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Untersuchung

einer versicherungsmathematischen Funktion.

§ 1. Der Barwert der kontinuierlichen Leibrente als

In einer vielseitigen Abhandlung «Reserve und
Bentenbarwert als analytische Funktionen» (Mitteilungen

der Vereinigung schweizerischer Versicherungs-
mathematiker, 13. Heft, Juni 1918) stösst Prof. Friedli
auf eine analytische Funktion S(x, z), welche hier
eingehender untersucht werden soll. Einleitend folgen wir
seinen Ausführungen bezüglich des Barwertes der
kontinuierlichen Leibrente. Dieser Barwert ergibt sich aus

der Formel

Führt man die Intensitätsfunktionen der Verzinsung
und Sterblichkeit ein:

Von Dr. W. Michel, Bern.

analytische Funktion.

(»)

v — e,-ä
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so geht (a) über in

/oo~
/ (fx+fi~d)at

e
Jo

Als Grundlage für die Absterbeordnung nehmen wir
das Gompertz-Makehamsche Gesetz an:

(c) lx+l Ks°+lf+t, also

('d) f-lx+i log— +Ct+l log clog-
s g

dann wird

(e) / (ftx+t dt cx !og — b | iog — b d j x -\- <? iog —- c

J o g \ s / g

Ferner führen wir der Eeihe nach folgende neue Grössen

ein:

ö + log-^
(A) X — <f log — (B)u Xcc (G) k -

cj log c

Vermittels derselben und der Formel (e) geht (b) über in

e*

Xk log c / '

e'-QAV

(/) ax I e Uu" 1 du oder

(9)
X'C log G

Damit ist der Barwert der kontinuierlichen
Leibrente als analytische Funktion aller auftretenden Grössen

dargestellt. Von diesem Ausdruck ausgehend, unter-
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sucht Prof. Friedli namentlich die Wirkung, die eine

Variierung der Konstanten s des Makehamschen
Gesetzes hervorruft. Diese Konstante s tritt, wie aus den

Substitutionen (A), (B), (C) ersichtlich ist, nur in der
Grösse k auf. Daher ist nach (C)

d a„. d ax dk 1 d ax
(h)

ds dk äs s log c dk

und nach

fig, _
ßl | dQiW

lo £
dk Xk log c

1 dk ^
X

Führen wir nun die neue Funktion

(D) 8 (X, k) dQ^k) + log I Q, (k)

ein, so wird nach (i) und (h)

« il-T^rSii-k)

<" §=üüiWSft,t)
Zur weiteren Untersuchung dieser Ableitungen (k)

und (T) ist daher vor allem eine genaue Kenntnis der
Funktion S (X, k) notwendig. Bei der Herleitung der

Haupteigenschaften empfiehlt es sich, X und k gleich
als komplexe Variable zu betrachten, um so die
Überlegungen der Funktionentheorie verwenden zu können.
Wir setzen deshalb X x; k z, also S (X, k)

S (x, z); Q; (k) Q (x, z).
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§ 2. Definition der Funktion S (x, z).

Die Funktion S(x, z) ist nach (D) § 1 definiert durch

I. S (x, z)
dßfo'S) _ log xq (X) ^

dz

wo Q(x, z) die unvollständige Gammafunktion bedeutet.

1. Q (x, z) I e~u u"~l du
Jx

d Q (x, z) f°°_
2 / e " u* log u du, somit wird

öe J«

f°° U
IL S (%, z) je u uz 1 log — du

J*

Wie aus der Theorie der /-Funktion bekannt ist,
hat man den Integrationsweg in der «-Ebene folgenden
Einschränkungen zu unterwerfen:

1. Er darf den Ursprung nicht umschlingen.
2. Für 91 (z) <C 0 darf er nicht durch u 0 hindurchgehen.

8. Für grosse Werte von | u | muss immer 91 (u) > 0

—— arc u — ^ir«->-oo angenommen

werden (d > 0).

