Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 20 (1925)

Artikel: Die Altersverteilung der Rentenbezüger bei der Eidgenössischen

Versicherungskasse

Autor: Friedli, W.

DOI: https://doi.org/10.5169/seals-555001

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Altersverteilung der Rentenbezüger bei der Eidgenössischen Versicherungskasse.

Von Dr. W. Friedli, Bern.

Die Versicherungskasse der eidg. Beamten, Angestellten und Arbeiter begann am 1. Januar 1921 ihre Tätigkeit und wies am 31. Dezember 1923 bei einem Bestande von 27,240 aktiven Versicherten 1) bereits 4972 Bezüger von Pensionen oder Unterstützungen mit Pensionscharakter auf. Im Laufe des Jahres 1924 hat dieser Rentnerbestand neuerdings um 677 Personen zugenommen.

Die verhältnismässig grosse Zahl der Rentenbezüger dieser jungen Kasse rührt zum Teil davon her, dass ihr schon bei der Gründung 2559 Pensionierte überbunden wurden, darunter 1534 sogenannte Rücktrittsgehaltsbezüger, also Personen, denen schon vor dem Bestehen der Kasse, teilweise mit Rücksicht auf die baldige Errichtung derselben, vom Bundesrat ein Ruhegehalt bewilligt worden war. Zum andern liegt die Ursache zu der hohen Rentnerzahl darin, dass der Bestand der aktiven Bundesbeamten stark überaltert war, wie dies seinerzeit in den bundesrätlichen Botschaften zum Gesetz und zu den Statuten der Versicherungskasse einlässlich dargelegt worden war; es musste infolgedessen die Zahl der Invalidierungen das

¹) Gesamtes eidg. Personal, soweit es nicht bei der Pensionskasse der S. B. B. versichert ist oder bei Neueintritt seit 1921 infolge mangelhafter Gesundheit nur in die der Kasse angegliederte Sparkasse aufgenommen werden konnte,

natürliche Mass einer jungen Kasse bei weitem übersteigen. Eine weitere Ursache — und nicht die geringfügigste — lag darin, dass die Pensionskasse ein Instrument für die mit der Reform der Bundesverwaltung beauftragten Organe wurde, die überzähligen Arbeitskräfte abzubauen, ein Abbau, der zu einem gleichzeitigen Aufbau in der Versicherungskasse werden musste.

Es ist nun interessant, zu beobachten, dass trotz dieser verschiedenartigen Ursachen und wirkenden Kräfte der Bestand der eigentlichen Rentenbezüger (ohne Hinterlassene und sonstwie Unterstützte) in seiner Altersgliederung Jahr für Jahr eine recht augenfällige Konstanz aufweist. Diese Altersgliederung etwas näher zu studieren, schien uns eine dankbare Anwendung der Methoden der mathematischen Statistik zu sein.

Da die Anfänge der Untersuchung ins Jahr 1924 zurückreichen, liegt ihnen vorerst der Rentnerbestand auf Ende des Jahres 1923 zugrunde. In Tabelle 1 geben wir zunächst an, wieviele Personen bei den verschiedenen Rentnerkategorien auf die einzelnen Jahrgänge entfallen, eine Aufstellung, die wir durch Zeichnung 1 veranschaulichen. Die Verteilung der Gesamtzahl der Pensionierten wird danach durch eine unregelmässige Zickzackkurve mit zwei ungleichmässigen Gipfeln dargestellt, eine Tatsache, die sich unschwer durch die inhomogene Zusammensetzung erklären lässt: Waisen mit statutarischem Grenzalter 18 einerseits, Erwachsene anderseits; unter letzteren solche Rentner, deren Zugehörigkeit zum Bestande auf ein "zufälliges Ereignis" zurückgeht (Witwen durch Tod des Mannes, eigentliche Invalide durch Krankheit oder Unfall usw.), daneben solche Personen, die durch eigenen oder fremden Willen unter diese Personengesamtheit ge-

rieten (vorzeitigen Rücktritt vom Amt, erleichtert den Beamtenabbau; Zwangspensionierungen durch die Verwaltung; Gewährung einer periodischen Unterstützung nach Vorlage eines Gesuches und nach Genehmigung durch den zuständigen Verwaltungsratsausschuss usw.). Der Kurvenverlauf wird sofort zu einem typischen, wenn wir eine einzelne Gruppe, wie z. B. die Witwen oder die Invaliden oder die Rücktrittsgehaltsbezüger, für sich herausgreifen. Eine recht regelmässige Verteilung der Fälle um ein bestimmtes mittleres Alter ist unverkennbar. Am schönsten tritt diese typische Altersgliederung bei der vereinigten Gruppe der Rücktrittsgehaltsbezüger und Invaliden in die Erscheinung, eine Gruppe, die wir im folgenden kurz als "Rentner" bezeichnen wollen. Wir verweisen auf Zeichnung 2, in welcher wir die zu jedem Jahrgang (Abszisse) gehörige Anzahl von Rentnern durch eine senkrechte Strecke (Ordinate) dargestellt haben. Die Fälle häufen sich stark beim Alter 65—70 herum. Man ist sofort versucht, die Endpunkte der Ordinaten mit der Gaussschen Fehlerkurve, der als Normalkurve so wichtigen Häufigkeitskurve der mathematischen Statistik, in Beziehung zu setzen.

Wir haben denn auch versucht, diese Normalkurve im vorliegenden Fall zu bestimmen und an die gegebene Altersverteilung der Personen anzupassen. Wie eine solche Anpassung am zweckmässigsten durchgeführt wird, zeigt Czuber in seinem auch für Nichtmathematiker recht kurzweiligen Buch "Die statistischen Forschungsmethoden" (Wien, 1921, pag. 210 ff.). Vorerst bestimmen wir in $Tabelle\ 2$ das arithmetische Mittel M (Durchschnittsalter) und die mittlere Abweichung oder "Streuung" μ , und zwar unter Benützung der ebenfalls von Czuber erwähnten, recht einfachen Methode (Forschungsmethoden, pag. 88)

$$M = 63,10$$

 $\mu = 10,15$.

Bedeutet weiter N den Umfang der Gesamtheit (hier die Anzahl Personen, also N = 3042), so berechnet sich sofort die Maximalordinate der Kurve

$$z_{\rm o} = \frac{N}{\mu \sqrt{2 \pi}} = 120.$$

Dies ist also die nach der Gaussschen Fehlerkurve beim Durchschnittsalter M zu erwartende Anzahl Personen der Gesamtheit. Die übrigen Kurvenordinaten ergeben sich aus der Kurvengleichung

$$z = z_0 e^{-\frac{\xi^2}{2}} \qquad \dots (1)$$

unter Benützung der Czuberschen Tafel der Funktion

$$\zeta = e^{-\frac{\xi^2}{2}}$$
 (Forsch.-Meth. pag. 203).

