Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 27 (1932)

Artikel: Influence des variations de l'invalidité sur les réserves mathématique

[suite]

Autor: Haldy, Marc

DOI: https://doi.org/10.5169/seals-967499

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Influence des variations de l'invalidité sur les réserves mathématiques.

Par Marc Haldy, Docteur ès sciences, Aigle.

Troisième partie.

CHAPITRE VII.

De la représentation de l'invalidité par une loi analytique.

\S 1. Représentation de l'invalidité par la loi $i_r = H + F\,G^x.$

Comparant les différentes tables en usage, M. Aug. Urech ¹), docteur ès sciences, a trouvé que la fonction exponentielle pouvait représenter l'invalidité moyenne avec une assez bonne approximation.

Cette fonction n'est cependant pas apte à représenter avec exactitude chaque table d'invalidité. Quelques essais suffisent pour montrer que: seuls des fragments des tables suivent la loi de M. Urech.

En adoptant un terme correctif H, on arrive déjà à une meilleure approximation 2).

La loi ainsi obtenue s'écrit:

$$i_x = H + F G^x$$

¹) «Sur les bases techniques de l'assurance collective»; Bulletin de l'Association des actuaires suisses, 1930, p. 49: $i_x=i_{15}\,o^{x-15}$.

²⁾ Heym avait adopté la loi $i_{20+x} = 0.001 + 0.00002.q^x$ avec $0.00002~q^{59} = 1$. Voir: Eine Übersicht der bisher hergestellten Invaliditätstafeln, von Dr. Eggenberger, Assekuranz-Jahrbuch, 1905, S. 115.

Voici quelques exemples relatifs à des tables très diverses:

1º Table de Küttner (Steinkohlenbergleute in Preussen, 1874—1878):

Ajustement entre les âges 30 et 60.

H = 0.0021

F = 0.0002155 G = 1.12203

Age	Table de Küttner (Taux d'inv.)	$H + FG^x$	Ecart	Ecart relatif
30 35 40 45 50 55 60	0,0053 0,0089 0,0186 0,0358 0,0696 0,1106 0,2280	0,0047 0,0100 0,0195 0,0363 0,0660 0,1191 0,2134	$\begin{array}{r} -0,0006 \\ +0,0011 \\ +0,0009 \\ +0,0005 \\ -0,0036 \\ +0,0085 \\ -0,0146 \\ \hline -0,0078 \end{array}$	-12 % +12 % + 4 % + 1 % - 5 % + 8 % - 6 % + 2 %

2º Table de Küttner (même table):

Ajustement entre les âges 20 et 65.

H = 0.0012

F = 0.00009752

 $G = 1{,}1376$

Age	Table de Küttner	$H + FG^x$	Erreur	Erreur relative
20 25 30 35 40 45 50 55 60	0,0031 0,0042 0,0053 0,0089 0,0186 0,0358 0,0696 0,1106 0,2280	0,0024 0,0036 0,0059 0,0101 0,0182 0,0335 0,0627 0,1184 0,2246	$\begin{array}{c} -0,0007 \\ -0,0006 \\ +0,0006 \\ +0,0012 \\ -0,0004 \\ -0,0023 \\ -0,0069 \\ +0,0078 \\ -0,0034 \\ +0,0037 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
65	0.3950	0,4257 Totaux	+0,0307 +0,0260	$\frac{+8\%}{-18\%}$

3º Table de Küttner (même table):

Autre ajustement entre les âges 20 et 65.

H = 0.0013

F = 0,000108

G = 1,1350

Contract of Alleganders	Age	Table de Küttner	$H + FG^x$	Erreur	E <i>r</i> reur relative
PRODUCTOR OF THE CONTRACTOR OF THE PRODUCTOR OF THE PROPERTY O	20 25 30 35 40 45 50 55 60 65	0,0031 0,0042 0,0053 0,0089 0,0186 0,0358 0,0696 0,1106 0,2280 0,3950	0,0028 0,0040 0,0062 0,0105 0,0185 0,0336 0,0621 0,1158 0,2169 0,4073	$\begin{array}{c} -0,0003 \\ -0,0002 \\ +0,0009 \\ +0,0016 \\ -0,0001 \\ -0,0022 \\ -0,0075 \\ +0,0052 \\ -0,0111 \\ +0,0123 \end{array}$	$-10 \% \\ -5 \% \\ +17 \% \\ +18 \% \\ -1 \% \\ -6 \% \\ -11 \% \\ +5 \% \\ -5 \% \\ +3 \%$
			Totaux	0,0014	+ 5%

4º Table de Caron (Preussische Bergarbeiter, 1870 bis 1879):

Ajustement entre les âges 20 et 55.

H = 0.00215

 $F = 0,000 \ 051 \ 48$

G = 1,1429

Age	Table de Caron	$H+FG^x$	Erreur	Erreur relative
20 25 30 35 40 45 50	0,002 95 0,003 73 0,004 72 0,007 54 0,012 78 0,023 32 0,043 35 0,080 56	0,002 84 0,003 54 0,004 93 0,007 61 0,012 85 0,023 07 0,042 99 0,081 63	$\begin{array}{c} -0,000\ 11 \\ -0,000\ 19 \\ +0,000\ 21 \\ +0,000\ 07 \\ +0,000\ 07 \\ -0,000\ 25 \\ -0,000\ 36 \\ +0,001\ 07 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
99	0,080 56	Totaux	$\frac{+\ 0,001\ 07}{+\ 0,000\ 51}$	$\frac{+1 \%}{-4 \%}$

5º Table de Karup (Invaliditätsverhältnisse unter dem Nichtfahrpersonal deutscher Eisenbahnen 1877 bis 1889):

 $H = 0,000 \ 08$ $F = 0,000 \ 020 \ 808$ G = 1,1429

Age	Table de Karup	$H + FG^x$	Erreur	Erreur relative
20 25 30 35 40 45 50 55 60 65	0,000 39 0,000 65 0,001 07 0,002 38 0,004 77 0,008 35 0,015 74 0,030 74 0,064 74 0,125 50	0,000 38 0,000 65 0,001 22 0,002 32 0,004 43 0,008 56 0,016 61 0,032 31 0,062 92 0,122 53 Totaux	$\begin{array}{c} -0,000\ 01 \\ 0 \\ +0,000\ 15 \\ -0,000\ 06 \\ -0,000\ 34 \\ +0,000\ 21 \\ +0,000\ 87 \\ +0,001\ 57 \\ -0,001\ 82 \\ -0,002\ 97 \\ \hline -0,002\ 40 \\ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

6º Table de Zimmermann, Zugsbeamte (1868—1884):
Ajustement entre les âges 30 et 65:

 $H = 0,000 \ 90$ $F = 0,000 \ 053$ G = 1,1272

Table Erreur $H + FG^x$ Age de Zimmer-Erreur relative mann 0,002 82 30 0,002 81 +0,00001+ 0% 2 %35 0,004 47 0,004 40 -0,00007**—** 2 % 0,007 40 0,007 27 -- 0,000 13 40 45 0,011 29 0,012 50 + 0,001 21 + 11 %+ 2% 0,022 00 +0,0004150 0,021 59 6 % 55 0,041 63 0,039 30 -0,0023360 0,076 23 0,070 77 7 % -0,0054665 0,122 07 0,128 04 $+\ 0.005\ 97$ + 5% + 1 % Totaux -0,00039

7º Table de Zimmermann, Gesamtpersonal:

Ajustement entre les âges 30 et 65.

 $H = 0,000 \ 27$

 $F = 0,000 \ 031 \ 16$ G = 1,1324

Age	Table de Zimmer- mann	$H + FG^x$	Erreur	Erreur relative
30 35 40 45 50 55 60 65	0,001 53 0,002 84 0,004 74 0,008 11 0,015 57 0,029 35 0,057 28 0,100 02	0,001 57 0,002 69 0,004 77 0,008 65 0,015 88 0,029 34 0,054 41 0,101 07	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

8º Table de Zimmermann, Bureaubeamte:

Ajustement entre les âges 20 et 60.

H = 0,00006

 $F = 0,000 \ 241$

G = 1,1272

Age	Table de Zimmer- mann	$H + FG^x$	Erreur	Erreur relative
20 25 30 35 40 45 50 55 60	0,000 20 0,000 38 0,000 79 0,001 81 0,003 14 0,004 63 0,010 12 0,015 44 0,033 53	0,000 20 0,000 42 0,000 82 0,001 53 0,002 84 0,005 21 0,009 53 0,017 40 0,031 71 Totaux	$0\\+0,000\ 04\\+0,000\ 03\\-0,000\ 28\\-0,000\ 30\\+0,000\ 58\\-0,000\ 59\\+0,001\ 96\\-0,001\ 82\\-0,000\ 38$	$ \begin{array}{c} 0 \% \\ + 10 \% \\ + 4 \% \\ - 15 \% \\ - 10 \% \\ + 13 \% \\ - 6 \% \\ + 13 \% \\ - 5 \% \\ + 4 \% $

L'exactitude, faible en apparence, avec laquelle l'expression $H + FG^x$ représente chaque table d'invalidité, ne doit pas nous surprendre. En effet, les tables d'invalidité utilisées sont très différentes les unes des autres, il suffit de les comparer à une loi analytique (par exemple à $H + FG^x$) pour voir qu'elles ont des allures assez dissemblables. On a souvent l'impression qu'elles présentent des irrégularités qui pourraient provenir de l'insuffisance du nombre des observations ou de la trop courte durée de la période durant laquelle ces observations ont été faites. Des événements passagers ont pu fausser l'invalidité à certains âges; ce sont, par exemple, les changements de médecins, de prescriptions administratives, de salaires, etc. La caisse de pensions et de secours des C. F. F. nous en a donné un intéressant exemple dans la période 1914—1925.

Si l'on veut représenter une table d'invalidité donnée, on pourrait être tenté d'appliquer la loi des moindres carrés pour calculer les constantes de la loi $i_x = H + F G^x$. Ce serait une erreur: la loi qu'on obtiendrait présenterait généralement de trop grands écarts relatifs aux jeunes âges, car les taux d'invalidité sont alors très faibles et un petit écart absolu est un très grand écart relatif. Par cette méthode, on obtient presque toujours quelques écarts relatifs dépassant 100%.

Le calcul des constantes ne peut pas s'effectuer en appliquant aux écarts relatifs la loi des moindres carrés. En effet, aux jeunes âges l'invalidité est si faible qu'un écart de 20 ou 30 % n'a qu'une très petite influence sur le nombre total des invalides à la charge d'une caisse d'assurance. Par contre, aux âges avancés un écart relatif de 5 % représente un grand nombre de cas d'invalidité. Il faut donc donner une importance plus grande aux écarts relatifs obtenus aux âges avancés.

Un procédé meilleur pour une caisse pratiquant seulement l'assurance de rentes d'invalidité serait l'application de la loi des moindres carrés aux différentes valeurs du produit de l'écart absolu par la valeur de la rente d'invalidité \mathbf{a}_x^i au même âge. Cette méthode donnerait plus de poids aux écarts absolus dans les petits âges que dans les âges avancés, elle accorderait néanmoins une importance plus grande aux écarts relatifs présentés par les âges avancés qu'à ceux des petits âges. Malheureusement ce procédé serait extrêmement long.

Pour le calcul des constantes utilisées dans les exemples du début du présent chapitre, nous avons formé plusieurs groupes d'âges ¹). Nous avons ensuite calculé séparément les valeurs des constantes sur la base des observations appartenant à chaque groupe, fait la moyenne des résultats, puis corrigé plusieurs fois les constantes obtenues en nous inspirant des considérations ci-dessus.

La loi que nous venons d'examiner sera désormais désignée sous le nom de loi de Heym généralisée (voir la note 2 p. 171).

