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Die Wahrscheinlichkeitsansteckung.

Ein Beitrag zur theoretischen Statistik.
Von Dr. Florian Eggenberger.

Einleitung.

§ 1. Problemstellung.

Kine ganz genaue Ubereinstimmung der effektiven
mit der erwartungsmiissigen Bernoullischen Dispersion
ist eine Seltenheit in der Statistik. Sind diese Resul-
tate der Statistik ein negativer Beweis der Anwend-
barkeit der Wahrscheinlichkeitsrechnung in der Statistik ?
Wir miissen uns bei der Beantwortung dieser Frage
klar vor Augen halten, dass man zur theoretischen
Ermittlung der Dispersion in ausgedehntem Masse von
dem  Bernoullischen Urnenschema Gebrauch macht.
Daraus folgt, dass die gefundenen Relationen unmittel-
bar nur bei solchen Aufgaben Anwendung finden
konnen, die sich auf das genannte Schema reduzieren
lassen. Der Anwendungsbereich beschrinkt sich somit
auf Reihen, die analog aufgebaut sind wie solche, die
vom Bernoullischen Schema herrithren. Auf die oben
aufgeworfene Frage werden wir also erkliren:

Die beobachtete Stabilitit stimmt deswegen bei
weitem nicht mit der erwartungsmissigen iiberein, weil
sich die Vorgiinge im statistischen Material nicht durch
das einfachste Bernoullische Urnenschema echarakteri-
sieren lassen. Bevor wir bei einem bestimmten stati-
stischen Material die Anwendbarkeit der Wahrschein-
lichkeitsrechnung verneinen, miissen wir vor allem die
Struktur von diesem Material studieren und kénnen
dann hochstens evkliiven: Mit den vorliegenden Mitteln
der Wahrscheinlichkeitsrechnung kann das betreffende
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statistische Material nicht auf den methodologisch wich-
tigen Kern untersucht, und dieser von der Schlacke
des Zufilligen gereinigt werden.

Betrachten wir etwa als Beobachtungsmaterial die
Bevilkerung eines Schweizerkantons, als Ereignis das
Fintreffen eines Unfalles, der bei einem Individuum
mindestens einen Tag Arbeitsunfihigkeit hervorruft.
Den Umfang einer Beobachtungsserie begrenzen wir
mit einem Kalenderjahr. Wir betrachten 40 Serien
(1880—1919). Wird die effektive mit der erwartungs-
missigen Dispersion tibereinstimmen ? Die Antwort wird
verneinend ausfallen. Beim wiederholten Zichen aus
einer Urne wird sich die Einzelwahrscheinlichkeit nicht
indern; bei unserm Beispiel dndert aber die Unfall-
wahrscheinlichkeit von Serie zu Serie (Entwicklung
der Industrie). Wir miissen ein Urnenschema kon-
struieren, das unserem Material besser entspricht, d. h.
wir miissen die Kinzelwahrscheinlichkeiten fiir die Urne
von Serie zu Serie indern.

Es erscheint uns sofort begreitlich, dass das gewdhn-
liche Urnenschema etwa nicht auf die Statistik der
Todesfille infolge Dampfkesselexplosionen angewendet
werden kann. Die Ziige aus der gewohnlichen Urne
sind unabhiingig von einander, was bei den oben
erwihnten Todesfillen nicht behauptet werden kann,
da bei einer Dampfkesselexplosion gewdhnlich mehrere
Personen ums Leben kommen. Die Leben der einzelnen
Personen sind miteinander solidarisch. Ein Todesfall
infolge Dampfkesselexplosion vergrissert fiir die iibrigen
Beteiligten die Wahrscheinlichkeit, bei einer solchen
Explosion zu sterben. Das ideale Urnenschema fiir dieses
Material wiire nun ein solches, bei welchem die einzelnen
pZige* in derselben Weise von einander abhingig sind
wie die eben erwihnten Todesfille. Die ganze Sache
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wiirde aber so kompliziert, dass damit fiir die Statistik
nichts gewonnen wiire. Als wichtige Bedingung miissen
wir noch stellen: Das Schema muss einfach sein.

Das Hauptziel der vorliegenden Arbeit ist, ein
einfaches wahrscheinlichkeitstheoretisches Schema, das
die Verkettung der Einzelfille bei Explosionen, Epi-
demien usw. in annehmbarer Anniherung beschreibt
(Definition in § 3), mathematisch und statistisch zu
untersuchen. |

§ 2. Statistisches Material.

Haben wir nun ein bestimmtes Schema, das ein-
fach ist und von dem wir vermuten, dass es die Vor-
ginge der Wirklichkeit in der Hauptsache gut wieder-
gibt, so ist es dann einzig und allein Sache der Erfah-
rung, und damit der Statistik, den Beweis zu erbringen,
dass jene Siitze, die wir aus unserem Schema her-
leiten, auch wirklich brauchbar sind. I'rifft das zu,
dann haben wir mehr gewonnen, als wenn wir fiir
bestimmte, beobachtete Kreignisse eine moglichst ein-
fache I'unktion gefunden haben, die uns dieselben mit
der gewiinschten Genauigkeit wiedergibt. In der Tat
entspricht das Urnenschema der Struktur der Freig-
nisse; von der Funktion konnen wir aber nichts wei-
ter aussagen, als dass sie innerhalb der in Betracht
kommenden Grenzen die Erfahrungsresultate wieder-
gibt. Natiirlich ist den Sitzen, soweit sie sich in einem
gegebenen Falle als brauchbar erweisen, immer nur
die Bedeutung einer Anniitherung zuzusprechen.

Um das Urnenschema von Hrn. Prof. Pélya, auf
das ich im niichsten Paragraphen zuriickkommen werde,
auf seine Anwendbarkeit zu priifen, habe ich alle Siitze,
die daraus abgeleitet wurden, an verschiedenem stati-
stischem Material, der Bevolkerungsstatistik entnommen,
gepriift. (Betreffend Quellen vgl, Zahlentafel 1 bis 11.)
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In den ersten Beispiclen befasse ich mich mit der
Statistik der Todestille bei Explosionen. Bei allen Bei-
spielen wurde zuerst untersucht, ob das einfache Urnen-
schema von Bernoulli, d. h. in unserem Falle, wegen
der Seltenheit der Lreignisse, das Poissonsche Gesctz
Anwendung finde. Erst wenn wir festgestellt haben,
dass die Reihen der beobachteten Ereignisse nicht
analog aufgebaut sind wie solche, die vom gewdhn-
lichen Schema herrithren, schreiten wir zu weiteren
Untersuchungen. Wie ich schon im vorangchenden
Paragraphen bemerkt habe, miissen wir annehmen,
dass die Todestille bei Hxplosionen (nicht aber die
Explosionen) von einander abhiéingig sind. Diese An-
nahme wurde durch genauere Untersuchungen bestitigt.

Im weitern habe ich die Statistik der Todesfille
an einzelnen Infektionskrankheiten (Pocken, Scharlach)
in der Schweiz untersucht. Das Resultat der Unter-
suchungen ergab die Nichtanwendbarkeit des gewthn-
lichen Urnenschemas auf diese Infektionskrankheiten.
Die Sitze hingegen, die wir aus dem Urnenschema
von Pélya herleiten, finden sich in schr befriedigender
Weise bestiitigt, und dadurch ist die Brauchbarkeit
dieses Schemas bewiesen, Eine Untersuchung der Sta-
tistik der Hrkrankungen an Pocken im Kanton Ziirich
(15. Febr. 1919 bis 22. September 1923) hat ergeben,
dass die Reihen der Erkrankungen auch diesem Schema
gemiiss aufgebaut sind.

Ferner wurden dann noch an zwei Beispielen,
der weiblichen Selbstmorde in 8 deutschen Staaten
und der todlichen Unfille bei 11 Berufsgenossenschaften,
einige Siitze iiber Inhomogeneitiit gepriift,



Kapitel L

Theorie der Wahrscheinlichkeits-
ansteckung.

§ 3. Die Struktur der Wahrscheinlichkeitsansteckung.

Die Konstruktion eines Urnenschemas, das einfach
ist und in der Statistik auf den ersten Blick unerwartet
gute Resultate liefert, sobald es sich um ,ansteckende
Wahrscheinlichkeiten* handelt, verdanken wir Herrn
Prof. Dr. Pélya in Ziivich. Die Resultate der Unter-
suchungen iiber die Anwendbarkeit des Urnenschemas
von Polya auf epidemische Krankheiten, bei denen die
Todesfille in gewisser Hinsicht solidarisch sind, wurden
von mir berecits verdtfentlicht (vgl. Polya 2).

[n den ersten zwei Kapiteln der vorliegenden
Arbeit soll die Theorie der Ansteckung zuniichst weiter
ausgebaut werden, und dann sollen vor allem die Kon-
sequenzen dieser Theorie fiir die Statistik diskutiert
werden. Der Vollstindigkeit wegen finden sich in
diesem, wic in dem néchsifolgenden Kapitel zum Teil
Resultate, die bereits a. a. O. veroffentlicht wurden
(vgl. Polya 2).

In einer Urne befinden sich zu Beginn des Spieles
B vote und S schwarze, insgesamt £ -} 8 = N Kugeln.
Wir ziehen nun eine Kugel aus der Urne und legen
hierauf 1 |- 4 Kugeln von der Farbe der Gezogenen
.'m die Urne zuriick. Aus der Urne, die nun N - 4
Kugeln enthilt, machen wir einen zweiten Zug und
legen  wiederum 1 ~ 4 Kugeln von der Farbe der
Gezogenen in die Urne zuriick, Diese Operation wieder-
holen wir n-mal. Nach dem n-ten Zug befinden sich
in der Urne N - a4 Kugeln, Haben wir in diesen
n diigen 7 rote und 8 schwarze Kugeln gezogen,
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» + 8 = n, so setzt sich der Inhalt der Urne aus
R+ »4 roten und S+ 84 schwarzen Kugeln zu-
sammen !). Die Wahrscheinlichkeit,

S

; | ; . B
im 1.Zug rot bzw. schwarz zu zichen ist N bzw. N

R4 4

im 2 Zug rot bzw. schwarz zu ziehen ist N a

bzw. m, wenn im 1. Zug rot gezogen wurde,
im 2. Zug rot bzw. schwarz zu ziehen ist v + ™
S+ 4 . ;
bzw. E) wenn im 1. Zug schwarz gezogen wurde,
_*_fr/’
‘ N-+4nd
bzw o wenn in den ersten n Ziigen 2 rote und
V—{— =’

s schwarze Kugeln herausgekommen sind.

im (n +-1). Zug rot bzw. HChW&l'Z zu ziehen ist =

Falls 4> 0 ist, vergrossert der Zug einer roten
Kugel die Chancen fiir rot, der Zug ciner schwarzen
Kugel diejenigen fiir schwarz. Man kann daher dieses
Schema auch Urnenschema der Chancenvermehrung
nennen. ,

Im Falle 4>0 liisst sich die Ziehungsreihe ins
Unendliche fortsetzen. Ist hingegen A <70, so ver-
schlechtern sich die Chancen mit dem Erfolg. Die
Ziehungsreihe ist nicht mehr unbeschriinkt fortsetzbar,
Soll die Ziehung im Falle 4 <0 bis zum n-ten Zug
fortgesetzt werden konnen, so miissen auch bei den
extremsten Eventualititen nach dem (n — )-ten Zug
noch rote und schwarze Kugeln in der Urne vorhanden
sein, d. h. es miissen folgende Ungleichungen gelten

) Vom Zufall abhéngige Grossen sind durch Fettdruck
hervorgehoben,
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R+ (n—1)4>0, S+ @m—1)4>0

und somit

§ 4. Die Wahrscheinlichkeiten,

Wir fragen nun nach der Wahrscheinlichkeit
P, o inn Ziigen aus der im vorhergechenden Para-
graphen definierten Urne der Chancenvermehrung
y rote und s schwarze Kugeln zu erhalten, wobei
§ == n—17 ist, und fir » die Werte 0,1,2,...n
in Betracht kommen. Nach dem Multiplikationssatz
der Wahrscheinlichkeiten ist die Wahrscheinlichkeit
in den ersten » Ziigen nur rot, in den folgenden
s = n—r Ziigen nur schwarz zu zichen, gleich

R(R+A)(RA2A4) ... (RA[r-1]A)S (S 1) .. (S [s-1]4)
NV (VI2A) oo et

Dieser Quotient stellt aber zugleich auch die
Wahrscheinlichkeit dafiir dar, dass » bestimmte unter
den » Ziigen rot, die iibrigen schwarz ergeben.  Denn
wenn man den entsprechenden Produktausdruck der
Wahrscheinlichkeiten der einzelnen Proben bildet, so
erhiillt man wieder » Briiche, deren Nenner ebenso
lvauten wie die Faktoren des Nenners von (1), die
Ziihlor hingegen sind nur in der Reihenfolge vertauscht.
:Die Berechnung vou p o kommt somit nur auf eine
Permutation der Faktoren im Zihler unseres Quotienten
(1) hinaus. Da man aber aus » Elementen » auf

‘N g
() Arten herausheben kann, ist die gesuchte Wahr-

/

scheinlichkeit
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Setzen wir zur Abkiirzung

R S A ‘
2 (3),

yT& §F=o §N=°

so erhalten wir

- (?l\Q(Q+t3)(Q+2(3)...(Q-|-[r,-_1](§)U(O-Hﬁ)... (o6+[s-1]0) )
A\l (120) . L (1+[n—110)

Uy, 8

oder auch

})r, 4 —_— —— [ ) S — “ '—"_‘/" (5)-

Wir werden nun hiiufig von folgenden bekannten
Identititen zwischen den Binominalkoeffizienten Ge-
brauch machen:

i

28 () = (1)
YENE) = (e e

(a—l—éc—l) (_“1)1(3 0

e
=~
S
I
1

T
i

Nun bilden wir zur Kontrolle die Summe der
Wahrscheinlichkeiten, die bekanntlich 1 sein muss.

Nach (5) ist

B (BAA) (B24) ... (BHr—1]4) S(S+A) ... (S+[s-1]4)
)N(N+A) R (N-Hn—1]4)

HE =0T e }

(2)-
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also nach (6)

n
\ Y
pr, n—i '

n

=0

r=0

Mit Hilfe von (7) geht () iiber in

r, 8

(-5« +r-1) (‘a‘ +s—1
r S

)

(

5 -1
n

)

, r-Fs = n.

§ 5. Verlauf der Wahrscheinlichkeiten.

(9)

In diesem Paragraphen sei » als fest gedacht, zur

Abkiirzung

p—r, n—r — Py

gesetzt und o <7 o angenommen (was keine wesentliche

Einschri‘mkung bedeutet). Aus § 3 folgt ohne weiteres,

dass d>—_7—2_£~7 ist. Wir wollen nun den Verlauf

der Reihe der Wahrscheinlichkeiten

untersuchen,

Dy Py, pg) R

D,

(10)



Aus der Annahme ¢ <7 o folgt unmittelbar

o (0-+0) (64+29) . .. (6 [n—1] )
= e (o+9) (0429) ... (e+[rn—1]9)
also gemiiss (4)
Dy = D,
Um weiteres zu erfahren, bilden wir nun den
Quotienten

. n—r-1 L@ + (r—1) d

Poqv - F o - (n—r) 0
9'_2-1+% n-t1—r
— " = 1)
) n—}—%——r
B o= B

Hs findet im Ubergang von p__, zu p, Abnahme
oder Zunahme statt, je nachdem f(») <1 oder f(»)

1 1st.

Man beachte nun zweierlei: Erstens ist die Funk-
tion f(r) eine stetige Funktion von », wenn 7 als eine
im Intervalle 1 < » <_ n stetige Veréinderliche aufgefasst
wird. Zweitens hat die Gleichung

fry =1
nur eine Wurzel

D) (D) (o)
T g—8- a3 1—oF =

Es folgt hieraus: die Funktion f(») kann entweder
keinmal oder einmal durch den Wert 1 hindurchgehen.
Wenn £(1) — 1 und f(n) — 1 von gleichem Vorzeichen
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sind, so liegt 7, ausserhalb des Intervalles (1, »),
f(r) — 1 bewahrt daselbst ein festes Vorzeichen, und
die Reihe der Wahrscheinlichkeiten (10) ist monoton.
Falls f(1)—1 und f{n) — 1 von entgegengesetztem
Vorzeichen sind, liegt », innerhalb des Intervalles (1, n),
f(r)— 1 iindert das Vorzeichen im Punkte » = 7.
Die Reihe der Wahrscheinlichkeiten (10) ist sowohl
links von r, als auch rechts von », monoton, aber links
in anderem Sinne als rechts: ist f(1) > 1> f(n), so
nimmt die Reihe (10) anfinglich zu, spiiter ab (glocken-
formiger Verlauf), ist dagegen /(1) << 1 <7 f(n),s0 nimmt
die Reihe anfiinglich ab, spiter zu (U-formiger Verlauf).

Es ist
i g —o—4(n—1)

) —1 = nd—384o0
fin) —1 = gl Joghers .,??_'.’7

no
und die moglichen Fille sind in folgender Tafel zu-
sammengefasst : '

0 zwischen f(1) —1|f(n)—1| Verlauf
e _0—0 . glocken-
—1 TR + ' formig
06— 9 g -~'p monoton‘
T Ta=i| T | T | fallena
) i
o+n_% oo o + | U-formig

| Tis st bezeichnend, dass die U-formige Kurve
durch grosse Chancenvcrmehrung hervorgerufen wird.
Die U-formige Kurve, mit zugehorigen statistischen
Beispielen, findet sich in den Lehrbiichern der Statistik
' 4
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verschiedentlich erwihnt (vgl. Yule, S. 103). Pearson
hat auch eine Funktion ermittelt, die den Verlauf von
solchen statistischen Reihen geniigend gut wiedergibt.
Ein Schema von Wahrscheinlichkeiten, die eine U-for-
mige Kurve erzeugen, ist meines Wissens bis anhin
nicht erwithnt worden. Wir haben hier also eine mog-
liche Erklirung fiir den U-férmigen Verlauf der Reihe
der Wahrscheinlichkeiten gefunden.

Es sei beim glockenformigen Verlauf p, —das Maxi-
mum der Reihe der Wahrscheinlichkeiten (10). Dann ist

) = 21,y = ey,

N 1 73

Fiir », erhalten wir somit die Ungleichung

u<r, \_,u,—l—l

Bezeichnen wir wie iiblich die zu @ links benach-
barte ganze Zahl mit [a], dann ist ‘

w o= [r,] = [(n—}l-l—)m(g;é)} (11).

Bei den Untersuchungen dieses Paragraphen wurde
die Diskussion des Gleichheitszeichens in den Unglei-
chungen weggelassen. Der Fall des Gleichheitszeichens
ist in der Tat praktisch belanglos und sofort durch
Kontinuitit erhéltlich.

Wie wir aus obiger Tabelle schen, kommen wir
mit wachsendem ¢ von der Glockenform zur U-Iorm,
indem wir das Gebiet des monotonen Fallens durch-
schreiten. Dieses Gebiet wird kleiner, je ndher 0 an o
kommt und fillt fiir o = o weg. In diesem Fall haben

wir glockenformxgen Verlauf fiir 5< , U-formigen
Yerlauf fiir (5>—_ Dem Ubelﬂang von del Glocken-
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form zur U-Form entspricht das Passieren des Wertes
‘ b ow s ;
o durch 5 In diesem bemerkenswerten Spezialfall

g == @ == g == ; sind alle Wahvscheinlichkeiten ein-
9

ander gleich, namtich = 77—;%

§ 6. Berechnung der Erwartungen.

Bezeichnen wir die mathematische Erwartung von
« mit { a; (dor Gebrauch der spitzen Klammern {}
wird fiiv diesen Zweck reserviert), so wird
n
™\ N[y,
kly ;) Urn—r
=0
also nach Formel (9)

-

le L
’I""}".S:-.)l (r’s" +)l—-].)
n
Nun ist aber nach (8)

(1) _ (F -H'wx) (g e *1)
(k) ( r ) r—k k

und daraus folgt

0O .. n
Z (ai -|—r—l) (% —Hc—l) (-(-5‘1 +s—1)
1(7')} b Pk g F
1 k (_llT +n——l)
n
0 n
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nach (6) und (7) erhalten wir somit

;(r)} _ (JT—Q (-,;-+n-l)

n— Bk

(% —}—7;'—1) ! (% —{-—n—-—l) In! (%-—ml) !
(%—{-n-«l) i ! (%—1) ! (n—k) (—(];wl—-k——-l)!

__g (% +1) (%+2) (-g+k—1) "

—%(%_H) ......... (»}3+k~—1) e ity

L (ﬁ) ole+9) (429 ... +[k—1]9)
JTAF ) A +20). . (=118

rr—1)@—2)...c0—k+1))

_o(etd){(o+20)...(o+[k-1]0)
T F0)(1420) .. (L +|k-1]0)

n(n-1)...(n-k+1). (12)

Fiir k=1 bzw. 2 erhalten wir die Formeln fiiy
den Mittelwert und das Quadrat des Schwankungs-
masses

i} =g (13)
(r@—1)} = n@—1) 91(_9;3"5)
¢ = {0 —{r)} = {r} —{»)
= no(l—op) 1+nd. (14). -
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§ 7. Diskussion des Schwankungsmasses.

Wenn man bei einer statistischen Untersuchung
Serien von verschiedener Liinge betrachtet, indem man
Woche, Monat oder Jahr als Beobachtungsreihe wiihlt,
variiert man eigentlich die Grosse, die wir in der wahr-
scheinlichkeitstheoretischen Betrachtung mit # bezeich-
nen und Versuchszahl nennen. Welchen Einfluss hat
es auf das Schwankungsmass, wenn wir die Serien-
linge um ein k-faches vergrossern, d. h. wenn wir zum
Beispiel statt Monate Jahre als Seriencinheiten nehmen?
Um dies genauer studieren zu konnen, betrachten wir
cine Urne der Chancenvermehrung, wie wir sie im § 3
kennen gelernt haben. (Zu Beginn seien R rote und
S schwarze Kugeln in der Urne, R+ S = N.) Wir
machen nach den Vorschriften des § 3 », Ziige aus
der Urne. Nach diesen n, Proben filhren wir », solche
aus nach derselben Methode usw. Im ganzen machen
wit n, +n, + .. .4 n, = ken Zige. Bei diesem
System der aufeinanderfolgenden Serien unterscheide
ich zwei Fille:

L. Nicht zusammenhiingende Serien: Wenn wir
nach den ecrsten #  Ziigen die Urne wieder in ihren
Ausgangszustand versetzen (Inhalt £ rote und § schwarze
Kugeln), so ist das Resultat der n, Proben der zweiten
Serie unabhiingig vom Ergebnis der ersten Serie. Die
einzelnen Serien sind unabhing voneinander und
hiingen in keiner Weise zusammen, s sei die Wahr-
scheinlichkeit, in der jy-ten Serie » ,rote* Ziige zu

machen p(‘)’,’)H .- Wir erhalten somit

kM
S y 1N (y)
s _Z.. ZTP)-, i = B@ e la@or o

)'20 (=
con 0 = keng
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_Z Z(v {r }) _p7 e

y=0 r=0
0(1 )

—_—Q“ [, (1420 . . . 4 n(14n,0)]

(15).
¢ = kno(1—p) T—E_——B— filr my = my ==, ==, ==y, J

Der Mittelwert der Kreigniszahl und das Quadrat
des Schwankungsmasses sind proportional der Anzahl
der vereinigten Serien, sobald wir gleich lange Scrien
vereinigen (n, = n, = ... = n,).

