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Mathematische Untersuchungen über die in unter-

jährigen Raten zahlbaren Renten.

Von Prof. Dr. Werner Friedli, Dem.

Vorwort.
In der Enzyklopädie der mathematischen Wissen-

schaften weist darauf hin, dass den gebräuch-
heilsten Näherangsformeln der Versicherungstechnik
eine Abschätzung des Restgliedes mangle D.

Wir setzten uns zum Ziel, fur eine der am häufigsten
gebrauchten Nähernngsfortneln der Praxis die Berech-

nuiig des Bestgliedes durchzuführen und damit jenem
Mangel abzuhelfen. Die vorhegende Untersuchung stellt
eine Erweiterung und Ergänzung zweier im Druck er-
schienenen Arbeiten dar -).

Dem gleichen Gegenstand ist eine im -Jahre 1925

erschienene Arbeit von /. F. ,Sfe//ettsea gewidmet, be-

titelt «On the mathematical foundations of actuarial
science». In diesem Zusammenhang interessieren uns
die Schlussbemerkungen des Verfassers ®), welche sehr

gut dem Standpunkt entsprechen, der uns in der Be-

handluug der Frage geleitet hat:

0 Enzyklopädie der mathematischen Wissenschaften, Heft I
D 4 fr, S. 879.

'-) Mitteilungen der Vereinigung schweizerischer Versiehe-

rungsniathematiker, Heft 13 (1918) und Heft 18 (1923).
0 Siehe 7. Skandinaviske Matematikerkongres i Koben-

lravn, den 31. August bis 1. September 1925. Kongresberetningen,
S. 342, Kebenhavn 1926.
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«I have only wanted to show that it is possible,
and not even difficult, to find sufficiently narrow
limits for the error in some of the approximative
formulas most frequently employed by actuaries.
There is no reason why actuarial formulas should not
be established on such a basis that it is clearly seen on
what foundation they rest, and what can be expected
of them. When much vagueness can be avoided by
comparatively little trouble, there is no justification
for taking the easier course.»

Das Problem ist von Steffensen neuerdings behandelt
worden in seinen Londoner-Vorträgen vom Jahre 1930

(Some recent researches in the theory of statistics and
actuarial science, Cambridge, University Press, p. 26 ff.).
Diese gaben unmittelbar auch den Anstoss zur Druck-
legung der vorliegenden Untersuchungen, die bereits in

einigen Arbeiten von Schülern der Berner Universität
zitiert worden sind.

Um das Studium unserer Arbeit zu erleichtern, sei

auf nachstehende kurze Inhaltsübersicht verwiesen.
Die Näherungsformel von Woolhouse

wurde von Poterin du Motel durch den liest If ergänzt,
für welchen er den Ausdruck gab:

*

Diesem können wir zwei weitere Restformeln an die
Seite stellen, welche wir in Anlehnung an die Bezeich-
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nung der Bestglieder der Eulerschen Summenformel als

Formeln von Keliwanoff (II) und Markoff (III) bezeich-

nen :

l-t)

II ' -N720 w' J

/B
" ^ Z: "n •

n (3-i

1 — />•
in // e -b., o < e < i

720 w* /),,
•

Diese Beste haben wir auf Grund des Makehamschen
Gesetzes analytisch dargestellt und berechnet. Eine
erste Schätzung geschah mit Hilfe des in Abschnitt V

behandelten bestimmten Integrals
1

jn—1 /-| „—x/,/= / r-' (i — *r
0

das sich einerseits durch eine Beihe von P — Funktionen

P .»•. /() s""''e~~* öfe,

0

anderseits mit Hilfe eines speziellen hypergeometrischen
Integrals durch eine Potenzreihe darstellen lässt. Das

Verfahren wird sowohl auf (I) als auf (II) angewendet.
Der Best (III) ist leicht anzugeben, ist jedoch an Neben-

bedingungen geknüpft, die nicht einfach sind.

Als Besultat ergab sich, dass der Best B in zwei

Schranken eingeschlossen werden kann und dass er

Beträge erreicht (siehe Tabelle in Abschnitt VII), die

praktisch zu vernachlässigen sind. Damit ist die Berech-

tigung der Voolhouseschen Näherungsformel gezeigt.
Eine zweite Schätzung war nötig für die höheren

Alter. Sie wurde in Abschnitt VII mit Hilfe der unvoll-
ständigen Gammafunktion
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vorgenommen und führte, abgesehen von einem Propor-
tionalitätsfaktor, auf die nämliche Schlussformel wie die

Markoffsche Relation (III), wobei sich jedoch eine

praktisch bequemer zu handhabende Bedingung«-
gleichung als bei jener ergab. Die numerische Auswertung
nach dieser zweiten Schätzung zeitigte das erfreuliche
Ergebnis, dass auch für die höchsten Alter der Ab-
sterbeordnung der Best ff in der Woolhouseschen Formel
vernachlässigt werden darf.

Als Anwendung unserer Formeln ergaben sich im
IX. Abschnitt die Restformeln in den Näherungsaus-
drücken der Verbindung»- und Zeitrenten, sowie der

vollen, mittleren Lebenserwartung. Namentlich der

Spezialfall der Zeitrenten bringt eine schöne Bestätigung
der im allgemeinen Fall gefundenen Resultate, wobei
bemerkenswert ist, dass die Restformeln I, II. III alle
im wesentlichen auf das gleiche Ergebnis führen, nämlich
dass in der Formel

also solange der Zinsfuss 0 % nicht übersteigt :

der Rest IV der Ungleichung genügt

< 0,000 0000 IG



Ill
1. Abschnitt.

Lu der Lebensversicherung spielt die vom Alter .r

abhängige Funktion

/(*) +
die Überlebensordnung, in allen Berechnungen eine

Hauptrolle.
Solche Überlebensordnungen sind in grosser Zahl

und für sehr verschiedene Gesamtheiten von Personen

aufgestellt worden. Stets aber werden die Funktion«-
werte auf Grund der Methoden der mathematischen
Statistik nur für Werte des Argumentes .r

berechnet. Für die Ermittlung der einfacheren Barwerte
der Versicherungstechnik genügen dieseWerte allerdings
vollständig; der Mangel an Funktionswerten für ge-
brochene Argumentwerte macht sich jedoch fühlbar,
sobald es sich um die Berechnung der kontinuierlichen
und unterjährigen Barwerte handelt.

Es ist

(1)... I), a.„ — + /+ ;-i + Ats-2 + • • • +
(•2)... •/« aj" 4- + Ac-rü m + ••• + Aï: '

m

I 7) _I_ n J_ 71 4- 4- /) m-1
I x+ 1 ' x+1 + 1 m i x + lr 2 m ' • • • i -^x+1 I

D 4- / 4- /)
to ' "^to+l»t I -*40+2 m

und daher

(8)...
X Q
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•>' o o

X -f /•

(4)
m (tfl—-g) tM-1

' >7
j/i D J

* o

Der gewöhnliche Barwert a.,, ist somit bekannt, wenn man
die Summe (3) kennt, deren einzelnes Glied ein Produkt
aus zwei Funktionen ist:

Bei der in m unterjährigen Raten zahlbaren Rente 1,

deren Barwert theoretisch durch (4) gegeben ist, zerlegt
sich jedes solche Produkt in m weitere Produkte, die
durch den Ausdruck gegeben sind

Die praktische Schwierigkeit besteht nun darin, class wie
erwähnt, keine Funktionswerte /, für gebrochene Ar-
gumentwerte existieren und dass die unterjährige Ver-

zinsung (Marchzins) meistens so bemessen ist, dass sie

nicht auf den Faktor F7, sondern auf einen Ausdruck

fuhrt, welcher von jenem etwas abweicht.
Alan ist somit gezwungen, zur Berechnung von

a j" zu bestimmten Annahmen zu greifen undXäherungs-
formein aufzustellen. Hierfür stehen verschiedene Wege
offen :

/,
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1. man interpoliert direkt, die Funktion / >. ; :

•2. man interpoliert sowohl f' ' als / ;

3. man benützt gewisse Reihenentwicklungen.
Ein Beispiel der ersten Art bildet die wohl praktisch

am meisten benutzte Formel

welche der Auffassung entspricht, das» die Funktion
D(a;) innerhalb eines Jahres */« + 1 linear verlaufe.