Dans les exemples donnés, nous n'avons pas eu la prétention d'établir les meilleurs ajustements que la loi $i_x = H + F G^x$ permet; nous avons simplement voulu donner une idée de la précision avec laquelle cette loi représente chaque table d'invalidité.

§ 2. Représentation de l'invalidité par d'autres lois.

Nous venons de voir avec quelle exactitude la loi de Heym généralisée représente les tables d'invalidité.

¹) Voir différents procédés dans le Text-book, chapitre VI, n° 23 et suivants.

Une somme de deux exponentielles

$$FG^x + F'G'^x$$

représenterait chaque table avec une fidélité plus grande. Par contre, elle aurait l'inconvénient d'introduire une constante de plus et de conduire à des expressions plus compliquées pour les symboles de commutation.

Exemple:
$$l_x^{\overline{aa}} = k s^x g^{c^x + TG^x + T'G'^x}$$

La représentation analytique de l'invalidité par un polynôme n'est pas indiquée:

- 1º quelques essais montrent clairement que les polynômes du 4º degré ne suffisent pas, il faut recourir à un degré supérieur, ce qui est gênant à cause du grand nombre des termes et des constantes;
- 2° si le taux instantané d'invalidité est représenté par un polynôme, les expressions algébriques que l'on obtient pour les symboles $a_x^{\overline{aa}}$, $l_x^{\overline{aa}}$..., etc. sont trop compliquées pour permettre de fécondes recherches théoriques.

Exemple:
$$l_x^{\overline{aa}} = g^{a+bx+cx^2+dx^3+ex^4+fx^5+\gamma^x}$$

Conclusion: Les considérations de ce chapitre nous poussent à adopter la loi de Heym généralisée. Pour la commodité des développements théoriques, nous introduisons le taux instantané d'invalidité et posons:

$$v_x = H + F G^x$$
.

CHAPITRE VIII.

Influence des variations de l'invalidité sur les réserves mathématiques des rentes d'invalidité, dans l'hypothèse que cette dernière suit la loi de Heym généralisée.

§ 1. Expression du nombre des survivants actifs si l'on adopte la loi de Makeham pour la mortalité des actifs et celle de Heym généralisée pour l'invalidité.

Les deux hypothèses faites peuvent s'écrire comme suit:

$$egin{aligned} \mu_x^{ar{a}a} &= lpha + eta c^x \ oldsymbol{
u}_x &= H + F G^x \end{aligned}$$

Le nombre des actifs survivants s'obtient en partant de l'égalité:

$$\frac{dl_x^{aa}}{l_x^{\overline{aa}}} = -\left(\mu_x^{\overline{aa}} + \nu_x\right) dx$$

qui devient, en tenant compte des hypothèses:

$$\frac{dl_x^{aa}}{l_x^{\overline{aa}}} = -\left(\alpha + \beta c^x + H + FG^x\right) dx$$

Posons

$$\alpha + H = \alpha'$$

On obtient immédiatement

$$rac{dl_{x}^{\overline{aa}}}{l_{x}^{\overline{aa}}}=-\left(lpha^{\prime}+eta c^{x}+FG^{x}
ight)dx$$

Cette équation différentielle a été intégrée au paragraphe 2 du Chapitre III, elle donne:

$$l_x^{\bar{e}a} = ks^x g^{e^x + TG^x}$$

Dans cette formule les constantes g et c sont celles de Makeham, la constante s est donnée par l'égalité:

(72)
$$\operatorname{Log} s = -\alpha' = -(\alpha + H)$$

et la constante T par

(73)
$$T = \frac{-F}{\text{Log } G \cdot \text{Log } g}$$

La constante k dépend du nombre d'actifs à l'entrée de la table. Les logarithmes sont népériens.

\S 2. Influence des variations des paramètres F et G de la loi de Heym généralisée sur les réserves mathématiques.

La loi de survie comme actif trouvée au paragraphe précédent étant celle que nous avons adoptée au chapitre III, \S 2, les paramètres F et G s'y retrouvant de la même façon, il semble que les résultats que nous en avons tirés au chapitre III doivent être encore valables maintenant que ces paramètres ne sont plus ceux de la loi de M. Urech, mais ceux de la loi de Heym généralisée. En réalité, il faut être prudent:

Au chapitre III, nous avons admis quelques inégalités qui ont joué un rôle prépondérant ¹).

¹) Les inégalités (74) ont été adoptées tacitement au premier tableau du § 6, chapitre III. Depuis lors, les inégalités $0.03 \le i \le 0.05$ et $0.991 \le s \le 0.9991$ n'ont plus été utilisées explicitement.

(29)
$$\begin{cases} 0,991 \leqslant s \leqslant 0,999 \ 1 \\ 1,06 \leqslant c \leqslant 1,112 \\ 0,991 \leqslant g \leqslant 0,999 \ 8 \end{cases}$$

(30)
$$\begin{cases} 0,000\ 007 \leqslant F \leqslant 0,000\ 1\\ 1,1 \leqslant G < 1,2 \end{cases}$$

$$(74) 0.94 \leqslant \sigma \leqslant 0.97 \text{ où } \sigma = sv$$

Dans le chapitre XII, nous déplacerons la limite supérieure pour la constante F lorsque nous adopterons l'inégalité

$$0.000\ 007 \leqslant F \leqslant 0.000\ 5$$

Une question se pose: les valeurs des constantes s, F et G provenant de l'emploi de la loi $\nu_x = H + F G^x$ restent-elles comprises dans les limites ci-dessus?

Toutes les valeurs trouvées pour les paramètres F et G au chapitre VII — et dans les nombreux essais que nous avons faits pour représenter des tables d'invalidité par la loi de Heym généralisée — sont comprises dans ces limites.

En ce qui concerne la constante s, nous discuterons à partir de l'inégalité

$$(74) 0.94 \leqslant \sigma \leqslant 0.97$$

que nous avons admise.

En se rappelant que $\sigma = sv$ et en admettant la nouvelle inégalité

$$0.035 \le i \le 0.05$$

on obtient une condition suffisante pour la validité de la condition (74):

$$(0,94) \ 1,05 \leqslant s \leqslant (0,97) \cdot 1,035$$
 ou $0,9871 \leqslant s \leqslant 1,003 \ 95$

qu'on peut mettre sous la forme

$$-0.013086 \le \text{Log } s \le 0.003934$$

ou, à cause de l'égalité (72):

$$-0.013086 \le -(\alpha + H) \le 0.003934$$

ou encore:

(75)
$$0.013\ 0.86 \geqslant \alpha + H \geqslant -0.003\ 934$$

Au chapitre III, § 2, nous avions:

$$\alpha = - \text{Log } s$$

En tenant compte des inégalités (29), on en tire:

$$(76) 0,009 049 \geqslant \alpha \geqslant 0,000 904 2$$

En soustrayant membre à membre l'inégalité (76) de l'inégalité (75), on obtient une condition suffisante pour que la condition (74) soit satisfaite:

$$0.004037 \geqslant H \geqslant -0.004838$$

Toutes les valeurs que nous avons obtenues pour la constante H sont comprises dans ces limites. En conséquence, on peut refaire, en partant de l'égalité (71), tous les raisonnements qui sont basés sur l'égalité (27), sur les conditions (29), (30) et (74), sur l'hypothèse que le taux de mortalité tq_x^a et le taux d'intérêt ne dé-

pendent pas de l'invalidité. En particulier, on retrouve les mêmes lois pour l'influence des variations des paramètres F et G sur les réserves mathématiques afférentes aux rentes viagères et temporaires d'invalidité, ainsi qu'aux diverses assurances avec payement des primes pendant l'activité de l'assuré seulement.

\S 3. Influence des variations du paramètre H sur les réserves mathématiques des rentes viagères d'invalidité.

Partant de l'égalité (71)

$$l_x^{\overline{aa}} = ks^x \ g^{\epsilon^x + TG^x}$$

on trouve

(77)
$$\mathbf{a}_{x}^{\overline{aa}} = \frac{\sum_{r=0}^{r=\infty} \sigma^{r} g^{c^{x+r} + TG^{x+r}}}{g^{c^{x} + TG^{x}}}$$

D'autre part, nous avons trouvé, au paragraphe 2 de l'introduction, l'égalité (2):

$$_{n}V\left(a_{x_{0}}^{\overline{ai}}\right)=a_{x_{0}+n}^{a}-a_{x_{0}}^{a}\cdot\frac{a_{x_{0}+n}^{\overline{aa}}}{a_{x_{0}}^{\overline{aa}}}$$

Supposons, comme nous l'avons déjà fait maintes fois, que le taux de mortalité des actifs $_tq_x^a$ ne dépend pas des variations de l'invalidité. Dans le second membre de l'égalité ci-dessus une seule expression varie

encore: le quotient $\frac{a^{\overline{ua}}_{x_0+n}}{a^{\overline{aa}}_{x_0}}$. Ses variations et celles de

la réserve sont de sens contraires, car $a_{x_0}^a$ est positif.

De l'égalité (77) on tire:

$$(78) \quad \frac{a_{x_{0}+n}^{\overline{aa}}}{a_{x_{0}}^{\overline{aa}}} = \frac{g^{c^{x_{0}}-c^{x_{0}+n}+T}(G^{x_{0}}-G^{x_{0}+n}) \cdot \sum_{\tau=0}^{\tau=\infty} \sigma^{\tau}} g^{c^{x_{0}+n+\tau}+TG^{x_{0}+n+\tau}}}{\sum_{\tau=0}^{\tau=\infty} \sigma^{\tau}} g^{c^{x_{0}+\tau}+TG^{x_{0}+\tau}}$$

et
$$\frac{d}{dH} \left(\frac{\mathbf{a}_{x+n}^{\overline{aa}}}{\mathbf{a}_{x}^{\overline{aa}}} \right) = \frac{g^{c^{x}-c^{x+n}+T (G^{x}-G^{x+n})}}{\left(\sum_{\tau=0}^{\tau=\infty} \sigma^{\tau} g^{c^{x+\tau}+TG^{x+\tau}} \right)^{2}} \cdot$$

$$(79) \cdot \left(\sum_{\tau=0}^{\tau=\infty} \sigma^{\tau} g^{c^{x+\tau} + TG^{x+\tau}} \cdot \sum_{\tau=0}^{\tau=\infty} \tau \sigma^{\tau-1} g^{c^{x+n+\tau} + TG^{x+n+\tau}} - \right)$$

Il est facile d'évaluer la dérivée $\frac{d \sigma}{dH}$ au moyen de l'égalité $\sigma = sv$ et de la relation (72):

$$\frac{d\sigma}{dH} = v\frac{ds}{dH}$$
 or $s = e^{-\alpha - H}$ et $\frac{ds}{dH} = -e^{-\alpha - H}$

d'où

(80)
$$\frac{d\sigma}{dH} = -ve^{-a-H} = -vs = -\sigma$$

En portant ce résultat dans l'égalité (79), on obtient, après avoir tenu compte de l'égalité (78):

$$(81) \frac{d}{dH} \left(\frac{\mathbf{a}_{x+n}^{\overline{aa}}}{\mathbf{a}_{x}^{\overline{aa}}} \right) = -\frac{\mathbf{a}_{x+n}^{\overline{aa}}}{\mathbf{a}_{x}^{\overline{aa}}} \begin{cases} \sum_{\tau=0}^{\tau=\infty} \tau \sigma^{\tau} g^{c^{x+n+\tau}+TG^{x+n+\tau}} & \sum_{\tau=0}^{\tau=\infty} \tau \sigma^{\tau} g^{c^{x+\tau}+TG^{x+\tau}} \\ \sum_{\tau=0}^{\tau=\infty} \sigma^{\tau} g^{c^{x+n+\tau}+TG^{x+n+\tau}} & \sum_{\tau=0}^{\tau=\infty} \sigma^{\tau} g^{c^{x+\tau}+TG^{x+\tau}} \end{cases}$$

Le facteur $\frac{a_{x+n}^{aa}}{a_x^{\overline{aaa}}}$ est toujours positif; quel est le signe

de l'expression entre accolades?

