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Die Wahrscheinliclikeiisansteckung.
Ein Beitrag zur theoretischen Statistik.

Von Dr. Florian Eggenberger.

Einleitung-.
§ 1. Problemstellung.

Eine ganz genaue Ubereinstimmung der effektiven
mit der erwartungsmässigen Bernoullischen Dispersion
ist eine Seltenheit in der Statistik. Sind diese Resul-
täte der Statistik ein negativer Beweis der Anwend-
barkeit der Wahrscheinlichkeitsrechnung in der Statistik?
Wir müssen uns bei der Beantwortung dieser Frage
klar vor Augen halten, dass man zur theoretischen

Ermittlung der Dispersion in ausgedehntem Masse von
dein Bernoullischen Urnenschema Gebrauch macht.

Daraus folgt, dass die gefundenen Relationen unmittel-
bar nur bei solchen Aufgaben Anwendung finden

können, die sich auf das genannte Schema reduzieren
lassen. Der Anwendungsbereich beschränkt sich somit
auf Reihen, die analog aufgebaut sind wie solche, die

vom Bernoullischen Schema herrühren. Auf die oben

aufgeworfene Frage werden wir also erklären :

Die beobachtete Stabilität stimmt deswegen bei

weitem nicht mit der erwartungsmässigen überein, weil
sich die Vorgänge im statistischen Material nicht durch
das einfachste Bernoullische Urnenschema oharakteri-
sioren lassen. Bevor wir bei einem bestimmten stati-
stischen Material die Anwendbarkeit der Wahrschein-
lichkeitsrechnung verneinen, müssen wir vor allem die
Struktur von diesem Material studieren und können
dann höchstens erklären: Mit den vorliegenden Mitteln
der Wahrscheinlichkeitsrechnung kann das betreffende
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statistische Material nicht auf den methodologisch wich-
tigen Korn untersucht und dieser von der Schlacke
des Zufälligen gereinigt werden.

Betrachten wir etwa als Beobachtungsmaterial die

Bevölkerung eines Schweizerkantons, als Ereignis das

Eintreffen eines Unfalles, der bei einem Individuum
mindestens einen Tag Arbeitsunfähigkeit hervorruft.
Den Umfang einer Bcobachtungsserie begrenzen wir
mit einem Kalenderjahr. Wir betrachten 40 Serien

(1880—1919). Wird die effektive mit der erwartungs-
mässigen Dispersion übereinstimmen Die Antwort wird
verneinend ausfallen. Beim wiederholten Ziehen aus
einer Urne wird sich die Einzelwahrscheinlichkeit nicht
ändern ; bei unserm Beispiel ändert aber die Unfall-
Wahrscheinlichkeit von Serie zu Serie (Entwicklung
der Industrie). Wir müssen ein Urnenschema kon-

struieren, das unserem Material besser entspricht, d. h.
J wir müssen die Einzelwahrscheinlichkeiten für die Urne

von Serie zu Serie ändern.
Es erscheint uns sofort begreiflich, class das gewöhn-

liehe Urnenschema etwa nicht auf die Statistik der

Todesfälle infolge Dampfkesselexplosionen angewendet

werden kann. Die Züge aus der gewöhnlichen Urne
sind unabhängig von einander, was bei den oben

erwähnton Todesfällen nicht behauptet werden kann,
da bei einer Dampfkesselexplosion gewöhnlich mehrere
Personen ums Leben kommen. Die Leben der einzelnen
Personen sind miteinander solidarisch. Ein Todesfall

infolge Dampfkesselexplosion vergrössert für die übrigen
Beteiligten die Wahrscheinlichkeit, bei einer solchen

Explosion zu sterben. Das ideale Urnenschema für dieses

Material wäre nun ein solches, bei welchem die einzelnen

„Züge*"' in derselben Weise von einander abhängig sind
wie die eben erwähnten Todesfälle. Die ganze Sache
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würde aber so kompliziert, dass damit für die Statistik
nichts gewonnen wäre. Als wichtige Bedingung müssen

wir noch stellen: Das Schema niuss einfach sein

Das Hauptziel der vorliegenden Arbeit ist, ein

einfaches wahrscheinlichkeitstheoretisches Schema, das

die Verkettung der Einzelfälle bei Explosionen, Epi-
demien usw. in annehmbarer Annäherung beschreibt

(Definition in § 3), mathematisch und statistisch zu
untersuchen.

§ 2. Statistisches Material.
Haben wir nun ein bestimmtes Schema, das ein-

fach ist und von dem wir vermuten, dass es die Vor-
gänge der Wirklichkeit in der Hauptsache gut wieder-
gibt, so ist es dann einzig und allein Sache der Erfah-

rung, und damit der Statistik, den Beweis zu erbringen,
dass jene Sätze, die wir aus unserem Schema her-

leiten, auch wirklich brauchbar sind. Trifft das zu,
dann haben wir mehr gewonnen, als wenn wir für
bestimmte, beobachtete Ereignisse eine möglichst ein-
fache Funktion gefunden haben, die uns dieselben mit
der gewünschten Genauigkeit wiedergibt. In der Tat
entspricht das Urnenschema der Struktur der Ereig-
nisse ; von der Funktion können wir aber nichts wei-
tor aussagen, als dass sie innerhalb der in Betracht
kommenden Grenzen die Erfahrungsresultate wieder-
gibt. Natürlich ist den Sätzen, soweit sie sich in einem
gegebenen Falle als brauchbar erweisen, immer nur
die Bedeutung einer Annäherung zuzusprechen.

Um das Urnenschema von Hrn. Prof. Polya, auf
das ich im nächsten Paragraphen zurückkommen werde,
auf seine Anwendbarkeit zu prüfen, habe ich alle Sätze,
die daraus abgeleitet wurden, an verschiedenem stati-
stischem Material, der Bevölkerungsstatistik entnommen,
geprüft. (Betreffend Quellen vgl. Zahlentafel 1 bis 11.)



In don ersten Beispielen befasse ich mich mit der
Statistik der Todesfälle bei Explosionen. Bei allen Bei-
spielen wurde zuerst untersucht, ob das einfache Urnen-
schema von Bernoulli, d. h. in unserem Falle, wogen
der Seltenheit der Ereignisse, das Poissonsche Gesotz

Anwendung finde. Erst wenn wir festgestellt haben,
dass die Reihen der beobachteten Ereignisse nicht

analog aufgebaut sind wie solche, die vom gewöhn-
liehen Schema herrühren, schreiten wir zu weiteren

Untersuchungen. Wie ich schon im vorangehenden
Paragraphen bemerkt habe, müssen wir annehmen,
dass die Todesfälle bei Explosionen (nicht aber die

Explosionen) von einander abhängig sind. Diese An-
nähme wurde durch genauere Untersuchungen bestätigt.

Im weitern habe ich die Statistik der Todesfälle

an einzelnen Infektionskrankheiten (Pocken, Scharlach)
in der Schweiz untersucht. Das Resultat der Unter-
suchungen ergab die Nichtanwendbarkeit des gewöhn-
liehen Urnonschomas auf diese Infektionskrankheiten.
Die Sätze hingegen, die wir aus dem Urnenschema

von Pölya herleiten, finden sich in sehr befriedigender
Weise bestätigt, und dadurch ist die Brauchbarkeit
dieses Schemas bewiesen. Eine Untersuchung der Sta-

tistik der an Pocken im Kanton Zürich

(15. Eebr. 1919 bis 22. September 1923) hat ergeben,
dass die Reihen der Erkrankungen auch diesem Schema

gemäss aufgebaut sind.

Ferner wurden dann noch an zwei Beispielen,
der weiblichen Selbstmorde in 8 deutschen Staaten
und der tödlichen Unfälle bei 11 Berufsgenossonschaften,

einige Sätze über Inhomogeneität geprüft.



Kapitel I.

Theorie der Wahrscheinliehkeits-
ansteekuiig.

§ 3. Die Struktur der Wahrscheinlichkeitsansteckung.

Die Konstruktion eines Urnenscheinas, das einfach

ist und in der Statistik auf den ersten Blick unerwartet

gute Resultate liefert, sobald es sich uni „ansteckende
Wahrscheinlichkeiten^ handelt, verdanken wir Herrn
Prof. Dr. Pôlya in Zürich. Die Resultate der Unter-
suchungen über die Anwendbarkeit des Urnenschemas

von Pôlya auf epidemische Krankheiten, bei denen die
Todesfälle in gewisser Hinsicht solidarisch sind, wurden

von mir bereits veröffentlicht (vgl. Pôlya 2).
In den ersten zwei Kapiteln der vorliegenden

Arbeit soll die Theorie der Ansteckung zunächst weiter

ausgebaut werden, und dann sollen vor allem die Kon-

Sequenzen dieser Theorie für die Statistik diskutiert
werden. Der Vollständigkeit wogen finden sich in

diesem, wie in dem nächstfolgenden Kapitel zum Teil
Resultate, die bereits a. a. 0. veröffentlicht wurden

(vgl. Pôlya 2).

In einer Urne befinden sich zu Beginn des Spieles
A rote und Ä schwarze, insgesamt IB -(-$ rV Kugeln.
Wir ziehen nun eine Kugel aus der Urne und legen
hierauf 1 -(- /| Kugeln von der Farbe der Gezogenen
in die Urne zurück. Aus der Urne, die nun iV -f- G

Kugeln enthält, machen wir einen zweiten Zug und
legen wiederum 1 -f G Kugeln von der Farbe der
Gezogenen in die Urne zurück. Diese Operation wieder-
holen wir w-mal. Nach dem «-ten Zug befinden sich

in der Urne iV -f- «zl Kugeln. Haben wir in diesen

w Zügen i* rote und ,s schwarze Kugeln gezogen,
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/• .s — «, so setzt sich der Inhalt der Urne aus

/t -(- >'/) roten und <,9 -)- s/1 schwarzen Kugeln zu-
sammen '). Die Wahrscheinlichkeit,

-B aS'

im 1 .Zug rot bzw, schwarz zu ziehen ist bzw.

-B 1 /{
im 2. Zug rot bzw. schwarz zu ziehen ist t-tw—;

bzw.
-y—.—J, wenn im 1. Zug rot gezogen wurde,

im 2. Zug rot bzw. schwarz zu ziehen ist

I "5+^ 1 y 4bzw.
]y~j—j,

wenn im 1. Zug schwarz gezogen wurde,

im (w-f-1). Zug rot bzw. schwarz zu ziehen ist
Ä + s/l

bzw. wenn in den ersten « Zügen >• rote und
iV-p-w/l'

s schwarze Kugeln herausgekommen sind.

Falls /I > 0 ist, vergrössert der Zug einer roton
Kugel die Chancen für rot, der Zug einer schwarzen

Kugel diejenigen für schwarz. Man kann daher dieses

Schema auch DrwenscAem« der C/iffncenneriwe/w?««^

nennen.
Im Falle /I > 0 lässt sich die Ziehungsreihe ins

Unendliche fortsetzen. Ist hingegen /I << 0, so ver-
schlechtem sich die Chancen mit dem Erfolg. Die

Ziehungsreihe ist nicht mehr unbeschränkt fortsetzbar.
Soll die Ziehung im Falle /I <C 0 bis zum w-ten Zug
fortgesetzt werden können, so müssen auch bei den

extremsten Eventualitäten nach dem (w — l)-ten Zug
noch rote und schwarze Kugeln in der Urne vorhanden
sein, d. h. es müssen folgende Ungleichungen gelten

') Vom Zufall abhängige Grössen sind durch Fettdruck
hervorgehoben.
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£ + (m—1)/I>0, S + (w—1)/I>0
und somit

Ä _ S
/( > — -, zl >M — 1' "

M —- 1
'

§ 4. Die Wahrscheinlichkeiten.

Wir fragen nun nach der Wahrscheinlichkeit
in w Zügen aus der im vorhergehenden Para-

graphen definierten Urne der ChancenVermehrung

r rote und s schwarze Kugeln zu erhalten, wobei
s — » — r ist, und für r die Worte 0, 1, 2, w

in Betracht kommen. Nach dem Multiplikationssatz
der Wahrscheinlichkeiten ist die Wahrscheinlichkeit
in den ersten r Zügen nur rot, in den folgenden
s — « — r Zügen nur schwarz zu ziehen, gleich

BÇB Cd) (/Ui-2/1)... (/i'-h|r-l]/:l)»S'(/5'l-/l)... Q9+[s-l]zl)
iV(2V+d)(iV+2/l) ; (N+[n-l]d)

*

Dieser Quotient stellt aber zugleich auch die

Wahrscheinlichkeit dafür dar, dass r bestimmte unter
den w Zügen rot, die übrigen schwarz ergeben. Denn

wenn man den entsprechenden Produktausdruck der
Wahrscheinlichkeiten der einzelnen Proben bildet, so

erhält man wieder « Brüche, deren Nenner ebenso
lauten wie die Faktoren dos Nenners von (1), die
Zählet- hingegen sind nur in der Reihenfolge vertauscht.
Die Berechnung von kommt somit nur auf eine
Permutation der Faktoren im Zähler unseres Quotienten
(1) hinaus. Da man aber aus « Elementen r auf

".) Arten heraushoben kann, ist die gesuchte Wahr-

scheinlichkeit
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;m ß(£+zl)(£+2/J).. .(A+[r-l]zl) Ä(5+zl)... (S+[s-l]/l)
Pr.. — l/JiY(JV+z() (iY+2J) (IV-i-[n-l]zl)'

Setzen wir zur Abkürzung

A A ,1

^ ^ o, ^ '5 (3),

so erhalten wir

Ar. s

oder auch

(1X1)
h— r (5).

/w\g(g+^)(e+2«>)-(e+[y-il3)g(g+fl)-(g+L«-i II
Wl(l+d)(l+2<S) (l+[w-l]d)

<• '

(1X1)
^r, s /• 1\ '

(l)
Wir werden nun häufig von folgenden bekannten

Identitäten zwischen den Binominalkoeffizionten Go-

brauch machen:

il) (A,) - ("1)

fil (ri) - rn <«>

—a
/r

a-J-7r—1
ft H <*>

W

a\ /r\ /' a \ :

(rl» rn W-

Nun bilden wir zur Kontrolle die Summe der

Wahrscheinlichkeiten, die bekanntlich 1 sein muss.
Nach (5) ist

(WW
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2^
2("D(»i.)
r=o

TIT"
also nach (6)

y,/ ^ y, n-r

(1)
(1J

Mit Hilfe von (7) geht, (5) über in

(*rx*r)
(*r)

r -f s (9)

§ 5. Verlauf der Wahrscheinlichkeiten.

In diesem Paragraphen sei « als fest gedacht, zur
Abkürzung

r, h—r

gesetzt und @ <C o angenommen (was keine wesentliche
Einschränkung bedeutet). Aus § 3 folgt ohne weiteres,

dass ist. Wir wollen nun den Verlauf
« — 1

der Reihe der Wahrscheinlichkeiten

l>o» i>i> • • • P» (^)
untersuchen.
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Aus der Annahme o<o folgt unmittelbar

0 (o+d) (a-(—2<5) (0 -(- [n—1] 4)

> ff (ff+<5) (ff+2d) • • (ff 4" 14 1] <5)

also gemäss (4)

Um weiteres zu erfahren, bilden wir nun den

Quotienten

j>,
__

w — >• + 1 g _|_ (r—1) d

r <7 + (w—r) d

ff
« -p 1 — /

A*0
1+1 « + l_r
r 0

»+^-r
r — 1, 2 w.

Es findet im Übergang von zu ^ Abnahme
oder Zunahme statt, je nachdem /'(?') <C 1 oder /'(r)

> 1 ist.
Man beachte nun zweierlei : Erstens ist die Eunk-

tion /(r) eine stetige Funktion von r, wenn r als eine

im Intervalle 1 < r < « stetige Veränderliche aufgefasst

wird. Zweitens hat die Gleichung

+•) 1

nur eine Wurzel

_ (w+1) (g—d) _ (w+1) (ff—4)
0 — 3 1 —2d"

Es folgt hieraus : die Funktion /'(?•) kann entweder
keinmal oder einmal durch den Wort 1 hindurchgehen.
Wenn /'(l) — 1 und /'(w) — 1 von gleichem Vorzeichen
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sind, so liegt ausserhalb des Intervalles (1, «),

/'(r)—1 bewahrt daselbst ein festes Vorzeichen, und
die Reihe der Wahrscheinlichkeiten (10) ist monoton.
Palls /(l) — 1 und /(«)— 1 von entgegengesetztem
Vorzeichen sind, liegt innerhalb des Intervalles (1, w),

/'(r) — 1 ändert das Vorzeichen im Punkte r
Die Reihe der Wahrscheinlichkeiten (10) ist sowohl

links von r. als auch rechts von monoton, aber links
in anderem Sinne als rechts: ist /"(l) )> 1 )> /"(-»), so

nimmt die Reihe (10) anfänglich zu, später ab (glockon-
förmiger Verlauf), ist dagegen /'(t) <(1 < /"(«), so nimmt
die Reihe anfänglich ab, später zu (U-förmiger Verlauf).
Es ist

/(!) —1 "ö — " — («—1)

/•(«) _ 1

«3 — <3 + a '

g -|- (M—1) <5 — wo

«o

und die möglichen Fälle sind in folgender Tafel zu-

sammengofasst :

d zwischen /XI)—1 /'(»)-! Verlauf

£ — £
M—1' ^

M 1 + — glockon-
förmig

»—1' M — 1
— —

monoton
fallend

0 o
— + U-förmig ;

Es ist bezeichnend, dass die U-förmige Kurve
durch grosse Chancenvermehrung hervorgerufen wird.
Die U-förmige Kurve, mit zugehörigen statistischen
Beispielen, findet sich in den Lohrbüchern der Statistik

4
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verschiedentlich erwähnt (vgl. Yule, S. 103). Pearson
hat auch eine Funktion ermittelt, die den "Verlauf'von
solchen statistischen Reihen genügend gut wiedergibt.
Ein Schema von Wahrscheinlichkeiten, die eine U-för-
mige Kurve erzeugen, ist meines Wissens bis anhin
nicht erwähnt worden. Wir haben hier also eine mög-
liehe Erklärung für den U-förmigen Verlauf der Reihe
der Wahrscheinlichkeiten gefunden.

Es sei beim glockenförmigen Vorlauf p das Maxi-
mum der Reihe der Wahrscheinlichkeiten (10). Dann ist

/'(,") ^ > 1, /•("+!) < l.
ty-r Vi

Für y erhalten wir somit die Ungleichung

/"OoO + l-

Bezeichnen wir wie üblich die zu a links benach-
barte ganze Zahl mit |a], dann ist

'(w+1) (Ê>—d)
Kl 2d (11).

Bei den Untersuchungen dieses Paragraphen wurde
die Diskussion des Gleichheitszeichens in den Unglei-
chungen weggelassen. Der Fall des Gleichheitszeichens

ist in der Tat praktisch belanglos und sofort durch
Kontinuität erhältlich.

Wie wir aus obiger Tabelle sehen, kommen wir
mit wachsendem (5 von der Glockenform zur U-Form,
indem wir das Gebiet des monotonen Fallens durch-
schreiten. Dieses Gebiet wird kleiner, je näher jana
kommt und fällt für g er weg. In diesem Fall haben

wir glockenförmigen Verlauf für d U-förmigen
1

^
Verlauf für (5 Dem Ubergang von der Glocken-



form zur U-Form entspricht das Passieren des Wertes

d durch —. In diesem bemerkenswerten Spezialfall
1

« ö <5 sind «//e JFaftrscfteiwlit'ftfteiiera ein-

ander r/deichj A; 5 <•*«•&«> /; —

§ 6. Berechnung der Erwartungen.

Bezeichnen wir die mathematische Erwartung von

a mit {rtj (der Gebrauch der spitzen Klammern {}
wird für diesen Zweck reserviert), so wird

{(;)! " 2 (ft)

also nach Formel (9)

(ft
r+4=ii (*D

Nun ist aber nach (8)

er) -œund daraus folgt

2 (tsxwr)l/»'\l r-M=»
H'Ji "

^+.-a

er)"zer)ttr)
r-f-s=n

(TT '
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nach (6) und (7) erhalten wir somit

4+*-i
t /r\ l __

V /r / /-}+«-!
H^/' ' \ w — &

4 (|_i) c„_4), (i+A-l)!

g/g
<H a «

!(]+*) Ü+^-l) A" (w—7r)

_ M g (g + *) (g + 2 <S) • • • (g + [fr — 1] d)

W 1 (1 + <5) (1 + 2 ,5)... (1 + [/£ — 1] i5)'

{ r ('/• — 1) (r - 2). (r — /c.+ 1)}

efe+a)fe+23)...fe+[ft-i]i)
1 (l+<3) (1+2(3)... (1 + [fc-l] (5)

«(w-l)...(w-fc+l). (12)

Für /c 1 bzw. 2 erhalten wir die Formeln für
den Mittelwort und das Quadrat des Schwankung-
masses

' =»g (13)

{r (r — 1)} « (» — 1)

_g2 {(?. __ {?.})*} {».3} _ {».}*

wg(l— g)
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§ 7. Diskussion des Schwankungsmasses.