Hierbei bedeutet ξ die in μ als Einheit ausgedrückte Abszisse x', letztere vom Punkt M als Ursprung aus gerechnet. Wird mit x das Alter der Personen bezeichnet, so lässt sich die Kurvengleichung auch direkt als Funktion von x (Verteilungsfunktion) und mit Hilfe der Grössen M und μ als Parameter schreiben:

$$z = N \mathfrak{B}(x)$$

$$= \frac{N}{\mu \sqrt{2\pi}} e^{-\frac{(M-x)^2}{2\mu^2}} \qquad \dots (1a)$$

$$\xi = \frac{x'}{\mu} = \frac{x - M}{\mu}$$

denn

Über die erzielte Anpassung geben Tabelle 3 und Zeichnung 3 ohne weiteres Auskunft. In letzterer haben wir die Endpunkte der in Zeichnung 2 gezeichneten Ordinaten durch eine Zickzacklinie verbunden, während die als Normalkurve berechnete Gausssche Fehlerkurve durch die stark ausgezogene Glockenkurve dargestellt wird. Die Anpassung ist in den obersten Altersstufen eine recht befriedigende, lässt aber im übrigen sehr zu wünschen übrig. Die Kurve verläuft bis etwa zum Alter 40 zu tief, von da an viel zu hoch; das Maximum wird zu früh erreicht und liegt zu tief, so dass namentlich in der Alterszone 60—70 die Anpassung eine sehr ungenügende ist.

Man erkennt aber durch Vergleich der Beobachtungskurve mit der symmetrischen Glockenform der Normalkurve sofort, dass die Altersverteilung der Rentner eine in bezug auf das Durchschnittsalter unsummetrische ist, beträgt doch die Summe der Persummetrische

sonen vom Alter 25—62 vermehrt um die Hälfte	Theoretische Anzahl	Beobachtete Anzahl	
des Jahrgangs 63	1521	1408	
64—ω vermehrt um die Hälfte des Jahrgangs 63	1521	1634	

Haben wir damit ein Urteil über die sogenannte "Verteilungsfunktion" (die theoretische und die beobachtete) gewonnen, so bleibt uns noch die Angabe der "Summenfunktion" übrig. Letztere löst die Frage: "Wieviele Personen der Gesamtheit sind nicht über x Jahre alt?" Ein Vergleich zwischen beobachteter und theoretischer Summenfunktion ist in nachstehender Übersicht enthalten. Hierbei sind wir von 5 zu 5 Jahren fortgeschritten und haben als sogenannte "Wechselpunkte" die Jahrzahlen 28,5; 33,5; 38,5; ge-

wählt. Die Wahl fiel auf halbe Jahre, weil die beobachteten Rentnerzahlen den angenäherten Altern $(x) = x - \frac{1}{2}$ bis $x + \frac{1}{2}$ entsprechen; die Normalkurve ihrerseits ist kontinuierlich, und die Berechnung für einen angenäherten Argumentwert ist nicht möglich, sondern wir haben ein bestimmtes x zu wählen, und zwar müssen wir, um die Vergleichbarkeit zu wahren, die Alter $X = x + \frac{1}{2}$ herausgreifen. Man nennt sie Wechselpunkte. Hierbei lässt sich die der Normalkurve entsprechende Summenfunktion durch das bekannte Integral darstellen

$$N.\mathfrak{S}(X) = \frac{N}{\sqrt{\pi}} \int_{-\infty}^{V} e^{-t^2} dt \qquad ...(2)$$

worin

$$V = \frac{X - M}{\mu \sqrt{2}}$$

Zur Berechnung von $\mathfrak{S}(X)$ führt man (2) über in

$$\underline{N} \cdot \mathfrak{S}(X) = \frac{1}{2} \left[1 + \Phi(V) \right] N \qquad \dots (3)$$

wo $\Phi(V)$ nichts anderes ist, als das Fehlerintegral

$$\Phi(V) = \frac{2}{\sqrt{\pi}} \int_{0}^{V} e^{-t^{2}} dt$$

das sich in den meisten Lehrbüchern über Wahrscheinlichkeitsrechnung tabuliert vorfindet (siehe z. B. Czuber, Wahrsch. I, 1924, pag. 455).

Übersicht I: Die Rentner der E. V. K. Ende 1923.

The second secon	Die Summenfur	nktion $\mathfrak{S}\left(X ight)$. N	
Anzahl Jahre	Wieviele Person als X J	Differenz zwischen	
(Wechselpunkt) X	Nach der theo- retischen Ver- Beobachtung teilung der Normalkurve		Beobachtung u. Theorie:
$28,\!5$	13	1	— 12
33,5	27	5	22
38,5	69	23	— 46
43,5	118	80	38
48,5	248	226	22
53,5	468	521	+ 53
58,5	883	987	+104
63,5	1471	1569	+ 98
68,5	2145	2140	_ 5
73,5	2612	2580	— 32
78,5	2885	2848	— 37
83,5	3006	2976	— 30
88,5	3037	3024	— 13
93,5	3042	3038	4
100	3042	3042	0
		$\Sigma A = 516$	-261 $+255$

Aus den bisherigen Ausführungen geht hervor, dass die Anpassung an die Beobachtungen mit Hilfe der Gaussschen Kurve hinsichtlich der Summenfunktion wenigstens im absteigenden Kurvenast eine befriedigende ist. Sie wird eine sehr gute, wenn wir zur Darstellung von $\mathfrak{S}(X)$ die folgende Brunssche Entwicklungsreihe benützen:

$$\mathfrak{S}(X) = \frac{1}{2} \left[1 + \Phi(V) + 0.12429 \cdot \frac{\Phi(V)_3}{4} + 0.05912 \cdot \frac{\Phi(V)_4}{8} \right] \qquad ...(4)$$

Die Ergebnisse sind nachstehend für die Wechselpunkte von 5 zu 5 Jahren wiederum den Beobachtungsresultaten gegenüber gestellt.

Übersicht II.

	Die Summenfun					
Anzahl Jahre	Wieviele Person als X Ja	Wieviele Personen sind weniger als X Jahre alt?				
X	Nach der Beobachtung	Nach der theo- retischen Ver- teilung gemäss Formel (4)	Theorie und Beobachtung			
28,5	13	8	— 5			
33,5	27	25	_ 2			
38,5	69	64	_ 5			
43,5	118	134	+16			
48,5	248	252	+ 4			
53,5	468	471	+ 3			
58,5	883	872	-11			
63,5	1471	1467	_ 4			
68,5	2145	2116	29			
73,5	2612	2623	+11			
78,5	2885	2901	+16			
83,5	3006	3007	+ 1			
88,5	3037	3035	_ 2			
93,5	3042	3040	_ 2			
100	3042	3042	0			
		$\nabla A = 111$	-60			
		$\Sigma \Delta = 111$	+51			

Die Anpassung ist, wie wir durch Vergleich der Fehlersummen (111 gegen 516) und der Fehlerdifferenzen in den verschiedenen Untergruppen deutlich sehen, eine viel bessere als bei Anwendung der Gaussschen Fehlerfunktion.