Cette expression est la différence de deux moyennes pondérées des valeurs de τ . Dans la première de ces moyennes, le poids de τ est $\sigma^r g^{c^{x+n+\tau}+TG^{x+n+\tau}}$ et dans la seconde $\sigma^r g^{c^{x+\tau}+TG^{x+\tau}}$. Ces poids ont été calculés pour la construction des tables des valeurs de la fonction (37) (chapitre III), ils sont positifs et décroissent lorsque τ croît. Le premier, $\sigma^r g^{c^{x+n+\tau}+TG^{x+n+\tau}}$, décroît proportionnellement plus vite que le second, nous pouvons le prouver comme suit:

$$\operatorname{soit} \quad \frac{\sigma^{\tau} g^{c^{x+n+\tau} + TG^{x+n+\tau}}}{\sigma^{\tau} g^{c^{x+\tau} + TG^{x+\tau}}} = g^{c^{x+\tau}(c^{n}-1) + TG^{x+\tau}(G^{n}-1)}$$

le rapport de ces poids. L'exposant

$$c^{x+\tau}(c^n-1) + TG^{x+\tau}(G^n-1)$$

augmente avec τ car: c > 1; G > 1; T > o. Il s'en

suit que $g^{e^{x+\tau}(e^n-1)+TG^{x+\tau}(G^n-1)}$ diminue lorsque τ augmente, car la constante g a toujours une valeur inférieure à l'unité.

Le rapport des poids diminuant lorsque la variable τ augmente, il en résulte que: pour passer de la seconde moyenne à la première, il faut multiplier les poids par des facteurs décroissants lorsque la valeur correspondante de τ croît. On sait que si l'on multiplie tous les

poids par un même facteur la moyenne ne change pas de valeur. Mais si l'on multiplie les poids des petites valeurs de τ par de plus grands facteurs que ceux par lesquels on multiplie les poids des grandes valeurs, on donne ainsi plus d'importance relative aux petites valeurs de τ et la moyenne pondérée s'en trouve diminuée. (La démonstration n'est pas difficile, toutefois elle est longue, c'est pourquoi nous ne la donnons pas.) En conséquence: la première moyenne est plus petite que la seconde, l'expression entre accolades au second membre de l'égalité (81) est négative, il s'en suit que la dérivée $\frac{d}{dH} \left(\frac{\mathbf{a}_{x+n}^{\overline{aa}}}{\mathbf{a}_x^{\overline{aa}}} \right) \quad \text{est positive. Le quotient } \frac{\mathbf{a}_{x+n}^{\overline{aa}}}{\mathbf{a}_x^{\overline{aa}}}$ augmente donc en même temps que le paramètre H. La réserve qui — nous l'avons vu — varie en sens contraire, diminue lorsque le paramètre H croît.

\S 4. Influence des variations du paramètre H sur les réserves mathématiques des rentes temporaires d'invalidité.

Au chapitre IV, paragraphe I, égalité (54), nous avons montré que la réserve mathématique d'une rente temporaire d'invalidité est donnée par l'expression

(54)
$$|_{t-n}a_{x_0+n}^a - |_{t}a_{x_0}^a \frac{|_{t-n}a_{x_0+n}^{\overline{aa}}}{|_{t}a_{x_0}^{\overline{aa}}}$$

Si l'on admet que le taux d'intérêt et la mortalité $_tq_x^a$ ne dépendent pas des variations du taux d'invalidité, il en est de même pour les fonctions $_{|t-n}a_{x_0+n}^a$ et $_{|t}a_{x_0}^a$. Dans l'expression (54), seul le quotient $\frac{|t-n}{a_{x_0}^{\overline{aa}}}$ varie avec l'invalidité. En admettant de nouveau la loi de Heym généralisée pour cette dernière et la loi de Make-

ham pour la mortalité des actifs, le nombre des survivants actifs est donné par l'égalité (71)

$$l_x^{\overline{aa}} = k \, s^x \, g^{e^x + TG^x}$$

$$\frac{\displaystyle \sum_{\tau=l-1}^{z=l-1} \sigma^\tau \, g^{e^{x_0 + \tau} + TG^{x_0 + \tau}}}{g^{e^{x_0 + TG^{x_0}}}}$$
d'où

et
$$\frac{1 - n a_{x_0 + n}^{\overline{aa}}}{1 + a_{x_0}^{\overline{aa}}} = \frac{g^{cx_0 - c^{x_0 + n} + T(G^{x_0} - G^{x_0 + n})} \cdot \sum_{\tau = 0}^{\tau = t - n - 1} \sigma^{\tau} g^{cx_0 + n + \tau} + TG^{x_0 + n + \tau}}{\sum_{\tau = 0}^{\tau = t - 1} \sigma^{\tau} g^{cx_0 + \tau} + TG^{x_0 + \tau}}$$

Le second membre de cette relation s'obtient à partir du second membre de l'égalité (78), en remplaçant les limites supérieures des sommations respectivement par $\tau = t - n - 1$ et $\tau = t - 1$, il s'en suit que la dérivée $\frac{d}{dH} \left(\frac{|t-na|^{\overline{aa}}_{x+n}}{|ta|^{\overline{aa}}_x} \right)$ s'obtient par ce même changement de limites, à partir de l'égalité (81):

$$\frac{d}{dH}\left(\frac{1}{t-n}a_{x+n}^{\overline{aa}}\right) = -\frac{1}{t-n}a_{x+n}^{\overline{aa}} \cdot \left\{ \begin{array}{l} \sum_{\tau=0}^{\tau=l-n-1} g^{cx+n+\tau} + TG^{x+n+\tau} \\ \sum_{\tau=0}^{\tau=l-n-1} g^{cx+n+\tau} + TG^{x+n+\tau} \end{array} \right. \\ \left. \begin{array}{l} \sum_{\tau=0}^{\tau=l-1} \sigma^{\tau} g^{cx+\tau} + TG^{x+\tau} \\ \sum_{\tau=0}^{\tau=l-n-1} \sigma^{\tau} g^{cx+n+\tau} + TG^{x+n+\tau} \end{array} \right. \\ \left. \begin{array}{l} \sum_{\tau=0}^{\tau=l-1} \sigma^{\tau} g^{cx+\tau} + TG^{x+\tau} \\ \sum_{\tau=0}^{\tau=l-n-1} \sigma^{\tau} g^{cx+\tau} + TG^{x+\tau} \end{array} \right\}$$

Nous trouvons entre accolades la différence de deux quotients; chacun d'eux est une moyenne pondérée des valeurs de τ . La première porte sur les valeurs allant de

0 à t-n-1, tandis que la seconde s'étend en plus sur les valeurs allant de t-n à t-1. C'est une raison pour que la seconde soit plus grande que la première. Une deuxième raison réside dans le fait que les poids diminuent plus rapidement dans la première que dans la seconde (lorsque τ augmente), nous l'avons montré au paragraphe précédent où les poids étaient les mêmes que ci-dessus. Il s'en suit que la différence entre accolades est négative et que la dérivée

$$rac{d}{dH}igg(rac{1}{1}t-narac{\overline{aa}}{x+n}igg)$$

est positive, car le facteur

$$\frac{|t-na_{x+n}^{\overline{aa}}|}{|ta_x^{\overline{aa}}|}$$

est positif.

En conséquence: lorsque le paramètre H croît, le quotient

$$\frac{\frac{1}{t-n}a_{x_0+n}^{\overline{aa}}}{\frac{1}{t}a_{x_0}^{\overline{aa}}}$$

croît et la réserve décroît, ce qui résulte immédiatement de l'expression (54).

§ 5. Extension des résultats des deux paragraphes précédents à diverses autres assurances.

Au chapitre VI, paragraphe 1, nous avons montré que les réserves mathématiques afférentes à diverses assurances de capitaux (si les primes ne sont payables que pendant l'activité) varient comme les réserves des rentes d'invalidité viagère; les résultats du paragraphe 3, ci-dessus, s'étendent donc à ces diverses assurances.

De même, les résultats du paragraphe 4 s'étendent aux réserves

$$_{n}V\left(A_{x_{0}:\overline{t}|}^{a}\right) \text{ et } _{n}V\left(A_{x_{0}:\overline{t}|}^{\overline{aa}}\right)$$

lorsque le payement des primes annuelles n'a lieu que pendant l'activité. C'est une conséquence du second paragraphe du sixième chapitre.

CHAPITRE IX.

Influence des variations de l'invalidité sur les réserves mathématiques des rentes de veuvage.

§ 1. Assurance collective des rentes de veuvage.

Dans la plupart des caisses de secours, tous les assurés payent des primes calculées d'après la même base, qu'ils soient mariés ou non, qu'ils aient des enfants ou n'en aient pas. La détermination de ces primes se fait par la méthode collective ¹).

Prime unique pure pour l'assurance d'une rente de veuvage de fr. 1. — annuellement:

 $a_{x_0}^{aw}$ (symbole utilisé par M. Grieshaber).

Prime annuelle pure, payable pendant l'activité de l'assuré:

$$\frac{a_{x_0}^{aw}}{a_{x_0}^{\overline{au}}}$$

Réserve mathématique après n années d'assurance:

¹) Voir Dr. H. Grieshaber: «Die Rechnungsgrundlagen der Versicherungskasse für die Eidgenössischen Beamten, Angestellten und Arbeiter», p. 24 et suivantes.

(82)
$${}_{n}V(a_{x_{0}}^{aw}) = a_{x_{0}+n}^{aw} - a_{x_{0}}^{aw} \cdot \frac{a_{x_{0}+n}^{\overline{au}}}{a_{x_{0}}^{\overline{au}}}$$

Au paragraphe 2 nous chercherons dans quelle mesure les valeurs des symboles $a_{x_0}^{aw}$ et $a_{x_0+n}^{aw}$ peuvent être influencées par les variations de l'invalidité. En attendant, nous admettons que cette influence est négligeable. Dans le second membre de l'égalité (82),

seul le quotient $\frac{a_{x_0+n}^{\overline{aa}}}{a_{x_0}^{\overline{aa}}}$ dépend encore de l'invalidité,

ses variations et celles de la réserve sont de sens contraires, comme dans le cas de l'assurance d'une rente d'invalidité. Les résultats des chapitres III et VIII sont donc applicables aux réserves mathématiques des rentes de veuvage. Il est facile de montrer qu'il en est encore de même pour les réserves mathématiques afférentes à l'assurance de capitaux en cas de veuvage.

\S 2. La fonction \mathtt{a}^{aw}_x est-elle indépendante de l'invalidité?

Admettre que les variations de l'invalidité n'ont pas d'influence sensible sur la fonction a_x^{aw} revient à accepter que les dites variations n'ont pas d'influence sur:

- 1) le facteur d'escompte v;
- 2) la mortalité future des actifs ${}_{t}q_{x}^{a}$;
- 3) la mortalité des femmes des assurés;
- 4) la probabilité pour un assuré d'être marié au moment de sa déclaration d'invalidité (en règle générale les caisses d'assurances ne servent pas de rentes de veuvage aux femme des assurés qui étaient déjà invalides lors du mariage);
- 5) la différence d'âge entre l'assuré et son épouse.

Nous laissons à l'actuaire le soin de voir s'il retrouve ces conditions. On peut cependant faire quelques remarques générales:

Les points 1) et 2) ont été étudiés au chapitre II. Nous avons admis que les variations de l'invalidité n'ont pas d'influence sur le facteur d'escompte v et que leur influence sur la mortalité $_{t}q_{x}^{a}$ est négligeable dans la question étudiée 1).

