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Das Zinsfussproblem bei der Leibrente.

Von Dr. Hans Christen, Ziirich.

[. Einleitung.

1. Darlegung des Problems.

Die Berechnung von Versicherungswerten, sofern
Nettowerte in Betracht fallen, geschieht mittelst der
Grundlagen: Uberlebensordnung und Zinsfuss.  Will
man nun bei gleichbleibender Uberlebensordnung die
Versicherungswerte fiir einen neuen Zinsfuss berechnen,
so besteht die gebriiuchliche Methode darin, dass man
das ganze System der Kommutationszahlen zum neuen
Zingfuss berechnet.

Wenn es sich indessen nur um die Kenntnis ver-
einzelter, fiir einen neuen Zinsfuss zu bestimmenden Ver-
sicherungswerte handelt, so ist die ganze Neuberechnung
der Kommutationszahlen zu umstiindlich. Unter solehen
Bedingungen stellt sich die Aufgabe, folgendes Problem
zu unbersuchen:

Wie kann man, wenn fiir eine bestimmte Uber-
lebensordnung und fiir einen bestimmten Zinsfuss die
Versicherungswerte schon vorliegen, diese fir die gleiche
Uberlebensordnung, aber fiir einen neuen Zinsfuss
moglichst einfach und zugleich moglichst genau  be-
stimmen, ohne dasg ganze System der Kommutations-
zahlen neu zu berechnen ?

Dieses Problem, das den Gegenstand der vorliegen-
den Untersuchung bildet, wird o6fters als «Zinsfuss-
problem» bezeichnet. %8 handelt sich dabei im wesent-



lichen um die Berechnung des Barwertes der Leibrente
zu elnem neuen Zingfusse.

Wenn die Uberlebensordnung eine analytische T'unk-
tion des Alters ist, so besteht die ideale Liosung des Zins-
fussproblems darin, die Versicherungswerte in endlicher
Form als einfache I'unktion der Parameter des Sterbe-
gesetzes und des Zinstusses darzustellen. Dies wird bei
einfacher Wahl des Sterbegesetzes moglich sein. Handelt
es sich aber um ein Sterbegesetz, das den Beobachtungs-
resultaten moglichst gerecht wird, wie z. B. das Make-
hamsche Gesetz, so konnen die Funktionen so kompli-
ziert gebaut sein, dass die Versicherungswerte nicht in
einfache, endliche Form gebracht werden konnen.

Das Zinsfussproblem ist wegen seines wissenschaft-
lichen Interesses und wegen seiner Wichtigkeit fiir viele
praktische Arbeiten des Versicherungsmathematikers
in der Literatur schon vielfach behandelt worden; deshalb
wird in dieser Arbeit auch ein Uberblick der wichtigsten
diesbeziiglichen Abhandlungen gegeben.

2. Das Problem bei der Abzinsungsfunktion.

Wir gehen im folgenden stets aus von einem festen
Zinsfuss 1, fiir welchen die Versicherungswerte gegeben
sind. Die Werte zu einem andern Zinsfuss " bezeichnen
wir jeweilen mit einem Akzent ('), und unsere Aufgabe
besteht darin, die akzentierten Grossen aus den ent-
sprechenden Grundwerten (zum Zinfuss 1) zu berechnen.

Es sollen zukiinftig bedeuten:

V=1 den Abzinsungsfalktor,
ot die Abzinsungstunktion,

die den Barwert der nach ¢t Jahren zu zahlenden Iiin-
heit darstellt;
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d = In (1 1) den logarithmischen Diskont.

Dann lisst sich o wie folgt durch & ausdriicken:

'U! _— 0——-5-!

Iiir einen andern Zinsfuss 1/ gilt ebenfalls:

0" = gt

s wird eine Zeitdauer ¢’ geben, fir die gilt:

¢

—d7’. t: Gr—'w

oder

woraus sich fiir ein gegebenes ¢ das zugehorige ¢ bestim-
men lisst:

(1) ="t

Angenommen, dass wir die Werte von o' fiir alle
t zu einem bestimmten Zinsfuss @ besitzen, so lisst sich

1t

irgendein Wert von ", anstatt direkt, grundsiitzlich

einfacher wie folgt berechnen:

Man bestimmt aus der Gleichung (1) das zugehorige
t', verschiebt also anStelle des Zinsfusses die Dauer und
sucht in der Tabelle den Wert o', Damit ist auch »*
bestimmt.

Beuspiel.
Man besitze bloss eine Tafel der Abzins sfalk-
Man besitze bl ine Tafel der Al ungsfal
toren o' zum Zinsfuss 4 9%,. Iis soll aus dieser Tafel
allein, fiir eine bestimmte Dauer ¢ = 20, der Abzinsungs-
faktor zum Zinsfuss 5 9%, berechnet werden.
O

18



t 1,04
1 0,9615
20 0,4564
24 0,3901
25 0,3751
d (4 %) = 0,0392207
0" (5 9,) = 0,0487902
0,04879

t =20 ;1

= T '2 = 4
0,03922 = bt

und daraus durch lineare Interpolation:
1,057% = 1,042 — 0,3901 — 0,88 (0,3901 — 0,3751)
1,057% = 0,3769

Der genaue Wert betrigt = 0,3769.

3. Das Problem bei der Zeitrente.

Die Formel fiir die vorschiissige, n Jahre dauernde
Zeitrente lautet:

1 — " g G*J-n
WET Ty T T4

Das Produkt

d-ag=1— gim
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ist abhiingig einerseits vom Zinsfuss 4, anderseits von der
Zeitdaner n. line Anderung des Zinsfusses (5= 0
kann durch eine entsprechende Verschiebung der Dawer
(n=n') ausgeglichen werden, indem bloss gefordert
werden muss, dags

(2) O em=209-n
Dann 1st sofort

(l’ . a’nlz(l' S

n'|

und es wird
(3) =g " am

I8 seien die Zeitrentenbarwerte bei einem bestimmten
Zinsfuss ¢ fir alle Dauern n gegeben. Dann kann man
fiir jeden beliebigen Zinsfuss @' den Zeitrentenbarwert
mit Hilfe der Beziehungen (2) und (3) sofort berechnen.

Diese Berechnungsmethode ist wiederum grundsitz-
lich einfacher als der direkte Weg.

4, Das Zinsfussproblem bei der Leibrente. Losung des
Problems bei einfacher Wahl des Sterbegesetzes.

Sind die Letbrentenbarwerte a, fir alle Alter z zu
cemem bestimmten Zinsfuss in emer Tafel gegeben, so
seien aus dieser Tafel die Barwerte zu einem neuen
Zinsfuss 2 zu berechnen.

[st das BSterbegesetz sehr einfach, wie z. B. das
Dormoysche Gesetz: [, =k - s%, die Leibrente a, also
eine einfache Funktion des Zinsfusses:

T

1

B =
& l—ov.s
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so ist die Losung des Problems im wesentlichen die
gleiche wie bei der Zeitrente. Iis gibt aber Tille, wo
der Barwert der Leibrente nicht leicht in endlicher 'orm
dargestellt werden kann, das Zinsfussproblem aber fiir
die betretfende Uberlebensordnung doch exalt losbar ist.

Achard [3] hat fiir einen solchen Ifall, nimlich fir
die Moivresche Hypothese und ihre Verallgemeinerung
das Problem gelost:

s bedeute w das Schlussalter in dem Sinne, dass
lw=0; die Uberlebensordnung ist dann dargestellt
durch:

l,="Fk(w—ax)"
Der Barwert der kontinuierlichen Leibrente ergibt sich
beim Zinsfuss 1 zu:

wW—ax
- k(w—z— ). L. g
0 (w—a)

Ew—ax)" e

Setzt man: w — z —t = 1, o wird der Leibrentenbar-
wert :
u—=x

y"e el dy

(’H) o w)rn Gﬁ (w—1)

Substituieren wir noch: o - y =, so erhiilt man:

(w—::r;) i}
. (;t - dt

(’EU . a;)m Lo e(eu~3:) 0

Zur Abkirzung sei: (w—uz) « 0 =h
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Fs wird damit schliesslich :

(0 P

fiir den Zinsfuss ¢ und das Alter z.

Aus (4) ergibt sich, dass das Produkt o - a, einzig
abhiingt vom Parameter h, der seinerseits ein Produkt
aus zwel aktoren ist, dem Zinsfuss & und der Zeit-
strecke w — .

Wir konnen schreiben:

Iir ein bestimmtes Alter 2 und einen bestimmten
Zinsfuss 0 se1 der Parameter b ermittelt zu

h=(w-—=z)+d und d-a,(d) =1I(h)

I'ir das gleiche Alter z und einen neuen Zinsfuss o
ergibt sich:

hy =(w-—a)+d und 8" a, () =1I(h)
7 diesem Resultat konnen wir auch gelangen durch eine
Verschiebung des Alters x bei Beihaltung des Zins-
fusses d.

Sei niimlich : hy = (w—ua'). 8

so wird dann und nur dann h; = h,, wenn:

(6) %' = (SS— - X w (1 e é;)

€ C



I's wird damit:
8 A, () =T (h) = F (hy) = 0 - &, (9)

also schliesslich:

Durch die in Formel (6) angegebene Verschicbung des
Alters ist fiir diesen I'all das Zinsfugsproblem sehr ein-
fach gelost.

Die Liosung 18t unabhingig vom Grade m der Pa-
rabel; sie gilt also auch im Spezialfall m =1, also
fiir die Moivresche Hypothese:

ly =Fk(w—2)

Wie aug unserer Darstellung ersichtlich ist, spielt
die sogenannte Lebenserginzung w — @ bei der Lidsung
des Zingfussproblems die ausschlaggebende Rolle.

Ierner sei erwiihnt, dass sich die Ableitung aus-
dehnen Lisst auf den Wall, dass die Uberloebensordnung
lautet:

l,="Fk "% (w—2a)"

indem ganz einfach der Zinsfuss 0 durch den Zinsfuss:
d=1270 s

zu ersetzen ist. Diese Frweiterung des Achardschen
Satzes verdankt man Poterin du Motel [5].
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[l. Historischer Uberblick.

Die bisher im Druck ersehienenen Arbeiten iiber das
Zimsfussproblem lassen sich wohl am besten tiberblicken,
wenn man sie nicht bloss chronologisch, sondern nach
Grundsiitzen und Methoden zusammenstellt. Iine der-
artigce historische Zusammenfassung sei hier versucht.

Das Literaturverzeichnis moge ergiinzend als kleiner
chronologischer Uberblick dienen.

1. Berechnung des Versicherungswertes durch Inter-

polation.

Wenn fiir 3 oder mehr versehiedene Zinsfiisse die
Versicherungswerte schon vorliegen, so kann man, wie
dies L. Fontaine [2] dargelegt hat, folgendermassen vor-
gehen.

Wir beniitzen fir die Differenzenrechnung  die
folgende Bezeichnungsweise:

Die Funktionswerte seien:

fO—mnh), ... f@), fe+h),...

Die ersten Differenzen sind dann wie folgt bezeichnet :
f 4+ (n+ 1) h) —f (i + nh) = A f (i + nh)

und allgemein 1st:

A+ (A= 1) h) — A™ N (4 by =A™ f (i nhk)

eine m te Differenz.
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lis geien die Versicherungswerte fiir m verschiedene
Zinsfiisse bekannt; dann lassen sich die Differenzen bis
zu der einzigen (m — 1)ter Ordnung berechnen. L. Tlon-
taines interegsanter Gedanke besteht nun darin, unter
der angeniihert zutreffenden Annahme, dass die m te
Differenz konstant sei, diese mit Hilfe des fiir 2 =0
leicht zu bestimmenden Versicherungswertes f (v = 0)
noch selbst zu berechnen. Die dazu am besten geeignete
Interpolationsformel lautet:

® O =Gy =161 ) afa)+

T 1) CAFG) A — e (1 (’"’ Rl = 1) A f ()

2 m

In der obigen Gleichung (8) sind alle Grossen bis
auf A" f (2) bekannt, und daher lisst sich 4™ f (1) aus
(8) berechnen.

