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B. Wissenschaftliche Mitteilungen,

Approximation und Präzision in der

Versicberungsletire.
Von Dr. Werner Friedli, Bern.

In seinen gehaltvollen, erkenntnistheoretischen
Vorlesungen über Mathematik betonte Felix Klein den

Unterschied zwischen Präzisions- und Approximationsmathematik.

Der im Gebiete der Geometrie leicht
konstatierbare Unterschied von begrenzter und unbegrenzter
Genauigkeit findet sich immer wieder, wenn man irgendein

Gebiet der äussern Wahrnehmung oder der
praktischen Betätigung mit der abstrakten Mathematik
vergleicht 1). Er gilt namentlich auch für das numerische
"Rechnen.

Unter Präzisionsmathematik versteht Klein das

Rechnen mit absolut genauen Zahlen, unter
Approximationsmathematik das Rechnen mit Zahlen von begrenzter

Genauigkeit.

Durch die gesamte Naturforschung und die
mathematischen Anwendungsgebiete zieht sich das Bestreben,
die Approximationsmathematik durch die
Präzisionsmathematik zu ersetzen. Da dies nur die der Behandlung
unterliegenden Objekte, die Zahlengrössen betreffen
kann, so muss man deutlicher mit Klein sagen: Warum

') F. Klein, «Anwendung der Differential- und
Integralrechnung auf Geometrie, eine Revision der Prinzipien».
Vorlesung, ausgearbeitet von C. Müller, Neuer Abdruck, Leipzig 1907.

2
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dieses Bestreben, das Gegebene durch etwas Abstraktes

zu ersetzen? Einmal aus dem Bedürfnis heraus,

Gesetzmässigkeiten zu finden, zum andern doch wohl deswegen,

die fruchtbaren Methoden der Infinitesimalrechnung auf
alle Gebiete der Naturforschung anwenden zu können.

Eine Untersuchung der Erage, inwieweit diese

Methode unserer Wissenschaft gerechtfertigt ist, muss
daher von grosser Wichtigkeit sein. Die Approximationsmathematik

wird freilich durch die subtilen Methoden
und Inhalte der Präzisionsmathematik ersetzt. Die
Resultate aber sollen wiederum im Ausgangsgebiet
gedeutet werden, können nur der Approximation zugänglich

sein; denn unsere Sinne vermitteln nur bis zu einer

gewissen begrenzten Genauigkeit, sowohl aufnehmend
als abgebend.

Es liegt nun jedem speziellen Anwendungsgebiete
ob, den Vergleich zwischen den Methoden und Resultaten
der Präzision und der Approximation zu ziehen. E. Klein
kritisiert es lebhaft, dass sich «die Theoretiker zu einseitig
mit der Präzisionsmathematik beschäftigen, während die

Praktiker die Approximationsmathematik gebrauchen,
ohne mit der Präzisionsmathematik Eühlung zu haben».

Wohl in keinem Gebiete der angewandten Mathematik

tritt der Unterschied zwischen der sogenannten

Approximations- und Präzisionsmathematik schroffer

zutage als in der Versicherungsmathematik. Auf der

einen Seite verlangt das rasch pulsierende wirtschaftliche

Leben eine möglichst einfache und kurze Erfassung
der Aufgaben der Lebensversicherung durch die

Versicherungsmathematiker, auf der andern Seite bieten
die tieferen Probleme, die Grundprobleme dieser Wissenschaft,

bedeutende mathematische Schwierigkeiten, aber
auch Anlass zu theoretischen Untersuchungen mannig-
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fachster Art. Aber während der Mathematiker im eigentlichen

Sinne sich mit schönen Formeln und interessanten

Beziehungen begnügt, darin aufgeht, darf der

Versicherungsmathematiker nicht hei den Formeln stehen bleiben,
sondern er muss stets zur Approximation, zu Zahlwerten
mit beschränkter Genauigkeit zurückkehren.

Und da ist es nun wichtig, dass die mit den Methoden
der Präzision gefundenen Resultate mit den auf dem
Boden der Approximation gefundenen Resultaten
genügend harmonieren. Bevor wir näher hierauf eintreten,
ist es vielleicht vorteilhaft, durch ein Bild die
obwaltenden Verhältnisse kurz in Erinnerung zu rufen:

Stellt man sich eine an einem breiten Flusse gelegene
Grosstadt vor, die mit mächtigen (langen und breiten)
Brücken mit den Aussenquartieren verbunden sei, wie
dies in kleinem Rahmen in Bern, schon ausgeprägter in
Basel der Fall ist. Begeben wir uns einen Moment in
Gedanken an den schönen Rheinstrand und stellen wir
uns vor, es sei 12 Uhr mittags auf der mittleren Rhein-
briicke.

