederum das
Integral itber die Fehlerquadrate:

b
(29) O — / (W (@) — w())? dz =

b b b
/'wz(m) dm*—ﬂjW(a:) w(z) de + /W2 (z)dx

Das erste Integral rechts kann nicht weiter verein-
facht werden. Dagegen lassen sich die beiden letzten
durch (20) darstellen:

2 ]'W(m) w (2) de = 2 /Tw (@) Z'qp, (2) f(p,,(z) w(7) dz dae

¥

n
\
. 2
= 2 a,
= ()

<

und:

JbWz (z) de = b "ﬁ% () b(p, (2) w (2) dz 2d:c = EWa,2
Jmoe=]|Zoo foamasfi,
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Setzen wir oben ein, so wird:

b
n
Bl
(28) Q" = f w?(z) de — ) a®

Fiigen wir dem Ausgleichgesetz (18) noch ein weiteres
Glied @, ¢ @, (%) an, so lautete die Abweichung:

b
n *}*

Q) fwz(m) dx _Z‘aa

a y=()

42

Durch Hinzufiigen dieses neuen Gliedes vermindert
man also das Abweichungsmass um:

(n) — QW) __ oh+1l) _ 2

4090 = 0 2 o

Nun wollen wir noch untersuchen, was aus Formel

(20) im Grenzfalle, nimlich wenn man n —» oo streben

ldsst, wird. Die Formel umfasst dann unendlich viele

Glieder:

Q0) W =g f (&) , &) da

Jetzt stellt (20") eigentlich keinen Ausgleich mehr dar.
Denn durch die Formel mit unendlich vielen Gliedern
wird die Beobachtungsreihe genau reproduziert. Am
deutlichsten sehen wir das ein, wenn wir in (23) auch zur
Grenze iibergehen. Der Ausdruck

b oo
2 = f w?(z)de — ) o
a ’2



— T4 —

18t nichts anderes als die Besselsche Identitit. Da ferner
£2 eine positive Grosse ist, haben wir die Ungleichung:

b

(24) Z ad < f w2 () dx
r=0

Ist das Orthogonalsystem ein vollstindiges, so geht
obige Ungleichung iiber in die Vollstandigkeitsrelation:

b

s, :
Z @y = / w?(x) de;  (Parsevalscher Satz)

p=0

d. h. aber, dass das Abweichungsmass Null geworden
ist, die Beobachtungsreihe also reproduziert wurde.
Man erhilt also gewissermassen in Formel (20) einen
Ausgleich dadurch, dass man sich mit wenigen Gliedern
der Entwicklung begniigt.

Anwendung der Theorie auf ein Beispiel.

Wir wollen nun die Theorie anhand eines speziellen
Funktionengystems @, (z) bzw. ¢, (x) erliutern. Gleich-
zeitig soll gezeigh werden, was geschieht, wenn wir als
Augsgleichgesetz die ganze rationale Funktion:

W) =ay +a, 2 +as2®+...+a,z"
verwenden. Das System @, (z) lautet demnach:
Dy (x) =1
(25) Py(z) =
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Als Grundintervall wihlen wir ¢ = —a; b = +«. Wir
fithren die Rechnung Schritt fiir Schritt so dureh, wie
sie vorne angedeutet ist. Iis ist also zuniichst zu zeigen,
dass die @ (r) auf dem gewihlten Intervalle linear
unabhiingig sind. Wiren sie es nicht, so miisste auf dem
ganzen Intervalle die Beziechung:

Db, b, (@) = b = 0
p=10 Zd

y==_)

identisch erfiillt sein. Speziell auch im Punkte z = 0.
Dann werden aber alle b, zu Null. Die Potenzen z” sind
daher linear unabhingig.

Durch den niichsten Schritt soll das gewiihlte
System so transformiert werden, dass es orthogonal
und normiert erscheint. Wir fithren die Rechnung
durch fiir n = 0,1, 2 und 3.

Wir setzen also:

1
@y (2) = — Dy (x)

Co
'f-"f —
6 = /(Dg(cc)dmz % ;
somib:
1 1
i) =—- |/ 5

Voc
Tir m = 1 bekommen wir:

1

¢, () = "6*1‘ [-(p1 () —by0 Po (m) :



Fa ‘ .
¢y = |/ f[(pl(m)“‘“bl,o% (@)]Pdz = —
—a ]/Ot

woraus:

@ 1 V?, x
€T et — —_—
P V“‘ 9 o

Ganz analog fir » = 2:

%w=1¢%m—%mmwwm%m]

Co
Dabei sind die Koeffizienten:

+a

2 1 L
by, =f(p2($) @ (2) AT = — —— —a?;
: 3 Va ¥V 2

-0

+ e

b1 = [ ©y(@) 9 (@) da = 0 ;

-

Cy —l/ f (p e b2,0 @o (%) — bz, 1 %1 (w)]z dex

T
OC‘/?(ZZ;



und daher:

@3(x) ergibt sich aus:

1
@3 (T) = ;;[(1)3 (@) — by, o o () — by, 11 (%) — by 50y (5’5)]

Die Koeffizienten lauten:

b30 = O
9 1 3
by, = B A l/’2' ot
Ve
byy =0

und der Normierungsfaktor:

2 —1/2
Cq :E“V@ VTT—C’-:}

Somit wird :

o IR

Wir erhalten folgende Zusammenstellung:
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1 1/1
pol@) =—= |/5 ;
l o
( ) 1 _3— T
g) = —— |/ ——
(pl 'I/a 2 "
(26) ” 1 -/E3<m>2 1
1) = ———— e e ) — :
Pe Ve ¥ 212\a 2

(@) 1 V79672 8 &
o B s — ] —— —
o v ¥ 212%a) 2

Diese vier Funktionen sind so konstruiert, dass sie allen
gemachten Voraussetzungen geniigen. Sie sind auf dem
Grundintervalle linear wnabhdngig, orthogonal und
normaert, und so fiir unsere Zwecke verwendbar.

Wir versuchen nun noch dag Polynom n-ten Grades

zu bestimmen. Setzen wir — = z' und sehen wir von
i .

1 1 ;
den Faktoren —— |/ — usw. ab, so erkennen wir, dass
(v 4

die vier Funktionen ¢ (z)...¢@y(x) gerade die vier
ersten Legendreschen Polynome P darstellen. Diese
Polynome geniigen auf dem Intervalle (—1,1) der
Integralbeziehung:

=0; fir n.+m

-1
@) f P, (@) P, (5)dz—=6,,) o
Y —— - fiirn=m

~om +1



Wir suchen also Polynome @), ('), die auf dem Intervall
(—a, o) so beschaffen sind, dass sie der Bedingung:

a = 0; firn +m
L e R
K = om0 P = G
gentigen.
X @2 1
Setzen wir z' = —, da’ = —dx, so gilt:
o o
+a +a
1 ' ] 1 i ' 1 v
& /Qn(w’) Q-m(‘q’l’) dx’ = / T QH(‘[I’. ) = Qm(ﬂ;’) dz' = (;)n, m
% —a e l/a >I/O(.

@
Wir haben also in P, (z), 2 durch — zu ersetzen und mit
¢4
1 o : : .
dem Faktor— - zu multiplizieren, der die Normiertheit
|/ e
garantiert. Das gesuchte Polynom ist dann:
1/1 A
a ! J— B
(28) @) = |/ - p[)
o O

Die vier ersten Legendreschen Polynome lauten ex-

plizite :
D 3 2 12 5 3 3
1. I o 2 . —_ 3 " m
Poml,.ll_—w,.lz_rg--a, 2,l3 2:1, 2:(,

Das allgemeine Polynom lautet:

B en—any
(29) P,(z) = Sinl Z_{ (—1) ( . ) (—2n! &

0
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Fiihren wir die in (28) gegebene Vorschrift aus, so wird:

wr = () = 5

Qu (@) = !/Ia_ P, (_zi) L

00 (@) = ]71; P, (ﬂ) L |

Il

usw.