Indem man nun von A f (1) riickwiirts aufsummiert
und damit das Differenzenschema ergiinzt, kennt man
dann alle notigen Differenzen, um jetzt mit der je-
weilen geelgnetsten Interpolationsformel den Versiche-
rungswert fiir jeden beliebigen Zinsfuss ganz einfach be-
rechnen zu konnen. Indenmeisten Fillen wird es moglich
sein, den gesuchten Versicherungswert zum neuen Zins-
fugs direkt aus dem erginzten Differenzenschema ab-
zulesen.

Aber aus den nachfolgenden Griinden wird die
Bestimmung von A™ f (2) mittels der Gleichung (8) in
der Regel einen sehr ungenauen Wert fiir A™ f (1) liefern.

Das Intervall von 1 big ¢ — nh = 0 ist bei der Ix-
trapolation zur Bestimmung von A™ f () sehr gross;
daher kann, wenn auch 4™ f (1) fiir die Zinstiisse, deren
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Versicherungswerte gegeben sind, anniihernd konstant
ist, doch die Variation von A™f (v -} nh) bis zu 1 = 0
betrichtlich gross sein. Dieser Umstand wirkt sich
schlimm aus, weil in der Regel die Versicherungswerte
sich am stiirksten dindern, wenn der Zinsfuss gegen Null
strebt.

Beispiel: Iis sei die beim Alter 65 lebenslingliche
Letbrente fiwr alle moglichen Zinsfiisse zu bestimmen,
wenn sie bekannt 1st fir 4 verschiedene Zinsfisse;
Grundlage: Text-Book.

In der nachfolgenden Tabelle sind die fettgedruckten
Werte als gegeben zu betrachten.

Wir diirfen die 2. Differenz als konstant annehmen
und erginzen dann das Schema. Wo iiberhaupt un-
genaue Werte sich ergeben, sind die genauen Werte in
Klammern beigefiigt.

Funktionswert : 1. Differenz: 2. Ditferenz : |
ags A ags A% ags

0
0,0 %| ess — 0,5 = 10,479

3.0 (%- — R‘;';!)I."'(S—,:i{):'i_')'__'____ o ‘—;),277 (-O,QBI)_

85%| 8414 0264 | 001300017
409%) 780 | o5 (0018
L% 7899 | gogg | 0013
50%| 17361 | goes _ [O018
D5 %  T6 | geg {008
6,0 % 6,924 ’

Der Wert von ‘agy fiiv @ =0 ist: ¢4 —0,5; wir
berechnen nach der Methode von 1. Fontaine die
3. Differenz aus dem Wert von agy fir © = 0 mittels der
Gleichung (8):
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’

ferd

(8a) f(0) = gg5 — 0,5 = 10,479 = 8,114 (;) 0,264 -
8 A g s el o
L 5 - 0,018 — g A3 ags (8146 %)
Iis ergibt sich: A3ag; = — 0,002 (der richtige Wert ist

Adag, = 0,000, wie dies unsere Tabelle beweist).

In unserem Beispiel erhalten wir fiir alle moglichen
Zingtiisse von 3,5 9%, bis 6 9, den genauen Versicherungs-
wert, withrend die aus ¢y — 0,5 ermittelte Differenz uns
bedeutend schlechtere Resultate liefern wiirde. Iinzig,
wenn wir den Versicherungswert fiiv einen Zinsfuss
zwischen Null und 8,5 9, kennen wollen, empfiehlt es sich,
mit der aus gz — 0,5 ermittelten Differenz zn rechnen.

2. Das Zinsfussproblem bei der Erlebensfallversicherung
und seine Erweiterung auf die Leibrente.

A0, (1) =- R st der Wert der Versicherung eines
T
z-jihrigen, der sich fir den Frlebensfall nach
t Jahren die Finheit zu sichern wiinscht.

iir einen neuen Zinsfuss @' wird:

i Dy b - V" byt 0"

A 1 [T : s Bl . Bl

e Fi 4 ls L, of
; - D' ¢

) =i, (2

Die Leibrente kann man als Summe von Erlebensfall-
versicherungen ansehen:

a:czgl - OEa: T 1Ea: T ZE:E + wsm nmlwx
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Die temporiire Leibrente zum neuen Zinsfuss @ kann
man damit wie folgt darstellen:

_ 3 : o v [0\ o v
(“)) a.c:Tf T 01‘13: vy lh:r: ’ i + ‘2“.:: ' ( ) + ...+ nv'-llf‘:r: ) (

v P ;

I, Sos [21] hat diese Darstellung gegeben, die
5. Meyer [21] noch wie folgt ergiinzt hat:

‘ [ m=n—I1
. , '\ i —i N\ o\
(11) am:_ﬁ— — (\,U) i ax:}ﬂ “,‘ 1 -—|—-’L ' ZJ am, m " (D\
m=1

Die Methode von Sos und Meyer besteht also in der

AR

) v o . .
Verwendung der l.lllfﬁf:b]&t()l?(‘tl( ) Sie 15t nicht viel
v

einfacher als die direkte Berechnung des Versicherungs-
wertes mit Hilfe der Kommutationszahlen zum Zins-
fugs ',

e ihnliche Betrachtung hat Vaz Dias [9] ange-
stellt. Der Leibrentenwert zum neuen Zinsfuss ¢ kann

auch wie folgt dargestellt werden:

% sei 1/ > 7; dann kann man «, als Summe einer kon-
stanten und einer verinderlichen Leibrente zum Zins-
fuss 1 wie folgt deuten: An die Rentnergesamtheit wird

aushezahlt:

,uf

bpgy

e}
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5| =

V’U"

v

X
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Usw. ;

v ! “pt\2 v [ \2
Zx‘{ds P — e S SR i, TESTIRTLY Rt
v K v v |o v/

setzt man nun, mit Ausnahme der ersten Summanden,

!

in den einzelnen Gliedern den Taktor — =1, eine
v

ziemlich grobe Anniherung, die vermutlich nicht ganz
gerechtfertigh ist, so kann man den Barwert wie folgt

darstellen:
' N v’ e g
o Nat T | | P
s vV (i v
Ry 2 ; N

D,
S B e ' v"\?, g
Wird im Zihler noch — | —) | * N, addiert und

v )
subtrahiert, so -erhilt man:
(12¢)  [20" [0\ N ' p"\2 g
— BEEA"RS R Esn S S|
g o L v v v
! | :

&

oder:
!
(12) a,=o-a,—f-(la),
. 20’ p"\?
Dabet sind : o= — |
) v
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Fine analoge I'ormel ergibt sich, wenn 1" << 4 18t. Dieser
Gesichtspunkt zur Behandlung des Problems hat von
andern Bearbeitern (.J. Meikle big Poukka) eine viel
durchsichtigere und elegantere Behandlung gefunden.

Uber die Giite der Diatzschen ormel orientiert das
folgende Beispiel:

Berechnung der Barwerte a,, R1T'" fiir © = 81/, %,
aus den Barwerten a,, R 315 9% bzw. 3 9.

Alter Berechnef aus | genauer Wert | Berechnet aus
@ a, zu 3,5 0/0 ay 3 3,25% ay 72w 3%/
20 21,083 21,109 21,080
30 19,079 19,097 19,077
40 16,412 16,422 16,411
60 9,695 9,697 9,695
70 6,313 6,314 6,313

3. Zuriickfithrung des Zinsfussproblems der Leibrente
auf das der Zeitrente, mit Korrektionen.

Die folgenden Untersuchungen stiitzen sich im
Grunde auf den Mittelwertsatz der Integralrechnung.
Wir halten uns dabei an den Gedankengang von Lowis
Weber [16].

Die kontinuierliche temporive Zeitrente wird dar-
gestellt durch:

n
(1) ér—-l — [ dt =0 m 0<<E<n
0 n
(1) aﬁl = f'v"- dt =0"n;0<y<n
0

;‘-.:1]:;:.))
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11}

Fig. 2.



Bedeuten in der Figur 1 - mit v/ > 2

der Bogen BC y =1

die Kurve BC’ y ="

die Kurve B,C, y=Fk- ot

In der Iigur 2:
- l

die Kurve be Y=, o B = ,,,x,zl-é
L

die Kurve be’ y=p, "

die Kurve b,c, y=Fk.p, -

Hiir ein bestimmtes » wird die Gleichung gelten:

é:, vfy
,,‘Tﬁ,, o R o ]ﬁ
v

Al v

Wiire der Finfluss des Zinsfusses auf die Leibrente genau
der gleiche wie auf die Zeitrente, so wiirde:

/
ax:?i =k- Azl

Diese Berechnung von a,,; ist zu ungenau;; sie kann aber
wie folgh durch ein Korrektionsghied verbessert werden:

[n Figur 1 18t » mittels des Mittelwertsatzes so
‘bestimmt, dass die Flicheninhalte der beiden Dreiccke
(BB N), (NC'C')) enander gleich sind. Fir die ent-

sprechenden I'lichen der Leibrenten in 1'ig. 2 gilt aber:
(bbm) > (nc'e,)

s gelten mit den Bezeichnungen der Fig. 1, 2 die
folgenden Gleichungen:
it = D{) g 3 bt o () PF
Pq — [(b) ’ kp.z: » 4P —Ql " n+vPa
2

2
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Niherungsweise lagsen sich die Dreiecksflichen wie
folgt berechnen:

(BB,N) =v - PQ =(n—v»)-Q' P = (NCC)

und (bbyn) = v - pq

und da
——— —— e E ‘],
pg _ PQ By oy ]
q'p’ QP l:c+'—‘;f & Zx»ki}y
so wird

und stellt die Differenz der beiden Dreiecksflichen dar
und ist somit das  Korrektiongglied zum ersten

Niherungswert k - Agim)

bb,

Es ist niherungsweise: (bb,n) = — v = (1 —Fk) -

po| <

so dags das Korrektionsglied lautet:



— 269 —

la: L

o . P . T
b2
2

ok
2

Damit erhalten wir als endgiiltige Niherungsformel fiir

-1

zn)
- v l““*.?
(1:) Az = k- ax:)i] . 9 (1 wk) e
l a lt.}«.:._
2

Darin lagsen sich die Grossen» und k mittels der folgen-
den Gleichungen berechnen:

5 =1

(13q) ,—  gam—logay ., am
log (1 -+ v) —log (1 - %) an

Analoge Formeln gelten fiir o' < v und fiir Verbindungs-
renten. Obschon die Formel fiir kontinuierliche Renten
abgeleitet ist, kann man sie, ohne einen grossen Iehler.
zu begehen, auch auf die gewohnlichen Renten anwenden.
I'iir sehr junge und sehr hohe Alter stimmt die Formel
nicht mehr gut; es miissten schon etwas gekiinstelte
Korrekturen an ihr angebracht werden.

Beispuel :

Ubergang von RF 4 9%, zu RF 4,25 9, fiir ay, 0]
Berechneter Wert: @' 9 39) = 17,079
genauer Wert: g0 781 (44 %) = 17,077
I'ehler: 4 = — 0,002

19
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4, Verwendung des Gedankens, dass die lebensliangliche
Leibrente annahernd gleich einer Zeitrente von der Dauer
der mittleren Lebensdauer ist.

Hs ist bekannt, dass man versucht hat, die lebens-
lingliche Leibrente gleichzusetzen einer Zeitrente von
der Dauer der mittleren kiinftigen Lebenserwartung
eines Mitgliedes der betrachteten Personengesamtheit.
Wiire dies angiingig, so wiirde damit auch das Zinsfugs-
problem fiir die Leibrente geldst sein.

