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Untersuchung
einer versicherungsmathematischen Funkfion.

Von Dr. W. Michel, Bern.

§ 1. Der Barwert der kontinuierlichen Leibrente als
analytische Funktion,

In einer vielseitigen Abhandlung «Reserve und
Rentenbarwert als analytische Funktionen» (Mittei-
lungen der Vereinigung schweizerischer Versicherungs-
mathematiker, 18. Heft, Juni 1918) stosst Prof. Friedli
auf eine analytische Funktion S(zx, 2), welche hier ein-
gehender untersucht werden soll. Einleitend folgen wir
seinen Ausfithrungen beziiglich des Barwertes der kon-
tinuierlichen Leibrente. Dieser Barwert ergibt sich aus
der Formel

_ 1 *°
(@ = f oL, dr
= Jo

Fiabrt man die Intensitétsfunktionen der Verzinsung
und Sterblichkeit ein:

dl .
V= 6—6 ﬁt— - —'AL"’sc—l-t’ d- h.
z+-¢
T
I ~—/1‘a:+t‘”
z-+T — 0

l

i



so geht (a) tiber in

o i En“’a:-l—l'E' 0) at
0 G, - / ;T

0

Als Grundlage fiir die Absterbeordnung nehmen wir
das Gompertz-Makehamsche Gesetz an:

(¢) by = K&+ ¢t also

(d) thaq = log —1— + ¢**log ¢ log 1
-+t s g

dann wird

s [T 1 1 1
(e)ﬂ (ot +0) db=—¢ log—g"+ (Iog_,{ -+ O>T + ¢ logg ¢’
Ferner fithren wir der Rethe nach folgende neue Gros-

sen ein:
1
1 0 -+ log?
(4) A=¢ logE (B) u=2Ac¢ (C) k= T g

Vermittels derselben und der Formel (e) geht (b) iiber in

(f) t, = ig"' ':_u W du  oder
© Mloge [,
_ & (k)
(g) Gy = 2‘]‘; IOgC

Damit ist der Barwert der kontinuierlichen Leib-
rente als analytische Funktion aller auftretenden Grossen
dargestellt. Von diesem Ausdruck ausgehend, unter-
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sucht Prof. Friedli namentlich die Wirkung, die eine
Variierung der Konstanten s des Makehamschen Ge-
setzes hervorruft. Diese Konstante s tritt, wie aus den
Substitutionen (4), (B), (C) ersichtlich ist, nur in der
Grosse k auf. Daher ist nach ()

da, oa, dk 1 oa,

h o= =
) ds ok ds sloge ok

und nach (g)

. oa ¢! 0@, (k) 1
8 log > @,
(9 ok A log ¢ ok o8 A @ (k)

Fihren wir nun die neue Funktion

0, (k)

@ sS@h=—"

1
+ log - Q, (k)
ein, so wird nach (2) und (h)
oa, ¢
ok Afloge

(k) S (4, k)

da, ¢

ds — sA*(log )

@ S (A, k)

Zur weiteren Untersuchung dieser Ableitungen (k)
und (1) ist daher vor allem eine genaue Kenntnis der
Funktion S (4, k) notwendig. Bei der Herleitung der
Haupteigenschaften empfiehlt es sich, 4 und %k gleich
als komplexe Variable zu betrachten, um so die Uber-
legungen der Funktionentheorie verwenden zu koénnen.
Wir setzen deshalb 1= 2; k=2, also S (A, k) =

=5 (2, 2); @, (k) = Q (2, 2).
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§ 2. Definition der Funktion S (z, 2).
Die Funktion S(z, z) ist nach (D) § 1 definiert durch

g S(x,z):o—Qo—(?—ﬂ-ﬁlong(m,z)

wo Q(z, 2) die unvollstindige Gammafunktion bedeutet.
1. Q (z, 2) =fe““ W du

00 (x, 2 e __
2. —Q(- ) = f e ! log w du, somit wird
T

0z

11 S (z, 2) = / e g1 logl du
T

Wie aus der Theorie der I'-I'unktion bekannt ist,
hat man den Integrationsweg in der u-Ebene folgenden
Einschrinkungen zu unterwerfen:

1. Er darf den Ursprung nicht umschlingen.

2. Far RN (2) << 0 darf er nicht durch %= 0 hindurch-
gehen. o

8. Tir grosse Werte von | % | muss immer R (u) > 0

7T P 7
_(§_a> <. arc u § (§—0> fiir w —» oo angenommen
werden (0 > 0).