Wir schauen nun zu, wie allmählich die Fussgänger
auf der Brücke sich vermehren und der aus den

Geschäften, Fabriken und Schulen herausflutende Menschenstrom

denjenigen des klaren Rheinwassers kreuzt. Wenn
wir lange genug aushalten, werden wir gewahr, wie die

Personenzahl allmählich anwächst, zu einem Maximum
anschwillt und langsam wieder abflaut. Werden die

Vordersten als die Leichtesten, vielleicht auch
Leichtsinnigsten und infolgedessen Leichtfüssigsten angesehen,
wobei das durchschnittliche Gewicht pro Person nach
hinten nach einem mathematischen Gesetz zunehme,

so ist es möglich, in einem beliebigen Moment die

Belastung der Brücke durch die Personen anzugeben. Es ist
dies schon eine Aufgabe, wie sie mutatis mutandis der
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Versicherungsmathematiker in seinem Gebiete zu lösen

hat. Statt der Brücke haben wir uns den Versicherungsträger

zu denken, statt der um 12 XJhr heimkehrenden

Pussgänger die ins Leben eintretenden Neugeborenen oder
die in die Versicherungsgesellschaft eintretenden
Versicherten, statt des Gewichtes den Einfluss der

Verzinsung, die die Belastung um so mehr verringert, je
weiter die Versicherten rechnungsmässig vom Absehluss-

datum der Versicherung in die Zukunft marschiert sind.
Kehren wir zu unserem Bild zurück und beschränken uns

nun auf die Häufigkeit der heimkehrenden Personen an
einer gewissen Stelle der Brücke, so kann diese in einem

gegebenen Zeitmoment durch eine Häufigkeitskurve
dargestellt werden (Fig. 1).

Die auftretende Häufigkeitskurve ist ihrem Wesen
nach gebrochen, unstetig. Sie hängt ab von der Jahreszeit

und allen möglichen Einflüssen. Bringt z. B. die am
andern Ufer des Flusses beim Bathaus befindliche
Nationalzeitung eine Sensationsnachricht oder ein
humoristisches politisches Plakat, so wird sich dies bei der
Kurve schon etwas geltend machen. Statt allmählich,
schwillt die Kurve auf einmal an, ebenso wenn ein

Strassenvorfall das allmähliche Abflauen hindert (Fig. 2).
Als Mittel aus allen mittäglichen Beobachtungen eines

Jahres wird sich aber ungefähr ein Verlauf ergeben, wie

er in Fig. 1 gezeichnet ist.
Hierbei haben wir schon beträchtlich «abstrahierte.

Wir haben für unser Beispiel eine Brücke ausgewählt,
so dass der Verlauf der Ereignisse in einer Dimension vor
sich geht. Wir setzen weiter stillschweigend voraus,
dass uns der Staat auch zu einem einfachen Vorgang
verhilft, indem er verordnet, dass auf dem Trottoir rechts

marschiert werden muss, so dass die Bewegung nur in
einer Richtung, von der Stadt her auf dem einen Trottoir,
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gegen die Stadt hin auf dem andern vor sich geht. Wir
führen nun eine weitere Abstraktion durch, welche das

Problem erst zu einem mathematischen macht, indem
wir annehmen, die gezeichnete Häufigkeitskurve sei eine

stetige (Fig. 3).

Dann haben wir das erreicht, was Felix Klein als

«idealisiertes Gedankending» bezeichnet. Warum gehen

wir so weit Weil es nun möglich ist, mit den Hilfsmitteln
der Mathematik vorzugehen und infolgedessen
allgemeine Schlüsse zu ziehen.

Was vorher ein Einzelverlauf, eine zufällige
Zickzacklinie war, ist nun die unter dem Namen Gaussische

Fehlerkurve bekannte Linie geworden, deren passend
transformierte Gleichung heisst:

f (x) — a e—(x-b)'c\

Mit ihr liesse sich nun die eingangs gestellte Belastungsaufgabe

lösen. Die Konstanten a, b und c sind sogenannte
Parameter. Mit ihnen kann man die Pläufigkeitskurve
eines einzelnen Tages berechnen, sie hangen von der
Jahreszeit und allerlei zusammenhängenden Einflüssen
(Markt auf dem Bathausplatz, Ferien und daherige
Abwesenheit vieler Leute, Lohnauszahlung am Monatsende

etc. etc.) ab. Sie müssen für jeden Tag neu berechnet

werden, damit die Glockenkurve sich dem beobachteten

unstetigen Zickzackzug möglichst anpasst. Das ganze
wäre aber eine einfache Spielerei, wenn nun nicht bei
einer genügend grossen Zahl von Beobachtungen die

Ergebnisse der zu lösenden Aufgaben mit Hilfe der
stetigen wie der unstetigen Linie praktisch gesprochen die
nämlichen wären.

In dieser Übereinstimmung liegt nun aber das

Fruchtbare der Methode. Von ihr macht die mathema-
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tische Theorie der Lebensversicherung ausgiebigen
Gebrauch, indem sie sich der kontinuierlichen Barwerte
bedient, um gewisse Beziehungen abzuleiten.