In Landrés mathematisch-technischen Kapiteln [25]
sind fiir die nachschiissige Leibrente und die unvoll-
stindige mittlere Lebensdauer e, folgende Sitze be-
griindet :

1. Der Wert einer Leibrente ist kleiner als der Wert der
withrend der mittleren Lebensdauer zahlbaren Zeit-
rente.

2. Die Finmalprimie fiir ein versichertes Kapital im
Ablebensfalle ist grosser als der Barwert desselben
Kapitals, weleches am Fnde der mittleren Lebensdauer
ausbezahlt werden soll.

Fiir kontinuierliche Werte kann man dies leicht
beweisen mit Hilfe einer Ungleichung, welche Steffensen
[14] abgeleitet hat. Die Ungleichung lautet:

-k

ff(t)-dt<ff ya .dt</f

b—1

mit den Bedingungen, dass fiir ¢ <t < b die I"'unktion

f () in diesem Intervalle nie zunimmt und 0<g) <1

bleibt; dabel 1st:
b

k== f{p(t) - dt

a
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In guter Annitherung gilt:

O_M
g, =2,

Setzt man in der Ungleichung (14):

o0
k:/tpx-dt: e,
0
ferner

fl) = v und ¢ () = P,

so folgt:

o0

e

&

(15 a) a4, = f v, dt < f ot dt
0 0

Dieses Resultat Lisst sich auf die gewohnlichen Leib-
rentenbarwerte tibertragen; aus der Gleichung

s

d,=1—35 "3,

folgt auch sofort der 2. oben erwiihnte Satz;

denn es 1st

d,>1—48 - Ee—r[ =1—8es - — g

Der eben behandelte Gesichtspunkt kann, als erste
Anniherung betrachtet, den Weg zu verbesserten Re-
sultaten weisen. Im folgenden wird die oben erwiihnte,
schone Arbeit von Steffensen [14] noch kurz durch-

gangen:
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I. Der Wert der nachschiissigen Leibrente ist gleich dem
Wert einer Zeitrente von einer gewissen Dauer m:

1 — ™
(16) B, S g
v
woraus
log (1 —1 - a,)
m e — o

log (1 + 1)

Der Parameter m wird wenig von e, abweichen, und m
wird eine Ifunktion des Zinsfusses 7 sein. Hntwickelt man
m (1) nach Potenzen von 4, so erhélt man:

(17) m=e,—1- &+ ...

Die weiteren Potenzen von ¢ vernachlissigen wir; dabei
bedeutet :

t=o0
. ° e, _
(7)) o=t p— e +1)
t=1

Beispiel :

Die a, sind mit den I'ormeln (16), (17), (17 )
berechnet nach den verwendeten Grundlagen im Text-
Book. In der nachfolgenden Tabelle sind die ehler
zusammengestellt, die sich zwischen den genauen Werten
und den Niherungswerten der Steffensenschen Formel
(16) ergeben.

N 39 49, 5%, 6%
 a, A a, A a, 4 a,
I 20 — 0,10 — 0,11 — 0,11 — 0,10
40 0,01 0,01 0,01 0,02
I 60 0,02 0,04 0,06 0,08
80 0,01 0,02 0,02 0,04
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Man erkennt, dass die I'ehler noch recht betrichtlich
sind.

Iiine bessere Niherungsformel erhilt man auf
analoge Weise folgendermassen:

s gilt die Gleichung:

14+t =0+h)t o h=0—1
Setzt man in der Ungleichung (14):

fO) =0+ ¢ = p,

so wird:

o0

Jg == f o', dt = a,

0

und die Ungleichung liefert nun:
(180) a; = ] (L4 hoy ™" ol p, - dt S] (14 ho)y - at
i 0

Irither hatten wir die folgende entsprechende Unglei-
chung:

(15 a) 7, < [ o dt
0

und daraus geschlossen, dass a, gleich einer Zeitrente ist,
deren Dauer m wenig von der obern Grenze e, des Inte-
grals in (15 @) abweicht. Wir diirfen nun in der Gleichung
(18 ) den entsprechenden Abzinsungsfaltor: (1 4 hv) !
niherungsweise durch (1 + )" ersetzen und konnen
in gleicher Weise wie oben die Leibrente a) zum Zins-
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fuss @' gleichsetzen einer Zeitrente mit dem Zinsfuss h,
deren Dauer n dann wieder wenig von der obern Grenze
a, des Integrals in der Gleichung (18 b) abweicht:

L, l— (R
(194 T (L )

oder, wenn man in der Gleichung (19 @) nach n auflost:

log (1 —in (1 +h) - a,)
(135) BT log (14+h)

Iis ergeben sich die genau gleichen Resultate, wenn man
von den Summenungleichungen ausgeht; wir schreiben
die folgenden Formeln daher fiir die gewohnlichen Leib-
renten.

Dann lautet die modifizierte Gleichung (19 b):

log (1—" - a,)

log (1 - h)

(19 ¢) n=—

Die Dauer n wird wenig von @, abweichen und ist eine
Funktion von k. Wenn wir wiederum % nach Potenzen
von b entwickeln und die zweite und hohere Potenzen
von h vernachliissigen, so erhalten wir:

(20 @) n=a,—h- -a,+ ...
Dabei ist:

Do ‘S{m-l—l 0.125 1 ( 1 )2
(20 b) aw——"l—)**F ) D—§ a, + 5

T
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U
Vo

= 3 5 . T
In o, ist das erste Glied: .
X
folgenden sehr gross und darf in einer Anniherungs-
formel allein beriicksichtigt werden. Setzt man nun das

entsprechende

7} . '
—— gegeniiber den zwei

in die Gleichung (19 @) ein und entwickelt nach Potenzen
von h, so ergibt sich die folgende weitere Anniherungs-
formel fiir a:

i . \’
hev-8S,.

21) ay =8, — —5—

T

[n der nachfolgenden Tabelle sind auf Grundlage
von HY, wenn die Versicherungswerte fiir 8,5 % gegeben
sind, die a, fiir 8% und 49, berechnet; einerseits nach
den Formeln (19 ) und (20 «), anderseits nach Formel
(21). Dabei ergaben sich folgende Fehler:

mit (19a) und (20a) (mit 21) |
. Aa, A a, A a, A a,

3% | 4% | 3% | 4% |

| |
20 0,02 0,01 0,12 0,11
30 0,02 0,01 0,09 0,08
40 0,01 0,01 0,06 0,05
50 0,01 0,00 0,03 0,03
60 0,00 0,00 0,01 0,01
70 0,00 0,00 0,01 0,00
80 0,00 0,00 0,00 0,00

i
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Die Iehler sind, wie man sieht, gegeniiber den Ir-
gebnissen der Formeln (16), (17), (17 @) wesentlich
zurlickgegangen; die durch die I'ormeln (19 @) und (20 a)
dargestellte Methode ist schon recht befriedigend.

5. Verwendung von Ungleichungen fiir das Zinsfuss-
problem,

Schon in der vorhin beschriebenen Arbeit hat
Steffensen allgemeine Ungleichungen benutzt, die bei
gewisser Wahl der Funktionen, und wenn das Intervall
der Variablen nicht zu gross ist, annihernd in Gleichungen
itbergehen; in emem solchen Ifall ist es dann manchmal
moglich, eine Niherungsformel fiir das Zinsfussproblem
aufzustellen.

Dieser Weg schligt Birger Meudell [15] ein. lir be-
weist zuerst die Giltigkeit der folgenden Ungleichung:

b b ]%(t) co () - dt
(22) / VAU [oc (t)J cdt > f AORY EETE - S——
’ ’ / 1) - dt

mit den Bedingungen, dass im Intervall (a, b) die Funk-
tion y (t) stets positiv ist, v (t) stets konvex, d. h. ihre
2. Ableitung stets positiv ist.

o (f) ist eine ganz beliebige Funktion. Wenn '’ (f)
stets negativ ist, gilt das Zeichen < anstatt —>.

Fiir 9 () = m - ¢ gilt das Gleichheitszeichen ; daraus
folgt, dass fiir eine Funktion y (f), die anniihernd linear
ist, oder wenn das Intervall (a, b) klein ist, (22) anniihernd
eine (leichung ist.




e PP =

Dia Ungleichung (22) kann in diejenige von Steffen-
sen (14) iibergefithrt werden; fiir beide gelten auch
analoge Summen-Ungleichungen, was dann zu den Be-
ziehungen zwischen den gewohnlichen Rentenbarwerten
fiihrt.

Wir konnen setzen:

v = plte
also
' nvo &
TE=T0 =3
eist eine kleine Grosse und mit 6’ = 4§ gilt s§ 0.
—
In der Ungleichung (22) setzen wir
a () =vhy () =51 () = p,
Dann wird p (a () = (HH* =0
1 (1) = p, 1st stets positiv;
Pyt : < . .
¢ ?Zz( ) =¢ (1 &) « t7" ist stets = 0, je nachdem
( =

(5’:;3 0 ist. Die fiir die Ungleichung (22) zu fordernden

Bedingungen sind also erfiillt.

Die Ungleichung (22) lautet nun entsprechend den

illen o’ é 0: ,

- 0

- b

00 oo / ’Ut'l’pz . (lt

o= (vt dt > T L
a.L / lpx > fpa: =

¢ ¢ f Py dt

0
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Die analoge Summen-Ungleichung lautet wie folgt:

(SI

Pasisa Z ,Ul *1Pe 0

[:DO
r__ i S \ | p t=1
thy = VP tPe* f=cc
-
=1 t=1

f=c0

oder:

(23 a) a

VIA

8 -

@\ 8
e, | — 0
ey
i

%_ ist annihernd gleich 1, % (f) ist also annihernd

eine lineare 'unktion von ¢; man darf damit in (23 @) das
(leichheitszeichen setzen und erhilt die folgende An-
niherungsformel:

(jl
(23 0) gl =g, (%) )

In der nachfolgenden Tabelle sind die a, nach dieser
Tormel aus den als bekannt vorausgesetzten Ver-
sicherungswerten zu 4 %, berechnet; dabei ergaben sich
folgende Fehler (Grundlagen: HY 4 9):

3% 5% | %

! ! !
a, A a, / , ' A

£

20 22,73 — 0,66 | 20,58 | — 0,34 | 15,34 | 0,73
40 (| 17,44 | — 0,26 | 16,28 | — 0,18 | 13,16 | 0,31
60 || 10,28 | — 0,06 | 9,85 | — 0,03 | 8,69 | 0,08
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Dies sind verhiltnismiissig grosse Abweichungen.
Fine weitere Iormel erhiilt Meidell [15] in gleicher
Weise wie folgt:
Ks 1st:

/ L)y p,-dt; h=1—1

0

Man setzt in der Ungleichung (22):

a() =t p ) =+ )™ 1) =v"p,;
2 () =" p, ist stets positiv und
p'" () = (1 + k)~ |ln + hw) "2 ist stets positiv; die

fiir die Ungleichung (22) zu fordernden Bedingungen
sind erfiillt. (22) nimmt nun die F'orm an:

/t P
0

o0

{
: 3 o,
a, = / (1 h) ot p, - dt = o' p, - dt -(l»l-hn> 0
) 0

_/'t e D, dt

o0

fl)_,pH - dt

Uy = e (1 + hu) .

—

Analog lautet die entsprechende Summen-Ungleichung:

- dt

ot dt
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so dass Meidell die folgende Anniherungsformel erhiilt:

.
bm-l—l

—F
(24) a, = a,- <l—l— hv) "

Entwickelt man a; nach Ak bis und mit zur ersten Potenz
von h, so erhiilt man genau die Formel (21) von Stef-
fensen:

Beispuel:
Die Versicherungswerte seien fiir1 = 8,5 % bekannt;

berechnet sind die a, fiir 83 % und 4 % nach der Formel
(24). (CGrundlagen: H).

m ..... — I I —

(6; ‘ A a{v él
20 22,06 0,04 18,63 0,03
40 17,16 0,02 15,12 0,02
60 10,22 0,00 9,45 0,00
80 3,70 0,00 3,57 0,00

Die Formel lisst sich auch auf die temporiiren Leibrenten

und die Ablebensfallversicherung anwenden; fiir die

temporire vorschiissige Leibrente z. B. hat man den
Y

D, :
Exvonenten ——+ der Formel (24) durch
+1
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Se—Sapn—0 Npyn

N,—N

z+n

zu ersetzen.
Die folgende T

fiir die temporire Rente ausfallen.

abelle zeigt, wie gering die I‘ehler

Die Versicherungswerte fiir 3,5 9 seien als bekannt
vorausgesetzt ;  Grundlagen: HY; berechnet sind die

a.. ... nach der Tormel:
Lops BOf C J ¥ L.

