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Reserve und Rentenbarwert
als analytische Funktionen.

(Beitrage zu der Theorie des Einflusses einer Ver-
anderung der Intensitdten der Sterblichkeit und der
Verzingung auf Grossen der Lebensversicherung.)

Von Dr. Werner Friedli, Bern.

Vorwort.

Die vorliegende Arbeit zerféllt nach den zugrunde
gelegten Iypothesen in zwei Teile, die grundsitzlich
voneinander verschieden sind. Der I. Teil handelt von
der Hypothese von Moivre und den aus ihr auf die
Reserve gemischter Versicherungen zu ziehenden
Schliissen; Hauptzweck war, auf Grund eciner ganz
elementaren Hypothese den Kinfluss der wichtigsten
Variabeln zu untersuchen. Der II. Teil fasst mechr die
tatsiichlichen Verhéltnisse ins Auge; Grundlage hildet
das Gompertz-Makehamsche Gesetz; hier wird vorerst
dem Barwert Em das Hauptaugenmerk zugewendet und
alsdann werden die gewonnenen Resultate zur Unter-
suchung anderer Versicherungswerte beniitzt.

(temiiss diesen zwei Hypothesen fithrt die mathe-
matische Behandlung im ersten Teil auf algebraische,
im zweiten Teil auf transzendente Funktionen. Die
Eigenschaften der Versicherungswerte sind implicite



— 116 —

in diesen Iunktionen enthalten und werden durch
Beniitzung der Eigenschaften dieser analytischen Funk-
tionen schrittweise bestimmt. Beispielsweise wire es
schwierig, aus einer Tabelle der Rentenbarwerte
Bezichungen zwischen den aufeinanderfolgenden Ew
herauszufinden, noch schwieriger aber, Bezichungen
zwischen den Eim und den Rechnungsgrundlagen auf-
zudecken; hier aber sind diese Zusammenhinge un-
schwer zu bestimmen, sie liegen in der mathematischen
Formel begraben und brauchen nur herausgeholt zu
werden.

Beiden vorerwiithnten Teilen ist das gemeinsam,
dass das Studium des KEinflusses einer Verdnderung
der Sterblichkeitsintensitit auf Grossen der Lebens-
versicherung in den Vordergrund gestellt wurde.

L Teil.
§ 1.

Kinleitung. Die Hypothese von Moivre.

Wenn man eine grosse Gesamtheit von neu-
geborenen Personen durch die ganze Dauer ihres
Lebens verfolgt, so sieht man, dass diese Gesamtheit
mit der Zeit abnimmt und verschwindet. Die Abnahme
geht nach keinem bestimmten Gesetz vor sich; doch
haben die Statistiker von jeher versucht, dieser Ab-
nahme cin bestimmtes Gesetz unterzuschieben, um
ungefihr den Verlauf des Absterbens zu charakter:-
sieren und die Erscheinung der mathematischen Be-
handlung zugéinglich zu machen. Die einfachste An-
nahme, welche man treffen kann, ist diejenige von
Abraham de Moivre, nach welcher in gleichen Zeiten
gleich viele Personen sterben.
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Stellt man die in jedem Alter » vorhandene Zahl
der Uberlebenden der Gesamtheit fest und trigt sie
in eine Tabelle zusammen, so erhilt man die Uber-
lebensordnung der Goesamtheit und als graphische
Darstellung derselben die Uberlebenskurve. Nach der
Hypothese von Moivre ist die Uberlebenskurve cine
gerade Linte. Die Gleichung dieser (teraden erhalten
wir durch folgende Uberlegung:

Die Lebenden des Alters x sind mit [ bezeichnet.
Wihrend eines Jahres stirbt ein gewisser Bruchteil
dieser [ Personen, etwa 1./ , wo O0<Zi<C1, aus,
so dass

lm—H =1, — A,
Nach Moivres Hypothese sterben in gleichen Zeiten
gleichviele Personen weg, also jedes Jahr 4 -7 Per-
sonen, in ¢ Jahren somit ¢ - il , so dass

by =1, (1 — 1) (1)

