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Das Zinsfussproblem bei der Leibrente.

Von Dr. Mans Christen, Zürich.

I. Einleitung.

1. Darlegung (les Problems.

Die Berechnung von Versicherungswerten, sofern
Nettowerte in Betracht fallen, geschieht mittelst der

Grundlagen: Überlebensordnung und Zinsfuss. Will
man nun bei gleichbleibender Überlebensordnung die

Versicherungswerte für einen neuen Zinsfuss berechnen,

so besteht die gebräuchliche Methode darin, dass man
das ganze System der Kommutationszahlen zum neuen
Zinsfuss berechnet.

Wenn es sich indessen nur um die Kenntnis ver-
einzelter, für einen neuen Zinsfuss zu bestimmenden Ver-

sicherungswerte handelt, so ist die ganze Neuberechnung
der Kommutationszahlen zu umständlich. Unter solchen

Bedingungen stellt sich die Aufgabe, folgendes Problem

zu untersuchen:
Wie kann man, wenn für eine bestimmte Über-

lebensorclnung und für einen bestimmten Zinsfuss die

Versicherungswerte schon vorliegen, diese für die gleiche
Überlebensordnung, aber für einen neuen Zinsfuss

möglichst einfach und zugleich möglichst genau he-

stimmen, ohne das ganze System der Kommutations-
zahlen neu zu berechnen

Dieses Problem, das den Gegenstand der vorliegen-
den Untersuchung bildet, wird öfters als «Zinsfuss-

problem» bezeichnet. Es handelt sich dabei im wesent-
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lichen um die Berechnung des Barwertes der Leihrente
zu einem neuen Zinsfusse.

Wenn die Überlebensordnung eine analytische Funk-
tion des Alters ist, so besteht die ideale Lösung des Zins-

fussproblems darin, die Versicherungswerte in endlicher
Form als einfache Funktion der Parameter des Sterbe-

gesetzes und des Zinsfusses darzustellen. Dies wird bei

einfacher Wahl des Sterbegesetzes möglich sein. Handelt
es sich aber um ein Sterbegesetz, das den Beobachtungs-
resultaten möglichst gerecht wird, wie z. B. das Make-
hamsche Gesetz, so können die Funktionen so kompli-
ziert gebaut sein, dass die Versicherungswerte nicht in

einfache, endliche Form gebracht werden können.
Das Zinsfussproblem ist wegen seines Wissenschaft-

liehen Interesses und wegen seiner Wichtigkeit für viele

praktische Arbeiten des Versicherungsmathematikers
in der Literatur schon vielfach behandelt worden ; deshalb
wird in dieser Arbeit auch ein Überblick der wichtigsten
diesbezüglichen Abhandlungen gegeben.

2. Das Problem bei der Abzinsungsfunktion.

Wir gehen im folgenden stets aus von einem festen
Zinsfuss i, für welchen die Versicherungswerte gegeben
sind. Die Werte zu einem andern Zinsfuss F bezeichnen
wir jeweilen mit einem Akzent ('), und unsere Aufgabe
besteht darin, die akzentierten Grössen aus den ent-
sprechenden Grundwerten (zum Zinfuss i) zu berechnen.

Es sollen zukünftig bedeuten:
1

u -—:—.- den Abzinsungsfaktor,
1 |

F die Abzinsungsfunktion,

die den Barwert der nach < Jahren zu zahlenden Ein-
heit darstellt;
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<5 Zw (1 -(- i) den logarithmischen Diskont.

Dann lässt sich F wie folgt durch <3 ausdrücken:

F e~'"'

Für einen andern Zinsfuss F gilt ebenfalls:

t>'' e

Es wird eine Zeitdauer <' geben, für die gilt:

oder

d • F <S' • f

woraus sich für ein gegebenes Z das zugehörige <' hestim-

men lässt :

<5'

(') <'-r<
Angenommen, dass wir die Werte von F für alle

Z zu einem bestimmten Zinsfuss t besitzen, so lässt sich

irgendein Wert von F', anstatt direkt, grundsätzlich
einfacher wie folgt berechnen:

Man bestimmt aus der Gleichung (1) das zugehörige

f, verschiebt also an Stelle des Zinsfusses die Dauer und
sucht in der Tabelle den Wert F'. Damit ist auch F'
bestimmt.

Beispiel.

Man besitze bloss eine Tafel der Abzinsungsfak-
toren F zum Zinsfuss 4 %. Es soll aus dieser Tafel

allein, für eine bestimmte Dauer Z 20, der Abzinsungs-
faktor zum Zinsfuss 5 % berechnet werden.

18
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< 1,04"'

1 0,9615

20 0,4564

24 0,3901
25 0,3751

a (4 %) 0,0392207

3' (5 %) 0,0487902

0,04879

und daraus durch lineare Interpolation:

1,05-*® 1,04-®*'*® 0,3901 —0,88 (0,3901 —0,3751)

1,05"'° 0,3769

Der genaue Wert beträgt 0,3769.

3. Das Problem bei der Zeitrente.

Die Formel für die vorschiissige, » Jahre dauernde

Zeitrente lautet :

1—«" _ 1— e"''"'
" '

1 — tl

Das Produkt

cZ • a^-i 1 — e
-<5 • n
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ist abhängig einerseits vorn Zinsfuss (5, anderseits von. der

Zeitdauer w. Eine Änderung des Zinsfusses (<5-+(5')

kann durch eine entsprechende Fcr.se/webMngi der Dawer

(w-+w') ausgeglichen werden, indem bloss gefordert
werden muss, dass

(2) d' • « — d • w'

Dann ist sofort

" â'n | — ^ ' â,~

und es wird

d
(*^) ^ n~|

* ^n^~|

Es seien die Zeitrentenbarwerte bei einem bestimmten
Zinsfuss i für alle Dauern n gegeben. Dann kann man
für jeden beliebigen Zinsfuss B den Zeitrentenbarwert
mit Hilfe der Beziehungen (2) und (8) sofort berechnen.

Diese Berechnungsmethode ist wiederum grundsätz-
lieh einfacher als der direkte Weg.

4. Das Zinsfussproblem bei der Leibrente. Lösung des

Problems bei einfacher Wahl des Sterbegesetzes.

Sind die Leibrentenbarwerte a^ für alle Alter :r zu
einem bestimmten Zinsfuss in einer Tafel gegeben, so-

seien aus dieser Tafel die Barwerte zu einem neuen
Zinsfuss B zu berechnen.

Ist das Sterbegesetz sehr einfach, wie z. B. das;

Dormoysche Gesetz: fc • s®, die Leibrente a* also
eine einfache Punktion des Zinsfusses:

1

3.« — i* 1 — v; • s
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so ist die Lösung des Problems im wesentlichen die

gleiche wie bei der Zeitrente. Es gibt aber Fälle, wo
der Barwert der Leibrente nicht leicht in endlicher Form
dargestellt werden kann, das Zinsfussproblem aber für
die betreffende Überlebensordnung doch exakt lösbar ist.

/Ic/icwcl [3] hat für einen solchen Fall, nämlich für
die Moivresche Hypothese und ihre Verallgemeinerung
das Problem gelöst:

Es bedeute tu das Schlussalter in dem Sinne, dass

Ztü 0 ; die Überlebensordnung ist dann dargestellt
durch:

(w-
Der Barwert der kontinuierlichen Leibrente ergibt sich

beim Zinsfuss f zu:

W-—£

/* fe(te — x — <)'"• • dt
**

J fc (to — a)" •

0

Setzt man: tü — x — / y, so wird der Loibrentenbar-

wert :

u;—tc

?/"• e''-"- dy

""J
0

Substituieren wir noch: d • y — t, so erhält man:

(w—a:) (5

d • äa r • e • dt

(to —a)". d"' e<^)"

Zur Abkürzung sei: (to — x) • d
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Es wird damit schliesslich:

(4)

0

für den Zinsfuss i und das Alter .r.

Aus (4) ergibt sich, dass das Produkt d • a,,. einzig

abhängt vom Parameter 7t, der seinerseits ein Produkt
aus zwei Faktoren ist, dem Zinsfuss d und der Zeit-
strecke w — a;.

Wir können schreiben:

Für ein bestimmtes Alter a; und einen bestimmten
Zinsfuss d sei der Parameter 7t ermittelt zu

7t (tr —- as) • d und d (d) F' (7t)

Für das gleiche Alter a; und einen neuen Zinsfuss d'

ergibt sich:

7ij (to — a:) • d' und d'• a^ (d') F (7tj)

Zu diesem Resultat können wir auch gelangen durch eine

Verschiebung des Alters a: bei Beihaltung des Zins-
fusses d.

Sei nämlich: 7^ — (-to — a;') • d

so wird dann und nur dann 7tj 7tg, wenn:

<3 • a* F (7t)
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Es wird damit:

d'-I,(<5')=I''W=E'(^) d.ä„ (d)

also schliesslich :

(7) ä,(d') ^ -ä,„ (d)

Durch die in Formel (6) angegebene Eerscfefelm/w/ des

filters ist für diesen Fall das Zinsfussproblem sehr ein-
fach gelöst.

Die Lösung ist unabhängig vom Grade m der Pa-

rabel; sie gilt also auch im Spezialfall m 1, also

für die Moivresche Hypothese:

^ fe (xo — a;)

Wie aus unserer Darstellung ersichtlich ist, spielt
die sogenannte Lebensergänzung w — bei der Lösung
des Zinsfuss problems die ausschlaggebende Rolle.

Ferner sei erwähnt, dass sich die Ableitung aus-
dehnen lässt auf den Fall, dass die Überlebensordnung
lautet :

/, fc e~" • (w — Pf

indem ganz einfach der Zinsfuss d durch den Zinsfuss:

zl d + s

zu ersetzen ist. Diese Erweiterung des Achardschen
Satzes verdankt man Poiehw dît iWoteü [5].
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II. Historischer Überblick.

])ie bisher im Druck erschienenen Arbeiten über das

Zinsfussproblem lassen sich wohl am besten überblicken,
wenn man sie nicht bloss chronologisch, sondern nach
Grundsätzen und Methoden zusammenstellt. Eine der-

artige historische Zusammenfassung sei hier versucht.

Das Literaturverzeichnis möge ergänzend als kleiner

chronologischer Überblick dienen.

1. Berechnung des Versicherungswertes durch Inter-
polation.

Wenn für 8 oder mehr verschiedene Zinsfüsse die

Versicherungswerte schon vorliegen, so kann man, wie

dies -//. I'Vtttoinc [2] dargelegt hat, folgendermassen vor-
gehen.