(25) S, — Sy N,
. ‘N.r: o L\‘Tx +n
ar:'rﬂ - ax:]e'] ! (l r ILU)
39 49,
a ISP ; S — P
@0 A o0 A
20 14,439 0,005 18,851 0,003
40 18,727 0,005 12,722 0,003
60 10,601 0,003 9,951 0,002

Die hier zur Verwendung kommende Methode liefert
schon eine gute Genauigkeit und erfordert zugleich ver-
hiiltnismiissig wenig Rechnung.

6. Das Zinstussproblem, wenn die Uberlebensordnung das
Makehamsche Gesetz befolgt.

Hochart [13] hat folgende theoretisch sehr schone
Abhandlung geschrieben.

Die Anzahl der Lebenden ist nach dem Make-
hamschen Gesetz:

="k s g
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Die Wahrscheinlichkeit fiir eine Person, nach ¢ Jahren
noch zu leben, ist:

& (t1)

Dy=5"¢

und die Wahrseheinlichkeit fiir N gleichaltrige Personen
derselben Uberlebensordnung, nach ¢ Jahren noch alle
zu leben, beirigt:

3 &gt
tpx(N): SN-t ng (c™—1)

Die Formel fiir die Frlebensfallversicherung lautet :

i @, t vt n ‘
Qi =t st g O gum Zinsfuss 4
y ax b . .

L =t st g D gum Zinstuss 4

oder anders geschrieben:

Man kann nun den Wert 74, gleichsetzen einer Erlebens-
fallversicherung 15, ) von N Personen mit dem Finbritts-
alter z zum alten Zinsfuss + und fiir die gleiche Ver-
sicherungsdauer .

4

' s\ wt _ 2, 0

B =t ( _) . g° (c"—1) tﬁ;g\/) o N ch (c'—1)
v

Dann miissen N, z so bestimmt werden, dass:

'S ) v A b
( > . gc ey SN-Z_ gN-c (e™—1) :
v

/
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dies ist fiir beliebiges ¢ immer dann und nur dann der
IFall, wenn:

)

oder
(27 a) Nl 20

Ins
und zugleich

¢*=N.¢

oder

In N
27 4= —_
&Y = ne

Aus der Darstellung der Letbrente als Summe von
Erlebensfallversicherungen:

{=n—1

! o [11'! ]’11 ]{H ‘1' o Y I"‘l
a.E;rl o }— 1 } 2 VJH e [ n—1Hg — Ha

=0

ergibt sich sofort auch das folgende Resultat:

Man kann die Leibrente a,..; (i) berechnen als
Verbindungsrente von N Personen mit dem Iintritts-
alter z zum alten Zinsfuss ¢ und mit der gleichen Ver-
sicherungsdauer. N, z lassen sich mit den Gleichungen
(27 @) und (27 b) berechnen.

(2‘8) a;:ﬁ] =a Nz..

Im allgemeinen werden N und z irrationale Zahlen sein;
man muss sie durch doppelte Interpolation bestimmen,
was zlemlich viel zu rechnen gibt. Ausserdem setzt diese
Methode eine vollstiindige 'I'afel der Rentenbarwerte
fiir mehrere Personen voraus.
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Bexspiel :
Gregeben sind die Versicherungswerte fiir 4 %, A .
7 berechnen ist aqg zu 3,5 9.
Aus (27 @) und (27 b) bestimmen sich:
N zu 1,96 Personen; 2z zu 27,328 Jahre
daraus findet man afyy (4 9) = 16,125
der genaue Wert ist: ayy (3,5 %) = 16,124

Der IFehler betrigt: A4 =—0,001

7. Die Losung des Zinsfussproblems mittelst eines voll~

stindigen Leibrentensystems einer Standardtafel, wenn

die Uberlebensordnungen das Makehamsche Gesetz
betolgen.

Blaschke [10] und unabhingig von ihm Gram [11]
haben die Beziehungen untersucht, die zwischen den Leib-
renten zweier verschiedener Uberlebensordnungen, die
aber beide dem Makehamschen (iesetze folgen, bestehen.

Die kontinuierliche Leibrente ist dargestellt durch:
B
— —_ L 4-8) . dit
(bx=fe [ gt gy
0
0

Die Sterblichkeitsintensitit fiir das Makehamsche Gesetz:

lautet :
wy,=—_ms+c"Ing-inc

Mit den folgenden Substitutionen:

. x 10{;0’
C=0"; o=v+8; k -

“log ¢



kann die kontinuierliche Leibrente wie folgt dargestellt
werden:

[= =]

- /'y’"i- eV dy

i

~ ¢
O it i AR
29} Yo =

Die Leibrente hiingt also schliesslich nur von den
8 Parametern ¢, k, £ ab.

Iir ein anderes Makehamsches Gesetz gilt fiir ein
bestimmtes Alter z, und fiir einen bestimmten Zins-
fuss 7, ebenfalls die Gleichung:

o0

: oo
by = 7o T -[yki"“l- e V. dy
Cftelney

&

Vergleichen wir nur solche Leibrentenwerte, fiir die
& =&y, k =k, so bestehen folgende 3 Gleichungen:

Uy ey =a,-Inc

o @
—e’t __ —¢
9,° =4
logo, logo
log ¢, log ¢

Fiihrt man noch folgende Bezeichnungen ein:

log ¢
M ==
log ¢,
log log —— log log —
) J1
fj B —— i

log ¢,
20
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. log ¢
Ir —
log ¢

+ log s —log s,

so gelten die folgenden 3 Gleichungen:

(30 a) a, =m:-a,
30 b d i

(30 b) 1=
(30 ¢) Ty=mML+ %

Fiir eine bestimmte Uberloebensordnung seien ein fiir
allemal fiir simtliche Zinsfiisse die Leibrentenbarwerte
berechnet. Sucht man nun fiir irgendeine Uberlobens-
ordnung (Makeham) fiir das Alter z und den Zinsfuss 2’
den Wert der Leibrente, so kann man m, n, » berechnen
und mit den 8 Gleichungen zuerst das der Standardtafel
entsprechende 1,, z,; dann findet man in der Standard-
tatel den Wert a,, (v,). Die gesuchte Leibrente berechnet
sich nun aus:

(31) al, = “n

Die auftretende Altersverschiebung ist linear und hingt
nur von den Parametern der beiden Uberlebensord-
nungen ab.

8. Der Versicherungswert als Funktion vom Zinsfuss
allein betrachtet und seine Taylorsche Entwicklung
nach v, 7.

Der direkteste Weg zur Liosung des Zinsfussproblems
ist die Darstellung des Versicherungswertes als einfache
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Funktion von 4, und wenn dies nicht gelingt, seine Ent-
wicklung nach 7. Diesen Gedanken hat schon James
Meikle [1] ausgefiihrt; nach Taylor ist:

A V| Av)?
Fo) =F@+ 5170 + 50 T + ..

Av =10 —0

Fiir die meisten Versicherungsfunktionen ist es nun
moglich, die Koeffizienten der Taylorschen Entwicklung
zu bestimmen. James Meikle hat fiir die Leibrente
folgende Entwicklung gefunden:

Es sollen bedeuten:

9 =N+ N+ Nyt s N,
S8, S, + S, 4 .or Sy

SS}): Sf)’"}* ;8’53‘11 *}'- 8(12?2 *f’ Ve SE:J) usw.

Die Taylorsche Entwicklung fiir die Leibrente lautet
dann nach Meikle:

Av - Syy  (do) 5'552,),.2 (Av)? Sgﬂs

G =0+ D, " D, b D,

Wiiren die «hohern» Summen der digkontierten Zahlen:
S bekannt, so konnte man die Versicherungswerte fiir
1" ebenso genau berechnen wie die gegebenen Versiche-
rungswerte fiir 5 gewohnlich sind aber nur die einfachen
Summen in den Tafeln angegeben; deshalb konnte man
vorerst diese Rethenentwicklung nur bis und mit zum
ersten  Gliede mit der entsprechenden Genauigkeit

beniitzen.
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Fir die Entwicklung der Leibrente a; nach <,
(h =1’ —1), erhilt man:

., __‘Sfm—u‘ vh + Sgﬂ_[ : (”h)g_' B *5'(3);-1 + (vh)? G
p iy D ]) ]) ..

€ . T

Van Dorsten [6] hat diese Reihe auch abgeleitet ; ebenso
hat er fiir andere Versicherungswerte die entsprechenden
Entwicklungen gegeben. Fiir die numerische Berech-
nung konnten die Intwicklungen nur bis und mit dem
Glied von h' ausgeniitzt werden. [Formel (21) von
Steffensen].

In neuerer Zeit hat K. Palmqguist [18] folgenden
Gedanken entwickelt: Die Funktion

Sep1® VR
e =0— " p T =g ()

sotzt man gleich einer Funktion ¢ (y) und entwickelt
y (h) nach h bis und mit dem Gliede von h'; dann sebzt
man diesen Wert fiir 4 in ¢ () ein und erhéilt damit eine
bessere Annitherung fiir @, Palmqvist leitet die Be-
dingungen ab, die ¢ (y) erfiillen muss; es geniigh
schon, wenn die erste Ableitung von ¢ (1) stets positiv
oder stets negativ ist.

Fir die folgenden einfachen IFunktionen erhilt
man als Niherungsformeln:

1
P

L. g () =




2 z+1
w | | 1
Setzt man nun wieder ¥ (k) in ¢ (y) = ;J"a ein, so erhilt
man:
1 1
oY) =3 = ~ g <7
Y am""l i (] - _ Patt vh)
2 N:c-l—l
S —2
a1
G = U, 14 - vh)
( ")‘ Nm—}«l

Analog erhilt man fiir:

1 .
2. @y = ;,— =q,

Rein numerisch hat Palmqvist gefunden, dass folgende
Formel die genaueste ist:

y ) ’1 ho+ S, \ W
by a=a(t )

Die TFehler, die sich bei dieser Tormel ergeben, sind sehr
klein, wie die folgende Tabelle zeigt:
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Beispiel:

Als bekannt sind die Versicherungswerte fiir 4 9%,
H™, anzusehen; nach der Tormel (34) wurden be-
rechnet :

3,5% 4,5%, 5%
a; A a; A a; A

20 120,223 0,002 | 17,260 (0,002] 16,039 |0,008
30 |118,416| 0,000 |15,989(0,000{ 14,968 |0,008
40 1[16,108] 0,000 |14,260[0,000! 13,466 | 0,000
50 | 13,188 — 0,001 |11,986[0,000{ 11,383 0,000
60 | 9,835 0,000 | 9,107/0,000] 8,776 10,000

Fine Tortsetzung des Gedankens von Palmqvist hat
K. 4. Poukka [19] ausgefithrt und in der folgenden
durchsichtigen und sechinen Weise eine Losung fiir dag
Zinsfussproblem abgeleitet: Die ntwicklung (33) ist
eine analytische I'unktion von h mit dem Konvergenz-
radius |h| < R; man bildet diese analytische Funktion
F (k) mittelst einer geeigneten Ifunktion & =k (2) kon-
form auf die z-Ebene ab, und dann ersetzt man in 7' (h(z)),
z durch #z = #z (h) und erhilt fiir a, eine stirker konver-
gierende Reihe, worin man die Glieder mit der 3. und
hohern Potenzen von A vernachlissigen darf (als ana-
loges Beispiel siehe auch Kapitel III, Abschnitt 8,
Seite 811). Poukka withlt als Abbildungsfunktion:

b
h -+ «

wo « > 0 eine beliebige Konstante ist.