Der positive, echte Bruch 2 ist nun néher zu
definieren. Bezeichnet © das Schlussalter der Uber-
lebensordnung, so dass [ =0 ist, so folgt aus (1)

J = lm(l — (o —x)) =0
Hieraus bestimmt sich 4 zu

1

w—7T

(2)

/’L:

Dieses Resultat erhédlt man auch folgendermassen :
Wenn die [, Personen vom Alter z in der Zeit o —
gleichméissig aussterben sollen, so miissen pro Zeit-

! : ;
einheit (Jahr) __*  Personen sterben; somit hat in
(£} xr
der Tat 4 den in (2) angegebenen Wert.
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Aus untenstehender Figur ergibt sich noch die
geometrische Deutung des Parameters 7

l

n

= tg ¥,
w—=xT

so dass

1

Bezeichnen wir die Lebenden des Alters 0, also
l,, mit H, so gilt die Beziehung

(

H [,

- = konstant,
() w—x

woraus
w—23%x

j, == H (3)

x )

Dies ist die Gleichung der Uberlebensgeraden.
A. de Moivre setzte speziell » = 86 und nannte v —ux
die ., Lebenserginzung* des x-jihrigen (vgl. Béschen-
stein, Mitteil. schweiz. Versicherungsmathematiker,
3. Heft).

Die Intensitit der Sterblichkeit des Alters x 4 ¢
ist definiert durch

!

. Zﬂ:+t
fu’;l‘th . Z‘W
x-+t
wo [, den Differentialquotienten von [ , nach ¢

bedeutet; im vorliegenden Fall bestimmt sie sich zu

4 (4)

A Y

d. h. wenn die Kurve der Uberlebenden cine gerade
Linie ist, so ist die Kurve, welche die Intensititsfunktion
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der Sterblichkeit darstellt, eine Hyperbel mit der reellen

Asymptote t:—i bzw. z 4t = x| ; == {
Aus (4) folgt fiir £ = 0
M, =4 (4%)

Der Parameter 4 ist somit nichts anderes als
die Intensitit der Sterblichkeit des Alters ». Wir
haben somit fiir 4 folgende Ausdriicke zur Verfiigung

|
A= — Zi Clgp = M

@

n—r

F'erner sei hier beigefiigt, dass unter Zugrunde-
Jlegung der Hypothese von Moivre ¢ 4, und 4 iden-
tisch sind.

Tk
£

In der Wirklichkeit liegen nun die Verhiltnisse

80, dass das Absterben einer Gesamtheit nicht gleich-
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méssig, sondern in den verschiedenen Liebensaltern
verschieden intensiv erfolgt. Die Uberlebenskurve . ist
nicht eine Gerade, sondern eine Kurve mit Wende-
punkten. Greift man einen bestimmten Punkt (=, [)
dieser Kurve heraus und zieht in ihm die Tangente
an diese, so schneidet sie die Abszissenachse in einem

Punkt mit der Abszisse x —|— , denn dic Subtangente
w
o

im Punkt (z, /) ist gleich der reziproken u-Funk-
tion 1), Die Gleichung der Tangente lautet nach (1)

Y == Z:B‘!_t =1, (1—p, t).
Der Akzent soll dartun, dass sich diese Zahl y von
der wirklichen Anzahl der Lebenden des Alters »z--1¢
unterscheidet. Je nachdem nun der Verlauf der Kurve
der Lebenden im Punkt (z, /) nahezu o'(,radiinig ist
oder unicht, wird der Unterschied zwischen l . und
L., e klein oder gross sein; hierdurch erhilt man einen
Anhaltspunkt, inwieweit es in ciner gewissen Alters-
periode zuldssig ist, fiir die Kurve der I cine Gerade

zu substituieren.