Zusammenhingende Serien: Lassen wir nach

den crsten », Proben die Urne unveriindert, so befinden
sich zu Beginn der zweiten Seric £ - 4 rote und
S -} 8,4 schwarze Kugeln in der Urne. Das Krgebnis
der zweiten Serie ist abhingig vom Inhalt der Urne
zu Beginn dieser Serie. Die Serien hiingen zusammen.
Das Firgebunis der letaten Serie ist von den Resultaten
aller vorangehenden abhingig. Der Effekt der Proben
ist derselbe, wie wenn wir es nur mit einer Serie zu
tan haben und aus der Anfangsurne (£ rote und §
schwarze Kugeln) kn = n_ —+ n, -}~ ... ~+ n, Ziigo
machen. Aus diesor Uberlegung erhalten wir nach (13)
und (14), indem wir » durch » /% ersetzen

ook s Toa
7y — keno

2 ) g )
. /;%Q(j—g —1—}:5_" (1()).

Bei zusammenhiingenden gleichartigen Serien ist
das Quadrat des Schwankungsmasses cine quadratische
Funktion der Amzahl der vereinigten Serien, nicht
bloss eine lineare wie im vorangehenden Fall.
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Der Vergleich der effektiven mit den theoretischen
(Bernoullischen) Schwankungen fiihrte auf die Berech-
nung des Lexisschen Dispersionskoeffizienten. Im Fall
der homogenen Chancenvermehrung wird dieser Koeffi-
zient nach (14) gleich

l/no(l 0)1—{—7243
Vuo(l

Im gewdhnlichen Fall der unabhiingigen Lreig-
nisse (0 = o) ist also der Dispersionskoeftizient gleich
I (normale Dispersion). Wir machen nun die Annahme,
dass sich die Streuung nur unwesentlich von derjenigen
der unabhiingigen Wahrscheinlichkeiten unterscheidet,
d. h. dass der Dispersionskoeffizient bei wachsendem
n endlich bleibt.

Im allgemeinen hat man es bei allen statistischen
Untersuchungen mit einer sehr grossen Versuchszahl
zu tun. Dementsprechend lisst man, in sachgemiisser
mathematischer Abstraktion, » gegen co streben. Zwei
Grenzfille haben sich hierbei als wichtig erwiesen:

[. Der Laplacesche Grenzfall, den man mit Herrn
Prof. Polya auch als ,Grenzfall der gewdhnlichen Fr-
eignisse” bezeichnen konnte. In diesem Fall ist o fest,
n strebt gegen oo.

IL. Der Poissonsche Grenzfall, den man nach
Herrn v, Mises treffend als den ., Grenzfall der seltenen

Fireignisse® bezeichnet. In diesem Fall ist no = /
& 0
gesetzt, /i fest, n strebt gegen oo, ¢ = e BRERD S5

Analoge Grenzfille kionnen auch dann betrachtet
werden, wenn die Wahrscheinlichkeiten nicht wunab-
hingig sind,  Wir wollen dieselben in den niichsten
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Paragraphen bei Annahme der Chancenvermechrung
untersuchen. Wir konnen nach den Ausfiithrungen am
Anfang dieses Paragraphen nur dann ein verniinftiges
Resultat erwarten, wenn wir fiir beide Grenzfille die
Bedingung hinzufiigen, dass nd = d gesetzt, d fest

bleibt, wihrend ¢ = % gegen 0 strebt (,schwache
Chancenvermehrung®). Aus § 3 erhalten wir fiir die

Fortsetzbarkeit der Ziehungsreihen die Bedingung

e ‘ g
9 = 1

0> —

. n - N
d™>—0—— d™>~—g
>‘ \.n_‘__-l?

In dem zum Laplaceschen analogen Grenzfall sind
die Reihen sowohl fiir Chancenvermehrung wie fiir
Chancenverminderung (negatives d) fortsetzbar, sofern

d=>—oy, d=>—0
: ; . L .
ist. d muss also immer grisser als — sein. Das Ana-
logon zum Grenzfall der seltenen Ereignisse beschriinkt

sich auf schwache Chancenvermehrung, da d > 0 sein
muss.

§ 8. Der Grenzfall gewghnlicher Ereignisse,

Hilfssatz: Sind wy, gy «. .0 by, by, ... b, posi-
tive und a,, ay, ...a, By, -..fB, beliebige konstante
Girossen, so gilt fiir ins Unendliche strebendes n, so-
fern a, 4 ay4... +fa, = b+ b4 ... 0, und «a
+“z+---ak: 181+462+"'ﬂg ist



[ (ap-t-a,)n) I (agut-agl/n) ... I’ (@ nt-e, V)

I (b_n—I—[—)’—lV— r;)_-l (b2n~[—ﬁ2[/n) W (bln—l—ﬂl I/n)

2
ko t
k-1 ot psmaafias y y
ay ap\ n ay u] l/n R \ —— — e
Byt o oolly alei .k bl...b )y-02a =02?)
) ) ) e ’
l oo [ 1 PRI L 1 e al‘, :

‘ RN
In der Tat ist [(s) ~ Y27 s 2", wenn s gegen
~+ oo strebt.

- 1 —
antay/n—z (@\antay/n  antayn
L D e (e T  H I

an aln
27 a?

pyteyn jantayn e VEE 2

2

weil
‘ an--ay/ n— — - 2
log[( o ) 2 e—a]/n] - (Cm +a V‘”‘ 1) ( “ _ﬁ(_l_.m_;_ ) a Vn.
@ l/n aln 2a°n
- a2 a2 = CC2
~ Vﬂ.—l—a——é‘é— a V” "4%7

somit ist unser Hilfssatz bewiesen.

Zum Grenzfall gewthnlicher Ereignisse mit Chan-
cenvermehrung, der demjenigen von Laplace entspricht,
gelangen wir, wie schon im § 7 erwithnt wurde, indem
wir ¢ und nd =— d konstant annehmen, d. h. ¢ und d

sind fest, withrend n gegen oo konvergiert. Nach
. Formel (9) ist




I)T’s: _T— - i B . 729 S
(no+a)/n) (mo—z)/n) I (no+a)n) [(no—x)/n) I ( ) l’(-—- )

-

T i) T(a—bF1) — (a—Db)bI(b) [ {a—b)’

Wir betrachten nun das Verhalten der Wahrschein-
lichkeiten in der Umgebung des Mittelwertes und sctzen
r = no -+ axl/n und s = no — z)'n, dabei halten wir
¢ und z fest und lassen » variieren und ins Un-

e

y . i a
Ferner lisst sich b
funktion ausdriicken :

Ia-+1)
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( )wie folgt durch die Gamma-

al{a)

o ne I(n) . f(mg_l_?) F(—g+3) T(%)
BPrs rese [ (r)I1s) F( % ) F( % ) I'( ?15 —l-'ﬂ) '

endliche wachsen, Wir erhalten

5 1+d — Ltd =\ [n
p N it e e v /, . PR 7 Bl
ni(n)f (ng y Fa) r&) I (no y m[/n) I (d')

K

no

L d

aufgefithrten Werte der Grossen ty 0 by, B,

1.'(n

Wir betrachten nun die in der folgenden Tabelle

I Y 1 2 3 4 5
| @ 1 —g -+ 0 5 -+ o ;1/
: a, : 0 @ il 0 .
| e | e | 2] m [l
y d 1 d
p, @ — 0 0 0

1+d
d

)
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SR SRR PR R
\ V. - _
2 =2h=2"0n  La=)h=t
¥ Y d Y Y
}J:i. y=1 y=0 y=0
ay (tll oy ay
(tl cee al cee Uy
I S N | i . P S
04 bb 3 [)'1 /"5 ’
bl ba b: bs
nach unserm IHilfssatz erhalten wir somit
— 8T a 1
P~ .-l.__( ) l/ S )2"|"m” LTTE ¥ R
"% "mnoo 14« t
1 22
5 e, 0 Baali-l<d)
i VZ'rnna(l—]—d)
Setzen wir nun noch
[
= no 4 l= uu—{«xl/n, ==
/n
so erhalten wir .
: - ()
p, e s () " 2noa(14d) )
V‘Z*znoo(l—l«d)

fiir ¢ = 0 ergibt sich die bekannte Formel

1 2
q. N ——— (fﬁd é;lv‘t_)d.
" Y 2aimoo :

was zur Kontrolle dienen mag.
Als Anwendung von (17) betrachten wir das
,Schema der nicht zuriickgelegten Kugeln®. Aus einer
Urne, in der sich R -} 8§ = N Kugeln befinden,

machen wir # Ziige, ohne jeweilen die gezogene



Kugel wieder zuriickzulegen. Wie gross ist, unter der
Voraussetzung, dass N und n grosse Zahlen sind, die
Wahrscheinlichkeit, dass no -} ¢ rvote und no — /¢
schwarze Kugeln gezogen werden, wenn

ist? In dem vorliegenden Fall ist

1 n
4‘2_1’ ()\:——‘—I\'f) Cl:——-N——;
die gesuchte Wahrscheinlichkeit wird daher nach
(17) gleich

1 L. W
s - 2nnaN_?‘
]/2 N——?’l b N
TTROO
=N

Als Bedingung der Fortsetzbarkeit der Versuchsreihe
erhalten wir nach dem vorangehenden Paragraphen

. n
d:mw>-—-g, —~%>——a.

Damit die Reihe fortsetzbar sei, ist auf alle I‘all(,
erforderlich, dass ‘

d>_,;, *2’3\7<§’ d. h. N—n>>n ist),

1) Diese Bemerkung scheint Herrn E. Czuber entgangen zu
sein (vgl. Bd. 1, 8. 183), da er nur fordert N —»xn muss gross
sein. Er hat damlt stillschweigend eine Abinder ung der Spielregel
angenommen. Diese Abiinderung ist aber fiir das Endergebnis
unwesentlich, was auch aus der Ubereinstimmung der }Jmmeln
fiir die gesuchte Wahrscheinlichkeit hervorgeht.
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§ 9. Der Grenzfall seltener Ereignisse.

Das Analogon zum Grenzfall seltener Ereignisse,
d. h. zum Poissonschen Grenzfall, erhalten wir bei An-
nahme der Chancenvermehrung, wie wir im § 7 ge-
sehen haben, indem wir no = h und nd = d setzen,—
h und d fest halten und » gegen oo konvergieren
lassen. Wir erhielten im § 8 fiir die Einzelwahrschein-

lichkeit
o)) ()
p. ., — e P Y B .
resSe I“(7) r(\) [1(~~) '(-»~) ( —i_n)
da aber
Rg=H; nWle==d, pge=s= !f, 0 = 1__*,’2, o — d
n h )

ist, wird

(l+7) n I'(n) ’(5> ’(175(%"—2 “?)

‘1),._,“‘ ( ) () — l_'(n ) (’n;h) (1+d)

»»»»» —n
d

Im Falle gewohnlicher Ereignisse (vgl. § 8) waren

bei ins Unendliche strebendem » alle Argumente der

Gammafunktionen, die in D, , auftraten, bei der ge-

machten Annahme iiber r, omqqe Zahlen, die auf die

Form an —+aln gebracht wmden konnten. Dadurch
fand der Hilfssatz Anwendung.

/

h
Im Falle der seltenen Ereignisse sind 7 und -
feste Zahlen (wir betrachten nur Werte von 7 in der

_ ; / \
Umgebung des Mittelwertos). l“(%—[«fi’), ’(?%) und 17(r)

sind auch fest. Die iibrigen Gtammafunktionen hiingen
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von » in der Art I'(an--§) ab, wobei @, f fost sind.
Dass g < 0 ist, macht den eigentlichen Unterschied
zu dem in § 8 betrachteten Fall aus. s geniigt jetzt
die folgende einfache Formel:

Hanta)  (anta)™ e oy
/ '(an—l— ﬁ) (an + ﬂ)an-l—/)’ euﬂ

In. Anwendung hiervon erhilt man

: 1(%) 10

{ L
i (/3—%-1) o (%4—';--1) (Lb-dy @ "’
- 1¢2¢3 ... 7

1 h . . ;
1 [(?+'> .,‘(1 )E (1+d )—E“"'
- —ep [ =1 ey
¥ 7! d

1 7, n—1

_ A A-2d) .. (o r—ld) )

lim Prpr =

Hime b
i r! (1dyat”

Kapitel I1.

Seltene Ereignisse.

§ 10. Die Wahrscheinlichkeiten.

In diesem Kapitel befasse ich mich nur mit dem
Grenzfall seltener Ereignisse mit . schwacher* Chancen-
vermehrung, auf den ich im § 9 hingewiesen habe.
Wir setzen wie dort

no == h no = (19)



— By

und halten # und d fest, wihrend wir » gegen co
konvergieren lassen.

Wir bezeichnen ferner mit £ den Grenzwert
timp, , ., und mit ¢ den Grenzwert hfn By yr WO

H=—co nN=oco
bei p,. -, . diesclbe Bedeutung hat wie im vorher-
gechenden Kapitel, /- aber die Wahrscheinlichkeit
im Falle unabhiingiger Wahrscheinlichkeiten mit end-
licher Versuchszahl bezeichnet.

Es ist somit

Ay == limp

7, "
0=0 !

Nach den Entwicklungen des § 9 erhalten wir
aus (18)

p — Mhtd)(ht2d) ... (it [r—1]d),

£ W (20)
rt(14-dyat
bekanntlich ist
—h g
‘ e " h ,
(J}' pmscs »~~:v‘4-—« 3 (21)
!
und somit
Q — limP;
d=0

fiir » = 0 erhalten wir
h
P, = (1-}d)" .

(Vgl. Formel (14)  Uber die Statistik verketteter
Vorgiinge“, Pélya 2, wo diese direkt hergeleitet wurde,
mit Hilfe einer andern Methode). Mit Hilfe der Gamma-
funktionen geht (20) iiber in
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) i ]_‘4_7»_-1 !»
B e (1+fl)m3(1icl) (j (’%—_1)2

d

T Ry lﬂ(g“)

1+d
Nun ist aber bei grossem », angenithert schon fiir
n > 10, geniigend genau

L 1
nel’ — p!l = n+5 _n( ez . ')
nel(n) =n!=n""T2¢e "()2rn} ] 2n+

B ampd,
B s (1+d)—%-( 2 )T- ('g‘”)d i

ST I(Z_) 1+d (%_H)
Von -+ 1 "y
e 12(g_|_,,.)
PR VRt g -
. L\ (_]5_,_7.);’:‘-}-7" ‘é
P~ (;éd)) eg (l'ci-d) L —  (22).

Diese Formel habe ich bei grosserem statistischem
Material stets als Kontrollformel benutzt, P kann aber
auch durch Rekursion aus P erhalten werden. s ist

A E=DE, 23)

L= r(l-d) Tt



Es sei W _die Wahrscheinlichkeit, dass ein Fr-
cignis genau r-mal eintritt.  Unter der erzeugenden
Funktion der Wahrscheinlichkeitsreihe

|14

0?

W, W2 .t
versteht man die Potenzreihe
W, 4+W,z4W,2" + ... = Qe).

Insbesondere erhalten wir fiiv die erzeugenden
I'unktionen Fi(z) und F(2) der Wahrscheinlichkeits-
reihen

Py, Py Py und @, Q) @y

s o] o0

, \ . LY - = Tl htd) o o (A2
BE)= ) & P= ) & (1d) 1 “L”m)iﬁ(?' “l’ 1)
=0 r=0 ( +(') r.
h o h
Nl (“ d YEVEN
=y (- i )= (1_'1‘_;-7‘2)
7=0
h
E(2) = (I-Hd[1—=z]) " @ (24).
= s N2 h) —h(1—2)
F(Z) :Zz) (J P == jPT'Ah- — ({ g%_’;l e (3 3
= y=0 g 7=0 B (20)

Dieselbe Formel ergibt sich auch als Grenzfall fiir
lim d = 0 aus (24).

Auf eine sehr elegante Art erhalten wir aus den
erzeugenden Funktionen die mathematischen Erwar-
tungen von »(»—1) (r—2) ... (»r—k+41). (In der Folge
werden dieselben hiiufig als Momente bezeichnet.) Es
ist niimlich fiir Chancenvermehrung



(@) -2) (Pl 1)) =) rr-1)(r-2) . (I 1) P,

=0
AN A
=R =
=0

k22 k I3
z=1

— d o
ddzlé' Z z -P,,.' _1:[52'E (I-I-d[l——z]) céJ
:[h (h+d) (}H‘?d) oo (h‘l- I_lﬁ“*].]d) (l—l-d[l—z])_— (—’; —TCJ

.
R=

2=t

-1 (#-2)...(°-F+1)} = h(h+d) . . . (h+[k-1]d) (26).

Durch Grenziibergang hiitten wir dies direkt aus
(12) erhalten. Speziell ergibt sich der Mittelwert {2}
und das Quadrat des Schwankungsmasses o

=ty S =) — (2= (1) (@),

Das erste Studium, das ich an meinem statisti-
schen Material iiber Chancenvermehrung unternahm,
bezog sich auf die Einzelwahrscheinlichkeiten, Die
Frage ist folgende: Stimmen die theorctischen erwar-
tungsméissigen Anzahlen innerhalb der erwartungsmiis-
sigen Girenzen mit den beobachteten iiberein? ‘

In Zahlentafel 1 betrachten wir als erstes Beispiel
die Todesfille bei Dampfifiisserexplosionen in Preussen
in den Jahren 1890—1909. Den Hinweis auf diesen
Fall verdanke ich Herrn Prof. v. Bortkiewicz (durch
die freundliche Vermittlung von Herrn Prof. Pélya).
Die 20 Beobachtungsjahre wurden zuniichst in Kate-
gorien mit gleicher Anzahl Todesfille pro Jahr einge-
teilt und in den Spalten 1 und II registriert.

Insgesamt wurden 101 Todesfille bei Dampffisser-
explosionen verzeichnet (Summe der Produkte der
Stellen der Spalte I mit den entsprechenden Stellen
der Spalte II), also im Durchschnitt pro Jahr 5.05 = A.
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Zuerst wurde nun gepriift, ob die Theorie der Unab-
hiingigkeit (Poissonsches Schema) befriedigende Resul-
tate liefere. Zu diesem Zweck habe ich die der Spalte
[T entsprechenden Werte in Spalte [II nach (21)

—hyr

20Q, — 20

berechnet.

Aus der systematischen Abweichung der Spalte 111
von der Spalte II (die berechneten Werte sind fiir
kleines und grosses » zu klein, fiir mittleres » zu gross)
iiberzeugen wir uns von der Nichtiibereinstimmung der
Theorie der unabhingigen Ereignisse mit der Wirk-
lichkeit. In den Summenzahlen der Spalten 11 und ITI,
die wir in V und VI finden, kommt dieser Gang der
Abweichung noch mehr zum Ausdruck, indem die Ab-
weichung, die in VIII verzeichnet ist, zuerst negativ,
dann positiv ist. Noch deutlicher springt die Nicht-
iibereinstimmung der Theorie, die zu den Wahrschein-
lichkeiten ) fiihret, in die Augen, wenn man bedenkt,
dass das Quadrat der mittleren Abweichung nach (27)
(fix d = 0) b == 5.05 betragen sollte. Wir multipli-
zieren nun (»—>5.05)° mit der Anzahl derjenigen Jahre,
in denen genau » Todesfille aufgetreten sind (Spalte 11),
summieren diese Produkte und dividieren die erhaltene
Summe mit der um 1 verminderten Anzahl der Beob-
achtungsjahre, d. h.mit 19 (vgl. Formel 36), und erhalten
24.576, also bedeutend mehr als 5.05.

#Diese Abweichung liegt, wie man sich leicht iiber-
zeugt, ausserhalb des erwartungsmiissigen Schwan-
kungsbereiches. Nun wollen wir zusehen, ob die Theorie
der Chancenvermehrung bessere Resultate liefere. Nach
(27) ist ¢ = I (1 4 d), also = 24.576, und daraus
ist @ == 3.867; nun berechnen wir die Grossen 20 P,
nach (20), die in Spalte IV aufgezeichnet sind. Die
Summation der Spalte IV wurde in Spalte VII durch-
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gefithrt, withrend in der Spalte IX die Abweichung
von V und VII, d. h. die Abweichung der Theorie der
Chancenvermehrung von der Beobachtung registriert
wurde. Die relativ gute Ubereinstimmung der Spalten
II und IV bzw. V und VII, die in dem giinstigen
Verlauf der Spalte IX (absolut klein, bald positiv, bald
negativ) ihren Ausdruck findet, bekriftigt uns in der
Annahme, dass die Todesfille bei Dampffisserexplo-
sionen in #hnlichem Zusammenhang stehen wie die
Ziige aus der Urne der Chancenvermehrung.

Die praktische Berechnung der Spalten [II und
IV wurde durchweg mit der Rekursionsformel durch-
gofithrt:

h—~+(r—1)d h
P F(—1) P Q,),:; Q-

"7 e

P, und @ wurden bei diesem, wie auch bei allen
ihnlichen Beispielen, direkt bestimmt (auf 4 Dezimal-
stellen) und daraus die Spalten III und IV mit der
Rechenmaschine (Rekursion) konstruiert. Ausserdem
wurden bei den Tabellen 1, 3, 4, 5 und 6 zur Kon-
trolle jeweilen in Spalte IV einige Zwischenwerte mit
Logarithmentafel und einer Tafel der Gammafunktion
divekt bestimmt. |

Wie schon Herr Prof. v. Bortkiewicz (durch die
freundliche Vermittlung von Herrn Prof. Pdlya) bemerkt
hat, liefert uns dic Annahme der Unabhiingigkoit bei
den Dampffisserexplosionen (die Kxplosionen als Ereig-
nisse registriert) befriedigende Resultate. Die Statistik
dieser Explosionen finden wir in Zahlentafel 2, die ganz
entsprechend Zahlentafel 1 angelegt ist, nur wurden
die Kolonnen betreffend C‘lmnconvermehvung wegge-

lassen. Iis ist

hi==8.8 + 0.41 und ¢* =3 + 1.12
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(Uber dic Berechnung der erwarteten Fehler s. Tu. v.
Bortkiewicz 1) Wie zu erwarten ist, sind dic 7odes-
fille bei Dampffisserexplosionen in gewisser IHinsicht
solidarisch, die FAxplosionen selbst hingegen vonein-
ander unabhiingig.