(35a) a,

=%

Man kann « so withlen, dass der Koeffizient von 2° gleich
Null wird; man setzt :
U
*Suc»H

(7 Sg:z)} 1

(35 b) o

Ersetzt man in dem Ausdruck (35a) z wieder durch

h

-, 80 erhiilt man die folgende Anniherungsformel:
)

w1
.'?t",i’tl, ,”h
D
35 ¢ a. =a, — .. :
( ) i (e S.Sczi)Al ’l?h
Sa:-l 1

Nun hat Poukka die interessante Beobachtung gemacht,
dass das folgende Verhiltnis fiir alle Alter und alle
Zinsfiisse nahezu konstant ist:

i
r+l ‘Sa:+l
N '

‘Sa:-i-l No:+1

(36) k=

In der folgenden Tabelle ist % fiir die Grundlagen
des Text-Books berechnet :
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z 8% 49, 5%,

10 0,83 0,86 0,89
30 0,81 0,84 0,86
60 0,83 0,84 0,85

Wir nehmen als Mittelwert an: k = 0,84.

Indem man anniherungsweise setzt

Se) S, .
S84 . ot
‘Sa:-}-i Na:-l-l
S Ser1

und fiir in der Formel (35¢) 0,84 - ein-

Ny
sebzt, so erhilt man eine weitergehende Annitherung, als
bis dahin moglich war.

/
’Sa:-H

Die nun so abgeiinderte Formel (34) von Poukka
lautet :

Sypq * b
¢ ’ D.’E
(37) G, =aq, — — l 05t Sx_}.l - T
= NCE-I-I

Sie ergibt, wie das nachfolgende Beispiel zeigt, dieselbe
schone Genauigkeit wie die Formel von Palmqvist.

Grundlagen: Text-Book; Tabelle der Aa, bei einem
Ubergange von:
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_ 8%=+3,59%, 39,59, 5% = 4%,
# a4 ((,; Y (c;c A (L:;:
10 — 0,001 0,049 0,019
20 — 0,001 0,020 0,002
30 —0,002 0,001 0,003
40 — 0,002 — 0,002 — 0,001
50 0,000 - —0,003 0,000
60 0,000 0,000 0,000

Mit der Abbildungsfunktion
g=1—(1+ah)y™

erhiilt man durch eine analoge Betrachtungsweise die
Iormel von Palmqvist:

: ' o« Spyq \7F 1 ho S,
8, =, (1 -+ ﬁ N ) = a, ( = i 1471 N, )

41

wobei sich erklirt, warum gerade der Exponent 1,5 die
genauesten Resultate lieferte.

lll. Eigene Beitrdge zum Zinsfussproblem.
1. Losung des Zinsfussproblems, wenn die diskontierte
Zahl der Lebenden /), , eine Parabel mten Grades in { ist.

Die Uberlebensordnung habe einen solehen funk-
tionellen Charakter, dass D_ , =" Ay ., der folgen-
den Gleichung geniigt :

D, (w—x—1t)"

0 ) . o i
(40) De (w— )™

Dabei bedeutet w das Schlussalter: liw = 0.
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Die obige Annahme trifft in der Wirklichkeit ange-
nihert zu.
Die Uberlebensordnung befolgt dann das Geseta:

L=l -w™ v (w—az)"

m, v sind Parameter.

Der Barwert der lebenslinglichen kontinuierlichen
Leibrente ist:

w—=r wW—x

o , D (w—z—8)™ . dt
a, — ) -+t at = Dx ('LU o w)m

a

0 0
(’IU . m)m-{—l —0

T (m 1) (w— )™

m st eine Funktion vom Zinsfuss 7.

- w— _ _
(41) a, = ———— zum Zinsfuss 7.
?71/(1‘) "'i“ 1

m bestimmt sich aus der Gleichung (40) zu:

InD, ,—InD, Inp,—1t+9
LCha™ (w—2z—t) —Inw—a) Inw—z—1t)—n@w— DL)

Tiir ¢ kann man irgendeinen Wert zwischen 0 und
w — x withlen; er sei #,.
Tiir einen andern Zinsfuss " wird der Lieibrenten-
barwert :
. 4 '
w—x Iy py—ty+ 0

Wigry =
W " I (w— & —t) — In (w— z)

==

be

o Miry -+ i
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Das Verhiltnis zweier Leibrentenbarwerte von gleichem
Alter, aber von verschiedenem Zinsfusse wird :

l W~ L — 1, ;
- WPy s —————— — 1
A S
a, My 1 W — 1

T (1) In tﬂlpx - ” _—_aj—(')— - t() .

Setzen wir noch zur Abkiirzung:

w—x—1,

¢ (@, ty) =In,p,- B

s0 kann der Leibrentenbarwert zum Zinsfuss 2’ aus dem
goegebenen zum Zinsfugs ¢ nach der folgenden Gleichung
berechnet werden:

(42) A=, —

Die Anpassung der Dz an eine Parabel ist in der Wirk-
lichkeit doch nicht so gut, dass sich diese Methode in
der Praxis anwenden liesse, wie das folgende Beispiel
zeigh :

(iegeben sei ayy zu 4 %; man berechne ayy zu 5 9.

Grundlagen: Text-Book. {, ist = 15 gewiihlt.
agy (4 %) = 17,651.

o s — 0,37427 — 0,96258 T
(5 %) ago= 17,651 - 20,3742 — 110612

Der genaue Wert von agy, (5 %) ist = 15,487; der Fehler
ist 4 = 0,127 oder zirka 0,8 9%,
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2. Einschliessen des gesuchten Wertes zwischen zwei
bekannte, enge Grenzen.

Wir setzen in der Ungleichung von Steffensen (14):

¢
F() = o JOHard® . g

g (1) = =0 i T—

n
_ (o' —0)n
k= /e“("'*")"- dt = 1—e .
0

§'—d

Die Ungleichung (14) wird jetzt lauten:

n !

n [ k ¢
/6-_0f(a+,¢x+,)ae Cdt < /e—{r)'—«i)-i——of(()-}-ﬂm_u)df < fe_b[(d-l—,um_}‘t)dt . di
0 0

n—=k

oder

a, < a, < @,
n—klk n |%

Wenn wir & entwickeln, so erhalten wir:

o — 1 n(8—o) n®(d—0)° N n® (8 — o)° #_
TV —d 1! 21 3]
e I G A Gt
k:n_—{# T S Y _"'—"'}

oder k=n—¢
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¢ ist eine kleine Alfersdifferenz; die Ungleichung
lautet nun:

(43) a, < a, < a

sln—e [n |n—s

Die temporiire Leibrente, n Jahre dauernd, zum neuen
Zinsfuss 2/ 1st kleiner als die nur n — ¢ Jahre dauernde,
aber grosser als die um ¢ Jahre aufgeschobene, ebenfalls
n— ¢ Jahre dauernde temporire Teibrente gleichen
Alters zum alten Zinsfuss 1.

3. Ableitung einer Formel fiir das Zinsfussproblem, wenn
die Uberlebensordnung das Makehamsche Gesetz befolgt.

Die Ungleichung (22) von Birger Meidell lautet:

b
: . [t - ott) - dt
(22) / x () -y |_'oc (t)l - dt ; /x ()~ dbyp 1%

~

S
o i [ty dt
a

mit den frither mitgeteilten Bedingungen, auf die wir
verweisen.

Fiir das Makehamsche Gesetz kann die Sterblich-
keitsintensitit dargestellt werden durch:

Popt =+ B+ er (z-+1)
wobel

a=—Ins; y=lnc; pf=—Ing-Inc

Mit diesen Bezeichnungen lautet der Wert der tempo-
riren Leibrente zum Zinsfuss +':
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n n
g ’
_, —[@"n,, pa (1) 1= BB (1)
= ] €0 -di= [ e 4
In
0 0
0+ a
Setzt man k = so erhilt man:
0+« ’
n
yink
_, (k=L T 1)
T e s dt

7= wmiln k kann als das neue Iintrittsalter

Y
betrachtet werden.

n
»

) S - %e“ (s —1)]

- dt

a, = 4

yf) =1 a=0;b=mn

und (22) erhiilt die folgende Form:

- dt
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n

o

n
— 4t — B (1
f" @ et — Lo ( 1)-dt
e -dt; dt- {0

k[ —(3+q) .r—a‘:,e” (o' —1)]

< n
0 s fdt
0

oder:

Da k anniihernd gleich der Einheit wird, ist in diesem
Falle  (t) annihernd eine lineare Funktion, und man
darf das Gleichheitszeichen setzen.

@' n (0 + @) — log }
(49 - (m ) g OGOt o gk

In' ’ n a y log ¢

Die Berechnung der temporiren Leibrente zum Zins-
fuss o' geschieht hier also mittels einer temporiiren
Leibrente von der gleichen Dauer, aber verschobenem
Alter, zum alten Zinsfusse .

Bewspiel: Fir die Tafel AT fithrt die Formel (44)
zu folgenden Resultaten:

1. Ubergang von 814 9%, nach 314 %,
Ug.99) = 13,095; Vehler 4 = 0,029.
2. Ubergang von 814 9% nach 4 9

(1;0:20-1 = 12,514; Fehler 4 = 0,055.

4, Ableitung einer Reihenentwicklung tiir die temporare
Leibrente nach /» — 1 — 1.

Wir betrachten den Barwert der temporiiren Leib-

rente, a,,als Funktion des Zinstusses allein und wenden
n
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auf ithn den Taylorschen Satz an; zu diesem Zwecke

sebzen wir:

f () =a,; h=1—1; dann ist f (1) = a, und die
[n . [n

Taylorsche Entwicklung fiir die temporiire Leibrente
lautet somit :

4 ] 2 73
( 15? L dlgw 22 d lfm 13 d [g:$
Je =%t g Tar A e e o

In der Reihenentwicklung (45) sind die Koeffi-
1

a
. T . - . - .
zienten “LnT’ also die Ableitungen des Leibrentenbar-
di”
wertes nach dem Zinsfusse 2, zu bestimmen.

Die nachfolgende Beweistiihrung folgb im wesent-
lichen dem Wege, den Poukka [19] eingeschlagen hat,
und fiir ausfihrliche Finzelheiten sei auf seine Arbeib
[19] hingewiesen; neu ist hier nur die Irweiterung;
auf die temporiren Barwerte. Die pte Ableitung des
Barwertes der temporiren Leibrente nach dem Zinsfuss +
hat die Gestalt:

4 m=n
d’ a,

(40) ~gi = D, p!

m=1

In (—1)P. P 2 mem-+1)...(m-+p —1) - D

Wir fithren die Abkiirzung ein:

w _ \m (m41)...(m+p—1)- D, .
(47) nsz%-l - Z‘ p !
m=1

Hs ist unschwer, die folgende Beziehung zwischen
den Koeffizienten ,B?) herzuleiten:
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(49) B(p)1 = BP-1 | R Bie=t) " B;”_;;‘l . B-—1)

n- x4 z-+n z-Fn—1, n x4

Damit erhalten wir fiir den pten Koeffizienten in der
Taylorschen lintwicklung (45):

: dP a

(48) R T b A )
pl di? D, ’

Nun 1st:
m=

™=
ZBU =2 mD,,,

Mme==]

= Dx-]—l 4= 2‘Dx+2 '}_ 3 Dw-l-il + oo t+n Dw+n

‘1 , ,
(50 a) ,lBi)H = 81— Sgpmtt — " * Nepnps

und weiter ergibt sich:
nnz(uzil == nBSt:l{—l + n'—ln:(zt-}-‘z ot 213(zl—a<n~l Hp lB:(ni-z—n
Sx+1 =t Sx+2 T Sm-knwl i3 Hm-!—n

. ; e T 1Y & . .
=y —n: N:c—Hx—!«l (n’ 1) Nm—Hz+1 R 2 -Nx+n.+.1 == N:c-{-n-{-l

/] "
S— ‘Sm+n+l

. , 08 " nn+1
(50 b) 711)):(1:2-3-1 B ngg)kl o ‘S:Ef)kﬂ»!-l — N ‘Ssz'ﬂ'l“l o ‘_(“QI ) - Nz+n+l
Analog findet man weiter:
ol , e ’ n(n-1)
(50 C) 71851:34)4 = *Sg:a)u —‘S(ws-)k-wi-l —mn: ‘Sgc%l-n-i-l o ( 2'—_— S$+N+l o
n(n -+ 1) (n + 2)
Y B Nopnri

usw,
21
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Die Reihenentwicklung (45) fiir a, lautet nun:
n

B(l-)k-l » oh ﬂBg:z%—I ' (!U] t’)z ﬂBi:S-)l-ii ’ (vh)3

n-

D, D o D,

€T

(5]) a; =, —
[n [n

In dieser Entwicklung (51) sind also die Grossen ,,B(f_)H

mittels der Formeln (50 @, b, ¢ ...) berechenbar.