Wenn man bei einer statistischen Untersuchung
Serien von verschiedener Länge betrachtet, indem man

Woche, Monat oder Jahr als Beobachtungsreihe wählt,
variiert man eigentlich die Grösse, die wir in der wahr-
scheinlichkeitstheoretischen Betrachtung mit « bezeich-

nen und Versuchszahl nennen. Welchen Einfluss hat

es auf das Schwankungsmass, wenn wir die Serien-

länge um ein /c-faches vergrössern, d. h. wenn wir zum

Beispiel statt Monate Jahre als Serieneinheiten nehmen?
Um dies genauer studieren zu können, betrachten wir
eine Urne der Chancenvermehrung, wie wir sie im § 3

kennen gelernt haben. (Zu Beginn seien iü rote und
S schwarze Kugeln in der Urne, _ß -|- $ iV.) Wir
machen nach den Vorschriften des § 3 « Züge aus

der Urne. Nach diesen Proben führen wir solche

aus nach derselben Methode usw. Im ganzen machen

wir «j -f- «2 + •••-)- W/t ~ ^ " Züge. Bei diesem

System der aufeinanderfolgenden Serien unterscheide
ich zwei Fälle:

1. Mc/R ZMsammew/iäM^ewde »S'e/v'e« : Wenn wir
nach den ersten «. Zügen die Urne wieder in ihren

Ausgangszustand vorsetzen (Inhalt Ä rote und <S schwarze

Kugeln), so ist das Resultat der Probon der zweiten
Serie unabhängig vom Ergebnis der ersten Serie. Die
einzelnen Serien sind unabhäng voneinander und

hängen in keiner Weise zusammen. Es sei die Wahr-
scheinlichkeit, in der )-ten Serie r „rote" Züge zu
machen Wir erhalten somit

y=0 r=0

• • • + &•'«(>
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ZZ^-w^'
7=0 r=0

K(i+V)+ • • +«*a+V)]
(15).

Dor Mittelwert der Ereigniszahl und das Quadrat
des Schwankungsmasses sind proportional der Anzahl
der vereinigten Serien, sobald wir gleich lange Serien

vereinigen •» • • • «.).
2. i?nsammen/iende Serien: Lassen wir nach

den ersten Proben die Urne unverändert, so befinden
sich zu Beginn der zweiten Serie A -f-'/'/l rote und

schwarze Kugeln in der Urne. Das Ergebnis
der zweiten Serie ist abhängig vom Inhalt der Urne

zu Beginn dieser Serie. Die Serien hängen zusammen.
Das Ergebnis der letzten Serie ist von den Resultaten
aller vorangehenden abhängig. Der Effekt der Proben
ist derselbe, wie wenn wir es nur mit einer Serie zu

tun haben und aus der Anfangsurne (A rote und A

schwarze Kugeln) /cw -j- -(- • • + «j. Züge
machen. Aus dieser Überlegung erhalten wir nach (13)
und (14), indem wir « durch » •/r ersetzen

Bei zusammenhängenden gleichartigen Serien ist
das Quadrat des Schwankungsmassos eine (jf

Punktion der Anzahl der vereinigten Serien, nicht
bloss eine lineare wie im vorangehenden Fall.

/\ Zr • H r»

(16).
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Dor Vergleich der effektiven mit den theoretischen

(Bernoullischen) Schwankungen führte auf die Berech-

nung des Lexisschon Dispersionskoeffizienten. Im Fall
der homogenen Chancenvermehrung wird dieser Kooffi-
zient nach (14) gleich

l/ M V 1-f-«d
l/»g<'-g>T+T /r+13

i Mp(l—p) I 1 ' t ' ''

Im gewöhnlichen Fall der unabhängigen Ereig-
nisse (d 0) ist also der Dispersionskoeffizient gleich
1 (normale Dispersion). Wir machen nun die Annahme,
dass sich die Streuung nur unwesentlich von derjenigen
der unabhängigen Wahrscheinlichkeiten unterscheidet,
d. h. dass der Dispersio«s/coe//i2fewt bei wachsendem

« ewtifo'ch hZei&t.

Im allgemeinen hat man es bei allen statistischen

Untersuchungen mit einer sehr grossen Versuchszahl

zu tun. Dementsprechend lässt man, in sachgemässer
mathematischer Abstraktion, « gegen 00 streben. Zwei
Grenzfälle haben sich hierbei als wichtig erwiesen :

I. Der Gre»a/aW, den man mit Herrn
Prof. Polya auch als „Grena/a^ «1er ^eioöhraA'cheu Ar-
eh/wisse" bezeichnen könnte. In diesem Fall ist p fest,

« strebt gegen 00.
II. /der Po esso ms che GreM2/aZ£, den man nach

Herrn v. Mises treffend als den ..Grewa/o// de/' seîtewew

Areipnasse" bezeichnet. In diesem Fall ist wp h

gesetzt, /« fest, m strebt gegen 00, p — gegen 0.

Analoge Grenzfälle können auch dann betrachtet

werden, wenn die IFahrscheräKchheifew wicht wwah-

htiwpip sind. Wir wollen dieselben in den nächsten
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Paragraphen bei Annahme der Chanoenvermehrung
untersuchen. Wir können nach den Ausführungen am

Anfang dieses Paragraphen nur dann ein vernünftiges
Resultat erwarten, wenn wir für beide Grenzfälle die

Bedingung hinzufügen, dass wd cZ gesetzt, rZ fest

bleibt, während d — — gegen 0 strebt („schwache

Chancenvermehrung"). Aus § 3 erhalten wir für die

Fortsetzbarkoit der Ziehungsroihen die Bedingung

r>-^, r>.

rZ>— g rZ>— a
— 1 M — 1

In dem zum Laplaceschen analogen Grenzfall sind
die Reihen sowohl für Chancenvermohrung wie für
Chancenverminderung (negatives rf) fortsetzbar, sofern

(I > — g, cZ )> — o

ist. cZ muss also immer grösser als —sein. Das Ana-

logon zum Grenzfall der seltenen Ereignisse beschränkt
sich auf schwache Chancenveme/wu-wg, da rZ _> 0 sein

muss.

§ 8. Der Grenzfall gewöhnlicher Ereignisse.

FßZ/ssaZ^.- Sind ft, ft, ft, ift, ft, ft posi-
tive und ft, ctg, ft, ft, ft beliebige konstante

Grössen, so gilt für ins Unendliche strebendes n, so-
fern ft -f" % ~f" • ~f" + ft^ und ft
+ «2 -j- • • • ft ft + ft + • • • ft ist
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A
/'(VA/A«) AM+AA) • • AA+/Ä«)

A\ "/«!'' • • «' y- ,*-i £ "* 4 ^
2ti \~i /ft,... J, S —-1— •

£ y y

In dor Tat ist /'(s) ~ ]/ 2,-r / 2 e ', wenn s gegen
-)- oo strebt.

/•(««+a/ü)-y^(i+-vr+" A,--f-y«
* ffi»\ apt/ W

^ ^a«+a-/¥ g-a» ]/^
weil

log !+
a y w

»+«1/ «——
2„—«y«

a~ a

aw -h a l7- -
1\ / «

2/ Va (/ w 2a^w

22 2

./ - u! ./ C<

f... j-a (/«

somit ist unser Hilfssatz bewiesen.
Zum Grenzfall gewöhnlicher Ereignisse mit Chan-

cenvermehrung, der demjenigen von Laplace entspricht,
gelangen wir, wie schon im § 7 erwähnt wurde, indem
wir p und w<3 </ konstant annehmen, d. h. g und <7

sind fest, während « gegen 00 konvergiert. Nach
Formel (9) ist

öfr(*r.
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Pernor lässt sich I
^ | wie folgt durch die Gamma-

fun'ktion ausdrücken :

Ha-fl) a/'(a)
/ (6-1-1) /'(a-6+1) (a— 6) Z>r(&)r(a-&)'

»m»)
r.s.r(r)T(s) 7£MïMi+"

Wir betrachten nun dasYerhalten der Wahrschein-
lichkeiten in der Umgebung des Mittelwertes und setzen

r Mß-j-ay« und s — «0 —.ccj/n, dabei halten wir
£>, (ü und a; fest und lassen w variieren und ins Un-
endliche wachsen. Wir erhalten

M U(w) U^«ß^-^+a5(/« j -xj/u j

(«ß+a;^M)(-«o-x'j/M) /"(wg-t-œ/w) f(w<j-as'/w)

Wir betrachten nun die in der folgenden Tabelle

aufgeführten Werte der Grössen a «, &, /i

I. K/\
x)

V/ î 2 3 4 5

»
y

1
ö 1

7/ + «
0

17+"
1

7

a
y

0 — œ 0

z>

y
<? a

t?

d
a

7 7+*

— a' 0 0 • 0
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Es ist

Zs-2>,- o

y=f y= 1 O OX

"1
"1 ••

«4

ft,
1,

«1
ft,

«4
«4

7»1 65

h, /lft, 6?®
5

nach unserm Ililfssatz erhalten wir somit

1 / o \ ' / œ® I
' d <J t 1 '

•»
* f ^ "2" 1/p"2 Ls(l+<i) + -.(l+d)

«»öl w / r î +r
1 »'

I/? 7î~r^ e" «•»+«^27?WOö(l+a)

Setzen wir nun noch

r « o -f- ü « f> -f-® F«, -p>
w

so erhalten wir

I

». — —-e '2«««(i+d) (1?),
|/ 2jï W £) a (i—)-rf)

für d 0 ergibt sich die bekannte Formel

1 _JL
«r, ~ ,/ „ <"

was zur Kontrolle dienen mag.
Als Anwendung von (17) betrachten wir das

„Schema der nicht zurückgelegton Kugeln". Aus einer

Urne, in der sich -)- »9 — iV Kugeln befinden,
machen wir a Züge, ohne jeweilen die gezogene
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Kugel wieder zurückzulegen. Wie gross ist, unter der

Voraussetzung, dass iV und w grosse Zahlen sind, die

Wahrscheinlichkeit, dass wo -)- Z rote und wo —
schwarze Kugeln gezogen werden, wenn

Ä 5
® ~ iV ' " ~ iV

ist? In dem vorliegenden Fall ist

/l=-l, <> --, << --yi
die gesuchte Wahrscheinlichkeit wird daher nach

(17) gleich

~|/2wwp

w — — p „ v—».
,9 / "XT 2» OCT———' - ' iV—w iv

ZV

Als Bedingung der Fortsetzbarkeit der Versuchsreihe
erhalten wir nach dem vorangehenden Paragraphen

w w

Damit die Reihe fortsetzbar sei, ist auf alle Fälle
erforderlich, dass

1^1d> — g, -^<2' d. h. iV—w>r< isti).

i) Diese Bemerkung scheint Herrn E. Czuber entgangen zu
sein (vgl. Bd. 1, S. 183), da er nur fordert A — n muss gross
sein. Er hat damit stillschweigend eine Abänderung der Spielregel
angenommen. Diese Abänderung igt aber für das Endergebnis
unwesentlich, was auch aus der Ubereinstimmung der Formeln
für die gesuchte "Wahrscheinlichkeit hervorgeht.



§ 9. Der Grenzfall seltener Ereignisse.

Das Analogem zum Grenzfall seltener Ereignisse,
d. h. zum Poissonschen Grenzfall, erhalten wir bei An-
nähme der Chancenvermehrung, wie wir im § 7 ge-
sehen haben, indem wir «£> /t und wd — d setzen,
/( und d fest halten und « gegen oo konvergieren
lassen. Wir erhielten im § 8 für die Einzelwahrschein-
lichkeit

da aber

r.s.r(r)r(s)r(f)r(^)r(I-H

np /;, wd d, ß —, a 1 ——, d
^
'M

ist, wird

'Ä
i ' (3+' /'(u)

r „/7t
,d)

1 /'I
d d

1—/i)
~d~

1 ''('?»)
Im Falle gewöhnlicher Ereignisse (vgl. § 8) waren

bei ins Unendliche strebendem w alle Argumente der

Gammafunktionen, die in />,. 4.
auftraten, bei der ge-

machton Annahme über r, grosse Zahlen, die auf die

Form an -f- «[/« gebracht worden konnten. Dadurch
fand der Hilfssatz Anwendung.

Im Falle der seltenen Ereignisse sind r und ^
feste Zahlen (wir betrachten nur Werte von in der

Umgebung des Mittelwertes). r(-|-|-A r(4) und Z'(r)^ w/
sind auch fest. Die übrigen Gammafunktionen hängen



von w in der Art r(««-|-/S) ab, wobei «, /? fest-sind.
Dass /S 0 ist, macht den eigentlichen Unterschied
zu dem in § 8 betrachteten Fall aus. Es genügt jetzt
die folgende einfache Formel :

/'(ßw-fa) (aw-j-a)""*" C "

In. Anwendung hiervon erhält man

/"(— -4-r\ '' ''
1 U / r/1 \d /1-f-of

d ")

~~
1 • 2.3 r

^ ^ ^ _ ^+d)(ft+2d)...(Atfc=l]g (ig).
r!(l+d)7**

Kapitel II.

Seltene Ereignisse.

§ 10. Die Wahrscheinlichkeiten.

In diesem Kapitel befasse ich mich nur mit dem

Grenzfall seltener Ereignisse mit „schwacher" Chancen-

Vermehrung, auf den ich im § 9 hingewiesen habe.

Wir setzen wie dort

np /< zu)' rZ (19)
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und halten und (/ fest, während wir « gegen oo
konvergieren lassen.

Wir bezeichnen ferner mit P den Grenzwertr
/im « und mit 0 den Grenzwert /im </ wo-

-« r, ti—r "r •*?*, «—?*
r»=oo oo

"'ei 1?,. dieselbe Bedeutung hat wie im vorher-

gehenden Kapitel, ^ ^
aber die Wahrscheinlichkeit

im Falle unabhängiger Wahrscheinlichkeiten mit end-
licher Versuchszahl bezeichnet.

Es ist somit

P, - «m*
<)=U

Nach den Entwicklungen des § 9 erhalten wir
aus (18)

p _ /i(/t-fd)(/t-}-2d) (ft-f|)—l]d).

r!(l-f(/)¥+''

bekanntlich ist

und somit

Q /im P ;
(1=0

für y 0 erhalten wir

Po — (1~M) •

(Vgl. Formel (14) „Über die Statistik verketteter
Vorgänge", Pôlya 2, wo diese direkt hergeleitet wurde,
mit Hilfe einer andern Methode). Mit Hilfe der Gamma-
funktionell geht (20) über in
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*/ d y(d+' *)'
'=('+") *W yyy

*./
(l+d)~(: '{>

/'c+i)y
Nun ist aber bei grossem «, angenähert schon für

« > 10, genügend genau

w»r(w) w! n""*"ä"e~"^27r-f- • -j

/! 1
A +^+T

P
(i+d)~4 / d y (d ^')

""'(à (»
|/2^ + —7^—r+...

e-l-'- *Hi+'

&, i
Ä \¥+''-2

ft /--L.
p ^ O+'Q-? (ArlEL ^//if A \l+d/ - ,i

~

A\ „iL \l+d
d

Diese Formel habe ich bei grösserem statistischem
Material stets als Kontrollformel benutzt. P kann aberr
auch durch Rekursion aus P^. erhalten werden. Es ist

_ /i + (-/—!) d
'• r(l+d) '--t- ^
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Eh soi IF dio Wahrscheinlichkeit, class ein Er-r '

oignis genau r-mal eintritt. Unter der
ipiw/cficm der Wahrscheinlichkeitsreihe

w (f IE' 0' t» 2

versteht man die Potenzreihe

(F„+ii> +ff/+...== (?(*).

Insbesondere erhalten wir für die erzeugenden
Funktionen Z?(s) und F(z) der WahrscheinIichkeits-
roihon

^0. ^P ^2 • ' •.
Und Qo» Qp ^2 • • '

oo oo

ü(,)=V7rV r (1+d) »!
r=0 ?*=0 ^ ' '

r--0

£(*)== (l+<Z[l-z]H (24).

r=0 r=0 r=0

Dieselbe Formel ergibt sich auch als Grenzfall für
/im c/ — aus (24).

Auf eine sehr elegante Art erhalten wir aus den

erzeugenden Funktionen die mathematischen Erwar-
tungen von r (r—1) (r—2).. (>»—A—(— 1). (In der Folge
werden dieselben häufig als Momente bezeichnet.) Es

ist nämlich für Chancenvermehrung
5
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{?» ('>•-!) (y-2)... (ï'-A'+l)} ==£] r(r-l)(r-2)... (r-/c+l) P.
r=0

IV ^ r „ /' V V ] r ^
r=0 —* r-0

^(Ä+rf)(Ä+2cO (/H-[/£-l]d)(l+d[l-z]f

{?<(»•-1 (r-2)... (/'-Phi)} A(Ä+d)... (/<+[7<-l KO (26).

Durch Grenzübergang hätten wir dies direkt aus

(12) erhalten. Speziell ergibt sich der Mittelwort {r}
und das Quadrat des Schwankungsmasses

[»•} A," ç* {(?'—A)^} {»•'} — {'/•}" A (1-f-d) (27).

Das erste Studium, das ich an meinem statist-
.scAew ihfa/eri«/! über Chancenvorinehrung unternahm,
bezog sich auf die Einzelwahrscheinlichkeiten. Die

Frage ist folgende: Stimmen die theoretischen erwar-
tungsmässigen Anzahlen innerhalb der erwartungsmäs-
sigen Grenzen mit den beobachteten iiberein

In Zahlentafel 1 betrachten wir als erstes Beispiel
die Todesfälle bei Dam^/'/'ässerexyüosiowew in Preussen

in den Jahren 1890—1909. Den Hinweis auf diesen

Fall verdanke ich Herrn Prof. v. Bortkiewicz (durch
die freundliche Yermittlung von Herrn Prof. Pölya).
Die 20 Beobachtungsjahre wurden zunächst in Kate-

gorien mit gleicher Anzahl Todesfälle pro Jahr einge-
teilt und in den Spalten I und II registriert.

Insgesamt wurden 101 Todesfälle bei Dampffässer-

explosionen verzeichnet (Summe der Produkte der
Stellen der Spalte I mit den entsprechenden Stellen
der Spalte II), also im Durchschnitt pro Jahr 5.05 A.
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Zuerst wurde nun geprüft, ob die Theorie der Unab-

hängigkeit (Poissonsches Schema) befriedigende Resul-
täte liefere. Zu diesem Zweck habe ich die der Spalte
II entsprechenden Werte in Spalte III nach (21)

—Ä7 r
20(^. — 20

j—
berechnet.

Aus der systematischen Abweichung der Spalte lit
von der Spalte II (die berechneten Worte sind für
kleines und grosses r zu klein, für mittleres r zu gross)

überzeugen wir uns von der Nichtübereinstimmung der
Theorie der unabhängigen Ereignisse mit der Wirk-
lichkeit. In den Summenzahlen der Spalten II und III,
die wir in V und YI finden, kommt dieser Gang der

Abweichung noch mehr zum Ausdruck, indem die Ab-
weichung, die in VIII verzeichnet ist, zuerst negativ,
dann positiv ist. Noch deutlicher springt die Nicht-
Übereinstimmung der Theorie, die zu den Wahrschein-
lichkeiten Q führt, in die Augen, wenn man bedenkt,
dass das Quadrat der mittleren Abweichung nach (27)

(für ci 0) /i — 5.05 betragen sollte. Wir multipli-
zieren nun (r—5.05) mit der Anzahl derjenigen Jahre,
in denen genau r Todesfälle aufgetreten sind (Spalte II),
summieren diese Produkte und dividieren die erhaltene
Summe mit der um 1 verminderten Anzahl der Beob-

achtungsjahre, d. h.mit 19 (vgl. Formel 36), und erhalten

24.576, also bedeutend mehr als 5.05.

'•Diese Abweichung liegt, wie man sich leicht über-

zeugt, ausserhalb des erwartungsmässigen Schwan-

kungsbereiches. Nun wollen wir zusehen, ob die Theorie
der Chancenvermehrung bessere Resultate liefere. Nach

(27) ist ç* 7t (1 -f d), also 24.576, und daraus

ist ci =f 3.867 ; nun berechnen wir die Grössen 20 P,.
nach (20), die in Spalte IV aufgezeichnet sind. Die

Summation der Spalte IV wurde in Spalte VII durch-
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geführt, während in der Spalte IX die Abweichung
von V und YII, d. h. die Abweichung der Theorie der

Chancenvermehrung von der Beobachtung registriert
wurde. Die relativ gute Übereinstimmung der Spalten
II und IV bzw. V und VII, die in dem günstigen
Verlauf der Spalte IX (absolut klein, bald positiv, bald

negativ) ihren Ausdruck findet, bekräftigt uns in der

Annahme, dass die Todesfälle bei Dampffässorexplo-
sionen in ähnlichem Zusammenhang stehen wie die

Züge aus der Urne der Chancenvermehrung.
Die praktische Berechnung der Spalten III und

IV wurde durchweg mit der Rekursionsformel durch-
geführt :

p A~|- (r l)rf p „ A

' ~ r(l-M) '' i' '' r ''—i '

P„ und Q. wurden bei diesem, wie auch bei allen
ähnlichen Beispielen, direkt bestimmt (auf 4 Dezimal-
stellen) und daraus die Spalten III und IV mit der
Rechenmaschine (Rekursion) konstruiert. Ausserdem
wurden bei den Tabellen 1, 3, 4, 5 und 6 zur Kon-
trolle jeweilen in Spalte IV einige Zwischenwerte mit
Logarithmentafel und einer Tafel der Gammafunktion
direkt bestimmt.

Wie schon Herr Prof. v. Port/«e!WC3 (durch die

freundliche Vermittlung von Herrn Prof. P<%«) bemerkt

hat, liefert uns die Annahme der Unabhängigkeit bei
den Dampffässerexplosionen (die als Eroig-
nisse registriert) befriedigende Resultate. Die Statistik
dieser Explosionen finden wir in Zahlentafel 2, die ganz
entsprechend Zahlentafel 1 angelegt ist, nur wurden
die Kolonnen betreffend Chancenvermehrung wegge-
lassen. Es ist

Aj 3.3 ± 0.4.1 und ^ 3 + 1.12
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(Über die Berechnung der erwarteten Fehler s. L. v.