Unter Beachtung dieser drei Bedingungen darf der
Integrationsweg sonst willkiirlich gewiihlt werden.
Dann stellt das Integral II. fir jedes endliche x40
eine ganze I"unktion von z dar. Wir wollen vorerst einige
Haupteigenschaften dieser Funktion S (z, 2) aus der
Definition II. herleiten.
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§ 8. Rekursionsformeln.

Die partielle Differentiation nach z gibt nach be-
kannten Regeln:

1 (<%
I, ——~ = 8" (x,2) = — ;fe_“ W du
@

Dies integrieren wir partiell, indem wir setzen:
U=¢e¢"u; dU=¢" (2" — o) du

d
deJi; V=logu—logw=logi
* ©

Der ausintegrierte Teil

UV =

R oo

eyl lo ——u ]
g

. T |z

verschwindet, und man erh#lt:

00 1 oo
S (CU, Z) — %fe—u uz—-l IOg% dw — E/e“l‘uz log—g du
T @

Dies ist aber nach der Definition II. nichts anderes als

Iv. S’(m,z)=—i—8(m,z)——%8(m,z+1)

Aus III. folgt durch Multiplikation mit z

(3) xS’ (z, 2) = —-/:"““ W du

Differentiert man hierin beide Seiten nochmals partiell
“nach @, so erhilt man:



0
V. S (28 (0,8) = 8" (@4 + 5 (3,8 = %

Analog erhélt man aus IV.
(4) xS (x,2) =28 (x,2) —S (2,2 + 1)

0
= (S (x,2)) =285 (z,2) — 8" (z,2 +1);

dies ist nach IV.

1 1 |
— z(i S (2,2 —— S (x, z+1)) —(i S (z, 2+1) mlﬁS(fc,z+2)>
2 T T &
also
) y 2 2z2+1 1

Setzt man fiir die linke Seite den in V. gefundenen
Wert ein, so erhdlt man nach Multiplikation mit = die
in ¢ und 2 giltige Identitat:

VIL 28 (z,2) — (2z241) S (z,2+1) + S (z,2+2) —e 2 =0

Kennt man also die Werte der Funktion S(z, z)
etwa im Fundamentalstreifen 0 <Z R () < 2, so lassen
sich aus dieser Identitit zuniichst die Iunktionswerte in
den anliegenden Streifen —1<C R(2)<<0 und 2 < R(2)<3
rekursiv berechnen vermittels der Formeln.

VIIL. 28 (z,2) = (22+1) S(z,2+1) — S (z,2+2)+ ¢ 7?
IX. S(z,2+42) = e a*—2 S (=, )+ (22+1) S(z, 2-+1)
Speziell ist S (z,2) = e+ 8 (1)
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Durch fortgesetzte Relkursion erhélt man so den
ganzen Wertevorrat von S(z, 2).

s ist leicht, eine weitere Rekursionsformel zwischen
den S-Funktionen allein aufzustellen. Multipliziert man
einmal VII. mit 2« und ersetzt ein andermal in VIL. z
durch z--1, subtrahiert beide Gleichungen, so er-
halt man:

X. 222 8(z, 2) — (4 (2241) (z +1)) S(z, 2+ 1) +
+(x+22-+8) S(z,2+2) —S(z,2+8)=0
wodurch vier S Funktionen rational miteinander ver-

kniipft sind.
Um diese Identitiat zur rekursiven Auswertung ver-
wenden zu konnen, muss man aber jetzt vorerst die

Funktionswerte von S(z,2) in einem Fundamental-
streifen von der Breite 8 kennen, etwa im Streifen

0T R () <38.
Aus X. erhilt man speziell fiir z = 0 die Relation

(+1) S(x, 1) — (@ +8) S(z,2) + S (2,8) =0

§ 4. Partielle Differentialgleichung.