Unter Beachtung dieser drei Bedingungen darf der

Integrationsweg sonst willkürlich gewählt werden.
Dann stellt das Integral II. für jedes endliche x 4= 0

eine ganze Funktion von z dar. Wir wollen vorerst einige
Haupteigenschaften dieser Funktion S (x, z) aus der
Definition II. herleiten.
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§ 3. Rekursionsformeln.

Die partielle Differentiation nach x gibt nach
bekannten Regeln:

III. AISX^L S' (X, z) —~ fe-u u*-1 du
ÖX XJx

Dies integrieren wir partiell, indem wir setzen:

ü er« uz; dü e^" (zu"-1 — u") du

du u
dV — —; V log u — log x — log —

u x

Der ausintegrierte Teil

UV e "u* log —
x

verschwindet, und man erhält

5" (x, z) I e 11 u" 'log— du je " uz log — du
XI X XI X

Jx J X

Dies ist aber nach der Definition II. nichts anderes als

IV. S'(x,z) — S(x,z) -S(»,* + l)
X X

Aus III. folgt durch Multiplikation mit x

(B) xS' (x, z) — —Je~u u"~l du

Differentiert man hierin beide Seiten nochmals partiell
nach x, so erhält man:
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Y. — (xS1 (x, z)) S" (x, z) + S' (x, z) e~x af~l
Ö X

Analog erhält man aus IY.

(4) x S' (x, z) — z S (x, z) — S (x, 2 + 1)

(as S' (x, z)) 2 8' (x, z) — S' (x, z + 1);
öcc

dies ist nach IV.

—
z(— S(x,z) —— S (x, 2+1)) —(—^ S (as, 2+1) —-"-(S(a:,2 + 2))
\x x / \ x x

also

VI. - (x S' (x, z))= — 8 (x,z) ^—S (x, 2+1) + — S (a;, 2+2)
ÖX X X X

Setzt man für die linke Seite den in V. gefundenen
Wert ein, so erhält man nach Multiplikation mit x die

in x und z gültige Identität:

VII. 2s S (x, z) — (22+1) S (x, 2+1) + 8 (x, 2+2) — tr* af 0

Kennt man also die Werte der Funktion S(x,z)
etwa im Fundamentalstreifen 0 < 91 (z) < 2, so lassen

sich aus dieser Identität zunächst die Funktionswerte in
den anliegenden Streifen —1 <C 91(2) <0 und 2< 91(2) <3
rekursiv berechnen vermittels der Formeln.

VIII. 22 S (x, z) (22+1) S (as, 2+1) — 8 (®, 2+2) + e"1 af

IX. S(x, 2+2) e~:*af—2s S(x, 2)+ (22+1) S(x, 2+1)

Speziell ist S (x, 2) e~x+ S (x, 1)
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Durch fortgesetzte Rekursion erhält man so den

ganzen Wertevorrat von S(x, z).

Es ist leicht, eine weitere Rekursionsformel zwischen

den S-Funktionen allein aufzustellen. Multipliziert man
einmal VII. mit x und ersetzt ein andermal in VII. z

durch z+1, subtrahiert beide Gleichungen, so

erhält man:

X. xz2S(x,z)— (22+ (2z +1) (x +1)) S (x, » + 1) +
+ (x + 2 z + 3) S (x, z + 2) — S (x, z + 3) 0

wodurch vier S Funktionen rational miteinander
verknüpft sind.

Um diese Identität zur rekursiven Auswertung
verwenden zu können, muss man aber jetzt vorerst die
Funktionswerte von S(x, z) in einem Fundamentalstreifen

von der Breite 3 kennen, etwa im Streifen

0<9t(*)<3.

Aus X. erhält man speziell für z — 0 die Relation

(x +1) S(x, 1) — (a + 8) S(s,2) + S («, 8) 0

§ 4. Partielle Differentialgleichung.