- 3) Il semble évident que les variations de l'invalidité aient une plus grande répercussion sur la mortalité de ceux qui sont frappés directement que sur la mortalité des membres de leur famille. Ayant admis que l'on peut faire abstraction de l'influence des variations de l'invalidité sur la mortalité $_tq_x^a$ des actifs, nous devons «a fortiori» en faire autant pour la mortalité de leurs femmes.
- 4) L'ensemble des veuves pensionnées peut être décomposé en trois groupes:
 - 1º Les veuves des assurés qui sont devenus invalides avant l'âge de 40 ans.
 - 2º Les veuves des assurés devenus invalides après l'âge de 40 ans.
 - 3º Les veuves des assurés morts avant de devenir invalides.

Les deuxième et troisième groupes réunis comprennent la grande majorité des veuves pensionnées (plus de 96 %); c'est une conséquence de la faible invalidité dans les bas âges, et aussi du fait que la

¹⁾ Voir également:

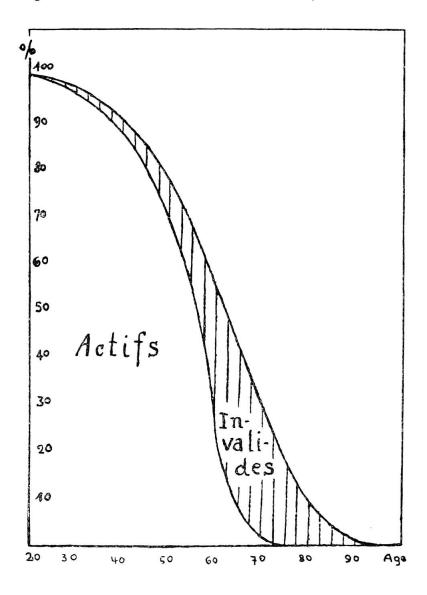
Karup-Andrae, Neue Versicherungsformen, pages 40 et suivantes.

D^r Aug. Urech, Sur les bases techniques de l'assurance collective, Bulletin de l'Association des actuaires suisses, 25^e fascicule, pages 53 et suivantes.

probabilité d'être marié augmente avec l'âge (entre 20 et 40 ans tout au moins). Le graphique suivant permet de se rendre compte de cette proportion.

Dans les jeunes âges, une variation de l'invalidité aurait une influence réelle sur la probabilité pour qu'un homme devenant invalide avant l'âge de 40 ans (premier groupe) soit marié au moment de la déclaration d'invalidité (probabilité dans l'ensemble des invalides audessous de 40 ans), par contre, cette influence est négligeable pour les assurés âgés d'au moins 40 ans car, à cet âge, presque tous les mariages sont déjà conclus (deuxième groupe). D'autre part, on ne pourrait pas justifier une influence sur l'état civil des assurés morts avant de devenir invalides (troisième groupe).

Envisageons l'ensemble des hommes devenus invalides avant l'âge de 40 ans. Un certain nombre d'entre eux étaient mariés au moment de leur déclaration d'invalidité. Si chacun était devenu invalide deux ans plus tôt, le nombre de ceux qui auraient été mariés au moment de la dite déclaration serait plus faible. La diminution peut être évaluée à moins de 15 % 1), elle aurait pour influence une réduction proportionnelle du nombre des veuves appartenant au premier groupe (qui comprend moins du 4 % du nombre total des veuves). Cette réduction atteindrait donc moins de 0,6 % du nombre total des veuves pensionnées. Nous pouvons donc négliger cette influence de l'invalidité sur la probabilité


¹⁾ Cette évaluation a été faite en tenant compte des faits suivants:

¹º Les très jeunes invalides présentent une faible probabilité d'être mariés.

²º La probabilité d'être marié ne varie pas beaucoup entre 30 et 40 ans.

³º L'invalidité est beaucoup plus forte entre 30 et 40 ans qu'entre 20 et 30 ans (elle double en cinq ou six ans).

Répartition des assurés survivants en actifs et invalides.

d'être marié lors de la déclaration d'invalidité, même si l'on se rappelle que les veuves du premier groupe restent en moyenne plus longtemps à la charge de la caisse de pensions que celles des autres groupes.

5) On ne pourrait pas justifier une influence des variations de l'invalidité sur la différence d'âge des deux conjoints.

§ 3. Remarque concernant la méthode individuelle.

L'influence des variations de l'invalidité sur les réserves mathématiques d'une rente de veuvage — évaluée d'après la méthode individuelle — est semblable à celle qui est exercée sur les réserves mathématiques des rentes d'invalidité. L'âge auquel se produit le changement de sens éventuel est cependant différent.

La démonstration de ce théorème est trop longue pour être donnée ici.

CHAPITRE X.

Influence des variations de l'invalidité sur les réserves mathématiques des rentes d'orphelins.

§ 1. Assurance collective des rentes d'orphelins.

Avec M. Grieshaber 1), désignons par $\mathbf{a}_{x_0}^{ak}$ la prime unique pure pour l'assurance des rentes qui seraient servies aux orphelins que pourrait laisser un actif âgé de x_0 ans lors de la conclusion de l'assurance.

¹) Die Rechnungsgrundlagen der Versicherungskasse für die Eidgenössischen Beamten, Angestellten und Arbeiter.

La prime annuelle pure serait:

$$\frac{\mathsf{a}_{x_0}^{ak}}{\mathsf{a}_{x_0}^{\overline{aa}}}$$

Après n années d'assurance, la réserve serait exprimée par la formule:

(83)
$${}_{n}V\left(\mathbf{a}_{x_{0}}^{ak}\right) = \mathbf{a}_{x_{0}+n}^{ak} - \mathbf{a}_{x_{0}}^{ak} \cdot \frac{\mathbf{a}_{x_{0}+n}^{\overline{aa}}}{\mathbf{a}_{x_{0}}^{\overline{aa}}}$$

Nous admettons 1) que les valeurs des symboles $a_{x_0+n}^{ak}$ et $a_{x_0}^{ak}$ sont indépendantes des variations de l'invalidité. Dans le second membre de la formule (83), le quotient $\frac{a_{x_0+n}^{aa}}{a_{x_0}^{aa}}$ seul variera. Ses variations et celles de la réserve seront de sens contraires (car $a_{x_0}^{ak} > 0$), comme dans le cas de l'assurance d'une rente d'invalidité. Les résultats des chapitres III et VIII s'appliquent donc aux réserves mathématiques de l'assurance collective des rentes d'orphelins.

\S 2. Hypothèse de l'invariabilité de la valeur du symbole a_x^{ak} .

L'hypothèse que les variations de l'invalidité ont une influence négligeable sur la valeur du symbole a_x^{ak} comprend les hypothèses admises au paragraphe 2 du chapitre précédent relativement au facteur d'escompte v, à la mortalité $_tq_x^a$, à la probabilité d'être marié au moment de la déclaration d'invalidité, à la mortalité des femmes des assurés, à la différence d'âge entre les deux conjoints. En plus, elle suppose que les variations de l'invalidité n'ont pas une influence très sensible sur

¹⁾ Voir § 2.

le nombre moyen des enfants d'un ménage et sur leur âge moyen. Nous admettrons cette supposition, car l'invalidité n'a une grande importance qu'aux âges élevés des assurés, âges auxquels ils ont rarement de nouveaux enfants. D'ailleurs, une augmentation de l'invalidité pour cause de maladie entraînerait probablement une diminution de la natalité, tandis qu'elle aurait peut-être pour conséquence une augmentation du nombre des naissances si elle était imputable à l'indulgence des médecins. En effet, dans ce dernier cas, les invalides pourraient éprouver un sentiment d'isolement et désirer des enfants.

CHAPITRE XI.

De l'utilisation d'un système de «tables-types». (Standardtafeln.)

§ 1. Généralités.

Blatschke ¹) et Gram ²) ont montré, indépendamment l'un de l'autre, comment les valeurs des rentes viagères continues relatives à une table de survie soumise à la loi de Makeham pouvaient être facilement déduites des valeurs relatives à une autre table de survie soumise à la même loi:

¹) Über eine Anwendung des Sterbegesetzes Gompertz-Makeham, Versicherungswissenschaftliche Mitteilungen, Bd. I, S. 3—14.

²⁾ Aktuaren, 1. Heft, S. 57 ff. Kopenhagen 1904.

Soit

$$l\left(x\right) = s_1^x g_1^{c_1^x}$$

la loi de survie définissant une première table et

$$l(y) = s_2^y q_2^{c_2^y}$$

la loi définissant une seconde table.

Les valeurs des rentes viagères relatives à la seconde table, pour le taux instantané d'intérêt δ_2 , sont données par la formule

$$a_{2}\left(y,\,\delta_{2}\right)=m\;a_{1}\left(x,\,\delta_{1}\right)$$
 où
$$m=\frac{\operatorname{Log}\;c_{1}}{\operatorname{Log}\;c_{2}}$$

$$x=\frac{y-n}{m}$$
 avec
$$n=\frac{\operatorname{Log}\left(\operatorname{Log}\frac{1}{g_{1}}\right)-\operatorname{Log}\left(\operatorname{Log}\frac{1}{g_{2}}\right)}{\operatorname{Log}\;c_{2}}$$

avec

$$\delta_1 = (\delta_2 + r) m$$

et

$$r = \frac{\text{Log } c_2}{\text{Log } c_1} \text{ Log } s_1 - \text{Log } s_2$$

Il suffit donc d'avoir les valeurs des rentes viagères calculées sur la base d'une première table de survie et des différents taux d'intérêt pour pouvoir en tirer rapidement les valeurs des rentes viagères relatives à tout taux d'intérêt et à toute table de survie aussi soumise à la loi de Makeham.

M. le D^r Walter Saxer ¹) a étendu le champ d'application de la théorie ci-dessus à de nombreuses autres lois de survie. Nous nous sommes inspirés de son travail pour résoudre la même question dans le domaine de l'invalidité.

§ 2. Equation différentielle fondamentale.

On sait que

(84)
$$l_x^{\overline{a}\overline{a}} = k e^{-\int_{x_0}^x \left(\mu_x^{\overline{a}\overline{a}} + r_x\right) d_x}$$

et

(85)
$$\overline{a}_{x}^{\overline{aa}} = \int_{0}^{\infty} e^{-\int_{0}^{t} \left(u_{x+t}^{\overline{aa}} + r_{x+t} + \delta\right) dt} dt$$

d'où

$$\begin{split} \frac{d\,\iota_{x}^{\overline{aa}}}{dx} &= \int_{0}^{\infty} e^{-\int_{0}^{t} \left(\mu_{x+t}^{\overline{aa}} + \nu_{x+t} + \delta\right) \, dt} \cdot \left[-\int_{0}^{t} \left(\mu_{x+t}^{'\overline{aa}} + \nu_{x+t}^{'}\right) \, dt \right] \, dt = \\ &= \int_{0}^{\infty} e^{-\int_{0}^{t} \left(\mu_{x+t}^{\overline{aa}} + \nu_{x+t} + \delta\right) \, dt} \cdot \left| -\mu_{x+t}^{\overline{aa}} - \nu_{x+t} \right|_{0}^{t} \, dt = \\ &= \int e^{-\int_{0}^{t} \left(\mu_{x+t}^{\overline{aa}} + \nu_{x+t} + \delta\right) \, dt} \left(-\mu_{x+t}^{\overline{aa}} - \nu_{x+t} + \nu_{x} + \mu_{x}^{\overline{aa}} + \delta - \delta \right) \, dt \\ &= \overline{a_{x}^{\overline{aa}}} \cdot \left(\mu_{x}^{\overline{aa}} + \nu_{x} + \delta\right) + \int_{0}^{\infty} e^{-\int_{0}^{t} \left(\mu_{x+t}^{\overline{aa}} + \nu_{x+t} + \delta\right) \, dt} \left(-\mu_{x+t}^{\overline{aa}} - \nu_{x+t} - \delta \right) \, dt \\ &= \overline{a_{x}^{\overline{aa}}} \cdot \left(\mu_{x}^{\overline{aa}} + \nu_{x} + \delta\right) + \left| v^{t} \frac{l_{x+t}^{\overline{aa}}}{l_{x}^{\overline{aa}}} \right|_{0}^{\infty} = \\ &= \overline{a_{x}^{\overline{aa}}} \cdot \left(\mu_{x}^{\overline{aa}} + \nu_{x} + \delta\right) - 1 \end{split}$$

¹) Über die Konstruktion einer Standardabsterbeordnung, Bulletin de l'Association des actuaires suisses, 19^e fascicule, 1924, p. 19.

ou:

(86)
$$\frac{d\overline{a_x^{aa}}}{dx} - \overline{a_x^{aa}} \cdot (\mu_x^{\overline{aa}} + r_x + \delta) + 1 = 0$$

Cette équation est satisfaite par tout système de tables, pour toute valeur de la variable x.