Es bleibt uns noch übrig, zu zeigen, wie wir zu Formel (4) gelangen. Diese nach Bruns benannte Reihe ("Normalform") lautet im allgemeinen Fall¹)

$$\mathfrak{S}(X) = \frac{1}{2} \left[1 + \Phi(V) + D_3 \cdot \frac{\Phi(V)_3}{2^2} + D_4 \cdot \frac{\Phi(V)_4}{2^3} + D_5 \cdot \frac{\Phi(V)_5}{2^4} + \dots \right]$$
(5)

Hierin bedeutet $\Phi(V)_n$ den n-ten Differential-Quotienten von $\Phi(V)$, dessen durch 2^{n-1} dividierte Werte für n=1 bis 6 und die gebräuchlichen Argumentwerte V ebenfalls aus der Tafel in Czuber I entnommen werden können. Die Koeffizienten D_3 , D_4 , D_5 , sind auf Grund der Verteilungstafel, d. h. unserer Zahlen in Tabelle 2, zu berechnen. Vorerst hat man für die praktische Durchführung der Rechnung einen etwa in der Mitte der Verteilungstafel gelegenen Argumentwert a als Ausgangspunkt zu wählen und die sogenannten Partialsummen $s^{(n)}$ und deren Totalsummen $s^{(n)}$, $s^{(n)}$ zu bilden. Wir wählen $s^{(n)}$ 0 ann bedeuten der Reihe nach

 $s^{(0)} = z$ die ursprüngl. Verteilungstafel (Kol. 1, Tab. 4)

$$s^{(1)} = \sum_{x_0}^{x} s^{(0)} = \sum_{x_0}^{x} z$$
 die 1. Partialsumme (Kol. 2, Tab. 4)

$$s^{(2)} = \sum_{x_0}^{x} s^{(1)} = \sum_{x_0}^{x} \sum_{x_0}^{x} z$$
 die 2. Partialsumme (Kol. 3, Tab. 4) usw.

¹⁾ Vgl. Czuber, Wahrsch.-Rechg. I (1924), pag. 406. S. ferner Bruns, Wahrsch.-Rchg. und Kollektivmasslehre, Leipzig, (1906).

Dabei erfolgt die schrittweise Addition (Bildung der folgenden Kolonne aus der vorhergehenden) stets vom obern Ende der Tafel $(x_0 = 25)$ nach unten, vom untern Ende $(x_0 = 93)$ nach oben. Durch Addition der Kolonnen von oben her gegen a hin ergeben sich daraus die Totalsummen $S_0^-, S_1^-, S_2^-, \ldots$ und von unten her $S_0^+, S_1^+, S_2^+, \ldots$ wie dies in Tabelle 4 ausgeführt ist. Daraus ergeben sich weiter die Grössen

$$\begin{cases} \Sigma_i = S_i^+ + S_i^- \\ \Delta_i = S_i^+ - S_i^-, \text{ nämlich} \end{cases}$$

$$\Sigma_0 = 2914; \quad \Delta_0 = -306$$

$$\Sigma_1 = 21099; \quad \Delta_1 = -5477$$

$$\Sigma_2 = 129134; \quad \Delta_2 = -57892$$

$$\Sigma_3 = 720553; \quad \Delta_3 = -458927$$

$$\Sigma_4 = 3726027; \quad \Delta_4 = -2922205$$

$$\Sigma_5 = 17604633; \quad \Delta_5 = -15481123$$

Damit sind wir dem Ziel schon etwas näher gerückt. Wir berechnen weiter

$$\begin{split} N\eta_1 &= \varDelta_1 + \varDelta_0 = -5783 \\ N\eta_2^2 &= 2\,\varSigma_2 + 3\,\varSigma_1 + \varSigma_0 = 324\,479 \\ N\eta_3^3 &= 6\,\varDelta_3 + 12\,\varDelta_2 + 7\,\varDelta_1 + \varDelta_0 = -3\,486\,911 \\ N\eta_4^4 &= 24\,\varSigma_4 + 60\,\varSigma_3 + 50\,\varSigma_2 + 15\,\varSigma_1 + \varSigma_0 = 139\,433\,927 \end{split}$$

folglich

$$\eta_1 = -1,90105$$
 $\eta_2^2 = +106,66634$
 $\eta_3^3 = -1146,25608$
 $\eta_4^4 = +45836,26791$

und damit die verschiedenen Streuungsmasse

$$\begin{split} \mu_2^2 &= \mu^2 = \eta_2^2 - \eta_1^2 = 103,\!05235 \\ \mu_3^3 &= \eta_3^3 - 3\,\eta_2^2\,\eta_1 + 2\,\eta_1^3 = -551,\!66270 \\ \mu_4^4 &= \eta_4^4 - 4\,\eta_3^3\,\eta_1 + 6\,\eta_2^2\,\eta_1^2 - 3\,\eta_1^4 = 39\,393,\!67115 \\ \mu_5^5 &= -621\,012,\!07 \\ \text{usw.} \end{split}$$

ferner ist $h = \frac{1}{u\sqrt{2}} = 0,069656$ (Präzision) und schliess-

lich die gesuchten Koeffizienten der Reihe (5):

(6) ...
$$\begin{cases} D_3 = -\frac{2 h^3 \mu_3^3}{3} &= 0.12429 \\ D_4 = \frac{h^4 \mu_4^4}{3} - \frac{1}{4} = 0.05912 \\ D_5 = -\frac{2 h^5 \mu_5^5}{15} + \frac{2 h^3 \mu_3^3}{3} = -0.26007 \\ \text{usw.} \end{cases}$$

Damit waren wir in der Lage, die Summenfunktion $\mathfrak{S}(X)$ für die Argumente X = 23,5; 24,5, 25,5, zu berechnen (wobei für die Anwendung von (4) vorerst das Hilfsargument

$$V = h(X - M)$$

zu ermitteln war).

Unser Bestreben geht nun dahin, aus der theoretischen Summenfunktion $\mathfrak{S}(X)$ die Verteilungsfunktion \mathfrak{B} und zwar für *ganzzahlige* Argumentwerte $x = X - \frac{1}{2}$ zu berechnen.

Wir haben also zunächst aus $\mathfrak{S}(X)$ die Werte $\mathfrak{S}(x)$ zu bestimmen, wozu die Formel verwendet wurde 1)

$$\mathfrak{S}(x) = \mathfrak{S}(X - \frac{1}{2})$$

$$= \varphi_{X-1} - \frac{1}{8} \Delta^2 \varphi_{X-2} + \frac{3}{128} \Delta^4 \varphi_{X-3} \qquad \dots (7)$$

worin

$$\varphi_X = \frac{\mathfrak{S}(X) + \mathfrak{S}(X+1)}{2}.$$

Nun kann die gesuchte Verteilungsfunktion $\mathfrak{V}(x)$ selbst gefunden werden. Es ist nämlich

$$\mathfrak{S}(x) = \int_{-\infty}^{x} \mathfrak{V}(x) \, dx$$

(wo die untere Grenze — ∞ rein formale Bedeutung hat), so dass umgekehrt

$$\mathfrak{B}(x) = \frac{d \, \mathfrak{S}(x)}{d \, x}.$$

Es musste nun $\mathfrak{B}(x)$ durch numerische Differentiation ermittelt werden, nämlich 2)

$$\mathfrak{B}(x) = \psi_{x} - \frac{1}{6} \Delta^{2} \psi_{x-1} + \frac{1}{30} \Delta^{4} \psi_{x-2} \qquad \dots (9)$$

²) Betreffs Herleitung dieser allgemein gültigen Formel der Differenzenrechnung siehe Spangenberg, op. cit. pag. 133.