Von der Formel V. ausgehend, lässt sich leicht die

von Prof. Friedli aufgestellte partielle Differentialgleichung

herleiten. Es war dort

(.A) x 8" (x, z) + 5" (x, z) e~x xz~l

Differentiert man dies nochmals partiell nach x, so
bekommt man

(B) xS"' (x,z) + 2S" (x, z) — e~xaf~l + (z—1) e~x af~2
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Addiert man die mit (x+l—z) multiplizierte Gleichung
A zu der mit x multiplizierten Gleichung B, so
erhält man

VT ,o \ d2S(x,z) s6S(x,z)XL x—sva—^ (a5+3—«) x —r~a—^ (® + l—2) I—
ö o? da?

Die Funktion S(x, z) ist ein Integral dieser

Differentialgleichung. Bin weiteres partikuläres Integral
ist die einfache Funktion

J (x, z) F (z) log x + G (z)

wo F(z) und G(z) willkürliche Funktionen von z allein
sind.

§ 5. Entwicklungen von S(x,z).

Um die Funktion S(x, z) numerisch berechnen zu
können, wollen wir dieselbe auf eine für die Auswertung
brauchbarere Form bringen. Allerdings hat man dabei
den Variabilitätsbereich der Veränderlichen x und z

meist wesentlich einzuschränken. Prof. Friedli gibt die

folgende Entwicklung von S(x, z) an.

1 1 1

+
XII. 8 (x, z) r(z) (f (z) — log x) + e ^ 2 + 1 2 + S

s=o
*(« + l)-••(« + «)

die offenbar für 0 < |®| < und alle Werte von z mit
Ausnahme von 2 0, —1, —2, gilt. Die hier
auftretende Eeihe konvergiert zwar ziemlich rasch, besitzt

jedoch schwerfällige Koeffizienten.

Nun lässt sich aber sowohl das Integral II. wie auch
die Entwicklung XII. auf eine für die Auswertung viel
günstigere Form bringen. Damit die folgenden Opera-
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tionen erlaubt sind, schränken wir den Variabilitätsbereich

von x und z genügend ein und nehmen vorerst
9f(«)>0 an. Es sei also x ein Punkt in der rechten
it-Halbebene. Dann ziehen wir den durch u 0 gehenden
Halbstrahl durch x und wählen denselben als

Integrationsweg, was nach der Bemerkung in § 1 statthaft ist.
Wir setzen also u tx, du xdt, wo t positiv reell ist.
Für u x wird t 1, für u — oo wird t oo, und das

Integral II. geht über in

XIII. S (x, z) afj7~ix f-1 log t dt

wobei die neue Integrationsvariable t jetzt die positiv
reelle Achse von 1 bis oo durchläuft. Für 91 (x) > 0 hat
dieses Integral für jeden endlichen Wert von z einen
Sinn. Nun nehmen wir ausser 91 (x) > 0 auch noch 91 (z)

> 0 an. Dann darf der Integrationsweg durch den

Nullpunkt gelegt werden, und man kann so XIII.
zerlegen in

(5) S(x, z) xz fe~lx f~l log t dt — af fe~tx t2—1 log tdt
J o J o

Nach Nielsen «Handbuch der Theorie der W-Funktion»
(§ 69) ist

(6) afJe~tx t-1 log tdt r (z) (ip (z) — log x)

Das zweite Integral in (5) konvergiert unter der
Annahme 91 (z) > 0 für jeden endlichen Wert von x, also
selbst für 0, und stellt somit eine ganze Funktion von
x dar, die wir in eine Taylorsche Reihe entwickeln
können. Um diese zu erhalten, gehen wir zunächst
von der Funktion aus:
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(7) T (x, z) je~tx f~l clt
J o

dann ist offenbar

f'e--,-'he,a,
dz L

Nun ist

Zmj
6

e-'x 7 (—1)"— fnl
n—0

Setzt man dies in (7) ein, so erhält man, da unter der
gemachten Annahme (z) > 0 gliedweise Integration und
Differentiation erlaubt ist,