Praktisch erfolgt immer eine Überlagerung vieler

/ (a;)-Kurven (Fig. 4), denn es treten immer neue

Ordnungen auf die Brücke (Neueintretende), und die ganze
Erscheinung ist in unaufhörlichem Fluss begriffen. Aber
es lässt sich eben durch Zerlegung in jene Elementar-

gesamtheiten der ganze Verlauf mathematisch erfassen (in
der Lebensversicherung: Neueintretende, für jede Schicht
eine l (a:)-Kurve). Diese Betrachtungsweise setzt
allerdings voraus, dass wir die Personen einteilen können nach

dem Zeitpunkte, in welchem sie ihre Arbeitsstätte bzw.
ihre Wohnung verliessen, um die Brücke zu passieren.
Die erste Gesamtheit umfasst alle Personen, welche um
12 Uhr sich auf die Beine machten, die zweite Gesamtheit

z. B. alle diejenigen, welche um 12% Uhr
abmarschierten usw. Mit dem gewöhnlichen Auge betrachtet,
erscheinen alle diese Personen als eine Gesamtheit. Wenn
wir sie aber in der genannten Weise in Elementargesamtheiten

einteilen wollen, so muss jede Person im

Zeitpunkt des Eintrittes auf der Brücke eine Bescheinigung

vorweisen, dass sie in dem und dem Zeitpunkt
aufgebrochen sei. In der nämlichen Weise pflegt man
auch jedem Bürger einen Geburtsschein auszuhändigen,
damit er sich immer, wenn es sich um die Einreihung
in eine Gesamtheit handelt (Schuleintritt und -austritt,
Rekrutenprüfung, Abschluss einer Lebensversicherung
usw., ja sogar beim Tod), ausweisen kann, in welchem

Zeitpunkt er sich für die irdische Lebensreise auf den

Weg gemacht hat
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l=n t=n

Die Gesamtkurve l[x_t] + t ^f ([®—'] + t)

1=0 t=o

führt zur Gesamtbelastung

^ I f (x) p (®) da-.

Diese Betrachtungsweise führt zwangslos weiter auf
das Studium des Beharrungszustandes bei Versicheruntjs-
kassen, seine Bedingungen und die für ihn charakteristischen

Eigenschaften, welche beispielsweise für Kassen

mit Durchschnittsprämien alle aus den eleganten
Integralgleichungen von Prof. Moser (Verhandlungsberichte
der Schweiz, mathematischen Gesellschaft, 1921)
hervorgehen. Gerade das Studium des Beharrungszustandes
ist ein Problem, das fast ausschliesslich dem Gebiete
der Präzisionsmathematik angehört und ohne sie kaum
befriedigend gelöst werden kann.

Während man eine Zeitlang alle Probleme der

Versicherungsmathematik nach der kontinuierlichen Methode
behandeln zu müssen glaubte und nach der Berechtigung
der analytischen Methoden kaum fragte, hat sich in
neuester Zeit die umgekehrte Erscheinung gezeigt, indem
viele Autoren die kontinuierliche Methode verpönten
(weil die meisten auftretenden Funktionen ihrer Natur
nach diskontinuierlich seien) und die mit der
kontinuierlichen Methode erhaltenen Resultate anzweifelten.

Damit geht man entschieden zu weit; es heisst dies

das Kind mit dem Bade ausschütten! Es gibt gewisse
Probleme, denen am besten mit der kontinuierlichen
Methode beizukommen ist. Gelingt es, für gewisse

typische Fälle zu zeigen, class die mit der kontinuierlichen

Methode gefundenen Resultate mit denen der

gewöhnlichen Summenmethode übereinstimmen, oder
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«praktisch übereinstimmen», so ist die Berechtigung
dieses Verfahrens dargelegt. Auch hier gilt es, den
goldenen Mittelweg zu wählen und von jeder Seite des

Weges die guten Früchte zu pflücken.
Schon jede Ausgleichung stellt einen Schritt vom

Diskontinuierlichen zum Kontinuierlichen dar. Hier
trägt kein Versicherungsmathematiker Bedenken, diese

Methode anzuwenden, weil eben der -praktische Zweck
die Mittel heiligt. Und doch gibt auch nur die

unausgeglichene Wertereihe das wahre Bild eines Vorganges J),

die ausgeglichene Wertereihe oder Kurve stellt bereits
einen idealisierten Vorgang dar. Und wie klein ist dann
noch der Schritt von der ausgeglichenen Kurve zur
differenzierbaren Punktion, wenn auch das innere Wesen

von der allgemeinen Beobachtungsreihe himmelweit
entfernt ist.

Eine interessante Parallele ergibt sich, wenn wir
gewisse Probleme aus verschiedenen Disziplinen miteinander

vergleichen. Bessel behandelt in seinen Abhandlungen

das Problem, mit welcher Geschwindigkeit ein

Meteorstein auf der Erde aufprallt. Die Lösung stellt
sich mit Hilfe des sogenannten Integrallogarithmus dar,

wenn, wie es Bessel tut, unter andern folgende
Voraussetzungen gemacht werden:

1. Die fallenden Meteorsteine sind Kugeln von
bestimmter Grösse.

2. Die Dichtigkeit der Erdatmosphäre nimmt nach

wo z die Höhe über Meer, <d0 und h Parameter sind, nach

oben ab.