¹⁾ Über die Herleitung dieser allgemein gültigen Formel der Differenzenrechnung siehe Spangenberg, Die Karupsche Theorie der unabhängigen Wahrscheinlichkeiten. Veröffentlichungen des Deutschen Vereins für Vers.-Wiss., Heft XX (1911), pag. 132.

$$\psi_x = \Delta \frac{\mathfrak{S}(x) + \mathfrak{S}(x-1)}{2}$$

Man hätte zur Ermittlung der Verteilungsfunktion $\mathfrak{B}(x)$ auch eine direkte Formel zur Verfügung gehabt (Czuber I, pag. 422), die aber für die Berechnung sehr unhandlich ist, während die von uns befolgte Anwendung der Differenzenrechnung für praktische Rechnungen sich als durchaus zweckmässig erwiesen hat.

Die Ergebnisse dieser drei Operationen (4), (7), (9) sind in *Tabelle 5* wiedergegeben.

Die Anwendung der ermittelten theoretischen Verteilungsfunktion $\mathfrak{V}(x)$ auf den Rentnerbestand 1923, von dem wir ausgegangen sind, liefert die in Kolonne (6) jener Tabelle angegebenen Zahlen für die rechnungsmässige Verteilung der 3042 Rentner auf die einzelnen Jahrgänge. Die diesen Zahlen entsprechende Kurve ist der besseren Vergleichbarkeit mit den beobachteten und den mit der einfachen Normalkurve von Gauss berechneten Rentnerzahlen in Zeichnung 3 punktiert eingetragen worden (siehe ferner Zeichnung 6). äusserst befriedigende Anpassung der theoretischen die wirkliche Altersgliederung springt Augen. Die bei der ausgezogenen symmetrischen Fehlerkurve hervorgehobenen Mängel sind verschwunden: die neue Normalkurve ist unsymmetrisch, sie erscheint nicht nur im absteigenden, sondern auch im aufsteigenden Ast als die Ausgleichskurve der Zickzacklinie und stimmt namentlich auch beim Maximum sehr gut, trotzdem natürlich auch sie nicht der Spitze des Alters 67 zu folgen vermag. Das theoretische Maximum der Rentner liegt nun nicht mehr beim Durchschnittsalter (M = 63), sondern erst beim Alter 66.

Es ist uns also gelungen, die Ende 1923 beobachtete Altersgliederung der Rentner der E. V. K.
durch eine regelmässige, einer theoretischen Normalkurve entsprechende Verteilung zu ersetzen, bzw. die
letztere der ersteren anzupassen. Nun fragen wir uns:
Wäre es möglich, mit Hilfe der theoretischen Verteilungsfunktion $\mathfrak{B}(x)$ des Jahres 1923 zum voraus die
mutmassliche Altersgliederung der Rentner 1924 anzugeben, sofern nur die Gesamtzahl dieser Personen,
also die Grösse N, auf den neuen Zeitpunkt bekannt ist?

Es erscheint nicht wahrscheinlich, dass diese Frage bejaht werden kann. Der Bestand der aktiven Versicherten, aus dem der Rentnerbestand sukzessive hervorgeht, hat im Jahr 1924 beträchtliche Wandlungen erfahren. Zu den auf Ende 1923 vorhandenen 27,240 Aktiven traten 848 neue hinzu, während 1381 Aktive ausschieden, so dass der "Ausgangsbestand" von 27,240 auf 26,707 Personen zurückging. Der Rentnerbestand seinerseits wies folgende Bewegung auf:

Bestand Ende 1923		Personen 3042
Neue Invalidierungen 1924 .	625	0012
Abgang durch Tod (und Auskauf)	202	in other
Reinzuwachs	•	423
Bestand Ende 1924		3465

Der Rentnerbestand von 3042 Personen hat also einen Abgang von nahezu 6,6%, einen Zugang um nahezu 20,5%, also eine tiefgreifende Erneuerung erfahren, welche vermutlich die Altersverteilung stark beeinflusst haben wird. Auch machen wir hier auf den speziellen Umstand der periodischen Neuwahlen des gesamten Bundespersonals (April 1924) aufmerksam, bei welchem Anlass eine grosse Zahl von älteren

Beamten vor dem statutarischen Rücktrittsalter administrativ invalidiert wurden, wo also eine behördliche *Massnahme* dem die Erscheinung der eigentlichen Invalidität beherrschenden *Zufall* ins Gehege kam.

Umso grösser ist unsere Überraschung, wenn wir ersehen, dass die vorhin gestellte Frage zu bejahen ist. Die Verteilungskurve von 1923 stimmt auch für 1924 sehr gut, wie ein Blick auf die Zeichnung 7 lehrt. Noch mehr: Auch die Altersgliederung der dem Standardjahre vorhergehenden Jahre 1921 und 1922 lässt sich unserer Normalkurve schon sehr gut unterordnen, wie die Zeichnungen 4 und 5 beweisen, deren Ordinaten sich ergeben, indem die Gesamtzahl der Rentner (N=2174 bzw. N=2698) mit den aufeinanderfolgenden Argumentwerten der Verteilungsfunktion $\mathfrak{B}(x)$ (der Tabelle 5, Spalte 3) multipliziert wurde. (Vgl. Tabelle 5, Spalten 4 und 5.)

Wir dürfen also schliessen:

Die Altersgliederung der Rentner der eidg. Versicherungskasse weist nach den Statistiken der vier Jahre 1921—1924 eine merkwürdige Stabilität auf, die ihren Ausdruck in einer regelmässigen Verteilungsfunktion $\mathfrak{B}(x)$ findet.

Es wird interessant sein, dieser Erscheinung auch in Zukunft unser Augenmerk zuzuwenden und zu untersuchen, ob sich bei andern grösseren Pensionskassen etwas ähnliches feststellen lässt.

Wir können diese Erscheinung folgendermassen fruktifizieren. Wenn der Rentnerbestand in seiner Altersgliederung stabil bleibt, so muss auch der Bestand der bezogenen Renten eine nahezu konstante

Altersverteilung aufweisen 1) und wenn dies der Fall ist, muss die nämliche Tatsache für das direkt durch die letztere Altersgliederung bedingte *Deckungskapital* der Fall sein. Es müsste also das gesamte Deckungskapital der Rentner proportional der gesamten Rentensumme wachsen 2). Prüfen wir diese Verhältnisse an den wirklichen amtlichen Zahlen, wie sie von der Verwaltung der eidg. Versicherungskasse jährlich festgestellt wurden.

		Rentenbesta	and	Verhältnis der Jahreszah		
Bilanz Ende	Anzahl Per- sonen	Rentensumme in 1000 Fr.	Deckungs- kapital in 1000 Fr.	zur Vorjahreszahl		szahl
	<i>a</i>)	<i>b)</i>	c)	bei a)	bei b)	bei <i>c)</i>
1921	2174	7,640	59,216	_		********
1922	2698	9,460	74,253	124,1	123,8	125,4
1923	3042	10,581	83,622	112,8	111,9	112,6
1924	3465	12,077	96,093	113,9	114,1	114,9
1.15			g and all of		a Bernalia i sa	

¹⁾ Es sei allerdings darauf hingewiesen, dass die Rentensumme nicht ohne weiteres proportional der Rentnerzahl zu wachsen braucht: Die Renten sind vom Gehalt und vom Dienstalter abhängig (15 %)—70 % des Gehalts).

$$\sum V = \sum R a_x^i = \sum R \sum \frac{R}{\sum R} a_x^i = \sum R \sum \mathfrak{B}_x a_x^i = C \cdot \sum R$$

so dass für zwei aufeinanderfolgende Jahre sich ein Verhältnis ergibt:

$$\frac{\Sigma V'}{\Sigma V} = \frac{C \Sigma R'}{C \Sigma R} = \frac{\Sigma R'}{\Sigma R}$$

²) Denn es müsste dann das Deckungskapital $\sum V$ folgenden Beziehungen genügen:

Unsere Vermutung wird in der Tat bestätigt: Bei allen 3 Jahresübergängen sind die Zuwachszahlen für a), b), c) nahezu gleich hoch, z. B. von 1923 auf 1924

113,9% bei der Personenzahl, 114,1% bei der Rentensumme, 114.9% beim Rentendeckungskapital.

