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Über einige versicberungsmatbematiscbe

Zinsprobleme.

Von Fredrik Borch, Oslo.

In dem folgenden werden wir die Aufgabe
behandeln, den einem gegebenen Versicherungswerte
entsprechenden Zinsfuss zu bestimmen, wenn keine Kom-
mutationszahlen (l)x, Nx etc.) vorliegen, sondern nur die
Sterbetafel (lx, dx). Eine einfache, aber mühevolle Lösung
dieser Aufgabe besteht in der Berechnung einer Reihe

von Kommutationszahlen für irgend einen willkürlichen
Zinsfuss, der nahe an dem gesuchten Zinsfuss gelegen
ist. Für die Wahl dieses Zinsfusses kann man, wie wir
sehen werden, sehr einfach gewisse Grenzwerte
aufstellen. Mittels bekannter Näherungsformeln für die

Berechnung von Leibrentenwerten für mehrere Zins-
füsse, wenn die Kommutationszahlen für einen
bestimmten Zinsfuss vorliegen, lässt sich dann unsere
Aufgabe lösen, denn das Problem ist fast immer auf den

Fall zurückführbar, wo der gegebene Versicherungswert
eine Leibrente ist. In dieser Arbeit werden wir aber,
indem wir nur das Problem bei der Leibrente betrachten,
eine direkte Lösung suchen, ohne Kommutationszahlen
zu benutzen.

Wir wollen zuerst verschiedene Grenzwerte für den

gesuchten Zinsfuss aufstellen. Wir behandeln nur die

jährliche nachschüssige Leibrente und schreiben diese:



^x+t
wo / (t) tfx eine immer positive Punktion ist;

^X

unci F{t) vl (1 +i)~'1 eine immer konvexe Punktion
darstellt (0 < i < 1). Der wohlbekannten Ungleichheit
Holder-Jensens zufolge haben wir da:

2/<<>r(()>yj/(i)-H -v
2>>

Oder:

wo:

h+(
ax:n\ > ex-.n'\ * V 1

W/
und

^x : ra|

7» 7t /t cy tu tu

i+l »+1

—2 y >^+<
1 t 1 /= r

bildet die zweite Summenreihe der l -Werte.
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Durch Gleichstellung der beiden Seiten der obigen
Ungleichheit bekommt man eine Gleichung, die einen
Zinsfuss gibt, der kleiner ist als der gesuchte (mit i
bezeichnete).

n
1

Aus' vI+.x+l d —iin|

findet man: i, < i

Durch die Ungleichheit Tchebychefs finden wir
einen anderen unteren Grenzwert (i2). f (t) und F (t)

n

sind beide abnehmende Punktionen, und (<) > o.

1

Tchebychefs Ungleichheit lautet dann:

n n

2/(*)*(*) 2/«

oder:
ax : rnj ex:n~\

OJH n

Durch Gleichstellung der beiden Seiten dieser

Ungleichheit bekommt man eine Gleichung, die auch einen

unteren Grenzwert des gesuchten i liefert:
Aus:

>) „ (2)
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ergibt sich:
i2 <C I

Einen oberen Grenzwert (i3) findet man durch

Gleichstellung der beiden Seiten der wohlbekannten
Ungleichheit:

Nämlich aus:

findet man:
ig > i

Mit Hilfe der gewöhnlichen Zinstafeln stellt man
mittels der Gleichungen (1), (2) und (3) diese Grenzwerte

leicht auf. Die Grenzwerte sind aber sehr roh und
dürfen nicht als Näherungswerte betrachtet werden.
Sie bieten eigentlich nur eine Richtschnur für die Wahl
eines Ausgangswertes für eine schärfere Berechnung des

gesuchten Zinsfusses dar. Für diese schärfere Berechnung
(ohne Kommutationszahlen zu verwenden) scheint das

Verfahren naheliegend, die Leibrentenwerte durch die

Zx-Werte und die gewöhnlichen Grössen der
Zinsrechnung darzustellen zu versuchen und hieraus den

gesuchten Zinsfuss durch inverse Interpolation oder
mittels Newtons Approximationsmethode zu berechnen.
Die grösste Schwierigkeit besteht dann in der Darstellung

der Leibrentenwerte, ohne Kommutationszahlen zu
verwenden. Da die Reihenentwicklung einer Leibrente
nach Potenzen von i bekanntlich konvergiert (0 < i < 1),
scheint vielleicht auf den ersten Blick eine direkte
Reihenberechnung des Leibrentenwertes der einfachste Weg

zur Lösung unseres Problemes zu sein. Diese Reihe
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n n
1

