Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 27 (1932)

Artikel: Des méthodes de groupement dans le calcul des réserves

mathématiques et des réserves nécessaires

Autor: Piccard, Sophie

DOI: https://doi.org/10.5169/seals-967502

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Des méthodes de groupement dans le calcul des réserves mathématiques et des réserves nécessaires.

Par Dr Sophie Piccard, Neuchâtel.

Introduction.

Une des tâches principales que doit accomplir chaque année toute compagnie d'assurances sur la vie consiste à déterminer au bilan les réserves mathématiques. Le calcul de ces réserves s'effectue sur les bases techniques de premier ordre I, choisies avec assez de prudence pour que la compagnie puisse en tout cas faire face à ses engagements. La détermination des réserves mathématiques nécessite un travail considérable qui a été sensiblement simplifié par l'introduction de diverses méthodes de groupement des assurés. Il existe plusieurs bonnes méthodes de groupement fréquemment employées dans la pratique. Les méthodes les plus répandues dans les compagnies suisses sont celle de Karup, dite aussi méthode d'Altenburger, et celle de Lidstone. La première de ces méthodes groupe les assurés par âge atteint au bilan, la seconde — par la durée restant à courir.

Une autre tâche importante que doit effectuer de temps en temps toute compagnie d'assurances sur la vie qui distribue à ses assurés la participation aux bénéfices selon un système mécanique quelconque consiste à évaluer le fonds de participation, pour vérifier la validité des systèmes de participation en usage. Le calcul du fonds de participation conduit à l'évaluation des réserves «nécessaires» qui permettent à la compagnie de faire face à tous ses engagements futurs envers les assurés, y compris la participation aux bénéfices prévue, ce calcul devant s'effectuer sur les bases techniques de second ordre II qui traduisent le mieux possible les expériences de la compagnie.

Nous avons cherché à adapter les méthodes de groupement de Karup et de Lidstone au calcul des réserves nécessaires. La solution de ce problème dépendant du système de participation aux bénéfices utilisé, nous nous sommes bornés à envisager quelques cas particuliers qui se présentent le plus souvent dans la pratique des assurances en Suisse.

Chapitre I.

Définitions et remarques préliminaires.

Imaginons une compagnie dont le portefeuille serait constitué uniquement d'assurances mixtes, contractées moyennant des primes annuelles (fractionnées ou non).

Envisageons un assuré quelconque.

Soit x = son âge à l'entrée dans l'assurance, cet âge étant déterminé en nombre entier d'années, une fraction d'une demi-année et plus comptant pour un an.

n = la durée de l'assurance.

m = la durée du paiement des primes. Nous supposerons pour tous les assurés m=n.

S = le capital assuré.

 $P''_{x:\overline{n}|} = \text{la prime du tarif qui correspond au capital } S.$

Convention 1.

1^{er} janvier de l'année T_o = la date d'effet calculée, toutes les affaires conclues au sens large entre le 1^{er} juillet de l'année (T_o — 1) et le 30 juin de l'année T_o étant rapportées au 1^{er} janvier de l'année T_o .

1er janvier de l'année T_1 ($T_1 = T_0 - x$) = la date de naissance calculée.

1er janvier de l'année $T_{\bf 2}$ $(T_{\bf 2}=T_{\bf 0}+n)=$ la date d'expiration calculée.

Convention 2.

1^{er} juillet de l'année $T_{\rm o}=$ la date d'effet calculée, toutes les affaires conclues au cours de l'année $T_{\rm o}$ étant rapportées à cette date.

1er juillet de l'année T_1 ($T_1 = T_0 - x$) = la date de naissance calculée.

 $1^{\rm er}$ juillet de l'année $T_{\rm 2}$ ($T_{\rm 2}=T_{\rm 0}+n)=$ la date d'expiration calculée.

Remarque 1. Dans les exemples numériques qui suivent, nous adopterons toujours la convention 1.

Envisageons les trois systèmes mécaniques de participation aux bénéfices suivants.

a) Dividende progressif, porté en diminution de la prime, accordé pour la première fois après τ années d'assurances et qui croît selon la formule

$$\Delta_k = \left[\pi + (k - \tau - 1) \pi'\right] \Pi,$$

où Δ_k désigne la participation aux bénéfices accordée après (k-1) années d'assurances $(k \geqslant \tau + 1)$, H—la prime du tarif, ou le chargement pour la participation aux bénéfices ou toute autre quantité constante en % de laquelle se calcule la participation annuelle aux

bénéfices, π — le taux initial du dividende et π' — l'accroissement annuel de ce taux, à partir de la seconde année de participation aux bénéfices.

b) Bonus annuel, constant, porté en augmentation de la somme assurée et payable avec cette dernière, accordé pour la première fois après τ années d'assurance; le nombre des boni accordés en cas de vie à l'échéance du contrat est le même que celui des boni payables en cas de décès au cours de la dernière année d'assurance.

Montant constant du bonus annuel $\Delta = b S$.

c) Bonus quinquennal, porté en augmentation de la somme assurée et payable avec cette dernière, accordé pour la première fois après $\tau=5$ années d'assurance; même nombre de boni en cas de vie à l'échéance du contrat qu'en cas de décès au cours de la n^e année d'assurance.

Montant constant du bonus quinquennal $\Delta = b' S$.

Désignons par II₀ les bases techniques de second ordre (mortalité, résiliations prématurées, taux d'intérêt i et taux des frais α , β et γ) qui semblaient les plus probables et qui ont servi à établir les taux de participation. Nous supposons que le calcul de ces taux a été effectué à partir de la prime suffisante.

Remarque 2. Il est généralement d'usage dans la pratique des assurances en Suisse de prendre dans les bases II_o une table décrémente, c'est-à-dire une table qui tient compte de la mortalité et des résiliations prématurées. Ces dernières n'exercent qu'une faible influence sur les bénéfices réalisés par la compagnie, mais l'introduction de cet élément dans le calcul des taux de participation peut sensiblement influencer ces taux.

On tient toujours compte de la sélection en déterminant les taux de participation. Remarque 3. Au sujet des tables de sélection et des tables décrémentes nous ferons les quelques considérations suivantes.

1. Tables de sélection. Désignons par $\varphi = \text{le nombre}$ d'années au cours desquelles se manifeste la sélection.

Pendant les φ premières années d'assurance, il faut faire une table spéciale pour chaque âge d'entrée [x]. La table finale, correspondant à des durées d'assurances écoulées supérieures ou égales à φ est la même pour tous les assurés et ne dépend pas des âges à l'entrée.

- 2. Tables décrémentes. Ces tables, comme nous venons de le dire, tiennent compte de la mortalité et des résiliations prématurées. Ce sont aussi des tables de sélection. Nous envisageons deux modes de construction de ces tables.
- a) Les taux des résiliations prématurées ne dépendent pas des durées des assurances individuelles.

Soit $\omega = l$ 'âge terme de la table de mortalité.

Désignons par $q_{[x]+t} = \text{la}$ probabilité de décès au cours de l'année d'une personne ayant à l'entrée dans l'assurance l'âge [x] et étant assurée depuis t années.

 $q_{[x]+t}^s =$ la probabilité pour la même personne et à la même époque de résilier prématurément son contrat au cours de l'année.

 $r_{[x]+t}$ = valeur de rachat du bonus de Fr. 1 après t années d'assurance ¹).

Chaque compagnie possède une règle pour le calcul des valeurs de rachat. D'après cette règle, elle détermine pour toute combinaison d'âge à l'entrée [x] et de durée n les suites de valeurs

 $^{^{1}}$) Nous supposons que chaque assuré a payé t primes annuelles au cours des t premières années d'assurance.

et
$$r_{[x]}, r_{[x]+1}, \cdots, r_{[x]+n-1}$$
 $r_{[x]+ au}^b, r_{[x]+ au+1}^b, \cdots, r_{[x]+n-1}^b$.

D'autre part, on a:

$$r_{[x]}^b = r_{[x]+1}^b = \cdots = r_{[x]+\tau-1}^b = 0.$$

Pour chaque âge d'entrée [x], on construit une table décrémente en se servant des formules:

$$\begin{split} l_{[x]+t+1} &= l_{[x]+t} \left(1 - q_{[x]+t} \right) \left(1 - q_{[x]+t}^s \right), t = 0, 1, 2, \cdot \cdot \cdot \cdot, (\omega - x - 1) \\ d_{[x]+t} &= l_{[x]+t} \, q_{[x]+t} \\ s_{[x]+t} &= \left(l_{[x]+t} - d_{[x]+t} \right) \, q_{[x]+t}^s \\ D_{[x]+t} &= v^{x+t} \, l_{[x]+t} \\ C_{[x]+t} &= v^{x+t+\frac{1}{2}} \, d_{[x]+t} \\ \end{split} \qquad \begin{cases} t = 0, 1, 2, \cdot \cdot \cdot \cdot, (\omega - x), \\ \text{quel que soit } n. \end{cases} \\ c_{[x]+t}^s &= v^{x+t+\frac{1}{2}} \, d_{[x]+t} \\ c_{[x]+t}^s &= v^{x+t+\frac{1}{2}} \, r_{[x]+t}^s \, s_{[x]+t} \\ c_{[x]+t}^s &= v^{x+t+\frac{1}{2}} \, r_{[x]+t}^s \, s_{[x]+t} \end{cases} \end{cases} \quad t = 0, 1, 2, \cdot \cdot \cdot \cdot, (n-1), \\ \text{pour chaque valeur de } n. \end{aligned}$$

b) Les taux des résiliations prématurées dépendent des durées n des assurances individuelles.

En se servant des mêmes notations que ci-dessus, on construit une table décrémente pour chaque combinaison $\{[x], n\}$ moyennant les formules

$$\left. \begin{array}{l} l_{[x]+t+1} = l_{[x]+t} \left(1 - q_{[x]+t} \right) \left(1 - q_{[x]+t}^{s} \right) \\ d_{[x]+t} = l_{[x]+t} \, q_{[x]+t} \\ s_{[x]+t} = \left[l_{[x]+t} - d_{[x]+t} \right] \, q_{[x]+t}^{s} \end{array} \right\} \ t = 0, 1, 2, \cdot \cdot \cdot \cdot , (n-1)$$

$$D_{[x]+t} = v^{x+t} l_{[x]+t}, t = 0, 1, 2, \cdot \cdot \cdot, n$$

etc.

Soit: $A_{x:\overline{n}|} =$ la prime unique pure pour un capital assuré de Fr. 1;

 $P_{x:\overline{n}|}$ = la prime annuelle pure pour un capital assuré de Fr. 1;

 a = le taux, pour un capital assuré de Fr. 1, des frais uniques d'acquisition;

 β = le taux, pour une prime commerciale de Fr. 1 des frais annuels d'encaissement ¹);

γ = le taux, pour un capital assuré de Fr. 1, des frais annuels de gestion.

Posons: $\Re_x = M_x + M_{x+5} + \cdots + M_{x+5u}$, u dé-

signant le nombre entier qui satisfait aux relations: $0 \le \omega - (x + 5u) < 5$, si on fait usage d'une table agrégée;

$$\Re_{[x]+t} = M_{[x]+t} + M_{[x]+t+5} + \cdot \cdot \cdot + M_{[x]+t+5u}$$
 , u

désignant le nombre entier qui satisfait aux relations: $0 \le \omega - (x + t + 5u) < 5$, dans le cas d'une table de sélection ou d'une table décrémente;

$$\Re^b_{[x]+t} = M^b_{[x]+t} + M^b_{[x]+t+5} + \cdots + M^b_{[x]+t+5u'}, u'$$

désignant le nombre entier qui satisfait aux relations: $0 \le n-1-t-5$ u' < 5, s'il s'agit d'une table décrémente.

¹⁾ En pratique, ces frais se calculent en % de la prime commerciale, après déduction de la participation aux bénéfices accordée sur cette prime.

Les nombres \Re facilitent les calculs relatifs au bonus quinquennal. Désignons d'une manière générale, par $E\left(\frac{k}{5}\right)=$ la partie entière du quotient du nombre entier k par 5.

Soit $_tV_x=$ la réserve mathématique individuelle calculée sur prime pure après t années d'assurances.

On a

$$\begin{split} _{t}V_{x} &= S\,A_{x+t\,:\,\overline{n-t}|} - P_{x\,:\,\overline{n}|}\,\mathbf{a}_{x+t\,:\,\overline{n-t}|} = \\ &= P_{x\,:\,\overline{n}|}\frac{N_{x}-N_{x+t}}{D_{x+t}} - S\,\frac{M_{x}-M_{x+t}}{D_{x+t}} \ \ \text{(base I)}. \end{split}$$

A ces expressions de ${}_tV_x$ vient s'ajouter la réserve pour les boni alloués, dans le cas où la participation aux bénéfices est distribuée sous forme de bonus. Soit B le montant total des boni alloués à un assuré. La réserve mathématique pour ces boni est $A_{x+t: \overline{n-t}|} B$ (base I).

Appelons P^t = la prime commerciale, sous déduction des frais annuels d'encaissement et de gestion et de l'amortisation annuelle des frais uniques d'acquisition.

Dans le cas du dividende progressif, on a

$$P^{f} = (1 - \beta) P''_{x:\overline{n}|} - \frac{\alpha}{a_{x:\overline{n}|}} - \gamma + \beta \Delta_{k} \text{ (base II)}.$$

Dans le cas du bonus annuel et du bonus quinquennal, on a

$$P' = (1 - \beta) P''_{x;\overline{n}|} - \frac{\alpha}{a_{x;\overline{n}|}} - \gamma$$
 (base II).