Vergleichen wir mit den gefundenen Funktionen
@, () in (26), so sehen wir, dass:

nl@ = |/ 5 @) :%1 %P(i)
e = /2 e =1/17- gP(—)
@ = |/ Lo :T/i_—' EP(%

durch Schluss von n auf n 4+ 1 kann leicht bewiesen
werden, dass allgemein gilt:

2n+1 1 2n 41 x
72 () :]/ 0 (@) = Val/ . Pn(;)

Nun kennen wir das Entwicklungssystem und konnen
die Koeffizienten a, bestimmen; es ist:




+a +a
/27 1
(80) @, = f (2) @, (2 l/ - fw ( dz
Setzen wir in der Formel (20) ein, so lautet die FEnt-
wicklung:
1 n l-a
. SN 5 3
I’V(CE) = —QEVZ:T) (2 V”‘f— 1) PJ,(;> f'ﬂ() (3) P,', (z) dz
(31) e

n

1
sz (@r11) P, (%) 4,

y=10)

R ! o
\ 2
wenn wir A4, = [w (2) P, [—)dz setzen.
o
—a

Wir schreiben einige Glieder an:

1,,

W(z) = 2(1

W(x) ist das Resultat einer Ausgleichung mittels
einer Parabel m-ten Grades. Die Entwicklung gilt fiir
jedes endliche Intervall (—«, +a). Die Anzahl der
Glieder, die man in (31) verwendet, muss sich nach der
Anzahl der verwendeten Beobachtungswerte richten.
Auf keinen Fall soll diese letztere kleiner sein als die
Anzahl der Glieder in (31). In den meisten I'dllen wird
man sich mit einer Parabel zweiten Grades begniigen.
Die ausgeglichenen Werte liegen dann auf dieser Parabel
(vgl. Figur 2 im praktischen Teil). Als wirklich ausge-
glichen diirfen wir aber nicht alle Punkte des Teilinter-
valles betrachten. Gegen die Enden hin sind die Resultate

12
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nicht mehr so gut. Der zuverlassigste Wert ist der
zentral gelegene. Die Rechenarbeit von Fall zu Fall
beschrinkt sich auf die Berechnung der verallgemeinerten

Momente @,. Die Polynome P, (;) kann man ein fiir

allemal fiir bestimmte Intervalle berechnen (vgl. Tabel-
len im Anhang). Die direkte Berechnung der hohern
Polynome aus Formel (29) ist etwas umstindlich. Kennt

man aber einmal PO(?:W) und Pl(&w—) fiir ein bestimmtes

Intervall, so kann man die folgenden aus der einfachen
Rekursionsformel:

2n—1 n—I1
ani (33) -

Pn ((E) = & Pn-—Z (CU)

n

berechnen. Diese Formel ist giiltig fiir das Intervall
(—1, +1). Die gleiche Rekursion gilt aber fir die
Polynome @,(z'):

, 2n—1 n—I1

Qn—-l (',Er) —H' Qu——2 (iB")

1
Da aber @, (z") = P, (—C—C—> ist, so wird:

2n—1 —1]
(32) Pn (1) = E . 53 Pn—~1 (_a:—)—n_ Pn——z (ic—)
o, oL n &, N o

Die Berechnung der P, (—E—) vereinfacht sich dadurch
erheblich.
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Wir wollen auch hier das Abweichungsmass berech-
nen. Hs ist

a, = Vlm_ VQTT f w (2) P,(%) dz

-

1 2v41 /¢ P 2 9y
2 . P 2
b= g ( -[ () "’( o ) dz) 2 o A

—

daher:

n

+-a

2v--1
(" 2 Z: 2
Q0 f w? () da 5 A*

y=1) ®

IL. Theoretischer Teil.

1. Quellenméssige Darstellung der Erwartung W(w).

Im vorhergehenden Kapitel setzten wir voraus, dass
die Funktion w (z) auf dem Grundintervalle stetig und
samb ihrem Quadrate integrierbar sei. Wir entwickelten
dann W(z) in eine Reihe mittels eines Systems vor-
gegebener Funktionen {p,(z)} die auf dem Grund-
intervalle orthogonal und normiert sind. Durch die
Minimumbedingung gelangten wir zu Formel (20):

W) =)o@ q,
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Die @, bedeuten dabei die Fowrierkoeffizienten in bezug
auf das System {g,(2)} und die F'unktion w(x). Ferner
haben wir gesehen, dass, falls {g,(z)} ein vollstindiges
oder abgeschlossenes Orthogonalsystem ist, die Beob-
achtungsreihe reproduziert wird. Verwenden wir in
(20) die Momentenrelation und lagsen wir die n ersten
empirischen Momente gleich den n ersten theoretischen
Momenten werden, so wird:

83) W) = Z 7 ( f W) p, (2) dz

lassen wir n unendlich gross werden, sehen wir deutlich,
dass die Beobachtungsreihe reproduziert wird. Hs wird
dann:

b
R

(83)  W(@) =w(») = lim » 0, (@) f w (2) @, (7) d

)'—0

a
lim rp,(a: fW @, (¢) dz
=0

."z—1>c01

Die Formeln stellen die allgemeine Entwicklung einer
willkiirlichen, stetigen Funktion w(x) in eine mnach
@, (x) fortschreitende Reihe dar. Iine wichtige I'rage
stellt sich nun hinsichtlich der Konvergenz. Wir wissen
‘nicht, wie die Funktion W(z) mit wachsendem n gegen
w(x) strebt. Wir wissen lediglich, dass bei n— o die
Vollstindigkeitsrelation :

Za?~fwz

r=10

erfallt 1st.
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Daraus konnen wir weiter schliessen, dass die
Summe der Entwicklungskoeffizienten konvergiert. Die
Entwicklung selbst strebt im Mittel gegen W(x) baw. w ().

Um weiter in die Zusammenhiinge einzudringen,
stellen wir uns die Frage, wie denn die Funktion W(zx)
beschatfen sein miisse, damit sie eine gleichmissig
konvergente Entwicklung zulasse. Sei also:

W(z) =lim > p,(z)a,

1 0 =0

Hier darf man im allgemeinen die beiden Prozesse
(Grenziibergang und Integration nicht vertauschen.
Denn:

n—rp 0
(1

W) =lim [ w) ) 9,6 9,) de

wird nicht gleichmissig konvergieren. Der Wert der
Variablen 2 liegt zwischen @ und b und bleibt fest;
2 hingegen variiert zwischen den gleichen Grenzen und
wird einmal den Wert 2 = » annehmen. Das geschieht
aber fir jedes ». An diesen Stellen aber, wo z =z
wird, kann das allgemeine Glied nicht gleichmissig
kleiner aly eine vorgegebene, beliebig kleine positive
Zahl ¢ werden. Um gleichméssige Konvergenz zu
erhalten, miissen wir jedes Produkt g, (z) ¢, (2) durch
eine geeignete Zahl A, dividieren. Wir wihlen daher
eine Folge gleichmiissig wachsender Zahlen:

(Ao <[] <[h]< .o <[4]

so dass der Ausdruck:



i ?, ()

r=0

gleichmiiggig konvergiert. Hs sei dann der Grenzwert
dieser Summe, die eine Funktion von « und z ist:

n

(34) lim J’L(Z%M — K (z,2)

—» 0 vy
n—mwm T .

Man nennt dann K(z,2) die zum System {¢/(z)}
gehorige Kernfunktion. In (84) sehen wir deutlich,
dass K(w, 7) in @ und z symmetrisch ist. Sie geniigt ja
der Beziehung:

K (z,9) = &g o)
Ein wichtiger Zusammenhang zwischen K(z,2) und

@, () wird erhalten, indem man (34) mit ¢,(2) multi-
pliziert und iiber das Grundintervall integriert. Iis wird:

b # b
f @, (%) Z Mlﬂ_@ dz = f K (2, 2) ¢, (2) dz

[

Wegen der Orthogonalitit bleibt links allein das Glied:

%@f mm~@

So ergibt sich die wichtige Funktionalgleichung:

(35) o,(2) = 4, f K (2, @) ¢,(2) de
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Bekanntlich sind die Funktionen ¢, () die Losungen der
homogenen linearen Iredholmschen Integralgleichung:

o () = 2 f]ii(m, 2) @ (2) d

Diese Gleichung hat fiir gewisse Werte von 4, die Figen-
werte heissen, Losungen: die sogenannten Figenfunk-
tionen.