Wenn man in jedem Punkt der Kurve die
Moivresche Gerade in der skizzierten Art konstruiert,
so stellt sich diese Kurve als Enveloppe aller Moivre-
schen Geraden dar. Beim Betrachten einer solchen
Figur kommt man auf folgenden Vergleich:

Wirken auf einen Korper zwei Kriifte ein, cine
translatorische und eine Zentripetalkraft, so wird er
eine krummlinige Bahn durchlaufen; hort die Wirkung

) Siehe ,Die Intensitit der Sterblichkeit und die Inten-
sititstunktion®, von Prof. Dr. Ch. Moser, Mitteilungen schweiz.
Versicherungsmathematiker, 1, Heft. ‘



der Zentripetalkraft plotzlich auf, so fliegt der Korper
tangential an die Bahnkurve weiter.

Ganz analog kann man sich die Sterblichkeits-
kraft, dic auf eine Gesamtheit wirkt, aus zwei Kom-
ponenten zusammengesetzt denken; die ecine Kom-
ponente, die translatorische, wirkt fiir alle Alter gleich
stark und bewirkt eine gleichmissige Abnahme der
Gresamtheit (geradlinige Bahn); die zweite, verdnder-
liche Komponente bedingt den krummlinigen Verlauf.
Fallt in einem gewissen Punkt x diese Wirkung des
zunchmenden Alters weg, so macht sich der weitere
Verlauf des Absterbens tangential an die Absterbe-
kurve in gerader Linie. Die Hypothese von Moivre
liuft somit auf cine Vernachlassigung der verinder-
lichen ,Zentripetalkomponente® hinaus; sie gibt infolge-
dessen nur cin grobes Bild des Vorganges.

Immerhin ist deswegen das Vorgehen des Mathe-
matikers Moivre nicht gering einzuschitzen. Es war
fiir die damalige Zeit ein kithner Gedanke, das Ab-
sterben eciner grossen (Gtesamtheit von gleichaltrigen
Personen durch eine mathematische Formel charakteri-
sicren zu wollen; diese wissenschaftliche Tat Moivres
bedeutete einen bahnbrechenden Schritt fiir die spiitern
Forschungen im Gebiet der Sterblichkeitsmessung.

$ 2.
Die Reserve einer gemischten Versicherung bei

Yernachliissigung der Verzinsung.

Die Reserve einer gemischten Versicherung im
Betrage 1, die im Alter = auf die Dauer von » Jahren
abgeschlossen wurde, betrigt nach ¢ Jahren:



n
1 f —1
= | [ dr
T Uit m—t Z’U—I—t t i i
- ]/;'cTz =1 T"fj . =1— 1 n (D)
xn T i
Zm v x4r
0

Durch speziclle Anmahmen iiber den Verlauf von
1 .. gelingt es, diese Integrale zu berechnen und eine
zu Berechnungszwecken geeignete Formel aufzustellen.
In unserm Fall ist die Integration leicht durchfiihrbar.
Wir machen jedoch vorerst die weiterc vereinfachende

Voraussetzung, dass die Verzinsung gleich 0 sei, dass also

pe=1 : (@)

sel. Dadurch verliert die Untersuchung natiirlich noch
mehr den Charakter der Allgemeinheit; dafiir werden
dic gewonnenen Resultate, was den FEinfluss der
wichtigsten Variabeln, der Sterblichkeit, auf die Re-
serve anbetrifft, um so deutlicher. Wir werden in § 5
zeigen, dass diese letztere vereinfachende Annahme
fiir unsern Zweck gestattet ist.
Unter Beriicksichtigung von (@) und

ch—}—z - Z:v (1 )”T) . (b)

geht () iber in

—1_] [, (1 —ir) de
Zw(l—lt)t

tTfaj—E — 1 n
T f L (1 — i) dr
[ 0
oder
= n—1 1_/1?2_2}4

n

(1— A1) - (1—/:;’)
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Wenn man hierin 2 und % als Konstante ansieht
und ¢ als die unabhingige Variable, so stellt diese
Gleichung eine Hyperbel dar mit der einen Asymptote

1 . . )
b= == w—ux. Die Reserve th und die Intensitits-

funktion p ., sind also Hyperbeln mit einer gemein-

a4t
samen Asymptote, ndmlich der im Schlussalter o er-

richteten Ordinate. |V — = 0; V - = 1.