§ 3. Condition nécessaire et suffisante pour que deux systèmes de tables satisfassent aux équations

(qui s'écrit en abrégé $\overline{a}_{2}^{\overline{aa}}(y) = m \overline{a}_{1}^{\overline{aa}}(x)$)

quelle que soit la valeur de la variable x:

L'indice 1 caractérise les valeurs appartenant au premier système de tables et l'indice 2 désigne celles qui appartiennent au second système.

L'équation (86) donne:

$$(89) \begin{cases} \frac{d\overline{a_{1}^{\overline{aa}}}\left(x\right)}{dx} - \overline{a_{1}^{\overline{aa}}}\left(x\right) \cdot \left[\mu_{1}^{\overline{aa}}\left(x\right) + \nu_{1}\left(x\right) + \delta_{1}\right] + 1 \equiv 0 \\ \frac{d\overline{a_{2}^{\overline{aa}}}\left(y\right)}{dy} - \overline{a_{2}^{\overline{aa}}}\left(y\right) \cdot \left[\mu_{2}^{\overline{aa}}\left(y\right) + \nu_{2}\left(y\right) + \delta_{2}\right] + 1 \equiv 0 \end{cases}$$

Des équations (87) et (88) nous tirons:

$$\frac{d\overline{a_{2}^{na}}(y)}{dy} = m\frac{d\overline{a_{1}^{na}}(x)}{dx} \cdot \frac{1}{m} = \frac{d\overline{a_{1}^{na}}(x)}{dx}$$

ou, en tenant compte des identités (89)

$$\overline{a_{2}^{\overline{aa}}}(y) \cdot \left[\mu_{2}^{\overline{aa}}(y) + \nu_{2}(y) + \delta_{2}\right] = \overline{a_{1}^{\overline{aa}}}(x) \cdot \left[\mu_{1}^{\overline{aa}}(x) + \nu_{1}(x) + \delta_{1}\right]$$

En vertu des équations (87) et (88), cette relation devient:

$$(90) \qquad m\left[\mu_{2}^{\overline{a}\overline{a}}\left(mx+n\right)+\nu_{2}\left(mx+n\right)+\delta_{2}\right]\equiv\mu_{1}^{\overline{a}\overline{a}}\left(x\right)+\nu_{1}\left(x\right)+\delta_{1}$$

Si les égalités (87) et (88) sont satisfaites pour toute valeur d'x, la condition (90) est nécessaire en vertu des raisonnements qui y ont conduit.

Est-elle suffisante?

Nous admettons les égalités

$$y = mx + n$$
 et

(90) $m\left[\mu_{2}^{\overline{aa}}\left(mx+n\right)+\nu_{2}\left(mx+n\right)+\delta_{2}\right]\equiv\mu_{1}^{\overline{aa}}\left(x\right)+\nu_{1}\left(x\right)+\delta_{1}$

Nous montrerons que l'égalité (88) en découle: L'identité (90) donne:

(91)
$$m \left[\mu_2^{\overline{aa}} \left(mx + n + t \right) + \nu_2 \left(mx + n + t \right) + \delta_2 \right] \equiv$$
$$\equiv \mu_1^{\overline{aa}} \left(x + \frac{t}{m} \right) + \nu_1 \left(x + \frac{t}{m} \right) + \delta_1$$

De l'égalité (85) nous tirons:

$$\overline{a_2^{aa}} \left(mx + n \right) \equiv \int_0^\infty e^{-\int_0^t \left[\mu_2^{\overline{aa}} \left(mx + n + t \right) + r_2 \left(mx + n + t \right) + \delta_2 \right] dt} dt$$

ou, à cause de (91):

$$\overline{a_{2}^{\overline{aa}}}\left(mx+n\right)\equiv\int_{0}^{\infty}e^{-\int_{0}^{t}\left[\frac{\mu_{1}^{\overline{aa}}\left(x+\frac{t}{m}\right)+\nu_{1}\left(x+\frac{t}{m}\right)+\delta_{1}}{m}\right]_{dt}}dt$$

Posons

$$f'(t) \equiv \frac{df(t)}{dt} \equiv -\left[\mu_1^{\overline{a}\overline{a}}(x+t) + \nu_1(x+t) + \delta_1\right]$$

On obtient par substitution:

$$egin{align} \overline{a_2^{aa}} \left(mx + n
ight) &\equiv \int_0^\infty e^{\int_0^t m^{t'} \left(rac{t}{m}
ight) d \left(rac{t}{m}
ight)} dt \equiv \int_0^\infty e^{t \left(rac{t}{m}
ight) - t(0)} dt \equiv \ &\equiv m \int_0^\infty e^{\int_0^t t'(t) dt} dt \equiv \ &\equiv m \int_0^\infty e^{-\int_0^t \left[\mu_1^{\overline{aa}} (x+t) + r_1(x+t) + \delta_1
ight] dt} dt \end{aligned}$$

En conséquence de l'égalité (85), cette expression peut s'écrire:

$$m \overline{a_1^{aa}}(x)$$

On a donc:

$$\overline{a}_{2}^{aa} (mx + n) \equiv m \overline{a}_{1}^{aa} (x)$$

ou, à cause de l'égalité (87):

$$\overline{a_2^{\overline{aa}}}\left(y,\mu_2^{\overline{aa}},\nu_2,\,\delta_2\right) = m\;\overline{a_1^{\overline{aa}}}\left(x,\mu_1^{\overline{aa}},\nu_1,\,\delta_1\right)$$
 C. Q. F. D.

L'identité (90) est donc une condition nécessaire et suffisante pour que les deux systèmes de tables satisfassent simultanément aux égalités (87) et (88).

§ 4. Des lois de mortalité et d'invalidité permettant l'emploi d'une table-type.

On peut se demander quelles lois la mortalité et l'invalidité doivent suivre pour qu'il soit possible de réaliser la condition (90), et, en conséquence, de recourir à un système de tables-types pour trouver les valeurs des rentes d'invalidité relatives à d'autres systèmes de tables, en se servant des relations (87) et (88).

Nous montrerons que de nombreuses lois conviennent:

1º Loi de Heym généralisée et loi de Moivre:

Le système de tables-types se compose d'un grand nombre de tables des valeurs des rentes viagères d'invalidité; ces tables sont basées sur:

a) Une seule table d'invalidité définie par la loi

(92)
$$v_1(x) = H_1 + F_1 G_1^x$$
 où H_1, F_1 et G_1

sont des constantes connues.

b) De nombreuses tables de mortalité qui suivent toutes la loi de Moivre:

(93)
$$\mu_1^{\overline{aa}}(x) = \frac{1}{\omega_1 - x}$$

Ces tables diffèrent par la valeur de la constante ω_1 .

c) De nombreuses valeurs (équidistantes) du taux instantané d'intérêt δ_1 .

Soit respectivement

$$\left\{ \begin{array}{c} \nu_{2}\left(y\right)=H_{2}+F_{2}G_{2}^{y}\\ \\ \mu_{2}^{\overline{aa}}\left(y\right)=\frac{1}{\omega_{2}-y}\\ \\ \mathrm{et} \quad \delta_{2} \end{array} \right.$$

les taux d'invalidité, de mortalité et d'intérêt pour lesquels on doit calculer les valeurs de la rente viagère d'invalidité.

Les constantes H_2 , F_2 , G_2 , δ_2 , ω_2 , H_1 , F_1 et G_1 sont connues, il faut déterminer les valeurs des constantes ω_1 et δ_1 de façon à satisfaire à la condition (90) qui devient:

$$m\left[rac{1}{\omega_2-mx-n}+H_2+F_2G_2^{mx+n}+\delta_2
ight]\!\equiv\!rac{1}{\omega_1\!-\!x}+H_1+F_1G_1^x+\pmb{\delta_1}$$

Cette condition peut se décomposer en trois autres conditions:

$$m\,F_2\,G_2^{mx+n}\equiv F_1\,G_1^x \ rac{m}{\omega_2-mx-n}\equiv rac{1}{\omega_1-x} \
m{et} \qquad m\,(H_2+\delta_2)=H_1+\delta_1 \
m{}$$

d'où l'on tire:

$$(95) m = \frac{\text{Log } G_1}{\text{Log } G_2}$$

$$(96) n = \frac{\operatorname{Log} F_1 - \operatorname{Log} (m F_2)}{\operatorname{Log} G_2}$$

(97)
$$\omega_1 = \frac{\omega_2 - n}{m}$$

$$\delta_1 = \textit{m} \left(H_2 + \delta_2 \right) - H_1$$

Les valeurs de la rente d'invalidité calculées d'après les taux ν_2 , $\mu_2^{\overline{aa}}$ et δ_2 donnés aux égalités (94) seraient donc obtenues au moyen de la relation:

(88)
$$\overline{a_2^{aa}}(y) = m \overline{a_1^{aa}}(x)$$

Les valeurs de la fonction $\overline{a}_{1}^{aa}(x)$ étant tirées de la table basée sur les taux $\nu_{1}(x)$, $\mu_{1}^{\overline{aa}}(x)$ et δ_{1} tels qu'ils résultent des égalités (92), (93), (95), (96), (97) et (98).

2º Lois de Makeham et de Heym généralisée. Posons:

(99)
$$\mu_1^{\overline{aa}}(x) = \alpha_1 + \beta_1 c_1^x$$

(100)
$$\mu_2^{\overline{aa}}(y) = \alpha_2 + \beta_2 c_2^y$$

$$(87) y = mx + n$$

$$\delta_2 = \frac{\delta_1}{m} - r$$

$$(102) v_1(x) = H_1 + F_1 G_1^x$$

et cherchons si la fonction $\nu_2(x)$, telle qu'elle résulte de la condition (90) est soumise à la loi de Heym.