Posons, d'une manière générale,

$$P^v = (1 - \beta) P''_{x:\overline{n}|} - \frac{\alpha}{\mathsf{a}_{x:\overline{n}|}} - \gamma$$
 (base II).

Désignons par ${}_tV^v$ la réserve nécessaire individuelle après t années d'assurance.

La méthode prospective conduit aux expressions suivantes de $_{t}V^{v}$, si dans les bases II on fait usage d'une table de sélection:

a) Dividende progressif:

$$t\leqslant\tau;{}_{t}V^{v}=S\,A_{[x]+t:\overline{n-t}|}-P^{v}\,\mathbf{a}_{[x]+t:\overline{n-t}|}+\\ +(1-\beta)\,II\frac{\pi\,N_{[x]+\tau}+\pi'\,\left(S_{[x]+\tau+1}-S_{[x]+n}\right)-\left[\pi+\left(n-\tau-1\right)\pi'\right]\,N_{[x]+n}}{D_{[x]+t}}\\ t\geqslant\tau;{}_{t}V^{v}=S\,A_{[x]+t:\overline{n-t}|}-P^{v}\,\mathbf{a}_{[x]+t:\overline{n-t}|}+\\ +(1-\beta)\,II\frac{\left[\pi+\left(t-\tau-1\right)\pi'\right]N_{[x]+t}+\pi'\left(S_{[x]+t}-S_{[x]+n}\right)-\left[\pi+\left(n-\tau-1\right)\pi'\right]N_{[x]+n}}{D_{[x]+t}} \right\}\overset{\text{fig. }}{\longrightarrow}$$

b) Bonus annuel:

$$t \leqslant \tau; {}_t V^v = S \, A_{[x]+t:\overline{n-t}|} - P^v \, \mathbf{a}_{[x]+t:\overline{n-t}|} + \\ + b \, S \, \frac{R_{[x]+\tau} - R_{[x]+n} + (n-\tau) \left[D_{[x]+n} - M_{[x]+n}\right]}{D_{[x]+t}} \\ t \geqslant \tau; {}_t V^v = S \, A_{[x]+t:\overline{n-t}|} - P^v \, \mathbf{a}_{[x]+t:\overline{n-t}|} + \\ + b \, S \, \frac{(t-\tau) \, M_{[x]+t} + R_{[x]+t} - R_{[x]+n} + (n-\tau) \left[D_{[x]+n} - M_{[x]+n}\right]}{D_{[x]+t}} \right)^{\frac{1}{2}}$$

c) Bonus quinquennal:

$$t\leqslant\tau;_{t}V^{v}=S\,A_{[x]+t:\,\overline{n-t}|}-P^{v}\,\mathbf{a}_{[x]+t:\,\overline{n-t}|}+\\ +\,b'\,S\frac{\Re_{[x]+5}-\Re_{[x]+\left[E\left(\frac{n-1}{5}\right)+1\right]5}+E\left(\frac{n-1}{5}\right)\!\left[D_{[x]+n}-M_{[x]+n}\right]}{D_{[x]+t}}\\ t\geqslant\tau;_{t}V^{v}=S\,A_{[x]+t:\,\overline{n-t}|}-P^{v}\,\mathbf{a}_{[x]+t:\,\overline{n-t}|}+\\ +\,b'\,S\frac{E\left(\frac{t}{5}\right)M_{[x]+t}+\Re_{[x]+\left[E\left(\frac{t}{5}\right)+1\right]5}-\Re_{[x]+\left[E\left(\frac{n-1}{5}\right)+1\right]5}+E\left(\frac{n-1}{5}\right)\!\left[D_{[x]+n}-M_{[x]+n}\right]}{D_{[x]+t}}$$

La méthode rétrospective donne, dans la même hypothèse, pour $_tV^v$ les expressions suivantes.

Quel que soit le mode de participation, si $t \leqslant \tau$,

$${}_{\mathbb{T}}V^{v} = P^{v} \, \frac{N_{[x]} - N_{[x]+t}}{D_{[x]+t}} - S \, \frac{M_{[x]} - M_{[x]+t}}{D_{[x]+t}} \, \bigg\} \ \, (\text{base II})$$

$$\begin{cases} {}_{t}V^{v} = P^{v} \; \frac{N_{[x]} - N_{[x]+t}}{D_{[x]+t}} - S \, \frac{M_{[x]} - M_{[x]+t}}{D_{[x]+t}} - \\ - (1 - \beta) \, H \frac{\pi \, N_{[x]+\tau} + \pi' \, (S_{[x]+\tau+1} - S_{[x]+t}) - [\pi + (t - \tau - 1) \, \pi'] \, N_{[x]+t}}{D_{[x]+t}} \\ {}_{t}V^{v} = P^{v} \, \frac{N_{[x]} - N_{[x]+t}}{D_{[x]+t}} - S \, \frac{M_{[x]} - M_{[x]+t}}{D_{[x]+t}} - \\ - b \, S \, \frac{R_{[x]+\tau} - R_{[x]+t} - (t - \tau) \, M_{[x]+t}}{D_{[x]+t}} \end{cases}$$

Si $t > \tau$, on a:

Dans le cas où les bases II renferment une table décrémente, on obtient, par la méthode prospective, les expressions de $_tV^v$ en substituant dans les formules relatives à une table de sélection $M_{[x]+k}+M^b_{[x]+k}$ à $M_{[x]+k},\,R_{[x]+k}+R^b_{[x]+k}$ à $R_{[x]+k},\,R_{[x]+k}+R^b_{[x]+k}$ à $R_{[x]+k}$ dans les termes relatifs à la participation aux bénéfices et en posant

$$A_{[x]+k:\,n-\overline{k}|} = \frac{M_{[x]+k} + M^s_{[x]+k} - M_{[x]+n} - M^s_{[x]+n} + D_{[x]+n}}{D_{[x]+k}}$$

Par la méthode rétrospective, on obtient les expressions de ${}_{t}V^{v}$ en substituant dans les formules relatives à une table de sélection $M_{[x]+k}+M^{b}_{[x]+k}$ à $M_{[x]+k}$, $R_{[x]+k}+R^{b}_{[x]+k}$ à $R_{[x]+k}$ et $\Re_{[x]+k}+\Re^{b}_{[x]+k}$ à $\Re_{[x]+k}$ dans les termes relatifs à la participation aux bénéfices et en remplaçant $M_{[x]+k}$ par $M_{[x]+k}+M^{s}_{[x]+k}$ dans les autres termes 1).

Si les bases II renferment une table agrégée, on obtient les expressions de $_tV^v$ en laissant tomber les crochets contenant x dans les formules relatives à une table de sélection.

¹⁾ Les termes $M^b_{[x]+n}$ et $R^b_{[x]+n}$ sont nuls. Nous les introduisons dans les formules pour des raisons de symétrie.

Remarque 6. Si les bases II coïncident avec les bases II_o, la méthode prospective et la méthode rétrospective conduisent à la même valeur de la réserve nécessaire. Il en résulte que, si les bases II et II_o sont identiques, on peut employer indifféremment la méthode prospective ou la méthode rétrospective pour le calcul des réserves nécessaires. Par contre, si les bases II sont différentes des bases II_o, on doit se servir de la méthode prospective.

Plaçons-nous au bilan (31 décembre) d'une certaine année T. Désignons par ΣV (base I) = les réserves mathématiques totales de la compagnie à cette époque, ces réserves étant calculées sur les bases techniques de premier ordre par la méthode des primes pures;

 ΣV^v (base II) = les réserves nécessaires totales, calculées à la même époque sur les bases techniques de second ordre;

F = le fonds spécial destiné au prélèvement des sommes nécessaires pour distribuer aux assurés la participation aux bénéfices prévue;

F= le montant actuel du fonds de participation. Ce montant est défini par l'égalité

$$F = \Sigma V + \mathfrak{F} - \Sigma V^{v}$$

Si $F \geqslant 0$, la compagnie peut laisser inchangés ses systèmes de participation. Elle est obligée de les modifier, si F < 0.

Remarque 7. Si l'on admet la convention 1, la réserve mathématique individuelle au bilan $_tV$ est une réserve déterminée après un nombre entier t d'années.

Dans le cas de la convention 2, la réserve individuelle au bilan est

$$_{t}V = \frac{t - \frac{1}{2}V + t + \frac{1}{2}V}{2}$$
,

 $t \pm \frac{1}{2}$ étant un nombre entier et t désignant le temps

écoulé à partir de l'effet calculé jusqu'à la date du bilan.

Comme l'effet réel des polices ne coïncide généralement pas avec l'effet calculé, il faut apporter à la réserve au bilan une correction relative à l'échéance des primes.

Dans le cas de la convention 1, pour les assurances conclues du 1^{er} juillet au 31 décembre, la correction à apporter à la réserve mathématique $_tV_x$ d'un contrat individuel est

$$\sigma_x' = \frac{r}{12} P_{x:\overline{n}|},$$

 $\frac{r}{12}$ désignant la fraction de prime annuelle payée dès la date anniversaire de l'effet jusqu'à la date du bilan de l'année T. Pour un assuré dont l'effet réel est compris entre le 1er janvier et le 30 juin, la correction relative à l'échéance des primes qu'il faut apporter à la réserve mathématique au bilan est

$$\sigma_x^{''} = -\left(1 - rac{r}{12}
ight) P_{x \colon \overline{n}|}$$
 ,

 $\frac{r}{12}$ ayant la même signification que ci-dessus.

Dans le cas de la convention 2, la correction relative à l'échéance des primes qu'il faut apporter à la réserve mathématique individuelle $_tV_x$ est

$$\sigma_x = \frac{P_{x\,:\,\overline{n}\,|}}{2} - \left(1 - \frac{r}{12}\right) P_{x\,:\,\overline{n}\,|}$$

pour toutes les assurances, $\frac{r}{12}$ ayant la même signification que ci-dessus.

Appelons, dans les deux cas, $\sigma = \text{la}$ somme algébrique des corrections relatives à l'échéance des primes pour tout le portefeuille, au bilan de l'année T.

Dans le calcul de la réserve nécessaire au bilan, on doit tenir compte du même facteur.

Désignons par σ^v = la correction relative à l'échéance des primes qu'il faut apporter à la réserve nécessaire totale, calculée à la même époque.

Nous déterminerons σ^v par la formule approximative suivante

$$\sigma^{v} = \frac{\sum P^{v}}{\sum P} \sigma.$$

Dans la suite, quand nous parlerons des réserves au bilan, nous ferons toujours abstraction de ces corrections.

Remarque 8, concernant le choix des bases II.

Il faut prendre le taux d'intérêt i et les taux des frais α , β et γ qui traduisent le mieux possible les expériences de la compagnie. Toutefois, il est inutile, pour le calcul de la réserve nécessaire, de suivre les fluctuations annuelles du taux d'intérêt et il suffit d'établir un taux moyen. Quant à la table de mortalité, elle doit aussi donner l'image la plus exacte de la réalité. Mais la question qui se pose est la suivante: est-on tenu à utiliser pour ces calculs une table décrémente, ou peut-on se borner à employer une table de sélection et, même, une table agrégée?

Nous avons examiné de plus près cette question, en l'illustrant de quelques exemples numériques.

Supposons les taux de participation déterminés à l'aide d'une table décrémente et fixés une fois pour toutes. Les taux de participation qui résultent d'un calcul exact varient, généralement, avec la durée de l'assurance et avec l'âge à l'entrée. Nous supposerons, pour simplifier les calculs qui suivent, que ces taux sont constants pour toutes les combinaisons d'âge et de durée.

La précision avec laquelle on détermine le fonds de participation ne doit pas dépasser quelques %.

Nous avons d'abord comparé les résultats que donne une table décrémente et une table de sélection ayant toutes deux les mêmes taux de mortalité (Gotha, sélection non réduite) 1) 2). Nous avons déterminé, à l'aide de ces deux tables, les réserves nécessaires successives de la combinaison moyenne [x] = 30, n = 25, en prenant S = 10,000 fr., $P_{x:\overline{n}|} = 392$ fr., $\alpha = 0,04$, $\beta = 0,02$, $\gamma = 0,002$, $i = 4\frac{1}{2}$ %, et en admettant comme système de participation le bonus annuel, avec $\tau = 3$ ans, et b = 0.015.

Appelons ${}_tV^v$ la réserve nécessaire détermir le à l'aide de la table de sélection et ${}_t^*V^v$ la réserve nécessaire calculée avec la table décrémente. Posons $\Delta = {}_tV^v - {}_t^*V^v$.

¹) Karup, Die Reform des Rechnungswesens der Gothaer Versicherungsbank a. G., Neue Bankliste, Tabelle 18, S. 64.

²⁾ Pour la construction de la table décrémente nous avons utilisé l'échelle théorique suivante de résiliations prénaturées: t = 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 $q_{[30]+t}^{s} \% 9,14 6,72 5,21 4,19 3,21 2,40 1,94 1,56 1,29 1,09 0,94 0,82$ t = 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 $q_{[30]+t}^{s} \% 0,73 0,66 0,60 0,55 0,51 0,48 0,46 0,45 0,45 0,44 0,44 0,44 0,43$ Cette échelle est plutôt pessimiste. Comme règle de rachat nous avons pris celle d'une grande compagnie suisse.

Nous avons obtenu les résultats suivants:

Ces résultats nous montrent que l'influence des résiliations prématurées sur les réserves nécessaires est considérable pendant les trois premières années d'assurance. Puis cette influence diminue rapidement et devient insignifiante. On en déduit que pour une vieille compagnie, dont la production annuelle est faible par rapport au portefeuille total, l'emploi d'une table de sélection pour le calcul des réserves nécessaires ne dépasse pas les limites d'erreur admissible; or l'emploi d'une table de sélection au lieu d'une table décrémente a pour conséquence une grande simplification des calculs.