Bedenken wir nun, dass die letztgenannte Grösse sich jeweilen aus einer sehr grossen Zahl von Komponenten, den Deckungskapitalien der einzelnen Rentner, zusammensetzt, so werden wir uns bewusst, dass die Feststellung der gefundenen Gesetzmässigkeit von praktischem Nutzen ist. Wir können jeweilen auf Jahresende mit einer einzigen Multiplikation das gesamte Rentendeckungskapital schätzungsweise ermitteln, wenn wir nur die gesamte in diesem Zeitpunkt laufende Rentensumme kennen:

Wir vergleichen sie mit der Summe des Vorjahres und erhalten durch Multiplikation der Verhältniszahl mit dem Gesamtdeckungskapital des Vorjahres angenähert das Deckungskapital auf Ende des laufenden Jahres, welches wir suchen. Beispielsweise hätte diese Methode per Ende 1924 ein Deckungskapital ergeben von

$$\frac{12,077}{10,581} \times 83,622,000 =$$
Fr. $95,445,000. -$,

während das genaue, amtlich berechnete Deckungskapital sich beläuft auf Fr. 96,093,000.—. Unsere Vorhersage stimmt also bis auf Fr. 648,000. — oder — $6.7^{\circ}/_{\circ \circ}$ des wahren Wertes der gesuchten Grösse. Eine solche Annäherung ist vom Standpunkt des Versicherungsmathematikers aus als eine sehr gute zu bezeichnen.

Mit dieser Bemerkung seien unsere Betrachtungen beendigt. Wir wollen lediglich beifügen, dass wir zu unserer Untersuchung angeregt wurden durch eine Vorlesung des Herrn Prof. Dr. Moser an der Universität Bern, betitelt: "Die Zahl π und das Gausssche Fehlergesetz" (Wintersemester 1924/25), sowie durch eine Arbeit des Herrn Prof. Dr. Czuber (Wien), betitelt: "Die Altersverteilung der Gestorbenen" (Mitteilungen des Verbandes der österr.-ung. Privat-Vers.-Anst., Neue Folge, Band 3, 1907).

Bern, 7. März 1925.

Die Altersgliederung der Rentenbezüger bei der eidg. Versicherungskasse Ende 1923 1).

Tabelle 1.

Alter Jahre x	Waisen ³)	Witwen (und Witwer)	"Rentner" (Invalide und Rücktrittsge- haltsbezüger)	Alle Renten- bezüger
0 20 1 21 2 22 3 23 4 24 5 25 6 26 7 27 8 28 9 29 10 30 11 31 12 32 13 33 14 34 15 35 16 36 17 37 18 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	1 4 5 1 1 12 2 2 21 2 30		1 4 5 3 5 10 8 10 9 8 7 11 12 11 16 19 25 35 35 28 39 47 46	1 4 5 1 1 12 2 2 21 2 30 3 3 5 40 4 4 41 12 54 11 46 13 56 8 59 13 61 16 73 13 70 21 80 20 63 24 81 22 51 23 27 25 24 30 33 35 40 57 51 53 59 62 77 76
53	903	$\frac{17}{449}$	468	$\frac{77}{1820}$

¹⁾ Die Bezüger von Verwandtenpensionen wurden in dieser Aufstellung weggelassen.
2) Die Renten an Waisen laufen bis zum 18. Altersjahre, an erwerbsunfähige Waisen lebenslänglich.

Tabelle 1 (Schluss).

x	Waisen	Witwen (und Witwer)	"Rentner" (Invalide und Rücktrittsge- hal t sbezüger)	Alle Renten- bezüger
E CE	903	449	468	1820
54	_	25	73	98
55		35	64	99
56	_	27	79	106
57		10	111	121
58		32	88	120
59		23	122	145
60		32	95	127
61		30	129	159
62	-	26	117	143
63		17	125	142
64		25	139	164
65	_	24	128	152
66	-	13	129	142
67		10	154	164
68		19	124	143
69		14	111	125
70		13	82	95
71		10	94	104
72		12	93	105
73		9	87	96
74		7	70	77
75		7	66	73
76		7	60	67
77	- "	5	36	41
7 8		$\frac{6}{3}$	41	47
79		3	39	42
80		4	28	32
81			24	24
82		3	16	19
83		_	14	14
84		$rac{1}{2}$	12	13
85		2	10	12
86			3	3
87			5 1	5
88			1	1
89		1	2	3
90			-	
91		·	2	2
92		4. A 7770		
93			1	1
	903	901	3042	4846

Tabelle~2. Die Rentner der eidg. Versicherungskasse am 31. Dez. 1923. Berechnung des mittleren Alters M u. der Streuung μ (vgl. Czuber, Statist. Forsch.-Meth., pag. 88 und 210).

$\begin{array}{c} \textbf{Alter} \\ x \end{array}$	Anzahl Personen Z	$\varepsilon = X - U$	Ζ• ε	£2	$Z \cdot \varepsilon^2$
(0)	(1)	(2)	(3)	(4)	(5)
25	1	40	— 40	1600	1600
26	4	39	156	1521	6084
27	5	38	190	1444	7220
28	3	37	111	1369	4107
29	3 5	36	180	1296	6480
30	1	35	35	1225	1225
31	3	34	102	1156	3468
32	3	33	99	1089	3267
33	$egin{array}{c} 3 \ 3 \ 2 \end{array}$	32	64	1024	2048
34	5	31	155	961	4805
35	10	30	300	900	9000
36	8	29	232	841	6728
3 7	10	28	280	784	7840
38	9	27	243	729	6561
39	8	26	208	676	5408
40	7	25	175	625	4375
41	11	24	264	576	6336
42	12	23	276	529	6348
43	11	22	242	484	5324
44	16	21	336	441	7056
45	19	20	380	400	7600
46	25	19	475	361	9025
47	35	18	630	324	11340
48	35	17	595	289	10115
49	28	16	448	256	7168
50	39	15	585	225	8775
51	47	14	658	196	9212
52	46	13	598	169	7774
53	60	12	720	144	8640
54	73	11	803	121	8833
55	64	10	640	100	6400
56	79	9	711	81	6399
57	111	8	888	64	7104
58	88	7	616	49	4312
59	122	6	732	36	4392
60	95	5	475	25	2375
61	129	4	516	16	2064
62	117	3	351	9	1053

Tabelle 2 (Schluss).