(90)
$$m\left[\mu_2^{\overline{aa}}\left(mx+n\right)+\nu_2\left(mx+n\right)+\delta_2\right]\equiv\mu_1^{\overline{aa}}\left(x\right)+\nu_1\left(x\right)+\delta_1$$

Cette condition peut s'écrire:

$$\mu_{2}^{\overline{a}\overline{a}}\left(x
ight)+
u_{2}\left(x
ight)\equivrac{\mu_{1}^{\overline{a}\overline{a}}igg(rac{x-n}{m}igg)+
u_{1}igg(rac{x-n}{m}igg)}{m}+r$$

ou

$$\alpha_2 + \beta_2 c_2^x + \nu_2(x) \equiv \frac{\alpha_1}{m} + \frac{\beta_1}{m} c_1^{\frac{x-n}{m}} + \frac{H_1}{m} + \frac{F_1 G_1^{\frac{x-n}{m}}}{m} + r$$

d'où

$$(103) \quad v_{2}(x) \equiv \left(\frac{\alpha_{1} + H_{1}}{m} - \alpha_{2} + r\right) + \frac{\beta_{1}}{m} c_{1}^{\frac{x-n}{m}} - \beta_{2} c_{2}^{x} + \left(\frac{F_{1} G_{1}^{-\frac{n}{m}}}{m}\right) \left(G_{1}^{\frac{1}{m}}\right)$$

ce qui conserve à $v_2(x)$ la forme de la loi de Heym, à la condition que:

$$\frac{eta_1}{m} c_1^{\frac{x-n}{m}} \equiv eta_2 c_2^x$$

ce qui se décompose en deux conditions:

$$\frac{\beta_1}{m}c_1^{-\frac{n}{m}} = \beta_2 \tag{104}$$

et

$$b) c_1 = c_2^m (105)$$

L'identité (103) prend la forme

$$r_{\mathbf{2}}(y) \equiv H_{\mathbf{2}} + F_{\mathbf{2}} G_{\mathbf{2}}^{y}$$

si les relations (104) et (105) sont satisfaites, que l'on pose:

(106)
$$H_{2} = \frac{\alpha_{1} + H_{1}}{m} - \alpha_{2} + r$$

(107)
$$F_2 = \frac{F_1}{m} G_1^{-\frac{n}{m}}$$

(108)
$$G_2 = G_1^{\frac{1}{m}}$$

et que l'on remplace la variable x par la variable y.

Si l'on doit calculer les valeurs de la fonction $\overline{a_2^{aa}}(y)$, les données sont α_2 , β_2 , c_2 , H_2 , F_2 , G_2 , δ_2 , ainsi que les constantes F_1 , G_1 et H_1 de la loi d'invalidité sur laquelle repose le système des «tables-types» connues. Pour déterminer les valeurs des 7 constantes α_1 , β_1 , c_1 , δ_1 , m, n et r, on dispose des 6 équations: (104), (105), (106), (107), (108) et (101). On peut donc choisir une constante arbitrairement à la condition que les 6 équations restent compatibles. Cette constante arbitraire ne peut être

que δ_1 , α_1 ou r. Nous choisirons δ_1 , afin de ne devoir construire les «tables-types» que pour un seul taux d'intérêt.

3º Sans permettre de se ramener à l'emploi d'un système de «tables-types» basé sur une seule table d'invalidité, d'autres lois d'invalidité permettent la construction de groupes de tables régies par les égalités (87) et (88).

Supposons de nouveau que la mortalité soit soumise à la loi de Makeham et posons:

(100)
$$\mu_2^{\overline{na}}(y) = \alpha_2 + \beta_2 c_2^y$$

$$\delta_2 = \frac{\delta_1}{m} - r$$

 et

(109)
$$\begin{cases} \alpha_2 = \frac{\alpha_1}{m} \\ \beta_2 \, c_2^n = \frac{\beta_1}{m} \\ c_2^m = c_1 \end{cases}$$

La condition (90) devient alors

$$m\left[\frac{\alpha_{1}}{m}+\frac{\beta_{1}}{m}c_{1}^{x}+\nu_{2}\left(mx+n\right)+\frac{\delta_{1}}{m}-r\right]\equiv\alpha_{1}+\beta_{1}c_{1}^{x}+\nu_{1}\left(x\right)+\delta_{1}$$

ou

$$v_{2}\left(mx+n\right)-r\equiv\frac{v_{1}\left(x\right)}{m}$$

ou encore:

(110)
$$v_{2}\left(x\right) \equiv \frac{v_{1}\left(\frac{x-n}{m}\right)}{m} + r$$

Cette condition nécessaire et suffisante conserve à la fonction $\nu_2(x)$ la forme analytique de $\nu_1(x)$ dans de nombreux cas, parmi lesquels nous trouvons:

a)
$$v_x = K_0 + K_1 x + K_2 x^2 + \ldots + K_l x^l$$

où $K_i = \text{const.}$

$$\nu_x = K_0 U_0^x + K_1 U_1^x + K_2 U_2^x + \ldots + K_l U_l^x + k$$

$$\text{où} \begin{cases} K_i = \text{const.} \\ U_i = \text{const.} \\ k = \text{const.} \end{cases}$$

$$v_x = \frac{P(x) + K_0 U_0^x + K_1 U_1^x + \ldots + K_L U_L^x}{p(x) + k_0 u_0^x + k_1 u_1^x + \ldots + k_l u_l^x}$$

où P(x) et p(x) sont des polynômes complets et entiers en x et où K_i , k_i , U_i et u_i sont des constantes.

Connaissant les constantes afférentes à une table de rentes d'invalidité: α_1 , β_1 , c_1 , δ_1 , H_1 , F_1 , G_1 , il suffit de fixer les valeurs des paramètres m, n et r pour que les égalités (101), (109) et (110) donnent les constantes relatives à une seconde table liée à la première par les égalités (87) et (88).

En faisant varier les valeurs attribuées aux paramètres m, n et r on obtient d'autres tables. L'ensemble des tables que l'on obtient ainsi à partir du même système de constantes $(\alpha_1, \beta_1, c_1, \delta_1, H_1, F_1 \text{ et } G_1)$ forme un

groupe. Ce dernier s'obtenant par les variations de trois paramètres, c'est un groupe continu à trois dimensions.

§ 5. Risques anormaux.

Admettons la loi de Makeham pour la mortalité des actifs et celle de Heym généralisée pour l'invalidité:

$$\mu_x^{\overline{aa}} = \alpha + \beta c^x$$
 $v_x = H + F G^x$

On sait que la valeur de la rente (discontinue) temporaire d'activité s'exprime alors par la formule:

$$a_x^{\overline{aa}} = \sum_{\tau=0}^{\tau=n-1} \sigma^{\tau} g^{c^x(c^{\tau}-1) + TG^x(G^{\tau}-1)}$$

où

$$\sigma = sv$$
 Log $s = -(\alpha + H)$ (72)

$$T = \frac{-F}{\text{Log } G. \text{ Log } g} \tag{73}$$

c et g sont les constantes de Makeham et v le facteur d'escompte.

Supposons que des risques anormaux se traduisent par une augmentation constante du taux instantané d'invalidité, qui serait désormais exprimé par la formule:

$$v_x' = H' + F G^x$$

On aurait alors:

$$a_x' \overline{aa} = \sum_{\tau=0}^{\tau=n-1} \sigma'^{\tau} g^{c^x(c^{\tau}-1) + TG^x(G^{\tau}-1)}$$

où
$$\sigma' = vs'$$
 avec $\text{Log } s' = -(\alpha + H')$

Ce changement de taux d'invalidité peut être ramené à un changement de taux d'intérêt ou de taux de mortalité:

Posons

$$v' = \frac{vs'}{s}$$

On a alors

$$\int_{\mathbb{R}^n} a_x^{'\overline{na}} = \sum_{\tau=0}^{\tau=n-1} v^{\prime \tau} s^{\tau} g^{e^x(c^{\tau}-1) + TG^x(G^{\tau}-1)}$$

Cette dernière expression représente la valeur de la rente temporaire d'activité, calculée sur la base du taux de mortalité $\mu_x^{\overline{aa}}$, du taux d'invalidité ν_x et du facteur d'escompte v'.

Il suffit donc de remplacer le facteur d'escompte v par le facteur v' pour obtenir le même changement de valeur qu'en passant du taux v_x au taux v_x' .

On aurait pu poser:

où

$$H' + \alpha = H + \alpha'$$
 et $\text{Log } s' = -(H + \alpha')$

Les constantes s', v, g, c, T et G garderaient les mêmes valeurs, il en serait de même pour ${}_{+n}a_x'^{\overline{aa}}$.

Par cette substitution, le changement de taux d'invalidité est remplacé par un changement du taux de mortalité:

$$\mu_x^{\overline{aa}}$$
 est remplacé par $\mu_x'^{\overline{aa}}$.
$$\mu_x'^{\overline{aa}} = \alpha' + \beta \, c^x$$

$$\alpha' = H' + \alpha - H$$

§ 6. Utilisation de «tables-types» pour trouver les valeurs des rentes d'invalidité.

On connaît l'égalité

$$\overline{a}_x^{\overline{a}\overline{i}} = \overline{a}_x^a - \overline{a}_x^{\overline{a}\overline{a}}$$

D'une part: les théories de Blatschke et de Gram permettent l'utilisation de «tables-types» pour le calcul des valeurs du symbole \overline{a}_x^a . Les tables-types doivent être construites sur la base d'une table de mortalité et des différents taux d'intérêt utilisés. D'autre part: on trouve, dans les premiers paragraphes du présent chapitre, les procédés qui régissent l'utilisation de «tables-types» pour le calcul des valeurs du symbole $\overline{a}_x^{\overline{aa}}$.

Le calcul des valeurs de la rente continue d'invalidité peut donc être basé sur deux systèmes de «tables-types», l'un pour les valeurs de la rente viagère \overline{a}_x^a , l'autre pour les valeurs des rentes d'invalidité.

CHAPITRE XII.

De l'application des lois trouvées aux chapitres III et IV.

§ 1. Champ d'application.

Aux chapitres III et IV, nous avons trouvé les lois qui régissent l'influence des paramètres F et G, de la loi de M. Urech, sur les réserves mathématiques des assurances de rentes d'invalidité. Au chapitre VI, nous avons montré que ces lois s'appliquent intégralement à d'autres assurances, lorsque les primes ne sont perçues que pendant l'activité de l'assuré. Enfin le chapitre VIII

prouve que cette théorie reste valable sans changement si les paramètres F et G sont ceux de la loi de Heym généralisée.

Malheureusement l'application précise à tout cas particulier exige la connaissance des valeurs numériques des fonctions (37), (45), (56) et (57), dont une petite partie seulement a été publiée. Nous voulons combler cette lacune.

§ 2. Quatre propositions préliminaires.

Première proposition: Nous avons vu aux chapitres III et IV que l'influence des variations du paramètre G sur les réserves mathématiques est semblable à celle du paramètre F. Une croissance de l'un de ces paramètres entraîne une augmentation des réserves mathématiques dans les premiers âges et une diminution dans les derniers. L'âge χ auquel le changement a lieu est à peu près le même, qu'il s'agisse du paramètre F ou du paramètre G; pour ce dernier, il est légèrement supérieur, sans que la différence excède deux ans.

L'étude de l'influence des variations du paramètre F nous fait donc connaître approximativement l'influence des variations du paramètre G. Il n'est pas nécessaire de calculer les valeurs des fonctions (45) et (57), fonctions dont nous nous servions pour trouver l'influence du paramètre G.

Deuxième proposition: Nous avons vu au chapitre IV que les valeurs de la fonction (56), ainsi que l'influence des variations du paramètre F sur les réserves mathématiques dépendent de l'âge auquel s'éteint l'assurance 1) si elle est temporaire. On se servait alors des fonctions

¹) La fonction (37) devient la fonction (56) en changeant la limite supérieure des sommations.

(37) et (34) auxquelles on changeait la limite supérieure des sommations, le signe de la dernière se déterminant au moyen des valeurs de la première.

Si l'âge auquel s'éteint l'assurance s'accroît de quelques années, l'âge auquel la fonction (34) change de signe s'accroît approximativement du même nombre d'années. Il en est de même pour l'âge auquel l'influence du paramètre F change de sens.

Il suffit donc de posséder des tables donnant les valeurs de la fonction (37) calculées en arrêtant les sommations à l'âge de 64 ans ¹), pour pouvoir trouver approximativement à quel âge la fonction (34) change de signe si l'assurance s'éteint à un autre âge (ou si les assurés sont mis d'office à la retraite à un autre âge).