Bortkiewicz 1 Wie zu erwarten ist, sind die Todes-

/«Te bei Dampffässerexplosionen in gewisser Hinsicht
solidarisch, die FTpFsiowew selbst hingegen vonein-

ander unabhängig.
Ein weiteres Beispiel der Explosionstodesfälle finden

wir in Zahlentafel 3, die gleich angelegt ist wie Tafel 1.

Diese Zahlentafel 3 der Todesfälle bei den Damj?/'-
/cessrfeajpZosioweM m Frame« 7883—7907 gibt uns zu-
sannnen mit dem ersten Beispiel die Überzeugung, dass

die bessere Übereinstimmung der Theorie der Chancen-

Vermehrung mit der Wirklichkeit nicht bloss davon

herrührt, dass in F., ein Parameter mehr vorhanden ist

als in Q sondern dass das zugrunde gelegte Urnen-
schema die Explosionstodesfälle besser charakterisiert.

Ein Beispiel ganz anderer Art bildet das in Zahlen-

tafel 4 aufgeführte und von mir bereits veröffentlichte

Foc/cewieispie/ (vgl. F. Eggenberger, S. 5 und If.). Die

Berechnungen bieten gegenüber Zahlentafel l nichts
Neues. Obschon wir hier ausser der Ansteckung einen

anderen störenden Faktor (die Inhomogeneität) haben,

gibt uns das Schema der Chanconvermehrung ein befrie-

digondes Resultat.
In Zahlentafel 5, die analog aufgebaut ist wie

Zahlentafel 1, finden wir die Todes/'d/He «w 8cAaWa<A

m der i« dew Jrt/trew 7877—7.900 (monats-
weise Beobachtungen). Im ersten Moment wird man,
beeinttusst durch die günstigen Resultate der Pocken-

Untersuchungen, vermuten, dass die theoretischen Wahr-
scheinlichkoiten jP in befriedigender Weise mit den

Beobachtungen übereinstimmen werden. Der systema-
tische Verlauf von Spalte IX, die die Abweichung der

Theorie der Chancenvermehrung von der Wirklichkeit
angibt, lehrt uns aber das Gegenteil. Wohl stimmt die
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Theorie der Ohancenvermehrung besser mit der Wirk-
lichkeit überein als die Theorie der unabhängigen Er-
oignisse. Das unbefriedigende Résultat rührt, wie wir
sofort sehen werden, von der Inhomogonoität des sta-

tistischen Materials her. Wir vergleichen nun die An-
zahl der Todesfälle pro Monat im gleichen- Jahr mit-
einander und legen in der folgenden Tabelle fest, wie oft
auf einen bestimmtenMonat das jeweilige Jahresmaximum
und Jahresminimum der Jahre 1877—1900 entfallen ist.

Monat Anzahl der Jahresmaxima
in den Jahren 1877—1900

Anzahl der Jahresminima
in den Jahren 1877—1900

Januar 3 1

Februar 3 —
März - 5

April 9 —
Mai 2 1

Juni 1

Juli 1

August 7

September — 2

Oktober — 5

November 1 6

Dezember 1

Wir stellen somit fest: die Scharlachtodesfälle in der
ersten Jahreshälfte (Januar bis Juni) sind bedeutend

häufiger als diejenigen der zweiten Jahreshälfte. Die
starke Inhomogeneität beherrscht das Material.

In Zahlentafel 6 sind die Resultate der Statistik
der Todes/ïïZZe «« 5'c/mr/acA m der ßc/nmg .zw dew

il/owa/ew des sreeifew Ida%a7wes (Jidi 2ds De2em?)erj
der Jaftre 7879—7900 verwertet worden. Diese Tabelle
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wurde analog berechnet wie Zahlentafel 1. Die voll-
ständig befriedigende Übereinstimmung der Theorie der

Chancenvermehrung mit der Beobachtung, die in Spalte
IX zum Ausdruck kommt, zeigt uns, dass, sobald wir
nur Monate der zweiten Jahreshälfte betrachten, die

Inhoinogenoität kaum mehr in Betracht kommt gegen-
über der Chancenvermehrung und bestärkt uns in der

Annahme, dass die Todesfälle, verursacht durch die

betrachteten Infektionskrankheiten, in analoger Weise
solidarisch sind wie die aus einer Urne der Chancen-

Vermehrung gezogenen roten Kugeln.

§ 11. Verlauf der Wahrscheinlichkeiten.

Die Reihe der Wahrscheinlichkeiten

Po, Z\, Po, A, (28)

ist entweder monoton abnehmend (für rl > /() oder

hat glockenförmigen Verlauf (für tZ/<). Dieses Ite-
^ultat erhalten wir ohne weiteres aus § 5, da (28) ein

Spezialfall von (10) ist, können aber auch direkt aus

(23) dazu kommen.

Ist P das Maximum der Reihe der Wahrschein-
lichkeiten (28), dann bestimmt sich /.t aus der Gleichung

(29).

Diese Relation erhalten wir durch Grenzübergang aus

(11). Ist /«—eine ganze Zahl, so ist P,,_i P„.
Bezeichnen wir den Rest der Reihe (28) mit

^«=^4-1+^+2+ • • •>

so gilt für diesen Rest die Ungleichung
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p,. *+y*, < p, < p, -t.? ^ ä < d
'ï+1-f-d—A— — î + 1

p.'! p < p. *+«<* fin.
'< i-j-1 *i+l+d—/i

für A '> d

(30).

Nach der Eekursionsformel (23) können wir näm-
lieh das Restglied darstellen durch

^+1+^-1-2+-^+3+ ' ' •

p / -
1

J

1 1

- i+i \ ~r ^2 i-Kd ' Î+2 1+d ' iPl
A+(/+2)dh(z+2)d \

i d + •••/•

Nun vergleichen wir den Rest P. mit der Summe
der geometrischen Reihen A. und P., die beide P., j
zum Anfangsglied haben und deren eine als Quotienten
^ -|. i -}- i c/

<» • i

-—r, die andere 7^—77-7;—7: auiweist.
1+d (i+l)(l+d)

Es ist

A, P,i+i ' l+d^U+d/ ' :P (l+d) P.^t^'+P ' « 1+i

P-: P/+!
A + id / A + id y+ (i+l)(l+d) + l(i+l)(l+d)/ "

p
A -f- i d

p (' ' ')( ' d)
'+* i+l-A+d

Q + l —A-f d'

Es gilt die Ungleichung:

A -f- (i-(~0 ^ < d-f- (i-f-Qd d <
(1-f-d) (H-H-1) ' (14 d) Ô 1-f-d P*



Ferner nimmt der Quotient

A + (i-| /) d 1 A-d
(1-j-d) (i+»+l) ~~ l + d I +1-H+Z

mit wachsendem / zu oder ab oder bleibt konstant,
je nachdem A <( d, A > d oder A d ist. Also gilt
die Ungleichung

A + ^d A -f (i-|-Qd d <;
(i+l)(l+d)>(l+d) (Z+i+l)^l + d ^

Somit folgt ohne weiteres

ß ^ if, çS A. für A d,' > * A> ' >
und damit ist die Ungleichung (30) bewiesen.

Nun zu unseren Anwendungen. In Spalte IV der
Tabellen 1, 3, 4, 5, (i finden wir die Folgen der Wahr-
scheinlichkeiten P P„ (mit einem konstanten
Faktor multipliziert). Bei den in Zahlentafeln 1, 3, 3

betrachteten Beispielen ist A > d, es tritt in Spalte IV
ein Maximum auf (Fettdruck). Im Pocken- und Schar-

lachbeispiol der Zahlentafeln 4 und 5 ist A <j d; Spalte
IV ist monoton abnehmend. Nun wollen wir beim

PocAtwimjoie/ (Zahlentafel 4) die Resultate dieses Para-

graphen prüfen. Ohne zuerst ausführliche Berechnungen
zu machen, können wir aus den Beobachtungen (Spalte
II) scbliesson, dass die Theorie der Chancenvermeh-

rung die Beobachtungen besser wiedergibt als die

Theorie, die die Unabhängigkeit der Einzelereignisse
voraussetzt. In der Tat liegt es nahe, aus dem Ver-
lauf der Spalte der Beobachtungen (II) anzunehmen,
dass die Theorie (Chancenvermehrung), die ein mono-
tones Abnehmen der Reihe P P,,... ergibt, der Wirk-
lichkeit näher kommt als diejenige (Unabhängigkeit),
die dem Index des Maximalgliedes den Wort A gibt.
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Die Restformeln (30) liefern uns bei der numori-
sehen Auswertung des statistischen Materials eine gute
Kontrolle für die Berechnungen. In Zahlentafel 4 des

Pockenbeispiels wurde mit dem 62. Glied abgebrochen.
Aus Spalte VII ersehen wir, dass 288 (P^ -)- Pj -)-
-f- Pg4 287.4 ist. Haben wir Spalte IV richtig
berechnet, so ergibt sich für 288 0.6, nach

unsern Ungleichungen (30) ist aber

0.6 < 288 < 0.7.

Nach Spalte VII ist ferner 288 8.3, nach (30) ist

7.7 < 288 9.8.

Auf diese Weise können wir die'Berechnung von (IV)
durch Stichproben kontrollieren.

§ 12. Berechnung von {|r—Al). Die erwartungsmässigen

Fehler.

Es sei r — A der Fehler dos Einzelergebnisses
oder, kürzer, der Fehler von r. Die mathematische

Erwartung dieses Fohlers ist gleich 0.

(î'—A} {'/'} — A A — A 0.

Wir fragen nun nach der mathematischen Erwar-
tung des absoluten Betrages dieses Fehlers. Es sei

M D

dann wird

y OO CO

)—0 I r=y-f-l 7-0



P {jr-/,|} =^>](A-r)P +^(r-/0 P.
?'=0 ?-)'+1

E=2>>-r)P,,

rf 2of V*
; J! 2>-r)f,.

7+1

V-•/
?*—1

I (•-(/ l+d.r=0

Durch Subtraktion folgt

Vw =£<*-*>*-rpl>-'>tr=0 ?—0

7 )'-l-l

=2>-r) p -^>>-1.-1]) IV
r=0 r=l

+ APo —(A—[y+l])P,+r
Nun ist aber

p J_ ft+fr—1)^ p
l+d '-i'

p ('+!) p _ ^ p'' l+d '-1 l + d '-1
und somit

p_i =y Lp i_p __M_p
2 (1+d) Z-i I" l+d »•—l 1 +d >-1

r=l

+ /,Po_/,p^i + (y+l)P
7̂+1

r=l
P — {(»' + — 2(l+d)(y+l) P^,



und weil 7 [/t] ist,

{|r-A|} 2(H-[Ä]Ä)PM. (31)

Wie beim gewöhnlichen Urnenschema von Ber-
noulli die effektiven Resultate nicht genau mit den

erwartungsmässigen übereinstimmen, werden wir auch

in der Theorie der Chancenvermehrung gewisse Ab-
weichungen haben. Die Resultate, die wir bei irgend-
einer auf Grund der Theorie der Chancenvermehrung
gemachten Untersuchung erhalten, können wir nur
richtig beurteilen, wenn wir die Schwankungen kennen,
die die Theorie zulässt. In der folgenden Tabelle
finden wir eine Zusammenstellung der gebräuchlich-
sten der Formeln für die mathematische Erwartung,
das Quadrat des Schwanlcungsmasses und don mitt-
leren Fehler, m bedeutet dabei die Anzahl derbetrach-
toten Serien.

Mathe-

matische

Erwartung

Quadrat
des Sehwankungsmasses

Mittlerer Fehler

1

[

Mittelwert A (32) Ml+tü (33,
m 1

Quadrat
des

Schwankungs-
masses

/i(l+d)

(34) (35)

(2A+6d)(l+d)+l]

(35)

Die Ermittlung der in obiger Tabelle aufgeführten
Werte erfolgt nach bekannten Methoden (man vergleiche
etwa Czuber 1 und v. Bortkiewicz 1). Wir wollen
hier beispielsweise Formel (35) herleiten. Es ist
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il *
m

J I

7/i

w rî=l
w w

+ ^Z2^''V-'0-/'(l+rf)}{(^-Ä)«-A(l+d)}
«1 ' ' '

2=1 fc=l A=|»i

H 2 w

- ^El('r-*)'1+ (i+<0 — %-H)2>-'')'!
m m ~2=1 2=1

1 {(T-A)*}--(1+d)'.
w m

Nun ermitteln wir die mathematische Erwartung
von (>'—/i)\ Das Wesentliche der Ermittlung der

mathematischen Erwartung ähnlicher Ausdrücke besteht

in folgendem: Man ordnet die rationale ganze Funk-

tion, deren mathematische Erwartung auszurechnen ist,

nicht wie üblich nach Potenzen von r, d. h. nach 1,

r, r", r", sondern nach den Funktionen

1, r, r (/"—1), r (r—1) (r—2).

wobei r — 0, 1, 2, 3 ist.

(r-A)*= r(r-l)(r-2)(r-3)+ar (r-l)(r-2)+6r(r-l)+c>--f d

Die Koeffizienten a, &, c, rf bestimmen wir am

besten durch Einsetzen der Werte r 0, 1, 2, 3 in

obige Gleichung und erhalten
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jdA=_I
m

«
(2-/Q*-3(2-/,)*+3(l-A)*-A* _ ^ ^ ^

6

i=fcS^l(l=^+i: 7-12» + 6*'

c (1—Ä)*—Ä*= 1 - 4A + 6A*— 4A''

(7 ,A*.

Wir erhalten somit nach (26)

A (A+ (7) (A + 2(7) (A + 3(7) + (6 — 4A) A (A + (7) (A -f 2(7)

+(7-12A+6A>(A-h7)+(1-4^6A"-4A')A+A'—A*(l+d)*

- [(2A+6(7) (l+<7) + l} (35)

In don Formeln (32) bis (35) wird man überall
an Stelle von A und (7 aus dem statistischen Material
berechnete, d. h. angenäherte Werte A' und (7' ein-
setzen müssen, sobald es sich um numerische Kontrollen
handelt, da man weder (7 noch A absolut genau kennt.
Bei der Herleitung dieser Formeln setzt man dennoch
A als bekannt voraus. Mit der gleichen Methode erhält
man die entsprechenden Ausdrücke, unter der Voraus-

setzung, dass man A nicht genau kennt, sondern nur
den angenäherten Mittelwert A' berechnet hat. Wie
man sich leicht überzeugt, sind (bei einigermassen

grosser Serienzahl) die Werte, die man unter Voraus-

setzung eines bekannten A ermittelt, nahezu gleich
denjenigen, die auf A' aufgebaut sind.

In der Praxis wird man, da es sich hier vor allem

um Abschätzungen handelt, voraussetzen, A sei bekannt.
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Setzt man z. B. bei der Ermittlung von (34) vor-

aus, class Zi unbekannt sei, so erhält man durch ein-

fache Rechnungen (vgl. etwa bei v. Bortkiewicz 1 den

Fall ohne Chancenvermehrung) für die mathematische

Erwartung des Quadrates dos Schwankungsmasses

Von dieser Formel, aus der wir in den prakti-
schon Beispielen cZ bestimmen, werden wir häufig Ge-

brauch machen. Zur Bestimmung des Quadrates des

Schwankungsmasses ist auf die bekannte Art die Summe

der quadratischen Abweichungen durch die um l ver-
minderte Serienzahl zu dividieren.

[in Spezialfall cZ 0 geht (35) über in

Dies gibt uns das von L. v. Bortkiewicz für die

seltenen unabhängigen Ereignisse ermittelte Fehlermass

(vgl. 1 § 4, Formel (5)), während (33) für (Z 0 in

Formel (4) übergeht.
Für cZ, im folgenden oft AwsZec&w«# genannt,

erhalten wir

(Schwankungsmass)" V*

_ft ~ A

Der Fehler von cZ wird gleich

=V^[w<>+^+d+VSF<*'>-

-—- A(l-f-cZ).
•m

' (36)

A • (Fehler von <^) -|- /z 1 —|— cZ) (Fehler von 7t)

_____



Für sämtliche Beispiele habe icli die sogenannte
durchschnittliche Abweichung {|'>*—7z|} aus der Beob-

achtung direkt berechnet. Es ist, wie zu Beginn dieses

Paragraphen gezeigt wurde,

und sofern X. die Anzahl der beobachteten Serien mit

genau r seltenen Ereignissen bedeutet

Eür das Beispiel der Todesfälle durch Dampfkessel-
explosionen erhalten wir auf diese Art (vgl. Zahlen-
tafel 1) 3.665. Berechnen wir hingegen für dieses Beispiel
j|r—7z|) aus (31), so erhalten wir 3.658. Wir finden

eine sehr gute Übereinstimmung der Theorie mit der

Beobachtung; setzen wir aber die Theorie von Poisson

voraus (Unabhängigkeit), so wäre für /|r*—7<|} nach

(31) (d 0) 1.77 zu erwarten, also ein Betrag, der

nur ein Bruchteil der Beobachtung ist.

Yon Formel (36) haben wir bei allen Beispielen
Gebrauch gemacht.

Bekanntlich sind bei allen Anwendungen die Para-
meter Tz und cT aus dem ersten und zweiten Moment
bestimmt worden. Beim gewöhnlichen Fall der unab-

hängigen Ereignisse wird jeweilen untersucht, ob das

theoretische Quadrat des Schwankungsmasses, berechnet
aus dem durch das erste Moment bestimmten einzigen
Parameter, mit dem direkt berechneten übereinstimmt.
Mit andern Worten, man untersucht, ob der Lexissche

r=0
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Dispersionskoeffizient gleich 1 soi. Wir wollen nun
analog vorgehen und mit Hilfe der durch das erste

und zweite Moment bestimmten zwei Parameter /« und <7

das dritte Moment direkt berechnen. Nach (26) ist

{»•('/•— 1) (r—2)} h (A-j-d) (A-[-2d).

Für unser Pockenbeispiel ist

(r-1) (r*-2)} /i(/z+ri) (A+2d) 3673.06 (theoretisch)

{r(r-i)(r-2)} {^}-3 {r^} + 2 {»•} 3892.63 (beobachtet).

Die Ubereinstimmung der Theorie mit der Beob-

achtung scheint uns befriedigend zu sein.

Dieselbe Untersuchung machen wir nun noch an

einem andern statistischen Material.

In den wöchentlichen „Bulletins des Schweizori-
schon Gesundheitsamtes"' werden jeweilen die neu zur

Anzeige gelangten Erkrankungen an ansteckenden

Krankheiten veröffentlicht, nach Kantonen und Krank-
heiten getrennt.

Aus diesen Angaben habe ich eine »Siatist/A der

jEr/crawAwif/ew «« Pocken im Waidon ifttncA vom
15. Febr. 1919 bis 22. September 1923 vorarbeitet. Die

Resultate wurden ganz gleich wie in Spalte II der

Zahlentafeln I, 2, 3 etc. zusammengestellt. In den

beobachteten 240 Wochen wurden im Kanton Zürich
981 Pockenerkrankungen amtlich angezeigt, im Durch-
schnitt pro Woche 4.09. (Die Serienlänge setzen wir
hier entsprechend den Bulletins auf eine Woche fest.)

(<r} 4. 09 A, 73.17, {«**} =2044.70

^
— 1 — 12.80, ç*= 56.44.

A

6
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Es ist

{r(»*-l)(r-2)} /î(7i-H2)(/i+2d) 2050.99 (theoretisch)

{r(r-l)(r-2)} {r®} - 3 + 2 {*•} 1833.37 (beobachtet).

Auch hier finden wir die Differenz zwischen Theorie
und Beobachtung unwesentlich.

§ 13. Diskussion des Schwankungsmasses bei Serien-

Verbindung.

Das Quadrat des Schwankungsmasses ist bei

Chancenvermehrung grösser als der Mittelwort, somit

grösser als bei der Voraussetzung der Unabhängigkeit
der Ereignisse. Wir fragen nun nach der Abhängig-
keit des Schwankungsmassos von der Serien länge.

Aus don Formeln (15) und (16) folgt ohne wei-
teres, dass die wtodhemaiüsc/te EWiwrtowç/ j^roporiiowui
2W iSenemtewf/e ist (zur Anzahl der Versuche). Dies
ist auch selbstverständlich (vgl. § 7).

Ebenso schliessen wir, dass das Quadrat des

Schwankungsmasses eine Ziweare bzw. f/<wtdr«/?scAe

Funktion der Serienlänge ist, jo nachdem es sich um
nicht zusammenhängende oder zusammenhängende
Serien handelt. Wird eine Serie um den /c-fachen Be-

trag verlängert (Vereinigung von /c aufeinanderfolgen-
den Serien) und. bezeichnen wir die mathematische

Erwartung und das Quadrat des Schwankungsmasses
mit Ä und ^ bzw. und ç|, je nachdem wir die

ursprüngliche oder die verlängerte Serie betrachten,
so erhalten wir nach (15) und (16)

M (38)

für nicht zusammenhängende und zusammenhängende
Serien, ferner für w'c/it Serie«
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(39),
Ä,= ÄÄ, d, d P *

für ^MsnmmeuMm/ewdle Serien hingegen

c,» Mi+<g **(i+M)
A^, — &/(, dj, A • d I

In Zahlentafel 3 haben wir die Todesfälle bei

Dampfkesselexplosionen in 25 Jahren näher betrachtet.
Als Serie wählten wir das Jahr (ich konnte keine
kürzere Serie wählen, weil ich keine Statistik dafür
fand). Nun verlängern wir die Serie auf das 5-facho.
Je 5 aufeinanderfolgende Jahre vereinigen wir zu einer

Serie, und zwar derart, dass alle 25 Jahre vertreten
sind, aber kein Jahr in zwei Serion auftritt. Wir
erhalten 5 Serien zu 5 Jahre. Wie wir früher /i,
und daraus r/ berechnet haben, bestimmen wir nun
/<., und öL Für A. erhalten wir 68.6 5 • 13.72 5 A,

d' 5 5 5 '
was mit (38) übereinstimmt.