Wir benützen für die Differenzenrechnung die

folgende Bezeichnungsweise :

Die Eunktionswerte seien:

/ (i- n/t), • • • / (>'), /('' + fe), • • •

Die ersten Differenzen sind dann wie folgt bezeichnet:

/ (t -j- (n -f 1) /t) — / (/' L n/t) — /B / t -f n/t)

und allgemein ist:

zP-i/ (i + (w + 1) ä) — J*"' / (i tt/t) =/!"' / (t f- n/t)

eine m te Differenz.
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Es seien die Versicherungswerte für m verschiedene
Zinsfüsse bekannt; dann lassen sich die Differenzen bis

zu der einzigen (m — l)ter Ordnung berechnen. L. Eon-
taines interessanter Gedanke besteht nun darin, unter
der angenähert zutreffenden Annahme, dass die m te
Differenz konstant sei, diese mit Hilfe des für I 0

leicht zu bestimmenden Versicherungswertes / (i 0)

noch selbst zu berechnen. Die dazu am besten geeignete

Interpolationsformel lautet :

(8) /(0) /(i-n/0=/(i)-Ç)-^/W I

In der obigen Gleichung (8) sind alle Grössen bis

auf zT / (I) bekannt, und daher lässt sich zl'" / (I) aus

(8) berechnen.

Indem man nun von zl'" / (I) rückwärts aufsummiert
und damit das Differenzenschema ergänzt, kennt man
dann alle nötigen Differenzen, um jetzt mit der je-
weilen geeignetsten Interpolationsformel den Versiehe-

rungswert für jeden beliebigen Zinsfuss ganz einfach be-

rechnen zu können. In den meisten Fällen wird es möglich
sein, den gesuchten Versicherungswert zum neuen Zins-
fuss direkt aus dem ergänzten Differenzenschema ab-

zulesen.

Aber aus den nachfolgenden Gründen wird die

Bestimmung von zl'" / (I) mittels der Gleichung (8) in
der Begel einen se/tr wi</ericrae« Wert für zl"' / (I) liefern.

Das Intervall von I bis I—'»Ä — 0 ist bei der Ex-
trapolation zur Bestimmung von zl"'/ (I) sehr gross;
daher kann, wenn auch zl'" / (/) für die Zinsfüsse, deren
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Versicherungswerte gegeben sind, annähernd konstant
ist, doch die Variation von /!'" / (i + n/t) bis zu /' 0

beträchtlich gross sein. Dieser Umstand wirkt sich

schlimm aus, weil in der Eegel die Versicherungswerte
sich am stärksten ändern, wenn der Zinsfuss gegen Null
strebt.

Beispfe/; Es sei die beim Alter 65 lebenslängliche
Leibrente für alle möglichen Zinsfiisse zu bestimmen,
wenn sie bekannt ist für 4 verschiedene Zinsfiisse;
Grundlage : Text-Book.

In der nachfolgenden Tabelle sind die fettgedruckten
Werte als gegeben zu betrachten.

Wir dürfen die 2. Differenz als konstant annehmen
und ergänzen dann das Schema. Wo überhaupt un-

genaue Werte sich ergeben, sind die genauen Werte in
Klammern beigefügt.

i Funktionswert :

«(15

1. Differenz :

zB «65

2. Differenz :
|

ZB «65

0,0 %

0,0 %

685 — 0,5 10,479

8,891 (8,895)
— —0,277 (-0,281) —

0 2640,5 % 8,114 0,018 (0,017)
4,0 % 7,850 0 251 0,013

4,5 % 7,599 0 238 0,013

5,0 % 7,361
— 0 225 -

0,013

5,5 % 7,136 — 0 212 0,013

0,0 % 6,924

Der Wert von für f 0 ist: <»65 — 0,5; wir
berechnen nach der Methode von L. Fontaine die

8. Differenz aus dem Wert von rtgs für f 0 mittels der

Gleichung (8):
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(8a) / (0) ^5-0.5 10,479 - 8,114 + Q. 0,264 +

+ Q -o.ois-Q.zP^^sy.o^

Es ergibt sich: /d®agj — 0,002 (der richtige Wert ist
zPa<55 0,000, wie dies unsere Tabelle beweist).

In unserem Beispiel erhalten wir für alle möglichen
Zinsfüsse von 8,5 % bis 6 % den genauen Versicherungs-
wert, während die aus —-0,5 ermittelte Differenz uns
bedeutend schlechtere Resultate liefern würde. Einzig,
wenn wir den Versicherungswert für einen Zinsfuss
zwischen Null und 3,5 % kennen wollen, empfiehlt es sich,
mit der aus ggg—• 0,5 ermittelten Differenz zurechnen.

2. Das Zinsfussproblem bei der Erlebensfallversicherung
und seine Erweiterung auf die Leibrente.

D,
ist der Wert der Versicherung eines

.r-jährigen, der sich für den Erlebensfall nach
< Jahren die Einheit zu sichern wünscht.
Für einen neuen Zinsfuss k wird:

_
/>(•

<

_ l+i •

_ jx+r
^

(9) X

Die Leibrente kann man als Summe von Erlebensfall-
Versicherungen ansehen :

a*:„| — + l®x + -I + n-Ä
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])ie temporäre Leibrente zum neuen Zinsfuss F kann
man damit wie folgt darstellen:

(10) a^ „E, + •••+,-Ä-('")"
'

v \ v / V v /

2?. «S'os | '21] hat diese Darstellung gegeben, die

iL Meyer [21] noch wie folgt ergänzl hat:

m—n—1
\ h—1

(H) „
' I

T •
* /i + '

*£ : m ;

Die Methode von Sos und Meyer besteht also in der

/vyVerwendung der Hilfsfaktoren —). Sie ist nicht viel

einfacher als die direkte Berechnung des Versicherungs-
wertes mit Hilfe der Kommutationszahlen zum Zins-
fuss /'.

Eine ähnliche Betrachtung hat Faz Dias [9] ange-
stellt. Der Leibrentenwert zum neuen Zinsfuss /' kann
auch wie folgt dargestellt werden:

Es sei F > 1; dann kann man als Summe einer kon-

stauten und einer veränderlichen Leibrente zum Zins-

fuss i wie folgt deuten: An die Rentnergesamtheit wird
ausbezahlt :



£+3 •

X X (-Y 1
e_ A

«
usw. ;

setzt man nun, mit Ausnahme der ersten Summanden,
y'

in den einzelnen Gliedern den Paktor — 1, eine

ziemlich grobe Annäherung, die vermutlich nicht ganz
gerechtfertigt ist, so kann man den Barwert wie folgt
darstellen:

a+l
öl

V / V

r \ i>

/X

Wird im Zähler noch
A / vr

ü \ i;

subtrahiert, so erhält man:

jWj+i addiert und

(12a)

<

oder :

(126)

Dabei sind:

2 A /AW X /XV-- -u \u / 7; \v/

«; a • a, — j8 • (J a),

2A /V^
a

(5
X /-A
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Eine analoge Formel ergibt sich, wenn f < f ist. Dieser

Gesichtspunkt zur Behandlung des Problems hat von
andern Bearbeitern (J. Meikle bis Poulcka) eine viel
durchsichtigere und elegantere Behandlung gefunden.

Über die Güte der Diatzschen Formel orientiert das

folgende Beispiel:

Berechnung der Barwerte c^, BF für 1 8%%
aus den Barwerten BF 8% % bzw. 3 %.

Alter Berechnet aus genauer Wert Boreehnot aus
IC ri-c zu 3,5 0/0 «I ; 3,25% a* zu 3%

20 21,088 21,109 21,080
80 19,079 19,097 19,077

40 16,412 16,422 16,411

60 9,695 9,697 9,695

70 6,818 6,314 6,313

3. Zurückführung des Zinsfussproblems der Leibrente
auf das der Zeitrente, mit Korrektionen.

Die folgenden Untersuchungen stützen sich im
Grunde auf den Mittelwertsatz der Integralrechnung.
Wir halten uns dabei an den Gedankengang von Low's
Weber [16].

Die kontinuierliche temporäre Zeitrente wird dar-

gestellt durch:
n

0 aV| J F - dt ; 0 < f < w
Ö

n

(P) a^| — /v' • dt »''' • n ; 0 < j; < n
0

1 »7 v
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Bedeuten in der Figur 1 • mit F > /:

der Bogen BC 7/ F

die Kurve BC 7/ e''

die Kurve B^Cj ;// fc • F

In der Figur '2:

die Kurve bc 2/ (îk -y'
a:

die Kurve bc'

die Kurve 11 ,c j

2/ <P« •

1/ fc • ^ • y'

Für ein bestimmtes v wird die Gleichung gelten:

Wäre der Einfluss des Zinsfusses auf die Leibrente genau
der gleiche wie auf die Zeitrente, so würde:

Diese Berechnung von i#t zu ungenau; sie kann aber

wie folgt durch ein Korrektionsglied verbessert werden:
In Figur l ist v mittels des Mittelwertsatzes so

bestimmt, dass die Flächeninhalte der beiden Dreiecke

(BBjN), (N("C,) einander gleich sind. Für die ent-

sprechenden Flächen der Leibrenten in Fig. 2 gilt aber:

Es gelten mit den Bezeichnungen der Fig. 1, 2 die

folgenden Gleichungen:

!l' &

(tili«) > (nc'C[)

Pk ; 3'p' =Ç'F' •
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Näherungsweise lassen sich die Dreiecksflächen wie

folgt berechnen:

(DßjjV) v • PQ (» — v) • Q'P' (NC"(7i)

und v • pg

(nc'Cj) (k —• v) • g'p'

und da

pg _ ^ Jlt>'

,rp' (PP< *«+=* "

so wird

(wvo
(wc'Cj) Zj.+îi+i

Die letzte Gleichung lässt sich umformen zu:

P;
— (nc' c^) (6&] n) • j 1 ——

'«+Ï

und stellt die Differenz der beiden Dreiecksflächen dar
und ist somit das Korrektionsglied zum ersten
Näherungswert /c • a^.-|.

& i>
l V

Es ist näherungsweise: (66^rt) — • v (1 —fc) • —

so dass das Korrektionsglied lautet:
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Damit erhalten wir als endgültige Näherungsformel für

Darin lassen sich die Grössen r und fe mittels der folgen'
den Gleichungen berechnen:

Analoge Formeln gelten für t' < i und für Verhindungs-
renten. Obschon die Formel für kontinuierliche Renten

abgeleitet ist, kann man sie, ohne einen grossen Fehler

zu begehen, auch auf die gewöhnlichen Renten anwenden.
Für sehr junge und sehr hohe Alter stimmt die Formel
nicht mehr gut; es müssten schon etwas gekünstelte
Korrekturen an ihr angebracht werden.

Beispiel:

Übergang von RF 4 % zu RF 4,25 % für «20,401

log log a^] ^ ajri

Berechneter Wert:

genauer Wert :

Fehler :

«'20:401 ",079

«20:4^ (4Ü4%) 17.077

zl — 0,002

19
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4. Verwendung des Gedankens, dass die lebenslängliche
Leibrente annähernd gleich einer Zeitrente von der Dauer

der mittleren Lebensdauer ist.

Es ist bekannt, dass man versucht hat, die lebens-

längliche Leibrente gleichzusetzen einer Zeitrente von
der Dauer der mittleren künftigen Lebenserwartung
eines Mitgliedes der betrachteten Personengesamtheit.
Wäre dies angängig, so würde damit auch das Zinsfuss-

problem für die Leibrente gelöst sein.