Troisième proposition: Une grande variation de la mortalité des actifs a pour conséquence une petite variation des primes et réserves mathématiques des rentes d'invalidité ²). En conséquence, on peut appliquer les lois trouvées aux chapitres III et IV, sans trop se préoccuper de l'influence des changements de mortalité (des actifs) simultanés aux variations de l'invalidité.

Quatrième proposition: Au chapitre III nous avons montré que le signe de la fonction (34) détermine le sens de l'influence des variations du paramètre F sur les réserves mathématiques. L'âge auquel la fonction (34) change de signe ne dépend pratiquement pas des valeurs prises par les constantes c et g de la loi de Makeham et

¹⁾ Il y a alors mise à la retraite d'office à 65 ans, voir également chapitre IV, § 5 (extinction de l'assurance à 65 ans).

²) Voir: Karup-Andrae, Neue Versicherungsformen, p. 40 et suivantes.

Dr. Aug. Urech, «Sur les bases techniques de l'assurance collective», Bulletin de l'Association des actuaires suisses, 25^e fascicule, p. 53.

Chapitre III, § 12, du présent travail.

relativement peu de la valeur de la constante σ . Une augmentation de cette dernière entraîne une diminution de l'âge auquel la fonction (34) change de signe; cette diminution n'excède pas deux ans. Il n'est donc pas nécessaire de pouvoir trouver rapidement le signe de la fonction (34) pour toutes les valeurs des constantes c, g et σ . Il suffit de pouvoir le faire pour un seul système de valeurs: c_1 , g_1 , g_1 ; c'est-à-dire qu'il faut connaître les valeurs de la fonction (37) calculées sur la base de ce système.

Résumé: Pour pouvoir trouver facilement le sens de l'influence des variations des paramètres F et G sur les réserves mathématiques, quelles que soient les valeurs des constantes c, g et g, et quel que soit l'âge auquel tous les assurés sont mis au bénéfice de la retraite (ou l'âge auquel l'assurance s'éteint si elle est temporaire), il suffit d'avoir des tables donnant les valeurs de la fonction (37), calculées sur la base d'assez nombreuses combinaisons des valeurs que les paramètres F et G peuvent prendre, ainsi que d'un système quelconque des valeurs des constantes c, g et g.

§ 3. Tables des valeurs de la fonction (37).

Les tables suivantes ont été établies pour tout le domaine dans lequel les paramètres F et G restent compris. Pour le paramètre F on a envisagé les valeurs: 0,000 007; 0,000 01; 0,000 05; 0,000 08; 0,0001; 0,0005; tandis qu'on donnait successivement les valeurs 1,10; 1,11; 1,12; 1,13; 1,14; 1,15; 1,16; 1,17; 1,20 au paramètre G. Nous avons indiqué les valeurs attribuées au paramètre G, afin de permettre d'en tenir quelque peu compte dans les applications.

- 214

Tables des valeurs de l'expression (37).

 $Tableau\ I.$

 $F = 0.000007 \ \sigma = 0.955.$

Age	$G = 1,10$ $\sigma = 0,97$	G = 1,13	G=1.14	G = 1,15	G = 1,16	G = 1,17	G = 1,2
20 21 22 23 24	61,1 63,0 65,0 67,1 69,1	$ \begin{array}{r} 178 \\ 186 \\ 195 \\ 205 \\ 215 \end{array} $	278 292 306 322 338	424 446 469 494 520	629 662 698 735 775	890 939 991 1046 1104	1710 1813 1923 2040 2166
25 26 27 28 29	$71,3 \\ 73,4 \\ 75,7 \\ 77,9 \\ 80,2$	225 236 247 259 271	355 372 391 411 431	547 575 605 637 670	817 861 907 957 1008	$ \begin{array}{c} 1165 \\ 1230 \\ 1299 \\ 1372 \\ 1449 \end{array} $	2300 2443 2596 2760 2935
30 31 32 33 34	82,5 84,8 87,2 89,6 91,9	284 297 310 324 339	452 474 498 522 547	704 741 779 819 860	1063 1120 1181 1244 1311	$ \begin{array}{c} 1531 \\ 1618 \\ 1709 \\ 1805 \\ 1907 \end{array} $	3122 3322 3535 3763 4006
35 36 37 38 39	94,3 96,6 98,9 101 103	354 369 385 401 418	573 599 627 656 685	904 949 996 1045 1095	1381 1454 1531 1611 1695	$2015 \\ 2128 \\ 2247 \\ 2372 \\ 2502$	4265 4541 4835 5147 5478

	40	105	434	715	1147	1781	2639	5828
TOTAL STREET	41	107	451	745	1200	1871	2782	6198
	42	109	468	776	1255	1963	2931	6588
ı	43	111	485	807	1310	2058	3085	6998
	44	113	502	838	1367	2155	3243	7424
ı	45	114	517	869	1423	2253	3406	7870
	46	115	533	899	1479	2352	3572	8332
	47	116	547	928	1533	2451	3740	8807
	48	116	561	955	1585	2548	3908	9294
	49	116	57 3	980	1635	2641	4073	9786
ı	50	116	583	1002	1681	2730	4233	10280 1)
	51	115	591	1020	1720	2810	4385	10770
١	52	113	595	1033	1753	2880	4523	11240
	53	111	596	1040	1775	2935	4642	11700
	54	107	593	1039	1785	2971	4734	12110
200	55	103	583	1030	1779	2982	4789	12470
Section 2	56	98,2	568	1009	1753	2961	4796	12750
2485	57	91,9	544	973	1703	2899	4739	12920
	58	84,3	511	920	1622	2785	4598	12940
TO SERVICE	59	75,2	468	847	1504	2606	4350	12740
2000	60	64,5	411	748	1341	2345	3962	12230
	61	51,8	339	620	1123	1982	3393	11200
	62	37	248	462	836	1492	2591	9330
	63	20	137	256	468	845	1488	5920
	64	0	0	0	0	0	0	0
		-						
١.			1	1	1	1		1

¹⁾ Ce nombre et les suivants ont été arrondis aux dizaines.

Tables des valeurs de l'expression (37).

Tableau II.

$$F = 0.00001$$
 $\sigma = 0.955$.

Age	G=1,10	G = 1,12	G = 1,13	G = 1,14	G = 1,15	G = 1,16	G = 1,17
20	44	111	174	269	402	579	788
21	46	116	183	282	423	611	832
22	47	122	192	297	446	644	878
23	49	127	201	312	469	679	927
24	51	133	211	327	494	715	979
25	53	139	221	344	520	754	1034
26	55	146	231	361	547	795	1093
27	58	152	243	379	575	839	1154
28	60	159	254	398	605	884	1220
29	62	166	266	418	637	933	1289
30	64	173	278	439	670	983	$1363 \\ 1440 \\ 1522 \\ 1609 \\ 1701$
31	67	181	291	460	705	1037	
32	69	189	305	483	742	1093	
33	72	197	319	506	780	1153	
34	74	205	333	531	820	1215	
35	76	213	348	556	862	$1281 \\ 1349 \\ 1421 \\ 1496 \\ 1575$	1797
36	79	222	363	582	905		1899
37	81	230	379	609	950		2007
38	84	239	395	637	997		2119
39	86	248	411	666	1046		2238

$\begin{array}{ c c } & 40 \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ \end{array}$	89 91 93 95 97	257 266 275 284 292	428 444 461 478 494	695 725 755 786 816	1096 1147 1200 1255 1308	$\begin{array}{c c} 1656 \\ 1741 \\ 1828 \\ 1918 \\ 2010 \end{array}$	2362 2491 2626 2766 2910
45	99	300	510	847	1363	2103	3059
46	101	308	526	876	1417	2198	3211
47	102	315	540	905	1471	2292	3365
48	103	321	554	932	1523	2385	3520
49	104	326	566	957	1572	2476	3674
50	104	330	576	979	1617	2562	3824
51	104	333	583	998	1657	2642	3968
52	103	334	588	1011	1690	2712	4101
53	101	333	589	1019	1715	2769	4218
54	99	330	586	1019	1726	2809	4313
55	96	323	577	1010	1723 1701 1656 1581 1470	2826	4377
56	92	312	562	991		2814	4399
57	86	298	539	957		2763	4366
58	80	278	507	906		2663	4258
59	72	253	464	836		2502	4052
60	62	221	408	740	1314	2261	3717 3209 2473 1436 0
61	50	181	337	615	1103	1921	
62	36	132	247	456	824	1454	
63	19	72	136	253	463	828	
64	0	0	0	0	0	0	

Tables des valeurs de l'expression (37). $\sigma = 0.955 \quad F = 0.00005.$

 $Table au\ III.$

Age	G = 1,10	G=1,11	G=1,12	G=1,13	G=1,14	G=1,15	G = 1,16	$G=1,2$ $\sigma=0,94$
20	41,5	64	96	126	187	238	287	419
21	43,2	67	101	132	197	251	302	449
22	45,0	70	105	139	207	264	319	481
23	46,8	73	110	146	218	279	337	515
24	48,7	76	115	153	229	294	356	551
25	50,7	79	121	160	241	309	376	590
26	52,7	83	126	168	253	326	397	632
27	54,7	86	132	177	266	344	419	676
28	56,9	90	138	185	280	362	442	723
29	59,0	94	144	194	294	382	467	773
30	61,2	98	151	204	309	402	493	826
31	63,5	102	158	213	325	423	520	882
32	65,8	106	164	224	342	446	549	941
33	68,1	110	172	234	359	470	579	1002
34	70,5	114	179	245	377	494	611	1067
35	72,9	119	187	257	395	520	644	$ \begin{array}{c} 1134 \\ 1203 \\ 1274 \\ 1347 \\ 1421 \end{array} $
36	75,3	123	194	268	415	547	679	
37	77,7	128	202	281	435	576	715	
38	80,1	132	210	293	456	605	753	
39	82,5	137	218	306	477	636	793	

40	84,8	141	227	319	499	667	833	1494
41	87,1	146	235	332	522	700	876	1567
42	89,3	150	243	346	546	734	919	1638
43	91,4	154	251	360	569	768	964	1705
44	93,3	158	259	373	593	804	1010	1768
45	95,1	162	267	387	618	839	1056	1824
46	96,8	166	275	401	642	876	1103	1871
47	$98,\!1$	169	282	414	666	912	1151	1906
48	99,2	172	288	426	689	948	1198	1929
49	100,0	174	294	438	711	984	1244	1934
50	100,3	176	299	449	732	1019	1289	1920 1
51	$100,\!2$	177	302	458	751	1051	1333	1890
52	99,5	177	304	465	768	1081	1373	1830
53	98,2	176	304	470	780	1107	1410	1740
54	96,2	173	302	472	788	1128	1441	1620
55	93,3	169	297	470	790	1142	1466	1480
56	89,4	163	289	463	785	1146	1481	1310
57	84,4	155	277	450	769	1138	1483	1120
5 8	78,1	145	261	429	740	1113	1468	900 2
59	70,3	131	238	399	695	1064	1427	690
60	60,8	114	210	357	628	983	1349	500
61	49,3	94	173	3 00	534	858	1213	350
62	35,6	68	127	225	405	670	986	200
63	$19,\!2$	37	70	127	231	397	611	100
64	0	0	0	0	0	0	0	0

¹⁾ Ce nombre et les suivants ont été arrondis aux dizaines.
2) Ce nombre et les suivants ont été arrondis aux centaines.

Tables des valeurs de l'expression (37).