Ensuite, nous avons comparé les résultats que donnent une table de sélection et une table agrégée, issues toutes deux du même matériel d'observation.

Désignons encore par $\varphi = \text{le nombre des années}$ au cours desquelles se manifeste la sélection.

La probabilité de décès q_x d'une table agrégée est liée aux probabilités de décès

$$q'_{[x-0]+0}$$
, $q'_{[x-1]+1}$, \cdot \cdot , $q'_{[x-\varphi-1]+\varphi+1}$, q'_{x}

des différentes tables de sélection et de la table finale que l'on déduit du même matériel d'observation composé de \mathfrak{N}_x personnes d'âge x observées pendant une année et donnant lieu à d_x décès, avec

$$egin{aligned} & \mathfrak{N}_x = \mathfrak{N}'_{[x-0]+0} + \mathfrak{N}'_{[x-1]+1} + \ \cdot \ \cdot \ \cdot \ + \mathfrak{N}'_{[x-arphi-1]+arphi+1} + \mathfrak{N}'_x \end{aligned}$$
 et $d_x = d'_{[x-0]+0} + d'_{[x-1]+1} + \ \cdot \ \cdot \ \cdot \ + d'_{[x-arphi-1]+arphi+1} + d'_x,$ par la relation suivante

$$q_{\mathbf{z}} = \frac{\mathfrak{N}_{[x-0]+0}' \ q_{[x-0]+0}' + \mathfrak{N}_{[x-1]+1}' \ q_{[x-1]+1}' + \cdots + \mathfrak{N}_{[x-\varphi-1]+\varphi+1}' \ q_{[x-\varphi-1]+\varphi+1}' + \mathfrak{N}_{x}' \ q_{x}'}{\mathfrak{N}_{x}}$$

Les probabilités de décès d'une table agrégée sont donc des moyennes pondérées des probabilités correspondantes de toutes les tables de sélection et de la table finale.

Nous avons pris les tables d'Abel:

$$\mathfrak{V} = \frac{\text{vor } 76/05}{76/06}$$
 [10], 4% et $\mathfrak{V} = \frac{\text{vor } 76/05}{76/06}$, 4%

Nous nous sommes placés au bilan d'une certaine année T et nous avons supposé qu'à cette date notre compagnie avait 25 années d'existence. Au dit bilan, nous avons déterminé, par la méthode individuelle, les réserves nécessaires de tous les assurés dont les âges à l'entrée et les durées d'assurance satisfaisaient à l'une des quatre combinaisons suivantes: ([x] = 25, n = 30), ([x] = 30, n = 25), ([x] = 40, n = 20) et ([x] = 45, n = 15). Nous avions ainsi 85 groupes d'assurés ¹). Pour la répartition des capitaux correspondants formant un total de 25,973,000 fr., nous nous sommes basés sur les données numériques de Karup. Nous avons pris comme système de participation

 $^{^1)}$ A savoir 25 groupes de la $1^{\tt re}$ catégorie, 25 de la seconde, 20 de la 3e et 15 de la 4e.

le bonus annuel, avec $\tau=2$ ans, b=0.01. Nous avons posé

$$\alpha = 0.04, \, \beta = 0.02, \, \gamma = 0.002, \, P_{25:30|}'' = 318,$$

$$P_{30:\overline{25}|}'' \circ /_{000} = 392, \, P_{40:\overline{20}|}'' \circ /_{000} = 529, \, P_{45:\overline{15}|}'' \circ /_{000} = 729.$$

La comparaison des résultats nous a montré que pour l'ensemble des assurés envisagés les réserves nécessaires calculées d'une part à l'aide des tables de sélection (10,564,454 fr.) et d'autre part à l'aide de la table agrégée (10,524,807 fr.) ne diffèrent que de 0,38% de la première de ces valeurs. Donc, en employant la table agrégée au lieu des tables de sélection, nous restons encore dans les limites d'erreur admissible. Mais ceci n'est vrai que pour une vieille compagnie qui existe depuis un nombre d'années bien supérieur à celui au cours duquel se manifeste la sélection.

Les méthodes de groupement ont la plus haute importance si dans le calcul des réserves nécessaires on peut se servir d'une table agrégée.

Chapitre II.

Méthode de groupement de Karup.

1. Application de la méthode de Karup au calcul des réserves mathématiques.

Pour déterminer les réserves mathématiques au bilan d'une année T, on groupe tous les assurés par âge y atteint à cette date, en supposant que cet âge est égal à l'âge qu'a l'assuré à la date anniversaire de l'effet la plus rapprochée de celle du bilan, dans le cas de la convention 1, ou à l'âge qu'a l'assuré à la date anniversaire de l'effet qui précède la date du bilan, cet âge étant augmenté d'une demi-année, dans le cas de la con-

vention 2. Dans les deux cas, le numéro du groupe est déterminé par l'année de naissance calculée T_1 .

La réserve mathématique pure du groupe G (T_1) au bilan de l'année T est donnée par la formule

$$V_{{\scriptscriptstyle G(T_1)}} = (\Sigma \, S) \, A_y - (\Sigma \, P_{x \, : \, \overline{n}}) \, {\rm a}_y + \frac{\Sigma \, H}{D_y} \, ({\rm base \ I})^{-1}),$$

où H désigne un nombre auxiliaire qui a pour expression

$$H = \left(S d + P_{x:\overline{n}}\right) N_{x+n} = \frac{S N_{x+n}}{\mathsf{a}_{x:\overline{n}|}}$$
, si on pose $C_x = v^{x+1} d_x$,

les sommes Σ étant étendues à tous les assurés formant le groupe $G(T_1)$.

Remarque 9. Dans le cas de la convention 2, on a:

$$y = \left(y - \frac{1}{2}\right) + \frac{1}{2}$$
, où $y - \frac{1}{2}$

est un nombre entier. Dans ce cas, on utilise les formules suivantes:

$$A_{y} = \frac{A_{y-\frac{1}{2}} + A_{y+\frac{1}{2}}}{2}, \quad a_{y} = \frac{a_{y-\frac{1}{2}} + a_{y+\frac{1}{2}}}{2},$$

$$D_{y} = \frac{D_{y-\frac{1}{2}} + D_{y+\frac{1}{2}}}{2}.$$

$$\sum_{G(T_1)} A_y : \overline{n-t} \mid B.$$

Nous ne nous arrêterons pas sur les simplifications que l'on peut apporter à cette dernière expression.

¹⁾ A cette expression vient s'ajouter la réserve mathématique pour les boni alloués, si la participation aux bénéfices est distribuée sous forme de bonus. Cette réserve a pour valeur

2. Application de la méthode de Karup au calcul des réserves nécessaires.

Désignons par $G(T_1)$ le groupe formé par tous les assurés qui ont le même système de participation aux bénéfices et pour lesquels l'année de naissance calculée est T_1 .

Admettons 1º que les bases II comprennent une table agrégée.

Cas 1a. Adoptons la convention 1. Alors il suffit de subdiviser chacun des groupes $G(T_1)$ en deux sousgroupes:

$$G(T_1) = G(T_1, t < \tau) + G(T_1, t \geqslant \tau),$$

si on fait usage de la méthode prospective;

$$G(T_1) = G(T_1, t \leqslant \tau) + G(T_1, t > \tau),$$

si on fait usage de la méthode rétrospective,

t= désignant le nombre d'années écoulées à partir de l'effet calculé d'une assurance individuelle quelconque formant le groupe jusqu'à la date du bilan.

La méthode prospective pour le calcul des réserves nécessaires conduit aux résultats suivants.

a) Dividende progressif.

Groupe
$$G(T_1, t < \tau)$$
.

La réserve nécessaire pour un assuré de ce groupe a pour expression

Cette expression peut s'écrire

$${}_{t}V^{v} = S \; \frac{M_{y}}{D_{y}} \; - \; P^{v} \; \frac{N_{y}}{D_{y}} \; + \\ + \underbrace{ \overset{S(D_{x+n} - M_{x+n}) + P^{v} \; N_{x+n} + (1-\beta) \, \Pi \left\{ \pi N_{x+\tau} + \pi' \left(S_{x+\tau+1} - S_{x+n} \right) - \left[\pi + (n-\tau-1)\pi' \right] N_{x+n} \right\} }_{D_{y}} = \\ = S \; A_{y} - P^{v} \; \mathbf{a}_{y} \; + \; \frac{H}{D_{y}} \; ,$$

en posant

$$\begin{split} H &= S \left(D_{x+n} - M_{x+n} \right) + P^v \, N_{x+n} \, + \\ &+ (1 - \beta) \, H \left\{ \pi \, N_{x+\tau} + \pi' \left(S_{x+\tau+1} - S_{x+n} \right) - \left[\pi + (n - \tau - 1) \, \pi' \right] \, N_{x+n} \right\} = \\ &= \left\{ S \, d \, + \, P^v - (1 - \beta) \, H \left[\pi \, + (n - \tau - 1) \, \pi' \right] \right\} \, N_{x+n} \, + \\ &\quad + \, (1 - \beta) \, H \left[\pi \, N_{x+\tau} + \pi' \left(S_{x+\tau+1} - S_{x+n} \right) \right] \, ^1 \right). \end{split}$$

La réserve nécessaire au bilan du groupe envisagé est alors donnée par la formule

$$V_{G(T_1, t < \tau)} = (\Sigma S) A_y - (\Sigma P^v) a_y + \frac{\Sigma H}{D_y}$$
 (base II).

Groupe
$$G(T_1, t \geqslant \tau)$$
.

La réserve nécessaire pour un assuré de ce groupe a pour expression

$$+ (1-\beta) \Pi \frac{ \left[\pi + (t-\tau-1)\pi' \right] N_y + \pi' \left(S_y - S_{x+n} \right) - \left[\pi + (n-\tau-1)\pi' \right] N_{x+n} }{D_y} \right\} \underbrace{\widehat{\mathbb{D}}_{g}}_{\mathcal{D}}$$

^{&#}x27;) Les expressions que nous soulignons d'une ligne ondulée n'ont lieu que si $C_x = v^{x+1} d_x$.

Or
$$t - \tau - 1 = x + t - (x + \tau + 1) = y - (x + \tau + 1)$$

L'expression précédente peut donc s'écrire

$$\begin{split} {}_{t}V^{v} = & S \; \frac{M_{y}}{D_{y}} - \left\{ P^{v} - (1 - \beta) \; H \left[\pi - (x + \tau + 1) \pi' \right] \right\} & \frac{N_{y}}{D_{y}} + \\ & + (1 - \beta) \; \pi' \; H \; \frac{y \; N_{y} + S_{y}}{D_{y}} \; + \end{split}$$

$$+ \frac{S(D_{x+n} - M_{x+n}) + P^{v} N_{x+n} - (1-\beta) \prod \{\pi' S_{x+n} + [\pi + (n-\tau-1)\pi'] N_{x+n}\}}{D_{y}}.$$

Posons

$$\begin{split} H_1 &= S \left(D_{x+n} - M_{x+n} \right) + \, P^{\mathfrak{v}} \, N_{x+n} - \\ &- (1-\beta) \, H \left\{ \pi' \, S_{x+n} + \left[\pi + (n-\tau-1) \, \pi' \right] N_{x+n} \right\} = \\ &= \left\{ S \, d + \, P^{\mathfrak{v}} - (1-\beta) \, H \left[\pi + (n-\tau-1) \, \pi' \right] \right\} \, N_{x+n} \\ &- (1-\beta) \, H \, \pi' \, S_{x+n} \, , \end{split}$$

$$H_2 = \Pi(x + \tau + 1).$$

Il vient

$$\begin{split} _tV^v &= S\,A_y + (1-\beta)\,\pi'\,\Pi\,\frac{y\,N_y + S_y}{D_y} + \\ &+ \frac{H_1}{D_y} - \left\{P^v - (1-\beta)\left[\pi\,\Pi - \pi'\,H_2\right]\right\} a_y. \end{split}$$

La réserve nécessaire au bilan du groupe envisagé est donnée par la formule

$$\begin{split} &V_{G(T_1t\geqslant \tau)}^v = \left(\Sigma \; S\right) \; A_y + \; \left(1-\beta\right) \pi' \; \left(\Sigma \; H\right) \; \frac{y \; N_y + S_y}{D_y} \; + \\ & + \; \frac{\Sigma \; H_1}{D_y} - \left\{\Sigma \; P^v - \left(1-\beta\right) \left[\pi \left(\Sigma \; H\right) - \pi' \left(\Sigma \; H_2\right)\right]\right\} \mathbf{a}_y \; \right\} \; \stackrel{\text{gg}}{\text{gg}} \; \\ & = \; \frac{1}{2} \left\{\sum \left[\Pi_1 + \Pi_2 + \Pi_2 + \Pi_3\right] \left[\Pi_1 + \Pi_2 + \Pi_3\right] \left[\Pi_1 + \Pi_2 + \Pi_3\right] \right\} \; \mathbf{a}_y \; \\ & = \; \frac{1}{2} \left\{\sum \left[\Pi_1 + \Pi_2 + \Pi_3\right] \left[\Pi_1 + \Pi_3\right] \left[\Pi_$$

b) Bonus annuel.

Groupe
$$G(T_1, t < \tau)$$
.