K

2^+' —^ ^ +1) ix+i
2

1 1 1 -2^ -r j—•+ r •

konvergiert aber langsam, so dass mehrere Glieder nötig
sind, um eine befriedigende Genauigkeit zu erreichen.
Dabei müssen höhere Summen der l^-Werte mit in die

Rechnung gezogen werden. Diese sind aber sehr grosse,
rechnerisch unangenehme Zahlen, deren Handhabung
die direkte Reihenberechnung ausserordentlich beschwerlich

und praktisch unbrauchbar macht. Wir werden
deshalb in dem folgenden höhere Summen der Ü^-Werte
als die zweite —• die der S^-Reihe der Kommutations-
zablen entspricht — vermeiden.

Zuerst wollen wir die folgende Formel betrachten:

J vm (i, x, n)

®x : 7T| 1 (x, n,i) > (^)

WO :

m (i, x, n) ex.

y Mx+t
ex:T\ + 1

2 'x+1

Diese Formel, die von J. F. Steffensen ') für
lebenslängliche Renten hergeleitet ist, ist zu unserem Zwecke

recht gut verwendbar. Indem wir in dieser Arbeit nur
die Newtonsche Approximationsmethode benützen wer-

*) J. F. Steffensen: On certain inequalities between mean
values, and their application to actuarial problems. Skand.
Aktuarietidsskrift 1918, p. 82.
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den, müssen wir die Abgeleitete mit Bezug auf i von
Formel (4) suchen und bekommen:

wo d die "Verzinsungsintensität In (1 + i) bedeutet.

Die Tafel unten beleuchtet die Verwendbarkeit der

Formel (4) für die Lösung unserer Aufgabe. Eine Reihe

von Zahlenwerten für lebenslängliche Leibrenten ist
gegeben und die Frage ist, die diesen Werten
entsprechenden Zinsfüsse zu bestimmen, wenn die Sterbetafel

im Text-Book (Part II) zugrunde gelegt wird.

Mittels (1) und (3) sind untere und obere Grenzwerte

der gesuchten Zinsfüsse aufgestellt. Zwischen
diesen Grenzwerten sind willkürliche Ausgangswerte i
gewählt und die gesuchten Zinsfüsse mittels Formel (4)
und ihrer Abgeleiteten durch einmalige Verwendung von
Newtons Approximationsformel

d

diam(w)

n

(5)

berechnet.
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X

Gegebene

Leibrentenwerte

«X

Grenzwerte des gesuchten
Zinsfusses

Formeln (1) und (3)

Gewählter

Ausgangswert

100 i

Formeln (4)
und (5)
geben

100 7

15 19.403 3.25 <1001 <4.50 3.75 4.031
25 17.949 3.25 <1007 <4.50 3.75 4.023
35 16.221 3.375 < 100 7 < 4.625 3.75 4.006
45 13.900 3.50 < 100 7 < 4.75 4.125 3.991
55 11.024 3.675 < 100 I < 4.875 4.25 3.959
65 7.850 3.675 < 1007 < 5.25 4.25 3.929
75 4.846 3.75 <100 7 <5.375 4.375 3.907

Der genaue Wert ist für sämtliche Renten: 100 7

4.00.

Von den drei höchsten Altern abgesehen, sind die
erreichten Resultate recht gut.

Doch werden wir versuchen, ein noch schärferes

Verfahren für die Berechnung von Leibrentenwerten
ohne Kommutationszahlen zu verwenden und dabei
auch eine schärfere Lösung unserer Aufgabe herzuleiten.
Wir wollen dann in erster Linie auf die in der
praktischen Lebensversicherung am häufigsten auftretenden
abgekürzten Leibrenten zielen.

In einer vorherigen Arbeit habe ich die folgende
Formel gegeben *):

6 —

ax-.n\= <p{x,n,i) (6)
' n

L Betrachtungen über die Darstellung von abgekürzten
Leibrenten mittels Zeitrenten. Skand. Aktuarietidsskrift. Heft 1—2,
193:1.
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Wo

n + 1

(x, n, i) 1 + i 1 ' 1

Th+l

Bei kleiner Dauer n (20 bis höchstens 25 Jahre)
ist diese Formel recht verwendbar und zu unserem
Zwecke sehr bequem.