Bedeute nun 7(z) eine auf (a, b) stetige oder wenig-
stens stiickweise stetige beliebige Funktion, so konnen
wir W(z) mit Hilfe von r(z) darstellen. Wir multipli-
zieren K (x, 2) mit r(2) und integrieren iiber (a, b) nach
z; es wird:

:
W(z) = / K(z, z) r(z) dz

a

b

@, () f kisca kbl (z; ) dz

JS

I

i
<o

a
Der Fourierkoeffizient wird:
b

»
3
a

Die Funktion, die eine gleichmissig konvergente
Reihenentwicklung zuliisst, ist also von der Form:

b
(36) W(z) = /'K(m, 2) r(2) dz



wobei K (2,2 die zum Orthogonalsystem {g (z)}
gehorige Kernfunktion darstellt. Es wird also W(z)
vermoge der beliebigen Belegungsfunktion »(s) quellen-
miissig dargestellt 7).

Da nun 7(2) eine beliebige Funktion ist, wihlen wir
speziell r(z) = w(2). Gleichung (36) nimmt dann die
spezielle Form an:

Z:\
(36/) W, (2) = ] K(z, 2) w(s) dz

An dieser Stelle sei die schon erwiihnte Studie von
Professor Wirtinger nochmals hervorgehoben. Wirtinger
verwendet Gleichung (36') als Ausgleichgesetz und leitet
aus ihr eine Methode ab, die in kurzen Ziigen skizziert sei.

Die Gleichung (36) konnen wir folgendermassen
interpretieren: Iis hidngt W, (x) linear und homogen
von den Funktionswerten der Belegungsfunktion w(z)
ab. Wir kénnen uns also zu Beginn das Verfahren als
durch diese Formel festgelegt denken. Im Hinblick auf
die verschiedenen Methoden der mechanischen Aus-
gleichung ist sie durchaus plausibel. Um den einen Wert
W,(z) darzustellen, wird die Gesamtheit der auf dem
betrachteten Intervalle liegenden Beobachtungsgrossen
w(z) verwendet. Das ist ja charakteristisch fiir die
Formeln der mechanischen Ausgleichung.

Die Schwierigkeiten, die aus einer direkten Auf-
losung von (86') entstehen, konnen umgangen werden.
Wir betrachten W,(z) als eine beliebige, auf dem Grund-
intervall definierte Funktion. Kine Reihenentwicklung
dieser Funktion mit Hilfe des Systems {g,(x)}, das
ein abgeschlogsenes sei, heisst:
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o7 )= 200 [n@r@a

y=0

Diese Entwicklung reproduziert genau die erwartete
Funktion, wie sie in (36') definiert ist, nicht aber die
Beobachtungsreihe.  Hrsetzen wir W(z) unter dem
Integral durch (36'), so wird:

s z @,() ./b f ®,(2) K(z, 2) w(z) dz dz

Wir setzen das Doppelintegral:

//(p] 2) K(z, x) w(z) dedz = ol

b

w(zx) dx f Kz, ) ,(2) dz

T

a

Und wegen der Beziehung (35):
all) = ——/w ) @, (z) dx

Es lautet somit das Resultat der ersten Ausgleichung:

) Zj—f—f i) de = un,(m 2

@

Diese Entwicklung ist gleichmissig konvergent auf
dem Intervalle (a,b). Es ist W,(z) vermoge der Bele-
gungsfunktion w(z) linear dargestellt. Die Idee Wir-
tingers geht nun dahin, das Verfahren in genau gleicher
Weise zu wiederholen.
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Sei W, (z) die Erwartung, die man auf die einmal
ausgeglichene Reihe macht. Diese Erwartung sei in
gleicher Weise darstellbar wie W, (). Es hange ndmlich
Wy(z) linear und homogen von den auf dem Grund-
intervalle liegenden Werten W, (z) ab. Also:

Wy (z) = f K (2, 2) W, (2) dz

Setzen wir aus (38) W, (2) ein:
b

W, (2) = f K(z, 2) i(p"f)

b b

=2 [[K@an@] @y [oonoa

a

b
f w(t) @, (t) dt dz

1

R

aber:

(39)




Dieses Resultat der zweiten Ausgleichung unterscheidet
gich vom ersten nur durch das Auftreten von A2

Das Verfahren kann nun beliebig viele Male wieder-
holt werden. Iine n-malige Anwendung gibt:

b
W, (2) = f K(z,2) W,_(2) dz

und:
(40) W,@) =D ¢)af’
pr=0
b
5 3 Ly
dabei ist al” = 7 / w(2) ¢,(2) dz zu setzen.

Man sieht, dass die wiederholte Ausiibung des Ver-
fahrens nur die Berechnung der Koeffizienten a, ver-
langt. Die Rechenarbeit von Fall zu Fall reduziert
sich auf die Berechnung der verallgemeinerten Momente
der Beobachtungsreihe.

Das Abweichungsmass.

Um das Resultat beurteilen zu kénnen, untersuchen
wir, wieviel W,(z) von der Ausgangsreihe w(z) bzw.
W (x) abweiche. Wir stellen also Formel (20), die die
Beobachtungsreihe im Grenzfalle reproduziert, der
Formel (38) gegeniiber. Wir bilden das Integral iiber
die Fehlerquadrate:



o= [We W@t~ (g«p,(w) ENRC T)dm
b .

Wegen der Orthogonalitit und wegen der Normiertheit
wird :

Analog wird das Abweichungsmass fiir die n-te Aus-
gleichung:

- o2 1
)(n,) —_— ;1 2 —1 2 S
(4:1) !... Z—JO a’y Z-; a'v A:z ﬁ‘;?:)b ‘

Ferner lautet das Abweichungsmass von W, (x) direkt
in bezug auf w(z):

Q= f(w'(ac) — W, (2))? da

oder

b @ =
= V| 2 1
(42) 2= fuﬂ(as) dx ——%aav [ 7 _I?F
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In (41) sehen wir sofort, dass das Abweichungsmass ein
Minimum wird, wenn alle 4, = 1 sind. In diesem giin-
stigsten Falle wird die eckige Klammer in (42) gleich
=1 und 2 zu Null. Das ist ja der Fall, wenn wir die
nicht gleichmiissig konvergente Reihenentwicklung (20)
anwenden. Ferner sehen wir, dass bei /l,,’>1 und
wachsendem n die eckige Klammer in (41) gegen Null
strebt. Das Abweichungsmass konvergiert also bei
wiederholter Ausgleichung gegen Y a2,

D 2 11 21
enn: n /12" = T
LT y o »
Coer—1 P .
B, s e Iim 2n ———— = = ()
N —3- 0 Ar Nt D 2n /1,, l:
|2,/ >1 |2, >1

Wie wir gesehen haben, vergrdssert die Wiederholung
des Verfahrens das Abweichungsmass, bis es schliegslich
gegen Za'fj strebt ber n» — . Um aber dennoch das
Verfahren anwenden zu konnen, miissen wir auf viele
Wiederholungen verzichten. So kénnen wir das Abwei-
chungsmass unter einer zuldssigen Grenze halten. Wenn
7. B. der kleinste A-Wert gleich eins ist, so wird das
Abweichungsmass nach n-maliger Wiederholung, wobei
o
n — o strebt, nach dem Werte: M a? streben, denn in

v=1
(41) wird dann fiir » = 0 die eckige Klammer = 1;
es wird also das Maximum des Abweichungsmasses um
ag vermindert. Der Vorteil der Wirtingerschen Methode
gegeniiber Formel (20) ist die gleichmissige Konvergenz
der Entwicklung. s lohnt sich im Anschluss an seine
Untersuchungen, diese praktisch brauchbar zu gestalten.
Ich denke dabei vor allem an die Wahl des Grund-
intervalles, die in engster Verbindung mit der Wahl
des Orthogonalsystemes ist.
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Wahl der Orthogonalsysteme.

Wir haben gesehen, dass durch eine Zahlenfolge
4, gleichmissige Konvergenz der Entwicklung W(z)
erreicht wird. Ks ist nun die Frage offen, wie wir das
Entwicklungssystem wihlen wollen. Wir haben, wie
aus dem Vorhergesagten ersichtlich ist, drei Moglich-
keiten.