In LcmeMs mathematisch-technischen Kapiteln [25]
sind für die nachschiissige Leibrente und die unvoll-
ständige mittlere Lebensdauer folgende Sätze be-

gründet :

1. Der Wert einer Leibrente ist kleiner als der Wert der
während der mittleren Lebensdauer zahlbaren Zeit-

2. Die Einmalprämie für ein versichertes Kapital im
Äblebensfalle ist grösser als der Barwert desselben

Kapitals, welches am Ende der mittleren Lebensdauer
ausbezahlt werden soll.

Eür kontinuierliche Werte kann man dies leicht
beweisen mit Hilfe einer Ungleichung, welche »S'fe//en,sew

[14] abgeleitet hat. Die Ungleichung lautet:

6 6 a-f-/c

mit den Bedingungen, dass für a<Cf <C & die Funktion
/ (<) in diesem Intervalle nie zunimmt und 0 < <p (f) < 1

bleibt; dabei ist:

rente.

(14)

/c y (/ (<) • (fi
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In guter Annäherung gilt :

0 —

Setzt man in cler Ungleichung (14):

oo

* / ^ ö«
0

ferner

/ (f) t)' und rp (/)

so folgt:
oo e

a:

(15 a) a* /»'•,ÏV^< / «'•#
o o

(15 6) ö,<\|
Dieses Resultat lässt sich auf die gewöhnlichen Leib-
rentenbarwerte übertragen; aus der Gleichung:

I* l— d -ö,

folgt auch sofort der 2. oben erwähnte Satz;

denn es ist

— 1 — 1)®*
-4

a, > 1 — <3 • aq 1 — <3 • _ ?/*

Der eben behandelte Gesichtspunkt kann, als erste

Annäherung befrachtet, den Weg zu verbesserten Re-

sultaten weisen. Im folgenden wird die oben erwähnte,
schöne Arbeit von S<e//e«sen [14] noch kurz durch-

gangen :
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I. Der Wert der nachschüssigen Leibrente ist gleich dem
Wert einer Zeitrente von einer gewissen Dauer to:

(16)

woraus

1 —

TO
log (1 • <0

log (I + î)

Der Parameter to wird wenig von abweichen, und to
wird eine Funktion des Zinsfusses i sein. Entwickelt man
to nach Potenzen von so erhält man:

(17) TO e, +

Die weiteren Potenzen von i vernachlässigen wir; dabei
bedeutet :

(17 a) «* 2* ' + 1)

(=i
Berschel:

Die flj, sind mit den Formeln (16), (17), (17??)

berechnet nach den verwendeten Grundlagen im Text-
Book. In der nachfolgenden Tabelle sind die Fehler
zusammengestellt, die sich zwischen den genauen Werten
und den Näherungswerten der Steffensenschen Formel

(16) ergeben.

IC
3%
zl C«x

' 4%
d Oj

5%
d a.

6%
d (g.

20 — 0,10 — 0,11 — 0,11 — 0,10

40 0,01 0,01 0,01 0,02
60 0,02 0,04 0,06 0,08

80 0,01 0,02 0,02 0,04



Man erkennt, dass die Fehler noch recht beträchtlich
sind.

Eine bessere Näherungsformel erhält man auf

analoge Weise folgendermassen :

Es gilt die Gleichung:

(1 -f- »') (1 4- /*»)"' • ''' ; Ä Z' - — i

Setzt man in der Ungleichung (14):

/(o (i +kr';
so wird :

oo

/t=yv- =r
0

und die Ungleichung liefert nun:

oo

(18 a) a). y* (1 4- k)~' • t/ • <C / (1 | fo) '
•

0 0

Früher hatten wir die folgende entsprechende Unglei-
chung:

g
iE

(15 a) a,ç < /* »'• rZZ

b

und daraus geschlossen, dass a^f/Zeic/t einer Zeitrente ist,
deren Dauer m wenig von der obern Grenze e^, des Inte-
grals in (15 a) abweicht. Wir dürfen nun in der Gleichung

(18 a) den entsprechenden Abzinsungsfaktor : (1 + äv)~

näherungsweise durch (1 -f- /«) ' ersetzen und können

in gleicher Weise wie oben die Leibrente a(, zum Zins-
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fuss P gleichsetzen einer Zeitrente mit dem Zinsfuss 6,

deren Dauer « dann wieder wenig von der obern Grenze

«a des Integrals in der Gleichung (18 6) abweicht:

-, l-(l-M)-"

oder, wenn man in der Gleichung (11) a) nach « auflöst:

log (1 — Zn (1 | -6) • a
(19 6) n -

log (1 + A)

Es ergehen sich die genau gleichen Resultate, wenn man
von den Summenungleichungen ausgeht ; wir schreiben
die folgenden Formeln daher für die gewöhnlichen Leib-
renten.

Dann lautet die modifizierte Gleichung (19 6):

v
log (1—fr- o

(19 c) w — — -
log (1 + 6)

Die Dauer « wird wenig von a^, abweichen und ist eine

Funktion von 6. Wenn wir wiederum « nach Potenzen

von 6 entwickeln und die zweite und höhere Potenzen

von 6 vernachlässigen, so erhalten wir:

(20 o) m ßj. - ä • a„ |

Dabei ist:

® • ^+i 1
/ 1V

(20 6) «, -—+ 0,125 - - (a. + -J
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« •

In aist das erste Glied : — gegenüber den zwei

folgenden sehr gross und darf in einer Annäherungs-
formel allein berücksichtigt werden. Setzt man nun das

entsprechende

7t » •

in die Gleichung (19 a) ein und entwickelt nach Potenzen

von /i, so ergibt sich die folgende weitere Annäherungs-
formel für

(21) «x «x — tJ—
£

In der nachfolgenden Tabelle sind auf Grundlage

von TP", wenn die Versicherungswerte für 3,5% gegeben

sind, die % für 3%und 4% berechnet; einerseits nach

den Formeln (19 a) und (20 a), anderseits nach Formel

(21). Dabei ergaben sich folgende Fehler:

mit (19a) und (20a) (mit 21)

£ zl

3%
/I «3
40/* /o

/I «j.

3%
/I a*
4%

20 0,02 0,01 0,12 0,11

30 0,02 0,01 0,09 0,08
40 0,01 0,01 0,06 0,05
50 0,01 0,00 0,03 0,03
60 0,00 0,00 0,01 0,01

70 0,00 0,00 0,01 0,00
80 0,00 0,00 0,00 0,00
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Die Dehler sind, wie man sieht, gegenüber den Er-
gebnissen der Formeln (16), (17), (17 a) wesentlich

zurückgegangen; die durch die Formeln (19 a) und (20 «,)

dargestellte Methode ist schon recht befriedigend.

5. Verwendung von Ungleichungen für das Zinsfuss-
problem.

Schon in der vorhin beschriebenen Arbeit hat
Steffensen allgemeine Ungleichungen benutzt, die hei

gewisser Wahl der Funktionen, und wenn das Intervall
der Variablen nicht zu gross ist, annähernd in Gleichungen
übergehen; in einem solchen Fall ist es dann manchmal

möglich, eine Näherungsformel für das Zinsfussproblem
aufzustellen.

Dieser Weg schlägt ßfrger Meb/cW [15] ein. Er he-

weist zuerst die Gültigkeit der folgenden Ungleichung:

0 0

(22) y z (o • [« (o] • y % (<) • v

£ (<) • a (<) •

% (<) •

mit den Bedingungen, dass im Intervall (n, i) die Funk-
tion # (<) stets positiv ist, (t) stets konvex, d. h. ihre
2. Ableitung stets positiv ist.

a (1) ist eine ganz beliebige Funktion. Wenn y" (<)

stets negativ ist, gilt das Zeichen <C anstatt >.
Für )/) (t) m • < gilt das Gleichheitszeichen; daraus

folgt, dass für eine Funktion y (t), die annähernd linear
ist, oder wenn das Intervall (a, 5) klein ist, (22) annähernd
eine Gleichung ist.
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Die Ungleichung (22) kann in diejenige von Steffen-

sen (14) übergeführt werden; für beide gelten auch

analoge Summen-Ungleichungen, was dann zu den Be-

Ziehungen zwischen den gewöhnlichen Rentenbarwerten
führt.

Wir können setzen:

i>'

also

In •»' d'
1 + e -,— --

M ü ö

eist eine kleine Grösse und mit <3 gilt e= 0.

In der Ungleichung (22) setzen wir

a (0 »';y (0 =**"•";*(<) <Px

Dann wird ^ (a (<)) — («')*+*

^ (2) jPx ist stets positiv ;

^
y ^ e (1 4- e) • f~~* ist stets 0, je nachdem
ur ^

<5' (5 ist. Die für die Ungleichung (22) zu fordernden

Bedingungen sind also erfüllt.

Die Ungleichung (22) lautet nun entsprechend den

Fällen <5' d:
> h

oo oo

^ /dV

oo

/»'•dv

/*ÏV^
0
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Die analoge Summen-Ungleichung lautet wie folgt:

'5'

oo / oo

£-1 (=1

oder :

2»''
/

2>.
(=1

<5

(23 a)
< M d

— ist annähernd gleich 1, y(f) ist also annähernd
d

eine lineare Punktion von <; man darf damit in (23 «) das

Gleichheitszeichen setzen und erhält die folgende An-

näherungsformel :

A

(23 6) G.

In der nachfolgenden Tabelle sind die «(. nach dieser

Formel aus den als bekannt vorausgesetzten Yer-

sicherungswerten zu 4% berechnet; dabei ergaben sieh

folgende Fehler Grundlagen : B* 4 %) :

-
3% 3,5%

'

6%
/

zl zl "r zl

20 22,73 — 0,66 20,58 — 0,34 15,34 0,73

40 17,44 — 0,26 16,28 — 0,18 13,16 0,31

60 10,28 — 0,06 9,85 — 0,03 8,69 0,08
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Dies sind verhältnismässig grosse Abweichungen.
Eine weitere Eormel erhält Meidell [15] in gleicher

Weise wie folgt:
Es ist:

oo

/,<• (1 + 7n] • df ; 7j — 7' — 7

0

Man setzt in der Ungleichung (22):

a (/) f; y (7) (1 + 7m] z (7)

2 (7) ^ ist stets positiv und

ip" (7) (1 -f- 7m] '
[ Zrt (1 -f- 7m] ]» ist stets positiv; die

für die Ungleichung (22) zu fordernden Bedingungen
sind erfüllt. (22) nimmt nun die Eorm an:

/ 7 •;/),• 1/. d7

00 00

y (1 + /u;)-' • Î:' • • dz > yü' • ,p., • dz • M | - 7n>

0 0 \

» ~
/ 7 • I, • d7

ö

Analog lautet die entsprechende Summen-Ungleichung:

öl > a-1 1 + 7m;

J oo

'z ' Ac+i
i=i

«i>VU + *®/ i=r

/—00

2«
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so class Meidell die folgende Annäherungsformel erhält:

£-f- 1

(24) / ^
®® • 1 +

Entwiekelt man % nach fe bis und mit zur ersten Potenz

von so erhält man genau die Formel (21) von Stef-

fensen :

& • » ' ®«+i

2)

Beispiel:

Die Versicherungswerte seien für! 8,5% bekannt;
berechnet sind die % für 3 % und 4 % nach der Formel

(24). (Grundlagen: PF").