La réserve nécessaire pour un assuré de ce groupe a pour expression

$$\begin{split} _{t}V^{v} &= S \, A_{y:\overline{n-t}|} - P^{v} \, \mathsf{a}_{y:\overline{n-t}|} + \\ &+ b \, S \frac{R_{x+\tau} - R_{x+n} + (n-\tau) \, (D_{x+n} - M_{x+n})}{D_{y}} = \\ &= S \, A_{y} - P^{v} \, \mathsf{a}_{y} + \frac{H}{D_{y}} \, (\text{base II}), \end{split}$$

en posant

$$\begin{split} H &= S \left(D_{x+n} - M_{x+n} \right) + P^{v} \, N_{x+n} + \\ &+ b \, S \left\{ R_{x+\tau} - R_{x+n} + (n-\tau) \left(D_{x+n} - M_{x+n} \right) \right\} = \\ &= \left\{ \left[1 + (n-\tau) \, b \right] S \, d + P^{v} \right\} N_{x+n} + b \, S \left(R_{x+\tau} - R_{x+n} \right). \end{split}$$

La réserve nécessaire au bilan du groupe envisagé est donnée par la formule

$$V_{G(T_1,t\leq r)}^v = (\Sigma S) A_y - (\Sigma P^v) a_y + \frac{\Sigma H}{D_y}$$
 (base II).

Groupe
$$G(T_1, t \geqslant \tau)$$
.

La réserve nécessaire pour un assuré de ce groupe a pour expression

$$tV^{v} = S A_{y:\overline{n-t}|} - P^{v} a_{y:\overline{n-t}|} + b S \frac{(t-\tau)M_{y} + R_{y} - R_{x+n} + (n-\tau)(D_{x+n} - M_{x+n})}{D_{y}} \cdot \begin{cases} \overrightarrow{b} & \overrightarrow{b} \\ \vdots \\ \overrightarrow{b} & \overrightarrow{b} \end{cases}$$
Or
$$t - \tau = y - (x + \tau).$$

L'expression précédente peut donc s'écrire, en posant

$$\begin{split} H_1 = & S\left(D_{x+n} - M_{x+n}\right) + P^v \; N_{x+n} - b \; S \; R_{x+n} + (n-\tau) \, b \; S\left(D_{x+n} - M_{x+n}\right) = \\ & = \left\{ \left[1 + b \; (n-\tau)\right] \, S \, d + P^v \right\} \, N_{x+n} - b \; S \; R_{x+n} \\ \text{et} \qquad \qquad H_2 = S \; (x+\tau), \\ & {}_t V^v = \left(S - b \; H_2\right) \, A_y - P^v \; \mathbf{a}_y + b \; S \, \frac{y \; M_y + R_y}{D_y} + \frac{H_1}{D_y}. \end{split}$$

La réserve nécessaire au bilan du groupe envisagé est donnée par la formule

$$\begin{split} &V_{G(T_{\mathbf{1}},t\geqslant\imath)}^{v} = \left[(\Sigma \; S) - b \; (\Sigma \; H_{\mathbf{2}}) \right] \; A_{y} \; + \\ &+ b \; (\Sigma \; S) \; \frac{y \, M_{y} + \, R_{y}}{D_{y}} + \frac{\Sigma \; H_{\mathbf{1}}}{D_{y}} - (\Sigma \; P^{v}) \; \mathbf{a}_{y} \end{split} \tag{base II)}.$$

c) Bonus quinquennal.

Groupe
$$G(T_1, t < \tau)$$
.

La réserve nécessaire pour un assuré de ce groupe a pour expression

$$\begin{split} {}_{t}V^{v} &= S \, A_{y:\overline{n-t}|} - P^{v} \, \mathbf{a}_{y:\overline{n-t}|} + \\ &+ b' \, S \, \frac{\Re_{x+5} - \Re_{x+\left[E\left(\frac{n-1}{5}\right)+1\right]5} + E\left(\frac{n-1}{5}\right)\left(D_{x+n} - M_{x+n}\right)}{D_{y}} \, \bigg\} \overset{\text{Beso}}{\biguplus} \\ &+ Posons \, H = S \, \left(D_{x+n} - M_{x+n}\right) + P^{v} \, N_{x+n} + \\ &+ b' \, S \, \bigg\{ \Re_{x+5} - \Re_{x+\left[E\left(\frac{n-1}{5}\right)+1\right]5} + E\left(\frac{n-1}{5}\right)\left(D_{x+n} - M_{x+n}\right) \bigg\} = \\ &= \bigg\{ \bigg[1 + b' \, E\left(\frac{n-1}{5}\right) \bigg] \, S \, d + P^{v} \bigg\} \, N_{x+n} + b' \, S \, \left(\Re_{x+5} - \Re_{x+\left[E\left(\frac{n-1}{5}\right)+1\right]5}\right). \end{split}$$

L'expression précédente peut alors s'écrire

$$_{t}V^{v}=SA_{y}-P^{v}$$
 $\mathbf{a}_{y}+rac{H}{D_{y}}.$

La réserve nécessaire au bilan du groupe envisagé est donnée par la formule

$$V_{G(T_1,t<\tau)}^v = (\Sigma S) A_y - (\Sigma P^v) a_y + \frac{\Sigma H}{D_y}$$
 (base II).

Groupe
$$G(T_1, t \ge \tau)$$
.

La réserve nécessaire pour un assuré de ce groupe a pour expression

Or
$$t = t + x - x = y - x$$

et on a

$$E\left(\frac{t}{5}\right) = E\left(\frac{y-x}{5}\right) = E\left(\frac{y}{5}\right) - E\left(\frac{x}{5}\right) - f\left(y\right),$$

où
$$f(y) = 0$$
, si $y - E\left(\frac{y}{5}\right)$ $5 \geqslant x - E\left(\frac{x}{5}\right)$ 5

$$f(y) = 1$$
, si $y - E\left(\frac{y}{5}\right)$ 5 < $x - E\left(\frac{x}{5}\right)$ 5.

On peut donc écrire

$$\begin{split} {}_{l}V^{v} &= S\,A_{y} - P^{v}\,\mathbf{a}_{y} - b'\,S\,\left[E\left(\frac{x}{5}\right) + f\left(y\right)\right]A_{y} + \\ &\quad + b'\,S\frac{E\left(\frac{y}{5}\right)M_{y} + \Re_{x+}\left[E\left(\frac{t}{5}\right) + 1\right]5}{D_{y}} + \\ &\quad + \frac{S\left(D_{x+n} - M_{x+n}\right) + P^{v}\,N_{x+n} + b'\,S\left\{E\left(\frac{n-1}{5}\right)\left(D_{x+n} - M_{x+n}\right) - \Re_{x+\left[E\left(\frac{n-1}{5}\right) + 1\right]5}\right\}}{D_{y}} + \\ &\quad + \frac{D_{y}}{D_{y}} \\ &\quad + \frac{D_{y}}{D_{y}} \\ &\quad + \left\{E\left(\frac{n-1}{5}\right)\left(D_{x+n} - M_{x+n}\right) + P^{v}\,N_{x+n} + \\ &\quad + b'\,S\left\{E\left(\frac{n-1}{5}\right)\left(D_{x+n} - M_{x+n}\right) - \Re_{x+\left[E\left(\frac{n-1}{5}\right) + 1\right]5}\right\} = \\ &\quad = \left\{\left[1 + b'\,E\left(\frac{n-1}{5}\right)\right]\,S\,d + P^{v}\right\}\,N_{x+n} - b'\,S\,\Re_{x+\left[E\left(\frac{n-1}{5}\right) + 1\right]5}\,, \end{split}$$

$$H_2 = S E\left(\frac{x}{5}\right)$$
.

II vient ${}_{t}V^{v} = [S - b' H_{2} - b' S f(y)] A_{y} +$

$$+\,b'Srac{E\Big(rac{y}{5}\Big)M_y+\Re_{x+\left[E\Big(rac{t}{5}\Big)+1
ight]5}}{D_y}+rac{H_1}{D_y}-P^v\,\mathsf{a}_y\,.$$

La réserve nécessaire au bilan du groupe envisagé est donnée par la formule

$$\begin{split} V_{G(T_{\mathbf{1}}, t \geqslant \tau)}^{v} &= \left[(\Sigma \, S) - b' \, (\Sigma \, H_{\mathbf{2}}) - b' \, \Sigma \, S \, f \, (y) \right] A_{y} \, + \\ &+ b' \, (\Sigma \, S) \, \frac{E \left(\frac{y}{5} \right) M_{y} + \Re_{y+3}}{D_{y}} + \frac{\Sigma \, H_{1}}{D_{y}} - (\Sigma \, P^{v}) \, \mathbf{a}_{y}. \end{split}$$

Remarque. La dernière formule n'est qu'approximative, à cause du terme \mathfrak{N}_{y+3} .

Pour déterminer f(y), on notera une fois pour toutes pour chaque assuré la constante

$$\psi_1 = x - E\left(\frac{x}{5}\right) 5.$$

Puis, au bilan, on notera pour chaque groupe $G\left(T_1,\ t\geqslant \tau\right)$ le nombre

$$\psi_2 = y - E\left(\frac{y}{5}\right) 5.$$

La comparaison des deux nombres ψ_1 et ψ_2 permettra de déterminer sans peine pour chaque assuré la valeur de f(y).

La méthode rétrospective pour le calcul des réserves nécessaires conduit aux résultats suivants.

Quel que soit le mode de participation aux bénéfices, si cette participation débute après τ années d'assurance, la réserve nécessaire au bilan du groupe $G(T_1, t \leq \tau)$ est donnée par la formule

$$\begin{split} V^v_{G(T_1, t \leqslant \tau)} = & (\Sigma S) \, A_y - (\Sigma \, P^v) \, \mathsf{a}_y + \frac{\Sigma \, H}{D_y} \ \ \text{(base II),} \\ \text{avec} \qquad \qquad H = & P^v \, N_x - S \, M_x \end{split}$$

Groupe $G(T_1, t > \tau)$.

a) Dividende progressif.

$$\begin{split} V_{G(T_1, t > \tau)}^v &= (\Sigma S) A_y + (1 - \beta) \pi' (\Sigma \Pi) \frac{y N_y + S_y}{D_y} + \frac{\Sigma H_1}{D_y} - \\ &- \left\{ (\Sigma P^v) - (1 - \beta) \left[\pi (\Sigma \Pi) - \pi' (\Sigma H_2) \right] a_y \text{ (base II)} \right. \end{split}$$

avec

$$\begin{split} H_1 &= P^{\mathfrak{v}} \, N_x - S \, M_x - (1-\beta) \, \varPi \left(\pi \, N_{x+\tau} + \pi' \, S_{x+\tau+1} \right) \\ \text{et} &\qquad \qquad H_2 = \varPi \left(x + \tau + 1 \right). \end{split}$$

b) Bonus annuel.

$$\begin{split} V_{G(T_1,t>\tau)}^v = & \left[(\Sigma S) - b \; (\Sigma H_2) \right] A_y + b \, (\Sigma \, S) \frac{y \, M_y + R_y}{D_y} + \\ & + \frac{\Sigma \, H_1}{D_y} - (\Sigma \, P^v) \, \mathsf{a}_y \quad \text{(base II)} \end{split}$$

a vec $H_1 = P^v \, N_x - S \, M_x - b \, S \, R_{x+\tau}$ et $H_2 = S \, (x+\tau) \, .$

c) Bonus quinquennal.

$$\begin{split} V_{G(T_1, t \geq \tau)}^v &= \left\{ (\Sigma S) - b' \left(\Sigma H_2 \right) - b' \left[\Sigma S \, f \left(y \right) \right] \right\} \, A_y \, + \\ &+ b' \left(\Sigma S \right) \frac{E \left(\frac{y}{5} \right) M_y + \Re_{y+3}}{D_y} + \frac{\Sigma H_1}{D_y} - \left(\Sigma \, P^v \right) \, \mathbf{a}_y \, \, (\text{base II}) \\ \text{avec} \qquad H_1 &= P^v \, N_x - S \left(M_x + b' \, \Re_{x+5} \right), \\ H_2 &= S \, E \left(\frac{x}{5} \right), \end{split}$$

f (y) ayant la même signification que ci-dessus.

Remarque. La dernière formule n'est qu'approximative, à cause du terme \Re_{y+3} .

Cas 1 b. Adoptons la convention 2°. Alors pour employer la méthode prospective ou la méthode rétro-

spective, il suffit de subdiviser le groupe G (T_1) en deux sous-groupes:

$$G\left(T_{\mathbf{1}}\right)=G\bigg(T_{\mathbf{1}},t\leqslant\tau-\frac{1}{2}\bigg)+G\bigg(T_{\mathbf{1}},t>\tau-\frac{1}{2}\bigg),$$

t désignant le temps écoulé à partir de l'effet calculé d'une assurance individuelle quelconque formant le groupe $G\left(T_{1}\right)$ jusqu'à la date du bilan.

Posons, d'une manière générale,

$$U\left(y\right)=\frac{U\!\left(y\!-\!\frac{1}{2}\right)\!+U\!\left(y\!+\!\frac{1}{2}\right)}{2},$$

 $y - \frac{1}{2}$ désignant un nombre entier et U(y) — une fonction quelconque de y.