Fir den Spezialfall, dass n = w — x ist, wird:

o, o Q) .
la‘m = Oy N:c+n—|—1 = "Sm+n+1 — 'Sa;-kn-}-l = 0.
n
M ¢ . p@ @
ﬂB$‘|‘1 —_ )Sx_l_l 3 n [3:1:7}_1 —_ bwv}_l uSW’.,
und man erhilt aus (51) die bekannte Darstellung fiir
die lebenslingliche Leibrente a,,:

¢ / S:c-}-l ; r(le)H 2 S 5:3}-1 3
(33) a, = a, — - vh 5 (vh)? — D (0h)® + — ...

Fiir die Todesfallversicherung gilt eine ganz analoge
Rethenentwicklung :

Der Barwert der temporiiren Todesfallversicherung
st dargestellt durch:

1 Clz ([x4‘ 1 [ll"l" P] B (lm -+ n—1

A T a T

A, 2w -

" ;
L, |1+

Diese Funktion ist in bezug auf den Zinsfuss 7 als Variable

ganz gleich gebaut wie die temporiive Leibrente a,.
[n

Die Taylorsche Fntwicklung nach 4 ist analog; an Stelle

von D, hat man C,,, zu setzen. Diese lautot wie

folgt, wenn man wiederum setzt:

Mo—) Co; Ry= ) M, BY9=) Rusw.



R,—R, ,—n-M_,
(52) JAC’C :lAz — ”"D =R . (vh) +
RS — Rﬂn —n-R,,,— ibfn_t]—, ]2 o Mo
}— = 2' . (Uh)z +

,

z+n z+n a)
- @ ]) N S (vh)* 4~ ...

£y

RLS) L R.(;:J%-nmn . R® _il'_(ﬁ = 1) ‘R _ﬁ_["‘ (fn ik 1) (In’ = 2) ' Ma:—I—n

~—

Iiir m = w-— a« erhalten wir die entsprechende Int-

wicklung fiir die lebenslingliche Todesfallversicherung:

o0 a—a, e B
02a) A, =4, ———vh+ — ()" —— - ()" +— ...
: D, D, D,

Ahnliche Fntwicklungen kann man auch fiir die auf-
geschobenen temporiren lLeibrenten und Todesfall-
versicherungen ableiten, aber die Formeln werden noch
viel kompliziertor.

Da h = 1" — 7 eine kleine Zahl ist, eignen sich diese
Rethenentwicklungen gut fiir das Zinsfussproblem; aber
von den «hohern» Summen der diskontierten Zahlen :
SECRE Cgind in den Tafeln gewéhnlich nur die ersten:
S, R, gegeben. Immerhin ist  bekanntlich diese
Summenbildung mit Hilfe der modernen Rechenmaschine
cine sehr einfache Arbeit, die sich raseh bewiiltigen lisst.

T

5. Annihernde Berechnung der «hohern» Summen der
diskontierten Zahlen durch Anniherungsparabeln.

Wenn man die hohern diskontierten Zahlen: N,
S SO M R, ... B¥ graphisch darstellt,

a2 220 xr ? xz?
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$0 bemerkt man, dass man Parabeln mten Grades wiihlen,
kann, die sich den wirklichen Kurven sehr gut anpassen.
Die relative Anpassung ist bei den Nz, Mz relativ am
wenigsten gut und wird immer besser mit grosser
werdendem %, was sich durch die fortgesetzte Addition
erklaren lisst.

Es bedeute f(z) die <hdchste» Summe der diskon-
tierten Zahlen, die in den Tafeln noch angegeben sind;
dann treffen wir die Annahme, es lasse sich f(z |- )
als T'unktion der Zeit wie folgt darstellen:

t m
(59) f(%+t)=f(%)-(1-m>
w = Schlussalter.

Da die diskontierten Zahlen als T'unktion des Alters
infolge der grossen Kindersterblichkeit big ungefiihr zum
Alter 15 einen von der einfachen Parabelform stark
abweichenden Verlauf zeigen, erhiilt man bessere Resul-
tate, wenn man fiir die folgenden Betrachtungen erst
etwa von diesem Alter ausgeht. Aus der Gleichung (53)
erhiilt man den Wert fiir m:

log (g + ty) — log f (x,)

log (w — xy — &) — log (w — ;)

(54) W ==

Dabei kann fiir ¢, irgendein Wert zwischen 0 und w — z,
gewithlt werden. Die durch (53) dargestellte Parabel
stimmt dann in 3 Punkten genau mit den Beobachtungs-
werten iiberein, nimlichin den Punkten: f (z), f (2, 1 ty),
f(w) = 0. Die Variation von m fiir verschiedenes ¢,
ist ein Mass fiir die Giite der Anpassung der Parabel an
die Beobachtungskurve. Wie das folgende, beliebig
ausgewihlte Beispiel zeigt, andert sich m wenig, wenn
man #, verschiedene Werte annehmen lisst.



=z

l=a

Grundlagen: Text-Book 4 9% ; x, = 20; w = 102.

Anderung des m mit ¢, fiir die:

S, R,

Ty + to m x,+ t() m
20 + 15 4,996 20 }- 10 2,868
20 - 25 4,992 20 |- 25 2,873
20 - 85 5,032 920 - 85 9,875
20 | 45 5,136 20 | 45 3,00

Nach der Erfahrung ist gewohnlich m > 2; dann folgt
aus (53), dass die erste Ableitung: f' (w) = 0 wird; die
Annitherungsparabel tangiert also die Zeitaxe im
Schlussalter .

Uber die Giite der Anpassung der Parabeln an die
Summen der diskontierten Zahlen orientieren die Tabellen
[—IIT im Anhange dieser Arbeit,.

Da f () in guter Anniherung durch die einfache
Funktion (538) ersetzt werden kann, so ist es nun moglich,
die noch hohern Summen der diskontierten Zahlen durch
fortgesetzte Integration annithernd zu berechnen; am
besten geschieht dies mittelst der Fulerschen Summa-
tionsformel:

) Yia=[i0-a—g - [f@—i@]+ 5 [r@—rw]+

Der besseren Anschaulichkeit wegen ist die nun
folgende Entwicklung speziell fiir die S, durchgefiihrt;
sie gilt aber auch fiir alle andern Summen von diskon-
tierten Zahlen.
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Wendet man die Gleichungen:

g Sy (w—az—H"
AL (w — z)™

dS, s m S, (w—x—)"!
dt (w — )™

auf die Gleichung (55) an, so erhilt man:

f=w—z—1 W—2x
ZS::-H =87 = /.Sx' ==, dt —
. (w0 — x)™
t=0 0
1 1/ m - S
——(0—8) + —1{ 0} L I
2( )+ 12 ( } (w——w)) F
go— Sew—a) S, m-S
’ m—+ 1 2 12(w—uz)
; ; meS, . s @
Das 2. Korrektionsglied % _ st klein im Ver-
2 (w—x)

héltnis zum Fehler, der durch die mangelhafte Anpassung
der Parabel an die wirkliche Kurve entsteht, und es
kann, wie numerische Beispiele zeigen, weggolassen
werden. Damit erhalten wir die Niherungsformel:

w—gz 1
56 S g (P _)
(56.0) O, (0

Analog erhilt man weiter als Niherungstormel fiir S :

S0 — Sp(w—a) [w—ua n 1)
m 1 m - 2




— 307 —
Allgemein findet man:

(56 b) S® S+ (w—a)* w—2x e —1
) 87 = (m 4 1) (m4-2) ... (m - k—2) mof k1 + 5 |

giiltig fiir k> 2.

Ganz gleich lautet die Formel fiir die Rf,, indem
einfach S, durch R, zu ersetzen ist.

Wenn selbst die Zahlen S,, R, in der Tafel nicht
vorhanden sind, kann man die hohern Summen mittels
der N, M,, aber mit entsprechend grosserer Unge-
nauigkeit mit den folgenden Iormeln berechnen:

N, (w— z)*! l"w —z k
(m 4 1)y (m+2) ... (m+k—1)

oo RO M, (w0 — o) we—v k
G60) B = e Y k1) +
Diese Formeln sind giiltig fiir & > 1.

Die m bestimmen sich dann aus den Gleichungen:

B log N

—log Ny log M, 11, —log M,
log (w — 2y — t,) — log (w — =)

I = e e

zotlo ! B
log (w — x5 — t,) — log (w — ;)

fiir irgendein x, und ¢,

Zur Orientierung iiber die Genauigkeit der ange-
fiihrten Iormeln sei ein fiir alle mal auf die numerischen
Beispiele und die Tabellen im Anhange dieser Arbeif
hingewiesen.

Mittelst der Formel (56 b) ist es also moglich, die

héheren Summen der diskontierten Zahlen in guter
Annitherung zu berechnen.
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Die Reihenentwicklungen (51) erlauben nun damit
sofort die Berechnung der Versicherungswerte zu einem
neuen Zinsfuss 1'; die dabeil erreichbare Genauigkeit
ist sehr gut und ist sogar etwas besser als diejenige der
bisher bekannten Niherungsformeln. (Es sei wiederum
auf die numerigschen Beigpiele 1, 2, 3 und die Tabellen V,
VI, VII im Anhange hingewiesen).

6, Beziehung zwischen einer Annahme von Poukka und
den Anniherungsparabeln fiir die Summen der
diskontierten Zahlen.

Poukka beniitzt fiir seine Formeln die beobachtete
Tatsache, dasg fiir alle Alter und etwas weniger genau
zugleich auch fiir alle Zinsfiisse das Verhéltnis:

&

S, N

) &

S& 8
(36) b =1

]

annihernd konstant ist. Mit ungerer Annahme, dass
die Summen der diskontierten Zahlen anniihernd
Parabeln mten Grades der Zeitvariablen ¢ sind,
erhalten wir fiir &, wenn wir von den Korrektions-
gliedern in der Fulerschen ormel absehen:

Nx-}-t = N:c' (]—_—Jﬁ“>

wW—=z
w—z
S, = / Ny dit ... = Nxm(j:-? z)
0

w—i
i :/5'x+t vd@t = N, - (w—a)
/ n+ 1) n+2)
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Damit erhalten wir in guter Anniherung fiir k:

N, (w—ax)*- (m - 1)*- N, m + 1
(o] o= (m—+1)(m-42)« N2v(w—2a)>  m2’

I st also annihernd unabhiingig vom Alter x; ebenso
indert sich k sehr wenig mit wechselndem Zinsfuss,
da die Grosse von m = m (1) sich wenig édndert mit
variterendem ¢ und m 1m Zihler und im Nenner des
Bruches fiir £ vorkommt.
Umgekehrt lisst sich auch schliessen, dass eben-
falls das Verhiiltnis:
R® R

it == :

R, M,

annihernd konstant sein wird, da die Kurve der M,
nur wenig von einer Parabel mten Grades abweicht.