Fin weiteres Beispiel der Explosionstodesfiille finden
wir in Zahlentafel 3, die gleich angelegt ist wic Tafel 1.
Diese Zahlentatel 3 der Todesfiillle bei den Dampf-
kesselexplosionen in Preussen 1883 —1907 gibt uns zu-
sammen mit dem ersten Beispiel die Uberzeugung, dass
die bessere Ubercinstimmung der Theorie der Chancen-
vermehrung mit der Wirklichkeit nicht bloss davon
herriithrt, dass in P ein Parameter mehr vorhanden ist
als in ), sondern dass das zugrunde gelegte Urnen-
schema die Explosionstodesfiille besser charakterisiert,

[iin Beispiel ganz anderer Art bildet das in Zahlen-
tatel 4 aufgefithrte und von mir bereits verdtfentlichte
Pockenbeispiel (vgl. F'. liggenberger, S. 5 und ft)). Die
Berechnungen bieten gegeniiber Zahlentafel 1 nichts
Neues, Obschon wir hier ausser der Ansteckung einen
anderen storenden Iaktor (die Inhomogeneitit) haben,
gibt uns das Schema der Chancenvermehrung ein befrie-
digendes Resultat,

[n Zahlentafel 5, die analog aufgebaut ist wie
Zahlentafel 1, finden wir die Todesfiille an Scharlach
in der Schweiz in den Jahren 1877 -—1900 (monats-
weise Beobachtungen). Im ersten Moment wird man,
beeinflusst durch die giinstigen Resultate der Pocken-
untersuchungen, vermuten, dass die theovetischen Wahr-
scheinlichkeiten P, in befriedigender Weise mit den
Beobacehtungen iibereinstimmen werden. Der systema-
tische Verlauf von Spalte IX, die die Abweichung der
Theorie der Chancenvermehrung von der Wirkliehkeit
angibt, lehrt uns aber das Gegenteil. Wohl stimmt die
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Theorie der Chancenvermehrung besser mit der Wirk-
lichkeit iiberein als die Theorie der unabhiingigen Er-
eignisse. Das unbefriedigende Resultat rithret, wie wir
sofort sehen werden, von der Inhomogeneitit des sta-
tistischen Materials her. Wir vergleichen nun die An-
zahl der Todesfille pro Monat im gleichen Jahr mit-
einander und legen in der folgenden Tabelle fest, wie oft
auf einen bestimmten Monat das jeweilige Jahresmaximum
und Jahresminimum der Jahre 1877—1900 entfallen ist.

Monat Anzahl der Jahresmaxima | Anzahl der Jahresminima

in den Jahren 1877—1900|in den Jahren 1877—1900
Januar . 3 1
Februar 3 —
Mirz- . ) —
April 9 -
Mai . . 2 1
Juni . . : — 1
Juli . . 1 —
August . — 7
September — 2
Oktober . —— b
November 1 6
Dezember — 1

Wir stellen somit fest: die Scharlachtodesfille in der
ersten Jahreshiilfte (Januar bis Juni) sind bedeutend
hiiufiger als diejenigen der zweiten Jahreshiilfte. Die
starke Inhomogeneitiit beherrscht das Material,

In Zahlentatel 6 sind die Resultate der Statistik
der Todesfiille an Scharlach in der Schweiz in den
Monaten des zweiten Halbjahres (Juli bis Dezember)
der Juhre 1879—1900 verwertet worden. Diese Tabelle
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wurde analog berechnet wie Zahlentafel 1. Die voll-
stindig befriedigende Ubereinstimmung der Theorie der
Chancenvermehrung mit der Beobachtung, die in Spalte
IX zum Ausdruck kommt, zeigt uns, dass, sobald wir
nur Monate der zweiten Jahreshiilfte betrachten, die
Inhomogeneitiit kaum mehr in Betracht kommt gegen-
iiber der Chancenvermehrung und hestirkt uns in der
Annahme, dass die Todesfille, verursacht durch die
betrachteten Infektionskrankheiten, in analoger Weise
solidarisch sind wie die aus einer Urne der Chancen-
vermehrung gezogenen roten Kugeln.

§ 11, Verlauf der Wahrscheinlichkeiten.

Die Reihe der Wahrscheinlichkeiten
Pm P, Py Pm (28)

ist entweder monoton abnehmend (fir d > h) oder
hat glockenformigen Verlaut (fir d <" #). Dieses Re-
sultat erhalten wir ohne weiteres aus § b, da (28) ein
Spezialfall von (10) ist, konnen aber auch direkt aus
(23) dazu kommen.

Ist £ das Maximum der Reihe der Wahrschein-
lichkeiten (28), dann bestimmt sich w aus der Gleichung

= [h—d] (29).
Diese Relation erhalten wir durch Grenziibergang aus
(11). Ist h—d >0 eine ganze Zahl, so ist P, =1,

Bezeichnen wir den Rest der Reihe (28) mit

Bjss P, A Pobuiis

so gilt fiir diesen Rest die Ungleichung
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h--id h—+id
P'3+1+cl—— <R = L Fay fiir /o< d ] N
(30).
h[— h~id |
£2—|——1 < R, <P” g - fir A > d

Nach der Rekursionsformel (23) konnen wir nim-
lich das Restglied darstellen durch

'R'E == Pi»pl_{_ljivfﬂni— —PL'__|_3+ i

L h+(+1)d L ht(+)d 1
P*“( I_i-{—2 1+d +i+2 1+d " i+3

hk(u?)d_l_“').

Fd

Nun vergleichen wir den Rest £, mit der Summe
der geometrischen Reihen 4, und B, die beide P,
zum Anfangsglied haben und deren eine als Quotienten
: h+d -
die andere ——————— aufweist.

d
1+d’ G+ 1) (1+d)
Ks ist

d d \2 [
AL':Pz'—{-I [1+m+(m) —I—.] H(l(-l)‘ ~1T—L—

h+d h :i-’&'d 2‘ @ 1D)(1+d)
B= ,H[ +(£H)(1+(Z)+((i+1)(1+d)) " ] P T e
- h—+tid
—P':z'—}-l—h—{-d'

Es gilt die Ungleichung:

b4 GHhd A4 (+Dd d
(Fd) (Fit1) = (4d) (FFD) 144

fiir A= :s— d.
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Ferner nimmt der Quotient

LU Y )
(14d) (Fi+1) 1+4d | T 14
mit wachsendem / zu oder ab oder bleibt konstant,
je nachdem h<"d, h>d oder h=d ist. Also gilt
die Ungleichung

il

h+4-id < h+4(@4+Hd — d (l

-1 i h ......

(i4-1) (1) >(1—|—d) (I+it1) = 144

Somit folgt ohne weiteres

i
B, i R, ; A, fiir h= > d,
und damit ist die Ungleichung (30) bewiesen,

Nun zu unseren Anwendungen. In Spalte 1V der
Tabellen 1, 8,4, 5, 6 finden wir die Folgen der Wahr-
scheinlichkeiten P, P, ... (mit cinem konstanten
Faktor multipliziert). Bei den in Zahlentateln 1, 3, 6
betrachteten Beispielen ist A > d, es tritt in Spalte IV
ein Maximum auf (Fettdruck). Im Pocken- und Schar-
lachbeispiel der Zahlentateln 4 und 5 ist o < d; Spalte
IV ist monoton abnehmend. Nun wollen wir beim
Poclkenbeispiel (Zahlentafel 4) die Resultate dieses Para-
graphen priifen. Ohne zuerst ausfiihrliche Berechnungen
zu machen, kinnen wir aus den Beobachtungen (Spalte
[T) schliessen, dass die Theorie der Chancenvermeh-
rung die Beobachtungen besser wiedergibt als die
Theorie, die die Unabhiingigkeit der Kinzelereignisse
voraussetzt. In der Tat liegt es nahe, aus dem Ver-
lauf der Spalte der Beobachtungen (II) anzunehmen,
dass die Theorie (Chancenvermehrung), die ein mono-
tones Abnehmen der Reihe P, P,, .. . ergibt, der Wirk-
lichkeit niher kommt als (llOJenloo (Unabhiingigkeit),
die dem Index des Maximalgliedes den Wert /i gibt.



Die Restformeln (30) liefern uns bei der numeri-
schen Auswertung des statistischen Materials cine gute
Kontrolle fiir die Berechnungen. In Zahlentafel 4 des
Pockenbeispiels wurde mit dem 62, Glied abgebrochen.
Aus Spalte VII orschen wir, dass 288 (P, -+ P, . ..
+ P,,) = 287.4 ist. Haben wir Spalte IV richtig
berechnet, so ergibt sich fiir 288 R, = 0.6, nach
unsern Ungleichungen (30) ist aber

0.6 << 288 R, < 0.7.
Nach Spalte VII ist ferner 288 £, — 8.3, nach (30) ist
7.7 <288 By, < 9.8,

Auf diese Weise kionnen wir die 'Berechnung von (I'V)
durch Stichproben kontrollieren.

§ 12. Berechnung von {|r— 4|}. Die erwartungsméssigen
Fehler.

s sei »—h der Fehler des Einzelergebnisses
oder, kiirzer, der Fehler von ». Die mathematische
Erwartung dieses Fehlers ist gleich 0.

Wir fragen nun nach der mathematischen Erwar-
tung des absoluten Betrages dieses I'ehlers, Hs sei

[k] =y,
dann wird

24 d oo,

_ \ ; L\ .
Z(k*r) P, xz_,(q'—/'i) P weil 2_‘(7--—/;) P —0 ist.
r=0 [ =0

r=y-}-1



s B e

B} = L(h—v)l’ -{-Z‘(?—h) r

r=p-l
i
B — 2Z‘(h —»P,
o

d 7
~|-d l—l—d

Durch Subtraktion folgt

3 (Iz—~7)P

=0
:Z;(h nP _1+124(” )P,
-1

N\ o ( I)d) ’“L)

-+ h Py — (h—[y—+1]) P,.+1

Nun ist aber
, 1 h~+(r—1)d
D I ) ) p)
P, = P 1+d LESY

. ('ﬂl) Wh'#. )
"B xd P =gt
und somit
‘ 11
- | 1 h hd
J_“J' S e S T B PSR piniin
2 (1+4-d) Z; \hl,,. 1+azp'r—1 1+le -1
+hPy—h P O+ P,
H—l

=0+ 1)Py+1+h(P0—P;,_H)+Zh (PP,

F == P""‘h‘} 2(1+d) ()’—i—l) P}-}—i’



und weil y =[] ist,
{[p—h|} = 2(:"1,-|—[]-'L](Z)APM]. -~ (31

Wie beim gewthnlichen Urnenschema von Ber-
noulli die effektiven Resultate nicht genau mit den
erwartungsmissigen iibereinstimmen, werden wir auch
in der Theorie der Chancenvermehrung gewisse Ab-
weichungen haben. Die Resultate, die wir bei irgend-
einer auf Grund der Theorie der Chancenvermehrung
gemachten Untersuchung erhalten, konnen wir nur
richtig beurteilen, wenn wir die Schwankungen kennen,
die die Theorie zulisst. In der folgenden Tabelle
finden wir eine Zusammenstellung der gebriduchlich-
sten der Formeln fir die mathematische IFrwartung,
das Quadrat des Schwankungsmasses und den mitt-
leren Fehler. m bedeutet dabei dic Anzahl der betrach-
teten Serien.

Mathe-

. Quadrat \ )
malische des Sehwankungsmasses Mittlerer Fehler
Erwartung
h(1-+d h(14
Mittelwert | /2 (32) l(%:i) (33) Vﬁ%m) (35)
(4

Schwankungs-

(34) (35)

n(tedy | Fd)[(.‘y +6d)(1+d)+ | ]/’i@f@[(zh 16d) (1 |-d)+1]

(35)

Die Ermittlung der in obiger Tabelle aufgefiihrten
Werte erfolgt nach bekannten Methoden (man vergleiche
etwa Czuber 1 und v. Bortkiewicz 1). Wir wollen
hier beispielsweise Formel (35) herleiten. s ist
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o (@R @, —h) A, R)
ya ::1( -

m

—h(1—|—(l))2}

([(9-1—h)2~/z(1+d)]+[(1'2—};)2~11(1+d)'|+. @ R R(14d))| ) A
m l

|

—
1N, _

= 2l

+;iaZZ{('n--—h)‘*—h(1+d-)}{(n—m‘&“h(l—kfl)"

i=1 k=1 Remi

2h

’H‘La

1 mn . ] 9 | m 5
— ”;z %;{ (Ir‘i“h) } + ');,- (-l + d)z_" (1+d);‘{('r¢—_l l) }

1 1 /&2 92
=— (- h)"} — l—,—;&‘-(l-{—d) :

Nun ermitteln wir die mathematische Krwartung
von ('l'—/z)J'. Das Wesentliche der Krmittlung der
mathematischen Frwartung ihnlicher Ausdriicke besteht
in folgendem: Man ordnet die rationale ganze Funk-
tion, deren mathematische Erwartung auszurechnen ist,
nicht wie iiblich nach Potenzen von #, d. h. nach 1,
r, v, 7°, ..., sondern nach den Funktionen

1, r, r (r—1), » (r—1) (r—2)...,
wobei » =0, 1, 2, 3 .., ist.
C R = (1) (-2) (-8)+ar (r-1) (r-2)+br (r=1) +er + d
Die Koeffizienten a, b, ¢, ¢ bestimmen wir am

hesten durch Binsetzen der Werte » =0, 1, 2, 3 in
obige Gleichung und erhalten



1 L o\t gt
@R —B@—H) - 8U—W) — B b 4y

6
B—n'—2@{—n'+n g
h==3" : =T —12h -+ 6h
= (1—h)'—n'==1 —4h 4+ 6h"—44°
d = h*,

Wir erhalten somit nach (26)

Fl=_ [ h(h+-d) (h—-2d) (h + 3d) + (6— 47) b (h - d) (h+ 2d)
- (T-12h—-6R*)h(h+d) - (1-4h -8B AR ) o B —h*(1+-d)*

D oht-6d) (1-4a) +1],

In den Formeln (32) bis (35) wird man iiberall
an Stelle von 2 und ¢ aus dem statistischen Material
berechnete, d. h. angeniiherte Werte A" und d’ ein-
setzen miissen, sobald es sich um numerische Kontrollen
handelt, da man weder ¢ noch /i absolut genau kennt,
Bei der Herleitung dieser Formeln setzt man dennoch
i als bekannt voraus. Mit der gleichen Methode erhiilt
man die entsprechenden Ausdriicke, unter der Voraus-
setzung, dass man /A nicht genau kennt, sondern nur
den angenitherten Mittelwert 2’ berechnet hat, Wie
man sich leicht iiberzeugt, sind (bei einigermassen
grosser Serienzahl) die Werte, die man unter Voraus-
setzung eines bekannten 7 ermittelt, nahezu gleich
denjenigen, die auf h' aufgebaut sind.

In der Praxis wird man, da es sich hier vor allem
wm Abschléitzungen handelt, voraussetzen, / sei bekannt.

(35)
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Setzt man z. B. bei der Ermittlung von (34) vor-
aus, dass /i unbekannt sei, so erhilt man durch ecin-
fache Rechnungen (vgl. etwa bei v. Bortkiewicz 1 den
Fall ohne Chancenvermehrung) fiir die mathematische
Erwartung des Quadrates des Schwankungsmasses

de = h (1__[‘ d)‘ (36)

Von dieser Formel, aus der wir in den prakti-
schen Beispielen d bestimmen, werden wir hiufig Ge-
brauch machen. Zur Bestimmung des Quadrates des
Schwankungsmasses ist auf die bekannte Art die Summe
der quadratischen Abweichungen durch die um 1 ver-
minderte Serienzahl zu dividieren.

[m Spezialfall d = 0 geht (35) iiber in

=" @n+).
m

Dies gibt uns das von L. v. Bortkiewicz fiir die
seltenen unabhiingigen Ereignisse ermittelte I'ehlermass
(vgl. 1 § 4, Formel (5)), wiithrend (33) fiir ¢ = 0 in
IFormel (4) iibergeht.

Fiir o, im folgenden oft . Ansteckuny genannt,
erhalten wir '

(Sc_hwapku_ngsmassf e g

h h
Der Fehler von d wird gleich

lv« (Fehler von h(1-4-d) (Fehler von 7)
von ¢) + A (1-4-d) (Kel 1 1)

2 S

—— — TR
o ]/%%Q [@h--6a) (144 1]+ ]/%Tm) (37)-
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Fiir siimtliche Beispicle habe ich die sogenannte
durchschnittliche Abweichung {|#—#|} aus der Beob-
achtung divekt berechnet. s ist, wie zu Beginn dieses
Paragraphen gezeigt wurde,

(|r—h|} =2 ) (h—n)P,

und sofern X die Anzahl der beobachteten Serien mit
genau 7 seltenen Lreignissen bedeutet

a -

lr—nly=—= [hZXr——ZT X,.] 9= [A]

7=0 7:=0

Fiir das Beispiel der Todestille dureh Dampfkessel-
explosionen erhalten wir auf diese Art (vgl. Zahlen-
tafel 1) 3.665. Berechnen wir hingegen fiir dieses Beispiel
1 )r—h} aus (31), so erhalten wir 3.658. Wir finden
cine schr gute Ubereinstimmung der Theorie mit der
Beobachtung; setzen wir aber die Theorie von Poisson
voraus (Unabhiingigkeit), so wiire fiir {7"——h’} nach
(31) (d = 0) L.77 zu erwarten, also ein Betrag, der
nur ein Bruchteil der Beobachtung ist.

Von Formel (36) haben wir bei allen Beispielen
(febrauch gemacht.

Bekanntlich sind bei allen Anwendungen die Para-
meter £ und d aus dem ersten und zweiten Moment
bestimmt worden. Beim gewdhnlichen Tall der unab-
hiingigen Ercignisse wird jeweilen untersucht, ob das
theoretische Quadrat des Schwankungsmasses, berechnet
aus dem durch das erste Moment bestimmten einzigen
Parameter, mit dem direkt berechneten iibercinstimmt.
Mit andern Worten, man untersucht, ob der Lexissche
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Dispersionskoeftizient gleich 1 sei.  Wir wollen nun
analog vorgehen und mit Hilfe der durch das erste
und zweite Moment bestimmten zwei Parameter 4 und d
das dritte Moment direkt berechnen. Nach (26) ist

{r(r—1)(r—2)} = h (h-+-d) (h-}-2d).
Fiir unser Pockenbeispiel ist
1 (r-1) (-2)} = h(htd) (h+2d) = 3673.06 (theoretisch)
Ir(r-1)(r-2)} = ("} -3 {*} + 2 [»} — 38892.63 (beobachtet).

Die Ubereinstimmung der Theorie mit der Beob-
achtung scheint uns befriedigend zu sein.

Dieselbe Untersuchung machen wir nun noch an
cinem andern statistischen Material.

In den wochentlichen . Bulleting des Schweizeri-
schen Gesundheitsamtes™ werden jeweilen die neu zur
Anzeige gelangten Iirkrankungen an  ansteckenden
Krankheiten veridffentlicht, nach Kantonen und Krank-
heiten getrennt.

Aus diesen Angaben habe ich cine Statistil der
Erlkrankungen an Pocken im  Kanlon Zirich vom
15. Febr. 1919 bis 22. September 1923 verarbeitet. Die
Resultate wurden ganz gleich wie in Spalte IT der
Zahlentafeln 1, 2, 3 ete. zusammengestellt. In den
beobachteten 240 Wochen wurden im Kanton Ziirich
981 Pockenerkrankungen amtlich angezeigt, im Durch-
schnitt pro Woche 4.09. (Die Serienliinge setzen wir
hier entsprechend den Bulletins auf eine Woche fest.)

(1} =4.09 =i, {#*} =73.17, {r’} =2044.70

21 g2
d.:_t'__}.b h —1==12.80, ¢®= 56.44.

6



Es ist

{r@-1)(r-2)} = {#*} - 3{»*} ++ 2 {r} = 1833.37 (beobachtet).

Auch hier finden wir die Differenz zwischen Theorie
und Beobachtung unwesentlich.

§ 13. Diskussion des Schwankungsmasses bei Serien-
verbindung.

Das Quadrat des Schwankungsmasses ist bei
Chancenvermehrung grosser als der Mittelwert, somit
grosser als bei der Voraussetzung der Unabhingigkeit
der Ereignisse. Wir fragen nun nach der Abhingig-
keit des Schwankungsmasses von der Serienléinge.

Aus den Formeln (15) und (16) folgt ohne wei-
teres, dass die mathematische Erwartung proportional
zur Serienlinge ist (zur Anzahl der Versuche). Dies
ist auch selbstverstindlich (vgl. § 7).

Ebenso schliessen wir, dass das Quadrat des
Schwankungsmasses eine lLineare bzw. quadratische
Funktion der Serienlinge ist, je nachdem es sich um
nicht zusammenhéingende oder zusammenhéingende
Serien handelt. Wird eine Serie um den k-fachen Be-
trag verlingert (Vereinigung von % aufeinanderfolgen-
den Serien) und. bezeichnen wir die mathematische
Erwartung und das Quadrat des Schwankungsmasses
mit 7 und ¢* bazw. h, und gi., je nachdem wir die
urspriingliche oder die verlingerte Serie betrachten,
so erhalten wir nach (15) und (16)

h, = kh (38)

fiir nicht zusammenhingende und zusammenhiingende
Serien, ferner fiiv nicht zusammenhingende Serien



8 = N (14-d)) = kh(14d) = k¢*

(39
h, = kh, d,, = d [ (9,
fiir zusammenhiingende Serien hingegen
. 1-kd
Ck2 e kk(1+dk) e kh(l—{—kd) — ]f_(,'z _tl—__—l—*—d (40)

h, = kh, d,, = k+d

In Zahlentafel 3 haben wir die Todesfille bei
Damptkesselexplosionen in 25 Jahren nither betrachtet.
Als Serie wihlten wir das Jahr (ich konnte keine
kiirzere Serie wihlen, weil ich keine Statistik dafiir
fand). Nun verlingern wir die Serie auf das H-fache.
Je b aufeinanderfolgende Jahre vereinigen wir zu einer
Serie, und zwar derart, dass alle 25 Jahre vertreten
sind, aber kein Jahr in zwei Serien auftritt. Wir
erhalten 5 Serien zu b Jahre, Wie wir frither 7, ¢
und daraus @ berechnet haben, bestimmen wir nun
h, c52 und d,. Fiir A, orhalten wir 68.6 —5+13.72==5h,
was mit (38) iibereinstimmt.

Ferner wird

c;52 = 432,75 + 303.94 (beobachtet).