£
3% 4%

zl /
«* 4'

20 22,06 0,04 18,63 0,03
40 17,16 0,02 15,12 0,02
60 10,22 0,00 9,45 0,00
80 3,70 0,00 3,57 0,00

Die Formel lässt sich auch auf die temporären Leibrenten
und die Ablebensfallversicherung anwenden; für die

temporäre vorschüssige Leibrente z. B. hat man den

Exponenten der Formel (24) durch

"ï+i



281

S,

zu ersetzen.

Die folgende Tabelle zeigt, wie gering die Fehler
für die temporäre Rente ausfallen.

Die Versicherungswerte für 3,5 % seien als bekannt
vorausgesetzt; Grundlagen: IP ; berechnet sind die

20 |

nach der Formel :

(25) S, — — w •

^j::7r| — a.c,7,-| • (1 + Ät>)

/V iV

£
3% 4 y/o

/

"z:201 zl "x:20 zl

20 14,439 0,005 13,351 0,003
40 13,727 0,005 12,722 0,003
60 10,601 0,003 9,951 0,002

Die hier zur Verwendung kommende Methode liefert
schon eine gute Genauigkeit und erfordert zugleich ver-
hältnismässig wenig Rechnung.

6. Das Zinsfussproblem, wenn die Uberlebensordnung das

Makehamsche Gesetz befolgt.

Hoc/tarf [13] hat folgende theoretisch sehr schöne

Abhandlung geschrieben.
Die Anzahl der Lebenden ist nach dem Make-

hamschen Gesetz :

I, Ä • «*• /
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Die Wahrscheinlichkeit für eine Person, nach i Jahren
noch zu leben, ist:

und die Wahrscheinlichkeit für W gleichaltrige Personen
derselben Überlebensordnung, nach f Jahren noch alle

zu leben, beträgt:

Die Formel für die Erlebensfall Versicherung lautet:

^ s'. b zum Zinsfuss P

oder anders geschrieben:

Man kann nun den Wert ^ gleichsetzen einer Erlebens-

fallversicherung von W Personen mit dem Eintritts-
alter 2 zum alten Zinsfuss i und für die gleiche Ver-
Sicherungsdauer t.

Dann müssen V, 0 so bestimmt werden, dass:

Ä » • s'. </'>'
• s' • r/° F- i) 2um Zinsfuss i

/k-b > t/- s"'' •
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dies ist /w fceHefhges f immer dann und nur dann der

Fall, wenn:

»

oder

(27 «) V 1 + in s

<f IV • c*

in IV

und zugleich

oder

(27 6) ^ ®
in c

Aus der Darstellung der Leibrente als Summe von
Erlebensfallversicherungen:

(an—1

3Ï:«1 ~ 0®« + X + 2®a; f • • • + « Ä ^ Ä
< 0

ergibt sich sofort auch das folgende Beswifai:

Man kann die Leibrente a^jn (') berechnen als

Yerbindungsrente von A Personen mit dem Eintritts-
alter 0 zum alten Zinsfuss 7 und mit der gleichen Ver-
sicherungsdauer. N, a lassen sich mit den Gleichungen
(27 o) und (27 i») berechnen.

(28)

Im allgemeinen werden V und a irrationale Zahlen sein ;

man muss sie durch doppelte Interpolation bestimmen,
was ziemlich viel zu rechnen gibt. Ausserdem setzt diese

Methode eine vollständige Tafel der Kentenbarwerte
für mehrere Personen voraus.



— 284 —

BeisjheL

Gegeben sind die Versicherungswerte für 4 % A F.
Zu berechnen ist % zu 3,5 %.

Aus (27 a) und (27 b) bestimmen sich:
V zu 1,96 Personen; 0 zu 27,328 Jahre

daraus findet man «27,328 (4%) =16,125
der genaue Wert ist: %5 (''>*' %) — 16,124

Der Fehler beträgt: ^/ — 0,001

7. Die Lösung des Zinsfussproblems mittelst eines voll-
ständigen Leibrentensystems einer Standardtafel, wenn
die ÜberlebensOrdnungen das Makehamsche Gesetz

befolgen.

BfascMe [10] und unabhängig von ihm G'ram [11]
haben die Beziehungen untersucht, die zwischen den Leib-
reuten zweier verschiedener Überlebensordnungen, die

aber beide dem Makehamschen Gesetze folgen, bestehen.

Die kontinuierliche Leibrente ist dargestellt durch:

0

Die Sterblichkeitsintensität für das Makehamsche Gesetz :

Z, - Zc' s* • /
lautet :

— (Zw s -( - c® « Zw </ « Zw c)

Mit den folgenden Substitutionen:
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kann die kontinuierliche Leibrente wie folgt dargestellt
werden :

oo

(29) ^
c

Die Leibrente hängt also schliesslich nur von den
8 Parametern c, /c, f ab.

Für ein anderes Makehamsches Gesetz gilt für ein
bestimmtes Alter »j und für einen bestimmten Zins-
fuss ebenfalls die Gleichung:

oo

« —^ /V'- '. e-f.
Cl -hiCi _/ ^

Ci

Vergleichen wir nur solche Leibrentenwerte, für die

f fj, fe fej, so bestehen folgende 8 Gleichungen:

a„ • bi a,, • ht c

log 0i log o

log Cj log <;

Führt man noch folgende Bezeichnungen ein:

loge
m v

log Ci

log log -— log log ^
,v !/i

n —
log e^

20
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so gelten die folgenden 3 Gleichungen:

(30 a) a.

(30 6)
m

r

(30 c)

Für eine bestimmte Überlebensordnung seien ein für
allemal für sämtliche Zinsfüsse die Leibrentenbarwerte
berechnet. Sucht man nun für irgendeine Überlebens-

Ordnung (Makeham) für das Alter x und den Zinsfuss f
den Wert der Leibrente, so kann man m, w, r berechnen

und mit den 3 Gleichungen zuerst das der Standardtafel
entsprechende ü, x^; dann findet man in der Standard-
tafel den Wert (ü). Die gesuchte Leibrente berechnet

sich nun aus:

Die auftretende Altersverschiebung ist linear und hängt
nur von den Parametern der beiden Überlebensord-

nungen ab.

8. Der Versicherungswert als Funktion vom Zinsfuss
allein betrachtet und seine Taylorsche Entwicklung

Der direkteste Weg zur Lösung des Zinsfussproblems
ist die Darstellung des Versicherungswertes als einfache

(31)
- /

m

nach ü, A
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Punktion von i, und wenn dies nicht gelingt, seino Ent-
wicklung nach L Diesen Gedanken hat schon James

MeJJe [1] ausgeführt; nach Taylor ist:

/I (/I uP
F (?;') F (u) + — • F' («) + • F" („) +

zl ® — «

Für die meisten Versicherungsfunktionen ist es nun
möglich, die Koeffizienten der Taylorschen Entwicklung
zu bestimmen. James Meikle hat für die Leibrente
folgende Entwicklung gefunden :

Es sollen bedeuten:

jVj. + -f I
• • • 4»

| +
4?>=4>+4?|i 41s + usw.

Die Taylorsche Entwicklung für die Leibrente lautet
dann nach Meikle:

(32) (^'4+2 (^w)*.4®ia

„-D, ' ~r. />," '

I),
I' •••

Wären die «höhern» Summen der diskontierten Zahlen:

,Sf bekannt, so könnte man die Versicherungswerte für
/' ebenso genau berechnen wie die gegebenen Versiehe-

rungswerte für i; gewöhnlich sind aber nur dio einfachen

Summen in den Tafeln angegeben; deshalb konnte man
vorerst diese Reihenentwicklung nur bis und mit zum
ersten Gliede mit der entsprechenden Genauigkeit
benützen.
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Für die Entwicklung der Leibrente a], nach h
(7j L—• i), erhält man:

(33)

D, + /), ~ /',

Fan Dorsten [6] hat diese Reihe auch abgeleitet ; ebenso

hat er für andere Versicherungswerte die entsprechenden
Entwicklungen gegeben. Für die numerische Berech-

nung konnten die Entwicklungen nur bis und mit dem
Glied von bd ausgenützt werden. [Formel (21) von
Steffensen].

In neuerer Zeit hat ii. Pabwryh.s'i! [18] folgenden
Gedanken entwickelt : Die Funktion

&s i i
" ^

«x «x — —T)— H sp (2/)

setzt man gleich einer Funktion r/ (y) und entwickelt

y (It) nach 7t bis und mit dem Gliede von /d ; dann setzt

man diesen Wert für y in </ (y) ein und erhält damit eine

bessere Annäherung für «[. Palmqvist leitet die Be-

dingungen ab, die (y) erfüllen muss; es genügt
schon, wenn die erste Ableitung von </ (y) stets positiv
oder stets negativ ist.

Für die folgenden einfachen Funktionen erhält
man als Näherungsformeln:

i- (?/) <

y (11) f a, — -I. — • •. »



Setzt man nun wieder -y (ft) in r/ (y) ^ ein, so erhält

man :

i i
ÎP (î/) — ,.2 — / o \ 2

y /, Vi V
2 ^x+i /

«x (l +

«v «x • 11 + o ;;; •

Analog erhält man für:

2- '/(!/)=- <

Vi ' \«-="• i'+"tri
Eein numerisch hat Palmqvist gefunden, dass folgende
Formel die genaueste ist:

/ Ar • S j \

Die Fehler, die sich bei dieser Formel ergeben, sind sehr

klein, wie die folgende Tabelle zeigt:
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Beispiel:
Als bekannt sind die Versicherungswerte für 4 %,

H^, anzusehen; nach der Formel (34) wurden he-

rechnet :

3,5% 4,5% 5%

"s zl «X zl /
«X zl

20 20,223 0,002 17,260 0,002 16,039 0,008
30 18,416 0,000 15,989 0,000 14,968 0,003
40 16,103 0,000 14,260 0,000 13,466 0,000
50 13,188 — 0,001 11,936 0,000 11,383 0,000
60 9,835 0,000 9,107 0,000 8,776 0,000

Eine Fortsetzung des Gedankens von Palmqvist hat
If. A. Pom/cA:« [19] ausgeführt und in der folgenden
durchsichtigen und schönen Weise eine Lösung für das

Zinsfussproblem abgeleitet: Die Entwicklung (33) ist
eine analytische Funktion von 7t mit dem Konvergenz-
radius |7t| < B; man bildet diese analytische Funktion
.F (7t) mittelst einer geeigneten Funktion 7» 7t (z) kon-
form auf die 2-Ebene ab, und dann ersetzt man inF(7»(«)),
« durch « 2 (7t) und erhält für % eino stärker konver-
gierende Reihe, worin man die Glieder mit der 3. und
höhern Potenzen von 7t vernachlässigen darf (als ana-
loges Beispiel siehe auch Kapitel III, Abschnitt 8,
Seite 311). Poukka wählt als Abbildungsfunktion:

7t

2 — ——;
-j- CC

wo a > 0 eine beliebige Konstante ist.
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Man setzt also

7
ÛC

2 i ^ iA =«2-f aî1—«

in (83) ein und erhält:

x ' 'Vi'®« / 4+i"»« 4'!i •(««)"'\ a(85«) «, „,_ |

Man kann a so wählen, dass der Koeffizient von gleich
Null wird; man setzt:

(85 A) a — 41,

Ersetzt man in dem Ausdruck (35 «) 2 wieder durch
A

a + A'-,
so erhält man die folgende Annäherungsformel:

4+1 • '•'<

(85«) «; «,- ^;;+r

Nun hat Poukka die interessante Beobachtung gemacht,
dass das folgende Verhältnis für alle Alter und alle

Zinsfüsse nahezu konstant ist:

S<*> Ä
7« _Î±L.(86) ~ ~S~ Ä"®+i **®+i

In der folgenden Tabelle ist A für die Grundlagen
des Text-Books berechnet:
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9 0/^ /o 4% 5%

10 0,83 0,86 0,89
30 0,81 0,84 0,86
60 0,83 0,84 0,85

Wir nehmen als Mittelwert an: fc 0,84.