 $Table au\ IV.$

F =	0,00008	$\sigma =$	0,955.
-----	---------	------------	--------

Age	G = 1,10	G = 1,11	G = 1,12	G = 1,13	G=1,14	G = 1,15	G = 1,17
20	39,9	60	87	119	152	185	250
21	41,6	63	91	125	160	195	265
22	43,3	66	95	131	169	206	280
23	45,1	69	100	138	178	217	296
24	46,9	72	105	144	187	229	313
25	48,8	75	110	152	196	241	331
26	50,7	78	115	159	207	254	350
27	52,7	81	120	167	217	267	370
28	54,8	85	125	175	229	282	391
29	56,9	88	131	184	240	297	413
30	59,0	92 96 100 104 108	137	193	253	313	436
31	61,2		143	202	265	329	461
32	63,5		150	211	279	347	486
33	65,7		156	221	293	365	513
34	68,0		163	232	308	384	541
35 36 37 38 39	70,4 $72,7$ $75,1$ $77,4$ $79,7$	$112 \\ 116 \\ 120 \\ 125 \\ 129$	170 177 184 192 199	243 254 265 277 289	323 339 355 372 390	403 424 445 468 491	570 600 631 664 696

1 40	82,0	133	207	302	408	514	730
41	84,3	138	215	314	426	539	764
42	86,4	142	223	327	446	564	798
43	88,5	146	230	340	465	589	832
44	90,5	150	238	354	485	615	866
45	92,3	154	246	367	505	641	899
46	93,9	158	253	379	525	668	931
47	95,3	161	260	392	545	695	961
48	96,5	164	266	404	564	721	989
49	97,3	166	272	415	583	746	1014
50	97,7	168	277	426	601	771	1035
51	97,7	169	280	435	618	794	1053
52	97,2	170	283	442	633	816	1064
53	96,0	169	284	448	646	835	1070
54	94,1	167	283	450	655	851	1069
0.	01,1	101	200	400	000	001	1003
55	91,4	163	279	449	660	863	1060
56	87,7	158	272	443	660	869	1042
57	83,0	150	262	432	651	868	1014
58	76,9	141	248	413	633	856	975
59	69,3	128	228	385	601	828	925
60	60, 0	112	201	346	551	779	861
61	48,8	92	167	292	477	695	781
62	35,3	67	124	220	369	560	671
63	19,1	37	69	125	215	343	481
64	0	0	0	0	0	0	0
				041			

Tables des valeurs de l'expression (37).

Tableau V.

F = 0.0001.

	$\sigma = 0.94$ $G = 1.10$	$\sigma = 0,955$ $G = 1,11$	$\sigma = 0.94$ $G = 1.12$	$ \sigma = 0.955 G = 1.13 $	$\sigma = 0.94$ $G = 1.14$	$\sigma = 0.94$ $G = 1.16$
20	30,1	58	88	109	105 111 118 125 133	151
21	31,6	60	93	114		161
22	33,2	63	99	120		171
23	34,8	66	104	126		182
24	36,6	69	110	132		194
25 26 27 28 29	38,4 $40,2$ $42,1$ $44,1$ $46,1$	72 75 78 82 85	116 122 129 136 143	139 146 153 161 168	141 150 159 169 179	207 220 234 249 264
30	48,2	89	150	177	189 201 212 225 238	281
31	50,4	92	158	185		298
32	52,6	96	166	194		316
33	54,9	100	174	203		336
34	57,2	104	183	213		356
35	59,6	108	192	223	251	376
36	62,0	112	201	233	265	398
37	64,4	116	210	243	280	421
38	66,8	120	220	254	295	444
39	69,3	125	229	266	311	468

223

40	71,7	$ \begin{array}{r} 129 \\ 133 \\ 137 \\ 141 \\ 145 \end{array} $	239	277	327	492
41	74,1		249	289	344	517
42	76,5		258	301	362	543
43	78,9		268	313	379	569
44	81,0		277	325	398	594
45 46 47 48 49	83,1 85,1 87,8 88,3 89,6	149 153 156 159 161	286 295 303 311 317	337 349 361 372 383	416 435 453 472 490	620 645 670 693
50 51 52 53 54	90,4 90,9 90,9 90,3 89,0	163 165 165 164 163	322 326 328 328 325	393 402 409 415 418	508 524 540 553 565	715 736 754 769 782 790
55	86,8	159	319	418	573	793
56	83,8	154	309	414	576	792
57	79,6	147	295	405	573	784
58	74,1	138	277	389	562	769
59	67,2	126	252	365	540	746
60	58,4	110	220 181 132 72 0	329	501	710
61	47,7	91		280	440	656
62	34,6	66		212	348	562
63	18,9	36		121	212	387
64	0	0		0	0	0
		20				

Tables des valeurs de l'expression (37).

 $Table au\ VI.$

F = 0.0005 $\sigma = 0.94$.

Age	G = 1,10	G = 1,11	G = 1,12	G = 1,13	G = 1,15
20	20	26	32	38	53
21	21	27	34	41	56
22	23	29	36	43	59
23	24	30	37	45	63
24	25	32	39	48	66
25	26	34	42	50	70
26	27	35	44	53	74
27	29	37	46	56	78
28	30	39	48	59	82
29	31	41	51	62	86
30	33	43	53	65	90
31	34	45	56	68	95
32	36	47	59	71	99
33	37	49	61	75	104
34	39	51	64	78	109
35	40	53	67	82	113
36	42	56	70	85	118
37	44	58	73	89	123
38	46	61	76	92	127
39	47	63	79	96	132

- 224

	40 41	$\frac{49}{51}$	66 68	83 86	100	136
	42	53 53	71	89	104 107	140 143
	43	54	73	92	111	146
	44	56	76	95	114	149
I	ĺ					110
	45	58	78	99	118	151
	46	60	81	102	121	152
ı	47	61	83	105	124	152
	48	63	86	108	127	152
	49	64	88	110	129	151
	50	65	90	113	131	149
	51	66	92	115	133	145
	52	67	94	117	134	141
	53	67	95	119	135	135
	54	67	96	120	135	127
	1					
	55	66	96	121	134	118
1	56	65	96	121	133	109
	57	63	94	121	131	98
	58	60	91	119	128	86
	59	55	86	115	124	73
	60	49	79	108	118	60
	61	41	68	97	109	48
	62	31	52	79	94	36
N.	63	17	30	49	64	25
	64	0	0	0	0	0
	1					

§ 4. Quelques exemples d'utilisation des tables données au paragraphe 3.

Premier exemple: Les valeurs adoptées pour les constantes étaient jusqu'à ce jour: F = 0,000~031; G = 1,126; $\sigma = 0,951$. L'expérience nous impose les nouvelles valeurs F = 0,000~020; G = 1,126; $\sigma = 0,951$. Quelle répercussion ce changement a-t-il sur les réserves mathématiques des assurances de rentes d'invalidité et de pensions de retraites, l'assuré devant recevoir le premier versement de sa pension de retraite à l'âge de 65 ans?

Solution: Nous supposerons qu'à partir d'aujourd'hui l'assuré payera des primes calculées sur la base des nouvelles constantes. Nous résoudrons la question pour des assurances contractées aux âges 22, 42 et 57 ans.

Il s'agit ici d'une diminution de la constante F. D'après le paragraphe 8 du chapitre III, la réserve mathématique est diminuée pendant les premières années d'assurance et augmentée pendant les dernières. L'âge auquel se produit le changement est donné par les valeurs de la fonction (37).

Parmi les tables précédentes, ce sont les deuxième et troisième colonnes du tableau II et les troisième et quatrième colonnes du tableau III qui sont les plus voisines du cas à traiter:

a) L'assurance a été contractée à l'âge de 22 ans.

D'après la deuxième colonne du tableau II, pour l'âge de 22 ans, la fonction (37) a la valeur 122. Pour trouver ensuite une valeur plus petite, il faut aller jusqu'à 63 ans. C'est à cet âge et au suivant que la réserve mathématique est augmentée ¹). D'après les autres colonnes sus-mentionnées, on obtient le même résultat.

¹⁾ Voir paragraphe 6 du chapitre III.

b) L'assurance a été contractée à l'âge de 42 ans.

Le raisonnement est le même. L'âge auquel le changement a lieu est de 59 ans d'après la deuxième colonne du tableau II, 60 ans d'après la troisième colonne du même tableau, 59 ans d'après la troisième colonne du tableau III et 61 ans d'après la quatrième colonne. Par interpolation on trouve 59,2, mais une aussi grande exactitude est dénuée de sens; il suffit de savoir que l'augmentation a lieu à l'âge de 60 ans et aux âges suivants.

c) L'assurance a été contractée à l'âge de 57 ans.

Il n'y a aucune diminution de la réserve, mais seulement des augmentations, car dans les quatre colonnes sus-mentionnées l'âge X [auquel la fonction (37) présente son maximum] est inférieur à 57 ans.

Dans ce premier exemple, il était inutile de tenir compte de la différence entre la valeur 0,951, donnée pour la constante σ , et la valeur utilisée pour le calcul des tables, 0,955; cette différence est négligeable (quatrième proposition du § 2).

Second exemple: Les valeurs adoptées pour les constantes étaient jusqu'à ce jour: $F=0{,}000\,031$; $G=1{,}126$; $\sigma=0{,}951$; $c=1{,}08$; $g=0{,}997$. L'expérience nous impose les nouvelles valeurs: $F=0{,}000\,031$; $G=1{,}138$; $\sigma=0{,}949$; $c=1{,}09$; $g=0{,}996$. Quelle répercussion ce changement apporte-t-il aux valeurs des réserves mathématiques d'une assurance temporaire d'invalidité contractée lorsque l'assuré avait 35 ans et s'éteignant lorsqu'il atteindra 58 ans 1)?

Solution: Nous supposerons que l'assuré payera désormais les primes calculées sur les nouvelles bases.

¹) La solution serait la même si l'assuré devait recevoir une retraite dont il toucherait le premier versement à l'âge de 58 ans.

En application de la troisième proposition (§ 2), nous négligerons l'influence des variations des constantes c, g et σ .

En application des seconde, troisième et quatrième propositions nous résolvons d'abord la question comme s'il y avait augmentation du paramètre F, l'assurance s'éteignant à 65 ans. Les raisonnements du premier exemple, refaits sur la base des deuxième, troisième et quatrième colonnes du tableau II et des troisième, quatrième et cinquième colonnes du tableau III donnent: en cas d'augmentation du paramètre F, les réserves mathématiques augmentent aux âges inférieurs à 62 ans et diminuent à 62 ans et aux âges supérieurs. D'après la première proposition: pour une augmentation du paramètre G, l'âge, auquel le changement a lieu, serait approximativement d'un an plus élevé, soit 63 ans.

D'après la deuxième proposition: si l'assurance s'éteint 7 ans plus tôt, soit à 58 ans, le changement a aussi lieu 7 ans plus tôt, soit à 56 ans. Comme dans le premier exemple, l'application de la quatrième proposition 1) ne modifie pas le résultat.

Les réserves augmentent aux âges inférieurs à 56 ans, elles diminuent à 56 et 57 ans.

 $^{^{1}}$) Les deux tableaux donnés au paragraphe 7 du chapitre III fournissent une indication assez précise de l'influence de la valeur de la constante $^{\sigma}$.

Table des matières.

Chapitre VII:	
De la représentation de l'invalidité par une loi analytique .	171
Chapitre VIII:	
Influence des variations de l'invalidité sur les réserves mathématiques des rentes d'invalidité, dans l'hypothèse que cette dernière suit la loi de Heym généralisée	179
Chapitre IX:	
Influence des variations de l'invalidité sur les réserves mathématiques des rentes de veuvage	189
Chapitre X:	
Influence des variations de l'invalidité sur les réserves mathématiques des rentes d'orphelins	194
Chapitre XI:	
De l'utilisation d'un système de «tables-types» des valeurs de la rente d'activité (Standardtafeln)	196
Chapitre XII:	
De l'application des lois trouvées aux Chapitres III et IV	210