Naturgeméss ist stets » <~ o — z, somit

1 1 ;
— = - . h. es ist stets
n—o—x

1\
{7\

1 -
" (7)

Fiir den Spezialfall 2 =0, wo die Uberlebens-
kurve eine zur Altersachse parallele Gerade ist, wird

‘n—tﬂi

V=1

¢ n n’

In diesem Fall degeneriert somit die Hyperbel zu einer
durch den Nullpunkt gehenden Geraden. Und so muss
es auch sein; denn wenn keine Sterbefille eintreten
(A =10), so hat die Reservenbildung einzig darin zu
bestehen, dass im Verlauf von » Jahren die Summe 1
angesammelt wird. V=0; V=1

w

Unter Zuhiilfenahme der w-Funktion kdonnen wir
Formel (6) etwas umformen. Aus
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A . A U
= — folgt: 1—4it = == z
Mapt = 174 175 e Mot P
et
analog 1 )»% = e
Hy
1 +1 My
T e
folglich
Yo m o
..... n ____t x+ 3 s
T/? S RS 1 —— . A
L n o+ i (6

n
o .‘x_l_.,‘_—j—_

Die Formel ist deswegen beachtenswert, weil nur
Intensititsfunktionen vorkommen.

Ersetzen wir in (6) 1 durch den in Formel (2)
angegebenen Wert, so kommt

n—t w—zx 2w—z)—nm+
n o—@+1f) 2(w—x)—n

ti_n. =1— (Bb)
Uber diese Funktion (6°) konnte man nun 4 ver-
schiedene Untersuchungen anstellen:

1. Die Variable ist #, withrend w, 2, » konstant sind.

2. Die Variable ist x, das Kintrittsalter, wihrend
t, » und @ konstant sind.

3. Die Variable ist n, dic abgemachte Versiche-
rungsdauer. o, t, @ konstant.

4. Die Variable ist w. ¢, z, » konstant. Dies

kommt darauf hinaus, das Verhalten der Reserve t‘?bei
Verédnderung der Sterblichkeit zu studieren; denn
eine Verschiebung des Schnittpunktes w auf der Alters-
achse hat cine Drehung der Uberlebensgeraden um
den Schnittpunkt H auf der Ordinatenachse zur Folge.
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Der Behandlung von Fall (4) sind die folgenden
Ausfiihrungen im wesentlichen gewidmet; nur wiihlen

wir statt w A= als unabhéingige Variable.

w—2I7=X
Aber auch die Untersuchung der Fille (1), (2),
(3) wire nicht ohne Interesse; wie bereits bemerks
wurde, fithrt Fall (1) auf eine Hyperbel, wihrend die
Fille (2) und (3) auf Kurven dritten Grades fiithren
wiirden.

§ 3.

Einfluss einer Verinderung der
Sterblichkeitsintensitiit auf die Hohe der Reserve.

Es handelt sich darum, zu untersuchen, welchen
Einfluss eine Verdnderung der Sterblichkeitsintensitit
auf die Grosse der Reserve in jedem Zeitpunkt wéhrend
der versicherten Dauer hat. Eine solche Untersuchung
stosst bei sich dem wirklichen Verlauf der Absterbeord-
nung und bei Mitberiicksichtigung der Verzinsung
sehr bald auf betrichtliche mathematische Hindernisse ;
man ist daher vorldufig gezwungen, bescheiden anzu-
fangen und den Berechnungen ganz elementare An-
nahmen zugrunde zu legen, um so wenigstens einiges
Licht in das Dunkel dringen zu lassen.

"Wir gehen aus von der Formel

w4t
{ s 2

(1— 1f) - (1 ng_) i

Hierin soll 1 die Rolle der unabhéngigen Variabeln
iibernehmen, wihrend x, », ¢ Konstante sein sollen.
Die Kurve, welche der Abhéngigkeit y— V(1) ent-

—l — 7&__.
V= T0=1-"
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spricht, ist vom dritten Grade; sie besitzt die drei

1 2
reellen Asymptoten 1 — - A =3 ferner y =, V=1,

denn

limes - limes
1 — oo V() = P __DOtV(l) = -}-1.
Die Kurve besitzt also das Maximum der fiir eine
Kurve dritten Grades moglichen Asymptoten (siehe
Fig. 1 hinten).