On est alors conduit, par la méthode prospective, aux formules suivantes:

a) Dividende progressif.

$$V_{G(T_{\mathbf{i}},t\leqslant \tau-\frac{1}{2})}^{v}=(\Sigma S) A_{y}-(\Sigma P^{v}) a_{y}+\frac{\Sigma H}{D_{y}}$$
 (base II)

$$V^{v}_{G\left(T_{1},t>\tau-\frac{1}{2}\right)}\!=\!\left(\Sigma S\right)A_{y}\!+\!\left(1\!-\!\beta\right)\pi'\left(\Sigma H\right)\frac{y\,N_{y}\!+\!S_{y}}{D_{y}}+\frac{\Sigma \,H_{1}}{D_{y}}-$$

$$-\{(\Sigma P^{v})-(1-\beta)\left[\pi(\Sigma H)-\pi'(\Sigma H_{2})\right]\} a_{y} \text{ (base II)}.$$

b) Bonus annuel.

$$V_{G(T_1,t \leqslant \tau - \frac{1}{2})}^v = (\Sigma S) A_{\bar{y}} - (\Sigma P^v) a_y + \frac{\Sigma H}{D_y}$$
(base II)

$$\begin{split} V_{G\left(T_{1},t\geq\tau-\frac{1}{2}\right)}^{v} &= \left\{ \left(\Sigma S\right) - b\left(\Sigma H_{2}\right) \right\} A_{y} + \\ &+ b\left(\Sigma S\right) \frac{y\,M_{y} + R_{y}}{D_{y}} + \frac{\Sigma H_{1}}{D_{y}} - \left(\Sigma\,P^{v}\right) \mathbf{a}_{y} \ \text{(base II)}. \end{split}$$

c) Bonus quinquennal.

$$V_{G\left(T_{1}, t\leqslant \tau-\frac{1}{2}\right)}^{v}=\left(\Sigma S\right) A_{y}-\left(\Sigma P^{v}\right) \mathbf{a}_{y}+\frac{\Sigma H}{D_{u}} \left(\mathrm{base\ II}\right)$$

$$\begin{split} V_{G\left(T_{1},t>\tau-\frac{1}{2}\right)}^{v} &= \left\{ \left(\Sigma\,S\right) - b'\,\left(\Sigma\,H_{2}\right) - b'\,\left[\Sigma\,S\,\,f\left(y\right)\right] \right\}\,A_{y} \,+\\ &+ b'\,\left(\Sigma\,S\right) - \frac{E\!\left(\frac{y}{5}\right)M_{y} + \Re_{y+3}}{D_{x}} - \left(\Sigma\,P^{v}\right)\,\mathbf{a}_{y} \ \ \text{(base II)}. \end{split}$$

La méthode rétrospective conduit aux formules suivantes. Quel que soit le mode de participation aux bénéfices,

$$V^{v}_{G\left(T_{1}, l\leqslant r-\frac{1}{2}\right)} = (\Sigma S) \; A_{y} - (\Sigma \; P^{v}) \; \mathbf{a}_{y} + \frac{\Sigma H}{D_{y}} \; \text{(base II)}.$$

D'autre part:

a) Dividende progressif.

b) Bonus annuel.

$$\begin{split} V_{G\left(T_{1},t>\tau-\frac{1}{2}\right)}^{v} &= \left[\left(\Sigma\,S\right) - b\,\left(\Sigma\,H_{2}\right)\right]\,A_{y} + \\ &+ b\,\left(\Sigma\,S\right)\frac{y\,M_{y} + R_{y}}{D_{y}} + \frac{\Sigma\,H_{1}}{D_{y}} - \left(\Sigma\,P^{v}\right)\,\mathrm{a}_{y} \quad \text{(base II)}. \end{split}$$

c) Bonus quinquennal.

$$V_{G\left(T_{1}, l > l - \frac{1}{2}\right)}^{v} = \left\{ (\Sigma S) - b'(\Sigma H_{2}) - b'[\Sigma S f(y)] \right\} A_{y} +$$

$$+ \, b'(\Sigma \, S) \frac{E\!\left(\frac{y}{5}\right) M_y + \Re_{y+3}}{D_y} + \frac{\Sigma \, H_1}{D_y} - (\Sigma \, P^{v}) \, \mathsf{a}_y \quad \text{(base II)}.$$

Admettons 2º que les bases II comprennent une table de sélection. Dans ce cas, on peut employer, pour le calcul des réserves nécessaires au bilan, les mêmes formules que ci-dessus, mais il faudra introduire une nouvelle subdivision des groupes de la façon suivante.

Soit encore $\varphi = \text{le nombre d'années au cours des$ $quelles se manifeste la sélection,}$

 τ = la durée qui sépare l'effet d'une police de la date où débute la participation aux bénéfices.

Supposons qu'on fait usage de la méthode prospective pour le calcul des réserves nécessaires.

Admettons d'abord la convention 1°. Alors, si $\tau \leqslant \varphi$, il faudra subdiviser le groupe $G\left(T_1\right)$ en $(\varphi+1)$ sous-groupes:

$$\begin{split} G\left(T_{1}\right) &= G\left(T_{1},\, t=0\right) + G\left(T_{1},\, t=1\right) + G\left(T_{1},\, t=2\right) + \\ &+ \cdot \cdot \cdot + G\left(T_{1},\, t=\varphi-1\right) + G\left(T_{1},\, t\geqslant\varphi\right) \end{split}$$

et on calculera les réserves nécessaires au bilan de ces différents sous-groupes moyennant les formules envisagées plus haut, qui correspondent respectivement aux cas $t < \tau$ et $t \geqslant \tau$;

si $\tau > \varphi$, il y aura lieu de subdiviser le groupe $G(T_1)$ en $(\varphi + 2)$ sous-groupes comme suit:

$$\begin{split} G\left(T_{1}\right) &= G\left(T_{1},\,t=0\right) + G\left(T_{1},\,t=1\right) + G\left(T_{1},\,t=2\right) + \\ &+ \cdot \cdot \cdot + G\left(T_{1},\,t=\varphi-1\right) + G\left(T_{1},\,\tau>t\geqslant\varphi\right) + \\ &+ G\left(T_{1},\,\tau\leqslant t\right). \end{split}$$

Pour les $(\varphi + 1)$ premiers de ces sous-groupes, on prendra, pour les réserves nécessaires au bilan, les formules relatives au cas $t < \tau$ et pour le dernier de ces sous-groupes on prendra les formules relatives au cas $t \ge \tau$.

Admettons maintenant la convention 2°. Alors, si $\tau \leqslant \varphi$, il faudra subdiviser le groupe $G(T_1)$ en $(\varphi + 1)$ sous-groupes comme suit:

$$\begin{split} G\left(T_{\mathbf{1}}\right) &= G\left(T_{\mathbf{1}},\, t = \frac{1}{2}\right) + G\left(T_{\mathbf{1}},\, t = 1\,\frac{1}{2}\right) + \\ &+ \cdot\cdot\cdot + G\!\left(T_{\mathbf{1}},\, t = \varphi - \frac{1}{2}\right) + G\!\left(T_{\mathbf{1}},\, t \geqslant \varphi + \frac{1}{2}\right) \end{split}$$

et on calculera les réserves nécessaires de ces différents sous-groupes à l'aide des formules qui correspondent respectivement aux cas: $t \leqslant \tau - \frac{1}{2}$ et $t > \tau - \frac{1}{2}$.

Si $\tau > \varphi$, il y aura lieu de subdiviser le groupe $G(T_1)$ en $(\varphi + 2)$ sous-groupes comme suit:

$$\begin{split} G\left(T_{1}\right)&=G\bigg(T_{1},\,t=\frac{1}{2}\bigg)+G\bigg(T_{1},\,t=1\frac{1}{2}\bigg)+\cdot\cdot\cdot+\\ &+G\bigg(T_{1},t=\varphi-\frac{1}{2}\bigg)+G\bigg(T_{1},\,\tau-\frac{1}{2}\geqslant t\geqslant \varphi+\frac{1}{2}\bigg)+G\bigg(T_{1},\,\tau-\frac{1}{2}< t\bigg) \end{split}$$

Pour les $(\varphi+1)$ premiers de ces sous-groupes, on prendra les formules des réserves nécessaires au bilan relatives au cas $t \leqslant \tau - \frac{1}{2}$ et pour le dernier —

les formules relatives au cas $t > \tau - \frac{1}{2}$.

On raisonne d'une manière analogue si on fait usage de la méthode rétrospective.

Supposons 3º que dans les bases II on fait usage d'une table décrémente.

Dans ce cas, la méthode de Karup se ramène à la méthode individuelle, car il faut subdiviser chaque groupe $G(T_1)$ en sous-groupes caractérisés par les mêmes valeurs de [x] et de n.

Chapitre III.

Méthode de Lidstone 1).

1º Application de la méthode de Lidstone au calcul des réserves mathématiques.

On groupe les assurés par durée n' restant à courir ou, ce qui revient au même, par année d'expiration calculée T_2 .

La réserve individuelle au bilan de l'année $T=T_2$ — $-E\ (n')$ est donnée par la formule

$$_{t}V_{x}=SA_{y:\overline{n'}|}-P_{x:\overline{n}|}a_{y:\overline{n'}|},$$

y= désignant l'âge atteint au bilan par l'assuré (y=x+t).

Posons z = x + n.

¹) Cette méthode n'est applicable qu'aux assurés pour lesquels $x\geqslant 20$ ans.

On substitue au groupe d'assurés $G(T_2)$ un assuré unique, ayant pour capital assuré la somme des capitaux, pour prime — la somme des primes de tous les assurés formant le groupe et pour âge terme \bar{z} un âge moyen défini à l'aide des coefficients de Lidstone c_z comme suit:

On forme pour chaque assuré le produit c_z S et on prend pour \bar{z} l'âge qui correspond au coefficient

$$c_z = \frac{\sum c_z S}{\sum S}$$

L'âge moyen au bilan \overline{y} est égal à \overline{z} — n' et la réserve mathématique au bilan du groupe envisagé a pour expression

$$V_{G(T_2)} = (\Sigma S) A_{\overline{y}:\overline{n'}|} - (\Sigma P_{x:\overline{n}|}) a_{\overline{y}:\overline{n'}|}$$
 (base I).

Remarque 1). Dans le cas de la convention 1°, t et n' sont des nombres entiers. Il en est de même de y et de \overline{y} .

Dans le cas de la convention 2º,

$$t = \frac{1}{2}, n' = \frac{1}{2}, y = \frac{1}{2}$$
 et $\overline{y} = \frac{1}{2}$

sont des nombres entiers et on détermine $A_{\overline{y};\overline{n'}|}$ et $a_{\overline{y};\overline{n'}|}$ à l'aide des formules

$$A_{ar{y}:ar{n}'} = rac{A_{ar{y}-rac{1}{2}:ar{n}'+rac{1}{2}} + A_{ar{y}+rac{1}{2}:ar{n}'-rac{1}{2}}}{2} \, ,$$

¹) Dans le cas où la participation aux bénéfices est accordée sous forme de bonus, on a:

 $V_{G(T_2)} = [\Sigma S + \Sigma B] A_{\overline{y}:\overline{n'}} - (\Sigma P_{x:\overline{n}}) a_{\overline{y}:\overline{n'}}$ (base I), ΣB désignant le montant total des boni alloués au groupe en question.

$$a_{\bar{y}:n'|} = \frac{a_{\bar{y}-\frac{1}{2}:n'+\frac{1}{2}} + a_{\bar{y}+\frac{1}{2}:n'-\frac{1}{2}}}{2}$$

2º Adaptation de la méthode de Lidstone au calcul des réserves nécessaires.

Supposons d'abord que les bases II comprennent une table agrégée. Nous partirons des formules prospectives pour les réserves nécessaires individuelles.

Groupons les assurés par durée n' restant à courir et par système de participation. Soit $G\left(T_2\right)$ un tel groupe.

Admettons qu'on utilise la convention 1º.

Subdivisons chaque groupe $G\left(T_{2}\right)$ en deux sous-groupes

$$G(T_2) = G(T_2, t < \tau) + G(T_2, t \geqslant \tau).$$

Pour chaque sous-groupe il faut déterminer un âge terme moyen \bar{z} exactement comme dans le cas des réserves mathématiques et on aura $\bar{y} = \bar{z} - n'$, \bar{y} — désignant l'âge moyen du groupe au bilan.

Envisageons séparément les cas du dividende progressif, du bonus annuel et du bonus quinquennal.

a) Dividende progressif.

Groupe
$$G(T_2, t < \tau)$$
.

La réserve nécessaire au bilan pour un assuré quelconque de ce groupe a pour expression

$$\label{eq:vv} \begin{split} _tV^v &= S\,A_{y:\,\overline{n'}|} - P^v\,\mathbf{a}_{y:\,\overline{n'}|} + \quad \text{(base II)}. \\ &+ (1-\beta)\,I\!I\frac{\pi\,N_{x+\tau} + \pi'\,\left(S_{x+\tau+1} - S_z\right) - \left[\pi + \left(n - \tau - 1\right)\,\pi'\,\right]N_z}{D_y}. \end{split}$$

Posons

$$H_1 = \Pi (\pi N_{x+\tau} + \pi' S_{x+\tau+1})$$

$$H_2 = II \left[\pi + (n - \tau - 1) \pi' \right].$$

Il vient

$$_{t}V^{v}=S\,A_{y:\,\overline{n'}|}-P^{v}\,\mathsf{a}_{y:\,\overline{n'}|}+(1-\beta)rac{H_{1}-\pi'\,I\!\!I\,S_{z}-H_{2}\,N_{z}}{D_{u}}.$$

La réserve nécessaire au bilan du groupe est donnée par la formule

$$\begin{split} V^{v}_{G(T_{2}, t < \imath)} &= (\Sigma \, S) \, A_{\overline{y} : \overline{n'}} + \\ &+ (1 - \beta) \frac{\sum H_{1} - \pi' \, (\sum H) \, S_{\overline{z}} - (\sum H_{2}) \, N_{\overline{z}}}{D_{\overline{y}}} - (\Sigma \, P^{v}) \, \mathbf{a}_{\overline{y} : \overline{n'}} \end{split}$$

Remarque. Si $\pi=\pi'$, on posera $H_1=I\!\!I\,S_{x+\tau}$, $H_2=I\!\!I\,(n-\tau)$ et on aura

$$\begin{split} V_{G(T_2,l < \tau)}^v &= (\Sigma S) \ A_{\overline{y}:\overline{n'}|} + \\ &+ (1-\beta)\pi \frac{(\Sigma H_1) - (\Sigma H) S_{\overline{z}} - (\Sigma H_2) N_{\overline{z}}}{D_{\overline{y}}} - (\Sigma P^v) \ \mathbf{a}_{\overline{y}:\overline{n'}|} \end{split}$$

Groupe
$$G(T_2, t \geqslant \tau)$$
.