Ferner wird

ff,' 432.75 + 303.94 (beobachtet).

Der Fehler + 218.69) von ç,' wurde nach (35) be-

rechnet. AusZahlentafel 3 erhalten wir ç^=62.48 + 24.05.

Nach unserer Formel (39) für nicht zusammenhängende
Serien ist somit

ff,' 312.40 ± 120.25

(theoretisch berechnet für nicht zusammenhängende Serien),

Nach Formel (40) hingegen

ff,' 1284 + 927

(theoretisch berechnet für zusammenhängende Serien).
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Daraus schlicsscn wir: Die Anzahl der Todesfälle
bei Dampfkesselexplosionen in einem Monat ist unab-
hängig von derjenigen des vorangehenden Monatos.
Dies entspricht auch der unbefangenen Vermutung, da

ja die einzelnen Dampfkesselexplosionen, die vonein-
ander unabhängig sind (vgl. Zahlentafel 2), sich nicht
über längere Zeitperioden erstrecken, und vor allem

wird eine Explosion keine Todesfälle in zwei verschie-
denen Monaten zur Folge haben.

Ganz anders stellt es mit den in Zahlentafel 4,

5 und 6 betrachteten Infektionskrankheiten. Beim

Pockenbeispiol der Zahlentafel 4 war die Serienlänge
gleich ein Monat. Es werden nun nacheinander Serien

zu 2, 8, 4, 6, 12 und 24 Monaten nach demselben

Prinzip wie oben (bei den Dampfkesselexplosionstodes-
fällen) gebildet. Die Resultate dieser Untersuchung
sind aus Zahlentafel 7 ersichtlich.

Die aufeinanderfolgenden Monate sind ganz ähn-
lieh miteinander verwachsen wie die Serien bei der
Theorie der „zusammenhängenden Serien". In der
Tat wird sich eine Pockenepidemie nicht auf einen

Monat beschränken und mit dem letzten Tag des Monats

erlöschen. Wir sehen dies auch wieder bei den Pocken-

epidemien der neuesten Zeit. In den Kriegsjahren
waren in der Schweiz keine Pockenfälle aufgetreten,
seit 1919 aber vergeht keine Woche, in der nicht ein

Pockenfall zur Anzeige gelangt. Die Anzahl der
Pockentodesfälle in einem Mnnat ist in hohem Masse

vom Verlauf der Pocken im Vormonat abhängig.
Analoge Berechnungen habe ich für die Todesfälle

an Scharlach in der Schweiz in den Jahren 1877 bis
1900 vorgenommen (vgl. Zahlcntafel 5) und die Resul-
täte in Zahlentafel 8 registriert. Wir erhalten folgen-
des Resultat: Die Annahme der nicht zusammenhän-
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gonden Serien müssen wir auch hier fallen lassen, da

das Schwankungsmass verhältnismässig stärker zunimmt
als die Serienlänge (vgl. Spalte IV der Zahlentafel 8).

Aufeinanderfolgende Serien stecken einander an.
Die Ansteckung erfolgt ganz analog, wie sie die

Theorie der zusammenhängenden Serien vorschreibt,
solange wir nicht mehr als 6 Monate zu einer Serie

vereinigen. Sobald wir aber mehr als 6 Monate ver-
einigen, so tritt eine Unstimmigkeit ein, die allerdings
noch im Fehlerbereich liegt. Der Schritt von 12 auf
24 Monate ist wieder normal. Wir schliossen daraus

(obschon die Serienzahl kloin ist), dass die Beeintlus-

sung der Winter- und Sommermonate nicht dieselbe
ist wie bei gleichartigen Monaten. Wir haben 2 Serien-

typen vor uns, Monate des ersten und des zweiten

Halbjahres (vgl. § 10).

Verlängern wir hingegen die Serien bei den Todes-

fällen an Scharlach im zweiten Halbjahr (vgl. Zahlen-
tafel 6), so liefern die Berechnungen für den Verlauf
des Schwankungsmasses die gewünschten Resultate,
wovon man sich in Zahlontafol 9 überzeugen kann.

Wie steht es nun, wenn wir bei unserem Pocken-

beispiel nicht zwei aufeinanderfolgende Monate, sondern

zwei zeitlich weit auseinanderliegende zu einer Serie

vereinigen? Wir erwarten, dass sich hier die am Anfang
dos Paragraphen entwickelte Theorie der Vereinigung
unabhängiger Serien bewähre. Um dies zu prüfen, vor-
einigen wir das Resultat des

Januar 1877 mit dem Resultat des Januar 1889
Februar 1877
März 1877

„ Februar 1889

März 1889
7)

Januar 1888

Dezember 1888
„ Januar 1900

„ Dezember 1900.
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Wir erhalten auf diese Art 144 Serien zu 2 Monaten

(jeder Monat tritt nur einmal auf).

Es wird

146.85,

dg 12.35 ~ d — 14.20 (Grössenordnung),

während wir oben für d^ — 31.44 erhalten hatten

(vgl. Zahlentafel 7). Unsere Erwartungen haben sich

somit bestätigt.
Die Resultate dieses Paragraphen wollen wir nun

noch an unserem Beispiel der Erkrankungen an Pocken
in Zürich untersuchen (vgl. § 12). Wir vereinigen 2

aufeinanderfolgende Wochen zu einer Serie und erhalten
120 neue 2-Wochenserien. Wir erhalten

8.18, d„ 18.77 > d (12.80), 9.39 ~d

161.65 > 2?^, (ç* 56.44).

Die Yereinigung von je 3 aufeinanderfolgenden
Wochen zu 80 3-Wochenserien ergibt

Äg= 12.26, s,'= 348.12 >3?"

27.39 >d, -^=9.l3^d.

Das System der Serienvereinigung lässt uns hier
an dem Yerlauf von dj. und damit des Schwankungs-
masses auf CftawcewenweÄnw^ durch Erfolg mit An-
steckung der aufeinanderfolgenden Serien schliessen.



79 —

Die Theorie der ChancenVermehrung findet somit auch

in der Statistik der an Infektionskrank-
heiten Anwendung.

Wir sehen also, dass das Urnenschema der Chancen-

Vermehrung in befriedigender Weise bei zwei charak-
tcristischen statistischen Typen (Unfallstatistik und

Epidemiestatistik, Todesfälle und Erkrankungen) An-
wendung finden kann. Die Resultate dieses sowie der

vorangehenden Paragraphen berechtigen uns zur An-
nähme, dass wir mit Hilfe dos Urnenschemas der

Chancenvormchrung die Statistik der Todesfälle bei

Pocken, Explosionen, Eisenbahnunglücken etc. auf den

allein wichtigen Kern untersuchen können, und dass

der Schritt von der Wirklichkeit zum Pôlyaschon Schema

nichts anderes bedeutet als das Entfernen der Schlacke

vom Kern.

Kapitel III.

Inhomogeneität.

§ 14. Die Wahrscheinlichkeiten und ihre erzeugenden

Funktionen,

Aus den Entwicklungen des vorangehenden Kapi-
tels sehen wir, dass die übernormale Dispersion von

der Abhängigkeit der Einzelfälle, die zu einer statisti-
sehen Masse zusammengezogen worden sind, herrühren
kann.

Der Fall der übernormalen Dispersion lässt aber

auch eine Entstehungswciso zu, welche keine Yerket-

tung der Einzelfälle voraussetzt. Er kann auch davon

herrühren, dass den einzelnen statistischen Massen
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nicht dieselben Ursachen zugrunde liegen. In diesem

Fall entspricht jedem Einzelglied der statistischen Reihe
eine SpezialWahrscheinlichkeit, zum Unterschied zur
Durchschnittswahrscheinlichkeit, die den Mittelwert der
SpezialWahrscheinlichkeiten darstellt. Es ist einleuch-
tend, dass dieses modifizierte Schema grössere Schwan-

kungen ergeben muss als das ursprüngliche, weil die

zufälligen Abweichungen der Einzelglieder der Reihe

von ihrem Mittelwert durch die Ungleichheit der Spe-
zialwahrscheinlichkeiten vergrössert werden. Lexis zer-
legt die Schwankung in eine erste Komponente, die

„Kormal zufällige Schwankungskomponente", die aus
der Wirkung der zufälligen Ursachen entstellt, und in
eine zweite Komponente, die „Physische Schwankungs-
komponente", die ihren Ursprung in der "Verschieden-
heit der einzelnen SpezialWahrscheinlichkeiten hat. In
der Bevölkerungsstatistik hat man es fast immer mit
Material, das sich über grosse Zeiträume erstreckt, und
daher mit zeitlich sich ändernden Wahrscheinlichkeiten
zu tun. Der Eall mit übernormaler Dispersion, her-
rührend von der Verschiedenheit der Serienwahrschein-
lichkeiten, wird daher nicht selten sein.

Selbstverständlich liegt es uns ferne zu behaupten,
ein bestimmtes Material entspreche genau einer be-
stimmten Annahme der Inhomogeneität. Es handelt
sich hier auch wieder darum, den -ffawpte/iara/der
der- Ereignisse zu erfahren. Betrachten wir etwa die
im vorhergehenden Kapitel genau untersuchte Pocken-
Statistik. Wir konstatierten, dass das gewöhnliche
Urnenschema ein sehr sohlechtes Bild der Wirklich-
keit gibt. Aus der Statistik entnehmen wir, dass in
den fünfjährigen Perioden 1881—1885, 1886—1890,
1891—1895, 1896—1900: 703 bzw. 248, 128, 44
Todesfälle an Pocken verzeichnet wurden.
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Die Pockentodesfälle nehmen mit der Zeit stark
ab. Durch die Jahre des 20. Jahrhunderts (die nicht
mehr zu unserer in Zahlentafel 4 aufgeführten Statistik
gehören) wird diese Behauptung auch bestätigt. Wir
konstatieren somit eine Inhomogeneität von Serie zu
Serie. Rührt die Unstimmigkeit des gewöhnlichen
Urnenschemas zum grössten Teil oder ganz von der

Inhomogeneität her? Diese Frage muss, gestützt auf
die Resultate der Zahlentafeln 4 und 7, verneint wer-
den (vgl. § 18). Wir haben es mit Chancenvermeh-

rung und Inhomogeneität zu tun. Der Oluinccnver-
mehrungscharaktor scheint zu prüvalieren, und darum

gibt vermutlich die Annahme der reinen Chanconvor-
mehrung ein mit der Wirklichkeit so gut übereinstim-
mondes Resultat. Wenn wir aber Zahlcntafol 4 genauer
betrachten, so sehen wir, dass in der Kolonne IX, der

Abweichung der Theorie der Chancenvermehrung von
der Beobachtung, ein systematischer Gang vorhanden
ist (zuerst negativ, dann positiv). Dieser Gang könnte
seinen Ursprung in der Inhomogeneität der Serien
haben. Dass die Inhomogeneität tatsächlich einen
solchen Gang hervorruft, soll weiter unten gezeigt
werden.

Beim Studium der Inhomogeneität sind zwei Haupt-
blassen zu unterscheiden :

A. «wwerAcdfr der /Serie:

Die Wahrscheinlichkeiten ändern innerhalb einer
• ySerie nach einem bestimmten Gesetz, das unabhängig

ist von den Resultaten und für alle Serien dasselbe ist.
So werden z. B. die Selbstmorde innerhalb eines Landes
ein statistisches Material liefern, das dieser Kategorie
angehört, weil die Selbstmordwahrscheinlichkeiten bei

beiden Geschlechtern recht verschieden sind. Wir
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werden aber später sehen, dass sich dieses Material
trotzdem durch das einfache Urnenschema beschreiben
lässt.

P. wo« ,Sene sw $me:
Die Proben innerhalb ein und derselben Serie

sind den gleichen Bedingungen unterworfen; diese

Bedingungen ändern aber von Serie zu Serie, z. B.

Sterblichkeit für eine bestimmte Altersgruppe während
einer langen Zeitperiode.

In Wirklichkeit werden die Klassen A und P
nicht immer getrennt auftreten, sondern es wird mei-
stens sowohl Inhomogeneität innerhalb der Serien wie
auch von Serie zu Serie vorhanden sein. Unsere erste

Aufgabe ist dann die, das Unwesentliche vom Wesont-
liehen zu trennen. Wir werden im folgenden die
Klassen A und P vom Gesichtspunkt der Theorien der
seltenen Ereignisse und der Chancenvermehrung näher
betrachten.

Bei Inhomogeneität innerhalb der Serien (Klasse A)
bedeuten Q Q (/*' bzw. P, P P^ die
Wahrscheinlichkeiten innerhalb der homogenen Teil-
Serien, während Q und P die Wahrscheinlichkeiten
in den vollen inhomogenen Serien darstellen. (Analog
wie im vorhergehenden Kapitel ist wieder ihm P Q*.)

,5=0

Bei Inhomogeneität von Serie zu Serie bezeichnen

wir die Wahrscheinlichkeiten in den einzelnen Serien
mit (/, (/', bzw. P', P",. P<">, die Wahr-
scheinlichkeit für das ganze Material wird mit Q bzw.

P dargestellt.
Wahrscheinlichkeiten, die wir durch Charliersche

Reihen darstellen (vgl. § 16), sind mit IF bzw «o

(wenn es sich nicht um den Grenzfall handelt) be-

zeichnet.
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Die folgende Tabelle stellt uns die Bezeichnung
der verschiedenen "Wahrscheinlichkeiten dar, wie ich
sie in dieser Arbeit gebrauche :

Ohne

Grenzfall

Seltene

Ereignisse

Inhomogeneität:
Teilserien,

einzelne Serien

Inhomo-

geneität
innerhalb
der Serie

Inhomo-

geneität
von Serie

zu Serie

Chancenvermehrung J>0 Pr,* Pr P',P", ...P<" p* P

Unabhängigkeit J=0 3r, s «r Q', Q"... Q'" Q* Q

Allgemein, Charlier '"V,,

Wie bei den meisten theoretischen Untersuchungen
der Wahrscheinlichkeitsrechnung erweist sich auch hier
die Anwendung der erzeugenden Funktionen als vor-
teilhaft. Mit diesen charakteristischen Funktionen
erhalten wir verschiedene Beziehungen viel leichter
als durch die gewöhnlichen Berechnungen und dringen
so tiefer in den Stoff ein.

Im besonderen wird mit Hilfe der charakteristi-
schon Funktionen eine Brücke von der Theorie der

Chancenvermehrung zur Theorie der Variation der

SpezialWahrscheinlichkeiten geschlagen. Auf diesen

Zusammenhang, auf den ich weiter unten zurückkom-

men werde, wurde ich von Herrn Prof. Dr. Po/«/«

aufmerksam gemacht.
In den Entwicklungen der nächsten Paragraphen

werde ich für die erzeugenden Funktionen der vor-
schiedenen Wahrscheinlichkeiten folgende Bezeich-

nungen einführen :
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Wahrschein-
lichkeiten

Erzeugende
Funktionen

Analytischer Ausdruck
der erzeugenden Funktion

Q P(*) vgl. (25)

P P(z) —i(l-f d(l—s)) vgl. (24)

<2* P*(z)

.V i

(41)

-E*(*) //(l+«/(!" :))"
''

(42)

« P(s) ' (43)

P P(z) |2(l+^(l-a))^ (44)

_ J=i„

In dieser Tabelle bedeutet etwa Formel (44):

i?(2) — Pg -}- -f- Pg2 +
1 f —- —* Zi'l
~J(l+^(l-a)) "i + (l-K(l-z)) "2 + (l+d(l_a)) «, j.

Die Formeln (41) und (42) ergeben sich ohne

weiteres aus der Bedeutung der erzeugenden Funktionen
(vgl. § 10) und aus dem Multiplikationssatz der Wahr-
scheinlichkeitsrechnung, da ja die Wahrscheinlichkeit,
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das« in « Vorsuchen r seltene Ereignisse auftreten, gleich
ist der Wahrscheinlichkeit, dass in sämtlichen Teil-
scrien zusammen r seltene auftreten. Da P bzw. Q

nichts anderes als Mittelwerte der Serienwahrschein-
lichkeiten sind, so lassen sich auch die erzeugenden
Funktionen als Mittelwerte darstellen, und wir erhalten

(43) und (44). (Vgl. übrigens Czuber 1, Seite 120,
und Charlier 2, Seite 2.)

Bei der Bildung der Formeln (42) und (44) wurde

vorausgesetzt, dass sich die Chancenvermehrung nur
über die Teilserien bzw. über die einzelnen homogenen
Serien erstreckt, mit andern Worten, wir schliesson die

Fälle aus, bei denen die Teilserien bzw. die Serien
einander anstecken. Dieser Fall der totodew Awstec/rMw#

ist weit schwieriger zu bewältigen und benötigt um-
fangreiche Berechnungen. Trotzdem er nicht in den

Rahmen dieser Arbeit gehört, wollte ich ihn hier
erwähnen, da er, wie wir gesehen haben (vgl. Kapitel
II), bei epidemischen Krankheiten eine grosse Rolle

spielt.

§ 15. Verlauf der Wahrscheinlichkeiten.

Sofern es keine zwingenden Gründe verbieten,
wird der Statistiker sein Material zuerst immer auf den

einfachsten Fall von Bernoulli untersuchen. Liefert
ihm die Theorie mit der Beobachtung keine genügende

Übereinstimmung, so wird er nach den Ursachen der

Abweichung forschen. Wir wollen nun sehen, welche

Unstimmigkeiten die Inhomogeneität gegenüber dem

gewöhnlichen Fall der unabhängigen seltenen Ereig-
nisse hervorruft.

Z)«e Pmer/iaP der S'enew mae/ft

sic/i beim gewöhnlichen Fall der seltenen Ereignisse
ömer/c&ar. Wir haben es also hior mit s homo-
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genen, unter sich verschiedenen Teilserien zu tun, die

zusammen eine Serie bilden. Da die mathematische Hoff-

nung für die ganze Serie gleich ist der Summe der
mathematischen Hoffnungen der Teilserien, erhalten wir

S

*=Zv
y=l

Nach (41) und (25) ist

.V

ir-*(2) 'h=_ JT(2),

womit unsere Behauptung bewiesen ist, da die erzeu-
gende Funktion die Wahrscheinlichkeitsverhältnisse
eindeutig bestimmt.

Wird die tatsächlich vorhandene Ihhomcu/eweitcW

now »Serie »Serie nicht berücksichtigt, so sind die
theoretisch berechneten Wahrscheinlichkeiten (^, Q

Q„, Q für kleines und grosses r zu klein und
für mittleres r (in der Umgebung dos Mittelwertes) zu

gross. Kürzer ausgedrückt: Bei Inhomogoneität von
Serie zu Serie verläuft die 'Verteilungskurve //ae/ür
als bei voller Homogenoität.

Zum Beweise des vorstehenden Satzes betrachten

wir die Funktion

„—tc r />—® —l
_ (a:) C ai r/ (a) c a (r—a).

(/.' (a) ist > 0, solange a<r, wird negativ für a> r.
Der Punkt Jf mit den Koordinaten r, e~~'V ist Kul-
minationspunkt (vgl. Figur 1).

£C —2 o

9?"(a) P « (a—2ra r[r—1]).
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Die Wendepunkte TP, und TP^ haben die Abszissen
>' — (V und r -f- | V. Durch diese beiden Punkte TP

und TP, wird die Kurve in 3 Teile zerlegt:

1: 0 <C as<r?"— |'V in diesem Gebiet ist die Kurve
konvex nach unten.

I I: r— |/r <(a?-<r -|- |/V in diesem Gebiet ist die Kurve
konkav nach unten.

III: r + [/r<a: in diesem Gebiet ist die Kurve
konvex nach unten.

Es gilt somit (vgl. Figur 1):
Im Gebiet I und III ist die Ordinate eines Sehnen-

punktes grösser als die Ordinate des Kurvonpunktes
mit gleicher Abszisse. Im Gebiet II ist die Ordinate
eines Sehnenpunktes kleiner als die Ordinate des ont-
sprechenden Kurtenpunktes.

Es teile der Sehnenpunkt A' die durch die Kurven-
punkte Aj und A^ begrenzte Sohne A^ A^ im Yerhält-
nis von : Mj, dann ist, die entsprechenden Koordina
ten mit (a/, y'), (a^, ^), (a^, bezeichnet,
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M, as' — as,

alg to, «g — as'

to, a;, -4- to as„
a;' — j unci analog

Wj -|- '«a

my,+ wiyg
y 1

•

m -l-TOg

Es soi Ag der Kurvenpunkt mit den Koordinaten

ajg, 2/g, wobei

TO,aS, -(- »»j »g
tZ-jj ——

ist, dann wird

^ "
TO, -(- Wg

y y' für die Gebiete I und III

> y' für das Gebiet II (vgl. Figur 1).

A, und Ag müssen in demselben Gebiet liegen.