') Worauf z. B. Loeivy aufmerksam macht (Manes
Versicherungslexikon).
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Auf diese Weise erhältBessel eine auswertbare Formel.
Führt nun Bessel diese Funktion (Integrallogarithmus)
erst ein, wo es nötig ist, um die Erscheinung zu erklären
oder gestaltet er seine Voraussetzungen so, dass die

Formel auf jene Funktion führt? Die Nachprüfung
wird ergeben, dass das letztere der Fall ist.

Auf die nämliche Funktion führt die Aufgabe der
mittleren Lebenserwartung, wenn folgende Voraussetzungen

getroffen werden:

1. Jede der lx Personen ist gleichwertig mit der

andern und bleibt in jedem Augenblick t gleichwertig
mit jeder andernPerson des Alters x •-[-1 (Kugelcharakter).

2. Die Abnahme der Personen geschieht nach dem

Gompertzschen Gesetz

l3 kf
bzw. bei passender Wahl der Konstanten

Z

,"s=/'oe' •

In beiden Fällen wird der Integrallogarithmus,
dieses «idealisierte Gedankending» der reinen Mathematik,

in die Aufgabe durch die nämlichen
Voraussetzungen hineingetragen. In beiden Fällen leitet uns
das Bestreben, durch möglichst einfache Voraussetzungen
praktische und elegante Formeln zu erhalten.

In diesem Bestreben liegt das Wesen der
Präzisionsmathematik begründet. Damit erkennt man auch die

Gefahren dieser Disziplin! Das Streben nach Einfachheit
und Eleganz geschieht leicht auf Kosten der Wahrheit,
d. h. der «Wirklichkeit».

* *
*
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Die nach der gewöhnlichen oder «Approximationsmethode»

gewonnenen Zahlenergebnisse sind stets mit
gewissen Fehlern behaftet, und es ist wichtig, die

«Fehlergrenzen» kennen zu lernen. Damit erhält man gleichzeitig

Anhaltspunkte über die Schwankungsmöglichkeiten
und verfällt nicht in den Fehler, die erhaltenen Resultate
als absolute Grössen zu betrachten.

Schon die Tatsache, dass man es mit Wahrschein-

lichkeitsgrössen zu tun hat, die sich meistens in der Form
der mathematischen Hoffnung darstellen, bedingt
Fehlergrenzen. Dann aber tritt noch die Tatsache hinzu, dass

die Wahrscheinlichkeiten nicht eigentliche oder
«Wahrscheinlichkeiten a priori», sondern Häufigkeiten oder
«Wahrscheinlichkeiten a posteriori» darstellen, die von
einem Bestand auf einen andern, von einer friihern
Zeitperiode auf eine spätere übertragen werden, womit aber
wiederum eine grosse Fehlerquelle in die Rechnung
eintritt. Bei den Hilfsgrössen selber tritt noch die bei allen
numerischen Rechnungen auftretende natürliche Fehlergrenze

hinzu.

Wir sehen in diesem Zusammenhang davon ab, dass

schon die Zahlen der Personen unter Risiko bei Berechnung

der qx ungenau sind und daher die
Sterbenswahrscheinlichkeiten nur beschränkte Genauigkeit besitzen.

Diese qx werden allerdings dann ausgeglichen, aber die

wahren Werte bleiben trotzdem jene unausgeglichenen
Zahlen. Unsere Absicht geht dahin, den Grad der

Genauigkeit der einzelnen Grössen zu berechnen, gestützt auf
den Umstand, dass die Zahlen lx nur auf Einheiten
genau angegeben sind und daher eine Fehlergrenze von + 0,5

vorliegt.
Es ergeben sich alsdann auf einfache Weise für die

Grössen Dx, Nx, ac, Ax und Px Ausdrücke für die

Fehlergrenzen, welche wir ableiten, indem wir uns auf die
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wertvolle Schrift des unlängst verstorbenen Zürcher
Mathematikers Prof. Dr. C. Brandenberger «Das

abgekürzte Rechnen» x) stützen.
Bei sukzessiver Anwendung der Regeln der

Abkürzungsrechnung erhalten wir für die Kommutations-
zahlen und Barwerte Fehlergrenzen, wie sie im
Anhang zum vorliegenden Referat abgeleitet und für
ein Beispiel (Tafel MWI, 3 /> %) numerisch berechnet
sind. Beispielsweise wird der Ausdruck für die Fehlergrenze

des Rentenbarwertes a^..:

E | E

® l
X

wobei ''"a 7?(a) den ganzzahligen Bestandteil der Grösse

a bedeutet. Wir halten das Resultat fest, dass die letzte
verlässliche Dezimalstelle beim Barwert a^ die 3. ist
und dass die Berechnung und Tabulierung von mehr als
4 Dezimalstellen unnütze Arbeit und Kosten verursacht.