I. Wir wihlen eine zweckentsprechende Kern-
funktion K(z,2) und bestimmen die Figenfunktionen
und Eigenwerte durch Losung der linearen Integral-
gleichung:

p(x) = lfK(m, 2) @(2) dz

Diese Gleichung gestattet ausser der trivialen Lisung,
die wir nicht als Losung betrachten wollen, fiir gewisse
Werte von A Losungen. Diese Losungen konnen ein
System bilden, das alle Voraussetzungen iiber das
Iintwicklungssystem erfiillt.

II. Wir withlen primér das System {¢,(x)}. Wir
haben ja gesehen, dass die Funktionen eines Systems
{p,(x)} auf unendlich viele Arten als Figenfunktionen
eines symmetrischen Kerns aufgefasst werden kénnen;
das allerdings nur unter der Bedingung, dass die Funk-
tionen {g,(z)} nach oben beschriinkt sind. Ks muss
also eine Zahlenfolge M, so bestimmbar sein, dass auf
dem ganzen Intervalle:

qay(a:)] < M, gilt.

Ist diese Bedingung erfiillt, so lasst sich stets eine Folge
der gewiinschten A, finden. Es geniigt z B. die Wahl:

(48) A, >0 M




— OB

Denn damit K(z,2) in der Bilinearreihe gleichmiissig
konvergiere, muss der Reihenrest der HEntwicklung
verschwinden. Hr heisst:

2] (@ (@
Rn::ZJ.v"( l(p";(uk)ﬁ; aéw,zib

Setzen wir fiir A, den Wert aus (43) ein, so majorieren
wir im Falle, dass wir |A, | >>»* M? nehmen. Also:

Die rechte Seite ist bei n— o, Null. Die andere Bedin-
gung, die an die Konvergenz des Kernes gestellt ist,

nimlich:
S
Z = konverg.

p=0

muss natiirlich auch erfiillt sein. Ks ist also moglich,
fir jede beschrinkte Funktionenfolge die Zahlenfolge
A, zu konstruieren. Bei der Durchfiihrung von Rech-
nungen ist es iibrigens iiberfliissig, die ausfithrliche



— 98 —

Kernbildung vorzunehmen. Denn wie wir gesehen
haben, tritt die Kernfunktion in den Endresultaten
nirgends auf.

ITI. Eine dritte Moglichkeit bei der Wahl des Ent-
wicklungssystems besteht darin, dass man eines der
bekannten Losungssysteme eines gegebenen Kernes
verwendet. So hat z. B. der Kern:

1 gin 252

K(z,2) = — log ——2
2 g . r—2z
Bin —

auf dem Grundintervalle 0 << z, z << 7 die Figenwerte:

2 4 6 2n
—v_’ ——, ’’’’ *, 'lIl,"“_,O'tl

JT Tt JT 7
und die Eigenfunktionen: sin z, sin 2z, ....,sin nz, . ...

Theorotisch 1st das System brauchbar zur Knt-
wicklung der Funktion W(z). Aber im Hinblick auf die
Praxis wird es sicher nicht sehr geeignet sein. I
handelt sich ja in den weitaus meisten Fillen darum,
die Ausgleichung fiir ganze Argumente durchzufithren.

2. Verwendung der Polynome P, (z).

Praktisch wird sich die unter II. gegebene Moglich-
keit am einfachsten gestalten. Wir wollen nun unter-
suchen, ob die Legendreschen Polynome sich auch fiir
diese Darstellung verwenden lassen. Wir betrachten
also das normierte Orthogonalsystem:

" on+1
n@ = |/ =5~ @
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a) Es fragh sich nun, ob diese Funktionen als Kigen-
funktionen eines symmetrischen Kernes K (z,z) auf-
gefasst werden konnen. Damit dies der Fall sei, miissen
folgende zwei Bedingungen erfiillt sein.

) Iis muss auf dem Grundintervall —1 < z,2 <1
tiir jedes n eine Zahl M, so existieren, dass ’%(53) IgMn
ist. Dag ist tatsichlich méglich, denn fiir die Le-
gendreschen Polynome gilt allgemein:

—1=<P,(2) <1 oderalso |P,(z)| <1

2n-+1
somit: M, = l/ 2}_

B) Es muss eine Zahlenfolge 1, existieren, so dass:

iﬁ Pu) 2D _
————— = konverg.

n=0 i

Diese Zahlenfolge erhalten wir aus der Ungleichung (48):
Ils geniigt somit |2,| = n% M} zu wiihlen, damit obige
Summe gleichmiissig konvergent sei. Sicher wird also
z. B. die Folge
1, = n? _‘qiztl_ + 1
2
den gemachten Bedingungen geniigen. Wir wihlen diese
Form, um keinen Figenwert A, =0 zu bekommen.
Denn dann wiire ja die Reihenentwicklung schon beim
ersten Gliede divergent. Fithren wir die Rechnung
durch, so lautet das System: ¢, (z), 4,:

@ (2), pi(2), ---

1,

b0 | &

13
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Man iiberzeugt sich leicht, dass auch die Reihe:

1
Z —5 konvergent ist.

w0

1 ; . .
Denn Z Py ist eilne Majorante, und diese konver-

n=1 91;2
giert bekanntlich gleichméssig gegen e

b) BEs ist auch hier wieder angenehm, wenn wir uns
von dem speziellen Intervalle (— 1, 4 1) loslosen
kénnen. Es ist zu eng, und wir ziehen ein allgemeineres
Intervall (—a«, «) vor. Wir verwenden also wie in
4. I. Teil die Funktionen:

&

7 (2) = VJQ”“ P(2); —ege< ta

Es ist nun noch zu untersuchen, wie sich hier die Eigen-
werte gestalten. Varilert x zwischen — o« und --«,

so gilt wiederum:
o

Es ist somit: |g,(z)| < 2’;—1 1
- o

also: M, ]/21}4' 1

Es geniigt daher 4, so zu wihlen, dass:

<1

2941

A
2

>

4



und da ferner |«|~>1, so geniigt auch:

> (21'2—}«1)

Um keinen A-Wert Null zu bekommen, withlen wir:

2
ﬂ,y — M + 1
2
So erhalten wir die Folge:
Az Ky Rap hiy Pas wxwsi

5 65 2
1,2 11,8 . @+
2 ) 5

n

+1

Eine Entwicklung von W, (z) nach Wirtinger lautet
demnach: J

W, () =Zw: (pil{w) f @, (2) w (2) dz
+a = R ta
[o.@u@ dzﬂ/ ekl i (_Z_) i) e

Und daher:

o=t S (3) [7 () eos

—_—a

¢) Die Formel erscheint etwas kompliziert. Von
Fall zu Fall ist aber lediglich der Ausdruck

fo (e



— 100 —

zu berechnen. Die iibrigen Formelteile lassen sich ein
fiir allemal tabellieren. Wir setzen der Finfachheit
halber noch:

2v +1

= Lkl
v 2y +1) + 2 ’
“+a
Ferner ist: f P, (%) w(@)de = A,

-k

Es lautet so das Resultat der ersten Ausgleichung:

. 1 -

Wiederholen wir das Verfahren, so dndert sich ausser
dem Koeffizienten k" nichts. Im Nenner tritt ein
weiteres 4, als Faktor hinzu. Setzen wir wiederum:
l_k(l) _1 2y + 1 — @

A, 7 A, V2PQRy 1) 4 2 d

v

so wird das Resultat der zweiten Ausgleichung:

Zwischen zwei aufeinanderfolgenden Koeffizienten k"

und k™ besteht die einfache Rekursion:

ko — L g

¥ )

v

Wir sehen, dass k™ von der Ausdehnung des Intervalles
unabhiingig ist. Wir kénnen daher die Werte fiir &™
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ein fiir allemal berechnen. HKs ergibt sich folgende
Tabelle:

1 1 2y+1 o Lol L oL
dE S ki)—y2(2y+1)+2705):;;%’ B= b ki"zz’ff?)
0| 1,0 [1,0000 0,5000 0,5000 0,5000 0,5000
1 2,5 0,4000 0,6000 0,2400 0,0960 0,0384
2 | 11,0 |0,0909 0,2270 0,0200 0,0018 0,0001
3| 82,5 (0,0307 0,1080 0,0080 0,00009 0,0000
4| 73,0 10,0136 0,0620 0,0008 0,00001 .