Sofern as,, aSg <C ?' — (/-/ oder as„ a^ >> r -)- [ V ist,
erhalten wir

to. as/ -|- TOg aSg®" _
"'1 "a /TOj as, -|- to a;,\ ''

>F "'1 + '"2 :— '

TO, -J- TOg \ m,-|- TO,

für r— |/V<>„ aSgO + |/r wird

w, g-®i as,'' -)- TOg g~*2 aig'' _
'"1 + "'2 *a /T0, as, -)- TO

g a.'g

)'(45),

33,' -h TO„ p -ü aS„ "J- ' '"2 -2 /TO, 03, -4- TO. ac.x '

TO,-j-TOg \ TOg-f'TOg /

Wir betrachten ein statistisches Material, von dein

wir to, -)- Wg Serien zur Verfügung haben. In to, Serien



— 89 —

soll die SpezialWahrscheinlichkeit durchwegs p,, in den

übrigen Serion t>2 betragen.

föm Mm /ij, — /(jj-
7i=oo M=00

Für die Wahrscheinlichkeit erhalten wir

«I g~''l /ij'' -[- Wg g~''2 /(/
Q,= -

r (Wj -f i«,)

und für die Wahrscheinlichkeit, die innerhalb der

Totalserie Homogeneität voraussetzt und somit die vor-
handene Inhomogeneität vernachlässigt,

*1'»1 + ''2'"2
6? ">1 + "'2 //<| WJ

|
-j~ '

^ ~ H V + /
'

Wir erhalten somit nach obigen Formeln (45), (45')

Q,.> Q, für /(j, /«g <r—|/r odor A,, A,,>r-f-|/r (46)

G,. < Q, für r — [V < < r + |/r. (46')

Es sei dann genügt es, die 4 Fälle: Ä,

oder //g gleich r — [/'/ oder r -)- [fr zu diskutieren, die

auf die quadratische Gleichung führen

+ [/r)°^(A--r)\

deren beide Wurzeln /(-(--- + "j/ 7' f-^ sind.

Für r<A,+~l/A,+^ ist A„>»-±-K

für r> A,+1 +']/ f'a + ^ »t A^ < r +
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Unter Berücksichtigung von dieser Beziehung geht
(46) über in

Q,>Q, für + VI--J oder r> Ä, + A

für \+2 ]/^+4<r<^+2 + ]/^+4 (^7).

''i + 7 ~]A + <*"< *a + 4 ~]A*+ |
und Äj+g- +]/^i + j<^<^2+ Y+]//*2 + J
nicht berücksichtigt. In diesen Zwischengebieten kön-
nen wir über das Yorzeiclien von Q — Q nichts aus-
sagen. Es ist dies auch erklärlich, da wir über das
Yerhältnis der Ordinaten eines Sehnenpunktes und des

Kurvenpunktes mit gleicher Abszisse auch nichts Be-
stimm tos' wissen, solange die Sehne in zwei Gebieten
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dor Figur 1 liegt. Ist A^ — A, d. h. sind die Diffc-
ronzen A^—A, A^-—A klein, so geht (47) über in

Q, > Q,

für r<A + i-"[/A + i
odor r > A + j +|/A +j ;

Q,<Q,

für A -f i—A +1 < r < A + 1 +y,A + 4

(48).

Bisher haben wir nur den Fall mit zwei Serien-

typen betrachtet. Der allgemeinste Fall ergibt sich aus

diesem ohne weiteres durch Induktionsschluss. Wir
erhalten

Q, > Q, für r < r oder r > r
(40)

< Q,. für »a </'<)•.,
wobei

fj das Minimum der Grössen /<, —(- —j A, + 4
•

* •••».+
das Maximum von diesen Grössen darstellt,

rg ist das Minimum der Grössen Aj + ^ + lAi + 4>

». +^+y^+y ••• *.+2"+"iA.+4'

r, ist das Maximum derselben.
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.Die si<m«waiomche ife7he. Ein besseres Urteil als
die Einzehvahrschoinlichkeiten bieten uns, besonders
bei kleiner Serienzahl, die summatorischen Reihen (vgl.
Zahlentafel 1—6). Es ist

Nun fragen wir nach dem Verhalten der summa-
torischen Reihen, wenn wir die Inhomogeneität von
Serie zu Serie vernachlässigen. Wir vergleichen, analog
wie oben, *9 mit >9. Es ist

s, e-*(i+»+!*+...+£) äW,

#'(4) - < 0, ®"(A) «_*_ (*_,),
// 'V-ÄX

0"(h) > 0, für 7t > r, die Kurve // 0(h) ist konkav
nach unten, M/v

0"(h) <T 0, für h <f r, die Kurve // 0(7«) ist konvex
nach unten,

für 7t r hat die Kurve 0(h) einen

Wendepunkt.



93 —

Liegt eine Sehne ganz im Gebiet 7< << y, so ist
die Ordinate des Kurvenpunktes grösser als die Ordi-
nate dos Seimenpunktes mit gleicher Abszisse. Liegt
die Sehne aber im Gebiet 7i > y, so ist die Ordinate
dos Kurvenpunktes kleiner als die Ordinate des Sehnen-

punktos mit gleicher Abszisse. Es sei nun

«, i /i / V Ve-*V+VhiT+... + ^
7i„

2!

//.„

+ i+Ä,+^+...+^
0(/^) + 0(AJ

/<j -j- 7ig
dann gilt für —~—, aus analogen Überlegungen,

.u

wie beim Vergleich von Q,, mit Q,.,

'S',. > S; für A„ Äg>r
Ä < A für /i„ /<2 < y (vgl. Fig. 3).

Ist nun A. die summatorische Reihe bei Inhomo-

geneitiit von Serie zu Serie, sind 7<,, ä die

mathematischen Erwartungen der homogenen einzelnen
Serien und ist 7^ <C 7^ <C < 7t, dann erhalten wir

(50).
^ > 5, für r < /t, |

S','. < A für r > 7^ j

Betrachten wir nun noch den Fall der schwachen

Inhomogeneität, in welchem 7ij ^- 7^ ~ 7^
ist. Wir erhalten

^r>
S, < £,.

& &.

für y < 7t,

für y > 7/

für y 7t

7« ~ 7«

(51).
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Nun zur statistischen Ausnutzung der vorstehen-
den Resultate. Wir betrachten nach dem Vorgang von
L. v. Bortkiewicz in Zahlentafel 10 die Stotisfö/c c/er

wfiWic/im 5e/&sh«orc?e in 8 deutschen Staaten [Bort-
kiewiez 1, § 10]. Vergleichen wir die durchschnitt-
liehen jährlichen Selbstmorde in den verschiedenen

Staaten, die zwischen 1.4 und 5.6 liegen, so springt
uns die Ungleichheit sofort in die Augen. Wir haben

es mit Inhomogeneität von Serie zu Serie zu tun.
Zum Vergleich der Wahrscheinlichkeiten, die die In-
homogeneität vernachlässigen, mit denjenigen, die ihr
Rechnung tragen, habe ich Zahlentafel 10 ganz analog
wie Zahlentafel 1, 3 etc. angelegt. An Stelle der

Spalten der Chancenvermehrung (IV, VII und IX)
treten hier die Spalten der Inhomogeneität. Vergleichen
wir nun die Spalte III der Wahrscheinlichkeiten mit
den Beobachtungen, Spalte II, so finden wir unsere
Theorie bestätigt, 112 Q ist für kleines und grosses

r zu kloin, für mittleres zu gross. Der Zeichonum-

schlag hat nach der Theorie in der Umgebung von

r 3.47 (genau zwischen /(t 1.4 und /<,, 5.6) zu

erfolgen. In Wirklichkeit ist Spalte VIII für r 3

negativ, für r 4 positiv, also genau wie es zu erwarten
ist. Porner sind die nach (49) zu bestimmenden Grössen

0.6, rg 3.2, 3.7, r, 8.5, somit ist zu

erwarten, dass

für r < 0.6

für r > 8.5

für 3.2 < r < 3.7.

Auch diese Vermutung finden wir, wenn wir die
Kolonnen III und II miteinander vergleichen, gut
bestätigt.

Qr > Q,

Ö>Q,
Q, < Q,
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In dersolben Arbeit von L. v. Bortkiewicz int in
§ 11 eine isti/t rfer /öd/ic/te« f/n/VtWe bei 11 Be-

rufsgenossenschaften aufgeführt. In Zahlentafel 11,

analog angelegt wie Zahlentafel 10, wird dieses inhomo-

gone Material verarbeitet. Auch hier finden wir unsere
Theorie bestätigt. Der Zeichenweohsel in Spalte VIII
erfolgt bei r 4, nach der Theorie bei r 4.4. Da

die Spalte III der Zahlentafeln 10 und 11 ihr Maxi-
muni bei A haben, ist nach der Theorie zu erwarten,
dass der Zeichenumschlag in VIII ungefähr dort
erfolgt, wo III das Maximum erreicht hat.

§ 16. Fortsetzung. Die Charlierschen Reihen.

Eine andere Ableitung der im vorangehenden Para-
graphen gewonnenen Sätze geht aus der Umformung der

erzeugenden Punktionen hervor. Man hat nach (43)

o

)P^) — J $.('<—Äy)(l—e)

Si—J
r=i

S

2 /( — /( • s

[' -ZK-/0(i-*) + y=l

r i
2!

2(Ä-A/(1-*)'
; i

3 +

A(l-*)

o o

2(A -A/( 1 _*)» -7»p'(l-*)'
r=l

2 s

r=i
3! s

I+ (52) ').

') Diese Reihe konvergiert für alle Werte von £.
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Ferner ist nach (24)

£'(«) (l+df(l-«))— 1= 4 (i+dd—»))

_ g-Wl-ü)+ g

/td(X—g)3 fttffil—s)3
+ •

Ä(l—s) Äd(l-a)' Äd'(l-a)'1+—v^- V- +... (53)1).

Aus (44) erhalten wir

^<*>== '

y=l

A d * \

3

r=i

g-^)|2e-(v^)i^)(i+Äi
y=i

,7 Hfl-«)'/1 1 y y ' • F y (l-af+...)

_ ,j A(i-S)

2(*-v'(>-«)* Zv,
1 + r=i

2! s 2 s

£(A_A/(1-*)»

+^17 8Ï-0-*>'+- ] (54)')-

') Konvergenz, solange |(2r—1)|<—
£l
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Bei Inhomogeneität innerhalb einer Serie mit
gleichzeitiger Chancenvermehrung erhalten wir aus (42)

CO - 1 + (1 -*))" *r 2 ^ log (1-M,2]A, /!

;=1

_ ö- 2] tyi-ri+2 Vj-®(»-«)3+ • •

V / ^ y=l y—1 y=*l

[8
Ä

—|

y=l y-1 J

Der «Kr/emeiwe 7'y/;«.s der jReiAew, wie er in (52)
bis (55) auftritt, ist

0(a) W„+W\a+ 1F/+ [l+^(l_2)Vyg(l-^+...] (5(5).

Die Wahrscheinlichkeiten B^, Wj, 4^, die

durch eine solche Reihe erzeugt werden, hängen ausser

von /t von den Konstanten y y^, y^ ab. Sie werden

mit den Wahrscheinlichkeiten (^, Qj, Q^,

durch folgende wichtige Formel verbunden :

oo

W,.= ^y„ri"«„ (57),
v=-.0

wobei das Zeichen zT die in der Differenzenrechnung
übliche Bedeutung hat und y^ =1, y, 0 zu setzen

ist. Wir erhalten nämlich aus dem Ansatz (50)

0(a) A (2) + y,(.F(a) —2a>(«) + *'-*»)
+ y,(^(a)-3aJ'(«) + 8a"J'(a)-«'2?'(a)) +

8
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und daraus ist

W,= Q, + y,(Q-2Q^+SU)
+ y»(^-3Q^+3Q^-Q^) + • •

Q, + ra [(<5,—«,_i)—(^-i- Q. -2)]

+7, [((«,-«,_,>-(e^-cu>)

- j)] + •

00

r=0

womit Gleichung (57) bewiesen ist.
Diese -ZerZe^r«^ rüer I7a7jrsc/mi«7ic/;/<:e4te«, wie sie

in (57) angegeben ist, rührt von Charlier her (vgl. Ohar-
lier 1, 2, 3 und 4). Sie ergibt, wie wir sehen werden,
eine interessante Analyse der Natur der Kurve.

7. /g «öerme^tf. Wir nehmen ^ 7^
0 an. Ist die aweate C/iara/tieris/i/c, d. h. y^, die

wir mit Charlier als Jfarsewtfnaitat bezeichnen wollen,
ungleich null und verschwinden alle höheren Charak-

teristiken, so wird

17 (1 +7g)+ ^2+-1 + 72 2

<L 1+72—27aT+7:
r(r—1)

' +

17. + 7s
2r r(r—1)
A Ä*
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Ist

l-y + 0> ®o wird r A + i±yA +

somit

^
für r</i + l—

oder ,->/i-f-i+y// + I;
^ < Q,

fur A + i -]/A +1 < r < A +1 +l/A+j

(58).

Positive Exzentrizität bewirkt eine Vergrösserung
der Wahrscheinlichkeiten bei grossem und kleinem r,
bei mittlerem r (in der Nähe der mathematischen Er-
Wartung) hat sie den umgekehrten Einfluss. Positive

//acAt die IPaAm'Aetwfo'eAAeite/fMrve aA.

Nun betrachten wir die iSwmmew/wnAtiow: Es ist
im allgemeinen, sofern wir die erzeugende Punktion
der Wahrscheinlichkeiten (57) mit C?(z) bezeichnen,

oo ?•

?•—0 v=-0

+ +^+ (59).

1 v"-| —A(l—«)

r=0
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wird

Der Koeffizient von z^ ist nichts anderes als die

me der Wahrscheinlichkeiten PK bis PK
U r

Für den besonderen Fall y^-j- 0, y, y^ 0

1—z 1—z ^

r.M-<U) (*-r)
y=0 j>=0

r r

Z->Zq, für ^ > 0 und

v=0 r—0

r r

Z!^<ZX für^<0 und >•

'
'//

v--0 r=0

2>,=2>, »' r — A

(60).

Positive Exzentrizität bewirkt Yergrössorung der
summatorischen Kei Iien, solange r <( /< ist ; für r > ä

wird diese Reihe durch positive Exzentrizität verkloi-
nert. F/s /i«def /ieiwe Fersc/iäeiMW# wöer de« .M/fe?-
?<Wi! stoW, d. h. die Anzahl der Elemente links vom
Mittelwert wird durch die Exzentrizität nicht geändert.

PK
Der Quotient —• ist gleich

a—l

A + A fa — 2Ä Pa + 2tyg + A
Pa ~ 3^ -f 2y,,

^ __
M^-Pa)

fVi Pa) + 2Pa'
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Wir haben hier der Einfachheit halber angenom-
men, /i »ei eine ganze Zahl.

IE.
1. 7» <( 0, !» rechts von /=.-./?,— 1 gibt es

1 noch Werte, die grösser als

"V-t sind.

2' 7a "rp"~ 1) "'ft =• Maximum
' (Poisson).

If„
3. > 0, — <C 1) Maximum ist nach links ver-

schoben.

Positive Exzentrizität verschiebt den wahrschein-
liebsten Wert nach links.

5. i<'aW : 7 7g «teraie^ew. Wir setzen : 7 7

Die dritte C/icrra/cteristi/r, die ich Fersc/<ie?mw<y

nennen will, bewirkt eine Deplacierung der Elemente
über den Mittelwert hinaus. Die Anzahl der Elemente
links vom Mittelwert wird durch die Verschiebung
geändert.

In der Tat erhalten wir aus (59)

r=V~S Wi-«) + 73(1-^)

\S vi 1 r r IV'C''
+ 2^" ~ [72"73^+73 -273H -j

Ä
'

v=0 v=0

Positive Eem'iiieimw/7 ver/t/ei?iert die Anzahl der

Elemente links vom Mittelwert.

v=0

vn vi2X-2X-
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Nun kehren wir zurück zu unsern erzeugenden
Funktionen (52) bis (55). In der folgenden Tabelle
finden wir die Werte der Exzentrizität und Verschie-

bung für die entsprechenden Wahrscheinlichkeitsreihen

zusammengestellt.

Statistisches Material 7g Exzentrizität y Verschiebung

homogen — —

Unab-

hängige

Ereig-
nisse

inhomogen
innerhalb

Serie
— —

inhomogen
von Serie

zu Serie
7=1

a

iyw-Ä)°
7=1

homogen
A • d"

2 3

Chancen-

ver-

mehrung

inhomogen
innerhalb

Serie 2Li /
7=1

3a_I 7 7

7=1

inhomogen

von Serie

zu Serie L y=l 7=1 "•
3!s/—r 7 3sZ-j 7 r

7=1 7=1

Bemerkenswert ist an obiger Tabelle, dass bei

gleichem Mittelwert und gleicher Exzentrizität die Yer-
Schiebung bei homogener Chancenvermchrung kleiner
ist als bei innerhalb der Serion inhomogener Chancen-

Vermehrung. Es ist nämlich nach der bekannten

Ungleichung
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&•><#)(&•)
für a & l'/i d

y r y? y ' 'j- y

(ZwY<i>,ivc.
^ 7=1 ' 7=1 7-I

Nun ist aber bei gleichem Mittelwert und bei
gleicher Exzentrizität

* .V

* =ZA' ^ ="X/V^>
7=1 7=1

(sv,y.
somit Ad^ —^ < / A d

s - 7 7

2X "
y=l

Unsere Formeln (58) und (00) stimmen mit (48)
und (51) genau überein. Bei diesen hatten wir voraus-
gesetzt, dass A A sein soll, bei (58) und (60) hin-

gegen ist =y^ 0 gesetzt worden, was das-

selbe bedeutet ([A—A ]®~0).
Die im vorangehenden Paragraphen abgeleiteten

SiSifee /wr JnAo;«m/e«eitö/ von Serie zu Serie gelten auch

für /deine CAancenvemeAntw^ ~
Bei Chancenvermehrung macht sich die Inhomo-

geneität innerhalb der Serien nicht bemerkbar, solange
sich diese nur über die mathematischen Erwartungen
erstreckt.
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Aus dor Tabelle sehen wir, class sich in diesem

Fall weder die Exzentrizität noch die Verschiebung
ändern, damit ist unser Satz für kleine Chancenver-

mehrung bewiesen. Die allgemeine Gültigkeit folgt
aber aus

.s s ^
Ä*(a) /7(i+d (1—«)) i7(l+d(l—»)) <<

r=i ' r=i
6'

2V

(l+d(l—«))~^- (l+d(l—a))~ä -E(z).

Z«7io»îoçremtfâ< î<wcZ C/tcmcewuemehnm^ üben,

wenn sie in Weiwew .Masse vorhanden sind, auf den

statistischen, wahrnehmbaren Verlauf der Häufigkeiten
dieselbe Wirkung aus.

Sind in der Tat (f und (/<—A / verschwindend
kleine Grössen, so haben wir sowohl bei Inhomoi
geneität wie auch bei Chancenvermehrung eine ver-
schwindende Verschiebung; die höheren Charaktori-
stiken sind gleich Null, während die Exzentrizität

y) Positiv ist.

f=l
Insbesondere erhalten wir aus (60) für kleine

Chancenvermehrung

v=0 r=0

Dass der Zeichenumschlag in Spalte VIII der
Zahlentafeln 1, 3, 4, 5 und 6 immer unmittelbar nach

dem Maximum der Spalte III eintritt, wird hierdurch
in Analogie zu (51) bis zu einem gewissen Grade erklärt.
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Die theoretisch berechnete Wahrscheinlichkeit des

Mchteintreffens des seltenen Ereignisses ist zu klein,
wenn vorhandene positive Chancenvermehrung vernach-

lässigt wird. Es ist in der Tat

1 -f- ^ < 1 —H—g?—I—g]—1~ • • •
G''

(1 < G*

(i-Mpr>G-'\
somit Pg > Qg für d > 0.

Diese Beziehung finden wir bei allen unseren Bei-
spielen beim Vergleich des Anfangs der Spalten II und

III bestätigt.

§ 17. Berechnung der Erwartungen.

Iii diesem Paragraphen wollen wir die verschie-
denen Formeln der mathematischen Erwartung des

Produktes (r(r—1) (/'—2).. (r—Ä-f-l)} hir die Wahr-
scheinlichkeiten Q, ()*, G, /', P* und P ermitteln. Wir
benützen dazu die erzeugenden Funktionen dieser Wahr-

scheinlichkeiten, ähnlich wie in § 12, unter Anwon-

dung der Gleichung

'/•(r—-l)(r—2). (r—/t-f-l)} —
Ja

,G(z)
für

1. Gm P«// der MMaWi(i«(/h/e« seddewen Preiywisse ist

{/•(>•—1)(/-—2)... (>•-/(•+1)}=
La ^

dP [vgl. Formel (26) |

-P(z)
für e=l

(61).

9
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2. Da sich die erzeugende Punktion der Wahrschein-
lichkeiten für sette«e .Ereignisse mit /w/iomo^eweüät
i««erftai& der «Serie« von denjenigen für gewöhn-
liehe seltene Ereignisse nicht unterscheidet, gilt
Formel (61) auch für diesen Fall.

3. JJei Irt/iomof/eneiüit now «Serie «w «Serie oA«e 0%fl«cew-

ver»«e/mm,<7 ist

4. .Nach Formel (26) erhalten wir für /mwmyene
CÄaweejwerme/iw««/

{r(r-l)(r-2)...(r-/r+l)} /<h+rf)(h+2rf)...(/M-[/c-l]d)

5. Nun betrachten wir den iüid der Iwliorwcu/eKeitoi
i««erÄai& der «Serie« frei C7mnce«renwehrM«/y und
setzen voraus, dass die Ansteckung nicht über die
Teilserien hinausgeht, mit andern Worten, dass die
Teilserien voneinander unabhängig sind.