x	Anzahl PersonenZ	$\varepsilon = X - U$	Z• ɛ	23	$Z \cdot \varepsilon^2$
(0)	(1)	(2)	(3)	(4)	(5)
63	125	- 2	-250	4	500
64	139	1	139	1	139
65	128	0	-14898		· -
66	129	+1	+129	1	129
67	154	2	308	4	616
68	124	$\frac{2}{3}$	372	9	1116
69	111	4	444	16	1776
70	82	5	410	25	2050
71	94	6	564	36	3384
72	93	7	651	49	4557
73	87	8	696	64	5568
74	70	9	630	81	5670
75	66	10	660	100	6600
76	60	11	660	121	7260
77	36	12	432	144	5184
78	41	13	533	169	6929
79	39	14	546	196	7644
80	28	15	420	225	6300
81	24	16	384	256	6144
82	16	17	272	289	4624
83	14	18	252	324	4536
84	12	19	228	361	4332
85	10	20	200	400	4000
86	3 5	21	63	441	1323
87	5	2 2	110	484	2420
88	1	23	23	529	529
89	2	24	46	576	1152
90		25	_	625	
91	2	26	52	676	1352
92		27		729	
93	1	28	28	784	784
	N=3042		+9113		324 479

$$U=65 \text{ (gewählt)} \cdot u = \frac{9113-14898}{N} = -1,9017;$$

$$\underline{M}=U+u = \underline{63,10}.$$

$$m^2 = \frac{324\overline{479}}{N} = 106,666$$

$$\mu^2 = m^2-u^2 = 106,666-3,616=103,050;$$

$$\underline{\mu} = 10,15.$$

Die Altersverteilung der "Rentner" der eidg. Versicherungskasse Ende 1923.

	Anzahl P	ersonen z	Alter	Anzahl P	ersonen z
Alter Jahre x	Beob- achtet	Berechnet mit Formel (1)	Jahre x	Beob- achtet	Berechnet mit Formel (1)
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	1 4 5 3 5 1 3 3 2 5 10 8 10 9 8 7 11 12 11 16 19 25 35 35 28 39 47 46 60 73 64 79 111 88		62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	117 125 139 128 129 154 124 111 82 94 93 87 70 66 60 36 41 39 28 24 16 14 12 10 3 5 1 2 — 2 — 1 — —	120 120 120 118 115 111 106 101 94 88 81 74 66 59 52 46 40 34 29 25 21 17 14 11 9 7 6 6 4 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
59 60 61	$122 \\ 95 \\ 129$	111 115 118	96 - Σ	3042	3042

Tabelle 4.

Die "Rentner" der eidg. Versicherungskasse.
Berechnung der Partial- und Totalsummen.
(Vgl. Text, Seite 9.)

x	$z_i = s^{(0)}$	s (1)	S(2)	g (3)	S(4)	S(2)
0	1	2	3	4	5	6
25	1	1	1	1	1	
26		5	6	7	8	9
27	5	10	16	23	31	40
28	4 5 3 5	13	29	52	83	123
29	5	18	47	99	182	305
30	1	19	66	165	347	652
31	3	22	88	253	600	1252
32	3	25	113	366	966	2218
33	2 5	27	140	506	1472	3690
. 34		32	172	678	2150	5840
35	10	42	214	892	3042	8882
36	8	50	264	1156	4198	13080
37	10	60	324	1480	5678	18758
38	9	69	393	1873	7551	26309
39	8	77	470	2343	9894	36203
40	7	84	554	2897	12791	48994
41	11	95	649	3546	16337	65331
42	12	107	756	4302	20639	85970
43	11	118	874	5176	25815	111785

500

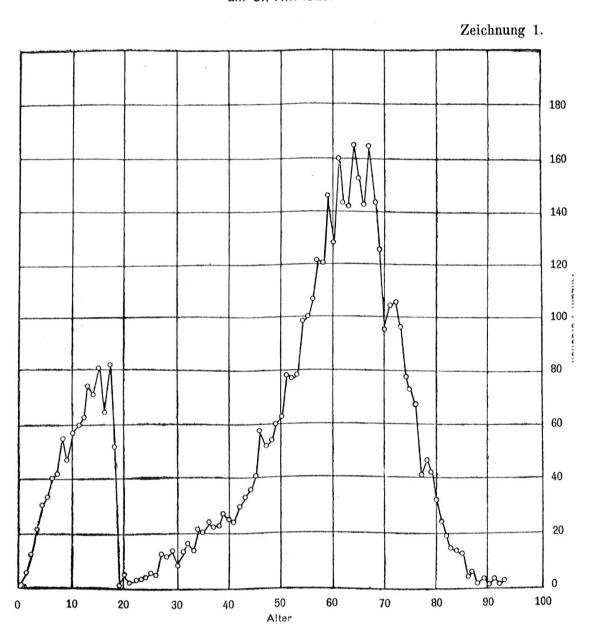
Alter x	$z_i = s^{(0)}$	s(1)	S(5)	S(3)	S(4)	S (5)
U	1	2	3	4	5	6
44	16	134	1008	6184	31999	143784
45	19	153	1161	7345	39344	183128
46	25	178	1339	8684	48028	231156
47	35	213	1552	10236	58264	289420
48	35	248	1800	12036	70300	359720
49	28	276	2076	14112	84412	444132
50	39	315	2391	16503	100915	545047
51	47	362	275 3	19256	120171	665218
52	46	408	3161	22417	142588	807806
53	60	468	3629	26046	168634	976440
54	73	541	4170	30216	198850	1175290
55	64	605	4775	34991	233841	1409131
56	79	684	5459	40450	274291	1683422
57	111	795	6254	46704	320995	2004417
58	88	883	7137	53841	374836	2379253
59	122	1005	8142	61983	436819	2816072
60	95	1100	9242	71225	508044	$S_5^- = 16542878$
61	129	1229	10471	81696	$S_4^- = 3324116$	3 -00110.0
62	117	1346	11817	$S_3^-=589740$	S4 -5024110	
63	125	1471	S^{-} =93513	~3 -000/10		
64	139	$S_1^- = 13288$	~ -00010			
	$S_0^- = 1610$	~1 10200				
65 (a)	· ·					

· ·

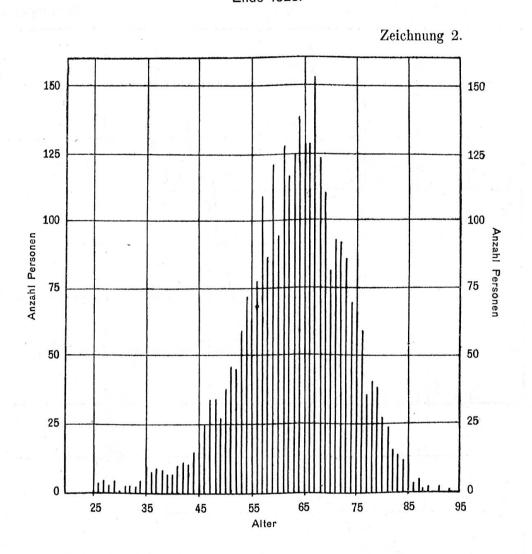
Alter	$z_i = s^{(0)}$	S(1)	$S^{(2)}$	_S (3)	g(4)	S (5)
0	1	2	3	4	5	6
	$S_0^{+}=1304$				8.1	n N II
66	129	$S_1^+ = 7811$			2	H 5
67	154	1175	$S_2^+ = 35621$		8 1	
68	124	1021	6636	$S_3^+=130813$		
69	111	897	5615	28935	$S_4^+=401911$	
70	82	786	4718	23370	101828	$S_5^+ = 1061755$
71	94	704	3932	18652	78458	300083
72 73	93	610	3228	14720	59806	221625
73	87	517	2618	11492	45086	161819
74 75 76 77 78 79	70	430	2101	8874	33594	116733
75	66	360	1671	6773	24720	83139
76	60	294	1311	5102	17947	58419
77	36	234	1017	3791	12845	40472
78	41	198	783	2774	9054	27627
79	39	157	585	1991	6280	18573
80	28	118	428	1406	4289	12293
81	24	90	310	978	2883	8004
81 82 83 84 85	16	66	220	668	1905	5121
83	14	50	154	448	1237	3216
84	12	36	104	294	789	1979
85	10	24	68	190	495	1190
86	3 5	14	44	122	305	695
87	5	11	30	78	183	390
88	$\frac{1}{2}$	6	-19	78 48	105	207
89	2	5 3 3	13	29	105 57	102
90		3	8	16	28	45
91	2		5	8	12	17
92		1	13 8 5 2 1	3	4	5 1
93	1	1	1	16 8 3 1	1	1
25/93	3042			8		