Die praktischen Gtrenzen der Variabeln 1 sind

(vgl. (M) A=0und 1 = ;; An diesen beiden Grenzen

hat unsere Funktion die Werte
. t
YO = V(5) = (8)

Wie ist nun der Verlauf der Funktion im zwischen-
liegenden Intervall? Wir bilden

dtT/()‘) n—-r1 1

dA n 2
(1—18)* - (1_/:%)

{_(1_.....;:&)(1-«1%) s t—(1—z”jt)(i;-+tmm)

Den Klammerausdruck ordnen wir nach Potenzen
von i; es folgt

d,v — (m—1)t _ - 1 -

di 4n , Rt
(1—at)* - (1“@1?)

(o 4-tyn 2 —dni+-2) (9)

|
J
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Hieraus ecrgibt sich das Steigungsmass der Kurve im

Punkte (z ==y F = —:-;—), niimlich

av —
(%) =—"s<o  ®
=0 2

dal n

~

d. h. im Punkte (O, %) sinkt die Kurve y =  V(4)

gegen die positive Abszissenachse ab; wegen der
Relation (8) besitzt die Kurve daher im Intervall

0 < A< — ein Minimum, da sie in diesem Intervall
n .

stetig verlduft.

Dies konnen wir rechnerisch nachweisen und iiber-
dies die Abszisse 1 bestimmen, fiir welche das Mini-
mum eintritt. Aus (9) ergibt sich, dass die Funktion
. V(Z) einen extremen Wert erreicht, wenn die Gleichung

erfiilllt ist:
nm4+Hmni?—4ni+2=20 (10)

Diese quadratische Gleichung besitzt die zwei
Wurzeln o
2n —V 2n (n—1)

;('1 -

n(n—+t) (109
P 2n —l—l/?n(n—t) _
L 7 (14 t)

welche wegen ¢{<_n beide reell und positiv sind; die
Funktion , V(1) besitzt demnach zwei cxtreme Werte.

Nun ist

1V 2n (n —_t): V?@E— 2t 4 n’ > ]/ n’— 2nt + £

= (n—1)

2n —']-/ Eg(n —t) <n-t,




= 18R =

somit B
_ 2n —_]/ 2n (n—1) 1 .
Y T A = (e)
Ferner ist
1 1
(R P ——

mAYmm—t)  nntt)
2n(n4t 2

daher ist wegen der Ungleichung (a):-

= n(nt-1)

. 2
42>-—————_n(n+t)% oder
P Y
27 -t 2n n
d. h.
. 1
gl ®)

Aus () und (f) folgt, dass die Funktion ,V(Z) im
Intervall 0<'/"L<—i— einen einzigen extremen Wert

besitzt, nfimlich im Punkte 4 ; dass dieser extreme
Wert ein Minimum sei, folgt aus

thV L t(t——n) 1
i’ dn o (1—apt (1—23)"

)" (1—22)"[2 (n +-8) nd — 4n|

!

9 \
— [(W + ) nl® — 4nl —{—_’] {% [(1 ——/115)2 (1 — Ag-) ]j}




Wegen (10) ist nédmlich
<d2tl’>: —t(n—t) ( n(n—}—t)/l—~2n)
pi

', 2 A= - (1—23) /.,
—t(n—1) —V2nm—1
— T oy ‘ & n)? =0
=22 - (1—2,2)

Dagegen bezeichnet der ausserhalb unseres Intervalles
liegende Wert 1, ein Maximum der Funktion; denn

(@ZV)# tm—t)  FV2nm—
ar/,_, 20 (1—At) - (1—22)

<0

A== 2

Wir haben nun ein genaues Bild iiber die Funk-
tion ,V_ , d. h. iiber die Abhédngigkeit der Hohe der