Der Methode von Poukka folgend, muss man zur
Bestimmung von Versicherungswerten fiir einen neuen
Zinsfuss fiiv die betreffende Uberlebensordnung zuerst
die Grosse k bzw. k' berechnen und ihre Konstanz in
bezug auf das Alter und den Zinsfuss priifen, was doch
die Berechnung der Summen S% , RB® erfordert.

Nach unserer Methode hat man die Giite der
Anpassung einer Parabel an die Kurve der S, bzw. R, zu
untersuchen (am einfachsten auf graphischem Wege)
und den Grad m der Parabel aus einem Beobachtungs-
werte zu bestimmen.

7. Anwendung der Resultate der Parabelanniherung auf
die Formeln von Palmqvist und Poukka.

Die Formel von Palmqvist lautet in der Iorm, wie
sio Poukka [19] abgeleitet hat:
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' hev- Sy | L
(39) Oy == Oy * ﬁ . Nx+1 +-

wobei B sich aus der folgenden Gleichung berechnen
lisst:

L+ g Sabt Sen
28  Suu  Noy

Sind die Zahlen S, gegeben, so hat man fiir S | unsere
Niherungsformel (56 ) zu beniitzen:

‘ w— 2 —1 1

m -} 1

Damit ist p bestimmbar und mit der Iformel von
Palmqvist auch der Rentenbarwert a,.

Iiir die numerische Berechnung ist die nun folgende
Formel von Poukka [19] bedeutend einfacher:

.
Sypqt Vb

D

J: —eeaan
2

}&"U'S(h

x|

1 —2
bx—H

(57) (t.,;; = Gy

Darin ist fiir S, der aus Formel (56 a) zu berech
nende Wert einzusetzen.

Uber die Genauigkeit dieser Berechnungsweise von
a, orientiert das Beispiel 4 mit der Tabelle VIII im An-
hange.

Anwendung der Parabelanniherung auf die temporire
Leibrente.

Ungere Hrweiterung der von Poukka fiir lebens-
lingliche Leibrenten abgeleiteten ormel lautet:



(33)

(59 b)
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o (Sy1— Saymps—" N,?t"* 1)
D

T

, (2 2 { " (n —}— 1)
n (ASE::-%-I—“ SScln-i—l —Mn- ‘Sﬂ—n+l o 9 ' Nm

i _H) hv

14

Yy / )
’Sa:-l-l_— ‘Sx-{-n-}-l_ n- Nx-i—n-f-l

Hier wird es nicht leicht gelingen, in analoger Weise,
wie dies Poulka fiir die lebenslingliche Leibrente dureh-
gefiihrt hat, die Glieder S®, R® zu beriicksichtigen.
Dagegen kann man mit der Formel (56 a) die S be-
rechnen und erhiilt mit (58) eine praktisch gut verwend-
bare Formel fiir die temporiire Leibrente.

Wie die graphische Darstellung der S, R, zeigen,
ist die Anpassung der Parabeln in hohem Alter am
schlechtesten ; daher wird fiir die temporiiren Leibrenten,
die nicht bis in hohes Alter dauern, sich der grosste Teil
dieses T'ehlers in dem Ausdruck S, —S®) . weg-
heben. (Siehe Beispiel 5 mit den Tabellen [X und X im
Anhange.)

8. Ableitung einer weiteren Naherungsformel.

Die Leibrente a, zum Zinsfuss ¢’ ist eine analy-
tischo I'unktion von b = " — 7 und ist durch die folgende
Potenzreihe von b dargestellt:

A = ,ﬁ‘?fil,i?,h B _}Sﬁfz_lg ('l‘h)‘au—- fq(’ﬂ‘
B D D

xr Zz Zr

(vh)® + — ...

Durch die Abbildungsfunktion:

1 In (1 —
ﬁ-n(;z)

1 1 /2 2 2
}bz—.ﬁln(l——z)—_(i.-k |‘_.-+...)

(69a) 2=1— e b= —

] 2 '3
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(B ist eine noch beliebig withlbare positive Konstante),
wird man fiir (33) eine stiirker konvergierende Potenz-
reihe in z erhalten.

Setzt man den Wert (59b) fiir h in (53) ein und
beriicksichtigt nur die Glieder bis und mit zur 2. Potenz
von 2, 8o erhilt man:

&

Sppy V2 1 ( Sppr° ¥ 1 S8
A Rt 2 . —
2.D,- Dm'ﬁz

Nun kann man die Konstante f so wihlen, dass der
Koettizient von 2* gleich Null wird:

t @ , 02
"Sx‘l‘l D)) SSG-H. K]

—Q'ﬂ'D:c+ IBZ'Da: =0

Daraus ergibt sich f zu:

S,
p=—o"—20
‘Sx+1

Ersetzt man in der Gleichung (60 a) wieder 2z durch:

@)
_ Data

re=1 g 81

so erhiilt man fiir @, die folgende Niherungsformel:

82 oum
(Sy10)” -5,
(61 a) ' —a £+l A1—e  Sen

a -
* : 2Dz8(x2—}-1

5, z 2 St o
a’f:axh___ +1_,U,(._.._+_§B_ ...>+ DH-’UQ‘(ﬁgﬁF---

)
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Dabei sind die S, mit der Niherungsformel (56 a) zu
berechnen.
Die Niherungsformel fiir @, lautet dann:

w—zr—I1
F - o Sx““l (I (“_"20’1 (—‘—-".+l

Entsprechende Formeln gelten fiir die temporiire
Leibrente und die Todesfallversicherung. Wenn wir
den Ausdruck (61 @) nach Potenzen von h entwickeln:

Sepreoh SB L (vh)?

619 @ =a——p =+ p
2 (S2)" e (A

— By L (R — ...,
3. D, Sx+1 (oh)* + 3D, (‘S’ﬁ-l)g oh)

g0 zeigh diese letzte Reihe (61 ¢) mit der Reihe (33)
gonaue Ubereingtimmung in den zwei ersten Korrek-
tionsgliedern und das 8. und 4. Korrektionsglied in
(61 ¢) weichen in ihrer Grosse nicht viel von den ent-
sprechenden Gliedern in (33) ab. Daher ist zum voraus zu
erwarten, dass diese Niherungsformel (61a) fiir o, ziem-
lich gute Resultate liefern wird. (Siehe Beispiel 6 und
Tabellen XI—XIV im Anhange).

9. Schlusswort.

Wie wir in der Einleitung schon erwiihnten, war das
Hauptziel unserer Arbeit, darzulegen, wie es moglich ist,
die Leibrentenbarwerte zu einem neuen Zinsfusse mit
einer fiir die Praxis befriedigenden Genauigkeit zu be-
rechnen, ohne das ganze System der Kommutations-
zahlen zum neuen Zinstuss aufstellen zu miissen.

+

3
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Der geschichtliche Uberblick zeigh uns, dass bis
jetzt unsgeres FErachtens entschieden Poukka die beste
Losung des Zinsfussproblems gefunden hat; er erreichte
sein  Resultat durch Verwendung eines anniihernd
konstanten Verhiilinisses von Kommutationszahlen
hoherer Ordnung. Unser Ausgangspunkt, die hohern
Summen der diskontierten Zahlen mittelst Anpagsungs-
parablen zu berechnen, kann als eine Verfeinerung der
Methode von Poukka aufgefasst werden. Wilhrend
dessen Formel fiir die lebenslingliche Ieibrente wohl
keiner Frweiterung fihig ist, konnen wir auch Formeln
fiir die temporire Leibrente mit guter Grenauigkeit auf-
stellen.

Die hohern Summen S¥ sind niherungsweise it
unserer Methode in einfacher Weise berechenbar. Wie
die Beispiele zeigen, erreicht man bei der Berechnung
der Leibrenten mittelst der entsprechenden Reihen-
entwicklungen selbst, eine weitergehende Genauigkeit
als bisher; die rechnerische Arbeit ist dabel nicht wesent-
lich grosser als bei den eigenflichen Niherungsformeln.

Versicherungswissenschaftliches Seminar
der Universitit Bern.
Mai 1929,
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Anhang.

Die nachfolgenden Tabellen zeigen, wie weit sich
z. B. fiir die Grundlagen des Text-Books, ¢ =4 %, die
diskontierten
Zahlen den Beobachtungswerten anpagsen:

Tabelle I der N,: 10%; @y 4 t, = 20 | 40; mgy, = 4,020.
Tabelle 1.

Niherungsparabeln

der

Summen

Tabelle TI der S,:10%; ay + ¢, = 20 -}

Tabelle 11.

Alter genauer Wort mit Formel (53) absoluter ]

@ berechnet Fehler

|
20 862 862 0
30 502 b1l —9
45 199 200 | — |

| 60 58 58 0
5 8 10 -2

w = 102 0 0 0

Alter W | mit Formel (53) absoluter
@ genaver Wert berechnet Fehler
20 14 334 14 334 0
30 7 469 7 496 — 27
45 2 333 2 338 0
60 480 508 — 28
75 39 56 — 17
w = 102 00 00 0
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Tabelle Il der R, : 100; z, + &, =20 -+ 25; m,; = 2,875.
Tabelle I11.

Alter genauer Wert mif Formel (53) absoluter
z berechnet Tehler
20 3107 3107 00
30 2147 2139 08
45 1090 1090 00
60 400 455 — b5
75 64 128 — 64
w = 102 00 00 00

In der nachfolgenden Tabelle 1V sind die S berechnet
nach der I'ormel (56 a):

so_g(v—e 1
? “\m+4+1 2
Grundlagen: Text-Book, 4 %, w = 102, ¢, = 25.

log Sy 35 — log Sy

m = 4,9917,
’ log 57 — log 82
Tabelle 1V.
berechneter Wert £ Wert 5
oochmotoriort gt WOl | o i o | Al
A €
188 857 188 088 0,4 9, 21
86 050 85 534 0,4 % 31
84 991 34 279 2. 2 41
11 965 11 392 5,0 %, 51

3 099 2 828 8,2 9/, 61
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Der relative I'ehler nimmt mit zunechmendem Alter zu.

Beispiel 1.

(tegeben seien die Versicherungswerte fiir 4 9.

Grundlage: Text-Book; in letzterem sind noch die
S, angegeben.

Die hohern Summen sind nach den angefiihrten
Formeln (56 b) zu berechnen; m = 4,9917.

Beispielsweise berechnet sich gy mittels der Fnt-
wicklung (33) zu:

S, ) 33
A . + "‘}2 (vh)®— 5—29 (oh)® + — ...
N P Dy Dy Dy

1. Ubergang von 4 9% nach 4,5 %; a,y (4 %) = 18,806.
(4,5 %) aly = 18,806 —1,50838 4 0,10253 — 0,00605 |-
1 0,00032.

ayy = 18,806 — 1,407 = 17,399
genauer Wert von (4,5 %) a,y = 17,399

A = 0,000,

9. Ubergang von 4 9%, nach 8,5 %; h = — 0,005
(3,5 %) ayy = 18,806 + 1,50338 -+ 0,10253 -- 0,00605 +
-+ 0,00032.

ayy = 18,806 - 1,612 = 20,418
genauer Wert von (3,5 %) a4 = 20,418
A = 0,000.

Die nachfolgende Tabelle V gibt eine Zusammen-

stellung der berechneten, der genauen Werte und der

: ! i
absoluten Fehler von @,y bet einem Ubergange von
4 %, nach +':

o
Lo
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Tabelle V.

" berechneter Wert| genauer Wert absoluter
v von d von ag Fehler
3 % 22,277 22,275 — 0,002
3,5 9, 20,418 20,418 0,000
4,5 o, 17,399 17,399 0,000
5 Y 16,1655 16,165 — 0,0005
B % 14,113 14,109 — 0,004

Die hier auftretende Genauigkeit st etwas grogser alg

diejenige bisher bekannter [formeln.