Tabelle 5.

Die "Rentner" der eidgenössischen Versicherungskasse. Die theoretische Summenfunktion S und die Verteilungsfunktion B auf Grund der Brunsschen Reihe.


($1000\mathfrak{S}(X)$			Theoretische Altersverteilung der				
		$1000\mathfrak{S}(x)$	$1000 \mathfrak{B}(x)$	"Rentner" 1) der E.V. K. für die				
x =	$(X=x+\frac{1}{2})$	2000 (10)		" Jahre 1921—1924: $N \cdot \mathfrak{B}(x)$				
$X-\frac{1}{2}$			1					
	(Formel 4)	(Formel 7)	(Formel 9)	Ende 1921	Ende 1922	Ende 1923	Ende 1924	
	(1 0111101 1)	(I ormer 1)	(1 ormer o)	N=2174	N=2698	N = 3042	N=3465	
(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
25	1,1	0,9	(0,3)	0,7	0,8	0,9	1,0	
26	1,4	1,3	0,3	0,7	0,8	0,9	1,0	
27	1,7	1,5	0,4	0,9	1,1	1,2	1,4	
28	2,5	2,1	0,7	1,5	1,9	2,1	2,4	
29	3,2	2,8	0,8	1,7	2,2	2,4	2,8	
30	4,1	3,6	0,9	2,0	2,4	2,7	3,1	
31	5,3	4,7	1,2	2,6	3,2	3,7	4,2	
32	6,6	5,9	1,3	2,8	3,5	4,0	4,5	
33	8,2	7,4	1,6	3,5	4,3	4,9	5,5	
34	10,2	9,2	2,0	4,3	5,4	6,1	6,9	
35	12,3	11,2	2,2	4,8	5,9	6,7	7,6	
36	14,9	13,6	2,6	5,7	7,0	7,9	9,0	
37	17,8	16,3	2,9	6,3	7,8	8,8	10,0	
38	21,1	19,4	3,3	7,2	8,9	10,0	11,4	
39	24,8	22,9	3,7	8,0	10,0	11,3	12,8	
40	28,9	26,8	4,1	8,9	11,1	12,5	14,2	
41	33,5	31,1	4,6	10,0	12,4	14,0	15,9	
42	38,6	36,0	5,1	11,1	13,8	15,5	17,7	
43	$44,\!2$	41,3	5,6	12,2	15,1	17,0	19,4	
44	50, 3	47,2	6,1	13,3	16,5	18,6	21,1	
45	57,2	53,7	6,9	15,0	18,6	21,0	23,9	
46	64,8	60,9	7,6	16,5	20,5	23,1	26,3	
47	73,3	68,9	8,5	18,5	22,9	25,9	29,5	
48	82,9	78,0	9,6	20,9	25,9	29,2	33,3	
49	93,8	88,2	10,9	23,7	29,4	33,2	37,8	
50	106,2	99,8	12,4	27,0	33,5	37,7	43,0	
51	120,3	113,0	14,1	30,7	38,0	42,9	48,9	
52	136,4	128,1	16,1	35,0	43,5	49,0	55,8	
58	154,8	145,3	18,4	40,0	49,6	56,0	63,8	
54	175,6	164,9	20,8	45,2	56,1	63,3	72,1	
55	199,1	187,0	23,5	51,1	63,4	71,5	81,4	
56	225,4	211,9	26,3	57,2	71,0	80,0	91,1	
57	254,6	239,6	29,2	63,5	78,8	88,8	101,2	
						bilan un	d der Kurv	

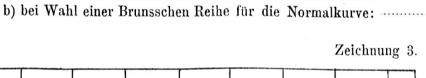
¹⁾ Mit Rücksicht auf den kontinuierlichen Charakter der Funktion und der Kurve musste eine Dezimalstelle mitgenommen werden.

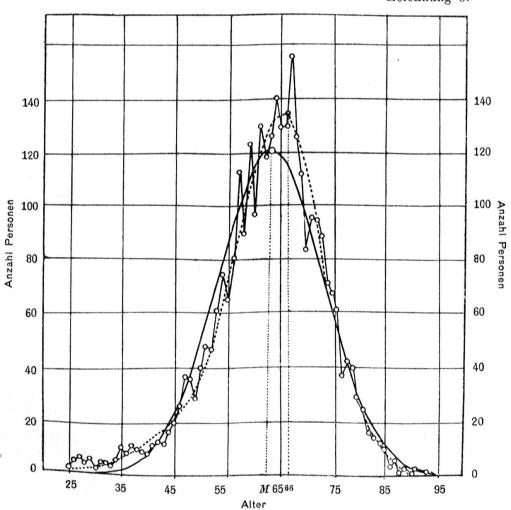

Tabelle 5 (Schluss).