Es ist allerdings zu erwarten, dass bei der Berechnung

der Zahlen Nx durch Summation sich positive und

negative Fehler gegenseitig kompensieren. Doch
entzieht es sich unserer Feststellung a priori, wieweit dies

der Fall ist. Wenn wir die Fehlergrenze aufzustellen haben,
dürfen wir darauf nicht abstellen, sondern müssen ein

Maximum der Fehler ins Auge fassen. Die genaue
Nachprüfung zeigt übrigens, dass auch unter der genannten
Voraussetzung die GrössenOrdnung des Fehlers bei a,x

nicht berührt wird. Wir dürfen also auch unter dieser

Voraussetzung an den im Anhang mitgeteilten
Fehlergrenzen festhalten. Wir können zum nämlichen Ergebnis
auch durch andere Überlegungen gelangen, wollen hier

') 2. Auflage, herausgegeben von Prof. Dr. Fueter, (1922),
Zürich.
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aber nicht näher darauf eintreten. Schon das Anbringen
des Verwaltungskostenzuschlages vergröbert übrigens
unsern Rentenbarwert so sehr, dass es nicht mehr darauf
ankommt, ob 4 oder 5 Dezimalstellen genau berechnet
sind. Die praktisch verlangte äusserste Genauigkeit für
Rentenbarwerte dürften denn auch 4 Dezimalstellen sein.

Es hat keinen Sinn, die Grösse ax auf mehr als 4 Dezimalstellen

genau zu berechnen, sonst gibt man sich nur einer

Selbsttäuschung hin x).

Wenn man sich alle Abiveichungen vergegenwärtigt,
welche im wirklichen Verlauf der versicherten Ereignisse

möglich sind, so muss man auch hier wieder erkennen,
dass man nicht allzu ängstlich an den gewonnenen Zahlen
kleben und ihnen nicht eine absolute Bedeutung
beimessen darf. Wenn irgend möglich, sollte immer der
Schwankungsbereich festgestellt werden. Wir sind
überzeugt, dass die ganze Arbeit der Versicherungsmathematiker

damit in ein deutlicheres Licht gerückt würde.

* **

Was von den Einzelwerten gilt, gilt auch von den

Gesamtberechnungen.

Bei der Aufstellung vollständiger versicherungstechnischer

Bilanzen bei Versicherungsgesellschaften und

kleineren Kassen wird namentlich stets folgende Frage

') Nach dieser Feststellung richten sich dann auch alle

abgeleiteten Grössen, so z. B. Ein auf 4 Stellen genaues
ajj"' stellt unter sotanen Verhältnissen den höchsten Genauigkeitsgrad

dar. Eine Näherungsformel, welche o^"' auf so viele Stellen

genau gibt, muss als «praktisch vollkommen genau» bezeichnet
werden. Vom präzisionsmathematischen Standpunkt aus bleibt
das so bestimmte o^'" trotzdem ein Näherungswert, weil es auf
einer Näherungsformel beruht und nicht das idealisierte
Gedankending genau widergibt.



— 30 —

wichtig bleiben: Wie gross wird die Abweichung vom
berechneten Resultat, wenn die verwendeten Rechnungsannahmen

(Zinsfuss, Verwaltungskosten, Sterbens-, In-
validitäts-, Heiratswahrscheinlichkeit u. a.) in der
Praxis Abweichungen in positiver oder negativer Richtung

zeigen? Jede Bilanz hat so ihre Fehlergrenzen,
jedes Deckungskapital kann zu gross oder zu klein
berechnet sein. Dass die wahrscheinlichen Fehlergrenzen
des Deckungskapitals eine sehr grosse Rolle spielen,
auch wenn man sie vielleicht nicht als solche definiert,
geht daraus hervor, dass man neben dem Deckungskapital

Sicherheitsfonds zurücklegt, stille Reserven
ermittelt usw. (Interessant ist die Tatsache, dass die
Gewinnreserve bald vom Standpunkt der obern Fehlergrenze,

bald von demjenigen der untorn Fehlergrenze
[Schwankungsfonds | aus betrachtet wird.) Wie wertvoll
wäre es doch, wenn man bei jeder technischen Bilanz
die positive und negative Fehlergrenze des Deckungskapitals

nach einfachen Grundsätzen berechnen könnte!
Es ist zuzugebon, dass die Aufgabe in dieserAllgemeinheit
sehr schwer ist und dass die Fehlergrenzen in gewissen
Fällen auch wieder überschritten werden können, aber

unter gewissen einschränkenden Bedingungen muss das

Problem stets lösbar sein. Es ist hier der Ort, auf diese

bilanzmässigen Fehlergrenzen (wenn der Ausdruck
erlaubt ist) einzutreten.

Die Berechnung des Gewinnbarwertes stellt sich
als eine Bestimmung der untern Fehlergrenze der
Tarifprämie, die Berechnung der Gewinnreserve als

Bestimmung der untern Fehlergrenze des Deckungskapitals
dar. Sie ist in diesem Sinne eine nach allgemeinen
Prinzipien notwendige Ergänzung der Berechnung der
mathematischen Prämien und Reserven. Auch eine obere

Fehlergrenze sollte stets berechnet werden. Diese wäre



— 81 —

ebenfalls nicht ohne praktischen Nutzen: sie ergäbe das

Mass für die Höhe der sogenannten Sicherheitsrücklage

(Gründungsfonds bei neuen Unternehmungen etc.).
Man hätte dann nicht das Resultat:

Das Deckungskapital ist V, sondern man wüsste

V-ftt£V^V + f0.