Beispiele der zweiten Art liessen sich beliebig viele
darstellen. Wir begnügen uns mit folgenden charakte
ristischen Fällen

Variante

Absterbeordnung
im Laufe

des Jahres

x/.r — 1

Marchzins
im Laufe

des Jahres

I linear exponential

II linear linear

III exponential exponential

IV exponential linear

Farwtfe I führt auf den vielverwendeten Ausdruck')

CO - • •

_
af « a, -

') Wir envähnen folgende schweizerische Arbeiten, in welchen
diese Formel abgeleitet bzw. angewendet wurde:

/?efcsfei«, Witwen- imd Waisenkasse der Professoren der
E. T. H.. Gutachten (1899), Bericht (1906).

Moser, Untersuchungen und Materialien (1901).
JvbtfceZm, Gutachten über Errichtung einer kantonalen

Anstalt für Invaliden- und Altersversicherung im Kanton Glarus
(1904).

Lenin«, Versicherungstechnische Orientierung (1904).
Gries/Fiber, Rechnungsgrundlagen (1922).
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worin
m* (1 — r'

I r ' — m (1 —F "')

«F (1 — F "f
Faria/ite IT würde im einfachsten Fall auf Ent-

wicklung folgender Beihe führen

Wenig Beachtung scheinen die Fälle II und III
gefunden zu haben, deren Ergebnisse selten Verwendung
finden und die wir hier kurz ableiten.

I '«mute II. Bezeichnet f einen Bruchteil des Jahres,
so da ss

o< f < 1,

so wird die Berechnung von zu erfolgen haben nach
der Formel

(8) ad
l

* 0 2=1 ^

• Ol (f)

- iE (r — it) r

e* (1 — dt)

Folglich

i [(1 — 0 'F + h' /I, ; ,| (I — dt)
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ta—Z

2' ' * < [(1 - o -V + fr .v..,! (1 - dt)
z

[(1 — t + fr) JV, — fr DJ (1 — dt)

[(1 + fr) N, — tr DJ (1 — dt)

| (1 + fr) a, — fr] (1 — dt)
z

(1 -fr fr) (1 — dt) a,, — fr (1 — dt)

(1 -fr fr) (1 — dt) a^ — f (r —fr)

0, fr, ' Dj, * ^-U ^11,
' m m ' w

— m • a !)"'

Hierin ist

2 2 [!+('' — d) t — frfrj
^

1 2 m—1
' m ' m ' m

TO—1 (2to—1)(to —1),
m -fr fr — d) — -?d

2 6m

oder wegen i — d ?'d.

V • 7
(*» — 1) + 1)

7 m + ?a —
6 TO

2 2* (fr—fr^>Ii
o,i-, '

m »i wi
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m — 1 (2 m — 1) (m — 1

r i
2 6 to

m—1 (m — 1) (m + 1)
_j_ i

2 6 m

Folglich

oM oW y U -y

1 •, (w» — 1) (»» + 1)
1 -+- ia —

6 TO

to — 1 .(to— 1) (m -f 1)

2 m 6 to"

oder schliesslich

(9) a (m) a,
TO — 1 (to 1) (to. 4- 1)

F-l„
2 m 6wF

Handelt es sich um die Zeitrente 1, so wird

Zl-| 1 —(ï«^| 0 und daher aus (9)

TO — 1

2 TO
-, wie es bei Voraussetzung

des linearen Marchzinses sein soll.

Fanante III. Bedeutet wiederum i einen Bruchteil
des Jahres, so setzen wir voraus

7 ~<Vj1.+« e ^

i* • u*

wobei die Konstanten und c aus den Grenzbedin-

gungen
limes

* 1

^+i

limes
/ 1
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sich orgelten zu C^. — Log

c — Log u,

so dass

ÏX+, Z* (Px)'

U 7)^ 7)*

und daraus

ß*+<=£*w=-Dr'--DUi
Zur Bestimmung von a'("' führen wir die Summation

vorerst durch über f für x konstant und hernach über a:.

^ ^Xil ^x /'"m—12L^
0,1/m, •

D

^
tü X

(10) und a"
tü—£

D

* l-(«Px)"~
1 — »p.

Statt dessen kann auch geschrieben werden

(10a) af> —- Va: ——r"-rD, [1 — (''IL) I

Für den Fall der Zeitrente geht (10) über in

oo

„ w _ l V / i — ®

0

1 —ü
m (1—td'")

1

p— wie es sein soll.
m (1 — r;'"")



Ans (10) könnten nun eine Reihe von Näherungsformeln
hergeleitet werden. Zu diesem Zwecke könnte man aus-

gehen von der Relation

F
>

z, wo 0 < z < 1

so dass

1 --
11 — ('Tx) ?».[! — (1 — »]

welcher Ausdruck in eine nach Potenzen von : fort-
schreitende Reihe entwickelt und alsdann in dieser Form
mit />,. verknüpft werden kann, woraus durch passende
Summation sich jene Näherungsformeln ergeben müssen.

Mit den an dritter Stelle genannten Reihenent-

wicklungen werden wir uns in dieser Arbeit eingehend
befassen. Die Reihenentwicklung hat auf die praktisch
gegebenen Grössen Rücksicht zu nehmen und muss
eine mühelose Auswertung ermöglichen.

Verteilen sich die Ratenzahlungen gleichmässig
über die Dauer eines Jahres, so ergibt sich der Grenz-

wert

limes g(m) __ limes J_
m (m—i)tW—1"• *• ^

7>— '

?«
0

ui—x -f 1

und unter Voraussetzung eines zur a?-Achse asvmp-
totischen Verlaufs der Funktion 1)^.
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(11)... les af> Ô
m =00 ^ X s;/"-'** 0

Der Wert dieses Integrals ergibt sich als Spezial-
fall aus den einzelnen Näherungsformeln für ajj'.

In allen Fällen, in welchen für die Absterbeordnung
ein mathematisches Gesetz formuliert ist (sei es zur Aus-

gleichung der Beobachtungszahlen, sei es als Näherung),
ist die Schwierigkeit in der Berechnung unterj ähriger
Barwerte ausgeschaltet. Wie man die Zahlen für
ganzzahlige Argumentwerte kennt, sind auch die

benötigten Werte

mathematisch bestimmt, der Barwert also präzis er-
fassbar. Wählen wir als einfachsten Ausdruck das Dor-

moysche Gesetz für die Überlebensordnung, also

so ergeben sich folgende Barwerte (nachschüssig) :

II. Abschnitt.

fc(us)*+' »s

" fc (us)* 1— (ss)"

00
1

1

Log 1/us

9
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III. Abschnitt.

Wir vergleichen nun die bekanntesten und daher

am meisten verwendeten Näherungsformeln

,(m) «» +
m — 1

2m

TO — 1

2m

m

(Simpson) *)

>—1

_;»i) +
m^(l—r' * '

w-(l — r"")~

welche im Grenzfall übergehen in

(,Mj. + ri) (Woolhouse) -)

(Lobat-to)®)

12w®

m r' (1 — r' '") —r' d

(1)

(2)

(3)

'' »,
12

d — d_ id
-^r «x + ^

mit der von H. A. v. d. Belt") stammenden Formel

(4)... fl,
6» ff"' r(l -r)

(2 — 0 (8-e)

V (f — 1

+

B T. Simpson, Select exercices for young proficients in the
mathematics. London (1752), S. 283.

») W. S. B. TFoohiouse, J. I. A. XV. London (1870), S. 10C.

B A. Lobatfo, Verhandl. Akad. Wetensch. Amsterdam (1) 10

(1864), S. 199.
*) Archief voor de Verzek. Wetenschap S (1906), S. 381.
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Die letztere ist als ma<7iema<iscfe genauer Ausdruck des

Barwertes er^ anzusprechen, sobald die Absterbeordnung
dem Makehamschen Gesetz folgt

(5) ix

Hierbei bedeuten die Konstanten 7, e, g, Parameter,
welche von den Parametern s, g, c der Überlebens-

Ordnung und der Verzinsungsintensität d abhangen,
nämlich

; Log C

(4«)

g Log

Log — + <5

8 — + 1

Log c

Wie stellen sich nun die Resultate nach den ver-
schiedenen Formeln (1) bis (4) zu einander? Wir werten
sie aus auf Grund der englischen Tafel 814 %,
die nach Formel (5) ausgeglichen ist. Nachstehend sind
die Ergebnisse zusammengestellt ; wir bleiben beim

Alter 85 stehen, weil die Reihe (4) für grosse Werte von a;

sehr langsam konvergiert (beim Alter cc 85 waren
schon 17 Glieder der Reihe zu berücksichtigen).