Von der Formel V. ausgehend, lidsst sich leicht die
von Prof. Friedli aufgestellte partielle Differentialglei-
chung herleiten. Hs war dort

(4) xS (x,2) + 8'(x,2) = ¢ z*!

Differentiert man dies nochmals partiell nach z, so be-
kommt man

(B) #8"'(2,2)+28" (z,2) = —e¢ 2" (z2—1) e 5" 2
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Addiert man die mit (z-1—2) multiplizierte Gleichung
4 zu der mit z multiplizierten Gleichung B, so er-
hilt man

, 0°S(z,2) 32 S (z, )

XI. = + (2+3—2) 52 66’(3: g

+ (g4+1—7) 222

Die Funktion S(z, 2) ist ein Integral dieser Diffe-
rentialgleichung. Kin weiteres partikuléres Integral
ist die einfache Funktion

J(2,2) =F() log z+G(2)

wo F(z) und G(z2) willkiirliche Funktionen von z allein
sind.

§ 5. Entwicklungen von S(z, 2).

Um die Funktion S(z, 2) numerisch berechnen zu
konnen, wollen wir dieselbe auf eine fiir die Auswertung
brauchbarere Form bringen. Allerdings hat man dabei
den Variabilitdtsbereich der Verdnderlichen z und z
meist wesentlich einzuschréinken. Prof. Friedli gibt die
folgende Emntwicklung von S(z, 2) an.

XII. S(z,2) =I'(2) (y (¢) —log z) + e—“’Z — g7t

§=0

die offenbar fiir 0 < || < oo und alle Werte von z mit
Ausnahme von z = 0, —1, —2, ... gilt. Die hier auf-
tretende Reihe konvergiert zwar ziemlich rasch, besitzt
jedoch schwerfiillige Koeffizienten.

Nun lasst sich aber sowohl das Integral I1. wie auch
die Entwicklung XII. auf eine fiir die Auswertung viel
giinstigere Form bringen. Damit die folgenden Opera-
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tionen erlaubt sind, schrinken wir den Variabilitéts-
bereich von z und 2z geniigend ein und nehmen vorerst
R(z) >0 an. Hs sei also z ein Punkt in der rechten
u-Halbebene. Dann ziehen wir den durch % = 0 gehenden
Halbstrahl durch z und wiihlen denselben als Integra-
tionsweg, was nach der Bemerkung in § 1 statthaft ist.
Wir setzen also w = tz, du = xdt, wo ¢ positiv reell ist.
Fir w = o wird t=1, fiir w =occ wird ¢ = oo, und das
Integral II. geht tber in

XIII. 8 (5,8) = wzfe—‘” ! log t dt
1

wobel die neue Integrationsvariable ¢ jetzt die positiv
reelle Achse von 1 bis co durchlauft. Fir R (z) > 0 hat
dieses Integral fir jeden endlichen Wert von z einen
Sinn. Nun nehmen wir ausser R (z) > 0 auch noch R (2)
> 0 an. Dann darf der Integrationsweg durch den
Nullpunkt gelegt werden, und man kann so XIII. zer-
legen in

oo 1
(5) S(z,2) = a° f e =1 log t dt — a° / e ¢t log t dt
0 0
Nach Nielsen «Handbuch der Theorie der I-Funktion»
(§ 69) ist

6) af / e g1 log t dt = I"(2) (y (2) — log )

Das zweite Integral in (5) konvergiert unter der An-
nahme R (2) > 0 fir jeden endlichen Wert von z, also
selbst fiir x=0, und stellt somit eine ganze Funktion von
x dar, die wir in eine Taylorsche Reihe entwickeln
konnen. Um diese zu erhalten, gehen wir zun#chst
von der Funktion aus:



1
(7) T(gg, z) =f6“w 1 dt
0
dann ist offenbar
T 1
(8) ST N / et log t dt
0z
0
Nun ist

oo m
—lx n _4n
el = g (1)t

n=0

Setzt man dies in (7) ein, so erhilt man, da unter der ge-
machten Annahme R (2) > 0 gliedweise Integration und
Differentiation erlaubt ist,

o S

’ﬂ

o T( a:, -
(10) Z T

n=

(=]