Auf die relativ ruhige wirtschaftliche Entwicklung

in einer Zeitperiode, als die Theorie der

Lebensversicherung einen sehr hohen Stand erreicht hatte,
ist es zurückzuführen, wenn die Versicherungsmathe-
matiker auf ihre Zahlen wie auf etwas Feststehendes

bauten und bei den grossen (namentlich deutschen)
Gesellschaften sogar die möglichst genau ermittelte untere
Fehlergrenze technisch bis aufs äusserste ausnützten,
zur Aufstellung von fein ausgedachten Dividendensystemen.

Dass man angesichts der fortschreitenden
Entwicklung, die diesen Massnahmen recht zu geben
schien, die obere Fehlergrenze (ungünstige Abweichungen

von den Voraussetzungen) gänzlich ausser acht liess,

wäre an sich nicht so schlimm gewesen, wenn man nicht
die relativ grosse untere Fehlergrenze zahlenmässig
schwarz auf weiss verwendet hätte in den so berühmten,

man möchte fast sagen berüchtigten Nettokostena-uf-

stellungen, um den Abschluss einer Lebensversicherung
als Geldgeschäft in ein recht günstiges Licht zu rücken
und im Konkurrenzkampf zu siegen. Wenn die Auf-
sichtsäinter von jeher diesen Aufstellungen grosses
Misstrauen entgegenbrachten, so war diese Haltung mehr als

gerechtfertigt, denn nicht nur bei der Bemessung der

Prämien und Deckungskapitalien, sondern viel mehr
noch bei der Beurteilung der Höhe der künftigen Getvinn-

anteile der Versicherten hat man zu beachten, dass es
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sich um eine Operation auf lange Dauer handelt und dass

die wirklichen Ergebnisse sich durch Mischung aus
mehreren tmabhängigen Paktoren ergeben.

Diese schlimmen Erfahrungen, welche erst heute

so recht jene Eriedensperiode mit dem hartnäckigen
Konkurrenzkampf charakterisieren, sollte man sich

unseres Erachtens heute zunutze machen. Man sollte
wieder einsehen, dass alle diese schönen Berechnungen
der Versicherungsmathematiker Schätzungen sind, die

an gewisse Voraussetzungen gebunden sind, welche
ihrerseits eng mit der allgemeinen Wirtschaft verknüpft
sind. Man sollte sich immer der Fehlergrenzen bewusst

bleiben und auch beim stärksten Konkurrenzkampf
diesen Gesichtspunkt nicht ausser acht lassen.

Was von den Lebensversicherungsgesellschaften
gesagt

' wurde, gilt mutatis mutandis von all den vielen
Sterbekassen, Pensionskassen u. dgl. Hier ist die Situation

insofern eine andere, als der Regulator der Gewinnanteile

fehlt. Während bei den privaten Versicherungsgesellschaften

durch Wahl eines niedrigen technischen
Zinsfusses eine grosse untere Fehlergrenze geschaffen

wird, die zu ansehnlichen Gewinnanteilen führen kann,
setzen diese kleineren Gebilde hei ihren Grundlagen den

technischen Zinsfuss im allgemeinen höher; dafür
gewinnt bei ihnen logischerweise die obere Fehlergrenze

grössere Bedeutung; statt von künftigen Gewinnanteilen

zu sprechen, sehen denn auch vornünftige Statuten
solcher Kassen vor, dass im Bedarfsfall die Prämien

(Durchschnittsprämie) erhöht werden können. Dass nicht
nur die Wahl des Zinsfusses, sondern auch die der
benötigten Ausscheideordnungen die Fehlergrenzen
bedingt, liegt klar auf der Hand. Hier müsste ein tarif-
mässiges Tabellenwerk gute Dienste leisten, dem gewisse,
nach Gefahrenklassen abgestufte Sterbe- und Invalidi-
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tätstafeln zugrunde liegen würden; diese Abstufung
könnte vorläufig lediglich nach mathematischen
Gesichtspunkten geschehen. Bei Aufstellung einer technischen

Bilanz würde man stets nach zwei Gefahrenklassen

rechnen: der eigentlichen technischen Grundlage und

einer ungünstigeren zweiten Gefahrenklasse. Damit
wäre zahlenmässig eine Fehlergrenze festgelegt, welche

natürlich wiederum nicht eindeutig, aber doch lehrreich
wäre.

* *
*

Eine grosse Bolle spielen in der Versicherungsmathematik

die Näherungsformeln. Vor allem hat die

Eulersche Summenformel eine grosse Bedeutung
erlangt; es ist dies eine semikonvergente unendliche Reihe,
welche zwischen dem eine Grösse darstellenden Integral
und einer Summe eine Beziehung schafft, also eigentlich
Grössen der Präzision mit solchen der Approximation
verbindet und aus diesem Grunde eine nicht zu
unterschätzende Bedeutung besitzt. Leider wird sie meistens

wie die andern Näherungsformeln ohne einen Ausdruck
für die Grenze der Annäherung (Rest) benützt.