V,(—l)n f1 X7(—1)" xn
(9) t (®,.) > L. X" / r+-1 dt=V—± ——w! /„ '1 w! w+2

« 0 •/ u n=0

(10)
d T(-x'rS) 1)n ^

" w! (n+2)2
n=0

Somit erhält man nach (8) und (10)

"i (—1)" xn+3
(11) —af e tx f 1 log t dt y] -

n=0
w! (w-M)

eine Eeihe, die sehr gut konvergiert. Setzt man (6) und

(11) in (5) ein, so erhält man

(—1)" xn+z

n\ (tt+2)2
XIV. S(x, z) r(z) (v (2) - log x) +2"

71 0

Diese Formel eignet sich zur numerischen Berechnung

von S(x, z) sehr gut. Nun sieht man, dass man die
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vorhin gemachten Einschränkungen 9t (x) >0, 9t (z) > 0

wieder fallen lassen kann; denn die rechte Seite von
XIV. hat für jedes endliche x 0 und jedes z^O,
—1, —2, einen Sinn. Nach bekannten Sätzen der

Eunktionentheorie kann man deshalb zur Berechnung
des Integrales II. den bequemeren Ausdruck XIV. wählen,
und zwar für alle Werte von x und z, für welche dieser

Ausdruck existiert. Aus dieser Formel leitet man ebenfalls

leicht alle Resultate von § 2 und § 3 her.

Durch Vergleichung der Formeln XII. und XIV.
erkennt man so die Identität

1 1 1

xv. o_xy^
+ J+i+'"+JVs

af4.f =yHT
z(z+l)... («+«) ^ nl (n + zf

die man, wenn auch mühsam, direkt beweisen könnte,
indem man links die Funktion e~x durch die zugehörige
Potenzreihe

V±2?-*^ kl
k 0

ersetzt, die beiden Reihen miteinander multipliziert und
das Produkt nach steigenden Potenzen von x ordnet.

Wie eben bemerkt, versagt die Darstellung der
Funktion S(x, z) durch die Ausdrücke XII. und XIV.
für z 0 und alle negativ ganzzahligen Werte von z.

Der Grund dieses Versagens liegt darin, dass man bei
der Umformung des Integrales XIII. den Integrationsweg

durch den Nullpunkt gelegt hat, was eben für diese

Werte von z nicht erlaubt ist. Nach der Definition II.
existiert aber S(x, z) auch für die Werte z 0, —1,
— 2, Man hat deshalb nach einer anderen Darstellung

zu suchen.
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§ 6. Die Funktionen S(x, —k) für ganzzahliges k > 0.

Man gelangt von der Formel XIV. durch eine
leichte Umformung zunächst zu einer konvergenten
Entwicklung von S (x, 0). Wir nehmen aus der Reihe

af
das erste Glied -5 heraus, welches für 2 0 unendlich

z2

gross wird. In der neuen Reihe ersetzen wir n durch
n-\-1, und man kann so XIV. in der Form schreiben

m s <»,, g)=^rw (" -log x)+:* +^ nlo (n + Z+tf

Für 2=0 konvergiert jetzt die neue Reihe und
stellt eine ganze Funktion von x dar. Bedeutet G die

2
71

Eulersche Konstante und s2 —, so ist nach Nielsen
6

(J2 1 o

(13) 2 r(z) r(2+i) 1—Gz + —2- 2s+0 (2s)
Z

(14) Zip(z) — Zip(z +1) — 1 —1 —Gz + S22a+0(23)

Nun ist der Zähler auf der rechten Seite von (12)

(15) Z(z) # T (2) (1p (2) — log x) + 3?

jT(2+1) (zip (2+I) — 1 — 2 log x) + Xs

eine im Innern des Einheitskreises |«| < 1 reguläre Funktion

von 2. Wir entwickeln dieselbe in eine Potenzreihe,
wobei uns die Kenntnis der drei ersten Glieder genügt.
Es ist

(16) af 1 + log a:-2 + —log2 x-^+ 0(2®)
z
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C2-)- s
(17) r(z+1) («V(«+1)—1) _1 + —Z_i .*a + 0(*B)