Eine sehr scharfe Formel, die Berechnung fast aller
in der Praxis vorkommenden abgekürzten Leibrenten

gestattet, finden wir in der folgenden Weise: Bekanntlich
verlaufen die meisten Absterbeordnungen (lx) konkav
vom Kindesalter bis in das hohe Greisenalter, und
abgekürzte Versicherungswerte verlaufen deshalb in der
Praxis fast immer über einer durchaus konkaven
Absterbeordnung. Nimmt die Absterbeordnung lx+t im
Intervalle (0, n) gradlinig ab von lx bis lx+n, so ist
der Wert der n-jährigen nachschüssigen Leibrente ganz
genau berechnet durch

2 tv'\ } t v1

l \ 1 _J / _|
1

7
Vf \ -l / V,

<*n\

/ m

1

'x+n
na^ / n 1 —„Px

h

+ 0J,_I^wn + 1 + I
\ n \ %

Vorausgesetzt, dass lx+t im Intervalle (0, n)
konkav verläuft, muss die Grösse oben um das folgende
Korrektionsglied vergrössert werden, damit sich der

gesuchte Leibrentenwert ergibt:
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Die Punktion Q (x, n, i) entwickeln wir in eine Reihe
nach Potenzen von i und bekommen:

Q (x, n, 0) fliül — l _|_
1~»P' n + 1

n n 2

11

Tu.x-Y t

7 <?(*,», 0)
I " +1 ' I 1-.P, » + 1..-1

Ii n \ n \ 7
7 Y+ l

d2 1

— (a;, w, 0) —
^

(f — 1) Zx+( -- - (n -j- 1) lx^t
i l

n" — ^ V17 \ ^ — j,'Px w + 1 n — 17'Zu,(5 ^ n 2 G

In Q (x, n, 0) finden wir die dritte Summe der lx-
1

Werte, die wir - (t1) lx+i schreiben können.

Indem wir unsere Reihe mit der zweiten Potenz von i
abbrechen, wollen wir einen «Näherungswert» für
d2

-y Q (x, n, 0) bestimmen und dabei die dritte Summe
dv
der lx-Werte vermeiden.

Wir betrachten die Grösse:

\Tnt+t) lx+t - (» + 1) y\ ** n -|-

\ 1 1 1

1 PN / 9 7, 7 "1 V, / „ w- — 1 \ 1 \w
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Hier ist: g (t) lx+t und h(t) t2 — n t J
6

Die Funktion h (t) ist eine Parabel zweiten Grades mit
n

der Achse x — und dem Schnittpunkt mit der
2

/ n n2
Achse

,2 12

Wir schreiben:
n2 + 2

h (<) s(t) —w w 12

Also ist:
n2 + 2 n2

s (t) h (t) -j t2 — wf Hw w 12 4

s (t) ist dann eine immer positive Funktion. Wenn, wie

vorausgesetzt, g (t) lx+t im ganzen Intervalle (0, n)
konkav ist, gibt die Ungleichheit Holder-Jensens:

21r){t)h{t) <2^s(t) • g{
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21 s (o
i
n

2>
3' — '= ?g+ l* + Hn

Die hier eingeführte Annäherung

(w + 1) (n + 2) n + 3

2 (w2 + 2) 2

ist, von sehr kleinen Werten der Dauer n abgesehen,
sehr scharf, und wenn n klein ist, ist das hier betrachtete

Glied unserer Reihenentwicklung bedeutungslos.

Wir haben also:

Andererseits können wir schreiben :

kP w (("'+'2) ('"¥)-&±tt±2

Die rechte Seite dieser letzten Ungleichheit ist der

l \r-i
genaue Wert von / g (t) h (t), wenn l +t gradlinig

nLx x

von lx bis lx+n abnimmt.

Wir bilden den Mittelwert dieser zwei Grenzwerte
und bekommen einen zu unserem Zwecke recht gut
verwendbaren Wert. Wir schreiben also:
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1 v1 1

/ 9 iß) h W —^yw w 24
x i

(w2 + 2) (i + „+_32g —
2

i + 1) (n -f- 2)

Und eingesetzt:

(1 — nVx)
n2 + 1 ex-.