X

ai
berechnet nach der Formel

Relativer Fehler in bezug
auf (4)

Absoluter Fehler in bezug
auf (4)

(1)

Simpson

(2)

Wool-
house

(3)

Lobatto

(4)

v.d.
Belt

bei (1) bei (2) bei (3) bei (1) bei (2) bei (3)

20

:J0

40

50

CO

70

80

85

20,7986

19,0423

16,7037

13,7815

10,4527

7,1136

4,2705

3,1570

20,7952

19,0388

16,7001

13,7774

10,4474

7,1056

4,2557

3.1358

20,7950

19,0384

16,6996

13,7771

10,4480

7,1086

4,2652

3,1510

20,7951

19,0389

16,7003

13,7779

10,4476

7,1056

4,2552

3,1338

+0,000168

+0,000 179

+0,000 204

+0,000 261

+0,000 488

+0,001126

+0,003 360

+0,007 403

+0,000004

—0,000 005

- -0,000 012

—0,000036

—0,000019

+0,000000

+0,000118

+0,000 638

—0,000 005

—0,000 026

—0,000042

—0,000 059

+0,000038

+0,000 422

+0,002 350

+0,005 680

— 0,0035

— 0,0034

— 0,0034

— 0,0036

— 0,0051

— 0,0080

— 0,0153

— 0,0232

— 0,0001

+ 0,0001

+ 0,0002

+ 0,0005

+ 0,0002

0,0000

— 0,0005

— 0,0020

+ 1X11

+ 0,0005

+ 0,0007

+ 0,0008

— 0,0004

— 0,0030

— 0,0100

— 0,0178



Aus dieser Übersicht entnehmen wir die bemerkens-

werte Tatsache, dass Formel (1) eine ziemlich rohe,
(•2) eine sehr gute und (8) in den untern Altersklassen
ebenfalls eine gute, in den obern weniger gute Annähe-

rung für den Barwert (und «"' ergibt. Beschränkt

man sich auf 8 Dezimalstellen, so darf die Formel von
TüooZ/iowsc direkt als genauer Ausdruck für den Barwert
angesehen werden.

Dieses Resultat stützt sich auf ein einziges Zahlen-

beispiel, darf also nur als ein vorläufiges betrachtet wer-
den. Es bleibt uns auf analytischem Wege zu zeigen

übrig, dass das Ergebnis allgemeine Geltung besitzt.

IV. Abschnitt.
Um die Genauigkeit der Woolhouseschen Formel auf

analytischem Wege zu prüfen, gehen wir von der Euler-
Mac Laurinschen Summenformel aus. Sie stellt eine

wichtige Brücke zwischen Summen- und Integral-
rechnung dar und eignet sich infolgedessen vortrefflich
zur Aufsuchung einer Beziehung zwischen rh' und eg..

Da aber die Eulersche Summenformel eine semikon-

vergente Reihe darstellt, so genügt es nicht, eine Nähe-

rungsformel aufzustellen, sondern der zweite ebenso

wichtige Schritt besteht darin, den Grad der Näherung,
d. h. den «Rest» zu bestimmen. Angeregt durch die

Bemerkung von BoTiZmawi *) «Diesen sämtlichen Nähe-,

rungsformeln mangelt jedoch eine Abschätzung des Rest-

gliedes. Der Praktiker beurteilt die Güte der Annähe-

rung dadurch, wie die verschiedenen Näherungsformeln
unter einander übereinstimmen» hat Poferm dit Mofel -)

als erster einen Ausdruck für den Rest der Woolhouse-

*) Enzyklopädie der mathematischen Wissenschaften I, D 4 b,

S. 879.
-) Encycl. sciences math. I. 4, 4, p. 527.
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sehen Formel aufgestellt den wir unseren Untersuchungen
zugrunde legen wollen. Diesem allgemeinen Restaus-
druck lassen sich zwei weitere an die Seite stellen, näm-
lieh, wenn die Woolhousesche Formel geschrieben wird

(1) i ~ li ^ ^

• - /> '

(I) B / f (1 - f)« S dt
4 Im"/ ^ D<„ Motel)

=o D« „..1 v (*+ —)
(Ii) « % —-——, o < < i

720 m» ^
1 — -Dg!

/>' - 2 — 0 < y < I

(III).

720 m* D(„

wobei für alle Werte 0 < 2 < » stets gleichzeitig
gelten müssen

D<| > 0 1 DO» < 0
oder aber (III«)

und £gj>o| Dgj < 0 j

Die Formel II erhielten wir durch Anwendung der spe-
ziellen Restformel für die Eulersche Summenformel,
wie sie D. S'elwcano// gegeben hat *), Formel (III) mit
ihren Bedingungsgleichungen aus dem von M. M. Mar-
fco// ®) stammenden Restausdruck. Die letzte Restformel
hat von den drei Ausdrücken die einfachste Gestalt,
die Schwierigkeiten ihrer Anwendung liegen in den

Bedingungsgleichungen III a.

*) Differenzenrechnung, Leipzig (1904), S. 07 (14).
-) Differenzenrechnung, Leipzig (1896), S. 120 (21).
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Zur Herleitung von (1) gehen wir aus von der von
Marfco// gegebenen Form der Eulerschen Formel *),

wobei wir jedoch die Grenzen der Summe in der ge-
wohnten Schreibweise angeben:

6—/t

(2) / (u:) / («) + / (a A) + / (a + 2A) + • • • + / (A — A)

a

1

— / / (z) dz + Hi (/ (6) —/(a))

+ 5R,

» x_J A ^ ^ (2: +A —Zj
(2 a) SR — / <p„, (z) y 7-— dz, wo m >2

0

o

V, (-) (/£'V*S +/[ria^) + • • + / ?'
^

Hierin ist

Z /( z'"~'
(z) — + Hl ^ + H, —- • • + H_1 —,

welche Funktion im Falle A 1 Bernow/h'scAe Fimfc<iow

mten Grades heisst. Die Koeffizienten haben die Werte

H, - 1/2 H3 0

Hj 1/12 Hi — 1/720

*) Differenzeiirechnung, S. 112.
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1

.1,. — — usw.
30240

Um die Formel unsern Zwecken dienstbar zu
machen, multiplizieren wir sie mit fe, ersetzen 5R /t — it
und führen eine Laufzahl a ein.

_ 6 a=m—2

(3)... Ä 2 / c®) /" / (*) & + 2 • ^ ' [/w -/&)] - «
-, -, i j,a, a-f-Ä,

6—Ti

worin

B fe /V,» 2- /i"V+Ä-s)-~
Ö a, a-f-Ä, a + 2Ä,.. .0—Ti

Wir substituieren 2 /h, so dass wegen

9?„< (^) ^'>m(0

(3a)... it | <p,„ (/,) • 2 ® (® + * "- to) ^
a, a-f Ti, a-f 2Ti,.. Ti

worin

—1 ^

9»» (*) -, + A + • • • +

Zur Vereinfachung setzen wir 1 — < ^, so dass

0 _
— A+' / 99,„(i — y 2- (® + toi) d«i

0

ii
1 a, a-7-7i. &—7i

1

3, a-fÄ... &—Ä

A»+i/ç>„(l-t) 2j^ '/'"»(® + to)di
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Nun gilt nach .SWIicano// *)

für gerades m : l„, (1 — *) 9-„, (0

für ungerades m: (1 —- Z) — (f),

also bei gleichzeitiger Ersetzung des Parameters m durch

r und Einführung einer Laufzahl n:

1 Ä

(4a)... E / 7?, (f) (a+HÄ-|-7j<)df, wenn

Y
r gerade.