# @h)?
Reserve von der Sterblichkeit erhalten; wir fassen

unsere Hrgebnisse im Satz zusammen:
Wenn die Sterblichkeitsintensitiit A zunimmi von
. 1 . : :
0 bis 2u — , so nimmt die Reserve .V wvorerst ab bis
o _

zu ewnem Minimum, welches erreicht wird beim Wert

__271—]/272(3@—1,‘)

ST TR

. . ¢
und donn wieder 2u bis zum Ausyngswe7't—~;— (vgl.
1

nachstehende Figur).
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»
- Deympote: 14 !
— /
\f"‘ _t_
”;1- n

Aus der Figur kann man ferner schliessen: In
jedem Zeitpunkt ¢ (¢ kann irgendeinen Zeitpunkt
zwischen 0 und » bedeuten) lassen sich stets Werte-
paare 1 angeben, welche auf dieselbe Reserve fiihren,
namlich ein Wert I vor dem Minimum und ein Wert 1T
nach dem Minimum; wir werden auf diese Tatsache
in § 7 eingehend zu sprechen kommen.

*

Wie gezeigt wurde, ist der Wert von 4, fiir
welchen , V(1) ein Minimum erreicht, abhingig von ¢;
daher ist auch die Grosse des Minimums selber, ,V(1),
abhingig von #; in jedem Punkt ¢ kann die Reserve

; t e
nur schwanken zwischen den Grenzen — und ,V(4);
n

in der nachfolgenden kleinen Tabelle sind fiir cinige
Werte von ¢ diese beiden Grenzen, sowie die Sechwankung

t e
A :,;_tv(ﬂl)

angegeben.
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-
’ 7 7 d
1’ ¢ ( 1) n A
0 0,5858.3; 0,00000 | 0,00000 = 0,00000
% 10.6202- 1 | 020696 | 0,25000  0,04804
4 n ’ g
= 0.6667- | 043750 | 0,50000 = 0,06250
4 n
3n 1 - — ,
2 10,7888 | 0,68566 | 0,75000 | 0,06434
o 1,0000.% 1,00000 | 1,00000 | 0,00000

! i

Wenn man nun ¢ vardert und in jedem Punkt
¢ dieses Minimum , V(1) als Ordinate auftrigt, so er-
hilt man als geometrischen Ort aller Punkte [¢, tV(/ll)]
eine gewisse Kurve, welche wir die ,Grenzkurve*
nennen wollen. Ihre Gleichung ldsst sich, wie im
folgenden Paragraphen gezeigt werden soll, leicht finden.

Vorerst wollen wir noch zeigen, dass eine solche
Grenzkurve iiberhaupt existiert. s bezeichne 4] den
einem bestimmten Zeitpunkt ¢ entsprechenden . Mini-
malwert* 1 , wie er sich aus (10%) ergibt; setzen wir
diesen Wert 1| in die Reservengleichung (6) an Stelle
von A ein und lassen alsdann t variieren und zeichnen
dic entsprechende Reservekurve (Hyperbel), so wollen
wir diese mit K  bezeichnen; sie trifft die in ¢ er-
richtete Ordinate in einem Punkt 7", dem . Minimal-
punkt“. Einem andern, sagen wir spitern Zeitpunkt
¢t entspreche der Minimalwert 1), die Kurve K" und
der Minimalpunkt 7'”. Die Kurve A muss nun die
im Punkt ¢ errichtete Ordinate oberhalb T’ treffen,
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da 7" das Minimum der Reserve im Punkt ¢ darstellt;
ebenso muss die Kurve £ die im Punkt ¢ errichtete
Ordinate oberhalb T treffen aus dem gleichen Grunde.
Hieraus folgt nun: Die zwei Kurven K' und K"
schuneiden sich zwischen t und . Da dies fiir zwei

’

TH

/OT'

-

t, t"

beliebige Punkte ¢ und ¢, also auch fiir zwei unend-
~lich benachbarte gilt, so sehen wir ein, dass die Auf-
einanderfolge aller dieser Schnittpunkte eine gewisse
Kurve stetig erfiillt; diese Kurve ist nichts anderes
als die Aufeinanderfolge aller Minimalpunkte; sic ist
identisch mit der Enveloppe der Kurven ,V(1), wo ¢
die unabhingige Variable ist und 1 als verdnderlicher
Kurvenparameter aufgefasst wird (vgl. § 4).