Indem man annäherungsweise setzt

,Q(2) ,S'^ =0,84.Ä A7"s+l '•'s-fl

$(2) ß
und für -xr^- in der Formel (35 c) 0,84 •

* ein-

setzt, so erhält man eine weitergehende Annäherung, als

bis dahin möglich war.

Die nun so abgeänderte Formel (34) von Poukka
lautet :

,s; n • to

D.
(37)

S' i • /if
l + 0,84-^̂

®+l

Sie ergibt, wie das nachfolgende Beispiel zeigt, dieselbe
schöne Genauigkeit wie die Formel von Palmqvist.

Grundlagen: Text-Book; Tabelle der /la), bei einem
Übergänge von:
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3%-3,5% 3%-5%
i
\0it

1
\0
iI

io

/<%

10 — 0,001 0,049 0,019
20 — 0,001 0,020 0,002
30 — 0,002 0,001 0,003
40 — 0,002 — 0,002 — 0,001

50 0,000 • — 0,003 0,000
60 0,000 0,000 0,000

Mit der Abbildungsfunktion

2 1 — t + a /t) ^

erhält man durch eine analoge Betrachtungsweise die

Formel von Palmqvist:

'«"».h.y' /, '""*•« V''"'

wobei sich erklärt, warum gerade der Exponent 1,5 die

genauesten Resultate lieferte.

III. Eigene Beiträge zum Zinsfussproblem.
1. Lösung des Zinsfussproblems, wenn die diskontierte
Zahl der Lebenden /%,. eine Parabel treten Grades in f ist.

Die Überlebensordnung habe einen solchen funk-
tionellen Charakter, dass D^ vf+' • 2%, der folgen-
den Gleichung genügt:

/.) (to — a- — <)»

W D.+i

Dabei bedeutet w das Schlussalter: he 0.
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Die obige Annahme trifft in clor Wirklichkeit ange-
nähert zu.

Die Überlebensordnung befolgt dann das Gesetz:

2, 2„- 1»-". tr*(w—a)"

m, « sind Parameter.

Der Barwert der lebenslänglichen kontinuierlichen
Leibrente ist :

10—£ 10—X

1 /' 1 /' (//) — :c — <)"' • <22

^ J ^+' ' ^ D, /
~

(w-®r
0 Ô

"* ~ (m + Ï) (w — ®)"

to ist eine Punktion vom Zinsfuss i.

_ to — a;

(41) —- zum Zinsfuss L
TO(j) + 1

to bestimmt sich aus der Gleichung (40) zu:

fa #,+< — fa Ac Ire ^ — 2 • d

2n (to — a: — t) — 2« (to —• œ) 2« (w -—• a: — 2) — 2n (ît> — a:)

Piir 2 kann man irgendeinen Wert zwischen 0 und

w — a; wählen ; er sei <„.

Für einen andern Zinsfuss f wird der Leibrenten-
barwert :

-, _
w —s ^ /„?, — 2p • 3'

~~
TO(,-,j + 1 ' 2rs (w —- a; — 2„) — 2n (to — a;)
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Das Verhältnis zweier Leibrentenbarwerte von gleichem
Alter, aber von verschiedenem Zinsfusse wird:

W £G

«i ''%) + 1 ^
w —- a;

^

iü — a: —

jbü
a„ m,',., + 1 w — a; — <„

m, », • — L • d'* w — a: °

Setzen wir noch zur Abkürzung:

c (œ, <o) ^

so kann der Leibrentenbarwert zum Zinsfuss i' aus dem

gegebenen zum Zinsfuss i nach der folgenden Gleichung
berechnet werden:

>

c(a:,g -<o-ô'

Die Anpassung der Da; an eine Parabel ist in der Wirk-
lichkeit doch nicht so gut, dass sich diese Methode in
der Praxis anwenden Hesse, wie das folgende Beispiel
zeigt :

Gegeben sei zu 4 %; man berechne zu 5 %.

Grundlagen: Text-Book. ist 15 gewählt.

«30 (4 %) 17,051.

0,37427 — 0,90258
<« » "»= '

— 0,37427 — 1,10612

Der genaue Wert von (5 %) ist 15,487; der Fehler

ist zl 0,127 oder zirka 0,8 %.
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2. Einsehliessen des gesuchten Wertes zwischen zwei

bekannte, enge Grenzen.

Wir setzen in der Ungleichung von Steffensen (14):

et 0

</: (t) e~(<''-<*)•' ; 6 to

/c /e-Ä=i -7 (5—d
0

Die Ungleichung (14) wird jetzt lauten:

n—* 6 0

oder

a„ < aj. <
n—

Wenn wir fc entwickeln, so erhalten wir:

1 Jn(3' —<J) »® (3' — ô)2 n«(3' —3)»
' ~~

,V
'

I Tl 2! 8!
'

w* (3' — 3) n' (3' — 3)® w* (3' — 3)®' «-1 2! ~ 3!
- + ÎT

oder 7c — n — e
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£ ist eine kloine Alfcersclifferenz ; die Ungleichung
lautet nun:

(43) «x < «x < «x
«|n—£ |n |n—«

Bio temporäre Leibrente, w Jahre dauernd, zum neuen
Zinsfuss List kleiner als die nur w— « Jahre dauernde,
aber grösser als die um * Jahre aufgeschobene, ebenfalls

w •—• « Jahre dauernde temporäre Leibrente gleichen
Alters zum alten Zinsfuss L

3. Ableitung einer Formel für das Zinsfussproblem, wenn
die Überlebensordnung das Makehamsche Gesetz befolgt.

Die Ungleichung (22) von Birger Meidell lautet :

/ i
/z (0 • a (t) • dt
a

_

/*(<) dt
a

mit den früher mitgeteilten Bedingungen, auf die wir
verweisen.

Für das Makehamsche Gesetz kann die Sterblich-
keitsintensität dargestellt werden durch:

/G+i « + /?•

wobei

a — —• 2« s ; y Zw c ; /5 — Zw </ • Z« c

Mit diesen Bezeichnungen lautet der Wert der tempo-

raren Leibrente zum Zinsfuss L:

f> 0

(22) | Z (t) • V |« («)] " dt ' / Z (t) • dt • y
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n

-/V+Vm)*' / -<«!'+«).
«- / e o • di / e ^ • di— /
a
I"

0

d + a
Setzt man fc -— so erhält man:

o -f a

yïnÂ

— (i+o)».<—>" l)
a, | e • d<

!»

2=2;—— k /c kann als das neue Eintrittsalter
7

betrachtet werden.

n

fc[-(,5 + a)i-A/®(/'_ i)]
Oj / e >" -dt

I»

0

Man substituiert nun in der Ungleichung (22):

X (t) 1 a o ; & m

v(9=i*
v {« (0} {« (0}"

a (f) e

und (22) erhält die folgende Form:
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*[— (J+a) •( — (/' — l)]
e > • / d< •

« • a/

oder:

«x i= « * I I"
In <

Da /c annähernd gleicli der Einheit wird, ist in diesem
Falle ?/> (<) annähernd eine lineare Funktion, und man
darf das Gleichheitszeichen setzen.

ht (<5' «) — bt(d -j- a) k)g fc

; 2 « — — a —
y log c

Die Berechnung der temporären Leibrente zum Zins-

fuss F geschieht hier also mittels einer temporären
Leibronte von der gleichen Dauer, aber verschobenem

Alter, zum alten Zinsfusse i.

Beispiel: Für die ïafel A F führt die Formel (44)

zu folgenden Resultaten:

1. Übergang von 3 % % nach 3 (4 %

«30:20| 13,095; Fehler /I 0,029.

2. Übergang von 3% % nach 4 %

«30:201 12,5 1 4; Fehler A 0,055.

4. Ableitung einer Reihenentwicklung für die temporäre
Leibrente nach /t i' — i.

Wir betrachten den Barwert der temporären Leib-

rente, als Funktion des Zinsfusses allein und wenden
I"

(44) -, / M> O W • jn_
In \ n /
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auf ihn den Taylorsehen Satz an; zu diesem Zwecke

setzen wir:

/ (L) 7j f— i; dann ist / (t) — und die
|« - |n

Taylorsche Entwicldung für die temporäre Leibrente
lautet somit:

(4-5) (Ï
,,2 7,3

' _ _L _ JA. I _ I» TL I»
I

a« - », + j, ^ 2!
'

dt® 8! dt®

In der Reihenentwicklung (45) sind die Koeffi-

4 «s
zienten-1-- also die Ableitungen des Loibrentenbar-

di* '

wertes nach dem Zinsfusse f, zu bestimmen.

Lie nachfolgende Beweisführung folgt im wesent-
liehen dem Wege, den Pow/c/ca [19] eingeschlagen hat,
und für ausführliche Einzelheiten sei auf soine Arbeit
[19] hingewiesen; neu ist hier nur die Erweiterung;
auf die temporären Barwerte. Die pte Ableitung des

Barwertes der temporären Leibrente nach dem Zinsfuss 1

hat die Gestalt:

rP r/
m

* (— 1)" • V • + 1) • • • + p — 1) • #«+»" D, A - "p,
m l

Wir führen die Abkürzung ein:

I» =s /4

TO (TO -I- 1) (TO + P — 1) * !>«+*
(47)

Wl 1
p!