	oene o (oci							
	$1000 \mathbb{S}(X)$	1000 S(x)	1000 B(x)		Theoretische Altersverteilung der			
x=	$(X=x+\frac{1}{2})$			"Rentner" der E.V. K. für die Jahre 1921—1924: N·B(x)				
$X-\frac{1}{2}$	1 2/			Janr	e 1921—		25 (x)	
21 8	(Formal 4)	(Formal 7)	(Formal 0)	Ende 1921	Ende 1922	Ende 1923	Ende 1924	
	(Former 4)	(Formel 7)	(Former 9)	N=2174	N=2698	N = 3042	N = 3465	
(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
58	286,8	270,4	32,1	69,8	86,6	97,6	111,2	
59	321,4	303,8	34,6	75,2	93,4	105,3	119,9	
60	358,7	339,7	37,3	81,1	100,6	113,5	129,3	
61	398,2	378,2	40,0	87,0	107,9	121,7	138,6	
62	439,4	418,6	41,3	89,8	111,4	125,6	143,1	
63	482,2	460,7	42,8	93,0	115,5	130,2	148,3	
64	525,5	503,8	43,2	93,9	116,6	131,4	149,7	
65	568,6	547,0	43,3	94,1	116,8	131,7	150,0	
66	612,5	590,6	43,7	95,0	117,9	132,9	151,4	
67	654,8	633,9		92,6	114,9	129,6	147,6	
	004,0		42,6	88,5	100.0	123,8		
68	695,6	675,4	40,7		109,8		141,0	
69	734,3	715,2	38,8	84,4	104,7	118,0	134,4	
70	770,7	752,8	36,4	79,1	98,2	110,7	126,1	
71	804,2	787,8	33,5	72,8	90,4	101,9	116,1	
72	834,8	819,9	30,9	67,2	83,4	94,0	107,1	
73	862,2	848,9	27,4	59,6	73,9	83,4	95,0	
74	886,4	874,7	24,2	52,6	65,3	73,6	83,9	
75	907,5	897,3	21,1	45,9	56,9	64,2	73,1	
76	925,7	917,0	18,1	39,3	48,8	55,1	62,7	
77	940,9	933,6	15,3	33,3	41,3	46,5	53,0	
78	953,7	947,6	12,7	27,6	34,3	38,6	44,0	
79	964,2	959,2	10,5	22,8	28,3	31,9	36,4	
80	972,7	968,7	8,5	18,5	22,9	25,9	29,5	
81	979,4	976,3	6,7	14,5	18,1	20,4	23,2	
82	984,6	982,2	5,3	11,5	14,3	16,1	18,4	
83	988,6	986,7	4,0	8,7	10,8	12,2	13,9	
84	991,7	990,3	3,1	6,7	8,4	9,4	10,7	
85	994,0	992,9	2,3	5,0	6,2	7,0	8,0	
86	995,6	994,8	1,7	3,7	4,6	5,2	5,9	
87	997,0	996,4	1,3	2,8	3,5	4,0	4,5	
88	997,7	997,4	0,8	1,7	$\overset{0,0}{2,2}$	$^{1,0}_{2,4}$	2,8	
89	998,3	998,0	0,6	1,3	1,6	1,8	2,1	
90	998,8	998,5	0,4	0,9	1,1	1,2		
91	999,0	998,9	0,3	0,6	0,8	0,9	1,4	
92	999,2		$0.3 \\ 0.2$	0,4	0,5	0,6	1,0	
	000,4	999,2 999,3		0,4	0,5		0,7	
93	999,4	999,5	0,2			0,6	0,7	
94	999,5	999,5	0,1	0,2	0,3	0,3	0,3	
95	999,6	999,6	******					
	1		1000,0	2174,0	2698,0	3042,0	3465,0	
1	1	1		1				

Die Altersverteilung der Rentenbezüger bei der E. V. K. am 31. XII. 1923.

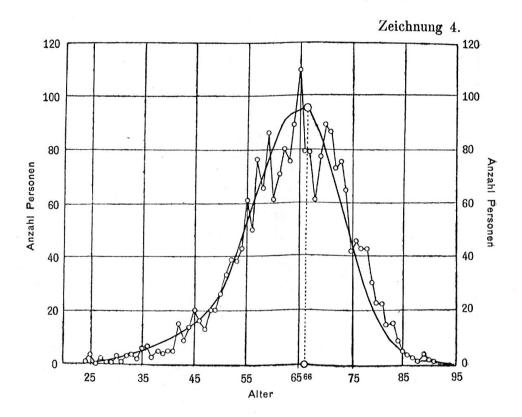
Altersverteilung der "Rentner" der E. V. K. Ende 1923.

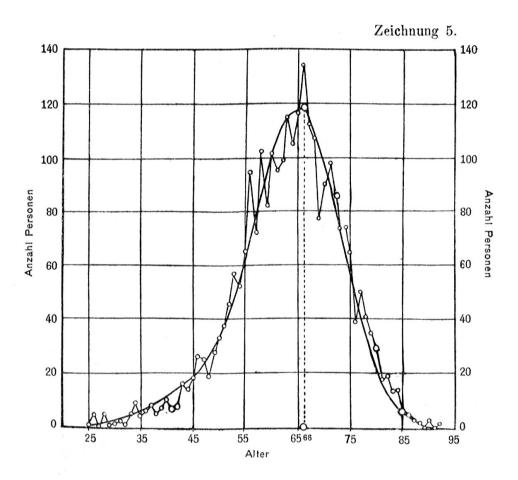



Altersgliederung der "Rentner" der E. V. K. Ende 1923.

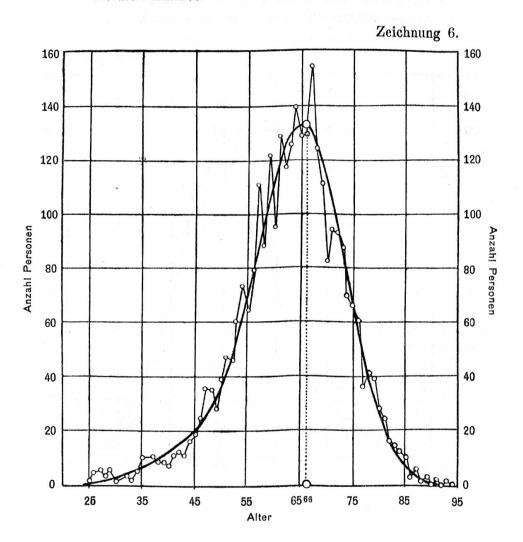
Wirkliche Zahl der Rentner vom Alter x o———o

Theoretische Zahl der Rentner vom Alter x und zwar:

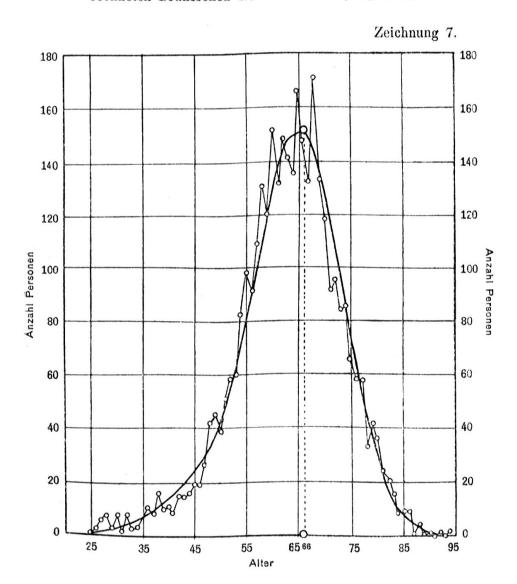

a) bei Wahl der Gaussschen Fehlerkurve als Normalkurve:———


Altersgliederung der "Rentner" der E. V. K. Ende 1921.

- o----o Wirkliche Zahlen (2174 Personen insgesamt).
- Theoretische Zahlen bei Wahl der für 1923 empirisch berechneten Brunsschen Reihe für die Normalkurve.


Altersgliederung der "Rentner" der E. V. K. Ende 1922.

- ---- Wirkliche Zahlen (2698 Personen insgesamt).
- Theoretische Zahlen bei Wahl der für 1923 empirisch berechneten Brunsschen Reihe für die Normalkurve.


Altersgliederung der "Rentner" der E. V. K. Ende 1923.

- o----- Wirkliche Zahlen (Gesamtzahl 3042).
- Theoretische Zahlen bei Wahl einer Brunsschen Reihe für die Normalkurve.

Altersgliederung der "Rentner" der E. V. K. Ende 1924.

- o----- Wirkliche Zahlen (Gesamtzahl 3465 Personen).
- ------ Theoretische Zahlen bei Wahl der für 1923 empirisch berechneten Brunsschen Reihe für die Normalkurve.