5 | 188,5 [0,0072 0,0400 0,0002 = =
6 | 235,0 |0,0042 0,0280 0,0001 . - H

Wie aus dieser Zusammenstellung ersichtlich ist, streben
die Koeffizienten k") mit wachsendem » schnell gegen
Null. Ferner sehen wir, dass diese, abgesehen vom ersten,
mit wachsendem m ebenfalls schnell gegen Null abfallen.

d) Nun konnen wir auch das Abweichungsmass in

Formel (42) noch praktisch untersuchen. Wir wollen
9 e

den Wert des Ausdruckes: II,:- == f"

bei wachsendem m fiir diese Zahlen berechnen. s
ergibt sich folgende Zusammenstellung:

1 2 | 2 1

y % % & B | B R

> Vv » »

1,0 | 1,0000 | 1,0000 | 1,0000

95 | 04000 | 06400 | 0,2940
11,0 | 0,0909 | 0,810 | 0,0165
395 | 0,0807 | 00605 | 0,0018
78,0 | 00136 | 00272 | 0,00036

W DD = O

H~
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Aus dieser Tabelle ist klar ersichtlich, dass die eckigen
Klammern, also die Koeffizienten von a? im negativen
Teil des Abweichungsmasses schnell gegen Null streben,
Das bewirkt aber, dass bei oftmaliger Wiederholung des
Ausgleichprozesses das Abweichungsmass zunimmt. Aus
Formel (42) ist ferner ersichtlich, welches die obere
Grenze des Abweichungsmasses ist. Es war:

+a @
2 1
2, = w2mdm—g o
f i [ﬂ A]

Wird n gross, so reduziert sich die Summe rechts auf das
Glied al. Somit ist der hochste Wert des Abweichungs-
masses:

+a
== f w? (z) do — a

Vergleichen wir ferner mit Formel (41), so sehen wir,

dasgs das Abweichungsmass nicht unter Zaﬁ sinken kann.,
Terner sieht man aus der Zusammenstellung gleich,
dass die erste Ausgleichung fiir das Abweichungsmass
am giingtigsten ist.

¢) Nun haben wir zu entscheiden iiber die Aus-
dehnung der Grundintervalle. Oder, was auf dasselbe
hinauskommt, wir miissen die Grosse der Teilreihen
bestimmen. Wir haben ja die urspriingliche Beobach-
tungsreihe in Teilreihen aufgeteilt und die Ausgleichung
in jedem Intervalle fiir sich vorgenommen. Wir haben
zur Wahl von (—a«,«) keine festen Anhaltspunkte.
Doch kénnen zu dessen Bestimmung folgende Uber-
legungen bestimmend sein. Umfagst die Teilreihe nur
wenige Werte (z. B. 8), also « = (— 1, -+ 1), so beriick-
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sichtigen wir den Verlauf links und rechts des auszu-
gleichenden Wertes zu wenig. Lokale Schwankungen
treten daher stirker hervor. Nehmen wir aber viele
Glieder, z. B. 9—11, so werden charakteristische Higen-
tiimlichkeiten der Ausgangsreihe verwischt, indem die
Enden zu weit vom Zentralwert entfernt liegen. Eine
Ausdehnung des Intervalles auf 5—7 Glieder diirfte am
zweclimiissigsten sein. — Als  wirklich ausgeglichen
betrachten wir immer nur den Zentralwert. Die rechts
und links von ihm liegenden Werte sind wohl auch aus-
geglichen, aber je mehr man gegen die Enden des
Intervalles kommt, um so schlechter passen sie sich dem
allgemeinen Zuge der Beobachtungsreihe an. Ist einmal
ein Punkt z ausgeglichen, so miissen wir den nichst-
folgenden Punkt 2z 4 1 in genau gleicher Woeise
behandeln. Man hat nur das Intervall um eine Einheit
nach rechts zu verschieben. Natiirlich kénnte man sich
wie andere Methoden auch mit der Ausgleichung von
sogenannten Kardinalpunkten begniigen. Z. B. wiirde
man jeden fiinften Wert ausgleichen. Die dazwischen
liegenden Werte wiirden durch Interpolation bestimmt.

3. Kerndarstellung der Formel (20).

Im vorigen Abschnitt haben wir gesehen, wie
Wirtinger zu seinen Formeln gelangte. Hrwartung und
Beobachtung sind verbunden durch die Beziehung:

b

(36) W, () = j w (@) K (x, 7) de

a

?, (%) @, (2)
A

v

[>]s

Dabei ist: K (z,2) =

I
=

v
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Bei der Darstellung der Erwartung durch eine nach
orthogonalen Funktionen fortschreitenden Reihe haben
wir die Formel

(20) W) =) 9, a

gefunden, wo:

b

w (2) @, (2) dz

1st. (Fourierkoeffizient.)

Da in (20) die Summe aus endlich vielen Gliedern
besteht, dirfen wir die Prozesse Summation und Inte-
gration ohne weiteres vertauschen. Kine Konvergenz-
frage tritt ja nicht auf. Fithren wir die Vertauschung
durch, so wird:

(44) f w ( er, ) @, (2) dz

Betrachten wir die endliche Sl}mme:.

i%m%@

so sehen wir, dass diese eine endliche, stetige und sym-
metrische Funktion der beiden Variabeln 2 und z dar-
stellt. Hs sel diese Funktion mit K, (z, 2) dargestellt.
Fithren wir diese rein formelle Beziehung in (44) ein,
so lautet das Ausgleichgesetz:

b
(45) W) = f w(@) K, (z,7) ds



— 106 —

Die Formel ist ganz analog aufgebaut wie diejenige
von Wirtinger. Es stellt w(2) K, (z, 2) dz den Beitrag
dar, den der Funktionswert w (z) zum Funktions-
werte W(z) liefert.

Hier konnen wir auch sofort sehen, dass eine zweite
Ausgleichung derselben Art das Resultat unveriindert
ligst. Nehmen wir némlich an, es hange W, (z) linear
und homogen von den Funktionswerten ab, und zwar
in der Form:

W, (@) = f W) K, (=, 2) dz

so wird, wenn wir W (2) aus (45) einfithren:

b b

W, (a) = / w(t) K, (2, ) dt / K, (v, %) d

@

b b
e f w(l) dt f K, (3 1) K, (z, ) da

Aber:

Ko5 0 Ky(@2) = 2 90,0 0,00 ) 9.(@) 9,6

=0

Integrieren wir nach z, so fallen alle Glieder, wo u =+
ist, wegen der Orthogonalitit weg. Dort hingegen, wo
w = ist, gibt die Integration die Kinheit. Also:

b

[Eated Ko, @ = 0,0 0,00 = Ky (0,

a y=0
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Somit ist:
(46) W, (2) = f w(t) K, (x, ) dt

[23

Wir sehen, dass die Formeln (45) und (46) sich voll-
stindig decken.

Diese neue Gestalt des Ausgleichgesetzes verein-
facht die frithere Formel bedeutend. Wir kénnen nim-
lich die Funktion K, (z,2) fur beliebiges endliches n
vorausberechnen. An Stelle der Summe tritt dann ein
einziges Integral. n Integrationen werden durch eine
einzige ersetzt. Doch hat diese Formel gegeniiber der
fritheren einen Nachteil. Wir haben gesehen, dass zur
Berechnung des Abweichungsmasses die Koeffizienten
a, bekannt sein miissen. Hier treten diese aber nicht
mehr auf. Bei Ausgleichungen, bei denen man das
Abweichungsmags nidher untersuchen muss, wird man
daher vorteilhafter die frithere Iagsung verwenden.
Theoretisch ist es ja immerhin moglich, die Koeffizienten
@, auch hier zu bestimmen. Betrachten wir némlich:

b
Wi(2) = [ w(d) K,(,2) dz = ay (@) +a194(2) + . .. + a, 9, (2)

und
b

Weti(z) :_/10(3) K, y(x,5) dz = 6y @o(2) + 0y @1 (2) +. . .+ 0, @2, ()

so ergibt sich durch Subtraktion:
WO () — WD (@) = 0, p, (@)
W(n) (CC) . W(n—l)(w)
P (%)

und somit: @, =
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Formel (45) lédsst noch weitere Vereinfachungen zu,
wenn wir beachten, dass jedesmal nur die Stelle Null
als ausgeglichen betrachtet wird. Wir miissen also nur
die Funktion:

(0,8 = ) 9,00)9,() = B, (2)

kennen. Dadurch wird die Ausgleichformel:
b

(47) W(o) = f w (2) D, (2) dz

a

Ist die Funktion einmal fiir gewisse Intervalle berechnet,
so reduziert sich die Rechenarbeit auf die Ermittlung
dieses Integrals.