Somit erhdlt man nach (8) und (10)

o0

1)7’1 wn—l—z
11 —-af’/ i 1 og £ df =
( ) A g Z (’n—l—z)2

v "

eine Reihe, die sehr gut konvergiert. Setzt man (6) und
(11) in (5) ein, so erhélt man

o (_l)n e
Al i)

XIV. S(x,2) = I'(2) (p (2) — log z) +

n=0

Diese Formel eignet sich zur numerischen Berech-
nung von S(z, 2) sehr gut. Nun sieht man, dass man die



SUND". |y [—

vorhin gemachten Einschrénkungen R (z) >0, R(z) > 0
wieder fallen lassen kann; denn die rechte Seite von
XIV. hat fir jedes endliche 240 und jedes 2z 0,
—1, —2, ...elnen Sinn. Nach bekannten Séatzen der
I"unktionentheorie kann man deshalb zur Berechnung
des Integrales II. den bequemeren Ausdruck XIV. wéhlen,
und zwar fiir alle Werte von ¢ und z, fiir welche dieser
Ausdruck existiert. Aus dieser Formel leitet man eben-
talls leicht alle Resultate von § 2 und § 3 her.

Durch Vergleichung der Formeln XII. und XIV.
erkennt man so die Identitét

XV. Nz z+l its (1)t
’ Z z(z+41)--- (2+s) 2 n!  (n+42)?

§=0

die man, wenn auch miihsam, direkt beweisen konnte,
indem man links die Funktion ¢* durch die zugehdérige

Potenzreihe
i _ l)k
k!

k=0

ersetzt, die beiden Reihen miteinander multipliziert und
das Produkt nach steigenden Potenzen von x ordnet.

Wie eben bemerkt, versagt die Darstellung der
Funktion S(z, 2) durch die Ausdriicke XII. und XIV.
fiir 2 = 0 und alle negativ ganzzahligen Werte von 2.
Der Grund dieses Versagens liegt darin, dass man bei
der Umformung des Integrales XIII. den Integrations-
weg durch den Nullpunkt gelegt hat, was eben fiir diese
Werte von 2 nicht erlaubt ist. Nach der Definition II.
existiert aber S(z,z) auch fiir die Werte z = 0, —1,
—2, ... Man hat deshalb nach einer anderen Darstel-
lung zu suchen.
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§ 6. Die Funktionen S (z, —k) fiir ganzzahliges & ~> 0.

Man gelangt von der Formel XIV. durch eine
leichte Umformung zunéichst zu einer konvergenten
Entwicklung von S (z,0). Wir nehmen aus der Reihe

@’
das erste Glied — heraus, welches fiir 2 = 0 unendlich
2

grogs wird. In der neuen Reihe ersetzen wir n durch
n-+1, und man kann so XIV. in der Form schreiben

(12) S(w’z)_zzf(z)(w(z)—loga; +g;z OV (1) et

2 (m+1)! (n4241)?

n=0

Fiir 2= 0 konvergiert jetzt die neue Reihe und

stellt eine ganze Funktion von x dar. Bedeutet C die
2

Kulersche Konstante und s, = %—, so 18t nach Nielsen

C? s,

(18) #7(d) = I'(e+1) = 1— O+~ £40()

(14) zyp (@) =2y (+1) —1=—1—Cz + 3,22+ 0(z%
Nun ist der Ziihler auf der rechten Seite von (12)
(15) Z(z)=2"T (2) (w (¢) —log z) + o°
= I'(z+1) (29 (¢4+1) —1 —zlog a) + o

eine im Innern des Einheitskreises |z| < 1 reguléire Funk-
tion von z. Wir entwickeln dieselbe in eine Potenzreihe,
wobei uns die Kenntnis der drei ersten Glieder geniigt.
Es ist

1
(16) a;z=1+loga:-z+—g—log2a:'z2+0(za)
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A7) I'(z+1) (e (241) —1) = —1 +02—;:§3 2 40(2)