1 Ä

(4b)... If —y y,(Z)^rt /^(a+n7i+/tZ)cZZ, wenn
o o

r ungerade.
* **

Setzt man an Stelle von m in (3) ebenfalls r und
alsdann a«/ tmserew FaZZ arw/ewe-nrZeZ:

/($) D(œ) u* Z(a;)

1
Ä —

m

a z

6 oo

r 4

*) Differenzenrechnung.
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so geht (8) über in

/' D (s) & + 2 ^,+ (D& -ö£i) -ö
r „=n \ /

oo oo ft 2 -|^a-rl1 /* _ /
-1

— >"ö „
>" V I'-'«

Setzen wir nun voraus, class

Z) (oo) - D' (oo) D (oo) 0

und dividieren mit D (tc), so kommt

y„Z)(;œ + —
1 T ^ ?Ö(S„. '-6, (' 1 V"'ÖS"! Zü/s>-2x.D(s) ./ D(®) " V m / ö,„ Ö(i)

Wir lösen nach dem Integral auf, ersetzen den Eest
kurzerhand durch I?, dann kommt

1 1 D' (œ)
a,. af -i t + B

2m 12 m D (#)

und schliesslich

!5)... â,=„r +J—^+_Î + B
2m 12 m

wobei wegen (4a):

n(4)

(1
\ 5 t OO /

^
B + / \

— / Zh WT* - ^ oder
m / —i ZI,,

0 n=0 W

Z)'
1

1 OO / W+

(5 a) ß —— /" ß (1 - f)* y -
-'!-SSd ,/,

4! wc ' — Z)
0 o (®)
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Im Spezialfall m 1 folgt :

1 W -f~ <5

(6) ttj. + — —— + ß

1
'• /) '

(6a) jß' --- / *» (1 - *)' ^ df
^•5 V A*>

und durch Elimination von a,. aus (5) unci (6):

m — 1 m ~ — 1 „(7) «£" 4— i2w^~ + ^) + (^ -ft)

Dies ist die eigentliche Formel von IPooZ/iowse, ergänzt
jedoch durch den Restausdruck, der analytisch erfasst
ist und einer genauen Untersuchung unterworfen werden
kann.

Nach iS'eha'awo// kann nun das Restglied zu (3)

in der Form dargestellt werden:

-a + + + /rU,H
&—a

6 '

^2A-

0

worin c eine unbestimmte Grösse 0 < ç < 1 bedeutet.
Setzen wir hierin Fl 2 und führen im übrigen die

gleichen Substitutionen durch wie oben, so erhalten wir
an Stelle von (5 a) die einfachere Restformel:

(8) ß —i_
TOO» / ;

D«

720m® ^ Z)<„
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Ferner lautet der von Mctrfco// *) angegebene Aus-

druck für den Rest

wobei 0 < 0 < 1. Vorausgesetzt ist, dass für alle Werte

von 2 zwischen a und & beständig

/if >0) /f <0 1

oder beständig
und /jf-^ > 0 | /if"^ < 0

Auf unsera Fall zugespitzt ergibt dies die weitere
Restformel

1 — EIS
(9)... R e -,' 720nF D.„

-

wobei 0 < 0 < 1 und vorauszusetzen ist, das» für alle

Werte von 2 zwischen und °o stets gleichzeitig D|| > 0

und DjÛ? > 0, oder aber

Z)W (2) < 0 und D® (2) < 0

V. Abschnitt.
Wir betrachten das Integral

(1) J | f—* (1 — 0"e-*df,

in W'elchem w*ir m und >t endlich und zwar n > 1, m > 1,

ferner iacj < 1 voraussetzen wollen. Es stellt eine Er-
Weiterung des Binetschen Integrals

i) Differenzenrechnung, S. 1'20, Formel 21. Wir haben noch den
Faktor zu berücksichtigen.



ji=y * (î—<)"'
0

dar.
Führen wir die Substitution ein crt 2, so kommt

Z

J —— / 2"-' (3- — 2)'" e"' ab.
a:"' "./

0

Entwickeln wir das Binom im Integranden und

integrieren hernach gliedweise (was wegen der Voraus-

setzung eines endlichen m gestattet ist), so folgt

6

F" -- 2- + + (— 1)'" s®«" j

J sc /' e"* & — y e~~* cfe +
® \ 0

^ 0

/*"+*e-®<fc+ • • • +(—!)"(„
Y / n \ ' n

oder

P) (*" r,, « - 7 «r- J>„. „ +

+ (2)^^,« + +
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Das Integral -7 stellt sich also dar als eine im Parameter
um die Einheit fortschreitende Summe von Funktionen
von der Form

X

P (:r. •«) / 2"—' • r' dh

0

also von Funktionen, welche mit den sogenannten un-
vollständigen Gammafunktionen P die äussere Form ge-
meinsam haben, jedoch einer anderen Funktionsklasse
angehören *). (Bei der unvollständigen Gammafunktion
ist ic Parameter, u Argument, hier ist » Parameter und
die obere Integralgrenze Argument.)

Das nämliche Integral J kann nun auch mit Hilfe
einer speziellen hypergeometrischen Beihe berechnet
werden. Wir entwickeln im Integralausdruck (1) die

Exponentialfunktion wiederum in die bekannte (absolut
konvergente) Potenzreihe, welche wir wie folgt schreiben

ar / ast\ a?'' /d, as/\

vi 1 \
S727)7 ^ ^ *

~~¥7+7 '

folglich wird
1

(3) -7= 7^ —— /' /*"+»-' (1 —7) 1 7—^ Z_i (2v) ./ ^ * 2r + l /
0 ^ ' 0

Die damit durchgeführte Umordnung der Glieder und

Vertauschung von Integration und Summation (glied-
weise Integration) sind gestattet, weil wir es mit einer

gleichmässig konvergenten Reihe zu tun haben.

i) Wir haben sie zum Unterschied von jenen anlässlich eines

Vortrages in der Mathematischen Vereinigung Bern als Nielsen-
Funktionen bezeichnet.
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Bezeichnet man mit F (a, /?, #) die allgemeine
hypergeometrische Reihe

x/S x a (x + 1)/SQS + 1)
F(a, /?,}'.?)=! + —TT+ '

/' 1!
'

J'O' + l) 2!

wo |®| < 1 vorausgesetzt ist. so gilt für das hvper-
geometrische Integral

/>-'(i(i -®<r (*.& r, ®)

5 '

ü(Ä>I I

wohei vorausgesetzt werden muss.

&
Ersetzen wir a; durch worin .t < 1 und daher

2v + 1
'

um so mehr

£
< I,2r + 1

ferner x — 1

/? 2r -+- «

y=2i'4-m + n+ l
so kommt

1

(4) (l—<)»/1-
b ^

® A ^
-T (2 r + n) r(m +1

2r+l / r(2r +m + n + l

F —1,2»* + m. 2 »* + m + m + 1. —
V 2 V + 1 /
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Ist a oder /? eine negative ganze Zahl, so geht die Reihe
F (a, /?, y, in eine ganze rationale Funktion über,
in unserem Fall

F —l,2r +ti,2c -f-m-4-17-+1,— 1=1 + —-———
\ 2)'+l y 2)' + l

/? :r

7 27+Ï
2)' + >t ,:r

2 c + TO+91 + 1 2 c + 1

folglich

r (2r + ?i — 1) to 1 / 2)' + w £ >

./ (2c + to + n) 2c + to + 71 + 1 2c + 1
'

und somit

J ,y / (2c + tj —1) ®2r (2c + ») j2v + 1\

\(2c + m + n) (2c) (2c + to + ti + 1) (2c +1)!/

was einfacher geschrieben werden kann wie folgt :

oo

Z(c + 7i — 1) +'
(_ 1)"

^ /
(c + m + ?i) c!

0 '

oder anders dargestellt:

1 —

1 —

V(—1)' F(ti + r)
(5o) J / (?» + 1) / +^ ^ 'y C /'(TO + 71 + v + 1)
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Die Reihe (5) bzw. (5 es) konvergiert für jeden endlichen

Wert von x, denn hmes ' v + 1

P..
0.

Damit haben wir zwischen der in (2) angegebenen Summe

von P-Funktionen und der Gammafunktion folgende
Relation gefunden:

v=m

V /_ I)- \ <5»-». p (x, n + v)
zTO + TO ^ V V ,/ '

v 0

(6)

vw(_l)" P(w+r)
P(m + 1)

r /'(to p ft + v 1)

Sie ist durch unsere Ableitung nur für x < 1 und endliche,
ganzzahlige Werte von m und « bewiesen. Ferner
handelt es sich ausschliesslich um reelle Grössen.

VI. Abschnitt.
Wir können nun daran gehen, die in Abschnitt IV

aufgestellten Restformeln I, II und III auszuwerten
bzw. den Rest P abzuschätzen. Wir setzen voraus, dass

die Absterbeordnung dem Ma/ce/iamsc/te??, Gesetze folge,
dass also

2 (x) fcs'sf*

und D(x) fc(us)*

Ferner wird

Log — + P Log c Log —
s <7

10
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und jUj, + <5

Log h <5

s

Log c
+ c* Log

setzen wir abkürzend

(1)...

so wird

(2).