Louis Maingie beschäftigt sich in seinem Buche
«La theorie de l'interet et ses applications» (Bruxelles
1911) ebenfalls mit dem Barwert der unterjährigen
Zeitrente und findet dafür durch direkte Anwendung der

Eulerschen Formel den Ausdruck

«- + -V- (1 - »"> - c - »> '•
2m 12 m

ohne sich jedoch auf eine Untersuchung des Restes
einzulassen.

Maingie knüpft an seine Formel die folgende
Bemerkung: «Wenn keine grosse Genauigkeit verlangt

3
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II.

ist, so kann man das letzte Glied vernachlässigen. Diese
Formel ist bequem; sie gibt

o^=o- + °'26(1-®")
<$ a-+ 0,875 (1 —O
«!r =«7,+ 0,458 (1-»")
V =«r.+ %(!-»") "

An diese Bemerkung anknüpfend, wollen wir zeigen,
dass die Formel

0^=0-, +^ (!_«»)" " l
1 2 m

III.
m— 1

a- (1 + n— i)a \ i q m '

in gewissen Fällen nicht nur zu ausreichend genauen,
sondern praktisch allein zu richtigen Resultaten führt.

Stellt der Ausdruck a,"'1 den Barwert einer
periodischen Einzahlung von jährlich 1 dar, die in m
unterjährigen Raten von ^ entrichtet wird und für welche

der Zins am Ende des Jahres zum Kapital geschlagen
wird, so berechnet die Sparkasse den Ratenzins linear.
Beschränken wir uns auf den Zeitraum eines Jahres, so

wachsen die m Raten mit ihren Zinsen auf den Endwert

an
Im) m—1

s-1 1 + — %.
1 2 m

Nun ersieht man sofort, dass

("') ('") /TTT \
an I — S1

| an |' (III a*)

welche Formel mit III übereinstimmt. Unter der
gemachten Voraussetzung über die Ratenzinsen ist dies
die genaue Formel.
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Diese Feststellung zeigt, dass auch eine genaue
Formel zu unrichtigen Schlussresultaten führt, wenn
gewisse praktische Bedingungen bei ihrer Aufstellung
vernachlässigt werden. Ein schlagendes Beispiel
erwähnt Cantor in seiner politischen Arithmetik (2.

Auflage, Leipzig 1908, Seite 41). Unter der Voraussetzung,
dass Sparkassen einen gewissen Mindestbetrag bedingen,
meistens 10 Mk., der erreicht sein muss, bevor
Zinsenvergütung stattfindet, stellt er den Endwert eines Kapitals

demjenigen gegenüber, der sich ohne jede Bedingung
ergäbe. Die Rechnung wird an einem recht aktuellen

Beispiel durchgeführt:

Als 1886 das 500jährige Stiftungsfest der Universität

Heidelberg begangen wurde, legte man Mk. 10 in
die dortige Sparkasse ein, welche bis zum 1000jährigen
Stiftungsfesto unangetastet bleiben, dann mit ihrem
ganzen Zuwachse den Universitätsbehörden zur
Verfügung gestellt werden sollen.

Gantor berechnet den Endwert des Kapitals auf den

genannten Zeitpunkt beim Zinsfuss 3 % auf Mark
14,975,273. 80. Bei bedingungslosem Zinseszins, d. h.

nach der allgemeinen Aufzinsungsformel dagegen ergäbe
sich der Endwert Mk. 26,218,778, der nahezu doppelt
so gross ist.

Es ist dies ein deutliches Beispiel dafür, dass in vielen
Fällen die Formeln der Präzision — denn um eine solche

handelt es sich bei bedingungsloser Anwendung der

Formel K k • r" — direkt zu falschen Ergebnissen
führen. Vor kritikloser Anwendung dieser Formel muss

man sich somit ebensosehr hüten wie vor unbedingter
Anwendung der kontinuierlichen Methode und der

Arbeitsweise der Präzisionsmathematik in der Versicherungslehre.
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Welches ist nun aber die Rolle dieser letzteren

Die Antwort lautet, dass es gewisse Aufgaben gibt,
die ohne die genauen Methoden kaum gelöst werden
können. Ferner ergibt sich mit ihrer Anwendung vielfach

eine gewisse Eleganz und Kürze der Darstellung,
die der gewöhnlichen Methode fehlt. Als frappantes
Beispiel, zu welchen praktisch wichtigen Resultaten sie

führt, sei die Ersetzung ungleicher Alter durch gleiche
bei Anwendung des Makehanischen Gesetzes erwähnt,
eine Methode, von der jeder Versicherungsmathematiker
mit Vorteil Gebrauch macht und die der Franzose

Quinquet durch Einführung hyperbolischer Funktionen
noch mehr auf den Boden der Präzision zu stellen
versucht hat.