12

7.2 -1- 9,d2 n*-«(*,», 0) - (1 +n+3Px) '

1—«Vx nJrl(n2 + 2 n — 1\ w2 + 2 ex.~
~24 12~~) 12 n~

Indem wir, wie erwähnt, höhere Potenzen als i2 in
unserer Reihenentwickelung der Punktion Q (x, n, i)
vernachlässigen, erhalten wir die folgende Formel:

nPx
l^\ <ß (x, n, i) — W (x, n, i) (7)

Hier sind <p (x, n, i) und 'Fix, n, i) die folgenden,
rechnerisch verhältnismässig einfachen Punktionen, die sich

leicht berechnen lassen:

<I> (x, n, i) 1 + i
/ n + 1

n

2 tl.

2
24

'X+ t

9' {x, n, i)
1 — nVx 1

^

71 + 1

7+ 2
1 +i n — 1

'-4 48

7,2 -L- 2f -48-(1+?yJ
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Die Formel (7) lässt sich, wie wir später beispielsweise

sehen werden, für sämtliche abgekürzten
Leibrenten verwenden, deren Dauer nicht über dem ersten

(im Kindesalter) oder dem letzten Kehrpunkte (im
Greisenalter) der Absterbeordnung verlaufen. Bekanntlich
macht die Absterbeordnung nach dem Kehrpunkte im
Greisenalter eine starke konvexe Krümmung und nähert
sich der Abszissenachse asymptotisch. Für Leibrenten,
die nur über diesem letzten Teile der Absterbeordnung
verlaufen, empfiehlt sich dann offenbar nicht das

obenstehende Verfahren: die Leibrente von einem auf gradlinig

abnehmender Absterbeordnung aufgebauten Teile
und einem Korrektionsgliede zusammenzusetzen. Auch
für diese Leibrenten bekommen wir eine scharfe Formel
in der folgenden Weise:

Wir schreiben:

eine Reihe nach Potenzen von i. Brechen wir die Reihe
nach der ersten Potenz ab, so erhalten wir die Formel (6)
oben. Nehmen wir noch ein Glied mit in die Rechnung
hinein, so haben wir:

o-x-.^= a^B(x, n, i)

Die Funktion R (x, n, i) x'w| entwickeln wir in

— R (x, n, 0)

Li l i

n
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Für diese Grösse können wir auch hier mit gutem
Erfolge denselben Wert wie in Formel (7) benutzen.

Trifft der letzte Kehrpunkt der Absterbeordnung
beim Alter z ein, so bekommen wir nun:

X>Z- <J> (x, n,i) + P (x, n, i)
n

(8)

<p (x, n, i) wie oben

i2 n2 -4- 2
P (x, n, i)

2

n2 + 2 (n + 1) (» + 2)
(1 +B+ 3P3.) TZ (1 „px)

24
v

48

Bei lebenslänglichen Beuten hat man hier: nm=

co — x, wo co das höchste Alter in der Absterbeordnung
bezeichnet (lM > 0).

Leibrenten, deren Dauer über dem letzten
Kehrpunkte der Absterbeordnung verlaufen, lassen sich als

Summe von zwei Gliedern sehr scharf mittels Formeln
(7) und (8) berechnen. Im Falle der lebenslänglichen
Kenten hat man:

ax= ax.:i=x-\ + if x-2_xpx-az

Für a„.benützt man Formel (7) und für a.
Formel (8)

Die Kehrpunkte der Absterbeordnung findet man
in der Praxis sehr einfach durch Betrachtung der dx-

Reihe ').
In den Tafeln unten sind die Formeln (7) und (8)

für die Grundlage im Text-Book (Part II) geprüft. Bei
dieser Grundlage hat die Absterbeordnung Kehrpunkte

L Siehe die früher erwähnte Arbeit des Verfassers. Die

Absterbeordnung hat Kehrpunkte bei denselben Werten von x,

wo die <L-Reihe Extrema hat.