Es ist unschwer, die folgende Beziehung zwischen
den Koeffizienten herzuleiten:
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(491 73<P' — 4- B<P-0 4_ R(P-0 _L R(P-0
n^x-f-1 —~ t x+w n 2^x+n—1 • a^s+n—2 r • • • n^x-H

Damit erhalten wir für den pten Koeffizienten in der

Taylorschen Entwicklung (45):

4P «
i * 7 i y>. „p

p! Dx

Nun ist:
m => «

«4+i 2 " ^+»--
m=1

— + 2 Ac+2 + 3 Dj.+8 + + W • + „

(50 fl) n-^i+l ^'x+l '^'x+n+1 ^ ' ^x+n+1

und weiter ergibt sich:

g(2) _ R(0 _1_ RÜ) J_ I RU) I RU)
n x+1 n x+1 r «—l*"x+2 f ' ' ' f 2 x+n—1 I l x-i-ii

&t+l + ^x+2 + • • ' + ^x+n-1 + &x+n

— « • ^x+n+1 — (n —:1) • ^x+n+1 — • • • ~ 2 — AT,, „+1

-« •

(50 61 ß<2). — — S<*> _ « - S _ ^ ^ Af\ "/ n^x+1 "x+1 x+«+l "x+n+1 "x+n+1

Analog findet man weiter:

<*> «) .44. 44, - 44.« - « • 44.« - ^L+ü v.« -
n(n |1) (n + 2)

gl "x+n+1

USW.

21
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Die Reihenentwicklung (45) für ablautet nun:
I"

A A'W A * W3

JV r jovoia #» * r-* » ' " * i * > ' I

i) öj. «j. ^ h 7J — j) +
|n |n x 'Lc ' x

In dieser Entwicklung (51) sind also die Grössen

mittels der Formeln (50 a, 5, c berechenbar.

Für den Spezialfall, dass n m —• s ist, wird :

^x ~ ®a> ^x+n+1 ~ &B+M+1 ~ ^x+n+1 ~
I«

•A =®«+lî A=A W.,
und man erhält aus (51) die bekannte Darstellung für
die lebenslängliche Leibrente a(:

o o(2) 6(d)
O \ ' 3! "f" 1 T - £+1 / 7\2 / I\3 l

*3) a, a, — • »Ä + (®Ä)® — R W + — •

re a; (c

Für die Todesfallversicherung gilt eine ganz analoge

Reihenentwicklung :

Der Barwert der temporären Todesfallversicherung
ist dargestellt durch:

1

^•=TIn

^x ^x+1 '(i;+2
|

^x+H—X

ITr (lW (f '

(1 h »)"

Diese Funktion ist in bezug auf den Zinsfuss / als Variable

ganz gleich gebaut wie die temporäre Leibrente
I»

Die Taylorsehe Entwicklung nach i ist analog; an Stelle

von hat man zu setzen. Diese lautet wie

folgt, wenn man wiederum setzt :

Ms 2 Ca:; /.', V .1/,: E^^usw.
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/«o\ E,+„ —n-.M,+„ „(W) H, H, — =r (»Ä) 4
|n I« x

P(2) JJ(2) 71 R
W (M + 1)

-"x ^x+n x+n ?rr x+n
I- • W +

X

7?(3) p(3) p(2) n(« + l) p n(n + l)(n + 2).M,+„
*x x+n ' x+n * -"'x+n ?Ti

+ • („?++
A,

Für » — •«; — erhalten wir die entsprechende Eut-
wicklung für die lebenslängliche Todesfallversicherung:

Rh) R(2) R(S)

(62«) + + - «A I /r •(»*)»—£" •(*/ + -X X X

Ähnliche Entwicklungen kann man auch für die auf-

geschobenen temporären Leibrenten und Todesfall-

Versicherungen ableiten, aber die Formeln werden noch

viel komplizierter.
Da k F — t eine kleine Zahl ist., eignen sich diese

Reihenentwicklungen gut für das Zinsfussproblem; aber

von den «höhern» Summen der diskontierten Zahlen:
S+ R<f>, sind in den Tafeln gewöhnlich nur die ersten:

+, 7+ gegeben. Immerhin ist bekanntlich diese

Summenbildung mit Hilfe der modernen Rechenmaschine

eine sehr einfache Arbeit, die sich rasch bewältigen lässt.

5. Annähernde Berechnung der «höhern» Summen der

diskontierten Zahlen durch Annäherungsparabeln.

Wenn man die höhern diskontierten Zahlen: A+
-S+ ; Ä+, 7+ • • • A+ graphisch darstellt,
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so bemerkt man, class man Parabeln mten Gracles wählen
kann, die sich den wirklichen Kurven sehr gut anpassen.
Die relative Anpassung ist bei den Ahr, Ma; relativ am
wenigsten gut und wird immer besser mit grösser
werdendem /c, was sich durch die fortgesetzte Addition
erklären lässt.

Es bedeute / (a;) die «höchste» Summe der diskon-
tierten Zahlen, die in den Tafeln noch angegeben sind;
dann treffen wir die Atmahme, es lasse sich / (a; 1)

als Punktion der Zeit wie folgt darstellen:

(53) / (SQ + f) / (ab) • 1 —
M

Schlussalter.

Da die diskontierten Zahlen als Punktion des Alters

infolge der grossen Kindersterblichkeit bis ungefähr zum
Alter 15 einen von der einfachen Parabelform stark
abweichenden Verlauf zeigen, erhält man bessere Eesul-

täte, wenn man für die folgenden Betrachtungen erst
etwa von diesem Alter ausgeht. Aus der Gleichung (53)
erhält man den Wert für m:

log / (®b + W — log / (®o)
(54) m -—7 — 7—7log (w — — y — log (w — ®o)

Dabei kann für irgendein Wert zwischen 0 und «; — :r,,

gewählt werden. Die durch (53) dargestellte Parabel
stimmt dann in 3 Punkten genau mit den Beobachtungs-
werten überein, nämlich in den Punkten : / (as,,), / (a;„ |- <o),

/ (ic) 0. Die Variation von m für verschiedenes

ist ein Mass für die Güte cler Anpassung der Parabel an
die Beobachtungskurve. Wie das folgende, beliebig
ausgewählte Beispiel zeigt, ändert sich m wenig, wenn
man t(, verschiedene Werte annehmen lässt.
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Grundlagen: Text-Book 4 %; 3:,, 20; w

Änderung des m mit für die:

102.

iL

X„ + <Q M X„ + (q m

20 f- 15 4,996 20 h 10 2,868
20 h 25 4,992 20 F 25 2,873
20 F 35 5,032 20 F 35 2,875
20 F 45 5,136 20 1- 45 3,06

Nach der Erfahrung ist gewöhnlich m > 2 ; dann folgt
aus (53), dass die erste Ableitung: /' (w) 0 wird; die

Annäherungsparabel tangiert also die Zeitaxe im
Schlussalter mj.

Über die Güte der Anpassung der Parabeln an die

Summen der diskontierten Zahlen orientieren die Tabellen

I—III im Anhange dieser Arbeit.

Da / (a:) in guter Annäherung durch die einfache
Funktion (53) orsetzt werden kann, so ist es nun möglich,
die noch höhern Summen der diskontierten Zahlen durch

fortgesetzte Integration annähernd zu berechnen; am
besten geschieht dies mittelst der Eulerschen Summa-
tionsformel :

l=a

(65) 2] / W / /(*) • 1 • [/ (®) —/(«)] + i'o [/' (®) — /'(«)]

Der besseren Anschaulichkeit wegen ist die nun
folgende Entwicklung speziell für die »S'^. durchgeführt;
sie gilt aber auch für alle andern Summen von dislcon-

tierten Zahlen.
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Wendet man die Gleichungen:

S,. • (w — a; — <)"
®*+'

(w — a:)"

d m • 5'j. • (w — a: — i)m—1

<ü< (« —• a;)"

auf die Gleichung (55) an, so erhält man:

10—£—1 tü—2

/"»V
(w — a;)"'

0 o

— 1 (0 — S,) + — 0 + ^
2 12 \ (w —œ).

• di —

+

S?> :

(w — g) ^
m -j- 1 2 12 («; — a:)

Wi • jS
Das 2. Korrektionsglied — ist klein im Ver-

12 (w — a;)

hältnis zum Fehler, der durch dio mangelhafte Anpassung
der Parabel an die wirkliche Kurve entsteht, und es

kann, wie numerische Beispiele zeigen, weggelassen
werden. Damit erhalten wir die Näherungsformel:

(56.)

Analog erhält man weiter als Näherungsformel für S® :

q(3) S«(w —œ) /w — œ A
w + 1

'
\m + 2 /
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Alleemein findet man:

(56 fc) ,Sf
»« («> — «)* *

(to -f- 1) (w + 2) • • • (wt + /« — '2)

TO — iE fc

•f-m -(- /t — l

gültig für fc 7 / 2.

Ganz gleich lautet die Formel für die indem
einfach durch ß^ zu ersetzen ist.

Wenn selbst die Zahlen »S'^, ß^. in der Tafel nicht
vorhanden sind, kann man die höhern Summen mittels
der Wj., M„, aber mit entsprechend grösserer Unge-

nauigkeit mit den folgenden Formeln berechnen:

iS<(*)

• (to — œ)'
fc-1

(56 c) ß<*>

(to | 1 (m | 2) (to | /.' — I

A^-(to — ®)* '

w — a;

wt (- k

(w | • 1) (m | 2) (m | k — .1)

fc

2

VC — :r

m k

Dieso Formeln sind gültig für k > 1.

Die to bestimmen sich dann aus don Gleichungen:

m log W
*0 I <0 log M*0

log (w — a'o — g — log (w — <»„)
; »i

'ob' ^ log

log («V — ÏQ — g log (TO U/'q)

für irgendein und to-

Zur Orientierung über die Genauigkeit der ange-
führten Formeln sei ein für alle mal auf die numerischen

Beispiele und die Tabellen im Anhange dieser Arbeit
hingewiesen.

Mittelst der Formel (56 k) ist es also möglich, die

höheren Summen der diskontierten Zahlen in guter
Annäherung zu berechnen.
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Die Reihenentwicklungen (51) erlauben nun damit
sofort die Berechnung der Versicherungswerte zu einein

neuen Zinsfuss P; die dabei erreichbare Genauigkeit
ist sehr gut und ist sogar etwas besser als diejenige der

bisher bekannten Näherungsformeln. (Es sei wiederum
auf die numerischen Beispiele 1, 2, 3 und die Tabellen V,

VI, VII im Anhange hingewiesen).

6. Beziehung zwischen einer Annahme von Poukka und
den Annäherungsparabeln für die Summen der

PowfcTca benützt für seine Formeln die beobachtete

Tatsache, dass für alle Alter und etwas weniger genau
zugleich auch für alle Zinsfiisse das Verhältnis:

annähernd konstant ist. Mit unserer Annahme, dass

die Summen der diskontierten Zahlen annähernd
Parabeln mten Grades der Zeitvariablen 1 sind,
erhalten wir für 7c, wenn wir von den Korrektions-
gliedern in der Eulerschen Formel absehen:

diskontierten Zahlen.

ZV* • (w — a:)

u>—a
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Damit erhalten wir in guter Annäherung für 7c:

N«- (w —s)'- (w + !)"• y, IJ _'
(w + 1 (w + 2) • • (w —• a:)® m -j- 2 '

7c ist also annähernd unabhängig vom Alter ce; ebenso

ändert sich 7c sehr wenig mit wechselndem Zinsfuss,
da die Grösse von r« m(i) sich wenig ändert mit
variierendem f und m im Zähler und im Nenner des

Bruches für 7c vorkommt.