Log

K
Log c

1

A (je) e* Log -

i".

,"x A (er) (Log c)''

* *

' Log c

<7

/D + d [— -K + A (as)] Log c

/(/ A (a;) (Log c)®

^ (a) (Log c)''

Um die in unseren Bestformeln auftretenden höhe-

ren Ableitungen der Funktion D (r) zu bilden, empfiehlt
es sich, die von Prof. Dr. CTn Moser *) eingeführten
«Nebenfunktionen» oder Sekundärfunktionen anzu-
wenden, -weil sie ohne weiteres auf die Intensitäten der
Sterblichkeit und Verzinsung, also auf bekannte Grössen

führen.

Nach der bekannten Definition ist

«(&•) —
^\x)

/ (s)

') Vorlesungen an der Universität Bern, S.-S. 1910.
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oder unter Weglassung des Arguments

-/'=/,«
hieraus — /

'

=' é~")

worin n als Operationszeichen aufzufassen ist.
da ' *

Analog ist

/d Wd
,W

Allgemein ist

d

='U—"
wobei symbolisch angedeutet ist, dass die Operation

j wonach und nach (n — 1) mal angewendet werden
V da: /
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soll. Moser bezeichnet als nte Nebenfunktion von /(x)
den Ausdruck

so dass

(4)

in Worten:

«Die nte Ableitung der ursprünglichen Punktion
wird erhalten, indem man die ursprüngliche Funktion
mit der negativen Sekundärfunktion (>i — l)ter Ord-

nung multipliziert.»

In unserm Fall ist die ursprüngliche Funktion

/(œ) D(®)

folglich

,« <5 +
/ /

,"z
(5)

// «

j"
/ / / / / /

/"x '

wo die Intensitätsfunktion von D(a:), //, die Sterblich-
keitsintensität darstellt.
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Die 4. Ableitung ist

(6)...D$ D(z) (-zfs)

D(s)

Nun ist wegen

J

V Ja;
Y j

Ja; Ja;
— /" <"

^ —1>

zli ^ —,«

^2 — /"' 3 /y/' +
^3 /<' ' '

— 4^/i" + 6 — 3(,«')^ — //,

in unserem Fall wegen (5) :

^3 /4" —4(/^ + <5)^ + 6(/ij. + <5)Vx——(^ + <3)*

so class wegen (6):

(7).. D|S D(®)(-^" +4(^+ö)^-6(^+«5)V;+3^+(^+<3r)
Im Fall des Makehamschen Gesetzes gilt wegen (2), wenn
gleichzeitig nach Potenzen von >1 (a:) geordnet wird :

(8).. D[« D (a;) (Log c)* (a + /? A, + y A* + JA* + $
Die Koeffizienten haben folgende Werte:

« JW

/? K* — (1 + Z)*

7 1 + 6 (1 + Z)*

rf — 2 (8 + 2Z)

(8 a)



(8b)
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und gehorchen wegen — 1 < Zv < 0 den Ungleichungen

0 < oc < + 1

-1 < 0 < + 1

+ 1 < ;< < + 7

— 6 < d < — 2

Nun gilt wegen (1) allgemein:

9).. il (os + b) c* • A (a:)

und daher

l>gU=^+»,(Logc)*(«+i8A^+y^c«+rfA»<r»+Ai^)
so dass

J)(4)
(10). ^**' (Loge)'' e** (us)* e~^(a+/SAj.c*+

(«)

+ yA* c» + «/A® c** + A£ c**)

oder abgekürzt :

(11)..

wobei

L>lî'
(Log c)* e''x (us)* /(a:, fe)

(*)

(lia).. /(œ, Ä)=e-L<* («+0 A,c*+y A* c»+rfA®e**+Ajc")

Ersetzt man in (11) und (11 a) den Parameter fe durch
ra + t

/i
m

so nimmt die Eestformel I die Form an:

/T \4 ^ ^

(12) B e' x /"(l_t)2 (us)"^ (us) /(œ, w, t)
4! m y '

dt
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Hier setzt nun die ScMfewng ein. Setzen wir abkürzend

so wird

(14) /(as, », f) /(») e~" (a+/?«+;'»*+</«?+«*)

und da die Koeffizienten der ganzen rationalen Funktion
in der Klammer den Ungleichungen (8 b) genügen, so

gilt für jeden positiven, endlichen Wert von m

c~" (0—«+«-—biu* + «') </(«)«T " (l+Zt+7»"'—2»''-)-?<')

oder

^36 1 — M + 6 M" —
< / (m) < 4!

1 -)- M+7 —2 w'+M'

folglich

— 36 < /(«) < 4!

oder

(15)
3

<

Aus (15) folgt sofort

'

h S /(®»».o <2
0 0 0

und wegen

0 < us < 1
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weiter

8 i 1 X- : i
< 2 (?'«)'" /(uM) <

J2 1— (rs)"" 4 V 1 —(es)""'

Nach einem bekannten Satze über bestimmte Integrale
gelten daher die Ungleichungen:

* (Loge)' (Loge)-'
1 DJ 77— < JtX < —7 r— 6 *

2 m" (1—(so)""") wi" (1 — (so)""')

worin

(16 a) J / 0 (1—0" (os) dt

Setzen wir Log
1

0S

(17).. oder ô + Log—.
s

so wird

J / 0 (1 — 0"
ö

Der Wert dieses Integrals ergibt sich aus F, (5) für

n 3, m 2, 2: — :

m

(18) J 2!^(— 1)
(>' + 2)! V

^ r!(v + 5)!\m/
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£
Diese Reihe konvertiert für jeden endlichen Wert - und

' m
ist wegen ihrer raschen Konvergenz zur numerischen

> J geeignet.

(_ !)'(„+2)! 5!

Berechnung des Integrals J geeignet.

(19).. Setzen wir A,. :

-2! (r + 5)!'

so lauten unsere Ungleichungen zur Abschätzung des

Restes:

Vu! : Va
1 /Log cV V \ <

1 /Log cV
o 'V.

(20) — - -- -- - e * - </,•-: — — • e"'*
20 \ ?n. ' m(l—e ''") 30

'
m / m(l—e "")

Diese Formel eignet sich sehr gut zurraschen Abschätzung
des Restgliedes der Woolhouseschen Formel. Wir haben
sie denn auch zur numerischen Berechnung des Restes

(Abschnitt VII) benützt. Die Reihe im Zähler konver-
giert noch rascher als die Exponentialreihe, so dass

infolge des der Summe vorangehenden numerisch kleinen
Faktors nur wenige Glieder der Reihe zu berechnen
sind.

Lediglich der Vollständigkeit halber sei noch er-
wähnt, dass es gelingt, in (20) die Division der beiden
unendlichen Reihen auszuführen und eine nach Potenzen

£

von — fortschreitende Reihe zu finden, welche innerhalb
m

eines gewissen Konvergenzkreises um 0 konvergiert.

Wir setzen abkürzend

£
(21) —= 3. sodass der Quotient in (20) lautet:

TO
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1
3 ^ V < -— e~ / 4 2'

f e'— 1
0̂

J
CO oo ^ oo

(22)... =—2^. ** • 2~f
0 0

•
0

In (22) bedeuten die C- die Koeffizienten der gewöhn-
lichen Exponentialreihe, während die B„ die Iioeffi-
zienten in der Reihenentwicklung von Ewler

oo

m(l —e ')

2 L'„ B
1 H i 2 + —- 2* -f 2« _|_

— 1 1! 2! «!

also die sogenannten BemowlHsclien Za/dcn bedeuten.
Führt man in (22) die gliedweise Multiplikation der drei

gleichmässig konvergierenden unendlichen Reihen durch,
so gelangt man auf eine Reihe von der Form:

1 £ v"> 1 / 1 3- 1 Y
(•23) - e' 2" — 1 H^ ' F e' — iZ-. ' «\ .3.7 2! 2.5.7 4!

0

"TT H

(24)

2.3.7.11 6!

deren Glieder sehr rasch abnehmen. Von einer eingehen-
den Untersuchung der Reihe wurde jedoch abgesehen.