Der Fehler (+ 218.69) von ¢;° wurde nach (35) be-
rechnet. AusZahlentafel 3 erhalten wir ¢*=62.48 + 24.05.
Nach unserer Formel (39) fiir nicht zusammenhiingende
Serien ist somit

65 == 312,40 + 120.25

(theoretisch berechnet fiir nicht zusammenhiingende Serien),

Nach Formel (40) hingegen

6 == 1284 + 927
(theoretisch berechnet fiir zusammenhiingende Serien).



Daraus schliessen wir: Die Anzahl der Todesfille
bei Dampfkesselexplosionen in einem Monat ist unab-
hiingig von derjenigen des vorangehenden Monates,
Dies entspricht auch der unbefangenen Vermutung, da
Ja die einzelnen Dampfkesselexplosionen, die vonein-
ander unabhiéingig sind (vgl. Zahlentafel 2), sich nicht
iber lingere Zeitperioden erstrecken, und vor allem
wird cine Hxplosion keine Todesfille in zwei verschie-
denen Monaten zur Folge haben.

Ganz anders steht es mit den in Zahlentafel 4,
5 und 6 betrachteten Infektionskrankheiten. Beim
Pockenbeispiel der Zahlentafel 4 war die Serienlinge
gleich ein Monat. Es werden nun nacheinander Serien
zu 2, 3, 4, 6, 12 und 24 Monaten nach demselben
Prinzip wie oben (bei den Dampfkesselexplosionstodes-
fillen) gebildet. Die Resultate dieser Untersuchung
sind aus Zahlentafel 7 ersichtlich.

Die aufeinanderfolgenden Monate sind ganz éihn-
lich miteinander verwachsen wie die Serien bei der
Theorie der ,zusammenhingenden Serien“. In der
Tat wird sich eine Pockenepidemie nicht auf einen
Monat beschriinken und mit dem letzten Tag des Monats
erloschen. Wir sehen dies auch wieder bei den Pocken-
epidemien der mneuesten Zeit. In den Kriegsjahren
waren in der Schweiz keine Pockenfille aufgetreten,
seit 1919 aber vergeht keine Woche, in der nicht ein
Pockenfall zur Anzeige gelangt. Die Anzahl der
Pockentodesfille in einem Monat ist in hohem Masse
vom Verlauf der Pocken im Vormonat abhingig.

Analoge Berechnungen habe ich fiir die Todesfille
an Scharlach in der Schweiz in den Jahrven 1877 bis
1900 vorgenommen (vgl. Zahlentafel 5) und die Resul-
tate in Zahlentafel 8 vegistriert. Wir erhalten folgen-
des Resultat: Die Annahme der nicht zusammenhin-
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]
genden Serien miissen wir auch hier fallen lassen, da

das Schwankungsmass verhiiltnismissig stirker zunimmt
als dic Serienliinge (vgl. Spalte 1V der Zahlentafel 8).
Aufeinanderfolgende Serien stecken einander an.

Die Ansteckung erfolgt ganz analog, wie sie die
Theorie der zusammenhiingenden Serien vorschreibt,
solange wir nicht mehr als 6 Monate zu einer Serie
vereinigen. Sobald wir aber mehr als 6 Monate ver-
cinigen, so tritt eine Unstimmigkeit ein, die allerdings
noch im Kehlerbereich liegt. Der Schritt von 12 auf
24 Monate ist wieder normal. Wir schliessen daraus
(obschon die Serienzahl klein ist), dass die Beeinflus-
sung der Winter- und Sommermonate nicht dieselbe
ist wie bei gleichartigen Monaten. Wir haben 2 Serien-
typen vor uns, Monate des ersten und des zweiten
[Talbjahres (vgl. § 10).

Verliingern wir hingegen die Serien bei den Todes-
filllen an Scharlach im zweiten Halbjahr (vgl. Zahlen-
tafel 6), so liefern die Berechnungen fiir den Verlauf
des Schwankungsmasses die gewiinschten Resultate,
wovon man sich in Zahlentafel 9 iiberzeugen kann.

Wie steht es nun, wenn wir bei unserem Pocken-
beispiel nicht zwei aufeinanderfolgende Monate, sondern
awei zeitlich weit auseinanderliegende zu ciner Serie
vereinigen? Wir erwarten, dass sich hier die am Anfang
des Paragraphen entwickelte Theorie der Vereinigung
unabhiingiger Serien bewiithre. Um dies zu priifen, ver-
einigen wir das Resultat des

Januar 1877 mit dem Resultat des Januar 1889
Februar 1877 Februar 1889

" ” n ”
Mirz 1877 % 5 . ,  Mirz 1889
Januar 1888 WS m - " Januar 1900
Dezember 1888 % i " 5 Dezember 1900,
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Wir erhalten auf diese Art 144 Serien zu 2 Monaten
(jeder Monat tritt nur einmal auf).

Es wird
2 .
Sy = 146,85,

d, = 12,35 ~ d = 14.20 (Grossenordnung),
wihrend wir oben fiir d, = 31.44 erhalten hatten
(vgl. Zahlentafel 7). Unsere FErwartungen haben sich
somit bestitigt.

Die Resultate dieses Paragraphen wollen wir nun
noch an unserem Beispiel der Erkrankungen an Pocken
in Ziirich untersuchen (vgl. § 12). Wir vereinigen 2
aufeinanderfolgende Wochen zu einer Serie und erhalten
120 neue 2-Wochenserien. Wir erhalten

d
hy = 8.18, d, = 18.77 > d(12.80), 52 = 9.39 ~d

¢, = 161.85 > 2%, (c* = 56.44).

Die Vereinigung von je 3 aufeinanderfolgenden
Wochen zu 80 3-Wochenserien ergibt

hy = 12.26, 5, = 348.12 > 3¢°
| fy
d, = 27.39 > d, 3 =9%18~d,

Das System der Serienvereinigung lidsst uns hier
an dem Verlauf von ¢, und damit des Schwankungs-
masses auf Chancenvermehrung durch Erfolg mit An-
steckung der aufeinanderfolgenden Serien schliessen.
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Die Theorie der Chancenvermehrung findet somit auch
in der Statistik der Erkrankungen an Infektionskrank-
heiten Anwendung.

Wir sehen also, dass das Urnenschema der Chancen-
vermehrung in befriedigender Weise bei zwei charak-
teristischen statistischen Typen (Unfallstatistik und
Epidemiestatistik, Todesfille und Krkrankungen) An-
wendung finden kann. Die Resultate dieses sowie der
vorangehenden Paragraphen berechtigen uns zur An-
nahme, dass wir mit Hilfe des Urnenschemas der
Chancenvermehrung die Statistik der Todesfille bei
Pocken, Explosionen, Kisenbahnungliicken ete. auf den
allein wichtigen Kern untersuchen kionnen, und dass
der Schritt von der Wirklichkeit zum Pélyaschen Schema
nichts anderes bedeutet als das Entfernen der Schlacke

vom Kern.

Kapitel LLIL

Inhomogeneitiit.

§ [4. Die Wahrscheinlichkeiten und ihre erzeugenden
Funktionen,

Aus den Entwicklungen des vorangehenden Kapi-
tels sehen wir, dass die {ibernormale Dispersion von
der Abhiingigkeit der Kinzelfille, die zu einer statisti-
schen Masse zusammengezogen worden sind, herrithren
kann.

Der Fall der ithernormalen Dispersion lisst aber
auch eine Entstehungsweise zu, welche keine Verket-
tung der Einzelfiille voraussetzt, Er kann auch davon
herriihren, dass den einzelnen statistischen Massen
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nicht dieselben Ursachen zugrunde liegen. In dicsem
I"all entspricht jedem Hinzelglied der statistischen Reihe
eine Spezialwahrscheinlichkeit, zum Unterschied zur
Durchschnittswahrscheinlichkeit, die den Mittelwert der
Spezialwahrscheinlichkeiten darstellt. Is ist einleuch-
tend, dass dieses modifizierte Schema grossere Schwan-
kungen ergeben muss als das urspriingliche, weil die
zufilligen Abweichungen der Einzelglieder der Reihe
von ihrem Mittelwert durch die Ungleichheit der Spe-
zialwahrscheinlichkeiten vergrossert werden. Lexis zer-
legt die Schwankung in eine erste Komponente, die
yNormal zufillige Schwankungskomponente®, die aus
der Wirkung der zufilligen Ursachen entsteht, und in
eine zweite Komponente, die ,,Physische Schwankungs-
komponente®, die ihren Ursprung in der Verschieden-
heit der einzelnen Spezialwahrscheinlichkeiten hat. In
der Bevolkerungsstatistik hat man es fast immer mit
Material, das sich iiber grosse Zeitriiume erstreckt, und
daher mit zeitlich sich dndernden Wahrscheinlichkeiten
7z tun. Der Fall mit {ibernormaler Dispersion, her-
rvithrend von der Verschiedenheit der Serienwahrschein-
lichkeiten, wird daher nicht selten sein.

Selbstverstindlich liegt es uns ferne zu behaupten,
ein bestimmtes Material entspreche genau einer be-
stimmten Annahme der Inhomogeneitit. Iis handelt
sich hier auch wieder darum, den Hawupicharalter
der Ereignisse zu erfahren. Betrachten wir etwa die
im vorhergehenden Kapitel genau untersuchte Pocken-
statistik, 'Wir konstatierten, dass das gewdhnliche
Urnenschema ein sehr schlechtes Bild der Wirklich-
keit gibt. Aus der Statistik entnehmen wir, dass in
den fiinfjihrigen Perioden 1881—1885, 1886—1890,
1891—1895, 1896—1900: 703 bzw. 248, 128, 44
Todesfiille an Pocken verzeichnet wurden.,



Die Pockentodesfille nehmen mit der Zeit stark
ab. Durch die Jahre des 20, Jahrhunderts (die nicht
mehr zu unserer in Zahlentafel 4 aufgefiihrten Statistik
gehiven)  wird diese Behauptung auch bestiitigt. Wir
konstaticren somit eine Inhomogeneitit von Serie zu
Serie.  Rithrt die  Unstimmigkeit des gewohnlichen
Urnenschemas zum  grossten Teil oder ganz von der
[nhomogeneitiit her?  Diese Frage muss, gestiitzt auf
die Resultate der Zahlentafeln 4 und 7, verneint wer-
den (vgl. § 18).  Wir haben es mit Chancenvermeh-
rang und Inhomogeneitit zu tun. Der Chancenver-
mehrungscharakter scheint zu priivalieren, und darum
gibt vermutlich die Annahme der reinen Chancenver-
mehrung ein mit der Wirklichkeit so gut iibereinstim-
mendes Resultat. Wenn wir aber Zahlentafel 4 genaucr
betrachten, so sehen wir, dass in der Kolonne IX, der
Abweichung der Theorie der Chancenvermehrung von
der Beobachtung, ecin systematischer Gang vorhanden
ist (zuerst negatiy, dann positiv). Dieser Gang kinnte
seinen  Ursprung in der Inhomogeneitit der Serien
haben. Dass die Inhomogeneitit tatsiichlich ecinen
solchen  Gang  hervorruft, soll weiter unten gezeigt
werden.

Beim Stadium der Inhomogeneitiit sind zwei Haupt-
klassen zu unterscheiden:

A. Inhomogeneitiit innerhall der Serie:

Die Wahrscheinlichkeiten dindern innerhalb einer
Serie nach einem bestimmten Gesetz, das unabhiingig
ist von den Resultaten und fiir alle Serien dasselbe ist.
So werden z. B. die Selbstmorde innerhalb eines Landes
ein statistisches Material liefern, das dieser Kategorie
angehort, weil die Selbstmordwahrscheinlichkeiten bei
beiden Geschlechtern  recht verschieden sind.  Wir
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werden aber spiiter sehen, dass sich dieses Material
trotzdem durch das einfache Urnenschema beschreiben
lisst,

B. Inhomogeneitit von Serie zu Serie:

Die Proben innerhalb ein und derselben Serie
sind den gleichen Bedingungen unterworfen; diese
Bedingungen é#ndern aber von Serie zu Serie, z B,
Sterblichkeit fiir eine bestimmte Altersgruppe withrend
einer langen Zeitperiode. _

In Wirklichkeit werden die Klassen 4 und B
nicht immer getrennt auftreten, sondern es wird mei-
stens sowohl Inhomogeneitiit innerhalb der Serien wie
auch voun Serie zu Serie vorhanden sein. Unsere erste
Aufgabe ist dann die, das Unwesentliche vom Wesent-
lichen zu trennen. Wir werden im folgenden die
Klassen 4 und B vom CGesichtspunkt der Theorien der
seltenen Ereignisse und der Chancenvermehrung niher
betrachten. ‘

Bei Inhomogeneitiit innerhalb der Serien (Klasse 4)

’ ¥4 5 il rr &
bedeuten Q, @, ... Q" baw. P, P, ... PY dic
Wahrscheinlichkeiten innerhalb der homogenen Teil-
serien, withrend ) und P die Wahrscheinlichkeiten
in den vollen inhomogenen Serien darstellen. (AIIZLIOO'

wie im vorhergehenden Kapitel ist wieder lim P = (" 3
§=0

Bei Inhomogeneitit von Serie zu Serie bezeichnen
wir die Wahrscheinlichkeiten in den einzelnen Serien
mit @, Q°,...Q" baw. P, P',. .. P" die Wahr-
scheinlichkeit fiir das ganze Material wird mit () bzw.
P dargestellt.

Wahrscheinlichkeiten, die wir durch Charliersche
Reihen darstellen (vgl. § 16), sind mit W bzw w
(wenn cs sich nicht um den Grenzfall handelt) be-
zeichnet.
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Die folgende Tabelle stellt uns die Bezeichnung
der verschiedenen Wahrscheinlichkeiten dar, wie ich
sic in dieser Arbeit gebrauche:

Inhomogeneitit :
Teilserien,
einzelne Serien

Ohne | Seltene
Grenzfall |Ereignisse

Inhomo- | Inhomo-
geneitdt | geneitdt
innerhalb | von Serie
der Serie | zu Serie

Allgemein, Charlier W 114

Chancenvermehrung |0 >0 p 2. | P9 p

Unabhingigkeit d=0 I, Q?. Q” Q" Q(-“) Q*

P

0

Wie bei den meisten theoretischen Untersuchungen
der Wahrscheinlichkeitsrechnung erweist sich auch hier
diec Anwendung der erzeugenden Funktionen als vor-
teilhaft.  Mit diesen charaktervistischen HFunktionen
erhalten wir verschiedene Bezichungen viel leichter
als durch die gewohnlichen Berechnungen und dringen
so tiefer in den Stoff ein.

Im besonderen wird mit Hilfe der charakteristi-
schen Funktionen eine Briicke von der Theorie der
Chancenvermehrung zur Theorie der Variation der
Spezialwahrscheinlichkeiten geschlagen,  Auf diesen
Zusammenhang, auf den ich weiter unten zuriickkom-
men werde, wurde ich von Herrn Prof. Dr. Pilya
aufmerksam gemacht.

In den Entwicklungen der niichsten Paragraphen
werde ich fiir die erzeugenden Funktionen der ver-
schiedenen  Wahrscheinlichkeiten folgende Bezeich-
nungen cinfiihren :




Wahrschein- | Erzeugende Analytischer Ausdruck
liehkeiten Funktionen der erzeugenden Funktion
Q) F(z) g2 vgl. (25)
e
P E(2) (1+d(1—2)) ¢ vgl (24)
s
: —h, (1—= ;
Q¥ F*(2) g 2 (41)

—hy

Pe | B | I (14d(1-2) b (42)

U

|
o ..'.L' .
Q Moy | e (43)
y=1

g —h

(a—2) % @
S ?::l e

|
b;l
—~!

w
~—

In dieser Tabelle bedeutet etwa Formel (44):

]f?tz) = P() + 1{)—12 + Pzzz _i"' o

| —

—ny —hg —hyg
{(1—}-611(1#2))7;—}- (14d,(1—2)) 2. .. (1—!—({\(1-2))_4?}.

oL

Die Formeln (41) und (42) ergeb()n sich ohne
weiteres aus der Bedeutung der erzeugenden Funktionen
(vgl. § 10) und aus dem Multiplikationssatz der Wahr-
scheinlichkeitsrechnung, da ja die Wahrscheinlichkeit,
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dass in » Versuchen » seltene Ereignisse auftreten, gleich
ist der Wahrscheinlichkeit, dass in siimtlichen Teil-
serien zusammen ¢ seltene auftreten. Da P bzw. ()
nichts anderes als Mittelwerte der Serienwahrsehein-
lichkeiten sind, so lassen sich auch die erzeugenden
Funktionen als Mittelwerte darstellen, und wir erhalten
(43) und (44). (Vgl. iibrigens Czuber 1, Seite 120,
und Charlier 2, Seite 2.)

Bei der Bildung der Formeln (42) und (44) wurde
vorausgesetzt, dass sich die Chancenvermehrung nur
itber die Teilserien bzw. {iber die einzelnen homogenen
Serien erstreckt, mit andern Worten, wir schliessen die
Fille aus, bei denen die Teilserien bzw. die Serien
einander anstecken. Dieser Iall der totalen Ansteckung
ist weit schwieriger zu bewiiltigen und bendtigt um-
fangreiche Berechnungen. Trotzdem or nicht in den
Rahmen dieser Arbeit gehort, wollte ich ihn hier
erwithnen, da er, wie wir geschen haben (vgl. Kapitel
IT), bei epidemischen Krankheiten eine grosse Rolle

spielt.

§ 15. Verlauf der Wahrscheinlichkeiten.

Sofern es keine zwingenden Griinde verbieten,
wird der Statistiker sein Material zuerst immer auf den
einfachsten Fall von Bernoulli untersuchen. Liefert
ihm die Theorie mit der Beobachtung keine geniigende
Ubereinstimmung, so wird er nach den Ursachen der
Abweichung forschen. Wir wollen nun sehen, welche
Unstimmigkeiten die Inhomogeneitiit gegeniiber dem
gewdhnlichen Fall der unabhiingigen seltenen Kreig-
nisse hervorruft.

Die Inhomogeneitiit innerhalb der Serien macht
sich beim gewdhnlichen Fall der seltenen Kreignisse
nicht bemerkbar. Wir haben es also hier mit s homo-
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genen, unter sich verschiedenen Teilserien zu tun, die
zusammen eine Serie bilden. Da die mathematische Hoft-
nung fiir die ganze Serie gleich ist der Summe der
mathematischen Hoffnungen der Teilserien, erhalten wir

he= 2 hy.

r=1

Nach (41) und (25) ist
o) =€ 2 e T e ),

womit unsere Behauptung bewiesen ist, da die erzeu-
gende Funktion die Wahrscheinlichkeitsverhiltnisse
cindeutig bestimmt.

Wird die tatsichlich vorhandene Zihomogeneitiit
von Serie zu Serie nicht beriicksichtigt, so sind die
theoretisch berechneten Wahrscheinlichkeiten ¢, @,
Qg - -+ Q, - . . fiir kleines und grosses » zu klein und
fiir mittleres » (in der Umgebung des Mittelwertes) zu
gross. Kiirzer ausgedriickt: Bei Inhomogeneitit von
Serie zu Serie verliuft die Verteilungskurve facher
als bei voller Homogeneitiit.

Zum Beweise des vorstehenden Satzes betrachten
wir die Funktion

—x —x r—1
p@=", @ =€ )
¢’ (x)ist > 0, solange x <7, wird negativ fiir 2 = ».
Der Punkt K mit den Koordinaten , e »" ist Kul-

minationspunkt (vgl. Figur 1).

o(#) =€ :cq'mz(a;z—— 20 4 r[r—17).
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Die Wendepunkte Wl und W2 haben die Abszissen
» — Jr und » 4 ). Durch diese beiden Punkte W,
und W2 wird die Kurve in 3 Teile zerlegt:

[ 0<ax<<r—Jr in diesem Giebiet ist die Kurve
konvex nach unten.

[l r—)r<ax<r-)r in diesem Gebiet ist die Kurve
konkay nach unten.

HI: » - )r <a in diesem Gebiet ist die Kurve
konvex nach unten.

[. A l
| D\ |
: | 77
N 5.
' : " e YR
: : X, y/ A X . YY)
[N 7 2
S
; |
: l
‘2
* |
|
|

Es gilt somit (vgl. Figur 1):

Im Gebiet [ und III ist die Ordinate eines Sehnen-
punktes grosser als die Ordinate des Kurvenpunktes
mit gleicher Abszisse. Im Gebiet Il ist die Ordinate
eines Sehnenpunktes kleiner als die Ordinate des ent-
sprechenden Kurvenpunktes.

Es teile der Sehnenpunkt A" die durch die Kurven-
punkte 4, und 4, begrenzte Sehne 4, A, im Verhiilt-
nis von m, :m,, dann ist, die entsprechenden Koordina
ten mit (=, ¥), (x, y,), (x, y,) bezeichnet,




A ol 1
A4, m x,—ux
, g —my,
X = und analog
m, - m,

. my tmyY,
?/ === i
m, |- n,

Es sei 4, der Kurvenpunkt mit den Koordinaten

Zgy Yy Wobel

ist, dann wird
Yy <y fiir die Gebiete I und III
y, =y fiir das Grebict II (vgl. Figur 1).
A, und 4, miissen in demselben Gebiet licgen.

{ » 9 D :-ﬂ v o o . T 1
Sofern z,, @, < r—r oder @, z, > r - |r ist,
erhalten wir

my~tm,

M. p~1 " m. p%2 2" g -k mg B ap o m, "
1€ -y e 8~ o T b m, x, .
m, — m - b (45),

1 2

fiir r— Jr <a, @, <r-t Vr wird

/ —Lq o T _ —1!2 7 ?”’1 a’.l E}_ 1”2 ﬂ.’:z y wihess 12l T

e Y o e My By - My N
1+ g e (4:'0 ).
m, —m, m,~m,

Wir betrachten ein statistisches Material, yon dem
wir m, 4 m, Serien zur Verfiigung haben. In m, Serien
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soll die Spezialwahrscheinlichkeit durchwegs o, in den
iibrigen m, Serien g, betragen,

limno, = hy, limng, = h,.

n=oo n=o9
Fiir die Wahrscheinlichkeit QT erhalten wir
—h ] —J, r
— me™ hy—m, o2 b
ro . -
vl (my—-my)

und fiir die Wahrscheinlichkeit, die innerhalb der
Totalserie Homogeneitit voraussetzt und somit die vor-
handene Inhomogeneitiit vernachlissigt,

hl'ml + hg mo
€ mitmg (h, m, +h, -mz) r

Q. =—
<, r! m, -+ m,

Wir erhalten somit nach obigen Formeln (45), (45”)

Q< Q, fir r—r<hy,h,<r-+4Jr (467)

Es sei h, < h,, dann geniigt es, dic 1 Fille: A,
oder h, gleich » — Vr oder » | J/r zu diskutieren, die
auf die quadratische Gleichung fiihren

(+Vry =h—",

A
deren beide Wurzeln A - % + ]/h = 1 sind.
i Mt htL sty By >r N
Fiir » << a1—|—§m ‘1”'“1 ist by, hy=>1 )

fir » > ha"‘ _; _I_‘]/"‘z 4 % 18t h,u /’z <t V7



— 90 —

Unter Beriicksichtigung von dieser Bezichung geht
(46) tiber in '
0 ~0 fiir re1 | : 1 lor 7~ ] 1 T
Q.= Q, fiir r< z1+—2——- /zl-}—a— oder » > z2+~2——|— /zz—}—;i-

_ — I cames O
@, <@, fir hz—l‘;—‘m]/hg_l—i<7.<h’1+§+]//h1+ T (47).