(18) —z r(z+l) log x —log x-z+G log x-z2 + 0(z3)

(19) Z (z) + G log x + j log2 xjz2+ 0 (23)

Setzt man (19) in (12) ein, so wird

r? i o i ^ / i\'! «.»+«+1

(20) S + C log + - log» -2^ + 0M
n 0

Dieser Ausdruck ist jetzt für z 0 regulär, und
man erhält:

Analog erhält man für ganzzahliges k > 0 eine

konvergente Darstellung von S(x,—k). Wir nehmen in XIV.
aus der Reihe das gefährliche Glied

(—1)" a*+t

~~k\ (;k+zf

heraus, welches für z — — k unendlich gross wird. Was

übrigbleibt, verhält sich in der Umgebung von z —k
regulär. Wir schreiben also XIV. in der Form:

iV V+a l IV r"+z
(2.) S(M - rw -,„gl)+y i+2)U,» ^»=0

wo der Index beim Summenzeichen bedeutet, dass der
Wert n—k auszulassen ist. Setzt man zur Abkürzung
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z-\-k z', so wird für z —k, z' — 0. Wir untersuchen
also die Funktion

C jV'
(22) Ü (x, z) r(z) (f (z) — log x) + - — •

+

kl z'2 r{z'—k) (y> (z'—k) — log x) + (—1)* ®"
~ kTz^

in der Umgebung von z —k oder 2' 0. Es ist

(23) r(z') (2'—1) (2'— 2). -(z1— Je) T (z'~ k)

(24) +

Unter Berücksichtigung dieser beiden Beziehungen so
wie der Gleichungen (18) und (14) geht (22) nach

Erweiterung mit (2'—1) (z'—'2)- • •(z'—Je) über in

(25) ü(x,z)

fc!r(«'+l) »W+l)—1 + - : + ••• + -, — «'log® +
l 1—2 k—z I

+ (—1 )*(«'—1 )••(«'— k) x"
~

fc! («'—1) («'— 2) — («'— fc) 2'2

Ferner ist

(26) (2'—1) • - - («'— k)

k k

(—1 )* k! + (—1 )k~l fc!2- •«' + (—1)"~2 fc! 2 *z'2 + 0 (^'3)

4 1 Z>4=1

2' 2' vS 1 vu 1

127) ;+•••+- ;= A^«' + A^^2+0(2'3)
1 — 2' k —z'^i V-

4=1 4=1
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(26) unci (27) in (25) eingesetzt gibt

(28) U(x,z)ik k
1 |

z' ip (z'+1)—1 — z'hg x+Y) • F-fV-.2- • «'2 +
1 1

k
1

^
1

.'2 I _\_ n /V3z'2 af'+O (F3)

l
' U

(z'—1) (z1— 2)- • • (z'—k) z'2

Nach (15) unci (19) ist

r(z'+1) {z' ip (ä'+1) —1 — z' log + 3?'
(29) Vx{x,z)

(ß 4- $ 1
2

f- C log x H— log2 x + 0 (z1)
2 2

Weiter ist nach (13) und (16)

k „ k
i

F2! af'

F2 (x, z) ^ i=i ^iz

(fr
J ^

1 l f 1
^

1 ]

Z7+2o- 2Z^ f^+io§®• ^+0 (*,3)

i=i t=i J (i=i i>i=i J

_

(30) F2 (x, Z) -+2TT + Z Jl ~ l0§ 33127 +'0
1 1 1 1 Z>1=1 1 1
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Die zweite und dritte Summe kann man noch
zusammenfassen :

1 y-i 1 X1 1 1 1 1

+ ^ ~ii= ^=n+TT2+TT
i=l l>i=t l>i~l

3+"'+l.fc

+
1

2-2 2-8 ' 2-k

3-3 3-k

k-k

Bedenkt man, dass

/01N TJ, ^ V,(x,z)+V2(x,z) + 0(e')
<3)>

y-i)(,.-a)-(,'-t) ,st'

so erhält man aus (21), (22), (29), (30) und (31) für z'= 0

oder z= — k die gewünschte konvergente Darstellung:

XVII. S(x,—k)
k k

l I« Vi I, .l,o' x
-lf
kl

i=l !ii=i l i=l
oo f

>(ft)

"l
^

OO

2
2T+24+(C-27[loga:+¥IogS

(—1)" xh-"

nl (n—k)
n=0

Für k > 1 lassen sich diese Funktionen S(x, —k)
mit Hilfe der in § 2 gefundenen Formeln der Beihe nach
aus den bekannten Ausdrücken für 8(x,0), S(x, 1),



8 (x, 2) auch leicht rekursiv berechnen. So folgt aus den

Formeln VIII. und X., indem man dort nacheinander

z —1, —2, —3, setzt:

XVIII.
S(x, —1)= —S(x, 0)—S(x,l) + oder

XIX.

xS(x,—1) —xS(x, 0) — (®+l) S(x, 1) + S(x, 2)

4 S (x, —2) — 3S(x, —1 )—S(x, 0) + -%-
x

4 a:S(x,—2) (1—3x)S(x,—1) + (1—x) S (x,0) + S(x, 1)

usw.

§ 7. Beziehungen zum Integrallogarithmus und zur
unvollständigen P-Funktion.

Aus XIV. erhält man für z — 1

(—1)" af'+
(32) S(x, 1) — C — loga;+2-

nl (w+1)

Anderseits lautet die bekannte Eulersche Entwick
lung für den Integrallogarithmus:

n 0

(33) l( (e *) — C + log x

Daher ist

G+ log x +2
^ ^

(_!)»+1 xn+l

(«+!)! «+1

XX. S (x, 1) —
w 0

(ra+l)! w+1 -1,(0

Zwischen der Funktion S(x, z) und der
unvollständigen /"-Funktion Q(x, z) hat man natürlich die De-
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finitionsgleichung I. Bine zweite Belation, welche
Q (x, z) als rationale Verbindung zweier S-Funktionen
darstellt, leitet man leicht aus der Definition (1) von
Q(x, z) her.

Wir nehmen wieder vorübergehend 9t (x) > 0 an,
führen wie in § 4 eine neue reelle Integrationsvariable t
ein vermittels u tx, du — x dt. So wird

roo roo
(34) Q (x, z)= e~u uz~l du= xz e~lx dt

•>'x Jl

Dies integrieren wir partiell, indem wir setzen

U e~'x f; dlJ —e~tx (xf—zf-1) dt; dF —; V— log t
t

Weil der ausintegrierte Teil

ÜV 0—tx 43tz log t

verschwindet, so erhält man

/OO
/too

e~tx f log tdt — zaf I e~lx log tdt

was nach XIII. nichts anderes ist als:

XXI. Q(x,z) S(x,z+i)—zS(x,z)

Setzt man hierin für S(x, 2+1) und S(x, z) die

zugehörigen Ausdrücke XIV. ein, so erhält man nach
leichten Umformungen die bekannte Beziehung

<3(a,s) r(*)-2
n=0

(—1)" xn+z

nl n+z

Hingegen erhält man für ganzzahlige nicht positive
Werte von z nach XVII. und XXI. eine einfache Formel
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für Q (x, —k), die im oben zitierten Handbuch von
Nielsen nicht angeführt ist. Nach XXI. ist

(36) Q (x, —k) S (x, — (k — 1 + kS (x, — k)

Für den Spezialfall 1t 0 liefert dies zunächst

(37) Q(x,0) S(x,l) -li(<r*)=-C- V M)»+1 „n+l
1 (ra+1)! n-j-l

n — 0

Führt man in (36) rechts für k—1 und fc(/c7> 1) die

Ausdrücke XVII. ein, so erhält man nach einigen
Umformungen :

XXII. Q(x, —k) —
(—1)'£

k\

1

— C — log x
i 1

(_1)» xn~*
(k)y

n! n — k
M 0
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