Unter Benützung einer unbestimmten Grösse

0 < c < 1 kann man nun (20) auf die Form bringen:

/LogcYV*/ Y s®

dl-TTt+ ~
m / 20 \ 42m 1680 m 66528 m



Die Durchführung des Verfahrens ist auch bei der
«Seliwanoffschen Restformel» III möglich. Es ergibt
sich

3 (»«)*" (Loge)'. ^ „H ^ W" (Logc)%
e" < R <-—-—r- ——

•2 1—(to)' 30m" 1—(to)" 30m"

oder mit Benützung einer weitern unbestimmten Grösse c'

/n-N oll ' W" (Loge)''
(25) JR ç t~ c »
^ ' 1—Oto)"" 20 m

worin 0 < c' < 1 und 0 < ç < 1.

Die Durchführung der Berechnung von R'" nach der
Markoffschen Formel führt auf die einfache ftchluss-
formel :

(26) B'" 0 Sgjg (2,-76)" + 7, [1 -3 (;.,-Ä'))

^
wo 0 < 0 < 1 und Ii =- (vgl. 1). Sie ist nurgültig,

Log c

wenn Di'j und stets gleichzeitig positiv (bzw.
negativ) bleiben oder anders ausgedrückt: Die Rest-
formel (26) ist gültig für alle Alter as, für welche die
Moserschen Nebenfunktionen

ds und /(-

angewendet auf D^ für alle Werte 2 zwischen as und oo

dasselbe A^orzeichen aufweisen.
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VII. Abschnitt,
Bezeichnen wir mit den Ausdruck

oo

.IN-)(1) ^l/Loo'e\*r W
30 V m / wi(l—

so können wir den Rest Ii der durch Poterin du Motel
ergänzten Formel von Woolhouse IV (1) für einen be-

stimmten Wert des technischen Zinsfusses in folgende
zwei Schranken einschliessen:

(•2) — 1. 5F„„, < F,„. eW)

Der Rest wird also um so grösser ausfallen, je höher
das Alter ,r ist, dagegen um so kleiner, je grösser die
Zahl m der Ratenzahlungen ist.

Halten wir uns an das früher behandelte Beispiel,
die Tafel (P'''", S % %). so gewinnen wir folgende
Übersicht :

1

e Log {- r3 0, 040 29004
S

1 0,000 0438 006

2 0,000 0027 376

4 0,000 0001 711

12 0,000 0000 021

cc 0,000 0000 000

Widmen wir uns vorerst dem Spezialfall ot 1. Für die

nachstehend angegebenen Argumentwerte ist der Rest

fi(l,a') in folgende 2 Schranken eingeschlossen:
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X e'z

Fi. J

untere Schranke
(negativ)

obere Schranke
(positiv)

20 1,006 989 0,0000 6616 0,0000 4411
I 30 1,017 242 0000 6684 0000 4456
; 40 1,042 856 0000 6852 0000 4568

50 1,108 499 0000 7282 0000 4855 ;

60 1,287 694 0000 8460 0000 5640

70 1,860 194 0001 2222 0000 8148 S

80 4,588 674 0003 0148 0002 0099 I

90 42,09687 0027 6581 0018 4387

100 9706,3463 6377 1616 4251 4411 |

Der Best bleibt also nach dieser Berechnung bis

fast zum Alter 70 unter dem Betrag 0,0001 und berührt
infolgedessen die 4. Dezimalstelle im Rentenbarwert
nicht. Wenn man also vorläufig von den höchsten Altern
der Absterbeordnung absieht, so muss die gewöhnliche
Formel ohne Bestglied als praktisch genauer Ausdruck
des Barwertes rg angesehen werden.

Vergleichen wir das Ergebnis mit dem in Abschnitt
III gefundenen Resultat, so erkennen wir, dass die dort
angegebenen Differenzen (Tabelle, Absoluter Fehler
bei (2) in bezug auf (4)) über unsere theoretische Fehler-

grenze R (1, ,r) hinausgehen. Es rührt dies davon her,
dass die in jener Tabelle enthaltenen, für die Formel von
Woolhouse geltenden Barwerte auf Grund der Commît-

lationm'erfe berechnet wurden, also einer für praktische
Zwecke hergestellten Tabelle. Dabei wurden die Zahlen

/,. ausgehend von 107 324, sowie D^, und Ag
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ohne Dezimalstellen nach dem Komma angegeben und
verwendet (abgesehen von den höhern Altern). Jene

Tafeln sind, einem rein praktischen Zwecke dienend, auf
einen möglichst geringen Zahlenumfang gestellt, während

die der Makehamschen Funktion /es c/' ent-
sprechenden Zahlenwerte, wie sie in unsern Formeln zum
Ausdruck kommen, solche «absoluter Genauigkeit» sind.

Diese Verschiedenheit der Grundzahlen — eine

Illustration zu den Begriffen Approximations- und
Präzisionsmathematik — bedingt die Abweichung in
den Ergebnissen. Stellen wir uns zum Schluss auf den

Boden der Praxis, der Approximation, so muss die

Übereinstimmung der Resultate beider Methoden als

durchaus befriedigend bezeichnet werden.
Wir wenden uns nun wieder dem allgemeinen Fall

zu und berechnen den Wert der obern Schranke

von B (m, x) für die verschiedenen, in der Praxis vor-
kommenden Fälle m 2, 4 und 12 und verschiedene

Werte von x. Die untere Schranke ergibt sich durch

Multiplikation der nachstehenden Zahlwerte mit dem

Faktor —1,5.

X
Obere Schranke von Zi' (»f. x) : c P' F (hi)

Ht 2 Hl 4 Ht 12

20 0.000 00276 0,000 00017 0,000 00000 (2)

30 000 00278 000 00017 000 00000 (2) :

| 40 000 00285 000 00018 000 00000 (2)

50 000 00303 000 00019 000 00000 (2)

60 000 00358 000 00022 000 00000 (3)

70 000 00509 000 00032 000 00000 (4)

80 000 01256 000 00079 000 00001

90 000 11525 000 00720 000 00089

100 0,026 57238 0.001 66079 000 20504
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Sowohl der Best, ^ als auch E.„, erreichen
somit, von den höchsten Altern abgesehen, so kleine
Beträge, dass sie praktisch zu vernachlässigen sind.
Umsomehr gilt dies von der Differenz

E(l,a;) — E(m, a;)

so dass die gewöhnliche Formel von Woolhouse

»i — 1 nr — 1

«f a 4 ——T- + h).
*2 m 12 m

in welcher 7t! (1, ,r) — 77 (m, a:) 0 gesetzt ist, ihre volle
Berechtigung hat. Es ist lediglich eine Spezialunter-
suchung für (/rosse Werfe ron a: (also die obersten Alters-
stufen) nötig. Diese ist im folgenden Abschnitte durch-
geführt.

Wir stellen fest, dass für m 12 die obere und untere
Schranke von 7? (m, ,r) kleiner ist als 10~'\ 77s </iTT also

(Tie GTcicTww/

(12) I

' TD + à

«x «i +
24 12

/itr alle x <C <SÖ wit derseT&en Genanh/fceiT, mit iceTcTf.er

der Lo/jfanfAwwts einer Za/iT ans einer S-sTeTTi</en Lo(/«riT/t-

merrfa/eT entnommen n'erden fcann.

YIII. Abschnitt.
Zur Abschätzung des Bestgliedes E (m, a:) für grosse

Werte von :r gehen wir aus von VI (12), indem wir zur
Abkürzung setzen:

1 / CO

(1) ?/ | 7' (1 — /)- (rs) 2 ()" /(«> ^
Ô 0
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so class

7?/ c
(Loge)' ;

(2) B (m, ®)
^

<r* • .</

Im Integral y können Summation und Integration
vertauscht werden. Alsdann substituieren wir:

n + /

(3) c ?<, Grenzen: 1 m

0 Ac"'"

1 : Ar"""
so class

+ f 1 w
Log

m Log c ' A

m Log —— m Log c
Logc \ A

m dit
dl

Log c M

ferner

(4) /(.t, ?t, 1) e~"(a + /?« + y?r + / (w)

Somit geht das Integral y über in

«=oo
m

(Log e)"
/ m Log -w Log c \ (n +1 Log c -

•/Ji m \ ^ V



oder unter Benützung des Parameters

Log — + d
s

„n+1 m

m A -s ~ "

Log c

m A " \ -i /• < i6 +

\ 9
% \

— m Log — / (m) d m
A

oder

/. oo /c" + 1'^
m A vi /•

' 0 }.c"

wo wir die Abkürzung

(6) y (w) ^(w Log — n Log c | (n+l)Logc—•

— w Log ~
eingeführt haben. Letztere Punktion dient uns zur
Schätzung des Integrals. Es gilt wegen c > 1