Im vorstehenden haben wir die zwei Gebicte

AR L /it L

————

1 ; -
und h.l+_é_ +V]L1+X<?.<}32+§+I/ltz—l—i_

nicht beriicksichtigt. In diesen Zwischengebioten kon-
nen wir iiber das Vorzeichen von Qr P QT nichts aus-
sagen. Hs ist dies auch erklirlich, da wir iiber das
Verhiiltnis der Ordinaten eines Sehnenpunktes und des
Kurvenpunktes mit gleicher Abszisse auch nichts Be-
stimmtes wissen, solange die Sehne in zwei Gebieten
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der Figur 1 liegt. Ist &, ~ hy ~ h, d. h. sind die Diffe-
renzen b —h, h,—h klein, so geht (47) iiber in

QR.>Q,
- 1 1
fir »<h-+ 5" -]/h, -+ T
, 1 )
oder r>h- 3 _}_]/h A T
Q. <Q,
P S St { - e
fir bt o — | bty <r <h g ] bt g

(48).

Bisher haben wir nur den Fall mit zwei Serien-
typen betrachtet. Der allgemeinste Fall ergibt sich aus
diesem ohne weiteres durch Induktionsschluss., Wir
erhalten

Q; > Q. fir »<7r, oder » > 17, ]

_ (49)

Q<Q fivr,<r<r, |
wobei

1 4/, 1
7, das Minimum der Grossen h1+"2" I/lli+ét"

‘.”@+%_V@+i,

7, das Maximum von diesen Grossen darstellt.

1 .4/, . 1

7, ist das Minimum der Girossen h, - 9 + I/hl =} e
1 A 1 e g b

h2+ §‘+]/h2+ﬁ4“7 see hs+§ +‘l/hs +]f’

r, ist das Maximum derselben.
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Die summatorische Reihe. Ein besseres Urteil als
die Einzelwahrscheinlichkeiten bieten uns, besonders
bei kleiner Serienzahl, die summatorischen Reihen (vgl.
Zahlentafel 1—6). Hs ist

:icz, = e'-’*(1+h+’§;+ o +’—,)
y=0

Nun fragen wir nach dem Verhalten der summa-
torischen Reihen, wenn wir die Inhomogeneitiit von
Serie zu Serie vernachlissigen. Wir vergleichen, analog
wie oben, ;S_” mit §. Ks ist

& h? " _
S,, ——F ’(I—Hz-{— “2"/‘:'+ 6w 8 +}—b- = P(h),
__/;h — Ny r—1

Py =—C <0, om=CT——n,

D (h) > 0, fir h >r, die Kurve y = @(h) ist konkmv
nach unten,

D'(h) << 0, fiir o <7, die Kurve y = PD(h) ist konv&x‘

nach unten,
fix o = » hat die Kurve y = &(h) einen
Wendepunkt.

%
s .
T
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Liegt eine Schne ganz im Gebict 7o < », so ist
die Ordinate des Kurvenpunktes grisser als die Ordi-
nate des Sehnenpunktes mit gleicher Abszisse. Liegt
die Sehne aber im Gebiet 2 >, so ist die Ordinate
des Kurvenpunktes kleiner als die Ordinate des Sehnen-
punktes mit gleicher Abszisse. Is sei nun

[,l h ; /I, l7.

¢ O+m+ﬂfk“”*ﬂ)
iy h, W\ (b)) Db
+CM“HHETL“+fM:A L

h,—+h,

5 =, aus analogen Uberlegungen,

wic beim Vergleich von @ mit (),

dann gilt fir /o —

S >8 fir h, h, >7r
) ¥ B

S.< S, fiw hy, by, <77 (vgl Fig. 3).

[st nun 8§ die summatorische Reihe bei Inhomo-
geneitit von Servie zu Serie, sind A, h, ... h die
mathematischen Erwartungen der homogenen einzelnen

Serien und ist A, < h, <= ... < h, dann erhalten wir

S,; -1 fir » <~ /cl ]
l- (50).

S <8 fiir » > h
i r 3

~

Betrachten wir nun noch den Fall der schwachen
Inhomogeneitiit, in welchem o, ~ hy ~ hy oo .~ h ~h
ist. Wir erhalten

§,>8. firr<h l
S,‘. < S}_ fiir » > h [ (5 1)
S,=8 firr=nh
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Nun zur statistischen Ausnutzung der vorstehen-
den Resultate. Wir betrachten nach dem Vorgang von
L. v. Bortkiewicz in Zahlentafel 10 die Statistik der
weiblichen Selbstmorde in 8 deutschen Staaten [Bort-
kiewicz 1, § 10]. Vergleichen wir die durchschnitt-
lichen jihrlichen Selbstmorde in den verschiedenen
Staaten, die zwischen 1.4 und 5.6 liegen, so springt
uns die Ungleichheit sofort in die Augen. Wir haben
cs mit Inhomogeneitit von Serie zu Serie zu tun.
Zum Vergleich der Wahrscheinlichkeiten, die die In-
homogeneitit vernachlissigen, mit denjenigen, die ihr
Rechnung tragen, habe ich Zahlentafel 10 ganz analog
wie Zahlentafel 1, 3 ete. angelegt. An Stelle der
Spalten der Chancenvermehrung (IV, VII und IX)
treten hier die Spalten der Inhomogeneitit. Vergleichen
wir nun die Spalte ITI der Wahrscheinlichkeiten mit
den Beobachtungen, Spalte II, so finden wir unsere
Theorie bestitigt. 112 @ ist fiir kleines und grosses
r zu klein, fiir mittleres zu gross. Der Zeichenum-
schlag hat nach der Theorie in der Umgebung von
» = 8.47 (genau zwischen h; = 1.4 und /i, = 5.6) zu
erfolgen. In Wirklichkeit ist Spalte VIII fiir » = 3
negativ, fiir » = 4 positiv, also genau wie es zu erwarten
ist. I'erner sind die nach (49) zu bestimmenden Grossen
r, = 0.6, r, = 3.2, r, = 3.7, r, = 8.5, somit ist zu
crwarten, dass

Q. > Q, fiir » < 0.6
Q7 > Q. fir » > 8.5
Q< Q fir 3.2<r< 8.7,
Auch diese Vermutung finden wir, wenn wir die

Kolonnen III und II miteinander vergleichen, gut
bestétigt.
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In derselben Arbeit von L. v. Bortkiewicz ist in
§ 11 eine Statistile der todlichen Unfille bei 11 Be-
rufsgenossenschaften aufgefithrt.  In Zahlentafel 11,
analog angelegt wie Zahlentafel 10, wird dieses inhomo-
gene Material verarbeitet. Auch hier finden wir unsere
Theoric bestitigt. Der Zeichenwechsel in Spalte VIII
erfolgt bei » = 4, nach der Theorie bei » ~ 4.4. Da
die Spalte III der Zahlentateln 10 und 11 ihr Maxi-
mum bei A haben, ist nach der Theoric zu erwarten,
dass der Zeichenumschlag in VI ungefihr dort
crfolgt, wo III das Maximum erreicht hat.

§ 16. Fortsetzung. Die Charlierschen Reihen.

Eine andere Ableitung der im vorangchenden Para-
graphen gewonnenen Siitze geht aus der Umformung der
erzeugenden Funktionen hervor. Man hat nach (43)

8 &
I\, ht—z 1, n25 B0 1z A
F=2) eI e )’2‘!’,51‘ e _>_,’f«,=/t-s

Z_‘(/a—h V(1-2)°

Flgj=s 2 €™ “Z("’f‘ () J BE o —
L(h h) (1-2)° %
B e 1L
' : Z(h_—h}f(l-—z)g D Y (12
—h(1—=2)

Fz)=e

1T $rt .. 6D,

1) Diese Reihe konvergiert fiir alle Werte von 2.
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Ferner ist nach (24)

h
E(z)= (1+d(1-2))~ G o i 18 (L (1—2)

- e—h(l z) -

hd 1m~2 ha2(1—z)3
vd (1-—2)° R (3 )+

2 4 2 3
_ pti) [l‘l“kd(;—z)  hd (j Zl+ (53)").

Aus (44) erhalten wir

F(e)=~ Z(mm 2)” :?—-12_‘@% A9 (14 hd(ljf)j

y=1

h?dy' (o )
— g (=

2
__h(1~—") 1Ze—m —h)( ( h d ;1 ‘) = hrdV (1 Z) )

: .
Dh—hy -2 Dhd

— ew«h(l-«-z) 1__|_ y=1 57 _I_ r=123 (1_2)2
Z(hu-—h F(1—2)° Z‘h a?
4t T o (1—2)°+. .. (54)Y),

1
) Konvergenz, solange [(¢—1)| <o
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Bei Inhomogeneitit innerhalb einer Serie mit
gleichzeitiger Chaneenvermehrung erhalten wir aus (42)

h.},

7 — ’ Y a4 — )'““i‘ -liy-log - cé, o \81 —
L’*(z)ug(l—kd?(l 2) a8, =€ A g e (HHi-a), Qh=h

y=1

\S‘ *_é h}’d}’( DY 1 i‘[ 9 3
1k () — p— DA +E Tt 2P na A1t .
E (z) - e y_:l ;r-:l 2 ‘;yul

$ s
Ex@=e " )[l+QZhydy(lnz)“m%Zh?dyz(l—z)a--'f—...] (55).
y=1

y=1

Der allgemeine Typus der Reihen, wie er in (b2)
bis (55) auftritt, ist

G(2) = Wyt Wzt Wt .. = 77 [14p,(1-2) +ry(1-2)"+...] (56).

Die Wahrscheinlichkeiten W, W, W,, ..., die
durch eine solche Reihe erzeugt werden, hiingen ausser
o R _
von h von den Konstanten y,, y, y, ab. Sie werden
mit den VVahrschemhchkmten Qp @p -+ @y .
durch folgende wichtige Formel verbunden:

(s8]

er = Z ) A Q) (57)3

y=0)

wobei das Zeichen A" die in der Differenzenrechnung

iibliche Bedeutung hat und y, = 1, y, = 0 zu setzen
ist. Wir erhalten nimlich aus dem Ansatz (56)

G () = F @)+ 7,(Fz) —22F &)+ 2" F(2))
+75(F () —32F @)+ 34 F()—2F@) + . ..

8



und daraus ist
W, = Q,+r(Q—2Q, +€C )
+ 9’3( (]2,‘....._. 3 Qa~1+ 3 Q: =, Qr~3) + .

= Q,+ 7[(Q—0,_)—(@,_,—Q_)]
+ Vs [((Qq_“ Q?u 1) - (QI;-_wl_* Q-,-mz))
— (@ =@ —(Q @, )]+

W, = Q,+7,4°Q, +7,4°Q, + .
Q—Q _, = 4Q, AQ—4Q, = 4Q,

S
W,=) 1,40,
y=0

womit (Hleichung (57) bewiesen ist.

Diese Zerlegung der Wahrscheinlichkeiten, wie sie
in (57) angegeben ist, rithrt von Charlier her (vgl. Char-
lier 1, 2, 3 und 4). Sie ergibt, wie wir sechen werden,

eine interessante Analyse der Natur der Kurve.

1. Fall; y, iiberwiegt. Wir nehmen y, =y, =

.= 0 an. Ist die zweite Charakteristik, d. h. y,, die
wir mit Charlier als Fuxzentrizitit bezcichnen wollen,
ungleich null und verschwinden alle hoheren Charak-

teristiken, so wird

I’V e (1+}’Q)Q -“"272(3%"1 + 72Q

=, [H—rg—% +y27(-7;1),

2r  r(r—1)
W—@Q = [1——~~m+___._]'



Ist
2r r(r—1) . 1 V 1
s nkamare =10 5 d 7 = St
1 . -+ X 0, so wirc r /¢+2h_ h -+ o
somit
W >Q,
fir »<<h- : ]/L/WWT
< g 1 -} n
1 R
oder » > /h-}— +Vh + =
& 4 (58).
W, < Q,

ts dyt ; ----'l/h =} ;1— <r<h+ é +]/h o 1

Positive Exzentrizitit bewirkt cine Vergrosserung
der Wahrscheinlichkeiten bei grossem und kleinem 7,
bei mittlerem » (in der Nihe der mathematischen Er-
wartung) hat sie den umgekehrten Einfluss. Positive
Fxzentrizitiit flacht die Wahrscheinlichkeitskurve ab.

Nun betrachten wir die Swmmenfunktion: Es ist
im allgemeinen, sofern wir die erzeugende Funktion
der Wahrscheinlichkeiten (57) mit (/(z) bezeichnen,

G(Z)_ﬁ ?‘“1 . ;"1 2 :
T:——z“z:z Z{;W” = Wy+2(W,+ W)
+ (W W, W)+ ... (59).
i Lk U, @i 2
S e P m—""l"“_";[l-l-ﬁ’g(l —2) +...] |

r=0
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Der Koeffizient von 2" ist nichts anderes als die

Summe der Wahrseheinlichkeiten W0 bis WT.
Fiir den besonderen Fall y, == 0, y, = y, =

wird
—h(1—2)

a(2) 1 (z)

. = y,(1—2) €

: oz )

§ . Q,
Z I/Vv _ZQV - ?2((‘?~)~_€Jr_1) = 7 ) (h—r)

v=0 y=0

ZW ZQ fiir y, >0 und r<h

r r
ZWVEZQP fiir y, << 0 und frzh
v=0 y=0

ZWv = ZQV fiir r = h

v=() y=0

)

(60).

Positive Exzentrizitit bewirkt Vergrosserung der
summatorischen Reihen, solange » < h ist; fiir » > A
wird diese Reihe durch positive Kxzentrizitit verklei-
nert, lus findet keine Verschiebung iiber den Mittel-
wert statt, d. h. die Anzahl der Elemente links vom
Mittelwert wird durch die Exzentrizitit nicht gedindert.

/2

Der Quotient ist gleich

Wiy

1 Wy, — 20"y, -+ W'y, — hy,

W By, — 2Ry, + 2hy,+ By, — 8hy, + 2,

th h (k“—yz)
Wh—l o h (h—ya) + 272.




ST .

Wir haben hier der Finfachheit halber angenom-
men, h sei eine ganze Zahl.

w
1.y, <0, ,WJ,‘, ~->1, rechts von » = h—1 gibt es

h—1 noch Werte, die grosser als
W, sind,

W,

% r=0 = L, W, =W, = Maximum
= (Poisson).
W, ,

8. y5 >0, W <1, Maximum ist nach links ver-
h

-1 schoben,

Positive Ixzentrizitit verschiebt den wahrschein-
lichsten Wert nach links.

2. Fall: y,, y, iiberwiegen. Wir setzen: y, = y, =
. = 1
Die dritte Charalkteristil, die ich Verschicbung
nennen will, bewirkt eine Deplacierung der Elemente
iitber den Mittelwert hinaus. Die Anzahl der Elemente
links vom Mittelwert wird durch die Verschiebung
geiindert.
In der Tat erhalten wir aus (59)

G(2) Fz)

Tresg Tw=n

ZW —~Z‘Q { re—ryy Hs- 2}%_'_;";;—1)}

ZW —-Z‘Q — - h .

Positive Verschiebung verkleinert die Anzahl der
Elemente links vom Mittelwert.

Cr A=) (}’2(["'2) + }'3(1 *"3)2)
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Nun kehren wir zuriick zu unsern erzougenden
Funktionen (52) bis (55). In der folgenden Tabelle
finden wir die Werte der Exzentrizitit und Verschie-
bung fiir die entsprechenden Wahrscheinlichkeitsreihen
zusammengestellt.

Statistisches Material

Yo = Exzentrizitit

75 == Verschiebung

homogen —_— _
it inhomogen o
héing_lge innerhalb —_— -
ror Serie
nisse
inhomoéen 1 2 1 “’
8 | |
von Serie -é—-zl(/b——/ty)z e Z(/&—hy)s
* zu Serie ¥ 3ls
r=1 N y=1 .
hed hed’
I homogen 9 — 3
Chancen- | inhomogen 1 '1 1,,’%
ver- innerhalb —~Zh d 21 _‘-_2-‘ hod?
mehrun * Serie 2 bR 3 vy
g y=1 - vl -
inhomogen [ | [~ ! 1 N | o |
W , \ ¢ \ )
won Saie | o | D (h—h D b | | o D —h ) =D a?
: 2s ¥ vy s y 3s Yy
zu Serie - B - -
r=1 =1 y=1 y=1

Bemerkenswert ist an obiger Tabelle, dass bei
gleichem Mittelwert und gleicher Exzentrizitit die Ver-
schiebung bei homogener Chancenvermehrung kleiner
ist als bei innerhalb der Serien inhomogener Chancen-

vermehrung.
Ungleichung

Fs ist ndmlich nach der

bekannten



we T o=

, 8

(Lo = () (20)
1 y=1 y=1

}l:‘.

fiir @, = I/ﬁ:, br — V-/z;dr

o 9 SRS "
(Z.ah'rdr) < 2_‘/;? Z‘h;»‘t;r :
y=1 =1

r=1

Nun ist aber bei gleichem Mittelwert und bei
gleicher Exzentrizitit

'!1 :?1
h :Zh?’ hd :leycly,
y=1 y=1
i/ L)
LJ’( Y 3

- \', .2
somit hd® = Z”fﬂf < Zdhyai”“.

Z I p=1
y
r=1

Unsere Formeln (58) und (60) stimmen mit (48)
und (51) genau iiberein. Bei diesen hatten wir voraus-
gesetzt, dass hy ~ h sein soll, bei (58) und (60) hin-
gegen ist y, =y, = ... = 0 gesetzt worden, was das-
selbe bedeutet ([h—4h ]'~0).

Die im vorangehenden Paragraphen abgeleiteten
Stitze fitr Inhomogeneilit von Serie zu Serie g;clten auch
fiir kleine Chancenvermehruny (y3 = — %d e 0)-

Bei Chancenvermehrung macht sich die Inhomo-
geneitiit innerhalb der Serien nicht bemerkbar, solange
sich diese nur {iber die mathematischen Krwartungen

erstrecke.
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Aus der Tabelle sehen wir, dass sich in diesem
Fall weder die Exzentrizitit noch die Verschiebung
indern, damit ist unser Satz fiiv kleine Chancenver-
mehrung bewiesen.  Die allgemeine Giiltigkeit folgt
aber aus

hV k},

%y = I1(14-d(1—2)) @

y=1

BXZ) = fi( 1+4-d (1—=2))
E k,},
=1

— (14d(1—a) @ = (1+d(1—-z))_"3 = Iz).

Inhomogenewtiit  und Chancenvermehrung iiben,
wenn sic in fleinem Masse vorhanden sind, auf den
statistischen, wahrnehmbaren Verlauf der Hiufigkeiten
dieselbe Wirkung aus.

Sind in der Tat d® und (h—h)° verschwindend
kleine Grossen, so haben wir sowohl bei Inhomo-
geneitit wie auch bei Chancenvermehrung eine ver-
schwindende Verschiebung; die hoheren Charakteri-
stiken sind gleich Null, wihrend die lxzentrizitit

&
(%Z‘(hu—hy)z bzw. _/_g_i) positiv ist.

y=1

Insbesondere erhalten wir aus (60) fir kleine
Chancenvermehrung

r r
L. ) |
ZP, %ZQ; , fiir » \g h.

= >
;':0 i!;;O

Dass der Zeichenumschlag in Spalte VIII der
Zahlentafeln 1, 3, 4, 5 und 6 immer unmittelbar nach
dem Maximuwmn der Spalte LI eintritt, wird hierdurch
in Analogie zu (51) bis zu cinem gewissen Grade erklirvt.
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Die theoretisch berechnete Wahrscheinlichkeit des
Nichteintreffens des seltenen Kreignisses ist zu klein,
wenn vorhandene positive Chancenvermehrung vernach-
lissigt wird. Es ist in der Tat

o & & ;
1+d<1+d+*2T+v§T+...:el

h
(14+d)% < e

h
(I4+d) >e™,

somit P, > @, fir d > 0.

Diese Beziehung finden wir bei allen unseren Bei-
spiclen beim Vergleich des Anfangs der Spalten II und
ITT bestitigt.

§ 17. 'Berechnung der Erwartungen.

[n diesem Paragraphen wollen wir die verschie-
denen Formeln der mathematischen Krwartung des
Produktes {»(r—1) (r—2)...(»—k+-1)} fir diec Wahr-
scheinlichkeiten @, %, @, 2, P* und P ermitteln. Wir
beniitzen dazu die erzeugenden Funktionen dieser Wahr-
scheinlichkeiten, dhnlich wie in § 12, unter Anwen-
dung der Gleichung
.dk

400

{,,.(,,._1)(1'———2) PR (r'—/‘:+1)} —— d
2 4 fir z=1

1. Im Fall der unabhingigen seltenen Kreignisse ist

dﬁ: '

= Ik [vgl. Formel (26)] (61).
9



S

Da sich die erzeugende Funktion der Wahrschein-
lichkeiten fiir seltene Freignisse mit Inhomogeneitiit
wmmerhalb der Serien von denjenigen fiir gewohn-
liche seltene KEreignisse nicht unterscheidet, gilt
Formel (61) auch fiir diesen Fall.

Bei Inhomogeneitit von Serie zu Serie ohne Chancen~
vermehrung st
1 8
7 — ', (1—2)
Hg)= —g =%
( ) S(’ y=1

re—0)@e—2)... r—k+1)} = ;Z ky"’ (62).
y=1

. .Nach Formel (26) erhalten wir fiiv homogene

Chancenvermehrung
{Pr-D)(@-2)...(—k+1)} = h(h-+d) (h-+2d)...(h+[ k-1]d)

Nun betrachten wir den Fall der Inhomogeneitiit
immerhalb der Serien ber Chancenvermehrung und
setzen voraus, dass die Ansteckung nicht tiber die
Teilserien hinausgeht, mit andern Worten, dass die
Teilserien voneinander unabhingig sind.