(18) —zI'(z4+1)log z = —log x-2+Clog &+ 2*+ 0 (2
g

19 2= 1%

1 g
+C log a:—i—Elog2 m) 24 0(P)

Setzt man (19) in (12) ein, so wird

mn»l-z+ 1

(n+2+41

C®+s,
2

= 1y
(20) S (z,2) = + C log :n—}—%—logza:—z(;_l_]))' )2—|-0(2)
n=0 )

Dieser Ausdruck ist jetzt fiix 2= O reguldr, und
man erhélt:

e (___l )n mn-l- 1

(n+1)! (n+1)

n=0

(2 -
XVI. 8(z,0) = %ﬁ +C log cc+—12~—log2 -

Analog erhilt man fiir ganzzahliges & > 0 eine kon-
vergente Darstellung von S(z,—Fk). Wir nehmen in XIV.
aus der Reihe das geféihrliche Glied

(__1)].: wk+z

KU (kt2)?

heraus, welches fiir z = — k unendlich gross wird. Was
tibrigbleibt, verhilt sich in der Umgebung von 2 = —k
regulidr. Wir schreiben also XIV. in der Form:

1) ghte L (e gnte
(21) S(x, 2) = I'(2) ( (2) — log )+ : k:) -(Mw}})(%f)
< !

wo der Index beim Summenzeichen bedeutet, dass der
Wert n=Fk auszulassen ist. Setzt man zur Abkiirzung



2+k=2, so wird fir z=—%k, 22 =0. Wir untersuchen
also die Funktion

. (__1)!»' wlo-}—z
(22) Ul(x,2) = I'(2) (p (2) — log z)+ T P
_ k12® I'(z'—k) (p (¢'—k) —log ) + (—1)F a7
- k! 2"

in der Umgebung von z = —¥k oder 2’= 0. Hs ist

(28) I'(2") = (¢'—1) (¢'—2)---(¢'—k) [" (2'—F)

1 1 1
@) y(@) =+ gt v (R

Unter Beriicksichtigung dieser beiden Beziehungen so
wie der Gleichungen (13) und (14) geht (22) nach Er-
weiterung mit (2'—1) (2'—2)- - - (¢’—F) iiber in

(25) Uz, 2) =
Bl (2 +1)) 2"y (¢ "log x { -+
_ + () (1) -+ (2 —F) &
B k! (2—1) (#—2)- - - (¢'—F) 2"
Ferner ist
(26) (¢'—1)- - - (&'—F) =
k 1 k 1
— 1Yk _1\e—1 AP __1\k—2 a2 I
— (1) Rl (—1) klzﬂ, 2+ (—1) klzz-l 8840 (2%)

(27) ——~+ +——-~Z——z+2 2240 (2

i=1
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(26) und (27) in (25) eingesetzt gibt

(28) Uz, 2) =
k 1 k 1
[ +1)] ' p (2 +1) —1—# log @ -%Zl'q;“‘*”"@*ga“ -z'2] +
k 1 I 1
' L a2 rL 3
+[1—-Z?z+z o2 a0 (&)
B (7—1) (7—2)- - - (¢ —F) 2
Nach (15) und (19) ist
I'z'+1) {2' (2’ +1) —1 — 2 log =} + 2
(29) V,(2,%)= : { i 2/ }
Cc? 1
_ vt + C log ac—{—Elogz:c—i— 0(2")
Weiter ist nach (13) und (16)
I k 1 Jﬁ] k 1 l
' ' 12 I__. R ]
renn R |
¥V, (z,2) = e
I k k k
' ]' ! 1 2 _j]' ' 1 121 " 13
(1—C%" Z—Z—z —l—Z %22 , { —;z—-zﬁz ’(l—l—logazw)—}-O(a )
=1 t=1 =1 1>i=1
2’2
k 3 e J
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Die zweite und dritte Summe kann man noch zu-

sammenfassen :
k k k
1 1 1 1 1 1 1
Zﬁ*‘zz il Z_z 1.1+1-2+1.3+"'+'1‘I
S Bt s :
2.2 ' 2.3 tok
S !
3.8 teh
1
+k-k
Bedenkt man, dass
V ) @) V ’P O ! i
(31) Uiz = 182+, (22} +0(6) ist,