Nach (42) ist

Setzen wir, soweit keine Verwechslung möglich,
_E*(2) E*, dann ist £*(1) 1

*X*)

(63)
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S

(63')
y=i

je*
"

A'*'

{#•('/ 1) (>•—2)}- 3 |i-(r-l)}{r} + 2 {*f
2Y A d*
—j y y

i=i
s s

{r(r-l)(»--2)} 3^^/,+^+22\< (63").
y—1 y=l

6. ßßi rfer ih/wmoc/enei^ von ßerie 2W ßerie mit
C'/cancenve-rae/mtwiy setzen wir voraus, class die ein-
zelnen Serien nicht zusammenhängen. Es ist nach (44)

— IV/ \— ^
ß;(,) -2^(i-N/i-^)) <<v

y=l

s

^«=£E>a+<>,>••

...(Ä^+(Ä-l)^)(l+i,(l-«)) *

und daraus ist

{>•(/•—l)(r—2)... (r—/t-f-l)}
6'

7 Z (/^+(/c-l)^.) ((34).

y=t
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7. Bei Wahrscheinlichkeiten, die sich nach Charlier-
sehen Reihen entwickeln lassen, ist nach (56), unter
Berücksichtigung, dass ^ 1, y, — 0 ist,

ff (2) +ya(i—»J'-kgCi—»)'+ •]

r=0

oo

ff'(»)=Äe-^2y,(i-«)'
v=0

oo

y=l
OO

r=0
oo

— 2 A £>-"0-^)^ y^(l-2)"-'
*>=1

OO

r=2

oo

ff"'(a)=AV-*^2^-^
r=0

oo

•j>=l

oo

+ WW*
i'=2

oo

_2)^(1_,r»,
r=3
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daraus ist

M A, {r(r— 1)} A*+ 2/j, [>•(/•—!)(»'—2)}

— A® -f- 6 7t ^2 — 6 j'3 (65)

/i -f 2 ^

{('/•—= ^+6/2 — 6/.,.

Unter Benützung dor im vorhergehenden Para-

graphen aufgestellten Tabelle für die Exzentrizität und

Verschiebung könnten -wir die Werte der ersten drei
Momente in (61), (62), (26), (63) und (64) aus (65)
direkt erhalten.

§18. Statistische Unterscheidung zwischen Wahrscheinlich-

keitsansteckung und Inhomogeneität. Die Serienverbindung.

Im Paragraphen 16 haben wir gesehen, dass

Chancenvermehrung und Inhomogeneität, sofern beide

in kleinem Masse auftreten, an dem Verlauf der Häufig-
keiten nicht unterschieden werden können. Wir wissen

ferner, dass sowohl bei Chancenvermehrung, wie auch

bei Inhomogeneität übernormale Dispersion auftritt.
Wir konstatieren also, dass Inhomogeneität und Chancen-

Vermehrung in gewisser Hinsicht statistisch gleich wahr-
nehmbar sind.

Es ist daher berechtigt zu fragen, ob Inhomo-

geneität und Chancenvermehrung überhaupt denselben

Effekt haben. Mit andern Worten: Sind zwei statisti-
sehe Materialien, die dieselbe Erwartung und dasselbe

Schwankungsmass aufweisen, beobachtbar voneinander

verschieden, wenn wir von dem einen Material Inhomo-

geneität von Serie zu Serie voraussetzen, beim andern

aber Chancenvermehrung H
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Zur Veranschaulichung cler Verhältnisse habe ich
Zahlentafel 12 berechnet. Spalte I gibt die Anzahl
der seltenen unter «(n=oo) Ereignissen an. In Spalte

II, III und IV wurden die Wahrscheinlichkeiten Q, Ç*
und Q für seltene Ereignisse ohne Chanconvermohrung
berechnet, während wir in Spalte V, VI und VII die
Wahrscheinlichkeiten P, P* und P mit Chancenver-

mehrung linden. Die Parameter der Wahrscheinlich-
lceiten wurden durchweg so gewählt, dass normale

Dispersion vorhanden ist, oder, sofern dies das Wahr-
scheinlichkeitsschema nicht zulässt, wurde der Lexis-
sehe Quotient auf ^3.5 festgesetzt. Mit andern Worten:
Für alle in Zahlentafel 12 berechneten Wahrschein-
lichkeiten beträgt die mathematische Erwartung 10,
das Quadrat des Schwankungsmassos 10 (für die Wahr-
scheinlichkeiten der Spalten II und III) bzw. 35 (für
die Wahrscheinlichkeiten der Spalten IV bis VII).
Der Einfachheit halber habe ich nur zwei inhomogene
Serien bzw. Teilserien vorausgesetzt.

Vergleichen wir nun Spalte IV (Inhomogoneität
von Serie zu Serie ohne Chancenvermehrung) mit Spalte
V (homogene Chancenvermehrung), so sehen wir, dass

diese trotz der Ubereinstimmung sowohl in dor mathe-
matischen Erwartung wie auch im Quadrat des Schwan-

kungsmasses bei weitem nicht identisch sind. Noch

klarer tritt dies beim Studium der Figur 4 in die Augen,
in welcher Zahlentafel 12 graphisch dargestellt ist.

Mit dieser Figur ist der Beweis erbracht, dass die

Wahrscheinlichkeitskurven der Inhomogoneität und

Chancenvermohrung wohl in ähnlicher Weise vom
homogenen unabhängigen Fall abweichen, unter sich

aber verschieden sind.

Um ein statistisch wahrnehmbares Unterschei-

dungskriterium zwischen Inhomogoneität und Chancen-
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Vermehrung zu erhalten, studieren wir das FerTmütfm

rfes <SWnrara/mw/7masse.s Nene»!ueridw </er im Wie
wir im § 13 gesehen haben (vgl. auch § 7), wird eine

SerienVerlängerung statistisch durch die Verbindung
von Serien erreicht. Bei dieser Serienverbindung kann

man unterscheiden zwischen Ferem^ww^r ?;ow imi/trew-
rfe« Serien (kontinuierliche Verlängerung) und «ic/it-
tcrü/»ewrfew Serien (unterbrochene Verlängerung), je
nachdem zeitlich aufeinanderfolgende oder auseinander-

liegende Serien verbunden worden.
Nach (62) erhalten wir für Inhomogeneität von

Serie zu Serie

S «

2
Ç : £v+2V(2X)'

7=1 7=1 y=l

^(/i—/(/
S

£- + A

(66)

® A(l-M') (67).ç

A nennen wir mit L. v. Bortkicwicz den relativen

Fehlerexzedenten. Aus 66 ist ersichtlich (vgl. Bortkio-
wiez 1, Seite 33), dass das -Quadrat dos relativen

Pehlerexzedenten direkt proportional zur Serienlänge

ist. Vermehrt man die Versuche in sämtlichen Serion

um das /c-fache, ohne dass sich dabei die Grundwahr-

scheinlichkoiten in den einzelnen Serien ändern, so
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vergrössern sich alle /k-Werte um das /(-fache, und
somit wird auch A /c-mal grösser. Wir erhalten daher

aus (66) für das Quadrat dos Schwankungsmasses hei
dieser Verlängerung der Serien um das /i-fache

/cä(1 -(- /D^) &/i -f- /<^/D^ (08).

Das Quadrat dos Schwankungsmasses ist also eine

quadratische Punktion der Serionlänge. Bei Inhomo-

genoität hat die Serienverlängerung statistisch so zu

erfolgen, dass man nur gleichartige Serien vereinigt.
(68) ist sowohl für die Fe'mnwjwn/ v;o« &erü/tre«(teM

wie »ic/itöerü/w'mtew Serien gültig.
Für das Yerhalton bei Serienverlängerung gilt

daher, nach (39), (40) und (68) :

Das Qua(trat (tes Vc/ncan /at«^masses ist eiwe

tiweare DW/ctiow (ter Yerieutay/e, sofern es sich um
Q/ia«cewuerme/izv«w,<7 tma! wic/iDusar«me«/(äw(/ewcte Yemen

odor um C/mncewvermeÄnm^ wwet zMsammen/nJiwö'enle
Venen mit «nterirochener FertÄw^enmjj' handelt.

Das Qna(trat (tes Vc/uean/(i«n(/smasses ist eine

qaaetratiscAe .Fîra/cticm (ter Yementdwyye hoi CTmneen-

ueme/mmgr mit ^(sammenMniyewrten Vene«, sofern

kontinuierliche Verlängerung stattfindet, sowie hoi Im-

Aomo^eweität row Vene «m Vene, gleichgültig, ob man
kontinuierliche odor unterbrochene Verlängerung vor-
nimmt.

Konstatiert man also bei übernormaler Dispersion,
dass das Quadrat des Schwankungsmasses eine lineare
Funktion der Serienlänge ist, so kann nicht reine In-
homogeneität, wohl aber Chancenvermehrung ohne

Serienzusammenhang vorliegen. Ist hingegen das Quad-
rat des Schwankungsmasses eine quadratische Funktion
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der Sericnlänge, ho ist weder die Inhomogeneität noch

die Chancenvermehrung mit Serienzusammenhang aus-

geschlossen ; je nachdem bei unterbrochener Verlange-

rung dieser quadratische Charakter bleibt oder durch
den linearen ersetzt wird, wird die Chancenvermeh-

rung oder die Inhomogeneität unmöglich.

Nach dem vorliegenden ist es also ausgeschlossen,
nach den Untersuchungen des § 13 bei unserem Pocken-

beispiel (vgl. Zahlentafel 4) bloss Inhomogeneität oder

Chancenvermehrung ohne Serienzusammenhang anzu-
nehmen.

Zum Schluss wollen wir vorliegende Erörterungen
noch an unserem Beispiel der weiblichen Selbstmorde

in 8 deutschen Staaten diskutieren. Es ist

[/•} /j — 3.47

ç" 0.43 Ä (1 -f 0.85) Ä (1 + «).

Nun vereinigen wir je zwei aufeinanderfolgende
Serien, mit andern Worten: statt der Jahresergebnisse
studieren wir das Resultat in zwei aufeinanderfolgen-
den Jahren, wir erhalten 5(1 Serien und berechnen

/<2 6.95,

18.24 =: A
£

1 -j- 1.63) ~ 2 -j- (2) /j<i

Quadratische Funktion von 2.

Reine Chancenvermehrung ohne Serienzusammen-

hang ist somit ausgeschlossen. Nun vereinigen wir das

Beobachtungsergebnis eines bestimmten Jahres in einem

Staate mit den um 7 Jahre entfernten desselben Staates
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und erhalten so wieder 56 Doppeljahreserien. Wir
notieren z. B. für das Doppeljahr 1881/1888 in Lübeck
5 Selbstmorde. Wir erhalten

/ig 6.95,

17.91 /ig (1 + 1.58) ~ 2 /; -f (2)* Äo

Quadratische Funktion von 2.

Das Résultat der Berechnungen macht also bei
diesem Beispiel die einfache Chancenvermehrung mit
und ohne zusammenhängende Serien unmöglich, wäh-
rend kein zwingender Grund vorliegt, anzunehmen, es

handle sich hier nicht um reine Inhomogenöität.
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Zahlentafel 1.

Die Todesfälle bei Dampffässerexplosionen in Preussen in den Jahren 1890 bis 1909.

Vgl. Seite 58.

I II III IV V VI VII VIII IX

Zahl
(1er

Todes-
fülle

Zahl (1er Jahre Snmmenzahlen Abweichung

tatsäch-
Hell

nach

Gleichung

(21)

nach

Gleichung

(20)

7,11

Spalte II
ZU

Spalte 111

ZU

Spalte IV

zwischen
und

Spalte VI

Spalte V

und

Spalte VII

0 2 0.1 2.5 2 Ol 2.5 —1.9 + 0.5

l 4 0.6 2.6 6 0.7 5.1 - 5.3 — 0.9

2 1 1.6 2.4 7 2.3 7.5 — 4.7 + 0.5

3 2 2.8 2.1 9 5.1 9.6 — 3.9 + 0.6

4 3 3.5 1.8 12 8.6 11.4 — 3.4 — 0.6

5 1 3.5 1.5 13 12.1 12.9 — 0.9 — 0.1

G 2 3.0 1.3 15 15.1 14.2 + 0.1 — 0.8

7 1 2.1 1.0 16 17.2 15.2 + 1.2 -0.8
8 1 1.3 0.9 17 18.5 16.1 + 1.5 — 0.9

'

9 — 0.8 0.7 17 19.3 16.8 + 2.3 — 0.2

10 0.4 0.6 17 19.7 17.4 + 2.7 + 0.4

11 0.2 0.5 17 19.9 17.9 + 2.9 + 0.9

12 1 0.1 0.4 18 20.0 18.3 + 2.0 + 0.3

13 — 0.3 18 20.0 18.6 + 2.0 + 0.6

14 — — 0.3 18 20.0 18.9 + 2.0 + 0.9 j

15 1 0.2 19 20.0 19.1 + 1.0 + 0.1

16 0.2 19 20.0 19.3 + 1.0 + 0.3

17 0.1 19 20.0 19.4 + 1.0 + 0.4

18 1 — 0.1 20 20.0 19.5 — — 0.5

19 — — 0.1 20 20.0 19.6 — — 04

*20 0.1 20 20.0 19.7 — — 0.3

21 0.1 20 20.0 19.8 — 0.2
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I: Anzahl der Todesfälle in einem Jahr /•.

II: Anzahl der Jahre, in denen effektiv r Todesfälle aufgetreten üf
III: Anzahl der Jahre mit r Todesfällen, theoretisch, bei Annahme der Unabhängig-

keit 20 Ç,..

IV: Anzahl der Jahre mit r Todesfällen, theoretisch, bei Annahme der Chancenver-

mehrung durch Erfolg 20 P,..

V:
r=0

VI: 20SQ„.
r=0

VII: 20 S P„.
V—0

î*

VIII: V](20(3^—ilQ; Abweichung von Spalten VI und V.

7*

IX : V] (20 P,,—M,) ; Abweichung von Spalten VII und V.
v=0

Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.

ÇiteWe: Stat. Jahrbuch für den Preussischen Staat 1910. VIII. Jahrgang.

Durchschnittliche Anzahl der Todesfälle pro Jahr ä B. 05.

Quadrat des Schwankungsmasses 24.576, cl 3.867.
Durchschnittliche Abweichung: { |r*—A| } beobachtet: 3.67, berechnet: 3.66 [nach

Formel (31) |.
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Zahlentafel 2.

Die Dampffässerexplosionen in Preussen in den Jahren 1890 bis 1909.

Vgl. Seite 60.

I II III IV V VI

Zahl
der

Explosionen

Zahl der Jahre Suinmenzahlen
Abweichung

zwischen

Spalte IV und Vtatsächlich
nach

Weichling
(21)

zu Spalte II 7.U Spalte III

0 1 0.7 1 0.7 — 0.3
1 2 2.4 3 3.1 + 0.1

2 3 4.0 6 7.1 + 1.1

3 3 4.4 9 11.5 ' + 2.5
4 7 3.6 16 15.1 — 0.9

5 3 2.4 19 17.5 1.5

6 1 1.3 20 18.8 — 1.2

7 0.6 20 19.4 — 0.6

8 0.3 20 19.7 — 0.3

9 0.1 20 19.8 — 0.2

I : Anzahl (1er Explosionen in einem Jahr r.
II: Anzahl (1er Jahre, in denen effektiv r Explosionen aufgetreten il/,..

III: Anzahl der Jahre mit f Explosionen theoretisch, bei Annahme der Unabhängig-
keit — 20 ft,.

IV: S il/,.
v=0

V: 202 öv
p=0

* r
VI: 2(20 ft.— J7v); Abweichung von Spalten IV und V.

v=0

Das Maximalglied ist in Spalte III durch Fettdruck hervorgehoben.

ft«eWe.- Vgl. Zahlentafel 1.

Durchschnittliche Anzahl (1er Explosionen pro Jahr A 3.3.

Quadrat des Schwankungsmasses 3.
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Zahlentafel 3.

Die Todesfälle bei Dampfkesselexplosionen in Preussen in den Jahren 1883 bis 1907.

Vgl. Seite 61.

I II III 1 IV V 1 VI | VII VIII | IX

Zahl
der

Todes-
falle

Zahl (1er Jahre Sunimenzahlen Abweichung-

tatsäeh-
lieb

nach

Gleichung

(21)

nach

Gleichung

(20)

ZU

Spalte II
tu

Spalte III
7,11

Spalte IV

/wischen
und

Spalto VI

Spalte V

und

Spalte VII

0
| 1

1 ^
i 3

4+

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

1

l

l
l
l
3

1

1

1

3

1

1

1

1

1

1

O

0.1

0.3

0.5

0.8

1.3

1.8

2.2

2.5

2.7

2.7

2.4

2.1

1.7

1.3

1.0

0.6

0.4

0.3

0.2

0.1

0.1

0.2

0.4

0.6

0.8

1.0

1.2

1.3

1.4

1.4

1.4

1.4

1.4

1.3

1.2

1.1

1.0

0.9

0.9

0.8

0.7

0.6
0.5

0.5

0.4

1

2

2

3

4

5

8

9

10

11

11

14

15

16

17

18

19

20

22

22

22

22

22

0.1

0.4

0.9

1.7

3.0

4.8

7.0

9.5

12.2

14.9

17.3

19.4

21.1

22.4

23.4

24.0

24.4

24.7

24.9

25.0

0.1

0.3

0.7

1.3

2.1

3.1

4.3

5.6

7.0
8.4

9.8

11.2

12.6

13.9

15.1

16.2

17.2

18.1

19.0

19.8

20.5

21.1

21.6
22.1

22.5

—1.0
— 2.0

— 2.0

— 2.9

— 3.6

— 4.1

— 6.3

— 6.0

— 5.2

— 4.0

— 1,5

— 1.8

— 0.1

+ 1.3

+ 2.4

+ 3.1

+ 3.4

+ 3.4

+ 2.0

+ 2.4

+ 2.7

+ 2.9

+ 3.0

+ 0.1

+ 0.3

— 0.3

— 0.7

+ 0.1

+ 0.1

+ 0.3

+ 0.6

— 1.0

— 0.6

— 0.2

+ 0.2

+ 1.6

— 0.1

+ 0.1

+ 0.2

+ 0.2

+ 0.1

— 0.2

— 1.5

— 0.9

— 0.4

+ 0.1

+ 0.5
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I II | III | IV V 1 VI I VII VIII | IX •

Zahl
der

Todes-
fälle

Zahl der Jahre Snminenzahlen Abweichung

tatsäch-
lieh

nach

Gleichung

(21)

nach

Gleichung

(20)

ZU

Spalto II
ZU

Spalte III
7.11

Spalte IV

zwischen
und

Spalte VI

Spalte V

und

Spalte VII

25

26

27

28

29

30

31

32

33

34

35

36

37

l
1

1

—

0.4

0.3

0.3

0.2

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

22

23

24

24

24

24

24

24

24

24

25
25

25

25.0
25.0

25.0

25.0
25.0

25.0

25.0

25.0
25.0
25.0

25.0
25.0

25.0

22.9

23.2

23.5

23.7

23.9

24.1

24.2

24.3

24.4
24.5

24.6

24.7
24.8

+ 3.0

+ 2.0

+ 1.0

+ 1.0

+ 1.0

+ 1.0

+ 1.0

+ 1.0

+ 1.0

+ 1.0

+ 0.9

+ 0.2

— 0.5

— 0.3

— 0.1

+ 0.1

+ 0.2

+ 0.3

+ 0.4

+ 0.5

— 0.4

— 0.3

-0.2

1: Anzahl der Todesfälle in einem Jahr r.
II: Anzahl der Jahre, in denen effektiv r Todesfälle aufgetreten AT,..

III: Anzahl der Jahre mit r Todesfällen, theoretisch, bei Annahme der Unabhängig-
keit 25 Q,..

IV : Anzahl der Jahre mit r Todesfällen, theoretisch, bei Annahme der Chancenver-

mehrung durch Erfolg 25 P,..

V:

VIH: 2 (26 <2,—Mr); Abweichung von Spalten VI und V.

VI: 25VQ,.
"=«

IX : vj (25 P„—jlf„); Abweichung von Spalten VII und V.

VII: 125 v p„.
"=°

v=0

Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.

Stat. Jahrbuch für das Deutsche Reich 58 ff.

Durchschnittliche Anzahl der Todesfälle pro Jahr A 13.72.

Quadrat des Schwankungsmasses 62.48, d 3.55.

Durchschnittliche Abweichung: { | r—fc|} beobachtet: 6.086, berechnet (theoro-

tisch) 6.226 [nach Formel (31)].
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Zahlentafel 4.

Die Todesfälle an Pocken in der Schweiz in den Jahren 1877 bis 1900.

Vgl. Seite 61.