Nach (42) ist
Izy

E#(z) = f]l( 1+d (1—2)) ",
-

Setzen wir, soweit keine Verwechslung miglich,
L*(2) = E*, dann ist £*(1) =1

d I* " .
- :Z‘h? —1 (63)
et T4

=%,
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A £y O U
% I* _24(1 e (1-—4))

=1

o :
lr(r—1)) —_—L h? cl? -+ W (63

r=1

BB o (B*)° Z 2h d
B+ B F*a (144 (1%)

re—1)e—2)}—3{re—Hr}+2{»}°

——2Zh @’

[ (r—1) (- 2)‘__Jh2_‘/z d -1 +22‘h @ (63").

y=1

6. Bei der Inhomoyeneatc’tt von Serie zu Serie mit
Chancenvermehrung setzen wir voraus, dass die ein-
zelnen Serien nicht zusammenhéingen. Es ist nach (44)

hy

E(2) = T;52":(1—“&?(1—z))*‘ a

¥(2) = - Zh (h+d)..

i (h);|—- (k—1) d;,)(1+dy(1——z))— Lk

und daraus ist

{re—D@E—2)...0

1))
= ;1 Zhy(h?—l—d?)(hy—l—ml?) oo (AR~ l)d},) (64).
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7. Bei Wahrscheinlichkeiten, die sich nach Charlier-
schen Reihen entwickeln lassen, ist nach (56), unter
Beriicksichtigung, dass y, = 1, y, = 0 ist,

G (2) = e "Iy (1—2) Fry(1—2) '+ . . ]
- e~k(1-:;)Z y (1—z)

v=0

: 5 007 ,
@@= he ™)y (12
=0

[ o]

~ “‘ 2
. e—/E(I—-u)Zv }’y(l _Z): 1
y=1
3 ) ‘Zf’_,q ‘
G (2)==I" e“”‘I—"JZ‘ y (1—2)
=0
| w
i o 8_]"(1_2)2"1’ y(1—2) ~1
=1

S i
+ e -t -2

y=2

G ()= h’ eﬁh(l_z)z y,(1—2)
0

o

A\
— AT Yy (1)

v=1

+3he™ D 1)y (1)
r=2

h1—zy N\ e
e )Z‘.,,(,,__])(ym2)yy(1»~~_z)' 37

y=3
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daraus ist

)=, frer— D} = 1 27, ir—1)(r—2))
= B4 6hy, — 6y (65)

¢! = h+2y,
( 3
{e—h)"} =h+6y,— 6y,

Unter Beniitzung der im vorhergehenden Para-
graphen aufgestellten Tabelle fir die Fxzentrizitit und
Verschiebung konnten. wir die Werte der ersten drei
Momente in (61), (62), (26), (63) und (64) aus (65)
direkt erhalten.

§ 18. Statistische Unterscheidung zwischen Wahrscheinlich-
keitsansteckung und Inhomogeneitiat. Die Serienverbindung.

Im Paragraphen 16 haben wir gesehen, dass
Chancenvermehrung und Inhomogeneitit, sofern beide
in kleinem Masse auftreten, an dem Verlauf der Hiufig-
keiten nicht unterschieden werden konnen. Wir wissen
ferner, dass sowohl bei Chancenvermehrung, wie auch
bei Inhomogeneitit iibernormale Dispersion auftritt.
Wir konstatieren also, dass Inhomogeneitiit und Chancen-
vermehrung in gewisser Hinsicht statistisch gleich wahr-
nehmbar sind.

Es ist daher berechtigt zu fragen, ob Inhomo-
geneitit und Chancenvermehrung iiberhaupt denselben
Effekt haben. Mit andern Worten: Sind zwei statisti-
sche Materialien, die dieselbe Erwartung und dasselbe
Schwankungsmass aufweisen, beobachtbar voneinander
verschieden, wenn wir von dem einen Material Inhomo-
geneitit von Serie zu Serie voraussetzen, beim andern
aber Chancenvermehrung ?
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Zur Veranschaulichung der Verhiiltnisse habe ich
Zahlentafel 12 berechnet. Spalte I gibt die Anzahl
der seltenen unter n(n=co) Hreignissen an. In Spalte
II, III und IV wurden die Wahrscheinlichkeiten (), Q*
und @ fiir seltene Ereignisse ohne Chancenvermehrung
berechnet, wihrend wir in Spalte V, VI und VII die
Wahrscheinlichkeiten P, P# und P mit Chancenver-
mehrung finden. Die Parameter der Wahrscheinlich-
keiten ‘wurden durchweg so gewihlt, dass normale
Dispersion vorhanden ist, oder, sofern dies das Wahr-
scheinlichkeitsschema nicht zuldsst, wurde der Lexis-
sche Quotient auf ]/33 festgesetzt. Mit andern Worten:
Fir alle in Zahlentafel 12 berechneten Wahrschein-
lichkeiten betriigt die mathematische Krwartung 10,
das Quadrat des Schwankungsmasses 10 (fiir die Wahr-
scheinlichkeiten der Spalten IT und LIT) bzw. 35 (fiir
die Wahrscheinlichkeiten der Spalten IV bis VII).
Der Einfachheit halber habe ich nur zwei inhomogene
Serien bzw. Teilserien vorausgesetazt.

Vergleichen wir nun Spalte IV (Inhomogeneltat
von Serie zu Serie ohne Chancenvermehrung) mit Spalte
V (homogene Chancenvermehrung), so sehen wir, dass
diese trotz der Ubereinstimmung sowohl in der mathe-
matischen Erwartung wie auch im Quadrat des Schwan-
kungsmasses bei weitem nicht identisch sind. Noch
klarver tritt dies beim Studium der I'igur 4 in die Augen,
in welcher Zahlentafel 12 graphisch dargestellt ist.
Mit dieser Figur ist der Beweis erbracht, dass die
‘Wahrscheinlichkeitskurven der Inhomogeneitiit und
Chancenvermehrung wohl in #hnlicher Weise vom
homogenen unabhiingigen Fall abweichen, unter sich
aber verschieden sind.

Um ein statistisch wahrnehmbares Unterschei-
dungskriterium zwischen Inhomogeneitiit und Chancen-
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vermehrung zu erhalten, studieren wir das Verhalten
des Schwankungsmasses bei Serienverlangerung. Wie
wir im § 13 gesehen haben (vgl. auch § 7), wird eine
Serienverlingerung statistisch durch die Verbindung
von Serien errcicht. Bei dieser Scrienverbindung kann
man unterscheiden zwischen Vereinigung von beriihren-
den Serien (kontinuierliche Verlingerung) und nichit-
beriihrenden Serien (unterbrochene Verlingerung), je
nachdem zeitlich aufeinanderfolgende oder auseinander-
liegende Serien verbunden werden.

Nach (62) erhalten wir fiic Inhomogeneitit von
Serie zu Seric

§ 8§ 8
9 1\, » 1N\ TN, \2
g = ;Z‘ h, ;;—ZJ b (’g}_,hy)
r=1 r=1 y=1

1N, 5 ,  N—h )
s Ezdhy Fh—R= D g

=il ¥
D =)’
2 = __ '
¢ = /l 1 s (()6)
& = h(1 449 (67).

7 nennen wir mit L. v. Bortkiewicz den relativen
Fehlerexzedenten. Aus 66 ist ersichtlich (vgl. Bortkie-
wicz 1, Seite 83), dass das Quadrat des relativen
Fehlerexzedenten direkt proportional zur Serienlinge
ist. Vormehrt man die Versuche in siimtlichen Serien
um das k-fache, ohne dass sich dabei die Grundwahr-
scheinlichkeiten in den einzelnen Serien iindern, so
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vergrossern sich alle % -Werte um das /-fache, und
somit wird auch / /f-mal grosser. Wir erhalten daher
aus (66) fiir das Quadrat des Schwankungsmasses bei
dieser Verlingerung der Serien um das /-fache

o =Ih(L+4 k2 =Lh + 2" (68).

Das Quadrat des Schwankungsmasses ist also eine
quadratische Funktion der Serienlinge. Bei Inhomo-
geneitit hat die Serienverlingerung statistisch so zu
erfolgen, dass man nur gleichartige Serien vereinigt.
(68) ist sowohl fir die Vereinigung von berithrenden
wie nichtberithrenden Serien giiltig,

Fiir das Verhalten bei Serienverlingerung gilt
daher nach (39), (40) und (68):

Das  Quadrat des Schwankungsmasses ist eine
lineare Funktion der Serienliinge, sofern es sich um
Chancenvermehrung und nichtzusammenhingende Serien
oder um Chancenvermehrung und zusammenhdngende
Serien wmit wunterbrochener Verlingerung handelt.

Das  Quadrat des Schwankungsmasses st eine
quadratische Lunktion der Serienlinge bei Chancen-
vermehrung mit zusammenhingenden Serien, sofern
kontinuierliche Verlingerung stattfindet, sowie bei [u-
homogeneitiit von Serie zu Serie, gleichgiiltig, ob man
kontinuierliche oder unterbrochene Verlingerung vor-
nimmt.

Konstatiert man also bei iibernormaler Dispersion,
dass das Quadrat des Schwankungsmasses eine lincare
T'unktion der Serienlidnge ist, so kann nicht reine In-
homogeneitit, wohl aber Chancenvermehrung ohne
Serienzusammenhang vorliegen. Ist hingegen das Quad-
rat des Schwankungsmasses eine quadratische Funktion
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der Serienlinge, so ist weder die Inhomogeneitit noch
die Chancenvermehrung mit Serienzusammenhang aus-
geschlossen; je nachdem bei unterbrochener Verlinge-
rung dieser quadratische Charakter bleibt oder durch
den linearen ersetzt wird, wird die Chancenvermeh-
rung oder die Inhomogeneitit unmoglich. :

Nach dem vorliegenden ist es also ausgeschlossen,
nach den Untersuchungen des § 13 bei unserem Pocken-
beispiel (vgl. Zahlentafel 4) bloss Inhomogeneitit oder
Chancenvermehrung ohne Serienzusammenhang anzu-
nehmen. |

Zum Schluss wollen wir vorliegende Erorterungen
noch an unserem Beispiel der weiblichen Selbstmorde
in 8 deutschen Staaten diskutieren. s ist

{1} =h =38.47
¢*=6.48 = h (14-0.85) = h (1 +a).

Nun vereinigen wir je zwei aufeinanderfolgende
Serien, mit andern Worten: statt der Jahresergebnisse
studieren wir das Resultat in zwei aufeinanderfolgen-
den Jahren, wir erhalten 56 Serien und berechnen

ol = 18.24 = I, (14 1.63) ~ 21 + (2)" ha

= (Quadratische Funktion von 2.

Reine Chancenvermehrung ohne Serienzusammen-
hang ist somit ausgeschlossen. Nun vereinigen wir das
Beobachtungsergebnis eines bestimmten Jahres in einem
Staate mit den um 7 Jahre entfernten dessclben Staates
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und erhalten so wieder 56 Doppeljahreserien. Wir
notieren z. B. fiir das Doppeljahr 1881/1888 in Liibeck
5 Selbstmorde. Wir erhalten

h, = 6.95,

6y = 17.91 = h, (14-1.58) ~ 2h 4 (2)" ha

= Quadratische Funktion von 2.

Das Resultat der Berechnungen macht also bei
diesem Beispiel die einfache Chancenvermehrung mit
und ohne zusammenhiingende Serien unmoglich, wih-
rend kein zwingender Grund vorliegt, anzunchmen, es
handle sich hier nicht um reine Inhomogeneitit.
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Ziahlentafel 1.

Vgl. Seite 58.

1 | u | owm | IV v [ vt [ v | vl | KX
Zahl Zahl der Jahre Summenzahlen Abweichung
der : - : )
Todes. | tatsich- méﬁﬁl‘:ng Gl;li:fllllmg . ” B m:::lchen splllutlfdv
i i Spalte 11 | Spal {
fiille lich @) @0) P Spalte 11| Spalte IV Spalte VI | Spalte VII
| 0 2 0.1 2.5 2 0.1 2.5 — 1.9 + 0.5
1 4 0.6 2.6 6 0.7 5.1 — 5.3 — 0.9
2 1 1.6 2.4 7 2.5 7.5 —— 4.7 + 0.5
3 2 2.8 2.1 9 5.1 9.6 — 3.9 + 0.6
4 3 3.5 1.8 12 8.6 11.4 — 3.4 — 0.6
b 1 3.5 1.5 13 12.1 12.9 — 0.9 — 0.1
6 2 3.0 1.3 15 15.1 14.2 + 0.1 — 0.8
7 1 2.1 1.0 16 17.2 15.2 + 1.2 — 0.8 )
8 1 1.5 0.9 17 18.5 16.1 + 1.5 -— 0.9
9 - 0.8 0.7 17 19.3 16.8 + 2.3 — 0.2
10 e 0.4 0.6 17 19.7 17.4 + 2.7 + 0.4
11 — 0.2 0.5 17 19.9 17.9 + 2.9 + 0.9
12 1 0.1 0.4 18 20.0 18.3 -+ 2.0 -+ 0.3
13 — - 0.3 18 20.0 18.6 + 2.0 -+ 0.6
14 — e 0.3 18 20.0 18.9 + 2.0 + 0.9
15 1 — 0.2 19 20.0 19.1 + 1.0 + 0.1
16 - - 0.2 19 20.0 19.3 - 1.0 + 0.3
17 - — 0.1 19 20.0 19.4 1.0 + 0.4
18 1 - 0.1 20 20.0 19.5 -— -— 0.5
19 —_— - 0.1 20 20.0 19.6 - —04
*20 - 0.1 20 20.0 19.7 — - 0.3
21 s — 0.1 20 20.0 19.8 — — 0.2




I: Anzahl der Todesfille in einem Jahr = 7.
II: Anzahl der Jahre, in denen effektiv » Todesfille aufgetreten = .
111: Anzahl der Jahre mit » Todesfillen, theoretisch, bei Annahme der Unabhiingig-
keit = 20 @),.
IV: Anzahl der Jahre mit » Todesfillen, theoretisch, bei Annahme der Chancenver-
mehrung durch Erfolg = 20 P,.

.
V: 2,
4=0

"
¥1: 2031},
=0

b
VII: 203 P,

v=0

”
VIIT: (20 @Q,—M,); Abweichung von Spalten VI und V.
y=0

T
IX: (20 P,—DM,); Abweichung von Spalten VII und V.
=0 )

Das Maximalglied ist in Spalten IIT und IV durch Fettdruck hervorgehoben,
(uelle: Stat. Jahrbuch fiir den Preussischen Staat 1910. VIIL Jahrgang.

Durchschnittliche Anzahl der Todesfille pro Jahr = A = 5. 05.
Quadrat des Schwankungsmasses ¢%= 24.576, d = 3.867.
Durchschnittliche Abweichung: { | »—h | } beobachtet: 3.67, berechnet: 3.66 [nach

Formel (31)].
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Ziahlentafel 2.

Die Dampffisserexplosionen in Preussen in den Jahren 1890 bis 1909.
Vgl. Seite 60.

I | v [V VI
Zahl der Jahre Summenzahlen
Zahl Abweichung
der nach 7wischen
Explosionen tatsiichlich ﬁle}gl;l)mg w Spalte 11 | zu Spalte IIT|  Spalte 1V und V
0 1 0.7 1 0.7 — 0.3
1 2 2.4 3 3.1 + 0.1
2 3 4.0 6 7.1 + 1.1
3 3 4.4 9 11.5 -+ 2.6
4 7 3.6 16 15.1 - 0.9
H 3 2.4 19 17.56 — 1.5
6 1 1.3 20 18.8 — 1.2
7 0.6 20 19.4 — 0.6
8 — 0.3 20 19.7 — 0.3
9 0.1 20 19.8 —0.2

[: Anzahl der Explosionen in einem Jahr = r.
[[: Anzahl der Jahre, in denen effektiv » Fxplosionen aufgetreten = M.
[I[: Anzahl der Jahre mit » Kxplosionen theoretisch, bei Annahme der Unabhiingig-

keit = 20 @),.

g
v: S,
r=0

»
V: 203 Q,.
r=0

i
VI: 3(20Q,—M,); Abweichung von Spalten IV und V.
p=0
Das Maximalglied ist in Spalte ITI durch Fettdruck hervorgehoben.
Quelle: Vgl. Zahlentafel 1.

Durchschnittliche Anzahl der Explosionen pro Jahr = A = 3.3.
Quadrat des Schwankungsmasses = 3.
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Zahlentafel 3.

Die Todesfalle bei Dampfkesselexplosionen in Preussen in den Jahren 1883 bis 1907.
Vgl. Seite 61.

I o | m | | vV | VI | VI ViDL | IX
Zahl Zahl der Jahre Summenzahlen Abweichung
der -
todes. | tatsi | 1L LK | o | S
icl o T o | Spalte IT [ Sp: Spalte IV .
fillo | lioh )™ 5N gy [Spalto 1L Spalto I Spalte IV} o v | spato vir
0 — — 0.1 — 0.1 — | +01
1 — - 0.2 e b 0.3 — -4 0.3
2 1 -— 0.4 1 — 0.7 — 1.0 — 0.3
3 1 - 0.6 2 ~ 1.3 [ —20 | —o07
4 - —_ 0.8 2 — 2.1 — 2.0 -+ 0.1
5 1 0.1 1.0 3 0.1 3.1 — 2.9 -+ 0.1
6 1 0.3 1.2 ¢ 0.4 4.3 — 3.6 + 0.3
7 1 0.5 1.3 b 0.9 5.6 — 4.1 -+ 0.6
8 3 0.8 1.4 8 1.7 7.0 — 6.3 — 1.0
9 1 148 1.4 9 3.0 8.4 — 6.0 — 0.6
§ 10 1 1.8 1.4 10 4.8 9.8 — 5.2 — 0.2
11 1 2.2 1.4 11 7.0 11.2 4.0 -+ 0.2
12 - 2.5 1.4 11 9.5 198" § — 18§ + 1.6
15 3 27 | 1.3 14 12.2 15.9 — 18 — 0.1
14 1 2.7 1.2 15 149 | 151 [ —o1 | o1
15 1 2.4 1.1 16 173 | 162 | +13 | 402
16 1 2.1 1.0 17 194 | 172 | 124 | +02
17 1 1.7 0.9 18 21.1 18.1 + 3.1 + 0.1
18 1 1.3 0.9 19 22.4 19.0 + 3.4 —
19 0§ 1.0 0.8 20 23.4 19.8 -+ 3.4 — 0.2
20 2 0.6 0.7 23 24.0 905 | 20 — 1.5
921 - 0.4 0.6 22 244 | 211 | +24 | —09
22 - 0.3 0.5 22 24,7 21.6 + 2.7 — 0.4
23 — 0.2 0.5 22 24.9 22.1 o 2,9 -+ 0.1
24 - 0.1 0.4 92 250 | 225 | - 8.0 + 0.5




I I | o | Iv vV | VI | VI VI | IX
Zahl Zahl der Jahre Summenzahlen Abweichung
der , : : g
i lich S an | Spalto 1T | Sp: i
fiille ¢ @0 (20) D Spalte IIT| Spalte IV Spalto VI | Spalto VII
25 == — 0.4 22 25.0 22.9 -+ 8.0 + 0.9
26 1 — 0.3 23 25.0 23.2 + 2.0 + 0.2
27 1 — 0.3 24 25.0 23.5 + 1.0 — 0.5
28 — e 0.2 24 25.0 23.7 + 1.0 — 0.3
29 — = 0.2 24 25.0 23.9 + 1.0 — 0.1
30 = — 0.2 24 25.0 24.1 + 1.0 4+ 0.1
| 31 — — 0.1 24 25.0 24.2 + 1.0 + 0.2
32 e — 0.1 24 25.0 24.3 + 1.0 + 0.3
33 — — 01 24 25.0 24.4 + 1.0 -+ 0.4
34 - 0.1 24 25.0 24.5 + 1.0 -+ 0.5
35 1 — 0.1 2b 25.0 24.6 — — 0.4
36 - — 0.1 26 25.0 24.7 — — 0.3
37 — - 0.1 25 25.0 24.8 — —0.2
1

[: Anzahl der Todesfille in einem Jahr = 7.
[I: Anzahl der Jahre, in denen effektiv » Todesfille aufgetreten — M,
IIT: Anzahl der Jahre mit » Todesfillen, theoretisch, bei Annahme der Unabhiingig-
keit = 25 ¢),.
[V: Anzahl der Jahre mit r Todesfillen, theoretisch, bei Annahme der Chancenver-

mehrung durch Erfolg = 25 P,.
¥ ):‘M,,. #
vl . VIIT: (26 Q,—M,); Abweichung von Spalten VI und V.
VI: 253 9,. "'j;“
”"0 IX: (25 P,—DM,); Abweichung von Spalten VII und V.
VIL: 953 P, T
=0

Das Maximalglied ist in Spalten III. und IV durch Fettdruck hervorgehoben.
Sduelle: stat. Jahrbuch fiir das Deuatsche Reich 38 ff.

Durchschnittliche Anzahl der Todesfille pro Jahr = h = 13.72.
Quadrat des Schwankungsmasses = 62,48, d = 3.55.
Durchschnittliche Abweichung: {|r-h|} beobachtet: 6.086, berechnet (theore-

tisch) 6,926 [nach Formel (31)].
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Zahlentafel 4.

Die Todesfdlle an Pocken in der Schweiz in den Jahren 1877 bis 1900.
Vgl. Seite 61.