Abgekürzte Renten ax. -
Dauer Zinsfuss 2V2% £ 0.025 Zinsfuss 4% i 0.04 Zinsfuss 6 % i 0.06

X n=z—x=
73 — x Formel (7) Genau Fehler Formel {7) Genau Fehler Formel (7) Genau Fehler

15 58 25.071 25.052 0.019 19.245 19.230 0.015 14.350 14.370 —0.020

25 48 22.336 22.316 0.020 17.707 17.678 0.029 13.600 13.575 0.025

35 38 19.235 19.224 0.011 15.807 15.788 0.019 12.569 12.543 0.026

45 28 15.423 15.420 0.003 13.199 13.192 0.007 10.943 10.931 0.012

55 18 10.941 10.941 0.000 9.798 9.798 0.000 8.542 8.541 0.001



Lebenslängliche Renten: ax (o> 101, z 73;

Zinsfuss 2V2% i 0.025 Zinsfuss 4 % i 0.04 Zinsfuss 6% % 0.06

X Formeln
(7) und (8)

Genau Fehler
Formeln

(7) und (8)
Genau Fehler

Formeln
(7) und (8)

Genau Fehler

15 25.505 25.486 0.019 19.418 19.403 0.015 14.402 14.422 —0.020

25 22.928 22.902 0.021 17.977 17.949 0.028 13.699 13.674 0.025

35 20.046 20.034 0.012 16.238 16.221 0.017 12.760 12.734 0.026

45 16.571 16.566 0.005 13.905 13.900 0.005 11.321 11.309 0.012

55 12.661 12.659 0.002 11.021 11.024 —0.003 9.334 9.333 0.001

2=73 5.839 5.832 0.007 5.392 5.408 —0.016 4.918 4.920 —0.002
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beim Alter 13 und beim Alter 73 Jahre {s 73).
Zwischen diesen beiden Altern ist die Absterbeordnung
konkav, sonst konvex. Um die Formel (7) für
Leibrenten von der längsten Dauer zu prüfen, sind die Dauern
sämtlicher abgekürzten Kenten bis zum letzten
Kehrpunkte (bei Alter 73) der Absterbeordnung erstreckt.

Der lange konkave Verlauf der Absterbeordnung
— vom ersten Kehrpunkte im Kindesalter zum letzten
Kehrpunkte im Greisenalter — wird bekanntlich bei

einigen Sterbetafeln von einem kürzeren konvexen
Verlaufe im Jugendalter gestört. Mit Bezug auf die
Verwendbarkeit der Formel (7) ist aber diese Störung des

konkaven Verlaufes der Absterbeordnung bedeutungslos
und darf ausser acht gelassen werden. Wir rechnen also

immer, als ob die Absterbeordnung ununterbrochen
konkav vom ersten zum letzten Kehrpunkte verlaufe,
und dürfen über dieser ganzen Strecke Formel (7)

verwenden, was die Tafel unten, die für die norwegische
Lebensversicherungsgrundlage N. 1925 berechnet ist,
bestätigt. Bei dieser Grundlage hat die Absterbeordnung

wegen einer ungewöhnlich hohen
Jugendsterblichkeit, ausser bei den Altern 11 und 77 Jahre,
auch Kehrpunkte bei den Altern 21 und 31 Jahre, und
verlauft zwischen den letzten Altern konvex. Die Tafel

gilt für abgekürzte Kenten, deren Dauer bis zum letzten
Kehrpunkte der Absterbeordnung verläuft, und die
Formel (7) ist ohne Kücksicht auf die Kehrpunkte bei

den Altern 21 und 31 verwendet.
Unsere Formeln (7) und (8), die also durchaus sehr

scharf sind, sind auch für die Lösung unserer Aufgabe
gut verwendbar. Indem wir für die Berechnung des

einem gegebenen Leibrenten barwertes entsprechenden
Zinsfusses Newtons Approximationsformel (5) benutzen
werden, müssen wir von unseren Formeln die Abgeleitete
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Abgekürzte Renten: ax.-, (n z— x)

Dauer
n

77

— a:

Zinsfuss 4 % f 0.04 Zinsfuss 5 % i 0.05

X
Formel

(7)
Genau Fehler Formel

(7)
Genau Fehler

15 62 19.558 19.547 0.011 16.648 16.662 —0.014
25 52 18.616 18.578 0.038 16.089 16.052 0.037
35 42 16.942 16.913 0.029 14.914 14.879 0.035
45 32 14.475 14.461 0.014 13.019 13.002 0.017
55 22 11.262 11.261 0.001 10.385 10.385 0.000

mit Bezug auf i cler Leibrente herleiten. Mit Klammern
— [ax - mT|J — bezeichnen wir einen mittels Kormeln (7)

und (8) berechneten Leibrentenwert und bekommen:

Kür die Leibrente, deren Dauer nicht über den letzten

Kehrpunkt (z) der Absterbeordnung hinausreicht:

d
r i

1

nvn+1 ^xj_n|
n^ ^ | [ax:7rl]

II

+ ali]
er n,

d ; d
—^ — (p (X, n,i) — w (x, n, i)

n ai ai

wo:

d n + 1 n2 + 2 j

di 'n' 2 12
1

n

tlx+l

v7
1

d
ml *\ »Px

- V {x, n, i)di n

n + l/n — 1/
^

w2 + 2

2 V 6 V ~ 2 / + * ~2T
1.2 J- 9.

24
(l + n+3Px)



— 40 —

Für die Leibrente, deren Dauer über den letzten
Kehrpunkt der Absterbeordnung hinausreicht:

~di^x:n^ "di +

d
z-xVx v°

di k :¥+i=F| — V (« — s) k :"i+i^5|]

wo:
di k:x+n—zjl

=- a-
e*'' z+"~ - — (ß (z, x p%— z, i) + P (z, x + n—2, i)
x-\-n — z dt dt

Hier ist:

az -^+n^\ L _ x + n — z \
^ \ Sx+n—z\ '

- 0 [z, x + n — z,i)
di

xpnp 1—z (x + n — z)2 P 2

12

ic+n—z

V
Z_i

1

JC-Hl-2

's- i

— P (z, x p n — z, i) i
di

(x P n — z)2 +2
24

(1 + l+n-^+spJ

(x P n — z p 1) (x P n — 2+2)
48

(1 x + n-z rz }

£+n—21

x~r »-a

X/1 +v

Bei lebenslänglichen Kenten ist: x + n a>.



— 41 —

Die folgenden zwei Tafeln zeigen einige Resultate
hei Verwendung der Formeln (7) und (8) und einmaligen
Approximation mittels Newtons Formel (5) für die

Lösung unserer Aufgabe. In der ersten Tafel sind einige
gegebene Zahlenwerte als Barwerte der abgekürzten,
zum letzten Kehrpunkte der Absterbeordnung laufenden
Leibrenten (ax. X|) betrachtet, wenn die Sterbetafel
im Text-Book (z 78) zugrunde gelegt wird. Die diesen

Barwerten entsprechenden Zinsfüsse sind mittels der
Formeln (7) und (5) und zum Wrgleich auch mittels
Formeln (4) [und (5)] berechnet.

X

Gegebene

Leib-

rentenbarw

erte:

&x:

z-x|
Ctx

73-x
\

Grenzwerte
des gesuchten

Zinsfusses
Formeln (2) und (3)

Gewählter
Ausgangswert

1(0

i
Die

Formeln

(7)j
und

(5)

geben

100
i

Die

Formeln

(4)

und

(5)

geben

100
i

15 19.230 3.25 < 100i< 4.50 3.75 3.996 4.050
25 17.678 3.25 < 100f< 4.50 3.75 4.003 4.048
55 15.788 3.25 < 100i<4.50 3.75 4.003 4.039
45 13.192 3.375<100i< 4.625 4.25 4.001 4.033
55 9.798 3.375 < 100 i< 4.62-5 4.25 3.998 4.023

Der genaue Wert der gesuchten Zinsfüsse ist
immer 4 %.

In der nächsten Tafel sind für lebenslängliche
Leibrenten dieselben Zahlenwerte wie in der ersten Tafel

(Seite 27) gegeben, und für die Sterbegrundlage im
Text-Book die entsprechenden Zinsfüsse mittels der
Formeln (7), (8) und (5) berechnet.

Der genaue Wert ist immer: 100 i 4.00, und die

Resultate lassen sich direkt mit den entsprechenden in
der ersten Tafel (Seite 27) vergleichen.