La réserve nécessaire au bilan pour un assuré de ce groupe a pour expression

$$\label{eq:vv} \begin{split} {}_{t}V^{v} &= S \; A_{y:\; \overline{n'}|} - P^{v} \; \mathbf{a}_{y:\; \overline{n'}|} + \\ &+ (1-\beta) \mathbf{H} \frac{\left[\pi + (t-\tau-1)\pi'\right] N_{y} + \pi' \left(S_{y} - S_{z}\right) - \left[\pi + (n-\tau-1)\pi'\right] N_{z}}{D_{y}} \end{split}$$

On a:
$$t-\tau-1=(n-\tau-1)-(n-t)=(n-\tau-1)-n'$$
.

L'expression précédente peut s'écrire, en posant

$$H = \Pi\left[\pi + (n - \tau - 1)\pi'\right],$$

$$\begin{split} {}_{t}V^{v} &= S \; A_{y: \; \overline{n'}|} - P^{v} \; \mathbf{a}_{y: \; \overline{n'}|} + (1 - \beta) \, \frac{H \left(N_{y} - N_{z} \right)}{D_{y}} \, - \\ &- \left(1 - \beta \right) \pi' \; I\!\!I \; \frac{n' \; N_{y} - S_{y} + S_{z}}{D_{y}} \\ &= S \; A_{y: \; \overline{n'}|} - \left\{ P^{v} - (1 - \beta) \; H \right\} \; \mathbf{a}_{y: \; n'}| \, - \\ &- \left(1 - \beta \right) \pi' \; I\!\!I \; \frac{n' \; N_{y} - S_{y} + S_{z}}{D_{y}} \end{split}$$

La réserve nécessaire du groupe au bilan est donnée par la formule

$$\begin{split} V^v_{G(T_z,t\geqslant \tau)} &= (\Sigma\,S)\,A_{\bar{y}:\,\bar{n'}\,|} - \left\{ (\Sigma\,P^v) - (1-\beta)\,(\Sigma\,H) \right\} a_{\bar{y}:\,\bar{n'}\,|} - \\ &- (1-\beta)\,\pi'\,\left(\Sigma\,I\!\!I\right) \frac{n'\,\,N_{\bar{y}} - S_{\bar{y}} + S_{\bar{z}}}{D_{\bar{y}}} \quad \text{(base II)}. \end{split}$$

Remarque. Si $\pi = \pi'$, on aura, en posant $H = H(n-\tau)$,

$$\begin{split} V^{v}_{G(T_{\bullet},t \geqslant \tau)} &= (\Sigma \, S) \, A_{\overline{y}:\, \overline{n'}|} - \left\{ (\Sigma \, P^{v}) - (1 - \beta) \, \pi \, (\Sigma \, H) \right\} a_{\overline{y}:\, \overline{n'}|} - \\ &- (1 - \beta) \, \pi \, (\Sigma \, H) \frac{n' \, N_{\overline{y}} - S_{\overline{y}} + S_{\overline{z}}}{D_{\overline{y}}} \quad \text{(base II)}. \end{split}$$

b) Bonus annuel.

Groupe
$$G(T_2, t < \tau)$$
.

La réserve nécessaire au bilan pour un assuré du groupe a pour expression

$$\label{eq:loss_state} \begin{array}{l} _tV^v = S \; A_{y:\; \overline{n'}|} - P^v \; \mathbf{a}_{y:\; \overline{n'}|} + b \, S \, \frac{R_{x+\tau} - R_z + (n-\tau) \, (D_z - M_z)}{D_y} \; \text{(base II)}. \end{array}$$
 Posons
$$H_1 = S \; R_{x+\tau} \; \text{et} \; H_2 = S \, (n-\tau).$$

Il vient

$$_{t}V^{v} = S A_{y:n'} - P^{v} a_{y:n'} + b \frac{H_{1} - S R_{z} + H_{2}(D_{z} - M_{z})}{D_{u}}.$$

La réserve nécessaire au bilan du groupe est donnée par la formule

$$\begin{split} V_{G(T_{2},t<\tau)}^{v} &= (\Sigma S) \; A_{\overline{y}:\,\overline{n'}|} \stackrel{+}{+} \quad \text{(base II).} \\ &+ b \; \frac{(\Sigma H_{1}) - (\Sigma S) \; R_{z} + (\Sigma H_{2}) \; (D_{\overline{z}} - M_{\overline{z}})}{D_{\overline{y}}} - (\Sigma \; P^{v}) \, \mathbf{a}_{\overline{y}:\,\overline{n'}} \end{split}$$

Groupe
$$G(T_2, t \ge \tau)$$
.

La réserve nécessaire au bilan pour un assuré du groupe est donnée par l'expression

$$\label{eq:vortex} \begin{split} {}_tV^v &= S\,A_{y:\,\bar{n'}} - P^v\,\mathbf{a}_{y:\,n'\,|} + \\ + b\,S\,\frac{(t-\tau)\,M_y + R_y - R_z + (n-\tau)\,(D_z - M_z)}{D_y} \text{ (base II)}. \end{split}$$
 On a: $(t-\tau) = (n-\tau) - (n-t) = (n-\tau) - n'.$ Posons
$$H = S\,(n-\tau).$$

L'expression de $_{t}V^{v}$ peut alors se mettre sous la forme

$$_{t}V^{v} = (S + b H) A_{y:n'|} - P^{v} a_{y:n'|} - b S \frac{n' M_{y} - R_{y} + R_{z}}{D_{y}}$$

La réserve nécessaire au bilan du groupe est donnée par la formule

$$\begin{split} V^{v}_{G(T_{2},t \geqslant \tau)} &= \left[(\Sigma \, S) - b \, (\Sigma \, H) \right] \, A_{\overline{y} \colon n' \mid} - (\Sigma \, P^{v}) \, \mathsf{a}_{\overline{y} \colon n' \mid} - \\ &- b \, (\Sigma \, S) \, \frac{n' \, M_{\overline{y}} - R_{\overline{y}} + R_{\overline{z}}}{D_{\overline{y}}} \quad \text{(base II)}. \end{split}$$

c) Bonus quinquennal.

Groupe
$$G(T_2, t < \tau)$$
.

La réserve nécessaire au bilan pour un assuré du groupe est donnée par l'expression

$$\label{eq:vv} \begin{split} _tV^v &= S\,A_{y:\,\overline{n'}\,|} - P^v\,\,\mathsf{a}_{y:\,\overline{n'}\,|} + \quad \text{(base II)}.\\ &+ b'\,S\,\frac{\Re_{x+5} - \Re_{x+\left[E\left(\frac{n-1}{5}\right)+1\right]\,5} + E\left(\frac{n-1}{5}\right)\left(D_z - M_z\right)}{D_y}. \end{split}$$

Posons
$$\begin{split} H_1 &= S\left(\Re_{x+5} - \Re_{x+\left\lfloor E\left(\frac{n-1}{5}\right) + 1\right\rfloor \right. 5}\right) \\ H_2 &= S \left. E\left(\frac{n-1}{5}\right). \end{split}$$

Il vient

$$_{t}V^{v} = S A_{y:\overline{n'}|} - P^{v} a_{y:\overline{n'}|} + b' \frac{H_{1} + H_{2}(D_{z} - M_{z})}{D_{y}}.$$

La réserve nécessaire au bilan du groupe a pour expression

$$\begin{split} V_{G(T_2,t < \tau)}^v &= (\Sigma \, S) \, A_{\overline{y};\, \overline{n'}\, |} \, + \\ &+ b' \, \frac{(\Sigma \, H_1) \, + \, (\Sigma \, H_2) \, (D_{\overline{z}} - M_{\overline{z}})}{D_{\overline{y}}} - (\Sigma \, P^v) \, \mathbf{a}_{\overline{y};\, \overline{n'}\, |} \end{split}$$

Groupe
$$G(T_2, t \geqslant \tau)$$
.

La réserve nécessaire au bilan pour un assuré du groupe est donnée par l'expression

$${}_tV^v=S\,A_{y:\,\overline{n'}\,|}-P^v\,\mathtt{a}_{y:\,\overline{n'}\,|}+\qquad \text{(base II).}$$

$$+b'\,\mathtt{S}\frac{E\Big(\frac{t}{5}\Big)M_y+\Re_{x+\left[E\left(\frac{t}{5}\right)+1\right]5}-\Re_{x+\left[E\left(\frac{n-1}{5}\right)+1\right]5}+E\Big(\frac{n-1}{5}\Big)(D_z-M_z)}{D_y}$$

On a
$$t = (n-1) - (n-t-1) = (n-1) - (n'-1)$$
 et $E\left(\frac{t}{5}\right) = E\left(\frac{n-1}{5}\right) - E\left(\frac{n'-1}{5}\right) - f(n')$, où $f(n') = 0$, si $(n-1) - E\left(\frac{n-1}{5}\right)$ $5 \ge (n'-1) - E\left(\frac{n'-1}{5}\right)$ $5 \le f(n') = 1$, si $f(n') = 1$, si $f(n$

L'expression de _tV^v peut s'écrire

$$\label{eq:vv} \begin{split} {}_tV^v &= \left(S + b' \; H\right) \, A_{y: \, \overline{n'}|} - P^v \; \mathbf{a}_{y: \, \overline{n'}|} - \\ &- b' \, S \, \frac{\left[\, E\!\left(\frac{n'-1}{5}\right) + f\left(n'\right) \, \right] \, M_y - \Re_{x+\left[E\left(\frac{t}{5}\right) + 1\right] \, 5} + \Re_{x+\left[E\left(\frac{n-1}{5}\right) + 1\right] \, 5}}{D_y} - \frac{1}{2} \, \frac{1}{2} \,$$

Envisageons les deux cas particuliers suivants.

 1° Les durées n pour tous les assurés du groupe envisagé sont des multiples de 5.

Dans ce cas on a pour chaque assuré du groupe

$$f\left(n'
ight)=0\,,$$

$$x+\left[E\left(rac{n-1}{5}
ight)+1
ight]5=z\,,$$

$$x+\left[E\left(rac{t}{5}
ight)+1
ight]5=y+n_2'\,,$$

avec $n'=n_1'$ 5 + n_2' (1 \leqslant $n_2' \leqslant$ 5), n_1' et n_2' étant des nombres entiers.

En effet, soit $n=n_1$ 5 pour chaque assuré du groupe, n_1 étant un nombre entier.

On a, pour un assuré quelconque du groupe,

$$n-1-E\left(\frac{n-1}{5}\right)5=(n-1)-(n-5)=4.$$

D'autre part
$$n'-1-E\left(\frac{n'-1}{5}\right)5\leqslant 4$$

Donc

$$f(n')=0.$$

Puis on a

$$x + \left[E\left(\frac{n-1}{5}\right) + 1 \right] 5 = x + n = z.$$

Enfin on a

$$t = n - n' = n_1 \, 5 - n_1' \, 5 - n_2' = (n_1 - n_1' - 1) \, 5 + (5 - n_2') \, \text{,}$$

οù

$$0 \leqslant 5 - n_2' \leqslant 4.$$

Donc

$$E\Big(rac{t}{5}\Big) = n_1 - n_1' - 1 \; \mathrm{et} \left[E\Big(rac{t}{5}\Big) + 1
ight] \; 5 = \, (n_1 - n_1') \; 5.$$

Il en résulte que

$$x + \left\lceil E\left(\frac{t}{5}\right) + 1 \right\rceil \, 5 = x + (n_1 - n_1') \, 5 = y + n_2' \, ,$$

c. q. f. d.

La réserve nécessaire au bilan du groupe envisagé a dans ce cas pour expression

$$\begin{split} V^{v}_{G(T_{\mathbf{z}},l \geqslant \tau)} &= \left[(\Sigma \, S) \, + \, b^{\scriptscriptstyle \top} \left(\Sigma \, H \right) \right] \, A_{\overline{y};\, n^{\scriptscriptstyle \top}} \, - \, (\Sigma \, P^{v}) \, \mathsf{a}_{\overline{y};\, \overline{n^{\scriptscriptstyle \top}}} \, - \\ &- \, b^{\scriptscriptstyle \top} \left(\Sigma \, S \right) \frac{E \left(\frac{n^{\scriptscriptstyle \prime} - 1}{5} \right) M_{\overline{y}} \, - \, \Re_{\overline{y} + n^{\scriptscriptstyle \prime} z} + \, \Re_{\overline{z}}}{D_{\overline{y}}} \quad \text{(base II)}. \end{split}$$

2º Toutes les durées d'assurance sont uniformément représentées.