I II III IV V 1 VI 1 VII VIII IX t

Zahl
(1er

Todes-
fülle

Zahl (1er Monate Summenzahlen Abweichung

tatsäeh-

lieh

nach

Gleichung

(21)

nach

Gleichung

(20)

ZU

Spalte II
'/,ll

Spalte III
/.II

Spalte IV

zwischen
und

Spalte VI

Spalte V

und

Spalte VII

0

1

2

S

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

100

39

28

26

13

6

11

5

5

6

1

6

2

2

3

B

4

1

2

4

1

3

1.2

6.5

17.8

32.6

44.9

49.4
45.2

35.5

24.5

15.0

8.2

4.1

1.9

0.8

0.3

0.1

100.4

36.3

23.5
17.5

13.8

11.3

9.5

8.1

7.0
6.1

5.3

4.7

4.2

3.7

3.3

3.0

2.7

2.4

2.2
2.0

1.8

1.6

1.5

1.3

1.2

100

139

167

193

206

212

223
228

233

239

240

246

248

250

253

256

256

256

260
261

263

267

268

271

271

1.2

7.7

25.5
58.1

103.0

152.4

197.6

233.1

257 6

272.6

280.8
284.9

286.8

287.6

287.9

288.0
288.0
288.0

288.0
288.0

288 0

288.0

288.0

288.0

288.0

100.4

136.7

160.2

177.7

191.5

202.8

212.3

220.4

227.4
233.5

238 8

243.5

247.7

251.4

254.7

257.7

260.4

262.8

265.0

267.0

268.8

270.1

271.9

273.2

274.4

— 98.8

— 131.3

— 141.5

— 134.9

— 103.0

— 59.6

— 25.4

+ 5.1

+ 24.6

+ 33.6

+ 40.8

+ 38.9

+ 38.8

+ 37.6

+ 34.9

+ 32.0

+ 32.0

+ 32.0

+ 28.0

+ 27.0

+ 25.0

+ 21.0

+ 20.0

+ 17.0

+ 17.0

+ 0.4

— 2.3

— 6.8

— 15.3

— 14.5

— 9.2

— 10.7

— 7.6

— 5.6

— 5.5

— 1.2

— 2.5

— 0.3

+ 1.4

+ 1-7

+ 1-7

+ 4.4

+ 6.8

+ 5.0

+ 6.0

+ 5.8

+ 3.4

+ 3.9

+ 2.2

+ 3.4
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I II fn IV V VI VII VIII IX

Zahl Zahl (1er Monate Suminenzahlen Abweichung
der

Todes-
fülle

tatsiich-
lieh

nach

Weichling
(21)

nach

Gleichung

(20)

in
Spalte II

7.11

Spalte Iii
zu

Spalte IV

zwischen
und

Spalte VI

Spalte V

und

Spalte VII

25 2 1.1 273 288.0 275 5 + 15.0 + 2.5

26 1 — 1.0 274 288 0 276.5 + 14.0 + 2.5

27 1 — 0.9 275 288.0 277.4 + 13.0 + 2.4

28 1 — 0.8 276 288 0 278.2 + 12.0 + 2.2

29 — — 0.8 276 288.0 279.0 + 12.0 + 3.0

30 3 0.7 279 288.0 279.7 + 9.0 + 0.7
31 — — 0.6 279 288.0 280.3 + 9.0 + 1-3

32 1 — 0.6 280 288.0 280.9 + 8.0 + 0.9
33 — — 0.5 280 288.0 281.4 + 8.0 + 1-4

34 1 — 0.5 281 288.0 281.9 + 7.0 + 0.9

35 1 — 0.5 282 288.0 282.4 + 6.0 + 0.4

36 — 0.4 282 288.0 282.8 + 6.0 + 0.8

37 — — 0.4 282 288.0 283.2 + 6.0 + 1.2

38 1 — 0.4 283 288.0 283.6 + 5.0 + 0.6

39 - — 0.3 283 288.0 283.9 + 5.0 + 0.9

40 0.3 283 288.0 284.2 + 5.0 + 1.2

41 — 0.3 283 283.0 284.5 + 5.0 4- 1.5

42 — — 0.3 283 288.0 284.8 + 5.0 + 1.8

43 1 — 0.2 284 288.0 285.0 + 4.0 + 1.0

44 1 — 0.2 285 288.0 285.2 -|- 3.0 + 0.2

45 0.2 285 288.0 285.4 + 3.0 + 0.4

46 0.2 285 288.0 285.6 + 3.0 + 0.6

47 0.2 285 288.0 285.8 + 3.0 + 0.8

48 0.2 285 288.0 286.0 + 3.0 + 1.0

49 — — 0.1 285 288.0 286.1 + 3.0 + 1.1

60 -r- 0.1 285 288.0 286.2 + 3.0 + 1.2

51 0.1 285 288.0 286.3 + 3.0 + 1.3

52 0.1 285 288.0 286.4 + 3.0 + 1-4

53 0.1 285 288.0 286.5 + 3.0 + 1.5

54 2 0.1 287 288.0 286.6 + 1.0 — 0.4

10



I II III | IV V I VI I VII VIII T ix
"

Zahl
der

Todes-
falle

Zahl der Monate S umm einzahlen Abweichung

tatsäch-
lieh

nach

Gleichung
(21)

nach

Gleichung

(20)

ZU

Spalte II
711

Spalte III
ZU

Spalte IV

zwischen

ilml

Spalte VI

Spalte V

und

Spalte VII

55

56

57

58

59

60

61

62

1 —

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

287

287

287

287

287

288

288

288

288.0

288.0

288.0
288.0

288.0

288.0

288.0

288.0

286.7

286.8

286 9

287.0

287.1

287.2

287.3

287.4

+ 1.0

+ 1.0

+ 1.0

+ 1.0

+ 1.0

— 0.3

— 0.2

— 0.1

+ 0.1

— 0.8

— 0.7

— 0.6 ]

I : Anzahl der Todesfälle in einem Monat r.
II: Anzahl der Monate, in denen effektiv r Todesfälle aufgetreten il/,..

III: Anzahl der Monate mit r Todesfällen, theoretisch, bei Annahme der Unabhängig-
keit 288 $,..

IV : Anzahl der Monate mit r Todesfällen, theoretisch, bei Annahme der Chancen-

Vermehrung durch Erfolg 288

V:
v=0

r
VI: 288 V

r=0
r

VII: 288 VP,,.
r=0

r
VIII: v (288 M,) ; Abweichung von Spalten VI und V.

v=0

r
IX: V] (288 P,,—il/J; Abweichung von Spalten VII und V.

»'—0

Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.

Schweizerische Statistik, Ehe, Geburt und Tod in der schweizerischen Kevöl-

kerung. Fünfter Teil. Seite 131.

Durchschnittliche Anzahl der Todesfälle pro Monat /t 5.5.

Quadrat des Schwankungsmasses 83.589, d 14.20.

Durchschnittliche Abweichung: { | A | ] beobachtet: 6.326, berechnet: 6.003.
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Zahlentafel 5.

Die Todesfälle an Scharlach in der Schweiz in den Jahren 1877 bis 1900.

Vgl. Seite 61.

I II HI IV V VI VII VIII IX

Zahl
dor

Todes-
fülle

Zahl der Monate Summciizahlen Abweichung

tatsäeli-
lieh

nach

Oleichnng

(ül)

nach

Gleichung

(20)

ZU

Spalte II
ZU

Spalte III
ZU

Spalte IV

zwischen

und

Spalte VI

Spalte V

und

Spalte VII

0 £ 36.5 5 36.5 5.0 + 31.5
1 7 18.1 12 54.6 12.0 + 42.6

2 13 13.4 25 — 68.0 25.0 1 43.0
13 15 11.0 40 79.0 - 40.0 + 39 0

•1 18 — 9.5 58 — 88.5 - 58.0 1 30.5

5 19 8.4 77 96 9 — 77.0 + 199
6 8 — 7.6 85 104.5 - 85.0 + 19.5

7 10 6.9 95 111.4 — 95.0 16.4

8 7 6.4 102 _ 117.8 - 102.0 + 15.8

1) 8 — 5.9 110 — 123.7 — 110.0 f 13.7

10 2 5.5 112 129.2 — 112.0 + 17.2

11 6 5.2 118 134.4 118.0 + 16.4

12 11 4.9 129 189.3 — 129.0 + 10.3

113 6 0.1 4.6 135 O.l 143.9 — 134.9 + 8.9

14 7 0.2 4.4 142 0.3 148.3 — 141.7 -f 6.3

15 8 0.3 4.2 150 0.6 152.5 — 149.4 + 2.5

16 9 0.6 4.0 159 1.2 156.5 — 157.8 2.5

17 7 1.1 3.8 166 2.3 160.3 - 163.7 - 5.7

18 2 1.8 3.6 168 4.1 163.9 — 163.9 - 4.1

19 5 2.8 3.5 173 6.9 167.4 — 166.1 — 5.6

20 1 4.2 3.3 174 11.1 170.7 162.9 — 3.3

21 4 5.9 3.2 178 17.0 173.9 — 161.0 — 4.1

22 8 8.0 3.1 186 25.0 177.0 — 161.0 — 9.0

23 4 10.3 3.0 190 35.3 180.0 — 154.7 — 10.0

24 4 12.8 2.9 194 48.1 182.9 — 145.9 — 11.1
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I II III IV V VI VII VIII IX
~

Zahl Zahl der Monate Stunmenzahlen Abweichung
(1er

Todes- tatsäch- ii ach nach
zu ZU ZU

zwischen Spalte V

fülle lieh Gleichung
(21)

Gleichung

(20)
Spalte II Spalte Iii Spalte IV

und

Spalte VI

und

Spalte VII

25 5 15.3 2.8 199 63.4 185.7 135.6 —13.3
2ß 6 17.5 2:7 205 80.9 188.4 — 124.1 — 16.4

27 3 19.3 2.6 208 100.2 191.0 — 107.8 — 17.0

28 2 20.5 2.5 210 120.7 193.5 — 89.3 — 16.5

29 3 21.1 2.4 213 141.8 195.9 71.2 — 17.1

30 2 20.9 2.3 215 162.7 198.2 52.3 - 16.8

31 2 20.1 2.2 217 182.8 200.4 — 34.2 — 16.6

32 i 18.7 2.2 218 201.5 202 6 — 16.5 — 15.4

33 3 16.9 2.1 221 218.4 204.7 2.6 — 16.3

34 14.8 2.0 221 233.2 206.7 + 11.2 14.3

35 1 12.6 2.0 222 245.8 208.7 + 23.8 — 13.3
36 3 10.4 1.9 225 256.2 210.6 4- 31.2 — 14.4
37 1 8.4 1.9 226 264.6 212.5 + 38.6 — 13.5

38 1 6.6 1.8 227 271.2 214 3 + 44.2 — 12.7

39 2 5.0 1.8 229 276.2 216.1 + 47.2 — 12.9

40 3 3.7 1.7 232 279.9 217.8 + 47.9 — 14.2

41 — 2.7 1.7 232 282.6 219.5 + 50.6 — 12.5

42 — 1.9 1.6 232 284.5 221.1 + 52.5 — 10.9

43 1 1.3 1.6 233 285.8 222.7 + 52.8 — 10.3

44 1 0.9 1.5 234 286.7 224.2 + 52.7 — 9.8

45 • 0.6 1.5 234 287.3 225.7 + 53.3 — 8.3

40 — 0.4 1.4 234 287.7 227.1 + 53.7 — 6.9

47 — 0.2 1.4 234 287.9 228.5 + 53.9 — 5.5

48 — 0.1 1.4 234 288.0 229.9 + 54.0 — 4.1

49 2 — 1.3 236 288.0 231.2 + 52.0 — 4,8

50 2 1.3 238 288.0 232.5 + 50.0 — 5.5

51 1 — 1.3 239 288.0 233.8 + 49.0 — 5.2

52 1 — 1.2 240 288.0 235.0 + 48.0 — 5.0
53 1.2 240 288.0 236.2 + 48.0 — 3.8

54 1 1.2 241 288.0 237.4 + 47.0 — 3.6
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I II IV V VI VII VIII IX

Zahl
tier

To<lcs-
fülle

Zahl (1er Monate Suminenzahlen Abweichung

tatsäch-
lieh

nach

(ilcicliung
(21)

nach

Oleiehniig

(20)

ZU

Spalte II
ZU

Spalte III
7.11

Spalte IV

zwischen
und

Spalte Vi

Spalte V

und

Spalte VII

55 2 1.1 243 288.0 238.5 + 45.0 — 4.5

56 1 — 1.1 244 288.0 239.6 + 44.0 — 4.4

57 1 — 1.1 245 288.0 240.7 + 43.0 — 4.3

58 2 — 1.0 247 288.0 241.7 + 41.0 — 5.3

59 — — 1.0 247 288.0 242.7 + 41.0 — 4.3

60 1 1.0 248 288.0 243.7 + 40.0 — 4.3

61 1 — 1.0 249 288.0 244.7 + 39.0 — 4.3

62 0.9 249 288.0 245.6 + 39.0 — 3.4

63 1 — 0.9 250 288.0 246.5 + 38.0 — 3.5

61 — — 0.9 250 288.0 247.4 + 38.0 — 2.6

65 1 0.9 251 288.0 248.3 + 37.0 — 2.7

66 0.9 251 288.0 249.2 A 37.0 — 1.8

67 2 0.8 253 288.0 250.0 + 35.0 — 3.0

68 0.8 253 288.0 250.8 + 35.0 — 2.2

69 — — 0.8 253 288.0 251.6 + 35.0 — 1.4

70 0.8 253 288.0 252.4 + 35.0 — 0.6

71 1 0.8 254 288.0 253.2 + 34.0 — 0.8

72 0.7 254 288.0 253.9 + 34.0 — 0.1

73 0.7 254 288.0 254.6 + 34.0 + 0.6

74 3 — 0.7 257 288.0 255.3 + 31.0 — 1.7

75 1 0.7 258 288.0 256.0 + 30.0 -2.0
76 l 0.7 259 288.0 256.7 + 29.0 — 2.3

77 _ 0.7 259 288.0 257.4 + 29.0 -1.6
78 2 0.6 261 288.0 258.0 + 27.0 — 3.0

79 — — 0.6 261 288.0 258.6 + 27.0 — 2.4

80 1 — 0.6 262 288.0 269.2 + 26.0 — 2.8

81 0.6 262 288.0 259.8 + 26.0 — 2.2

82 1 0.6 263 288.0 260.4 + 25.0 — 2.6

83 0.6 263 288.0 261.0 + 25.0 — 2.0

84 2 0.6 265 288.0 261.6 + 23.0 — 3.4
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I II III IV V VI VII VIII IX

Zahl Zahl der Monate Summenzalilen Abweichung'
der

Todes- tatsäch-
nach nach

ZU ZU ZU
/.wischen Spalte V

fälle lieh Gleichung

(21)

Gleichung

(20)
Spalte II Spalte HI Spalte IV

und

Spalte VI

und

Spalte VII

85 0.6 265 288.0 262.2 + 23.0 — 2.8

86 — — 0.5 265 288 0 262.7 -b 23.0 — 2.3

87 2 — 0.5 267 288.0 263.2 + 21.0 — 3.8

88 — — 0.5 267 288.0 263.7 + 21.0 — 3.3

89 — — 0.5 267 288.0 264.2 + 21.0 -2.8
90 — — 0.5 267 288.0 261.7 + 21.0 — 2.3

91 — 0.5 267 288.0 265.2 + 21.0 — 1.8

92 — — 0.5 267 288.0 265.7 + 21.0 - 1.3

93 — — 0.5 267 288.0 266.2 + 21.0 — 0.8
94 — 0.5 207 288.0 266.7 + 21.0 — 0.3

95 1 0.4 268 288.0 267.1 + 20.0 — 0.9
96 — — 0.4 268 288.0 267.5 + 20 0 — 0.5
97 — __ 0.4 268 288.0 267.9 + 20.0 — 0.1

98 — 0.4 268 288.0 268.3 -b 20.0 + 0.3

99 — — 0.4 268 288.0 268.7 + 20.0 + 0.7

100 — 0.4 268 288.0 269.1 + 20.0 + 1.1

101 — — 0.4 268 288.0 269.5 -f 20.0 b 1.5

102 — — 0.4 268 288.0 269.9 + 20.0 + 1.9

103 — — 0.4 268 288.0 270.3 -b 20.0 -1- 2.3

104 1 — 0.4 269 288.0 270.7 -b 19.0 + 1.7

105 1 0.4 270 288.0 271.1 + 18.0 + 1.1

106 1 0.3 271 288.0 271.4 + 17.0 + 0.4

107 — 0.3 271 288.0 271.7 + 17.0 -b 0.7

108 — — 0.3 271 288.0 272.0 + 17.0 + 1.0

109 — — 0.3 271 288 0 272.3 + 17.0 + 1.3

110 — 0.3 271 288.0 272.6 + 17.0 + 1.6

111 3 0.3 274 288.0 272.9 + 14.0 — 1.1

112 — — 0.3 274 288.0 273.2 -b 14.0 — 0.8
113 — 0.3 274 288.0 273.5 + 14.0 — 0.5
114 1 0.3 275 288.0 273.8 + 13.0 — 1.2
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1 II OC IV
"

v VI VII VIII IX

Zulil
der

Todes-
fülle

Zahl der Monate Snminenzahlen Abweichung

tatsäcli-
lieh

nach

Gleichung

(21)

nach

Gleichung

(2#)

ZU

Spalte II
zu

Spalte III
7.11

Spalte IV

zwischen
nnd

Spalte VI

Spalte V

und

Spalte VII

115 0.3 275 288.0 274.1 + 13.0 — 0.9

116 — — 0.3 275 288.0 274.4 + 13.0 — 0.6

117 — — 0.3 275 288.0 274.7 + 13.0 — 03
118 _ — 0.3 275 288.0 275.0 + 13.0 —
119 — — 0.3 275 288o 275.3 + 13.0 + 0.3

190 — 0.3 275 288.0 275.6 + 13.0 + 0.6

121 — — 0.3 275 288.0 275.9 + 13.0 + 0.9

122 — — 0.2 275 288.0 276.1 + 13.0 + 11
123 — — 0.2 275 288.0 276.3 + 13.0 + 1.3

124 — — 0.2 275 288.0 276.5 + 13.0 + 1.5

125 0.2 275 288.0 276.7 + 13.0 + 1.7

120 — — 0.2 275 288.0 276.9 + 13.0 + 1.9

127 — 0.2 275 288.0 277.1 + 13.0 -I- 2.1

128 — 0.2 275 288.0 277.3 + 130 + 2.3

129 — — 0.2 275 288.0 277.5 + 13.0 -I- 2.5

130 0.2 275 288.0 277.7 + 13.0 + 2.7 j

131 — _ 0.2 275 288.0 277.9 + 13.0 + 2.9

132 — — 0.2 275 288.0 278.1 + 13.0 + 3.1 ;

133 — — 0.2 275 288.0 278.3 + 13.0 + 3.3

134 — — 0.2 275 288.0 278.5 + 13.0 + 3.5

135 0.2 275 288.0 278.7 + 13.0 + 3.7

136 0.2 275 288.0 278.9 + 13.0 I 3.9

137 0.2 275 288.0 279.1 + 13.0 + 4.1

138 1 0.2 276 288.0 279.3 + 12.0 + 3.3

139 — — 0.2 276 288.0 279.5 + 12.0 + 3.5

140 0.2 276 288.0 279.7 + 12.0 + 3.7

141 1 0.2 277 288.0 279.9 + 11.0 + 2.9
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I: Anzahl der Todesfälle in einem Monat r.
II: Anzahl der Monate, in denen effektiv r Todesfälle aufgetreten AÇ.

III: Anzahl der Monate mit r Todesfällen, theoretisch, hei Annahme der Unabhängig-
keit 288

IV : Anzahl der Monate mit r Todesfällen, theoretisch, bei Annahme der Chancen-

Vermehrung durch Erfolg 288 P,..

V: 2 A/„.
)'=0

VI: 288 2 öv
r=0

VII: 288 2-P,-
p=0

r
VIII: 2 (288 Q,,— 1W,,); Abweichung von Spalten VI und V.

r=0

r
IX: 2(288PV—My); Abweichung von Spalten VII und V.

i»=0

Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.

QueJ/e: Schweizerische Statistik. Ehe, Geburt und Tod in der schweizerischen Be-

völkerung. Fünfter Teil, S. 137.

Durchschnittliche Anzahl der Todesfälle pro Monat ä 29.778.

Quadrat des Schwankungsmasses 1788.125, (2 59.049.

Durchschnittliche Abweichung: j | -/—/j|| beobachtet: 27.574, berechnet: 29.037

[nach Formel (31)].
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Zahlentafel 6.

Die Todesfälle an Scharlach in der Schweiz in den Monaten des 2. Halbjahres

(Juli bis Dezember) der Jahre 1879 bis 1900.

Vgl. Seite 62.