— 42 —

Gegebene Gewählter Die Formeln

T
Leibrenten- Ausgangs- (7), (8) und (5)

iL/ barwerte: wert: geben:
Ctx ICO i 100 i

15 19.403 3.75 3.994
25 17.949 3.75 4.001
35 16.221 3.75 4.001
45 13.900 4.25 3.998
55 11.024 4.25 3.993
65 7.850 4.25 3.980
75 4.846 4.375 3.939

Yon dem höchsten Alter (75 Jahre) abgesehen,

geben also unsere Formeln (7) und (8) die gesuchten
Zinsfüsse mit sehr scharfer Annäherung. Die Formel (4)
scheint bessere Werte der gesuchten Zinsfüsse bei
lebenslänglichen als bei abgekürzten Eenten zu liefern, und in
der Tat gibt diese Formel gewöhnlich die Leibrenten-
barwerte verhältnismässig schärfer für lebenslängliche
als für abgekürzte Eenten. Wie erwähnt, hat auch
J. F. Steffensen seine Formel nur für lebenslängliche
Eenten gegeben.

Unsere Auseinandersetzungen für die Herleitung der
Formeln (7) und (8) dürften auch für die Lösung des

sogenannten Zinsfussproblems bei der Leibrente von
Nutzen sein. Die Aufgabe ist hier, wenn die Kommuta-
tionszahlen für einen Zinsfuss i vorliegen, einzelne
Leibrentenwerte für irgendeinen Zinsfuss it zu berechnen.

Wir bezeichnen mit alx.—, den gesuchten Leibrenten-
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wert (Zinsfuss it); und mit h die Differenz der Zinsfüsse:
h i1—i. Wir haben dann wie bekannt:

v, — v (1 + hv)"1
1 +il

und
n i n

-j~.

(i + hv)->=y^~a+ m-'
1 % 1 x

Untersucht man die Kurve der diskontierten Zahlen

(Dx), so findet man, dass sie für die in der Praxis gewöhnlichen

Zinsfüsse durchaus konvex verläuft. (Wenigstens
der Verfasser hat nur konvexe Dx-Kurven gesehen.)

Wir schreiben:

n „Y-*+t- (1 + ho)-1
1 — (1 + Ivo) " ^- ho

Die Grösse

Hl),

2 (i + H <

2- x+1

D,
(1 + ho)

V (1 + ho)' -(

entwickeln wir in eine Reihe nach Potenzen von hv

und verfahren in ganz analoger Weise wie bei der

Herleitung der Formel (8), indem wir die Reihe nach
der zweiten Potenz von hv abbrechen und die zweite

Abgeleitete der Punktion durch dasselbe Näherungsverfahren,

wie oben bei Formel (8), bestimmen.
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Wir bekommen dann ganz einfach:

Die folgenden Beispiele beleuchten die Verwendbarkeit

der Formel (9). Für die Grundlage im Text-Book
sind die Kommntationszahlen für den Zinsfuss 4 %
überall als bekannt betrachtet (i=0.04).

Lebenslängliche Leibienten : n a> — x ax

X

n
101 -

— X

it 0.035 h - 0.005 " Ö vT 1! 0.005

Formel (9) Genau Fehler Formel (9) Genau Fehler

15 86 21.122 21.134 —0.012 17.903 17.900 0.003
35 66 17.346 17.349 —0.003 15.210 15.208 (1.002
55 46 11.528 11.528 —0.000 10.556 10.556 0.000
75 26 4.959 4.958 —0.001 4.740 4.739 0.001

D Man rechnet gewöhnlich einfach:

1_.(1 a+'}"
(1+'TV
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Abgekürzte Leibrenten: n 30 a^.30.

X

ii= 0.03 h —-0.01 ii= 0.05 h 0.01

Formel (9) Genau Fehler Formel (9) J Genau Fehler

15 18.044 18.046 -0.002 14.295 14.296 -0.001
35 16.632 16.633 -0.001 13.323 13.323 0.000
55 11.981 11.985 -0.004 10.072 10.073 -0.001
65 8.396 8.394 0.002 7.358 7.361 -0.003

« 90 — x oi:5o^|

X n
90-a;

IICO©oII•5 — 0.01 ii 0.05 h 0.01

Formel (9) Genau Fehler Formel (9) Genau Fehler

15 75 23.081 23.140 —0.059 16.596 16.588 0.008
35 55 18.601 18.608 —0.007 14.301 14.297 0.004
55 35 12.065 12.061 0.004 10.115 10.113 0.002 :

Die Formel, die in erster Linie auf die abgekürzten
Eenten zielt, ist auch für lebenslängliche Renten gut
verwendbar, wenn die Zinsdifferenz nicht zu gross ist.
Wie man sieht, bekommt man die besten Resultate,
wenn die Zinsdifferenz h positiv ist.
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