Beisprel.

Ein praktisches Beispiel soll die Formel (47)
illustrieren. Wir wenden uns wiederum den ILie-
gendreschen Polynomen zu, die uns als Entwicklungs-
gystem dienen sollen. HKg ist:

v, (x) = ]/ ?’;FI P, (g)

Verwenden wir eine Parabel n-ter Ordnung zur Aus-
gleichung, so lautet K, (z, 2):

Y 2Ly () e (2
2o % %

p=0

Somit wird die Funktion @, (2):

n

i _21: @ +1) P, (o) P, (%)

=10

(48) D, (2) = I, (0,2)

(~a, &)
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Von den Legendreschen Polynomen wissen wir aber, dass

2)!

Pg,1a(0) =05 w Py (0) = (1) v e

Es fallen daher in (48) alle Glieder mit ungeradem Index
weg. Fithren wir ferner den Wert von P, (o) ein, so wird:

=

1 »)!
Kfo,8) =0 () =5 ) (— 1) -2f)a (4y--1) Py, (;)

o 2
ed.

' L @
Setzen wir noch:

1o 1) = g

2% (1) ’

so wird:

®@=ﬁ5%mm(i)

Qo o

yez()
Kennt man also die Werte der Funktion P,, (_z_>, $0
o

kann man beliebig hohe K, berechnen. i die Koeffi-
zienten ¢, konnen wir noch eine einfache Rekursion
ableiten. Hs ist:

i _ D204 D0 +D +1]2

g (1)@ @y D) 20 1
B 1 4» 5 29 1

2 4y4+1 »+1

Oder also:

1 4v 45 2v-l—1

gv-}—l 2 Ay + 1 y 1 -9,
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Da wir g, = 1 kennen, kénnen wir die folgenden Koetfi-
zienten leicht berechnen. So heissen die vier ersten:

i 5 o @ » » 'y = 1
5
Gy 5 & 5 @ m o' = —F
Go o =2
8
65

Fs wiirde so:

L[, {2\ 5 2\ 8 5
Ko =g p(z) -3 R(Z) s on(3)-

65 2
T p )
lﬁlﬁ(a)F...]

Von dieser Formel kénnen wir nun eine beliebige Anzahl
von (Gliedern verwenden. Interessant ist der Fall, wo
wir nur das erste Glied verwenden. Hs igt dann:

W (o) = al— fw (2) P, (;{) dz
«

Da aber P, (i) =1 ist, so wird:
o

W (o) = 2—1= /w (2) de
o .

Das Integral ist die Fliche unter dem zwischen — ¢
und - « liegenden Teil der Beobachtungskurve. 2«
ist die Ausdehnung des ganzen Intervalles. Der Wert
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W" (0) ist also das arithmetische Mittel der auf dem
Grundintervalle liegenden Beobachtungswerte.

W
w
{) ”~
Weo
Figd
N
sl 0 dz o :_-

Fir « =5 ergab die Berechnung der Funktion
D, (2) folgende Resultate:

4, Kerndarstellung fiir die

Fiir die Formel von Wirtinger gilt eine analoge
Darstellung. Das Resultat der ersten Ausgleichung hiess:

B M-

b
=/w
a

@, (2)
I‘ll’

2 i @, ()

p= 0

z D, (2) D, (2) Dy (2) Dy (2)

| 5 01 | — 0,150 0188 | — 0,18
4 01 | —0015 | — 0,098 0,066
3 0.1 0,00 | — 0,048 | —0,118
9 0.1 0,165 0,127 0,009
1 0.1 0,210 0,288 0,820
0 0.1 0,225 0,851 0,477

|

Formel von Wirtinger.

A,

f w(2) @, (2) dz

®, (2) s
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Speziell heisst der Ausgleich fiir den Zentralwert z = 0:

ORI ETY)

Wir setzen wiederum:

, @Z 93 @ .

5 v (0) (P'v (z)
ZE__/_{_..__ = ¥(2) = Ausgleichfunktion,

ye=0

so dass schliesslich wird:
b

Wi(o) = f w(2) V(2) dz

a

Verwenden wir nun als Entwicklungssystem die Te-
gendreschen Polynome, so wird die Ausgleichfunktion:

@9)2 (4v + 1) + 2

aber: Ay = 2
Also:
i & 29)! : ?
= — ""_"]- d P 4 1 l "o
0 2 g D ey e <>

=1

Tiithren wir wieder den aus dem vorigen Abschnitt
bekannten Koeffizienten :

= (=1 s

(4v +1)
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ein, so wird das Resultat:

(19) =§i

und somit der erste Ausgleich:

b w
1 q z
(1) R Y
(50) W% (o) = 5 fw (2) _EU 7 By ( O()dz

Die Funktion ¥(2) kann man fiir bestimmte Werte von
o berechnen und in einer Tabelle zusammenstellen. Die
Rechenarbeit von Fall zu Fall reduziert sich so erheblich.
An Stelle von mehreren Integrationen tritt eine einzige.

5. Verfeinerung der Methode.

In den beiden letzten Abschnitten haben wir For-
meln abgeleitet, die uns an der Stelle z = 0 einen Aus-
gleich liefern. Der ausgeglichene Punkt liegt, wie wir
festgestellt haben, auf einer Parabel. s liegen aber noch
andere ausgeglichene Punkte auf dieser Parabel. Diese
haben wir bis jetzt ausser acht gelassen. Wir nehmen
an, dass wir mit der Ausgleichung an der Stelle & begon-
nen haben. Die Formel:

+a
N

W, (1) — / K (2, 2) w(2) de

liefert uns 2o + 1 ausgeglichene Werte, die alle auf
derselben Parabel liegen. s seien diese Werte:

—-a) (~a-1) (~ata-1) (1) (a)

W, WERL),... W(E+a—1), W&+ a), W(E+adt1),... . W(E+29)

a-Werte Yentralwert a-Werte
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Der Wert W (& «) ist jebtat Zentralwert und als
solcher am zuverlissigsten ausgeglichen.  Nun  ver-
schieben wir das Intervall um eine inheit nach rechts.
Nun liegt der Wert W (& -+ « -} 1) zentral. s entstehen
itherdies von der Stelle & - 1 hinweg neue ausgeglichene
Werte. Die weiteren Verschiebungen des Intervalles
nach rechts werden no(-h mehr ibereinanderliegende
Werte liefern. Von der Stelle & 4 2 & hinweg betriigt
die Zahl der Resultate an einer Stelle 2 & - 1. Statt nun
den zentralen Wert joweils als fertiges Ausgleichsresultat
zu betrachten, lassen wir die iibrigen Werte an der
Ausgleichung auch mitwirken. s sind diese verschie-
denen Werte an einer Stelle linear zu kombinieren.
Natiirlich muss das Hauptgewicht immer noch auf den
zentralen Wert gelegt werden.  Wir miissen also den
verschiedenen Ordinatenwerten Gewichte beilegen. Die
Forderungen, die wir an die Gewichte g(z) stellen, sind

die folgenden:

) =g(—2) (Symmetriebedingung)
3. ¢(0) = Maximum.
4. g(0) >g(+1) =g+ > ... >9(+ o)

d. h. die Gewichte sollen gegen die Enden hin abnehmen.