?i n+1

Ac"' < M < Ac"

— w L—i
somit c'" < — < c'"

A

n m n+1und — Log c < Log — < Log c
w A TO

il
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n Log c < m Log — < (n + 1) Log c,
/

woraus einerseif s :

14 _0 < m Log n Log c < Log c ;

/.

anderseits :

14

— n Log c > — m Log — > — (n + 1) Log o

/
14

Log c > (h + 1) Log c — wi Log — > 0

also

/ " Y" >
0 < J m Log—-- — n Log c J < (Log c)~;

0 < I (» + 1) Log c — 7» Log —- ] < (Log c)~

so dass längs des ganzen Integrationsweges gilt

(G«) 0 < 1/7(77) < (Log c)L

Bezeichnet also | einen positiven, echten Bruch, so gilt
folgende Gleichung

n-fl
7c

(7) lg (w) «*-' /(7t) fÜM f (Log c)-' •

7c

n+1
7c

• ^ -Y ' /(w) rZtt.
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rorawsj/eseLI, class auf dem ganzen Wege beständig

(lass also die Funktion

/(«) e~~" (a + -f >'?r F c/bF + «*)

auf dem ganzen Integrationsweg keine Wurzel aufweist.
Im Integral (7) ist nun der Integrand von der Lauf-

zahl n «»«Wi-äH-c/ü/, so class sich ergibt, symbolisch ge-
schrieben :

(8) «*-'/(«) > o,

und daher aus (4), (5) und (7)

(9)

oo

co
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oder unter Benützung der Definitionsgleichung

(10) Q(A,fe)

m A

(11).. 2/ £ — aQ(A.fc)
Log e

+ (5 Q (A, fc + 1)

+ /' Q (/: ^ + 2)

-f- Q (A, fc + 3)

+ Q(A,fc + 4))

womit wir das gesuchte Integral durch eine Folge von
unvollständigen Gammafunktionen ausgedrückt haben.

Für die unvollständigen Gammafunktionen gleichen
Parameters gilt die Rekursionsformel

Q (A, fc + 1) ^ Ç (A, fo) + e '' AL

Ihre Anwendung führt bei Gleichung (11), deren

Koeffizienten a, /?, P nach unsern Feststelluirgen in
Abschnitt VI lediglich von fc abhangen, auf einen

Ausdruck von folgender Form:

»i A " ''

?/ S -i. (<? (A, fc) 991 (fc) + e
'• A' 9?, (fe))

Log c

so dass

(Log cF / e' A"'" œ, (fc) \
(12) E I^4 Q (A, fc) ^ (fc) +4 m \ Log c Log c /
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oder

MO x -n „(Loge)* / _ 993 (&) ^
112«).. S f ——- • 99, fc) + —

4 m Log c /

denn es gilt *) :

4-—Q(^)
Log c

Die Durchführung der angedeuteten Eechnung!führt
auf die Werte

(13) ^ (fc) 0

9?2 (fc) (A — fe)^ + A (1 — 3 (A — Ä))

so dass schliesslich

(14)... B (m, z) £ ((Aj—-fc)®+A (1—3 (A^, fc))V
4 m ^ '
wo 0 < f < 1

Die Ableitung ist gültig für jene Werte von A^
und fc, für welche die Bedingung (8) erfüllt ist, welche
wiederum aequivalent ist mit

(15) cc -f- -f~ /16^ -|- */ W* -f- 0

Da diese Bedingung auf dem ganzen Integrations-
weg erfüllt sein muss, so kann sie auch so formuliert
werden. Bedeutet die grösste positive Wurzel der

Gleichung vierten Grades tf' + dît' + ,'B^ +(?«+£(
0, so ist unsere Ableitung gültig für alle jene Werte

von A (as), welche grösser als sind. Nun sind die

Koeffizienten a, /?, ihrerseits vom Parameter ft

abhängig, so dass die Bestimmung der grössten positiven
Wurzel Mg auf etwelche Schwierigkeiten stösst.

9) Vgl.hiezu unsere Arbeit: Mitteilungen Schweizerischer
Versiclierungsmathematiker, Heft 13 (1918), S. 169.
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Es lässt sich jedoch zeigen, dass + 1 eine obere

Grenze der positiven reellen Wurzeln darstellt und daher

unser Ausdruck (14) gültig ist für alle Werte von z, für
-welche

+ 4/c.

Die Ableitung gilt also in unserem Fall mindestens
für alle £>95 und die Restformel (14) ergibt folgende
spezielle Werte:

1

R (to, £)
1

TO 1 TO 2 TO 4 TO 12

95

100

0,0001 468

0,0006 405
0,0000 092

0,0000 400
0,0000 006

0,0000 026
0,0000 000

0,0000 0001
1

Wir schliessen daraus, dass emcTt /ür ehe ItdcFsfen

Alfer der Afe.ster&eordming die Formel ron TUool/iowse

die Betru'erfe eg. wtd et!";) -seltr r/ewr/M »«edere/ild, dass »«w
also den Resf R rerrmc/dä.ssh/e» dar/.

Wir weisen darauf hin, dass unsere Restformel
(14) — abgesehen von einem Proportionalitätsfaktor
— mit der auf Grund der Markoffschen Restformel ab-

geleiteten Schranke VI (-26) identisch ist, wobei es uns

gelungen ist, für ihre Gültigkeit eine handlichere Be-

dingung aufzustellen.

IX. Abschnitt.
Wir behandeln nunmehr als Anwendung unserer

Resultate einige Spezialfälle.
1. Im iS'pc^ial/al? </= 1 (Dormoysches Gesetz) ergibt

sich statt einer Ungleichung eine Gleichung für den

Rest R, indem A (a-) 0 und daher



2 \ 4

(Log —+ a)

/(»)=«= jj—. » da»

W / - / £
(1) ^=^7—« -=T=T>V-

e 4

720m (1 — e-"») Z-L ' m

2. TVr&mdwm/smiten. Ist statt an eine einzige
Person an eine Verbindung von p Personen eine in unter-
jährigen Baten zahlbare Leibrente auszurichten, so-

lange als die Verbindung besteht, so wird der Barwert
gefunden, indem die diskontierte Zahl 7)^. ersetzt wird
durch

7) (p Personen)

wo a: > // > .c vorausgesetzt sei. Die Intensität«-
funktion besteht dann aus (p + 1) Komponenten.

/L + /'y + IL + +
Bs folgt ohne weiteres

(2). • • <C • • + ^ (/', + +

+ IL + • • + d~ -R ("L .?/.• -2 • •

worin

1 •

(3).. 7?(m, x, y,z...) —— y t-(1 — /)"
0 0



Bei Geltung des Makehamschen Gesetzes kann dieser

Restausdruck in genau gleicher Weise wie früher ge-
schätzt werden, indem zu setzen ist

1

(4).. (c* + c» + C" + • • • Log
1/

(5).. e' p Log M

worauf man wiederum auf die im Spezialfall der Rente
auf ein Leben abgeleiteten Restformeln gelangt.

3. Ze?fre?ifen. Die Relationen für die Bewertung der

Zeitrenten folgen aus den entsprechenden für Leibrenten,
indem man die Intensität der Sterblichkeit veniach-
lässigt, also setzt

Vorerst ergeben sich die Barwerte bei ganzjähriger
Zahlungsweise der Renten wie folgt

ffij JSicipe Rente«

(6) ,«* 0

0

fcl Temporäre Rente«.