La formule approximative suivante donne la réserve nécessaire au bilan du groupe envisagé avec une précision suffisante

$$\begin{split} V_{G(T_{i},t \geqslant \tau)}^{v} &= \left[\left(\sum S \right) + b' \left(\sum H \right) \right] A_{\overline{y}:\, n'\, |} - \left(\sum P^{v} \right) \mathbf{a}_{\overline{y}:\, \overline{n'}\, |} - \\ &- b' \left(\sum S \right) \frac{E\left(\frac{n'-1}{5} \right) M_{\overline{y}} - \mathfrak{R}_{\overline{y}+3} + \mathfrak{R}_{\overline{z}+2}}{D_{\overline{y}}^{-}} \\ &- b' \left[\sum S \, f \left(n' \right) \right] A_{\overline{y}} \quad \text{(base II)}. \end{split}$$

Remarque 1. Pour déterminer f(n'), on procédera de la façon suivante. On notera une fois pour toutes pour chaque assuré le nombre

$$\lambda_1 = (n-1) - E\left(\frac{n-1}{5}\right) 5.$$

Au bilan, on calculera pour chaque groupe la valeur de

$$\lambda_2 = (n'-1) - E\left(\frac{n'-1}{5}\right)5.$$

La comparaison des nombres λ_1 et λ_2 permettra de déterminer sans peine pour chaque assuré la valeur de f(n').

Remarque 2. Dans les exemples numériques qui suivent, nous avons pris les coefficients de Lidstone dans l'annexe technique à la Convention entre la Confédération suisse et les Sociétés Suisses d'assurances sur la vie (page 48).

Supposons maintenant qu'on ait adopté la convention 2. Subdivisons chaque groupe G (T_2) en deux sous-groupes comme suit

$$G\left(T_{2}\right)=G\left(T_{2},\,t\leqslant\tau-\frac{1}{2}\right)+G\left(T_{2},\,t>\tau-\frac{1}{2}\right).$$

Posons, d'une manière générale,

$$U_y = \frac{U\left(y-\frac{1}{2}\right) + \, U\left(y+\frac{1}{2}\right)}{2} \, , \label{eq:Uy}$$

 $y - \frac{1}{2}$ étant un nombre entier et U(y) une fonction quelconque de y.

On a:

a) Dividende progressif.

$$\begin{split} V_{G\left(T_{2},t\leqslant\tau-\frac{1}{2}\right)}^{v} &= (\Sigma\,S)\,A_{\overline{y}:\overline{n^{\prime}}|} + \\ &+ (1-\beta)\,\frac{(\Sigma\,H_{1})-\pi^{\prime}\,(\Sigma\,I\!\!I)\,S_{\overline{z}}^{-} - (\Sigma\,H_{2})\,N_{\overline{z}}^{-}}{D_{\overline{y}}^{-}} - (\Sigma\,P^{v})\,a_{\overline{y}:\overline{n^{\prime}}|} \end{split}$$

$$\begin{split} V_{G\left(T_{\pmb{\imath}},t > \tau - \frac{1}{2}\right)}^v &= (\Sigma S) A_{\pmb{\bar{y}}:\, \pmb{\bar{n'}}|} - \left\{ \left(\Sigma P^v\right) - (1-\beta)\left(\Sigma H\right) \right\} \mathbf{a}_{\pmb{\bar{y}}:\, \pmb{\bar{n'}}|} - \\ &- (1-\beta)\,\pi'\left(\Sigma \pmb{\varPi}\right) \frac{n'\,N_{\pmb{\bar{y}}} - S_{\pmb{\bar{y}}} + S_{\pmb{\bar{z}}}}{D_{\pmb{\bar{y}}}} \quad \text{(base II)}. \end{split}$$

b) Bonus annuel.

$$\begin{split} V_{G\left(T_{2},l < \tau^{-\frac{1}{2}}\right)}^{v} &= (\Sigma S) \; A_{\overline{y};\,\overline{n'}|} + \\ &+ b \frac{(\Sigma H_{1}) - (\Sigma S) \; R_{\overline{z}} + (\Sigma H_{2}) \left(D_{\overline{z}} - M_{\overline{z}}\right)}{D_{y}} - (\Sigma P^{v}) \; \mathbf{a}_{\overline{y};\,\overline{n'}|} \\ V_{G\left(T_{2},l > \tau^{-\frac{1}{2}}\right)}^{v} &= \left[(\Sigma S) + b \; (\Sigma H)\right] A_{\overline{y};\,\overline{n'}|} - (\Sigma P^{v}) \; \mathbf{a}_{\overline{y};\,\overline{n'}|} - \\ &- b \; (\Sigma S) \; \frac{n' \; M_{\overline{y}} - R_{\overline{y}} + R_{\overline{z}}}{D_{\overline{y}}} \; \; \text{(base II)}. \end{split}$$

Le cas du bonus quinquennal se traite d'une manière analogue.

Admettons maintenant que les bases II comprennent une table de sélection.

Si on se sert de la convention 1, on subdivise tous les assurés de la compagnie en deux groupes dont le premier comprend tous les assurés pour lesquels $t < \varphi$ et le second — les assurés pour lesquels $t \geqslant \varphi$, t désignant la durée écoulée à partir de l'effet calculé d'une assurance individuelle quelconque jusqu'à la date du bilan. Pour le premier de ces groupes, la méthode de Lidstone se ramène à la méthode individuelle, car il faut le subdiviser en sous-groupes caractérisés par les mêmes valeurs de T_2 , de [x] et de t. Par contre la méthode de Lidstone s'applique au second de ces groupes exactement comme dans le cas d'une table agrégée, en faisant usage de la table finale (voir tableau IV).

Si on se sert de la convention 2, on sépare tous les assurés en deux groupes, dont le premier comprend tous les assurés pour lesquels $t \leqslant \varphi - \frac{1}{2}$ et le second —

ceux pour lesquels $t > \varphi - \frac{1}{2}$. Pour le premier de ces groupes, la méthode de Lidstone se ramène, comme on le voit sans peine, à la méthode individuelle. Au second — elle est applicable exactement comme dans le cas d'une table agrégée.

Si les bases II comprennent une table décrémente, la méthode de Lidstone se ramène à la méthode individuelle, car il faut séparer les assurés en groupes caractérisés par les mêmes valeurs de T_2 , de [x] et de n.

Conclusions.

Il résulte de l'exposé précédent et des exemples ci-joints que l'adaptation des méthodes de groupement qui servent à déterminer les réserves mathématiques au calcul des réserves nécessaires ne présente pas de difficultés.

La méthode de Lidstone, par sa simplicité et la précision des résultats qu'elle donne, est particulièrement recommandable. Elle présente, en outre, l'avantage de se prêter facilement à un changement de bases techniques.

Le grand défaut de la méthode de Karup consiste précisément à ne pas se prêter facilement à un tel changement qui nécessite une nouvelle détermination de tous les nombres auxiliaires, ce qui occasionne un travail considérable.

Neuchâtel, septembre 1931.

Tab-

Remarque. Le signe ⁰/₀₀₀ accompagnant une grandeur exprime

Bonus annuel. Calcul de la réserve nécessaire par la méthode

x	n	æ	S	$c_z^{\ 0}/_{000}$	$\frac{c_z^{0}/_{000}S}{10^4}$	$P_{x:n}^{"-0}/_{000}$
25	20	45	150.000	40	600	484
30	20	50	70.000	63	441	494
25 25	25 28	50 50 53	300.000	63 83	1.890	380
25	30	55	200.000	100	2.000	318
30	25	55	300.000	100	3.000	392
25	32	57	80.000	120	960	297
40	17	57	35.000	120	420	619
25	35	60	350.000	158	5.530	277
30	30	60	200.000	158	3.160	332
40	20	60	200.000	158	3.160	529
40	23	63	75.000	209	1.568 12.550	467
40	25	65	500.000	251		435
50	15	65	80.000	251	2.008	770

$$\sum S = 2.590.000$$
 $\sum \frac{c_z^0/_{000} S}{10^4} = 37.702$

On a:
$$\frac{\sum c_z \, S \, 10^{-4}}{\sum \, S} = 146$$
; or $\begin{cases} c_{59} = 144 \\ c_{60} = 158 \end{cases}$ Donc l'âge-terme moyen $\bar{z} = 59$ ans. L'âge moyen au bilan: $\bar{y} = \bar{z} - n' = 47$

$$a_{y:n^{7}|}^{-} = 9.252; \quad A_{y:n^{7}|}^{-} = 0.6871; \quad \frac{n' M_{y}^{-} - R_{y}^{-} + R_{z}^{-}}{D_{y}^{-}} = 0.8355;$$

$$b(\mathbf{\Sigma} S) = 38.850; \quad b(\mathbf{\Sigma} H) = 897.900;$$

les

que cette grandeur correspond à une capital assuré de 10.000 francs.

du groupe G (1943, $t \geqslant \tau$) au 31 décembre 1930 de Lidstone.

frais
$$\begin{cases} \alpha = 0.04 \\ \beta = 0.02 \\ \gamma = 0.002 \end{cases}$$

La durée restant à courir pour tous les assurés du groupe: n' = 12 ans.

$a_{x:n}$	$\frac{a_{0/000}}{a_{x:n}}$	$P_{x:\overline{n} 0}^{v}/_{000}$	$\frac{P_{x:n }^{v}/_{000} S}{10^{4}}$	(n-\tau)	$H = S(n-\tau)$
13,972	29	425	6.375	17	2.550.000
13,801	29	435	3.045	17	1.190.000
15,947	25	327	9.810	22	6.600.000
16,923	24	289	1.445	25	1.250.000
17,495	23	269	5.380	27	5.400.000
15,688	25	339	10.170	22	6.600.000
18,008	22	249	1.992	29	2.320.000
12,056	33	554	1.939	14	490.000
18,677	21	230	8.050	32	11.200.000
17,130	23	282	5.640	27	5.400.000
13,293	30	468	9.360	17	3.400.000
14,321	28	410	3.075	20	1.500.000
14,899	27	379	18.950	22	11.000.000
10,535	38	697	5.576	12	960.000
		7-11			
		$\sum_{x:\overline{n}} \frac{P_{x:\overline{n}}^{o}}{ ^{o}/_{00}}$	$\frac{S}{S} = 90.807$	5 L	H = 59.860.000

 $\Sigma = \frac{\Sigma \cdot H + 5000}{10^4} = 90.807$ $\Sigma H = 59.860.000$

La réserve nécessaire du groupe au 31. XII. 1930 : $V^{v}_{G(1943,\ t\geqslant \tau)} =$

$$\begin{split} [(\mathbf{\Sigma}S) + b(\mathbf{\Sigma}H)] A_{\overline{y}:n^{\overline{r}}|}^{-} &- \left(\mathbf{\Sigma} \frac{P^{v_0}/_{000}}{10^4}\right) \mathbf{a}_{\overline{y}:n^{\overline{r}}|}^{-} - b(\mathbf{\Sigma}S) \frac{n' M_{\overline{y}}^{-} - R_{\overline{y}}^{-} + R_{\overline{z}}}{D_{\overline{y}}^{-}} \\ &= (2.590.000 + 897.900) \ 0.6871 - 90.807 \times 9.252 - \\ &\quad 38.850 \times 0.8355 = 1.523.931 \ \text{fr.} \end{split}$$

La réserve nécessaire du groupe, calculée sur les mêmes bases par la méthode individuelle, se monte à 1.524.469 fr. L'erreur sur le résultat obtenu par la méthode de Lidstone est donc de $0.65\,^{\rm 0}/_{\rm 00}$.

Tabl. II.

Dividende progressif. Détermination de la réserve par la méthode

Table de mortalité agrégée : Abel, 4%. $\tau=3$, $\Pi=P_{x:\overline{n}|}''$, $\pi=\pi'=0.03$;

x	n	z	S	$c_z^{-0}/_{000}$	$\frac{c_z^{\ 0}/_{000} S}{10^4}$	$P_{x:\overline{n} }^{''}{}^{0}/_{000}$	$a_{x:\overline{n}}$
					10*		
20	25	45	100.000	40	400	376	15,641
20	30	50	120.000	63	756	311	17,135
22	23	45	30.000	40	120	412	14,896
25	25	50	300.000	63	1.890	380	15,502
25	30	55	320.000	100	3.200	318	16,914
25	35	60	150.000	158	2.370	277	17,958
28	22	50	80.000	63	504	442	14,347
30	25	55	350.000	100	3.500	392	15,242
30	30	60	300.000	158	4.740	332	16,533
33	27	60	50.000	158	790	375	15,543
35	25	60	450.000	158	7.110	407	14,830
35	30	65	350.000	158	5.530	352	15,956
37	23	60	40.000	158	632	451	14,075
40	25	65	300.000	251	7.530	435	14,271
42	23	65	80,000	251	2.008	480	13,533
4 5	20	65	200.000	251	5.020	563	12,344

On a:
$$\frac{\sum c_z \text{ S}}{\sum S} = 143$$
; or $\begin{cases} c_{58} = 132 \\ c_{59} = 144 \end{cases}$ Donc l'âge terme moyen du groupe $\bar{z} = 59$ ans. L'âge moyen au bilan $\bar{y} = \bar{z} - n' = 42$.

$$\begin{split} A_{\overline{y}:n'}| &= 0,\!5540\,; \quad \mathbf{a}_{\overline{y}:n'}| = 11,\!596\,; \quad (1-\beta)\,\pi = 0,\!0294\,; \\ (1-\beta)\,\pi\,\,\frac{n'\,\,N_{\overline{y}}^- - S_{\overline{y}}^- \, + S_{\overline{z}}^-}{D_{\overline{y}}^-} &= 3,\!165\,; \, (1-\beta)\,\pi\,\,\mathbf{\Sigma}H = 84.573\,; \end{split}$$

nécessaire du groupe G (1948, $t \ge \tau$) au 31 décembre 1930 de Lidstone.

taux des frais $\begin{cases} \alpha = 0.04 \\ \beta = 0.02 \\ \gamma = 0.002 \end{cases}$ La durée restant à courir pour tous les assurés du groupe: n' = 17 ans.