§ 4.
Die Grenzkurve.

Die Gleichung der Grenzkurve, welche als der
geometrische Ort der Minimalpunkte definiert wurde,
wird gefunden, indem man in der Ausgangsformel fiir
die Reserve
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1
Ve 1— n—r1 2
'f no(1—2t)(1—77)

den Wert

P 2%—~V’_2_n (n—1)
1 n (n 4 1)

einsetzt. Hs wird

Lor,w (11)

2. P -
¢ n

wo nun f(¢, n) bestimmt werden soll.

(n 4t ]/2_1@(71 —1) .
4?zt(n—t)+[n(n——t)—{— 2t2] ]/mjﬁ

f(t,?‘?)———‘

(n+8)" Y 20 (=) (4t (n—t) [ (n—) +2¢] Ven(n—t) }
[4ut—p] — [0 —t+2]  [2na—0]

2t (74 -2y V2n @ ———ty# (n+1)* [% (n—1)-}-2 t2]
8nt’ (n—1t) —[n(n—1) 28]

Dieser Ausdruck ldsst sich iiberfithren in ein voll-
stindiges (Quadrat, nédmlich

—_—

n—t
Vat—t+V2 - ¢
wo beide Wurzeln im Nenner das posétive Vorzeichen

besitzen ; dies setzen wir in (11) ein und erhalten die
gesuchte Gleichung der Gremzkurve

£t n) =

?




(12)

Spezielle Punkte der Kurve sind:

t=10; V'=0

0

= 1; n Vi=1.
Aus (12) ist ersichtlich, dass alle Kurvenpunkte, fiir
welche ¢ > » ist, imaginir sind; den Punkt ¢ =
werden wir daher noch etwas ndher untersuchen
miissen; fiir negative Werte von ¢ dagegen wird der
Ausdruck (12) reell.

Hinfacher erhalten wir die Gleichung der Grenz-
kurve, wenn wir sie als Enveloppe der durch die
(tleichung (6) dargestellten IHyperbelschar auffassen.
Wir ersetzen der bessern Ubersichtlichkeit wegen ,V
durch y und ¢ durch @, so dass die Gleichung lautet

n—ux S B

no(1—Ja)(1—A%)

Y

oder

n(r—zg) (1-22) (y—1) + (n—2) (1 e *‘2“‘)# 0 (1)

Wir ordnen die linke Seite nach Potenzen des Kurven-
B . L 2 0 3
parameters 4; die Koeffizienten von 4%, 4, 4" bezeichnen
. . - a9 - - w (G-
wir kurz mit [2*], [4], [4°] und finden:



[i{?]:n(y—l)}—;x =a
2__ 2 ] 14:
[2.]::—-—%(3/—1)(;—1—:6)—” =2 o
[K)=nly—1)+n—z =0
50 dass

fl,y, )=al*42bi4c=0 (15)

Die Bedeutung von a, b, ¢ ist aus (14) ersichtlich.
Aus (15) folgt:

fo(%%”_;‘): 2(aht-b) =0 (16)

Nach der Theorie der ebenen Kurven ergibt sich nun
die Gleichung der Enveloppe, indem man aus den zwei
Gleichungen

f@,y,4)=20
0@y,
LWy T

den verdnderlichen Kurvenparameter 4 eliminiert; das
Resultat der Elimination, eine Gleichung in x, % allein,
stellt die Enveloppe dar. In unserm Falle ist diesc
Elimination sehr einfach; aus (16) folgt

y PN

a

und wenn man diesen Wert in (15) einsetzt, erhilt
man als Gleichung der Enveloppe

BE—we=0

oder nach Einsetzung der Ausdriicke (14):
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[fn (n+2x) (y—1)+ n"*’-uwg] " Sni (y—1) [w,( y—l)—{—n—x]::O (17)

Die Enveloppe ist somit eine Kurve vierten Grades.
Bedenkt man nun, dass die Einsetzung der Wurzeln

der (Gleichung __cnggA) = 0 in die Gleichung (6) identisch

ist mit der Elimination des Parameters i, so miissen
die Gleichungen (12) und (17) die gleiche Kurve dar-
stellen. Nur ist zu bedenken, dass wir oben bloss die

17

eine Wurzel Itl der Gleichung —- = 0 beriicksichtigt

d 4
haben; daher kommnt es, dass die Gtleichung (12) nur
den einen Zweig der Enveloppe (17) darstellt. Dieser
Zusammenhang zwischen (12) und (17) soll noch kurz
gezeigt werden.