Iiine solche Verteilung wiire die Ctausssche. Diese
ist aber in ihrer Anwendung zu kompliziert. Der
(taussschen Verteilung liegt die Binomialverteilung am
niichsten. Diese wollen wir anwenden. [is stehen uns an
der Stelle & ++ 2 « folgende Werte zur Verfiigung:

14
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W(L‘—l—ﬁoc). ooy W(E2a), W(EH2a), W(EH-2a). ..., W(E+2a)
(~a) } (=1 r (0) | (1) i ) ‘
Nun teilen wir die Gewichte zu. Diese sind gegeben durch
die Koeffizienten der Entwicklung: (1 -+ 1)* l

| | | |

Al'so erhalten wir folgendes Schema: \ ,

‘ | |
+
Q. o 2 @ 2 a) 2 o Qa
(O (a*—l) (ocl (oc—%l (2&
Die Bedingungen 2—4 sind erfiillt. Die erste Bedingung
wird erfiillt, indem wir jeden Koeffizienten durch 2 2*

dividieren. Addieren wir nun die mit den Gewichten
versehenen Ausgleichswerte, so entsteht der neue Wert:

W&+ 2a) = 2; {(Qoa) V(E2a) 4 h (a__l)W(,s - 20) -+

() e (2 e+ 208 e
o /() o f"]. 2u () l

Beispiel: « =2; §+ =&+ 4 =1t
Hs sind an der Stelle ¢ die folgenden Werte vorhanden:

W, W@, W, Wi, W

(-2) -1 (0)‘ (1) (2)

Nun teilen wir die Gewmhte AT
l

o

=]

|
Y

bbb

-6 =4

7/

i}

4=

Es lautet dann der ausgeglichene Wert an der Stelle ¢:

W(t) = =7 W) -+ 4 W) 4+ 6 W(t) + 4 W(1) + W(t)}
18 |y 1) (0 (1) 2)



oder noch:

— 0,0625 (W(t) + W(t)) —Hx%o( W(t)+ W(t)) +0,8751(1)
(-2) (2) 1) (1 (0)

Die Summe der Gewichte ist: = 2.0,0625 4 2.0,250
4 0,375 = 1. Wir stellen fest, dass die Formel erst
von der Stelle & 44 an voll verwendet werden kann.
Es werden also die Werte an den Stellen ¢, E -} 1,
£+2, &4 3 vom Verfahren nicht erfasst. Zu den
Werten an den Stellen & + 2 und & -- 8 ist, zu bemerken,
dass sie noch ganz gut ausgeglichen sind. Sie sind ja die
beiden ersten zentral gelegenen Werte. An der Stelle
£+ 2 und &+ 3 liegen aber noch andere Werte, wio
aus der folgenden Zusammenstellung ersichtlich ist.

An der Stelle & 4 2 diwvfen wir die drei Werte W(0),
W(—1), W(—2) nicht kombinieren, weil die Verteilung
einseitig ist. Hingegen an der Stelle & - 8 diwrfen wir
die dret Werte W(1), W(0), W(—1) kombinieren.
W(—2) streichen wir einfach, weil die Verteilung sonst
unsymmetrisch ist. Als Gewichte wihlen wir wiederum
die Binomialkoeffizienten 1, 2, 1. Das Resultat lautet:

W(E -+ 8) = 025 (W) + W(—1)) + 0,5 W(0)
Die gleichen Teststellungen gelten fiir das FEnde der
auszugleichenden Tafel. Im ganzen wiirden also vier
Werte von der Methode gar nicht erfasst.
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1. Parabel liefert:

2. Parabel liefert:

3. Parabel liefert:

4. Parabel liefert:

5. Parabel liefert:

5l s42 £48] e | Eas | 56| e l S48 | £49
W(-2) W(—l)! Wo) | W) | W) | : i l |
e O'W( 1) W(O);W(l)!ﬂ()f ;_ B
Iv;(-z;r W(1) | W(O) | w(1) 1 2) ; | |

o  weawen 1) W) ; W) ] e E
] I 1 WO | W()fW(z), i
EIVVvl“t;:2“761‘118Ii”)“‘Ter’[e 4 Werte :\Verte immer 5 Werte

" I ___f

—

|

|
|

911
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I1. Praktischer Meil.

Anwendung der Theorie auf numerische Beispiele.

1. Beispiel.

Gram hat in der zitierten Arbeit ein Beispiel durch-
gerechnet. Um vergleichen zu kénnen, wollen wir dio
gleichen rohen Zahlen mit unserer Formel behandeln.

Es handelt sich um 11 Beobachtungswerte von Log 1

fiir die Alter 20 bis 30. s ist dabei ¢ — 5 gewihlt. W;r
verwenden also alle 11 Beobachtungswerte wie Gram.
Fitr die Berechnung miissen wir eine Vereinfachung
treffen hinsichtlich der FErmittlung der Fourierkoeffi-
zienten «,. Um die lange Arbeit der numerischen
Integration zu umgehen, nehmen wir fiir die Koeffi-
zienten a, Anndherungen. Wir bedienen uns der Formel -

)

Jl@ar~ i +1Catnt. .+

"“f(“l)+f(())+f(1) EEEREEEE 2 f(fx)

Zur Berechnung der Koeffizienten «, benétigen wir
ausser den Beobachtungszahlen noch die Werte der

m

Funktion P, (;:—) (Vgl. Tab. 1 im Anhang.) Wir be-

5
oniigen uns wie Gram mit einer dreigliedrigen Formel,
d. h. wir legen der Ausgleichung eine Parabel zweiten

Grades zugrunde. Es sind nun die Produkte w (x) PO( 5 ),

/@ . {® , ’
w (z) P, (i—) und w (z) P, (%) zu bilden:
) /

: 5



w(x) = , l .
x’ T, (@) P, (i) w () Pl( 5—-)[10(:1;) P, (‘5)
\ 5 /| ' |
| |
2 | —5) 000 | 0,000 0,000
o1 | —4| 582 | —4,656 | 2,677
22 | —38 0,00 0,000 0,000
293 | —2 2,44 - —0,976 — 0,634 |
2 || —1 504 | 1,008 9918 |
25 0 0,00 | 0,000 0,000
% | 1| T80 1,560 — 3482
27 2 1,24 | 0,496 — 0,322 |
28 3 2,12 ‘ 1,272 0,085
29 4 1,79 1,432 0,828
30 | 5 1,94 | 1,940 1,940

Nun bilden wir die Summe dieser Kolonnen (vgl. die
Integralbildung oben) und erhalten so die Koeffizienten:

Ay = 2722; A, = —0910; Ay = — 2,050

Nun wenden wir die Formel (31) an:

e 1 g %
W <-)(a,-):_ﬁ{f10 134, P, ( ;) 154, P, ( —:—)}

= i[ 97,22 —3.0,910 P, (i”-\) 52,050 1-)2( i )‘
10| 5, 5]
Beschrinken wir uns zunichst auf ein Glied der Formel,
so wird: WO (z) = 2,722
d. h. die ausgeglichenen Werte liegen alle aaf einer
(reraden parallel zur z-Achse. Nehmen wir noch das
gzweite Glied mit, so erfihrt das erste Resultat keine
wesentliche Abdnderung. Der Wert im Nullpunkt bleibt
unverindert. Die iibrigen Werte liegen alle auf einer
Geraden (Fig. 2). Da das lineare Glied nur geringen
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Finfluss auf das Resultat hat, werden wir es vernach-
. . s 1 { 1 A = s
lissigen konnen. Iine wesentliche Anderung bringt die
Verwendung des dritten Gliedes. Iis ist:

W(z) — 2,722 — 1,025 P, (;)

Die Werte W™*(z) liegen jetzt auf einer nach unten geoft-
neten Parabel zweiten Grades, deren Scheitel im Null-
punkte liegt. Fithren wir die Berechnung punktweise
durch, so erhalten wir folgende Resultate.

w(e)— ) —

o | @) | W) WO W‘“"(@, (_p)wm(a,-; (i}_([:bv)(z)(m))z
5 0,00 | 2,722 | 2,995 | 1,697 | —1,697 2,880
—4 || 582 | 2,722 | 2,940 | 2,250 3,570 12,744
—3 | 0,00 | 272 | 2,886 | 2,681 | —2,681 7,188
—2 | 244 | 2722 | 2,831 | 2,988 | —0,548 0,300
— 1 || 5,04 | 2,722 | 2,776 | 3,173 1,867 3,486
01 0,00 | 2,792 | 2,722 | 3,234 | — 3,234 10,458
1] 780 | 2,722 | 2,668 | 3,173 4,627 21,409
2| 1,24 | 2,722 2,613 | 2,988 | — [,748 3,056
3 2,12 | 27922 | 2558 | 2,681 | — 0,561 0,314
40 1,79 | 2,722 | 2504 | 2,250 | — 0,460 0,212
5| 1,94 | 2722 | 2449 | 1,697 0,243 0,059
27,02 |27,22 |27,22 |27,11 — 0,622 60,636
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Unsere Zusammenstellung enthiilt noch das Abweichungs-
mass :

‘+‘CC

/ (10 (2) — W®(2))? dz = 60,636
Wir konnen es noch anders erhalten durch die
Berechnung des Besselschen Hxzesses:

4o By

3 = f w? (2) dz — Z a’

=10

—a

Die a, berechnen sich aus den 4, folgendermassen:

4 /2y 1
l’(/', = I/,’ "“9"&'*" [111,
somit:
2 _ _?"_’,' + ] 2
O = 2«
Ks wird daher:
1 .
2 ling gL, 2 — 7 (
% =7 (27,22) 74,092
2 = i 0,910)2 — 0,248
ty o 10 & ( ’ ) : y A EC
. b5 2,050)2 — 2,101
A =g W= A
\ 1
Zﬂi — 76,441
o
Anderseits ist: j w? (z) do ~ 187,183

-t
Somit das Abweichungsmass:

2 = 137,183 — 76,441 = 60,742.
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Wir sehen, dass sich die Resultate fast decken; so
hat man ein gutes Mittel in der Hand, die Richtigkeit
der Rechnung zu iiberpriifen. Die folgende Zusammen-
stellung soll noch zeigen, dass die Resultate von Gram
und dieses hier fast iitbereinstimmen.