Fiir temporiire

Leibrenten ergibt die Berechnung mit der entsprechen-
den Reihenentwicklung (51) eine noch grossere Genauig-

keit.

Beispiel 2.

In dhnlicher Weise ist nachfolgend der Barwert der
lebenslinglichen Todesfallversicherung: 4;, nach den
Grundlagen des Text-Books, 4 9, berechnet :

Gegeben ist: Ay, (4 %) = 0,24377; By, = 810 718,5

(52 )

g —
Agy = Agg—

Ry

RY R{)
— (vh) + —=— (Vh)* — =
Dy ) Dy (*h)

D

720

Ubergang von 4 % nach 4,5 %; h = 0,005
(4,5 %) Agyy = 0,24877 — 0,034075 - 0,008526 +
— 0,000294 -~ 0,000021 — 0,000001
Agy = 0,24877 — 0,08082 = 0,21295

genauer Wert von (4,59

4) Ay = 0,212289

A = —0,00006

(vh)® -} — .
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In der nachfolgenden Tabelle VI sind die mit der
obigen Reihe (52 a) berechneten Werte von Ay, und die
absoluten Fehler zusammengestellt, die sich ergeben bei
einem Ubergange von 4 % nach '

Tabelle V1.

P berechneter Wert| genauer Wert abgoluter

k von zl.éo von A, Fehler
8 9% 0,32874 0,32822 — 0,00052
8,6 % 0,28169 0,28159 — 0,00010
4,5 %, 0,21295 0,21289 — 0,00006 {
5 0,18767 0,18750 —0,00017
6 % 0,14935 0,14896 — 0,00037

Der prozentuale Fehler ist hier grosser als bei den Leib-
renten, weil die Anpassung der Parabel an die Kurve der
beobachteten Werte von R, besonders in hohem Alter
schlechter ist als bei den S,.

Beispuel 3.

Berechnen wir daher A fiir neue Zinsfiisse, indem
wir den Ausdruck: | —d' - a bilden, so werden wir
genauere Werte fiir A erhalten.

s seien die Versicherungswerte fiir @ =4 9, be-
kannt; Grundlage: Text-Book.

[n der folgenden Tabelle VII sind die Werte von
Ay durch Bildung des Ausdruckes: 1 -—d' - aj, be-
rechnet und die absoluten Tehler zusammengestellt, die
sich ergeben bei einem Ubergange von 4 %, nach ',
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Tabelle VII.

. berechneter Wert| genauer Wert absoluter

' von “19 von @, Fehler
3 9 0,32203 0,32208 0,00005
3,5 9% 0,27572 0,27571 —0,00001
4,5 % 0,20770 0,20768 — 0,00002
&% 0,182595 0,18265 0,000055
6% 0,14455 0,14475 0,00020

Beuspiel 4.

Aus den gegebenen Versicherungswerten zu 4 %,
Text-Book, sei der Rentenbarwert ay, nach der Iformel
(85 ¢) fiir andere Zinsfiisse zu berechnen.

Die nachfolgende Tabelle VIII enthiilt die Werte
der aqy, nach der Formel (57) berechnet, und deren ab-
solute I'ehler, die sich ergeben bei einem Ubergange von
4 %, nach 4':

Tabelle VIII.

y berechneter Wert| genauer Wert. absoluter
g von “"éo VOn dty, Fehler
3 % 22,064 22,077 — 0,013
3,5 % 20,245 20,246 — 0,001
4,5 9% 17,279 17,278 0,001
A 16,062 16,058 0,004
6 % 14,085 14,008 0,027

Beispiel 5.
Gegeben seien die Versicherungswerte fiir 4 9,
Text-Book; fiir die 30 Jahre dauernde Rente |30“;: sind
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fiir andere Zinsfiisse thr Wert nach der Formel (58) zu
berechnen. Die Zahlen S sind mit der Formel (56 a)
bestimmt worden. (m = 4,9917; w = 102.)

s ergeben sich bei einem Ubergang von 4 %, nach
1" die in der Tabelle IX zusammengestellten Werte fiir
oty und ihre Fehler:

Tabelle TX (004,)-

7 berechneter ge\rlailléf B
L Wert Wert absoluter | prozentualer
' , Fehler Tohler
|30"19 13019
5% 17,793 17,789 | — 0,004 0,023 %,
3,5 9% 16,742 16,741 — 0,001 0,006 %,
4,5 Y%, 14,910 14,910 0,000 | 0,000 9%,
8% 14,108 14,109 0,001 0,007 9%,
6 9% 12,687 12,694 0,007 | 0,054 Y%,

Die Tabelle X enthiilt die Resultate fir die Be-
/ M - ¥ .
rechnung von a4z, nach der Iformel (58), bei einem

Ubergange von 4 9%, nach 4':

Tabelle X.

- [[berechneter| genaver | -
Y Wert Wert absoluter | prozentualer I
' , Fehler Fehler
130%0 130%50
3% 18,592 18,585 | — 0,007 | 0,052 %
8,6 % 12,924 12,922 | — 0,002 | 0,016 9% r
459 | 11,744 | 11,748 | —0,001 | 0,009 %, I
89, 11,221 11,217 | — 0,004 | 0,036 %,
6 % 10,286 10,277 | — 0,009 | 0,087 %
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Beispiele 6.

(regeben seien die Versicherungswerte fiir 2 = 4 9,;
Text-Book. In den nachfolgenden Tabellen XTI bis
XIVsind die absoluten und prozentualen Fehler von a,
angegeben, die sich bei einem Ubergange von 4 %, nach

1" mit der Formel (61 b) ergeben.

Tabelle XI.

Ubergang von 4 % nach 4,5 9%.

i a,:4,5%, | abgoluter |prozentualer
’ Ay 4% bgrechnot ’ Fehler Fehler
20 18,662 17,280 | — 0,001 0,006 %,
30 17,155 16,013 | — 0,002 0,012 %,
40 15,136 14,2625 | — 0,0075 | 0,007 9,
50 12,522 11,925 — 0,002 0,018 9,
Tabelle XII.
Ubergang von 4 %, nach 8,5 %.
a5 ,:8.8% abgoluter | prozentualer
berechnet genat Fehler Fehler
| 20 20,2435 20,245 0,0015 | 0,007 9%,
30 18,441 18,441 0,000 0,000 %,
40 16,104 16,103 | — 0,001 0,006 9%,
I 50 | 13,073 | 18,172 | —0,001 | 0,008 %,




p—

323

Tabelle XII1.

Ubergang von 4 % nach 5 9.

- 0,:5% absoluter | prozentualer

berechnet genatt TFehler Tehler
i

20 16,072 16,062 | — 0,010 0,06 9,

30 14,999 14,991 — 0,008 0,05 9,

40 13,474 13,469 | — 0,005 0,03 %%,

50 11,3775 11,371 —0,0065 | 0,058 9%,

Tabelle X1V
Ubergang von 4 %, nach 3 %,

. a,:3% abgoluter | prozentualer
berechnet genat Fehler Tehler

20 22,059 22,064 0,005 0,023 9%,

30 19,890 19,895 0,005 0,025 9

40 17,176 17,177 0,001 0,004 9,

50 13,888 13,878 | — 0,010 0,075 9,
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Verzeichnis der wichtigsten Literatur
iiber das Zinsfussproblem.

In dem nachfolgenden Literaturverzeichnis sind alle Ab-
handlungen mit fortlaufenden arabischen Ziffern versehen, und im
Text wird zur Zitierung einer Arbeit neben dem Namen des Autors
nur die betreffende Nummer in Klammern beigefiigt.

Iis bedeuten in der Folge:
(I) Archief voor de Verzekerings-Wetenschap.
(IT) Assekuranz-Jahrbuch.
(III) Assurance-Magazine.
(IV) Bulletin trimestriel de I'institut des actuaires francais.
(V) Mitteilungen osterreichischer Versicherungstechniker.
(VI) Mitteilungen schweizerischer Versicherungsmathematiker.
(VIII) Osterreichische Versicherungszeitschrift.
(IX) Zeitschrift fiir die gesamte Versicherungswissenschatft.
(X) Skandinavisk Aktuarietidskrift (Aktuaren).
(1] James Meikle: (I1I) vol. 111, Seite 325, 1853.
(2] L. Fontavne: (IV) Nr. 2, page 34, 1892.
Note sur le calcul des rentes viagéres, & différents taux,
par interpolation.
3] M. 4. Achard: (IV) Nr. 2, page 38, 1892.
Note sur le changement du taux dang le caleul des annuités
viagéres.
(4]  D. T. Lundgren: (VIIL) 1898.
Uber eine Methode zur Anwendung einer Grundtafel fiir
Berechnungen mit verindertem Zinsfusse.
(5]  H. Poterin du Motel: page 201, 1899,
Théorie mathématique des assurances.
[6] ~ R. H.van Dorsten: (I) Bd. 4, Seite 284, 1900.
Benaderingsformules bij verandering van Rentevoet. (1899.)
(71  J. C. Kluyver: (1) Bd. 5, Seite 1, 1901.
Nog iets over benadering van Lijfrenten bij verandering
van Rentevoet.
(8]  J. M. Vaz Dias: (I) Bd. 5, Seite 437, 1901.
Elementaire afleiding van benaderingsformules bij ver-
andering van rentevoet.
(9]  J. M. Vaz Dias: (1), XXIV. Jahrgang, 1903, Seite 17.
Annithernde Berechnung bei Anderung des Zinsfusses.
[10]  I. Blaschke: (V), Hett IX, 1903, 1914.
Uber eine Anwendung des Sterbegesetzes Gomperts-
Makeham (vollstindiges Leibrentensystem).
[11]  J. P. Gram: Aktuaren, Seite 57, 1904.
Om Makehams Dodelighedsformel og dens Anvendelse paa
ikke normale Liv.
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G. J. D. Mounier: (1) Bd. 8, 1906, Seite 437.

Verandering van Rentevoet door middel van per termijn
stijeende Lijfrente, betaalbar in termijnen.

Pexider: (IX) Bd. 7, 1907.

Beitrag zur Zinstheorie.

J. . Steffensen: (X) Hefte 1 und 2, 1918, Seite 82.

On certain inequalities between mean values, and their
applications to actuarial problems.

Birger Meidell: (X) Hefte 3 und 4, 1918, Seite 180.

Note sur quelques inégalités et formules d’approximation.

L. Weber: (IV) Nr. 104, 1921, page 17.

Sur une méthode de caleul rapide de valeurs approchées
des annuités viagéres temporaires.

M. Gauthier: (IV) Nr. 106, 1921, page 47.

Note sur le changement de taux dans les calculs d’annuités.

R. Palmquist: (X) Heft 3, 1921, Seite 152.

Sur une méthode d’approximation applicable & certains
problémes actuariels

K. A. Poukka: (X) Heft 3, 1923, Seite 137.

Uber die Berechnung der Leibrente bei Veriinderung des
Zinsfusses.

W. Sazer: (VI) Heft 19, 1924, Seite 19.

Uber die Konstruktion einer Standardabsterbeordnung.

E. Sos: (IX) Bd. 24, 1924.

Berechnung von Versicherungswerten aus Tabellen; er-
ginzt durch 2. Meier in (IX) Bd. 25, 1925.

M. Hochart: (IV) Nr. 123, 1925, page 146.

Note sur le probléme général du taux de I'intérét dans le
caleul des annuités viageéres.

M. Hochart: (IV) Nr. 123, 1925, page 148.

Note sur le changement du taux d'intérét dans le calcul des
annuités viagéres.

Weitere beniitzte Lateratur:

W. Friedli: Mathematische Untersuchungen iiber die in
unterjihrigen Raten zahlbaren Terminen. 1924 (noch
nicht gedruckt).

Landré: Lebensversicherung.

(5. Auflage, 1921.)

Text-Book.
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