			THE RESERVE THE PERSON NAMED IN	AND RESIDENCE AND ADDRESS OF THE PARTY OF TH	-
$\begin{vmatrix} \underline{a}_{x0} \rangle_{000} \\ \underline{a}_{x:n} \end{vmatrix}$	$\left P_{x:n}^v ight ^0/_{000}$	$\frac{P_{x:\overline{n} ^{0/000}}''S}{10^4}$	(n-τ)	$H = \frac{(n-\tau) P''_{x:n} _{0.000} S}{10^4}$	$\left \frac{P^v_{x:\overline{n} ^{0/000}}S}{10^4}\right $
26	322	3.760	22	82.720	3.220
23	262	3.732	27	100.764	3.144
27	357	1.236	20	24.720	1.071
26	326	11.400	22	250.800	9.780
24	268	10.176	27	274.752	8.576
22	229	4.155	32	132.960	3.435
28	385	3.536	19	67.184	3.080
26	338	13.720	22	301.840	11.830
24	281	9.960	27	268.920	8.430
26	322	1.875	24	45.000	1.610
27	352	18.315	22	402.930	15.840
25	300	12.320	27	332.640	10.500
28	394	1.804	20	36.080	1.576
28	378	13.050	22	287.100	11.340
30	420	3.840	20	76.800	3.360
32	5 00	11.260	17	191.420	10.000
		$\frac{P''_{x:n} ^{0}/_{000}}{10^{4}}$	1		$\frac{P_{\boldsymbol{x}:n}^{\boldsymbol{v}} - {}^{\boldsymbol{0}}/_{\boldsymbol{0}00} S}{10^{4}}$
		=124.139			=106.792

 $\begin{array}{lll} \text{La réserve nécessaire du groupe au 31 XII 1930:} & V_{G\,(1948,\,t\,\geqslant\tau)}^v = \\ &= (\mathbf{\Sigma}\,S)A_{\overline{y}:n'}^- - \left[\mathbf{\Sigma}\frac{P_{\mathbf{z}:n}^v|^0/_{000}\,S}{10^4} - (1-\beta)\,\pi\,\mathbf{\Sigma}\,H\right]\,\mathbf{a}_{\overline{y}:n'}^- - \\ &- \left(\mathbf{\Sigma}\frac{P_{\mathbf{z}:n}^{''}|^0/_{000}\,S}{10^4}\right)(1-\beta)\,\pi\,\frac{n'\,N_{\overline{y}}^- - S_{\overline{y}}^- + S_{\overline{z}}^-}{D_{\overline{y}}^-} = 3.220.000\,\times \\ &\times 0.554 - (106.792 - 84.573) \times 11,596 - 124.139 \times 3,165 = 1.133.329\,\mathrm{fr.} \end{array}$

La réserve nécessaire du groupe, calculée sur les mêmes bases par la méthode individuelle, se monte à $1.139.725\,\mathrm{fr}$. L'erreur sur le résultat obtenu par la méthode de Lidstone est donc de $5,6\,^0/_{00}$.

Tabl. III.

Bonus quinquennal. Calcul de la réserve nécessaire par la méthode

Table de mortalité agrégée: Abel, 4%. b' = 0.06; taux des frais

x	n	z	S	$c_z^{\ 0}/_{000}$	$\frac{c_z^{0}/_{000} S}{10^4}$	$P''_{x:\overline{n} }^{0}/_{000}$
20	25	45	50.000	40	200	376
20	30	50	50.000	63	315	311
22	30	52	30.000	76	228	313
23	25	48	50.000	53	265	377
24	30	54	70.000	91	637	316
25	25	50	150.000	63	945	380
25	40	65	50.000	251	1.255	251
26	35	61	40.000	174	696	279
28	30	58	30.000	132	396	325
29	25	54	30.000	91	273	389
30	25	55	70.000	100	700	392
30	30	60	100.000	158	1.580	332
32	25	57	40.000	120	480	397
34	30	64	30.000	229	687	348
35	25	60	50.000	158	790	407
37	30	67	20.000	302	604	365
39	25	64	40.000	229	916	429
40	25	65	200.000	251	5.020	435

$$\Sigma S = 1.100.000 \quad \Sigma \frac{c_z^{0/000} S}{10^4} = 15.987$$

On a:
$$\frac{\Sigma c_z \, S \, \overline{10}}{\Sigma \, S} = 145$$
; or $\begin{cases} c_{59} = 144 \\ c_{60} = 158 \end{cases}$ Donc l'âge terme moyen $\bar{z} = 59 \, \mathrm{ans}$. L'âge moyen au bilan: $\bar{y} = \bar{z} - n' = 40 \, \mathrm{ans}$.

$$n_{2}' = 4; \ E\left(\frac{n'-1}{5}\right) = 3; \ \mathbf{a}_{\overline{y}:\overline{n'}|} = 12,507, \ A_{\overline{y}:\overline{n'}|} = 0,5189;$$

$$\frac{E\left(\frac{n'-1}{5}\right)M_{\overline{y}}^{-} - \Re_{\overline{y}+n_{2}'}^{-} + \Re_{\overline{z}}^{-}}{D_{\overline{y}}^{-}} = 0,2186; \ b' \Sigma S = 66.000;$$

$$b' \Sigma H = 297.600.$$

du groupe G (1950, $t \gg 5)$ au 31 décembre 1930 de Lidstone.

 $\alpha = 0.04$ $\begin{cases} \beta = 0.02 \\ \gamma = 0.002 \end{cases}$ Durée restant à courir pour tous les assurés du groupe: n'=19 ans.

1				,	/		
$a_{x:n}$	$\frac{\alpha}{a_{x:\overline{n} }}^{0/_{000}}$	$P_{x:\overline{n} ^0}^v/_{000}$	$\frac{P_{x:\overline{n} }^{v}/_{000}S}{10^{4}}$	$E\left(\frac{n-1}{5}\right)$	$H = SE\left(\frac{n-1}{5}\right)$		
1 2 0 1 1	20	222	1 010		200,000		
15,641	26	322	1.610	4	200.000		
17,135	23	262	1.310	5	250.000		
17,062	23	264	792	5	150.000		
15,569	26	323	1.615	4	200.000		
16,969	24	266	1.862	5	350.000		
15,502	26	326	4.890	4	600.000		
18,690	21	205	1.025	7	350.000		
17,872	22	231	924	6	240.000		
16,708	24	275	825	5	150.000		
15,306	26	335	1.005	4	120.000		
15,242	26	338	2.366	4	280.000		
16,533	24	281	2.810	5	500.000		
15,095	26	343	1.372	4	160.000		
16,087	25	296	888	5	150.000		
14,830	27	352	1.760	4	200.000		
15,673	26	312	624	5	100.000		
14,396	28	372	1.488	4	160.000		
14,271	28	378	7.560	4	800.000		
$\Sigma \frac{P_{x:n}^{v} S}{P_{x:n}^{v} S} = 34.726$ $\Sigma H = 4.960.000$							

$$\Sigma \frac{P_{x:\overline{n}}^{v} S}{10^{4}} = 34.726$$
 $\Sigma H = 4.960.000$

$$\begin{array}{lll} \text{La r\'eserve n\'ecessaire du groupe au 31 XII 1930:} & V_{G\,(1950,\,t\,\geqslant 5)}^v = \\ & = [\mathbf{\Sigma}\,S \,+\,b'\,\mathbf{\Sigma}\,H]\,A_{\overline{y}:n'}^- - \mathbf{\Sigma}\,\frac{P_{x:\,n_l}^{v}\,{}^{-}\!/_{000}\,S}{10^4}\,\mathbf{a}_{\overline{y}:n'}^- - \\ & -b'\,(\mathbf{\Sigma}\,S)\frac{E\,{}^{\left(n'-1\right)}}{5}\,M_{\overline{y}}^- - \Re_{\overline{y}+n_l}^- + \Re_{\overline{z}}^-}{D_{\overline{y}}^-} = (1.100.000 + 297.600) \times 0,5189 - \\ & -34.726 \times 12,507 - 66.000 \times 0,2186 = 276.469\,\mathrm{fr.} \end{array}$$

La réserve nécessaire du groupe, calculée sur les mêmes bases par la méthode individuelle, se monte à 275.043 fr. L'erreur sur le résultat obtenu par la méthode de Lidstone est donc de 5,2 0/00.

Tabl. IV.

Bonus annuel. Calcul de la réserve nécessaire par la méthode

Mortalité: table de sélection Gotha, 4½ % ($\varphi=7$ ans); $\tau=2$ ans; tous les assurés du

x	n	z	S	c _z ⁰ / ₀₀₀	$\frac{c_{z}^{0}/_{000} S}{10^{4}}$
20	20	40	20.000	25	50
20	25	45	50.000	40	200
20	30	50	75.000	63	473
25	20	45	100.000	40	400
25	25	5 0	300.000	63	1.890
25	29	54	40.000	91	364
25	30	55	60.000	100	600
30	25	55	400.000	100	4.000
30	30	60	30.000	158	474
30	34	64	50.000	229	1.145
35	20	55	70.000	100	700
35	25	60	1.000.000	158	15.800
35	28	63	90.000	209	1.881
40	15	55	1.500.000	100	15.000
40	20	60	800.000	158	12.640
40	23	63	200.000	209	4.180
45	20	65	5.000.000	251	125.500
50	18	68	30.000	331	993
50	20	70	100.000	398	3.980

$$\sum S = 9.915.000$$
 $\sum \frac{c_z^{0/000} S}{10^4} = 190.270$

$$rac{m{\Sigma}}{2} rac{c_z}{10^4} rac{S}{2} = 192$$
; or $\begin{cases} c_{62} = 190 \\ c_{63} = 209 \end{cases}$ L'âge terme moyen du groupe est

donc $\bar{z}=62$ ans. L'âge moyen au bilan: $\bar{y}=\bar{z}-n'=54$ ans.

$$\mathbf{a}_{\overline{y}:\overline{n'}|} = 6,378; \ A_{\overline{y}:\overline{n'}|} = 0,7289; \ \frac{n' \ M_{\overline{y}}^- - \mathfrak{R}_{\overline{y}}^- + \mathfrak{R}_{\overline{z}}^-}{D_{\overline{y}}^-} = 0,5727;$$

$$b \ (\mathbf{\Sigma} \ S) = 148.725; \ b \ (\mathbf{\Sigma} \ H) = 2.755.350.$$

du groupe G (1939, $t \ge \varphi$) au 31 décembre 1930 de Lidstone.

b=0.015; taux des frais $\begin{cases} \alpha=0.04 \\ \beta=0.02 \\ \gamma=0.0025 \end{cases}$ Durée restant à courir pour p=0.0025

- 4					
	$P_{x:n}^{''}{}_{000}^{-0}$	$P^v_{[x]:\overline{n }^0/_{000}}$	$\frac{P^{v}_{[x]}.\overline{n}^{0}/_{000} S}{10^{4}}$	(n-τ)	$H=S(n-\tau)$
T	482	416	832	18	360.000
	376	316	1.580	23	1.150.000
	311	255	1.913	28	2.100.000
	484	418	1.180	18	1.800.000
	380	320	9.600	23	6.900.000
	327	269	1.076	27	1.080.000
	318	262	1.572	28	1.680.000
	392	331	13.240	23	9.200.000
	332	274	822	28	840.000
	299	243	1.215	32	1.600.000
	507	441	3.087	18	1.260.000
	407	346	34.600	23	23.000.000
	37 1	312	2.808	26	2.340.000
l	701	624	93.600	13	19.500.000
	529	461	36.880	18	14.400.000
-	467	403	8.060	21	4.200.000
	56 3	494	247.000	18	90.000.000
	664	590	1.770	16	480.000
	615	543	5.430	18	1.800.000

$$\Sigma \frac{P_{[z]:n}^{v}S}{10^{4}} = 469.265$$
 $\Sigma H = 183.690.000$

La réserve nécessaire du groupe au 31 XII 1930 : $V_{G(1939,\,t\geqslant q)}^{v}=$

$$\begin{split} = & (\mathbf{\Sigma}S + b\,\mathbf{\Sigma}H)\,A_{\overline{y}:\overline{n'}|}^{-} - \left(\mathbf{\Sigma}\frac{P_{[x]:\overline{n}|}^{v}|^{\circ_{(000}}S}{10^{4}}\right)\mathbf{a}_{\overline{y}:\overline{n'}|}^{-} - b\,(\mathbf{\Sigma}S)\frac{n'\,M_{\overline{y}}^{-} - \Re_{\overline{y}}^{+} + \Re_{\overline{z}}^{-}}{D_{\overline{y}}^{-}} \\ = & (9.915.000\,+\,2.755.350)\times0,7289\,-\,469.265\,\times\,6,378\,-\,\\ & -148.725\,\times\,0,5727\,=\,6.157.271~\mathrm{fr}. \end{split}$$

La réserve nécessaire du groupe, calculée sur les mêmes bases par la méthode individuelle, se monte à $6.156.222~\rm fr$. L'erreur sur le résultat obtenu par la méthode de Lidstone est donc de $0.17~\rm ^0/_{00}$.