Umgekehrt lässt sich auch schliessen, dass eben-

falls das Verhältnis:

B, ' M,

annähernd konstant sein wird, da die Kurve der

nur wenig von einer Parabel mten Grades abweicht.

Der Methode von Poukka folgend, muss man zur

Bestimmung von Versicherungswerten für einen neuen
Zinsfuss für dio betreffende Überlebensordnung zuerst
die Grösse 7c bzw. 7c' berechnen und ihre Konstanz in
bezug auf das Alter und den Zinsfuss prüfen, was doch

die Berechnung der Summen S® erfordert.
Nach unserer Methode hat man die Güte dor

Anpassung einer Parabel an die Kurve der bzw. zu

untersuchen (am einfachsten auf graphischem Wege)
und den Grad m der Parabel aus einem Beobachtungs-
werte zu bestimmen.

7. Anwendung der Resultate der Parabelannäherung auf

die Formeln von Palmqvist und Poukka.

Dio Formel von Palmqvist lautet in der Form, wie

sie Poukka [19] abgeleitet hat:
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(39)

wobei /3 sich aus der folgenden Gleichung berechnen
lässfc :

Sind die Zahlen 6'^ gegeben, so hat man für unsere
Näherungsformel (56 a) zu benützen:

Damit ist /? bestimmbar und mit der Formel von
Palmqvist auch der Kentenbarwert «[.

Für die numerische Berechnung ist die nun folgende
Formel von Poukka [19] bedeutend einfacher:

Darin ist für der aus Formel (56 a) zu berech
nende Wert einzusetzen.

Über die Genauigkeit dieser Berechnungsweise von
a(, orientiert das Beispiel 4 mit der Tabelle VIII im An-
hange.

Anwendung der Parabelannäherung auf die temporäre
Leibrente.

Unsere Erweiterung der von Poukka für lebens-

längliche Leibrenten abgeleiteten Formel lautet:

i +1 3.+I
2 ß ^X+l -^X+ l

(57)
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^ (^,+ 1 —g,+»+! — " * ^s+n+l)

^ l°" I-* |V> -S(2) -n.S _"(" + *>.# Wl"t+l "x+n+l " "s+n+l 2 x+n+1
J _|_

A —
^i+l '^x+n+l ^ ' -^x+n+1

Hier wird es nicht leicht gelingen, in analoger Weise,
wie dies Poukka für die lebenslängliche Leibrente durch-

geführt hat, die Glieder S*?', B® zu berücksichtigen.
Dagegen kann man mit der Formel (56 a) die S® be-

rechnen und erhält mit (58) eine praktisch gut verwend-
bare Formel für die temporäre Leibrente.

Wie die graphische Darstellung der <S^, B„ zeigen,

ist die Anpassung der Parabeln in hohem Alter am
schlechtesten ; daher wird für die temporären Leibrenten,
die nicht bis in hohes Alter dauern, sich der grösste Teil
dieses Fehlers in dem Ausdruck —$1+h+i weg-
heben. (Siehe Beispiel 5 mit den Tabellen IX und X im

Anhange.)

8. Ableitung einer weiteren Näherungsformel.

Die Leibrente a(, zum Zinsfuss L ist eine analy-
tische Funktion von 7t P — f und ist durch dio folgende
Potenzreihe von 7« dargestellt:

O C(2) 0(3)

(88) «;f-fi-(t*)«--g*,w+-...XX X

Durch die Abbildungsfunktion:

(59 a) 2 1 — 7t — — • 7« (1 —2)

<»» »— +
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(/? ist eine noch beliebig wählbare positive Konstante),
wird man für (33) eine stärker konvergierende Potenz-
reihe in 2 erhalten.

Setzt man den Wert (59 5) für 7t in (33) ein und

berücksichtigt nur die Glieder bis und mit zur 2. Potenz

von 2, so erhält man:

Nun kann man die Konstante 0 so wählen, dass der

Koeffizient von 2® gleich Null wird:

Daraus ergibt sich /? zu:

Ersetzt man in der Gleichung (60 a) wieder 2 durch :

s,,." 4"H •

20. + 0®.0,

2 1 — e

so erhält man für a^, die folgende Näherungsformel:
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Dabei sind die mit der Näherungsformel (5(5 a) zu
berechnen.

Die Näherungsformel für lautet dann:

(616) * /w — as—l 1

m + 1 +2

S«+i /' -"«*(
1 — e

f W—I—1 1 \
m + 1

+ 2/

Entsprechende Formeln gelten für die temporäre
Leibrente und die Todesfallversicherung. Wenn wir
den Ausdruck (61 a) nach Potenzen von 6 entwickeln:

S<VW
(61») 8,=»,--^— +

g (Sg.il)' (Sgl,)'

8-D,-S,+, ' ' + 8Z),.(S„J*

so zeigt diese letzte Reihe (61 c) mit der Reihe (38)

genaue Übereinstimmung in den zwei ersten Korrek-
tionsgliedern und das 3. und 4. Korrektionsglied in

(61 c) weichen in ihrer Grösse nicht viel von den ent-
sprechenden Gliedern in (33) ab. Daher ist zum voraus zu

erwarten, dass diese Näherungsformel (61a) für a(. ziem-

lieh gute Resultate liefern wird. (Siehe Beispiel 6 und
Tabellen XI—XIV im Anhange).

9. Schlusswort.

Wie wir in der Einleitung schon erwähnten, war das

Hauptziel unserer Arbeit, darzulegen, wie es möglich ist,
die Leibrentenbarwerte zu einem neuen Zinsfusse mit
einer für die Praxis befriedigenden Genauigkeit zu be-

rechnen, ohne das ganze System der Kommutations-

zahlen zum neuen Zinsfuss aufstellen zu müssen.
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Der geschichtliche Überblick zeigt uns, class bis

jetzt unseres Erachtens entschieden Pow/cfcu die beste

Lösung des Zinsfussproblems gefunden hat ; er erreichte
sein Resultat durch Verwendung eines annähernd
konstanten Verhältnisses von Kommutationszahlen
höherer Ordnung. Unser Ausgangspunkt, die höhern
Summen der diskontierten Zahlen mittelst Anpassungs-
parablen zu berechnen, kann als eine Verfeinerung der
Methode von Poukka aufgefasst werden. Während
dessen Eormel für die lebenslängliche Leibrente wohl
keiner Erweiterung fähig ist, können wir auch Formeln
für die temporäre Leibrente mit guter Genauigkeit auf-
stellen.

Die höhern Summen sind näherungsweise mit
unserer Methode in einfacher Weise berechenbar. Wie
die Beispiele zeigen, erreicht man bei der Berechnung
der Leibrenten mittelst der entsprechenden Reihen-

entwicklungen selbst, eine weitergehende Genauigkeit
als bisher; die rechnerische Arbeit ist dabei nicht wesent-
lieh grösser als bei den eigentlichen Näherungsformeln.

Versicherungswissenschaftliches Seminar

der Universität Bern.

Mai 1929.
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Anhang.

Die nachfolgenden Tabellen zeigen, wie weit sich
z. B. für die Grundlagen des Text-Books, t 4 %, dio

Nähernngsparabeln dor Summen der diskontierten
Zahlen den Beobachtungswerten anpassen:

Tabelle I der 10®; -f- 20 -|- 40; »ig,, 4,020.

Tarife Z.

Alter
IC

genauer Wert mit Formel (Sil)
berechnet

absoluter
Fehler

20 862 862 0

80 502 511 9

45 1!)!) 200 — 1

60 58 58 0

75 8 10 — 2

tu 102 0 0 0

Tabelle II der 10®; a,'„ + <o 20 + 2t»; '«45 4,9917.

Ta&eZZe ZZ.

Alter
IC

genauer Wert mit Formel (5:1)

berechnet
absoluter

Fehler

20 14 334 14 334 0

30 7 469 7 496 — 27

45 2 333 2 333 0

60 480 508 — 28

75 39 56 — 17

;u 102 00 00 0
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Tabelle III der Ä,, : 100 ; a^ -f- 20 + 25 ; m4. 2,875.

TabeZZe III.

Alter
£

genauer Wert mit Formel (53)
berechnet

absoluter
Fehler

20 3107 3107 00

30 2147 2139 08

45 1090 1090 00

60 400 455 — 55

75 64 128 — 64

to 102 00 00 00

In der nachfolgenden Tabelle IY sind die 5'j^' berechnet
nach der Formel (56 a) :

£(2) _ g / 'W — a; JA
*\w» + 1 2 /

Grundlagen: Text-Book, 4 %, i« 102, 25.

4,9917.m
log 520+26 log 5.20

log 57 — log 82

Tabelle IF.

berechneterWert
S<?) : 103

genauer Wert
S«:10» Fehler in % Alter

œ

188 857 188 088 0,4 % 21

86 050 85 534 0,4 % 31

34 991 34 279 2,1 % 41

11 965 11 892 5,0 % 51

3 099 2 828 8,2 % 61



Der relative Fehler nimmt mit zunehmendem Alter zu.

/Fu'.s'pi«/ /.

Gegeben seien die Versicherungswerte für 4 %.

Grundlage: Text-Book; in letzterem sind noch die

$3 angegeben.

Die höhern Summen sind nach den angeführten
Formeln (56 6) zu berechnen; m 4,9917.

Beispielsweise berechnet sich a[<, mittels der Ent-
wicklung (83) zu:

,Q «(2) ,C((3)
Ogo «20 ,.o 20

«19 «19 — TT + TT W— TT W + — • • •

19 19 19

1. Übergang von 4 % nach 4.5 %; a,„ (4 %) 18,806.

(4,5 %) +9 18,806 —1,50888 + 0,10258 — 0,00605 +
+ 0,00082.

18,806 —1,407 17,399

genauer Wert von (4,5 %) 17,399

/I 0,000.

2. Übergang von 4 % nach 3,5 %; /t — 0,005

(3,5 %) 18,806 + 1,50888 + 0,10258 +0,00605 +
+ 0,00082.

18,806 + 1,612 20,418

genauer Wert von (8,5%) +9 20,418

d 0,000.

Die nachfolgende Tabelle V gibt eine Zusammen-

Stellung der berechneten, der genauen Werte und der

absoluten Fehler von «[9 bei einem Übergänge von
4 % nach F :
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Ta&eiZe F.

./
berechneter Wert

von
genauer Wert

von «jg

absoluter

Fehler

3% 22,277 22,275 — 0,002

3,5 % 20,418 20,418 0,000

4,5 % 17,399 17,399 0,000

5% 16,1655 16,165 - 0,0005

6% 14,113 14,109 — 0,004

Die hier auftretende Genauigkeit ist etwas grösser als

diejenige bisher bekannter Formeln. Für temporäre
Leibrenten ergibt die Berechnung mit der entsprechen-
den Beihenentwicklung (51) eine noch grössere Genauig-
keit.