- Wirtinger | Gram
20 1,697 | 1,420
21 2,250 2,100
929 2,681 2,640 |
23 2,988 3,020
24 3,178 | 3,240
25 18,234 .| 3,820
26 3,173, | 8,240
27 2,988 | 8,020
28 2,681 | 2,640
29 2,250 2,100
30 | 1,697 1,420

2. Beisprel.

Als zweites Beispiel wurde die Tafel der Sterbens-
wahrscheinlichkeiten Schweiz-Minner 1921/30 gewihlt.
Diese praktische Rechnung soll zeigen, dass die kompli-
siertere, gleichmissig konvergente Formel .(44) leicht

. Y T
verwendet werden kann. Is lautet diese: Jeui |

1 X A
(44) Wie) = Z K0 P, (“&) A,
y=0

Dabeil 1st;
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Um das Charakteristische der Beobachtungsreihe besser
hervorheben zu konnen, wihlen wir die Teilintervalle
klein. Wir verwenden zur Ausgleichung eines Wertes
w(z) links und rechts von diesem zwei Werte. Im gan-
zen wirken also fiinf Beobachtungswerte an der Aus-
gleichung mit. s ist « = 2. Begniigen wir uns mit
einer Parabel 4-ter Ordnung, so lautet die Formel:

1 Y A i : iy
W, (z) = g { kS Py (“Q—)onl—---fl‘ KD P, (E) A, }

Am besten ist der Zentralwert ausgeglichen. Die
links und rechts von ihm gelegenen Werte sind weniger
zuverliissig.  In einer guten Ausgleichung wird man
daher nur die Zentralwerte als wirklich ausgeglichen
betrachten, also Werte an der Stelle z = 0. Daher wird:

|
W1(0) = 5~ LY Po(0) Ay 4K Py(0) A+ B Pofo) ot

1

+ &Y Py(0) Ag+ KV Py(o) A,l}

Da aber P (o) fiww alle ungeraden » zu Null wird, so
vereinfacht sich obige Formel folgendermassen:

1 \
W, (o) = 21 kY Po(0) Ag+ k) Py(0) Ay+ kY Pyo) 4, )

Die Konstanten k! haben folgende Werte:
kY = 0,500

kil = 0,227

kY = 0,062

oo

Ferner ist der Wert der Polynome an der Stelle @ = 0:
Py(0) = 1,000
Py(0) = — 0,500
P,0) = 0,375

|
|
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Die Ausgleichformel lautet demnach:

¥, (0) = {0 500 Ay — 0,118 4, + 0,023 1]

y

— 0,250 Ay — 0,056 4, + 0,012 A,

Fs sind also von Fall zu Fall nur die Koeffizienten
Ay, Ay, Ay 7 berechnen. Hs ist:

+2

' 2 ,
A, _fI ( ) w(2) de; A, ~_—:[ Py (?) w(2) dz
A, = / P, ( 2) dz; usw.

Als Beispiel der rechnerischen Arbeit sei der Beobach-
tungswert an der Stelle z’ = 25 ausgeglichen. Wir
brauchen hierzu die Werte von z' = 23 bis 2’ = 97.

_____ —eeeee .
z’ 2| w(z) |w(z) P, (—;—) w(z) P, ( )w() (i)l
| |

| |

93 | —2| 891 391 | 391 891

o4 | —1[ 894 394 — 49 | 114
*5 | %0 | 899 399 —9200 | 150
26 1 385 385 — 48 ’ —T11
27T | 2| 405 405 | 405 405
| — | — 1376 | 101 | 32

Es ist also: 4, = 1576; 4, = 101; 4, = 323;
Das Ausgleichresultat wird:

W, (0) = W, (25) = 0,25 A, — 0,056 4, + 0,012 A,
— 894 — 5,66 -+ 3,88 — 8992,

———
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Man erkennt hieraus, dass die Rechenarbeit gut tiber-
sichtlich ist. Das Ausgleichen nimmt sonst im allge-
meinen sehr viel Zeit in Anspruch. Auch in dieser Be-
ziehung 1st das Resultat der Untersuchung befriedigend.
Zur Ausgleichung von 20 Beobachtungswerten war der
Zeitaufwand eine Stunde.

Die Tafel der Sterbenswahrscheinlichkeiten Schweiz-
Minner 1921/30 wurde fir alle Alter ausgeglichen. Kin
Vergleich mit anderen Methoden hat gezeigt, dass das
Wirtingersche Verfahren fiir  Sterbetafeln sehr gut
verwendet werden kann.

Schlussbemerkungen.

Wir blicken zuriick. Mg wurde gezeigh, wie dag
Verfahren von Gram allgemeiner aufgefasst werden
kann. Die Voraussetzungen, die Gram machte, wurden
verallgemeinert. s kam dabel zum Vorschein, wie eng
das Ausgleichsverfahren von Gram mit der allgemeinen
Entwicklung einer willkiirlichen unktion in eine
ouriersche Reihe verbunden ist.  Wir haben dann
unter den beliebigen orthogonalen Entwicklungssystemen
eine  Auswahl getroffen. Diese Auswahl wurde 1m
Hinblick auf die Praxis gemacht. Die Entwicklung, die
gefunden wurde (Formel 20), ist konvergent. Doch ist
die Konvergenz ungleichmissig. An dieser Stelle der
Studie wurde dann die zitierte Arbeit von Wirtinger
nither untersucht. Fr machte dhnliche Untersuchungen.
Der grosse Unterschied zwischen der ersten Darstellung
und derjenigen von Wirtinger besteht darin, dass
Wirtingers Formeln gleichméssig konvergent sind. Die
Formeln scheinen kompligziert, und ihre praktische
Anwendung stellte Wirtinger selbst in Ifrage. Doch
hat es sich nun gezeigt, dass dieses mathematisch schone
Verfahren praktisch verwendbar ist. Die guten Resul-
tate, die erzielt wurden, sprechen dafiir.
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Wertetabelle der Legendreschen Polynome.

Tab. 1. o =1
x| Py(a) | Pi(@) | Pye) | Pyl) | Pu(a)
1 ’ 1 —1 I
0 1 0 | —05| 0 | 03875
1 1 1 1§ 1)1
Tab. 2. o =2
| @ @ e\ | (o) | \ |
) 2 P, { — ) S
e[ 2(3) | 2lG) [ 2(S) | 2lg) [ 2(2)
p) 1 — 1,000 1,000 | — 1,000 1,000
1 1 ~0,500 | —0,125 | 0,438 | — 0,289
0 | 0000 | —0,500 | 0,000 | 0375
| [ 1 0,500 | —0,125 | — 0,438 | — 0,289
9 | 1,000 1,000 (,000 1,000
Tab. 3. o =25
. 2\ | 7:1; |y ;
5 1 1,000 1,000
4 1 0,800 0,460
. 1 0,600 0,040
9 { —-0,400 | — 0,260
1 1 ~0,200 | — 0,440
| o 1 0,000 | — 0,500
1 1 0,200 | — 0,440
9 1 0,400 | — 0,260
3 1 0,600 0,040
4 1 0,800 0,460
5 1 1,000 1,000
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