I 11 m | 1 v | vi | v VIII IX
Zahl Zahl der Monate Summenzahlen Abweichung
der g It

Todes- | tatsiich- Gl':liiclflllinv ﬁlﬁlil:lflll][lg m i i z.mllgchen Sp.h}lf;;)dv

.s . ie) { q e
fille lich @) @) Spalte IT | Spalte IIT| Spalte IV Spalte VI | Spalto VI

0 100 1.2 100.4 100 1.2 1004 |— 988 |- 0.4

1 39 6.5 36.3 159 7.7 136.7 | — 181.3 |— 2.3

2 28 17.8 23.5 167 25.5 1602 |— 1416 |— 6.8

3 26 32.6 17.5 193 H8.1 1777 | — 1349 | —15.3

4 13 44.9 13.8 206 103.0 1915 |— 108.0 | — 14.5

b 6 49.4 11.3 212 152.4 2028 | — H9.6 |— 92

6 11 45.2 9.5 223 197.6 212.8 | — 254 | —10.7

7 5 35.5 8.1 228 235.1 2204 [+ 51 |— 7.6

8 5 24.5 7.0 233 207 6 2274 |-+ 246 | — 5.6

9 6 15.0 6.1 239 | 272.6 2335 |+ 33.6 |— b5
10 1 8.2 5.3 240 280.8 9388 |+ 4086 |— 19
11 6 4.1 4.7 246 284.9 2435 |+ 3889 |— 25
12 2 1.9 4.2 248 286.8 2477 |-+ 388 | — 0.3
13 2 0.8 3.7 250 287.6 2hl4 |+ 376 | 14
14 3 0.3 3.3 253 287.9 2647 |+ 349 |4 1.7
15 3 0.1 3.0 256 288.0 2577 |-+ 820 | 1.7
16 — e 2.7 256 288.0 2604 |+ 32.0 | 4.4
17 — — 2.4 256 288.0 2628 {4+ 820 |4 6.8
18 4 s 2.2 260 | 288.0 | 2650 |+ 928.0 |+ 5.0
19 1 - 2.0 261 288.0 267.0 |+ 270 |+ 6.0
20 2 - 1.8 | 263 | 2880 | 2688 |+ 250 |+ 58
21 4 e 1.6 267 288.0 2704 | -+ 21.0 | 3.4
22 1 —— 1.5 265 288.0 2719 |-+ 200 | 5.
23 3 — 1.3 271 288.0 273.2 |+ 17.0 | 22
24 —_ — 1.2 271 288.0 2744 1+ 17.0 | 3.4




1 | o | ur | v vV | vI | vII vine | IX
Zahl Zahl der Monate Summenzahlen Abweichung
der T T et T ween - - _.

i ¢ Spalte Il | Spalt g
fille L R A paltolll Spalte VA o 2vio v | palte VI
25 2 1.1 273 | 288.0 | 27556 | + 150 | 425
26 1 — 1.0 | 274 | 2880 | 2765 | + 140 | 425
27 1 - 0.9 | 275 | 2880 | 2774 | +18.0 | 2.4
28 1 - 08 | 276 | 2880 | 2782 | + 120 | 422

[ 2 — 08 | 276 | 2880 | 279.0 | +120 | + 3.0
30 3 : 07 | 219 | 2880 | 2797 | + 90 | 07 |
31 - . 06 | 279 | 288.0 | 2808 | + 90 | 413 1
32 1 - 0.6 | 280 | 2880 | 2809 | + 80 | +09 |
33 s 05 | 280 | 2880 | 2814 | + 80 | 414 |
84 1 st 056 | 281 | 2880 | 2819 | + 7.0 | 409

I 35 1 05 | 282 | 2880 | 2824 | + 6.0 | + 0.4
36 . 04 | 282 | 2880 | 2828 | + 6.0 | 408
37 - " 0.4 | 282 | 288.0 | 2832 | + 60 | 1.2
48 1 0.4 983 | 283.0 | 283.6 | + 50 | 406
39 - 03 | 283 | 2880 | 2839 | + 50 | +0.9
10 = ==t 03 | 283 | 288.0 | 2842 | + 50 | 1.2
41 - - 03 | 283 | 2830 | 2845 | + 50 | +15
42 - — 03 | 283 | 288.0 | 2848 |' + 5.0 | + 1.8
43 1 s 02 | 984 | 2880 | 285.0 | + 40 | +1.0
44 1 - 0.2 | 285 | 288.0 | 2852 | -+ 3.0 | +02
45 — s 02 | 9285 | 2880 | 2854 | + 3.0 | 404
46 ST — 0.2 285 288.0 | 2856 | + 3.0 | + 06
47 = 02 | 985 | 288.0 | 2858 | + 80 | 408
18 - - 02 | 285 | 2880 | 2860 | + 8.0 | +10
49 — e 01 | 9285 | 2880 | 286.1 | + 3.0 | + 11
50 - - 01 | 985 | 2880 | 2862 | + 3.0 | 412
51 - - 0.1 085 | 288.0 | 2868 | + 30 | +13
52 — - 01 | 285 | 2880 | 2864 | + 3.0 | + 1.4
53 s - 0.1 983 | 288.0 | 2865 | + 80 | + 1.5
54 9 — 01 | 287 | 288.0 | 2866 | + 1.0 | —o04

10




I i | mur | av vV | vt | vo Vi | IX |
Zahl Zahl der Monate Summenzahlen Abweichung
der : i ™

Hodgss . e ahch- Gh}l;g]g::xw Glelilgiflllllw - ! " L::Ii?lﬁhe" SIM:ltl:}d‘(
ille i = 2| Spi \pi Spalt
fiille lich @) (20) Spalte I | Spalte IIT| Spalte IV Spalte VI | Spalte Vil

51) — o 0.1 287 288.0 286.7 + 10 | —0.3
56 - — 0.1 287 288.0 | 2868 + 10 | —02
57 — — 0.1 287 288.0 | 2869 -+ 1.0 — 0.1
53 == = 0.1 287 288.0 | 287.0 + 1.0 —

59 s = 0.1 287 288.0 287.1 -+ 1.0 + 0.1
60 1 — 0.1 288 288.0 | 287.2 -— — 0.8
61 — — 0.1 288 288.0 | 287.3 —0.7
62 — —_ 0.1 288 288.0 287 .4 — —0.6

I: Anzahl der Todesfille in einem Monat = r.
[I: Anzahl der Monate, in denen effektiv » Todesfille aufgetreten = 3.
[I1: Anzahl der Monate mit » Todesfillen, theoretisch, bei Annahme der Unabhiingig-
keit = 288 ¢),.
IV: Anzahl der Monate mit » Todesfillen, theoretisch, bei Annahme der Chancen-
vermehrung durch Firfolg = 288 P,.

' 7
¥: B
vy=0

a2
VI: 288 }_]OQ "

.
VII: 2883 P,.
p=()

»
VIIL: Y (288 Q,—M,); Abweichung von Spalten VI und V,
r=0

#
[X: >(288 P,—M,); Abweichung von Spalten VII und V.
y=0
Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.
(Juelle: Schweizerische Statistik, Ehe, Geburt und Tod in der schweizerischen Bevdl-
kerung. Fiinfter Teil. Seite 131.
Durchschnittliche Anzahl der Todesfille pro Monat —= A = 5.5.

Quadrat des Schwankungsmasses = 83.589, d = 14.20.
Durchschnittliche Abweichung: { | #—h | } beobachtet: 6.326, berechnet: 6.003.
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Zahlentafel 5.

Die Todesfille an Scharlach in der Schweiz in den Jahren 1877 bis 1900.
Vgl. Seite 61.

1 | o [ m [ v | v | VI | VI ViDL | IX
Zahl Zahl der Monate Summenzahlen Abweichung
der G o .. — . P
i lich aen 2o o L Spalte 1T [ Spalte LT Spalte TV ’
fiille @y |y [PPHeR P Spalto VI | Spalto VII

0 5 — 36.5 5 - 8.5 | — 50| 815

1 7 18.1 12 — H4.6 — 12.0 -+ 42.6

2 13 15.4 25 = 68.0 - 250 | -+ 43.0

3 15 11.0 40 _ 79.0 — 40.0 -390

! 13 0.5 58 —_ 88.5 — H8.0 + 30.5

5 19 : 8.4 7 — 969 | — 77.0 | +19.9

6 8 — 7.6 86 — 1045 | — 85.0 | + 195

7 1o ; 6.9 95 1l | — 95.0 | + 16.4

S 7 - 6.4 102 1178 | —— 1020 | + 15.8

9 8 - .9 | 110 — | 1287 | — 1100 | + 187
10 2 — ) 112 — 129.2 | — 112.0 + 17.2
11 6 5.2 118 - 134.4 — 118.0 + 16.4
12 11 — +.9 129 | — 139.3 — 129.0 + 10.3
13 6 0.1 4.6 135 0.1 143.9 — 134.9 + 8.9
14 7 0.2 4.4 142 0.3 148.3 | — 141.7 + 6.3
15 3 0.3 4.2 150 0.6 1525 | — 1494 | + 256
16 9 0.6 4.0 159 1.2 15656 | — 1678 | — 2.5
17 7 1.1 3.8 166 2.3 160.3 —-168.7 | — 5.7
18 2 1.8 3.6 168 4.1 163.9 | — 163.9 — 4.1
19 H 2.8 3.0 173 6.9 167.4 | — 166.1 — 0.6
20 1 1.2 3.3 174 11 | 1707 | —1629 | — 3.3
21 4 5.9 3.2 178 17.0 173.9 —161.0 | — 4.1
22 8 8.0 3.1 186 25.0 177.0 | — 161.0 — 9.0
23 4 10.3 3.0 190 35.3 180.0 | — 154.7 | —10.0
24 4 12.8 2.9 194 48.1 | 1829 | — 1459 | —11.1




I | o | oIy v [ vi | vt | vim | IX
Zahl Zahl der Monate Summenzahlen Abweichung
der : i

1 i ! © i Spa I al i
fiille lich @) 20) Spalte I1 | Spalte ITL | Spalte IV Spalto VI | Spalto VII
25 5 15.3 2.8 199 63.4 | 185.7 | — 1856 | —13.3
26 6 17.5 2.7 205 80.9 | 1884 | —124.1 | — 16.4
27 3 19.3 2.6 208 | 100.2 | 191.0 | —107.8 | —17.0
28 2 20.5 2.5 210 | 1207 | 1985 | — 89.3 | —16.5
29 3 21.1. | 24 213 | 1418 | 1959 | -— 71.2 | —17.1
30 2 20.9 2.3 215 162.7 | 1982 | — 523 | — 16.8
31 2 20.1 2.9 217 182.8 | 2004 | — 842 | —16.6
32 1 18.7 2.9 218 | 2015 | 2026 | — 165 | -—15.4
33 3 16.9 2.1 921 | 2184 | 2047 | — 26| —16.3
34 | — 14.8 2.0 921 | 2332 | 2067 | + 112 | — 143
35 1 12.6 2.0 292 | 2458 | 2087 | + 238 | —13.3
36 3 10.4 1.9 925 | 256.2 | 2106 | + 812 | — 14.4
37 1 8.4 1.9 2926 | 2646 | 2125 | + 886 | — 185
38 1 6.6 1.8 297 | 271.2 | 2148 | + 442 | —127
39 2 5.0 1.8 229 | 276.2 | 2161 | -+ 472 | —129
10 3 3.7 1.7 232 | 2709 | 2178 | + 479 | —14.2
41 - 9.7 1.7 232 | 2826 | 2195 | + 506 | —125
492 o 1.9 1.6 232 | 2845 | 221.1 | 4+ B25 | —109
43 1 1.3 1.6 933 | 2858 | 2227 | 4+ 528 | —10.3
44 1 0.9 1.5 234 | 286.7 | 2242 | + 527 | — 9.8
45 - 06 | 1.5 234 | 287.3 | 2257 | + 533 | — 83
46 - 04 | 14 934 | 287.7 | 2271 | + B37 | — 6.9
47 - 0.2 1.4 284 | 287.9 | 2285 | + 539 | — b5
48 i 0.1 1.4 934 | 288.0 | 2299 | + 540 | — 4.1
49 2 — | 18 236 | 288.0 | 231.2 | 4+ 520 | — 4.8

| &

50 2 — | L3 238 288.0 | 2325 | 4+ B0.O | — 5.5
51 1 - 1.3 239 | 288.0 | 2338 | + 490 | — 52
52 1 4 1.2 240 | 288.0 | 235.0 | + 48.0 | — 5.0
53 - o 1.2 240 | 288.0 | 2362 | + 480 | — 38
B4 1 e 14| 241 9880 | 2374 | + 470 | — 86




I I I v v vi | v | ovin | IX

Zahl Zahl der Monate Summenzahlen Abweichung
(lel. e —— ———— ——— —

Todes- | tatsich- (.l"'ulch d '.'“h“h m m m tivigchen Spalto ¥

gille | lieh | Steichune Gleiehung }ppeo gy | spatgo trr| spatte v | M| und

@y |y | palteIMl) Spalbe IV ¢ v vi | Spalte wir

55 2 — 1.1 248 | 288.0 | 2385 | +45.0 | — 4.5
56 1 - 1.1 244 | 288.0 | 239.6 | + 44.0 | — 4.4
57 1 . 1.1 245 | 288.0 | 2407 | +48.0 | —4.3
58 9 - 1.0 247 | 288.0 | 2417 | +410 | —53
59 — == 1.0 247 | 2880 | 2427 | 4410 | —4.3
60 1 - 1.0 248 | 2880 | 243.7 | + 400 | — 4.3
61 1 " 1.0 249 | 288.0 | 2447 | +39.0 | —43
62 - = 0.9 249 | 2880 | 2456 | 4390 | —3.4
63 1 . 0.9 250 | 2880 | 2465 | +380 | —385
61 — ! 0.9 950 | 9288.0 | 247.4 | 4380 | —2.6
65 1 0.9 951 | 288.0 | 2483 | +387.0| —27
66 - e 0.9 951 | 288.0 | 2492 | 370 | —18
67 2 — 0.8 953 | 9880 | 2500 | +85.0 | —3.0
68 — 0.8 958 | 288.0 | 250.8 | 350 | —22
69 - i 0.8 958 | 288.0 | 2516 | 850 | — L4
70 - 0.8 953 | 2880 | 252.4 | +35.0| —06
71 1 — 0.8 954 | 288.0 | 2582 | + 340 | —08
72 = - 0.7 954 | 288.0 | 2539 | + 340 | —o0.1
73 - - 0.7 954 | 288.0 | 2646 | - 340 | 406
74 3 = 0.7 957 | 288.0 | 2563 | +81.0 | —1.7
75 1 0.7 958 | 288.0 | 256.0 | +30.0 | —20
76 1 — 0.7 959 | 988.0 | 2567 | +29.0 | —2.3
77 = - 0.7 959 | 288.0 | 2574 | +290 | —16
78 2 - 0.6 261 | 2880 | 2680 | +27.0 | —3.0
79 - - 0.6 961 | 268.0 | 2586 | +27.0 | —24
80 1 I 0.6 962 | 288.0 | 2692 | +260 | —28
81 - o 0.6 962 | 2880 | 2698 | +260 | —22
82 1 - 0.6 963 | 288.0 | 2604 | + 250 | —26
83 - = 0.6 963 | 288.0 | 2610 | +250 | —20
84 2 - 0.6 965 | 288.0 | 261.6 | +230 [ — 8.4




1 I | m | 1v v [ vi | v Vil | IX
Zahl Zahl der Monate Summenzahlen Abweichung
der o T
Todes. jlatsich. &l;li;:;?m" {‘lalilctlol]l]ng i u ® A:Ill:ldw" bpll:rtl:}dv

i lich el Spalte IT | Spalte 1T | Spalto 1V | .
Hille e Ty | qay | ralte ISy P Spalte VI | Spalto VII

85 — 0.6 265 988.0 | 2622 | 230 | —28

86 — = 0.5 265 2880 | 262.7 4 280 | == 2.3

87 2 — 0.5 267 288.0 | 263.2 | 210 | —38

88 . - 0.5 267 288.0 | 263.7 | +2L0 | —38.3

89 — ~ 0.5 267 288.0 | 2642 | +21.0 | —28

90 - - 0.5 267 288.0 | 2617 | +21.0 | —2.3

91 s - 0.5 267 288.0 | 2652 | 210 | —1.8

92 — - 0.5 267 288.0 | 2657 | +21.0 | —1.3

93 — — 0.5 267 288.0 | 266.2 | + 210 | —0.38

94 - — 0.5 267 288.0 | 2667 | 210 | —0.3

95 1 = 0.4 268 288.0 | 267.1 +20.0 | — 0.9

96 — — 0.4 268 288.0 | 2675 | +200  —05

97 — - 0.4 268 288.0 | 267.9 | + 200 | —0.1

98 = 0.4 268 288.0 | 268.8 +20.0 | 4 0.3

99 - - 0.4 268 288.0 | 268.7 + 20.0 | + 0.7
100 - 0.4 268 288.0 | 269.1 4200 | -+ 1.3
110) N IR — 0.4 268 288.0 | 269.5 [ 4200 | + 1.5
102 - — 0.4 268 288.0 | 269.9 | +20.0 | + 1.9
103 - 0.4 268 288.0 | 270.3 | +20.0 | 2.3
104 I - 0.4 269 238.0 | 270.7 | +19.0 | + 1.7
105 1 - 0.4 270 9288.0 | 271.1 + 180 | + 11
106 L — 0.3 271 | 288.0 | 2714 | + 170 | + 04
107 — - 0.3 971 | 288.0 | 27L7 | +417.0 | 407
108 — - 0.3 271 | 2880 | 2720 | +17.0 | + 10
109 —_ — 0.3 gt ' 2880 | 272.3 +17.0 | + 1.3
110 — L — | o3 | 2n | 2880 | 2726 | +170| +16 |
111 3 i 08 | 274 | 2880 | 2729 | 140 | —11
112 — 0.3 274 2880 | 2732 | |} 140 | —08 |
113 — s 0.3 274 2880 | 2735 | + 140 | 05 |
114 1 — 0.3 275 288.0 | 2738 | +18.0 | —1.2




127

o0 |uw [ |y v [ ove |ovi |ovin [ IX
Zahl Zahl der Monate Summenzahlen Abweichung
(lﬁl‘ T o o .
i lich Spalte 11 | Spal alte IV
fiille en |y |M paltolll Spalbo IV} o 2hvo vi | palte vII
115 - - 0.3 275 288.0 | 974.1 + 130 | —0.9
116 e 0.3 275 288.0 | 274.4 + 180 | —0.6
I 117 = — 0.3 275 288.0 | 274.7 + 180 | —03
118 . — 0.3 275 988.0 | 275.0 + 13.0 -
119 — |l - 0.3 275 2880 | 275.3 +130 | +03
P 120 — 0.3 275 288.0 | 275.6 4+ 13.0 | + 0.6
121 0.3 275 288.0 | 275.9 + 130 | 4+ 0.9
192 - 0.2 276 988.0 | 276.1 +18.0 | + 1.1
128 — — 0.2 275 288.0 | 276.3 +138.0 | + 1.3
124 — 0.2 275 288.0 | 276.5 +130 | +1.5
125 — 0.2 275 288.0 | 276.7 +18.0 | 1.7
126 — 0.2 275 288.0 | 276.9 +13.0 | +19
127 — 0.2 275 288.0 | 277.1 4 180 | 8.1
128 0.2 275 988.0 | 277.3 +130 | + 2.3
129 s - 0.2 275 288.0 | 277.6 + 130 | + 25
130 — — 0.2 276 9288.0 | 277.7 + 18.0 | + 2.7
131 = 0.2 275 988.0 | 277.9 +18.0 | +29
132 - - 0.2 275 9288.0 | 278.1 +13.0 | + 8.1
138 — 0.2 275 288.0 | 278.3 +18.0 | + 3.8
[ 134 - 0.2 275 988.0 | 2785 | +13.0 | + 3.5
185 = s 0.2 275 988.0 | 278.7 +18.0 | + 8.7
136 — 0.2 275 988.0 | 278.9 + 180 | + 3.9
137 — 0.2 275 988.0 | 279.1 4180 | + 4.1
138 1 0.2 276 988.0 | 279.3 +120 | + 3.3
139 0.2 276 288.0 | 279.5 4+ 120 | + 35
140 — — 0.2 276 988.0 | 279.7 + 12.0 | 4 3.7
141 1 s 0.2 277 988.0 | 279.9 4+ 11.0 | + 29

e ittt




II:
IIT:.

IV:

VI:

Vil:

VIIL:

IX:

Quelle:
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: Anzahl der Todesfille in einem Monat = r.

Anzahl der Monate, in denen effektiv » Todesfille aufgetreten = M.

Anzahl der Monate mit » Todesfillen, theoretisch, bei Annahme der Unabhiingig-
keit = 288 Q,..

Anzahl der Monate mit » Todestillen, theoretisch, bei Annahme der Chancen-
vermehrung durch Erfolg = 288 P,

»
53,
y=0
»
288310,
v=0
»
288 3! P,. .
r=()

, :
> (288 ,—M,); Abweichung von Spalten VI und V.
r=0

r

(288 P,—DMM,); Abweichung von Spalten VII und V.
v=() . '

Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.

Schweizerische Statistik. Ehe, Geburt und Tod in der schweizerischen Be-
volkerung. Fiinfter Teil, S. 137.

Durchschnittliche Anzahl der Todesfille pro Monat = h = 29.778.

Quadrat des Schwankungsmasses = 1788.125, d = 59.049.
Durchschnittliche Abweichung: { 'r——hl} beobachtet: 27.574, berechnet: 29.037

[nach Formel (31)].
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Zahlentafel 6.

Die Todesfille an Scharlach in der Schweiz in den Monaten des 2. Halbjahres
(Juli bis Dezember) der Jahre 1879 bis 1900.
Vgl. Seite 62.

O A v | vi | vo | vor | IX
Zahl Zahl der Monate " Summenzahlen Abweichung
der ) e e—

i i ’ e Ite IN [N ;
fiille lich @) ) Spa palte TIT | Spalte IV Spalte VI | Spalte VII
|
L 0 4 4.8 4 - 48 | — 4 + 0.8
1 4 - 6.4 8 e 118 | — 8 — 8.2
2 9 0.1 7.2 17 0.1 184 | —16.9 4 14
3 10 0.3 7.5 27 0.4 269 | —266 | —1.1
4 8 0.7 7.6 85 11 385 | — 839 w1
5 10 18 | 74 6 | 29| 4090 | —421 | —41
6 6 3.5 7.1 51 6.4 480 | — 44.6 — 840
7 5 6.0 6.8 56 | 124 548 | —486 | —1.2
| 8 6 8.9 6.4 62 | 213 61.2 | —40.7 | —08
9 b 11.8 6.0 67 83.1 672 | —33.9 + 0.2
10 2 | 141 | 56 60 | 479 | 728 | —218 | +388
11 ! 15.2 5.2 74 62.4 780 | —11.6 + 4.0
12 8 15.1 4.8 82 1.5 828 | — 4.6 + 0.8
13 b 18.8 4.5 87 91.3 878 | + 438 + 0.8
14 5 11.7 4.1 992 103.0 914 | +11.0 | —06
“ 15 4 9.3 3.8 96 112.8 952 | +163 | —08
16 4 6.9 3.4 100 . | 119.2 986 | +192 | —1.4
17 4 4.8 3.2 104 1240 | 101.8 | +200 | —22
18 1 3.2 2.9 105 127.2 | 1047 | +222 | —03
19 3 2.0 2.6 108 129.2 | 1073 | +21.2 | —07
* |
L 20 — | 1.2 2.4 108 180.4 | 109.7 | + 224 + 1.7
21 1 0.7 2.9 109 181.1 | 111.9 | + 22.1 1+ 2.9
29 4 0.4 2.0 118 1816 | 1189 | + 185 + 0.9
I, 23 1 02 1.8 114 1817 | 1157 | +17.7 4 1.7
} 24 + 02 1.6 118 | 1819 | 1173 | 4139 | —o07
r
J !