Beispiel

In ähnlicher Weise ist nachfolgend der Barwert der

lebenslänglichen Todesfallversicherung : nach den

Grundlagen des Text-Books, 4 %, berechnet:

Gegeben ist: ^ (4 %) 0,24377; 310 718,5

S S« B»l
1' 1 / 7 «, I

-^20
7 .g 20

20 20 7r W + TW W — TT ' W + — • •.
20 20 20

Übergang von 4 % nach 4,5 %; /t 0,005

(4,5 %) A20 0,24377 - 0,034075 | - 0,003526 +
— 0,000294 + 0,000021 —0,000001

^20 0,24377 — 0,03082 0,21295

genauer Wert von (4,5 %) A 20 0,212289

/I =-0,00006
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In der nach folgenden Tabelle VI sind die mit der

obigen Reihe (52 o) berechneten Werte von Ag,, und die
absoluten Fehler zusammengestellt, die sich ergeben bei

einem Übergange von 4 % nach I ' :

Ta&eZZe Fl.

berechneterWert genauer Wert absoluter

von von Agg Fehler

3% 0,32874 0,32822 0,00052

3,5 % 0,28169 0,28159 -0,00010
4,5 % 0,21295 0,21289 — 0,00006

5% 0,18767 0,18750 — 0,00017

6% 0,14983 0,14896 - 0,00037

Der prozentuale Fehler ist hier grösser als bei den Leib-

reuten, weil die Anpassung der Parabel an die Kurve der

beobachteten Werte von besonders in hohem Alter
schlechter ist als bei den

Beispiel! 3.

Berechnen wir daher /1(, für neue Zinsfiisse, indem
wir den Ausdruck: I—d' • a^. bilden, so werden wir

genauere Werte für /1(. erhalten.

Es seien die Versicherungswerte für 1 4% he-

kannt; Grundlage: Text-Book.

In der folgenden Tabelle Vit sind die Werte von
durch Bildung des Ausdruckes: 1—d'• ajg be-

rechnet und die absoluten Fehler zusammengestellt, die

sich ergeben bei einem Übergange von 4 % nach I'.
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TaèeBe 777.

./
berechneterWerfc genauer Wert absoluter

von rtjg von Fehler

3 % 0,32203 0,32208 0,00005

3,5 % 0,27572 0,27571 — 0,00001

4,5 % 0,20770 0,20768 — 0,00002
5 % 0,182595 0,18265 0,000055

6% 0,14455 0,14475 0,00020

BeispfeZ 4.

Aus clen gegebenen Versicherungswerten zu 4 %,
Text-Book, sei der ßentenbarwert «20 nach der Formel

(35 c) für andere Zinsfüsse zu berechnen.

Die nachfolgende Tabelle VIII enthält die Werte
der «je nach der Formel (57) berechnet, und deren ab-

solute Fehler, die sich ergeben bei einem Übergange von
4 % nach 7:

TafceZZe 7771.

./ berechneter Wert genauer Wert absoluter
I von «go von «go Fehler

3% 22,064 22,077 — 0,013

3,5 % 20,245 20,246 — 0,001

4,5 % 17,279 17,278 0,001

5% 16,062 16,058 0,004

6% 14,035 14,008 0,027

TleispeZ 5.

Gegeben seien die Versicherungswerte für 4 %,
Text-Book; für die 30 Jahre dauernde Bente sind
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für andere Zinsfiisse ihr Wert nacli der Formel (58) zu
berechnen. Die Zahlen sind mit der Formel (50 u)
bestimmt worden, (m 4,9917; îo — 102.)

Es ergeben sich bei einem Übergang von 4 % nach

i' die in der Tabelle IX zusammengestellten Werte für
I3o<»4 dire Fehler:

TafreWe iX (130^19) -

./
berechneter

Wert
/

13019

genauer
Wert

13o"l9

absoluter
Fehler

prozentualer
Fehler

3 % 17,793 17,789 — 0,004 0,028 %
3,5 % 16,742 16,741 — 0,001 0,006 %
4,5 % 14,910 14,910 0,000 0,000 %

5% 14,108 14,109 0,001 0,007 %

6% 12,687 12,694 0,007 0,054 %

Die Tabelle X enthält die Resultate für die Be-

rechnung von |3o«bo nach der Formel (58), bei einem

Übergange von 4 % nach f:
TöieZfe X.

i
berechneter

Wert

130"50

genauer
Wert

130®50

absoluter
Fehler

prozentualer
Fehler

3 % 13,592 13,585 — 0,007 0,052 %

3,5 % 12,924 12,922 — 0,002 0,016 %

4,5 % 11,744 11,743 — 0,001 0,009 %

5% 11,221 11,217 — 0,004 0,036 %

«% 10,286 10,277 — 0,009 0,087 %
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Beispiele 6'.

Gegeben seien die Versicherungswerte für i 4 %;
Text-Book. In den nachfolgenden Tabellen XI bis

XIV sind die absoluten und prozentualen Fehler von
angegeben, die sich bei einem Übergange von 4 % nach

F mit der Formel (61 6) ergeben.

Ta&eZfe XI.
Übergang von 4 % nach 4,5 %.

$
<V4,5%
berechnet

absoluter

Fehler
prozentualer

Fehler

20 18,662 17,280 — 0,001 0,006 %
30 17,155 16,013 — 0,002 0,012 %
40 15,136 14,2625 — 0,0075 0,007 %
50 12,522 11,925 — 0,002 0,018 %

Ta&eZfe XII.
Übergang von 4 % nach 3,5 %.

£ «F'
berechnet

.5%
genau

absoluter

Fehler
prozentualer

Fehler

20 20,2435 20,245 0,0015 0,007 %
30 18,441 18,441 0,000 0,000 %
40 16,104 16,103 — 0,001 0,006 %
50 13,173 13,172 — 0,001 0,008 %
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TaMZe Zill,
tIbergang von 4 % nach 5 %.

œ

berechnet
5%

genau

absoluter

Fehler
prozentualer

Fehler

20 16,072 16,062 -0,010 0,06 %
30 14,999 14,991 — 0,008 0,05 %
40 13,474 13,469 — 0,005 0,03 %
50 11,3775 11,371 — 0,0065 0,058 %

Ta&eïfc ZJ7.

Übergang von 4% nach 3 %.

«*
berechnet

3%
genau

absoluter

Fehler
prozentualer

Feliler

20 22,059 22,064 0,005 0,023 %
30 19,890 19,895 0,005 0,025 'X,

40 17,176 17,177 0,001 0,004 'X,

50 13,888 13,878 — 0,010 0,075 %
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Verzeichnis der wichtigsten Literatur
über das Zinsfussproblem.

In dem nachfolgenden Literaturverzeichnis sind alle Ab-
handlungen mit fortlaufenden arabischen Ziffern versehen, und im
Text wird zur Zitierung einer Arbeit neben dem Namen des Autors
nur die betreffende Nummer in Klammern beigefügt.

Iis bedeuten in der Folge:
Arohief voor de Verzekerings-Wetenschap.

(II) Assekuranz-Jahrbuch.
(III) Assi irance-Magazine.
(IV) Bulletin trimestriel de l'institut des actuaires français.
(V) Mitteilungen österreichischer Versicherungstechniker.

(VI) Mitteilungen schweizerischer Versicherungsmathematiker.
(VIII) Österreichische Versicherungszeitschrift.

(IX) Zeitschrift für die gesamte VersicherungsWissenschaft.
(X) Skandinavisk Aktuarietidskrift (Aktuaren).

[I] James Me&fe: (III) vol. III, Seite 325, 1853.
[21 L. Fowtaiwe: (IV) Nr. 2, page 34, 1892.

Note sur le calcul des rentes viagères, à différents taux,
par interpolation.

[3] M. .4. .-Ic/iord: (IV) Nr. 2, page 38, 1892.
Note sur le changement du taux dans le calcul des annuités

viagères.
[4] D. T. Lwiirir/rew: (VIII) 1898.

Über eine Methode zur Anwendung einer Grundtafel für
Berechnungen mit verändertem Zinsfusse.

[5] H. Polen«. dît Motel: page 201, 1899.
Théorie mathématique des assurances.

[6] /?. H. «an Dorsten: (I) Bd. 4. Seite 284, 1900.
Benaderingsformules bij veranderingvan Rentevoet. (1899.)

[7] J. C. Klwj/wer: (I) Bd. 5, Seite 1, 1901.
Nog iets over benadering van Lijfrenten bij verandering

van Rentevoet.
[8] M. Fr»c Diets: (I) Bd. 5, Seite 437, 1901.

Klementaire afleiding van benaderingsformules bij ver-
andering van rentevoet.

[9] J. M. Fris Dirts: (II), XXIV. Jahrgang, 1903, Seite 17.
Annähernde Berechnung bei Änderung des Zinsfusses.

[10] W. BktscÄ/ce: (V), Heft IX, 1903, 1914.
Über eine Anwendung des Sterbegesetzes Gompertz-

Makeham (vollständiges Leibrentensystem).
[11] J. P. Gram: Aktuaren, Seite 57, 1904.

Om Makehams Dodelighedsformel og dens Anvendelse paa
ikke normale Liv.
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[12] G. J. /). Mottwier: (X) Bd. 8, 1906, Seite 487.
Verandering van Rentevoet door middel van per termijn

stijgende Lijfrente, betaalbar in termijnen.
118] Pezider: (IX) Bd. 7, 1907.

Beitrag zur Zinstheorie.
[ 14] J. P. Sfe//ensen: (X) Xfefte 1 und 2, 1918, Seite 82.

On certain inequalities between mean values, and their
applications to actuarial problems.

[15] 7îtn/er Meidet/: (X) Hefte 8 und 4, 1918, Seite I KO.

Note sur quelques inégalités et formules d'approximation.
[16] L. Heber: (IV) Nr. 104, 1921, page 17.

Sur une méthode de calcul rapide de valeurs approchées
des annuités viagères temporaires.

[17] M. Gauthier: (IV) Nr. 106, 1921, page 47.
Note sur le changement de taux dans les calculs d'annuités.

[18] R. PafowçOTsf: (X) Heft 3, 1921, Seite 152.
Sur une méthode d'approximation applicable à certains

problèmes actuariels

[19] A'. A. PoMfcfca: (X) Heft 3, 1923, Seite 137.
Über die Berechnimg der Leibrente bei Veränderung des

Zinsfusses.

[20] IV. Sarer: (VI) Heft 19, 1924, Seite 19.

Über die Konstruktion einer Standardabsterbeordnung.

[21] E. Sos: (IX) Bd. 24, 1924.

Berechnung von Versicherungswerten aus Tabellen; er-
gänzt durch E. Meier in (IX) Bd. 25, 1925.

[22] M. Hochart: (IV) Nr. 123, 1925, page 146.
Note sur le problème général du taux de l'intérêt dans le

calcul des annuités viagères.

[23] M. Hochart: (IV) Nr. 128, 1925, page 148.
Note sur le changement du taux d'intérêt dans le calcul des

annuités viagères.

Heitere benutzte Literatur:
[24] H. Priedit: Mathematische Untersuchungen über die in

unterjährigen Raten zahlbaren Terminen. 1924 (noch
nicht gedruckt).

[25] Landré: Lebensversicherung.
(5. Auflage, 1921.)

[26] Text-Book.
[27] A. F.
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