I 11 III 1 iv V VI VII VIII IX

Zahl
(1er

Todes-
fälle

Zahl (1er Monate Suinmenzahle» Abweichung

tatsäch-
lieh

nach

Gleichung

(21)

nach

Gleichung

(20)

'All

Spalte II
ZU

Spalte III
ZU

Spalte IV

/.wischen

und

Spalte VI

Spalte V

und

Spalte VII

0 4 4.8 4 4.8 — 4 + 0.8
1 4 — 6.4 8 — 11.2 — 8 — 3.2

2 9 0.1 7.2 .17 0.1 18.4 — 16.9 + 1.4

3 10 0.3 7.5 27 0.4 25.9 — 26.6 — 1.1

4 8 0.7 7.6 35 1.1 33.5 — 33.9 — 1.5

5 10 1.8 7.4 45 2.9 40.9 -42.1 — 4.1

6 6 3.5 7.1 51 6.4 48.0 — 44.6 — 3.0

7 5 6.0 6.8 56 12.4 54.8 — 43.6 — 1.2

8 6 8.9 6.4 62 21.3 61.2 — 40.7 — 0.8

9 5 11.8 6.0 67 33.1 67.2 — 33.9 + 0.2

10 2 14.1 5.6 69 47.2 72.8 — 21.8 + 3.8

11 5 15.2 5.2 74 62.4 78.0 — 11.6 + 4.0

12 8 16.1 4.8 82 77.5 82.8 — 4.5 + 0.8

13 5 13.8 4.5 87 91.3 87.3 + 4.3 + 0.3

14 5 11.7 4.1 92 103.0 91.4 + 11.0 — 06

15 4 9.3 3.8 96 112.3 95.2 + 16.3 — 0.8

16 4 6.9 3.4 100 119.2 98.6 A 19.2 — 1.4

17 4 4.8 3.2 104 124.0 101.8 + 20.0 — 2.2

18 1 3.2 2.9 105 127.2 104.7 + 22.2 — 0.3

19 3 2.0 2.6 108 129.2 107.3 + 21.2 — 0.7

20 1.2 2.4 108 130.4 109.7 + 22.4 + 1.7

21 L 0.7 2.2 109 131.1 111.9 + 22.1 + 2.9

22 4 0.4 2.0 113 131.5 113.9 + 18.5 + 0.9

23 l 0.2 1.8 114 131.7 115.7 + 17.7 + 1-7

1 ^ 4 0.2 1.6 118 131.9 117.3 + 13.9 — 0.7
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I

Zahl
der

Todes-
fälle

III IV

Zahl der Monate

tatsäch-
lieh

nach

Gleichung

(21)

nach

Gleichung

(2#)

r
_ vi
Sunnnenzahlen

VII

ZU

Spalte II
ZU

Spalte III
zu

Spalte IV

VIII IX

Abweichung

zwischen Spalte V

und

Spalte VI

25
"

2

26 2

27 i
28 i
29 i
30 i
31 —
32 —
33 —
34 —

35

36 2

37 —
38 i
39 —

40 i
41 —
42 —
43 —
44 —

45 —
46 —
47 i —
48 —
49 i
50 —
51 —
52 —
53 —
54 —

0.1 1.5

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.3

0.2

0.2

0.2

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

120

122

123

124

125

126

126

126

126

126

126

128

128

129
129

130

130

130

130

130

130

130

130

130

131

131

131

131

131

131

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

132

118.8

120.1

121.3

122.4

123.4

124.3

125.1

125.8

126.4

127.0

127.5

128.0

128.4

128.8

129.1

129.4

129.7

129.9

130.1

130.3

130.5

130.7

130.8

130.9

131.0

131.1

131.2

131.3

131.4

131.5

+ 12

+ 10

+ 9

-1-8
+ 7

+ 6

+ 6

-1- 6

+ 6

+ 6

+ 2

-I- 2

+ 2

+ 2

+ 2

+ 2

+ 2

+ 2

+ 2

+ 1

+ 1

+ 1

+ 1

+ 1

+ 1
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1 II | III | IV V I VI I VII VIII | IX

Zahl
(1er

Todes-
fülle

Zahl der Monate Snmmenzalilen Abweichung'

tatsäch-

litli

natli
Gleichung

(21)

nach

Gleichung

(20)

ZU

Spalte II
ZU

Spalte HI
ZU

Spalte IV

zwischen
und

Spalte VI

Spalte V

und

Spalte VII

55

56

57 1

— 0.1

0.1

0.1

131

131

132

132

132

132

131.6

131.7

131.8

+ 1

+ l
+ 0.6

+ 0.7 i

— 0.2
|

[ : Anzahl der Todesfälle in einem Monat r.
II: Anzahl der Monate, in denen effektiv ;• Todesfälle aufgetreten il/,.

III: Anzahl der Monate mit /• Todesfällen, theoretisch, bei Annahme der Unabhängig-
keit 132 Q,..

IV : Anzahl der Monate mit r Todesfällen, theoretisch, hei Annahme der Chancen-

Vermehrung durch Erfolg 132 P..

V: v/1/,.
>'=0

VI: 1322 Qv
.•=0

VII: 132 v/',.
v=0

?'

V111 : v (132 Q,—/!/,,); Abweichung von Spalten VI und V.
1=0

r
IX: 2](132P,—A/,); Abweichung von Spalten VII und V.

)-=0

Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.

Quelle : Vgl. Zahlentafel 5.

Durchschnittliche Anzahl der Todesfälle pro Monat /t 11.90.

Quadrat des Schwankungsmasses 104.48, ff 7.78.

Durchschnittliche Abweichung: | | -/—h j | beobachtet: 7.(591, berechnet: 7. 680

[nach Formel (31)].
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Zahlentafel 7.

Das Quadrat des Schwankungsmasses bei Serienvereinigung in der Statistik
der Pockentodesfälle in den Jahren 1877 bis 1900. (Vgl. Zahlentafel 4.)

Vgl. Seite 76.

I II III IV V VI VII VIII

Zahl
der

Serien

Monate
in einer

Serie

Mittlere
Anzahl

der
Todes-
falle
pro

Serie

Quadrat des Schwankungsmasses Ansteckung

beobachtet

berechnet,

wenn

Serienziisammenliaiig

ermittelt,
wenn

Scrieir/.usaiiiincnhiiiig

nicht ange-
nom men

ange-
nein ni en

nicht ange-
nominell

ange-

nominell

288 1 5.5 83.59+ 20.61 83.59 83.59 14.20 14.20
144 2 11.0 356.84 + 112.12 167.18 323.40 31.44 15.72

96 3 16.5 770.63 + 307.11 250.76 719.40 45.71 15.23
72 4 22.0 1287.94 + 541.13 334.35 1271.60 57.54 14.38
48 6 33.0 3007.40 501.53 2844.60 90.13 15.02
24 12 66.0 9209.04 1003.07 11253.00 138.53 11.54
12 24 132.0 30341.45 2006.13 34080.00 228.86 9.54

288
: Anzahl der beobachteten Serien ——.

A/

II : Länge der einzelnen Serien in Monaten A\

III : Durchschnittliche Anzahl der Todesfälle pro Serie A^.,

IV : Quadrat des Schwankungsmasses für Serien rait A Monaten

V: Quadrat des Schwankungsmasses, theoretisch, bei Annahme der nicht zusammen-
hängenden Serien A^. (1+dj.) A A (1+d).

VI : Quadrat des Schwankungsmasses, theoretisch, bei Annahme der zusammenhängen-
den Serien Aj.(l + ci^.) AA(1+Ad).

VII: d ermittelt aus der Beobachtung (IV) bei Annahme der nicht zusammenhängenden
c 2

'

fc TiSerien, d — — 1, nach Formel (39).

VIII : <2 ermittelt aus Tier Beobachtung (IV) bei Annahme der zusammenhängenden

\ i
Serien, d 1-^-—* )"p nach Formel (40).

ife/nerAit/«/; Je nachdem die Annahme der nicht zusammenhängenden oder zusammenhän-
genden Serien richtig ist, muss Spalte VII oder VIII konstant sein (theoretisch).

QiieWe: Vgl. Zahlentafel 4.
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Zahlentafel 8.

Das Quadrat des Schwankungsmasses bei Serienvereinigung in der Statistik
der Scharlachtodesfälle in den Jahren 1877 bis 1900. (Vgl. Zahlentafel 5.)

Vgl. Seite 76.

1
""

II III IV v VI VII VIII

Mittlere
Anzahl

der

Quadrat des Schwankungsmasses Ansteckung

Zahl Monate berechnet, ermittelt,
der

Serien
in einer

Serie
Todes-
fälle beobachtet

wenn
Serien/,iisaniiiicnhang

wenn
Sorienzusannuenhang

pro
Serie

nicht

angenommen
angenommen

nicht,

angenommen
angenommen

288 1 29.778 1788.13 1788.13 1788.13 59.06 59.05

144 2 59.556 6740.00 3576.26 7093.00 112.17 56.09

96 3 89.383 15360.22 5864.39 15914.41 170.94 56.98

72 4 119.111 26733.43 7152.52 28252.65 223.44 55.86

48 6 178.667 61503.47 10728.78 63479.31 343.24 57.21

24 12 357.333 203487.26 21457.56 253559.21 568.46 47.37 i

12 24 714.667 831814.81 42915.12
\ 1013523.59 1162.92 48.46

I: Anzahl der beobachteten Serien -
/l'

II: Lange der einzelnen Serien in Monaten /c.

III: Durchschnittliche Anzahl der Todesfalle pro Serie

IV : Quadrat des Schwankungsmasses für Serien mit A: Monaten
V : Quadrat des Schwankungsmasses, theoretisch, bei Annahme der nicht zusammen-

hängenden Serien — Aj,(l-f-<ij,) A; A (1+d).
VI : Quadrat des Schwankungsmasses, theoretisch, bei Annahme der zusammenhängen-

den Serien /^.(l+rfj.) ä/j (1+fcd).
VII: <A ermittelt aus der Beobachtung (IV) bei Annahme der nicht zusammenhängenden

ç
a

Serien, d -pr 1, nach Formel (89).

VIII: d ermittelt aus der Beobachtung (IV) bei Annahme der zusammenhängenden

(ç
2 \

^

—llp nach Formel (40).

tfeiuerA:a«//: Je naclidem die Annahme der nicht zusammenhängenden oder zusamnienhän-

genden Serien richtig ist, muss Spalte VII oder VIII konstant sein (theoretisch).

QneHc; Vgl. Zahlentafel 5.
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Zahlentafel 9.

Das Quadrat des Schwankungsmasses bei Serierivereinigung in der Statistik
der Scharlachtodesfäile in den Monaten des 2. Halbjahres (Juli bis Dezember)

der Jahre 1879 bis 1900. (Vgl. Zahlentafel 6.)

Vgl. Seite 77.

1 ' II III IV j < i VII VIII

Mittlere
Anzahl

der
Todes-
fälle

Quadrat des Schwankungsmasses Ansteckung

Zahl
der

Serien

Monate
in einer

Serie beobachtet

berechnet,

wenn

Sericn/iisammcnhang,

ermittelt,
wen n

Serien'/,usammciihang

pro
Serie

nicht

angenommen

J

angenommen
nicht

angenommen
angenommen

132 1 11.90 104.48 104.48 104.48 7.78 7.78

66 2 23.80 344.37 208.96 394.13 13.47 6.73

44 3 35.70 702.96 313.44 868.94 18.69 6.23

33 4 47.60 1173.40 417.92 1528.91 2 '..65 5.91

22 6 71.40 2667.80 626.88 3404.35 50.36 6.06
11 12 142.80 10665.28 1253.76 13474.61 73.69 6.14

I: Anzahl (1er beobachteten Serien ——.

II : Länge (1er einzelnen Serien in Monaten ft.

III: Durchschnittliche Anzahl der Todesfälle pro Serie A^..

VI: Quadrat des Schwankungsmasses für Serien mit ft Monaten ç'^.
V : Quadrat des Schwankungsmasses, theoretisch, bei Annahme der nicht zusammen-

hängenden Serien Aj,(l-fdj.) ft A (1+d)-
VI : Quadrat des Schwankungsmasses, theoretisch, bei Annahme der zusammenhängen-

den Serien A^l-f-dj) ft A (1+ftd).
VII : ci ermittelt aus der Beobachtung (IV) bei Annahme der nicht zusammenhängenden

Ç.
2

Serien, d -V- — 1, nach Formel (39).
Â/ /t

VIII : d ermittelt aus der Beobachtung (IV) bei Annahme der zusammenhängenden

/ç 2 \
Serien, d I —llr, mich Formel (40).

Bemerfti/niy : Je nachdem die Annahme der nicht zusammenhängenden oder zusammenhän-

genden Serien richtig ist, muss Spalte VII oder VIII konstant sein (theoretisch).
Qiiede: Vgl. Zahlentafel 4.
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Zahlentafel 10.

Statistik der weiblichen Selbstmorde in 8 deutschen Staaten

in den Jahren 1881 bis 1894.

Vgl. Seite 94.

[ II III 1 V 1 vi
"

| VII VIII IX

Zahl
der

Todes-
falle

Zahl der Jahre Summenzahlen Abweichung

tatsäeh-
lieh

nach I nach

(lloiflmrig Gleichung

(21) | (18)

ZU

Spalte II
7.11

Spalte III
ZU

Spalte IV

zwischen Spalte V

und um!

Spalte VI Spalte VII

i) 9 3.5 8.0 9 3.5 8.0 — 5 5 - 1.0

1 1!) 12.1 16.9' 28 15.6 24.9 —12.4 — 3.1

2 17 20.9 20.3 45 36.5 45.2 - 8.5 + 0.2

3 20 24.2 18.7 05 00.7 63.9 — 4.3 - 1.1

4 15 21.0 15.1 80 81.7 79.0 + 1.7 — 1.0

5 11 14.0 11.5 91 96.3 90.5 + 5.3 0.5

o 8 8.4 8.3 99 104.7 98.8 + 5.7 — 0.2

7 2 4.2 5.6 101 108.9 104.4 + 7.9 + 3.4

s 3 1.8 3.0 104 110.7 108.0 h 6.7 + 4.0

9 6 0.7 2.1 109 111.4 110.1 + 2.4 h 1.1

10 3 0.5 1.1 112 111.9 111.2 — 0.1 — 0.8

11 — 0.1 08 112 112.0 112.0

I: Anzahl der Todesfälle in einem Jahr') r.

II: Anzahl der Jahre, in denen effektiv r Todesfälle aufgetreten ilf,..
III: Anzahl der Jahre mit r Todesfällen, theoretisch, hei Annahme der Hornogeneität

und Unabhängigkeit 112

IV : Anzahl der Jahre mit r Todesfällen, theoretisch, bei Annahme der Inhomogeneität

von Serie zu Serie und der Unabhängigkeit 1121,),.

V: Vit/,,.
»•=0

VI: 112S Öv
u=0

l) Jahr Beobachtungsjahr, auf ein Kalenderjahr entfallen entsprechend den 8 Staaten
8 Beobachtungajiihre.
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VII: 11223 Q,"
v=0

VIII: 2(112(3,,—il/,,); Abweichung von Spalten VI und V.
r=0
r

IX: 2(H2<3r—Abweichung von Spalten Vit und V.
r=0

Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.

I3«eWe-' Allgemeines Statistisches Archiv. 4. Jahrgang, II. Hbd. 181)6. Art. „Der Selbst-

mord", von G. v. Mayr, Seite 718. (Vgl. L. v. Bortkiewicz 1 : Das Gesetz der
kleinen Zahlen, Seite 20.)

Durchschnittliche Anzahl der Todesfälle in allen 8 Staaten zusammen 27.786,

pro Staat 3.473 A.

In Schaumburg-Lippe 1.429

„ Waldeck 2.214

„ Lübeck 2.571

„ Reuss ä. L 2.643

„ Lippe 2.857

„ Schwarzburg-Rudolstadt 5.143

„ Mecklenburg-Strelitz 5.286

„ Schwarzburg-Sondershausen 5.643



Zahlentafel 11.

Statistik der tödlichen Unfälle bei 11 Berufsgenossenschaften
in den fahren 1886 bis 1894.

Vgl. Seite 95.

1 Ii III IV

hre

V VI VII VIII IX

Zahl
der

Todes-
fälle

Zahl der Ji Summciixahlen Abweichung

tatsäch-
lieh

mich

Weichling

(21)

Ii ach

Gleichung

(13)

tu
Spulte II

tu
Spulte III

'/.II

Spulte IV

mischen
und

Spalte VI

Spalte V

und

Spulte VII

0 5 1.3 3.7 5 1.3 3.7 — 3.7 — 1.3

1 9 5.5 9.0 14 6.8 13.3 — 7.2 — 0.7

2 14 12.0 13.9 28 18.8 27.2 — 9.2 — 0.8
3 13 17.5 15.2 41 36.3 42.4 — 4.7 + 1.4

4 14 19.0 14.3 55 55.3 50.7 + 0.3 J- 1-7

5 IG 10.6 12.3 71 71.9 09.0 + 0.9 — 2.0

« 7 12.1 9.8 78 84.0 78.8 + 6.0 + 0.8

7 7 7.5 7.3 85 91.5 80.1 + 0.5 + 1.1

8 8 4.4 5.1 9o 95.9 91.2 + 2.9 — 1.8

9 2 2.1 3.3 95 98.0 94.5 + 3.0 — 0.5

10 1 0.9 2.0 90 98.9 96.5 + 2.9 + 0.5

II 1 0.1 1.2 97 99.0 97.7 + 2.0 + 0.7

12 1 0.7 98 99.0 98.4 + 1.0 + 0.4

13 0.3 98 99.0 98.7 + 1.0 + 0.7

14 1 — 0.2 99 99.0 98.9 — — 0.1

15 — — 0.1 99 99.0 99.0 —

I: Anzahl der Todesfalle in einem Jahr') r.
II :

" Anzahl der Jahre, in denen effektiv r Todesfälle aufgetreten il/,..

III: Anzahl der Jahre mit /• Todesfällen, theoretisch, hei Annahme der Homogeneitiit
und Unabhängigkeit 99

IV : Anzahl der Jahre mit r Todesfällen, theoretisch, bei Annahme der Inhomogeneität

von Serie zu Serie und der Unabhängigkeit 99

i) j„,hr Beobachtungsjahr, entsprechend den lt Genossenschaften entfallen auf ein
Kalenderjahr lt Hoobachtungsjahre.

11



— -138 —

V:
K=0

VI: 992 g,.
r=0

VII: 99 2 g„.
r=0

?*

VIII: 2 (99 0,.—iW,) ; Abweichung von Spalten VI und V.
v=0

r
IX : 2 (99 Ç,,—; Abweichung von Spalten VII und V.

r=0

Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.

Statistisches Jahrbuch für das Deutsche Reich. (Vgl. L. v. Bortkiewicz 1: Das
Gesetz der kleinen Zahlen, Seite 22.)

Durchschnittliche Anzahl der Todesfälle pro Jahr in allen Berufsgenossenschaften

zusammen 48, somit pro Genossenschaft 4.86 /t.

Die Anzahl der Todesfälle pro Jahr für die Genossenschaften

Nr. 27 ist gleich 1.89 Äi

» 12 » „ 2.56 =* #2

» 14 n » 2.56 /<3

» 40 » » 2.89 /»„

„ 20 >7 » 4.33 7*5

55
77 » 4.33 7/ß

» 42 „ 77
4.56 7^7

« 41 n 77
5.11 — Äg

„ 29 » 7)
5.89 '<9

» 28 ;; 77
6.22 ''10

„ 13 « 77 7.67



Zahlentafel 12.

Verlauf der Wahrscheinlichkeiten bei Inhomogeneität und Chancenvermehrung.

Vgl. Seite 110, Tabelle Seite 83.

I II III IV V VI VII

Anzahl

der

seltenen

Ereignisse

Mathematische Erwartung A 10

Quadrat des Schwankung»-

masses 10 Quadrat des Sehwankungsinasses 35

fir 1 «? «r 'V p;

0 0.003 0.007 0.005 0.002

i 0.001 0.001 0.017 0.019 0.016 0.005

2 0.002 0.002 0.042 0.034 0.031 0.010

3 0.008 0.008 0.070 0.049 0.047 0.016

4 0.019 0.019 0.088 0.061 0.062 0.021

5 0.038 0.038 0.089 0.069 0.072 0.026

6 0.063 0.063 0.076 0.074 0.078 0.029

7 0.090 0.090 0.057 0076 0.079 0.031

8 0.113 0.113 0.042 0.075 0.078 0.035

9 0.125 0 125 0.034 0.071 0.073 0.041

10 0.125 0.125 0.033 0.066 0.067 0.050

11 0.114 0.114 0.037 0.060 0.060 0.060

12 0.095 0.095 0.043 0.053 0.053 0.069

13 0.073 0.073 0.048 0.047 0.046 0.075

14 0.052 0.052 0.051 0.041 0.040 0.077

15 0.085 0.035 0.051 0.035 0.034 0.074

16 0.022 0.022 0.048 0.030 0.028 0.068

17 0.013 0.013 0.042 0.025 0.024 0.061

18 0.007 0.007 0.035 0.021 0.020 0.052

1*9 0.004 0,004 0.028 0.017 0.016 0.043

20 0.002 0.002 0.021 0.014 0.013 0.035

21 0.001 0.001 0.015 0.012 0.011 0.028

22 0.010 0.009 0.009 0.022

23 0.007 0.007 0.007 0.017

24 0.004 0006 0.006 0.013
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I Ii III IV V VI VII

Anzahl
Mathematische Erwartung 7t 10

der

seltenen

Ereignisse

Quadrat des Scltwankungs-
masses 10 Quadrat des Schwankuiigsmasses 35

Or « «3, p, JJ*r

25

26

27

28

29

—

0.003
0.002

0.001

0.001

0.005

0.004

0.003
0.002
0.002

0.005

0.004

0.003

0.002
0.002

0.010
O.O07

0.006

0.004
0.003

30

31

32

33

34

—

—
—

0.002
0.001

0.001

0.001

0.001

0.002

0.001

0.001

0.001

0.003

0.002

0.001

0.001

0.001

35

36 — —

— — 0.001

0.001

I: Anzahl der seltenen Ereignisse r.
II: Wahrscheinlichkeiten nach Poisson 7t 10, 10.

III: Wahrscheinlichkeiten Ç,.* bei lnhomogeneität innerhalb der Serien ohne Chancen-

Vermehrung 7t 10, 10.

IV: Wahrscheinlichkeiten Q,. bei lnhomogeneität von Serie zu Serie ohne Chancen-

Vermehrung. Annahme: 2 Serien mit 7t, 5, hg 15, 7t 10, 35.

V: Wahrscheinlichkeiten P^ bei homogener Chancenvermehrung 7t 10, d 2.5,
35.

VI : Wahrscheinlichkeiten P^* bei Chancenvermehrung und lnhomogeneität innerhalb
der Serien. Annahme: 2 homogene Teilserien 7t| 4, <7j 1, 7^ 6, dg -- 3.5.

Daraus ist 7t 10, 35.

VII: Wahrscheinlichkeiten Pj. bei Chancenvermehrung und lnhomogeneität von Serie

zu Serie. Annahme: 2 Serientypen mit /tj 8, dj 1, 7tg 12, dg 2.833,
daraus ist 7t 10, 35.

Das Maximalglied ist in den Spalten II bis VII durch Fettdruck hervorgehoben.

Vgl. Fig. 4.
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