[ m | 1 |1y v | vt [ v | vir | KX
Zahl Zahl der Monate Summenzahlen Abweichung
der | ‘ ) —

Todes- | tatsdch- m:i';f]?mg doting| ch m | Aehon Seute f
i i ! = | Spalte 11 | Spalte IIT | Spalte IV
fiille lich @ @) Spalte 1T | Spalte ITE | Sp Spalto VI | Spalto VII

25 2 0.1 1.5 120 132 118.8 + 12 — 1.2

26 2 — 1.3 122 132 120.1 + 10 — 1.9

27 1 = 1.2 123 132 121.3 + 9 — 1.7

28 1 — 1.1 124 132 122.4 + 8 — 1.6

29 1 —_ 1.0 125 132 123.4 + 7 — 1.6

30 1 0.9 126 132 124.3 + 6 st ]

31 - — 0.8 126 132 125.1 + 6 - 0.9

32 - - 0.7 126 152 125.8 + 6 — 02

33 - - 0.6 126 132 126.4 + 6 -+ 0.4

34 — — 0.6 126 132 1270 | + 6 + 1.0 |

35 - e 0.5 126 132 127.5 + 6 + 1.5

36 2 — 0.5 128 132 128.0 + 4 —

37 ~ 0.4 128 132 | 128.4 + 4 + 0.4

38 1 -— 0.4 129 132 128.8 + 3 — 0.2

39 —_— e 0.3 129 132 129.1 + 3 -+ 0.1

40 1 - 0.3 130 132 | 1294 | + 2 06

41 — 0.3 130 132 129.7 + 2 — 0.3

42 e - 0.2 130 132 129.9 + 2 — (.1 |

43 — 0.2 130 132 | 1301 | + 2 + 0.1

44 — — 0.2 130 132 130.3 + 2 + 0.3

45 - — 0.2 130 132 130.5 + 2 + 0.5

46 | — - 0.2 130 132 130.7 + 2 -+ 0.7

47 _ . 0.1 130 182 | 1308 | 4+ 2 + 0.8

48 _— o 0.1 130 132 130.9 + 2 -+ 0.9

49 1 — 0.1 131 132 131.0 + 1 —

50 — — 0.1 131 132 131.1 + 1 + 0.1

51 — — 0.1 131 132 131.2 + 1 + 0.2

h2 - e 0.1 131 132 151.3 + 1 + 0.3

53 o — 0.1 151 132 131.4 + 1 + 0.4

54 - — 0.1 131 1 132 131.5 + 1 -+ 0.5




o1 | [ | v o [ove | v | ovir [ Ix
SRS ———  (———————— —-— - = = '77'|
Zahl Zahl der Monate Summenzahlen Abweichung |
T:)l(f; tatsiche nach nach - " - 'I.Wi;(‘jiell Sp,“m,,v

e 1 s ileichung Gloichung ¢ 1 o o qu| und und
] Npalte " S a N | H g y
I fille lich @) 20) | palte Il | Spalte I} Spalte 11 | Spalte V1T
|
55 — ’ 0.1 181 132 | 1816 | + 1 +06 |
b6 — e 0.1 131 132 131.7 4+ 1 + 0.7 |
b7 1 — 0.1 132 ‘ 132 131.8 — — 0,2

\
i | |

[: Anzahl der Todesfille in einem Monat == .

II: Anzahl der Monate, in denen effektiv » Todesfiille aufgetreten — M .

IIT: Anzahl der Monate mit r Todesfillen, theoretisch, bei Annahme der Unabhiingig-
keit = 182 Q),. |

[V: Anzahl der Monate mit r Todesfillen, theoretisch, bei Annahme der Chancen-

vermehrung durch Frfolg = 132 P,
5
V: ¥ M,
r=0

.

VI: 132 0Q,.
?

VIL: 152N P,

”
VIIL: > (182 Q,—M,); Abweichung von Spalten VI und V.
r=0

7.
ING (182 P,—D,); Abweichung von Spalten VII und V.
=0

Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.

Quelle : Vgl. Zahlentafel 5.

Durchschnittliche Anzahl der Todesfille pro Monat — & = 11.90.
Quadrat des Schwankungsmasges = 104.48, d = 7.78.
Durchschnittliche Abweichung : {]ru-—h] } beobachtet: 7.691, berechnet: 7.630

[nach Formel (31)].
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Z a,hlentafel 7.

Das Quadrat des Schwankungsmasses bei Serienvereinigung in der Statistik
der Pockentodesfdlle in den Jahren 1877 bis 1900. (Vgl. Zahlentafel 4.)

Vgl. Seite 76.

I 1l 111 IV | v | WI VII VIII
Mittlere] Quadrat des Schwankungsmasses Ansteckung
Anzahl -
Zahl | Monate!: der | herechnet, ermittelt,
der |ineiner| Todes- . wenn - Wemn
Serien| Serie | fille beobachtet Serienzusammenhang | Serienzusammenhang
Sp"? nicht ange-|  ange- |nicht ange-|  ange-
RELS nowmen | mommen | nommen | nowmen
288 1 5.5 83.59+ 20.61 83.59 83.59 14.20 14.20
144 2 ; 11.0 356.841+112.12 167.18 323.40 31.44 15.72
96 3 16.5 770.63+307.11 250.76 719.40 45.71 15.23
72 4 22.0 1287.94 +541.13 334.356 | 1271.60 b7.b4 14.38
48 6 33.0 | 3007.40 501.58 | 2844.60 | 90.13 15.02
24 12 66.0 9209.04 1003.07 [11253.00 | 138.53 11.54
12 24 132.0 |30341.45 | 2006.13 | 34080.00 | 228.86 9.54
o 288
: Anzahl der beobachteten Serien = W
II: Liinge der einzelnen Serien in Monaten = £.
II: Durchschnittliche Anzahl der Todesfille pro Serie = £,
IV: Quadrat des Schwankungsmasses fiir Serien mit & Monaten = s‘,‘:g.
V: Quadrat des Schwankungsmasses, theoretisch, bei Annahme der nicht zusammen-
hiingenden Serien = h; (1-+d;) = kh (1+d).
VI: Quadrat des Schwankungsmasses, theoretisch, bei Annahme der zusammenhingen-
den Serien = h,(1+d;) = kh(1+kd).
VII: d ermittelt aus der Beobachtung (IV) bei Annahme der nicht zusammenhingenden
2
S
Serien, d = T%_ 1, nach Formel (39).
VIII: d ermittelt aus 'der Beobachtung (IV) bei Annahme der zusammenhingenden

2

- Sk 1 ;
Serien, d = (TL_—E——I)E, nach Formel (40).

Bemerkung: Je nachdem die Annahme der nicht zusammenhiingenden oder zusammenhiin-

genden Serien richtig ist, muss Spalte VII oder VIII konstant sein (theoretisch).

Quelle: Vgl. Zahlentafel 4.
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Zahlentafel 8.

Das Quadrat des Schwankungsmasses bei Serienvereinigung in der Statistik
der Scharlachtodesfille in den Jahren 1877 bis 1900. (Vgl. Zahlentafel 5.)
Vgl. Seite 76.

1 o jo [ v b ¥ 0 9 | Wi | Wi _
Mittlere] Quadrat des Schwankungsmasses Ansteckung
Anzahl SIS T = =
Zahl | Monate| der herechnet, ('rm]ttelt
der |in einer| Todes- - Wwem wenn
Serien | Serie | fille | beobachtot Norienzusammenhing Seuenms.l,mmmhang
PED  nieht  nieht
yerie ) ang ) i
Serie angonommen| "SI wenommen | M E P HION
268 1 20.778 1788.13 1788.13 1788.18 59.05 59.05
144 2 59.5H6 6740.00 3H76.26 7093.00 112.17 56.09
96 3 89.333 15360.22 H564.39 15914.41 170.94 56.98
72 4 119.111 26733.43 T152.52 28252.6H 223.44 5b.86
| 48 6 178.667 | 61503.47 | 10728.78 63479.31 343.24 h7.21 :
24 12 357.8333 1 203487.26 | 21457.66 | 253559.21 5H68.46 47.37 |
12 24 714.667 | 831814.81 \42!)15.12 1015523.59( 1162.92 48.46 E
| |
. 288
I: Anzahl der beobachteten Serien = - =
v

[T: Linge der einzelnen Serien in Monaten = £k,

[II: Durchschnittliche Anzahl der Todesfille pro Serie = h,.

IV: Quadrat des Schwankungsmasses fiir Serien mit & Monaten = L,

V: Quadrat des Schwankungsmasses, theoretisch, bei Annahme der nicht zusammen-
hiingenden Serien = £, (1-+d;) = &k (1+d).

VI: Quadrat des Schwankungsmasses, theoretisch, bei Annahme der zusammenhingen-

den Serien =l (1+4d,;) = kb (1-Fkd).
VII:  ermittelt aus der Beobachtung (1V) bei Annahme der nicht zusammenhingenden

s 4
Sk
. Serien, d = Ycl — 1, nach Formel (39).
VIII: @ ermittelt aus der Beobachtung (IV) bei Annahme der zusammenhiingenden
5 8 '

, , Sk ) 1

jeri = 1) “ormel (40).

Serien, d (kh 1 % nach IFormel (40)

Bemerkung: Je nachdem die Annahme der nicht zusammenhiingenden oder zusammenhiin-
genden Serien richtig ist, muss Spalte VI oder VIII konstant sein (theoretisch).

Quelle: Vgl. Zahlentafel 5.
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Zahlentafel 9.

Das Quadrat des Schwankungsmasses bei Serienvereinigung in der Statistik
der Scharlachtodesfille in den Monaten des 2. Halbjahres (Juli bis Dezember)
der Jahre 1879 bis 1900, (Vgl. Zahlentafel 6.)

Vel. Seite 77.

[ Il 11 v [ vV | VI vie | vio
Mittlere| Quadrvat des Schwankungsmasses Ansteckung
Anzahl
Zahl | Monate| . der hereehnet, ermittelt,
der [ineiner| Todes- wenn wenn
Serien | Serie | fille | bheobachtet Sericnzusnmmenhuug\ Nerienzusammenhang
f pro : A
' Serie illlgf::llg:llltlilell angenommen anggrllf)llllfmun angenommen
|
; 132 1 | 1190 104.48 104.48 104.48 7.78 7.78
66 2 23.80 344.37 208.96 394.13 13.47 6.73
44 3 35.70 702.96 313.44 868.94 18.69 6.23
33 4 47.60 1178.40 417.92 1528.91 23.65 5.91
‘ 22 6 71.40 2667.80 626.88 3404.35 50.36 6.06
} 11 12 142.80 | 10665.28 12563.76 | 15474.61 73.69 6.14
132

[: Anzahl der beobachteten Serien = ——.

k
[I: Liange der einzelnen Serien in Monaten = #.
[II: Durchschnittliche Anzahl der Todesfille pro Sevie = /.
VI: Quadrat des Schwankungsmasses fiir Serien mit & Monaten = ¢,
V: Quadrat des Schwankungsmasses, theoretisch, bei Annahme der nicht zusammen-
hiingenden Serien = A, (1+4d;) = kA (1+d).
VI: Quadrat des Schwankungsmasses, theoretisch, bei Annahme der zusammenhingen-
den Serien = h,(14d;) = kh(1+kd).
VII: d ermittelt aus der Beobachtung (IV) bei Annahme der nicht zusammenhéingenden

2

Serien, d == _k%_ 1, nach Formel (39).
VIII: 4 ermittelt aus der Beobachtung (IV) bei Annahme der zusammenhiingenden
w B
Yot Sk 1 ;
Serien, d = (!cli— 1)7‘;, nach Formel (40).

Bemerkung: Je nachdem die Annahme der nicht zusammenhiingenden oder zusammenhin-
genden Serien richtig ist, muss Spalte VII oder VIII konstant sein (theoretisch).
Quelle: Vgl. Zahlentafel 4.
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Zahlentafel 10.

Statistik der weiblichen Selbstmorde in 8 deutschen Staaten
in den Jahren 1881 bis 1894.

Vgl. Seite 94,

[ T v [ vt | vir | viar [ I
Zahl Zahl der Jahre Summenzahlen Abweichung
der | van Tl swieshon Wnalte V.

Todes- | tatsich- } ﬂlt:]it:";l?lllg Glf‘[i':[‘:lllln" wn (1l n "]‘:l::lme" S “Lt:'lv
ille i [ ‘ o1 Spalte I | Spalte i ,
tille lich | 1) (1) palte IT [ Spalte IIT| Spalte IV Spalte VI | Spalte VII
: J “l '
0 9 3.0 5.0 9 3.5 8.0 — Hb i — 1.0
| 19 12.1 16.9 28 15.6 24,9 —124 | —3.1
9 17 20.9 20.3 45 36.5 45.2 — 856 | +02
3 20 24.2 18.7 65 60.7 63.9 — 4.3 | - 1.1
' 4 15 21.0 16.1 30 81.7 79.0 + L7 —1.0

h 11| 146 | 115 91 | 963 | 905 | 4+ 53 | —05

6 8 3.4 8.3 99 104.7 98.8 + 5.7 -0.2

7 2 4.2 H.6 101 1059 104.4 + 7.9 -+ 8.4

3 3 1.8 3.6 104 110.7 108.0 + 6.7 -+ 4.0

9 b 0.7 2.1 109 111.4 110.1 + 2.4 + 1.1

10 3 0.5 1.1 112 1119 111.2 — 0.1 — 0.8

11 -— 0.1 08 112 112.0 112.0 e —

I: Anzahl der Todesfille in einem Jahr') = »r.

II: Anzahl der Jahre, in denen effektiv » Todesfille aufgetreten = M.
III: Anzahl der Jahre mit » Todesfillen, theovetisch, bei Annahme der Homogeneitit

und Unabhiingigkeit = 112 Q),. _
IV: Anzahl der Jahre mit r Todesfillen, theoretisch, bei Annahme der Inhomogeneitit

von Serie zu Serie und der Unabhingigkeit = 112 @;.

”
YI: 11230,
r=0

1y Jahr = Beobachtungsjahr, auf ein Kalenderjahr entfallen entsprechend den 8 Staaten
8 Beobachtungsjahre.
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T

VIL: 1123 0),.
r=0

” '
VIII: > (112 @,—M,); Abweichung von Spalten VI und V.
r=0

4
IX: (112 Q,—M,); Abweichung von Spalten VII und V.
=0

Das Maximalglied ist in Spalten Il und IV durch Fettdruck hervorgehoben.

QQuelle: Allgemeines Statistisches Archiv. 4. Jahrgang, II. Hbd. 1896. Art. ,Der Selbst-
mord“, von G.v. Mayr, Seite 718. (Vgl. L. v. Bortkiewicz 1: Das Gesetz der

kleinen Zahlen, Seite 20.)

Durchschnittliche Anzahl der Todesfille in allen 8 Staaten zusammen 27.786,
pro Staat 3.473 = &,

In Schaumburg-Lippe . . . . . 1429
, Waldeck . ; i : . ’ : 2.214
» Litbeck . . ; " : ; : 2.571
, Reuss i, L. . . . . . . 2.643
. Lippe ’ : ; : : ; ; 2.857
, Schwarzburg-Rudolstads . . . y 5.143
» Mecklenburg-Strelitz : . . : 5.286

Schwarzburg-Sondershausen . : ; 5.643
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Zahlentafel 11.

Statistik der tddlichen Unfdlle bei 11 Berufsgenossenschaften
in den Jahren 1886 bis 1894.

Vgl. Seite 95.

1 | oo T m oy v VI | v vie | IX
Zuhl Zahl der Jahre Summenzahlen Abweichung
der | PO R i e e Bttt
i lich . i Spalte IT| Spal {
fiille . (20 (13) P palte I Sl)'lsltﬂ IV Spalte VI | Spalte VI

0 b 18 | .87 5 13 | 87 | —87 | —13

| 1 9 5.5 9.6 14 6.8 13.3 — 7.2 — 0.7

2 14 12.0 13.9 28 18.8 27.2 — 9.2 — 0.8
3 13 17.5 15.2 41 36.3 42.4 — 4.7 + 1.4
| 4 14 19.0 14.3 5b 55.3 56.7 + 0.3 4+ 1.7
5 16 | 166 | 123 71 719 | 690 [ +09 | —20
6 7 12.1 0.8 78 84.0 78.8 -+ 6.0 + 0.8
7 7 7.5 7.3 35 91.56 86.1 + 6.5 + 1.1
3 8 4.4 b1 93 95.9 91.2 + 2.9 — 1.8
9 2 2.1 3.3 95 98.0 094.5 + 3.0 — 0.5
10 1 0.9 2.0 96 98.9 96.5 + 2.9 + 0.5
11 1 0.1 1.2 97 99.0 97.7 + 2.0 -+ 0.7
12 1 - 0.7 98 99.0 08.4 + 1.0 + 0.4
13 — — 0.3 98 99.0 98.7 + 1.0 + 0.7
14 1 — 0.2 99 99.0 98.9 — — 0.1
15 — — 0.1 99 99.0 99.0 —_ —
l
I: Anzahl der Todesfille in einem Jahr') = .
II:* Anzahl der Jahre, in denen effektiv » Todesfille aufgetreten = I/ .
III: Anzahl der Jahre mit » Todesfillen, theoretisch, bei Annahme der Homogeneitiit
und Unabhingigkeit = 99 Q).
IV: Anzahl der Jahre mit » Todesfillen, theoretisch, bei Annahme der Inhomogeneitit

von Serie zu Serie und der Unabhiingigkeit 99 @,
-‘“——v_———————
9 Y Jahr == Beobachtungsjahr, entsprechend den 11 Genossenschaften entfallen auf ein
Kalenderjahr 11 Beobachtungsjahre.

11
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7
Y: NM,
y=0

r
VI: 9930,
=0
7' —_—
VIL: 993 Q..
—0

7
VIIT: >(99 Q,—M,); Abweichung von Spalten VI und V.
r=0

”
IX: (99 Q,—M,); Abweichung von Spalten VII und V.
y=0

Das Maximalglied ist in Spalten III und IV durch Fettdruck hervorgehoben.

Quelle: Statistisches Jahrbuch fiir das Deutsche Reich. (Vgl. L. v. Bortkiewicz 1: Das
Gesetz der kleinen Zahlen, Seite 22.)

Durchschnittliche Anzahl der Todesfille pro Jahr in allen Berufsgenossenschaften
zusammen 48, somit pro Genossenschaft = 4.36 = h.
Die Anzahl der Todesfille pro Jahr fir die Genossenschalten
Nr. 27 ist gleich 1.89 = Ay
12, , 256 = hy
. 14, 256 = Iy
, 40, 289 = Iy
» 20 » " 4.33 = /15
5 , o, 4.33 = hg
, 42, 456 = hy
. 41, ., 511 — hg
20 ., 5.89 = hg
23 ” n 6.22 = ,"IO
L 13, . 76T = Iy,



Zahlentafel 12,

Verlauf der Wahrscheinlichkeiten bei Inhomogeneitat und Chancenvermehrung.
Ygl. Seite 110, Tabelle Seite 83.

o “reem T

[ [ o [ w [ v [ VI | v
skl Mathematische Erwartung = » = 10
der Quadrat des Sehwankungs- o o
seltenen 1 masses = 10 g Quadrat des Schwankungsmasses = 35

Ereignisse PP ——— ) . s
Q, Q@ Q, P, Py P,

0 e — 0.003 0.007 0.0056 0.002

1 0.001 0.001 0.017 0.019 0.016 0.0056

2 0.002 0.002 0.042 0.034 0.031 0.010

3 0.008 0.008 0.070 0.049 0.047 0.016

+ 0.019 0.019 0.088 0.061 0.062 0.021

H 0.038 0.038 0.089 0.069 0.072 0.026

6 0.063 0.063 0.076 0.074 0.078 0.029

7 0.090 0.090 0.057 0.076 0.079 0.031

8 0.113 0.113 0.042 0.075 0.078 0.035

9 0.1256 0.125 0.034 0.071 0.073 0.041

10 0.125 0.125 0.033 0.066 0.067 0.050

11 0.114 0.114 0.037 0.060 0.060 0.060

12 0.095 0.095 0.043 0.053 0.053 0.069
13 0.073 0.073 0.048 0.047 0.046 0.07H
14 0.052 0.052 0.051 0.041 0.040 0.077
15 0.035 0.035 0.0561 0.03b 0.034 0.074
16 0.022 0.022 0.048 0.030 0.028 0.068
17 0.013 0.013 0.042 0.0256 0.024 0.061
18 0.007 0.007 0.035 0.021 0.020 0.052
) 0.004 0.004 0.028 0.017 0.016 0.043
20 0.002 0.002 0.021 0.014 0.013 0.035
21 0.001 0.001 0.015 0.012 0.011 0.028
22 0.010 0.009 0.009 0.022
23 0.007 0.007 0.007 0.017

24 0.00:4 0.006 0.006 0.013 i




I I IS e A% ¥, ] W VII
Mathematische Erwartung = 2 = 10
Anzahl
der adrat des Schwankungs-
seltonen Q"mlhtmgscsslw;ok e Quadrat des Schwankungsmassos = 35
Freignisse _ s L -
¢, Qs a, P, 7 P,
25 — — 0.003 0.005 0.005 0.010
26 — = 0.002 0.004 0.004 0.007
27 — — 0.001 0.003 0.003 0.006
28 o — 0.001 0.002 0.002 0.004
29 — — s 0.002 0.002 0.003
30 5 s 0.002 0.002 0.003
31 — — — 0.001 0.001 0.002
32 e — ~ 0.001 0.001 0.001
33 — = e 0.001 0.001 0.001
34 — — - 0.001 e 0.001
35 - - — — - 0.001
36 —_— — ~ 0.001
I: Anzahl der seltenen Kreignisse .
II: Wahrscheinlichkeiten ). nach Poisson Ak = 10, 6% = 10,
ITI: Wahrscheinlichkeiten ¢),* bei Inhomogeneitit mnmhalb der Serien ohne Chancen-
vermehrung & = 10, ¢? = 10.
[V: Wahrscheinlichkeiten (), bei Inhomogeneitiit von Serie zu Serie ohne Chaneen-
vermehrung. Annahme: 2 Serien mit h = 5, hy = 15, h = 10, ¢% = 85.
~ V: Wahrscheinlichkeiten P, bei homogener Chancenvermehrung /o — 10, d = 2.5,
o2
= 3b.
VI: W«Lhrschemhchkelten P* bei Chancenvermehrung und Inhomogeneitit innerhalb
der Serien. Annahme 2 homogene Teﬂsenen hy = 4, dy =1, hy = 6, dg = 3.5.
Daraus ist ~ = 10, % = 85.
VII: Wahrscheinlichkeiten P, bei Chancenvermehrung und Inhomogeneitit von Serie

zu Serie. Annahme: 2 Serientypen mit hy =8, d, = 1, hy = 12, dy = 2.833,
daraus ist A = 10, ¢% = 35.

Das Maximalglied ist in den Spalten II bis VII durch Fettdruck hervorgehoben.

Vgl. Fig. 4.
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Homogen und Inhomogeneitit
innerhalb der Serien.

o — @ — ® — ¢ — Inhomogeneitit von Serie zu Serje.

== e = . Chancenvermehrung.

------------

O=—0 —0 == Q —
/O—\

*Chancenvermehrung mit Inhomo-
geneitdt innerhalb der Serie.

Chancenvermehrung mit Inhomo-
geneitdt von Serie zu Serie.
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