(#'—1) (&'—2) « + (2'—k)

so erhiilt man aus (21), (22), (29), (80) und (31) fiir 2’=0
oder z=—Fk die gewiinschte konvergente Darstellung:

XVIL. S (z, —k) =
k k
(—1)¥| C*+s, 1 1.,
- . m(}Z _|-Z> (K) — 41 C— le loga:-l—EIog )
il (—1y giv—F
| +;(j) n!  (n—Fk)?

Fir k 2> 1 lassen sich diese Funktionen S(z, —F)
mit Hilfe der in § 2 gefundenen Formeln der Reihe nach
aus den bekannten Ausdriicken fiix S(z,0), S(z, 1),
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S (z, 2) auch leicht rekursiv berechnen. So folgt aus den
Formeln VIII. und X., indem man dort nacheinander
2=—1, —2, —38, ... setzt:

e
S(z, —1) = z, 0) — S (2, 1)+ —— oder
XVIIL ( )= —8(0) ( x

zS (z,—1) = —a S(z,0) — (z+1) S(z, 1)+ S (z, 2)

48 (x, —2) = —8 8 (z, —1) — S (, 0) - -
— ( ) ( ) (z, 0) +

$2

428 (x,—2) = (1—382) S (z,—1)+ (1—z) S (2,0)+ S (z, 1)

usw.

§ 7. Beziehungen zum Integrallogarithmus und zur
unvollstindigen /'-Funktion,

Aus XIV. erhdlt man fiir 2 =1
mn+

(n+1)?

(32) S(z,1)=—C—logz+) (”;})n

Anderseits lautet die bekannte Eulersche Entwick
lung fiir den Integrallogarithmus:

n+1 mn+1

+1)t n1

(83) () = C—I—logm+Z

Daher ist

o2 n|~1 gt
XX. S(z,1) = [0 }-10gm+z +1)* n+1] —1L(e™)

Zwischen der Funktion S(z,2) und der unvoll-
sténdigen I-Funktion Q(z, z) hat man natiirlich die De-
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finitionsgleichung I. HKine zweite Relation, welche
¢ (z, 2) als rationale Verbindung zweier S-Funktionen
darstellt, leitet man leicht aus der Definition (1) von
((z, 2) her.

Wir nehmen wieder voriibergehend R (z) > 0 an,
fithren wie in § 4 eine neue reelle Integrationsvariable ¢
ein vermittels w = tz, du = x df. So wird

(34) Q(z,2) = / o Q= o / et g
N

v

Dies integrieren wir partiell, indem wir setzen

It
U=e "¢ dU= —e " (aetf—zt"") dt; dV = (—t; V=logt

Weil der ausintegrierte Teil
It

T = [e—fw £ log t]

verschwindet, so erhilt man

(35) Q(z,2) = wz“/e_‘”tzlogtdt

2t ] e log t dt
1 1

was nach XIII. nichts anderes ist als:
XXI. Q(z,2) = S(x, 2+1) — 2 S(z, 2)

Setzt man hierin fiir S(x, 2-+1) und S(z, 2) die zu-
gehorigen Ausdriicke XIV. ein, so erhélt man nach
leichten Umformungen die bekannte Beziehung

oo

___1 n
Qw8 = I —) ]

7]

atte

. n-+z
Hingegen erhélt man fiir ganzzahlige nicht positive
Werte von 2z nach XVIIL. und XXI. eine einfache Formel



fir @ (z, —k), die im oben zitierten Handbuch von
Nielsen nieht angefithrt ist. Nach XXI. ist

86) Q(z,—k)=S(z,— (k—1)) + &k S(z, —k)

Fir den Spezialfall k = 0 liefert dies zunéchst

(37) Q(2,0) =8 (&,1) = — I, (=) g

n=0

Fithrt man in (86) rechts fiir k—1 und k(k = 1) die

Augdriicke XVII. ein, so erhdlt man nach einigen Um-
formungen:

n——h
XXIL Qe —I)= 2" [ZI_Omlog ac]— o

k!
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