Die Vorteile der Präzisionsmethode sind die streng
mathematische Behandlungsweise der Probleme und die

daherige Folgerungsmöglichkeit und Verallgemeinerung.
Gleichzeitig wirkt damit die Versicherungsmathematik
befruchtend auf die reine Mathematik.

Die Nachteile der Präzisionsmethode beruhen in der

Möglichkeit zu Trugschlüssen, wie wir sie oben zu
charakterisieren versucht haben, und in gewissen Fällen in einer

Kompliziertheit der Ausdrücke, welche die praktische
Deutung erschwert.

Dass es gewisse Beispiele gibt, welche nur auf dem
Boden der Präzision gelöst werden können, beweist die
alte Aufgabe der Zinsfussvariation. Die Franzosen

nennen sie: «Le probleme du taux». Welchen Einfluss
hat eine Änderung des Zinsfusses auf die Barwerte der

Lebensversicherung und wie kann man leicht diese

Barwerte zu einem neuen Zinsfuss ermitteln, unter
Umgehung der Kommutationszahlen, wenn sie bereits für
einen oder mehrere Zinsfüsse gerechnet sind Diese
Aufgabe hat schon viele Köpfe beschäftigt.
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Eine einwandfreie Lösung kennt man heute noch
nicht. Waruni? Man hat vielfach das der
Präzisionsmathematik angehörende feine Problem mit den Methoden

der Approximation zu lösen versucht. Immerhin
muss zugegeben werden, dass die Franzosen und namentlich

die holländischen Aktuare in ihrer Zeitschrift
«Archief voor de Arerzekerings-Wetenschap» eine ganze
Anzahl wertvoller Arbeiten über diesen Gegenstand
publiziert haben, wie sie überhaupt für alle theoretischen
Fragen der Lebensversicherung als klassisches Land dieser
Wissenschaft noch heute grosses Interesse an den Tag
legen.

Trotz aller Versicherungswissenschaft gehen auch
heute noch Gesellschaften zugrunde. Man könnte daher

fragen, was da alle Theorie und Wissenschaft genützt
habe.

Das wäre ein voreiliger Schluss. Stürzen nicht auch
heute noch, trotz aller Ingenieurkunst, Brücken aus
Stein und Metall zusammen (Erdbeben).... Gibt es

nicht auch heute noch, trotz aller Seefahrerkunst, grosse
Schiffsunglücke, kann nicht ein ungeheurer Orkan die

grössten Schiffe gefährden Und hat man etwa deswegen,

am Enderfolg aller jahrhundertelangen Bestrebungen
verzweifelnd, die Bemühungen um Verbesserung der

Schiffe, und namentlich der Schiffsinstrumente,
aufgegeben

Nein, seien auch wir mutige Schiffer, genaue
Schiffsingenieure, die auf die Fortschritte der Wissenschaft
vertrauen und einen Misserfolg als Ansporn zu erneuter

Anstrengung und Wegweiser für neue Wege auffassen.
Halten wir die Fahne des Fortschrittes und der
wissenschaftlichen Entwicklung hoch! Sie weist uns auch
heute den Weg.
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Griisse:

Übersicht I.
Fehlergrenzen.

Ausdruck fUr die Fehlergrenze '):
a — 0,5

ß 0,0000 0000 5 bzw. beliebig klein

7x vx a

ü * 8)

E

e*r.y'
') Der Index E bedeutet den ganzzahligen Wert der

betreffenden Grösse. Ist z. B. a 15,732, so soll % den Betraf
15 haben. * » °

J) Es bedeutet a> Höohstalter in dem Sinne, dass von
x 0) an praktisch lx— 0, z. B. bei Tafel M & W I : o> 90,
bei A F : co — 104.

3) D. h. hinsichtlich der Grössenordnung müssen e' und 'Q

das nämliche Resultat ergeben.
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Übersicht II.
Beispiel.

Tafel M W I, 3'/»°/o.

Fehlergrenzen von:

Alter

X a*

w (<U (O (O fo*)

'20 0,25 6,7 2,4 • 10
—(i

8 • 10 5,7 1Ö7

40 0,13 3,2 2,5 • 10 8,5 • 10 9,2 • 10

60 0,06 1,1 2,6 10 8,8 • io" tc O| <r.

80 0,03 0,2 5,7 • 10 1,9 •
1Ö5

3,1 106

88 0,02 0,04 1 • io' 3,4 •
1Ö5

3,5 •
1(T

Bei der Berechnung verlässliehe Zahl von Dezimalstellen

nach dem Komma:

20 0 2 3 4 5

40 0 — 1 3 4 5

60 0 — 1 3 4 5

80 1 0 2 4 4

88 1 1 2 4 3

Also rechnet man mit «sachgemässer Genauigkeit», wenn
man die betreffenden Grössen auf eine Dezimale mehr
berechnet, als soeben angegeben wurde, und alsdann nach
Bedürfnis auf- oder abrundet.

Man wird also im vorliegenden Fall berechnen:

Die Grösse: Auf höchstens Dezimalstellen:

Dx 1 (in den obern Altersstufen 2)

%
A,

0(,
4(„ „
5

6 „ n

1)

3)

5 bzw. 4)
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