I Vi= ««-1 — «oo =(1-Oo^
ß~j (1 - L-"")

(S)...
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Bei unterjähriger Zahlung der Beriten gelten folgende
Formeln

(m) ' ^
I 7j

2/, lW ' *<»>

1 d
a — 6t I -f- {- JR 1

oo| oo| I

2 12

oder wegen (7)

(ml / 1 1 \
(9) a | =a»i( 1 -1 -— î— — B(„,)

' \ 2 m 12m ^ /
und nach Erweiterung mit (1—e~"®"), wegen (8):

(ml / W 1 1 \
(10) ft-| a—|^1 + ^<5+r(B(„ — B,„,)

In diesem Fall ist man für den Best nicht auf eine

Schätzung angewiesen, sondern kann ihn </enaw darstellen.
Für ^ 0 wird

^
D$ e-*° d*

D/ "+'\.c H M + I

— i.—^ A '~ — C m * O

Somit nach der Bestformel (5 a) von Abschnitt IV:
g4 1

^
OÖ

/" ^ (i - ë' v 2 ?' ~
0 0

h' J
~ Ihif 1—e-"®''
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wo •/ wieder das früher behandelte Integral darstellt.
Damit ist der Eest genau bestimmt. Zur numerischen

Berechnung können wir die Division der Potenzreihen
wie im allgemeinen Fall durchführen, so dass sich er-
gibt

d

^3
<>

3074!
j — /" \a / d

t m - < \ m '
e'" —1 o

d^
^

d"

720m

d'
42m*

'

1680m* 66528 m® + • • • >

d^ d'- d' d"
__ j 2 j~ 720

'

42
'

1680 66523
+

folglich

DP /7 1 \ / 1 \ d®

1 A»

V m /m ' 1680
(I"

1 \ d®

m'° '
66528

Dieser Eest kann übrigens direkt durch das Integral
ausgedrückt werden :

id*
(lia).. _/**(!-*)»

<5*

1 —c -<*l

w" 1—e



(12)..
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Weil D(j) e~^, so wird ferner

| e"<'* d' > 0

Df e~^ > 0

Die Markoffschen Bedingungen sind also erfüllt, so dass

die nach ihm benannte Restformel in diesem Fall lautet :

i n (3)

/>'. <> -<*>
720m« D,.

720m*

E„, 0 folglich(i! 720 ' *

„ id' / 1

(13).. 0 ---- 1-720 \ m

wo 0 eine unbestimmte Brösse 0 < 0 < 1.

Die nach Seliwanoff benannte Formel

1

/> - V' w 720 wF Z-" ö

D/, n±i\

ergibt

(X)

Cdd \-< __
<> (»+,-)

-n ———- / e m
720 wr' -

V
F

d*
— e

720 »F 1 — e~'' ""

d'® (i--l d/m.

"720m*"
®

e'> -^T
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In diesem Spezialfall führen also die drei Restformeln
von Poterin du Motel, Seliwanoff und Markoff im wesent-
liehen auf das gleiche Resultat, nämlich

(15) i (B,i, R(„„) < — (1 — —^

Nun gelten praktisch die Grenzen

0 < t < 0,1

0 < 3» < 0,001

icP 10-'
0 < <720 0,72

(16) also i (B(„ — < 0,000 00014 1
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Die am meisten gebräuchlichen Zinsfüsse liegen jedoch
unter 10 %. Solange der Zinsfuss 6 % nicht übersteigt,
gilt

0 < i < 0,06

0 < <U < (5,827/-10-°

(17) i(B (1) — B (m)l < 0.000 0000 16 (l —-L)
\ ra /

Für die praktisch am meisten gebräuchlichen Zins-
fiisse liefert also die Formel

/ m — 1 m" — 1 \
(18) a« =o„ 1 +— — iü)

\ 2 m 12 m /
einen bis auf mindestens 7 Dezimalstellen genauen
Barwert.

Lowis Mawijie erhält in seinem Buche über die
Theorie des Zinsfusses *) durch direkte Anwendung der
Eulerschen Summenformel die Näherungsformel:

(Formel 52 m — 1

a= a„i -1 (1 — « —
bei Maingie)

'

2 m

d (to" — 1)

12 m

ohne jedoch den naheliegenden Übergang auf unsern
Ausdruck (18) zu machen und ohne sich auf eine Unter-
suchung des Bestes einzulassen. Der Autor bemerkt
daran anschliessend folgendes:

«Lorsqu'une grande précision n'est pas éxigée.

on peut même négliger le dernier terme de (52).
Cette formule est commode: elle donne

i) L. Mcmujfie, La théorie de l'Intérêt et ses Applications,
Bruxelles (1911), S. 47.
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«î « „ + 0,25 (1 - r")

«'?, a ,,| + (),875 (l-0
=a„; + 0,458 (1 —0

"„1 g « ; + -~(1—O»

An diese Bemerkung anknüpfend sei noch kurz bewiesen,
dass die von Maingie genannte Näherungsformel, welche
wir schreiben können

(i9)... <»„- (i + -- »)
\ *2 m /

unter gewissen Voraussetzungen nicht nur zu ausreichend

genauen, sondern zu den prafefiscJi ?'ic/dü/en Resultaten
führt. Bekanntlich berechnen die Sparkassen den March-
zins Wird eine periodische Einzahlung von jähr-

lieh 1 gemacht, die in m unterjährigen Raten von —
m

entrichtet wird und für welche der Zins am finde des

Jnfires zum Kapital geschlagen wird, so wachsen die

m Raten mit ihren Zinsen in einem Jahr an auf

1 i. so dass
2 m

(m) (in)
-M W

womit Formel (19) bewiesen ist.
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Es ist in diesem Zusammenhang von Interesse, die viel
benützten Formeln

2 / »i—1 »t—2

— r~ + r~ + + l) J-71
W \ / '

und

d. h.

(20)...

r

1 / tu—1 m—2

— r '» + r +
t/t

'«

+ 1

und

»
«ST

/»(/•'"' — 1) "I

m (r' — 1) "

mit unseren, aus der Spezialisierung der Eulerschen
Formel gewonnenen Relationen zu vergleichen. Wir
haben zu diesem Zwecke den Ausdruck

(m)

'I m((l1)
in eine nach Potenzen von i fortschreitende Reihe zu
entwickeln. Soll diese lauten

*o + i + *2 ~i~ ' ' " 3t„ r" +
so gilt

1— — / »i + »! '( + »t )('+••• + /» W' ~r • • •

\ i \ 2. ' \ 3 / ;. +1 / /

' («0 ~T <*i ^ ~r «2 i" i" +
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woraus

i /1
/ "-0

m \
«r,= 1

1 /±\ 1 '•

I m I 'I m «o=0
m \ i ' m \ 2

m a, -f m <*i 4 to «o — 0
m \i/ " m \ 2 / m \ 3 /

und damit

so dass

«0 1

a

a,

m — 1

2 m

(m — 1) (m 4" 1)

12 m

M m —1 (m —1) (m + 1)
£»i- 14 1 5 ï 4- it

2 m 12m



und infolgedessen

(21)..

' 2 m 12 m '

W »i — l (m —l)(m + l)
«,rt 1 +~ü * TA 2

» +# «H' \ 2 m 12m

wo der Best Z? durch eine Potenzreihe darstellbar ist.
Interessant ist nun der Vergleich mit (18). Wir haben
eine schöne Bestätigung unserer frühern (Resultate, indem
mit grosser Genauigkeit gilt

2 i 2-1m—1 m —1 „
- -i d — i"

12m 12 m-

4. Folfe Le&ensermartojf. Wenn wir die Verzinsung
vernachlässigen, also <5 0 setzen, so geht die Formel

_ 1 ^ -)- (5

g* G* + — v;, h -^(î, i)12

über in

(22) ê,, - ^ + — y|- +

worin die volle Lebenserwartung oder volle mittlere
Lebensdauer einer Person ($) und die mittlere
Lebensdauer darstellt. Diese (Relation, ohne den Best,
findet sich bereits in der Arbeit von TFool/iimse *). Der
Best ist darstellbar durch

>) J. I. A., XV, S. 112, Formel 23.
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1 ' Vw i' '>

(23).. 2? — / <ft
4! J /

0 n=0 w

wo F) die vierte Ableitung der Funktion / nacli
,r bedeutet.

Die vielgebrauchte Näherungsformel für e, lautet

fr Fr + 1

/^r
sie ergibt also einen Betrag, der um nahezu -—zugross

12

ist. Abgesehen von den höchsten Altern ist die Nähe-

rung ausreichend.
Im Falle des Makehamschen Gesetzes ist der Rest

R, durch die Grenzen bestimmt, welche sich durch
Spezialisierung unserer Restformeln ergeben. Wir
können uns mit diesem Hinweis begnügen.

In analoger Weise findet man die volle mittlere
Dauer einer Verbindung durch Spezialisierung unserer
Ausdrücke (2) und (8) am Anfang dieses Abschnittes.

Im Spezialfall s 1 (d. h. wenn das Gompertzsche

Gesetz gilt, 7,, ergeben sich Beziehungen zum
Integrallogai'ithmus; denn in diesem Fall ist die volle
mittlere Lebensdauer durch diese Funktion darstellbar.
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