Wir ordnen in (17) die linke Seite nach Potenzen
von y—1; die Koeffizienten werden

(v — 1" = (n— 22

(y— D] =2n(n—2)[(n+ 22) (n42) — 4 n.x]

| (?/_ 1)0] ::‘(n—|—/,c)2 . (n— )’

Losen wir die in (y—1) quadratische Gleichung auf,
so kommt

—n(n—x) [(n, ~+22)(n4x)—4n ;1:] +}D

— 1= . ~
y n(n— 2z)

Fir die Diskriminante /) erhalten wir nach ecinigen
Umformungen

D=n"(n—x)*42°2n(n—zx).
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Daher folgt, wenn wir den Bruch rechts etwas ver-
einfachen
y—1l=
nn—z) (n+2x)(n4x)—4nz 3 2x)2n(n—mx)
n (n—22z)

Den zweiten Faktor verwandelt man in ein vollstéindiges
Quadrat und findet

— ,.._______:2
V2 - 2 F |'n (n—x
n—2x

(n—x)
I

y—1l=

so dass schliesslich

y:l—n_w( n—x w_)" (18)

n V2 - x+Vnn—x)

Abgesehen vom doppelten Vorzeichen im Nenner,
stimmt diese Formel vollstindig mit (12) iiberein; die
Formel (12) stellt somit in der Tat nur den einen Zweig
der Enveloppe (17) bzw. (18) dar.

Um die Kurve konstruieren zu konnen, gehen wir
zu einer kurzen Diskussion der Kurvengleichung (17)
iiber. Sie lautet, wenn sie nach dem Grad der Glieder

geordnet wird :
B [2ny—z]—2nz[2n’y +nry —22"—

(19) —rc2[4w2—4}zmy—712y2]:0

Da die (leichung erst mit Gliedern zweiten Girades
beginnt, so besitzt die Kurve den Nullpunkt als Doppel-
punkt; die Gleichungen der Doppelpunktstangenten
lauten
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e Brcls 1D
e
und
— B B
,?/ — n V v

Ihre Konstruktion liefert uns den Verlauf der Kurve
in der Ndhe des Nullpunktes.

Wegen der an Gleichung (12) angekniipften Be-
merkung interessiert uns noch speziell der Punkt
(r=mn, y=1); durch Koordinatentransformation ma-
chen wir ihn zum Nullpunkt und finden, dass er eine
Spitze der Kurve ist; die Gleichung der Spitzentangente
lautet

2

y="w—1,

diese Gerade schneidet somit die w-Achse im Punkt
n
= e,
2
Die Kurve besitzt in der zur Ordinaten-Achse
n . .
parallelen Geraden x =5 ZWel zusammenfallende

Asymptotenrichtungen; im unendlich fernen Punkt
dieser Richtung beriihrt unsere Kurve die unendlich
ferne Gerade.

Die dureh das doppelte Vorzeichen der Quadrat-
wurzel in (18) gekennzeichneten zwei Zweige der
Kurve tendieren beide mit sehr grossem negativem x
gegen — co, denn aus (18) folgt fiir »x = — oo,
Y =r—08a,

Die Kurve ist in Figur 2 hinten dargestellt fiir die
Annahme 7 = 20, '
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§ 5.
Die Reserve bei Beriicksichtigung der Verzinsung.

Wir gehen wieder aus von der allgemeinen Formel

Setzen wir hierin v'=—¢", so bedeutet d = Log (1-4-4)
= — Log v die Verzinsungsintensitit. Auf Grund un-
serer Hypothese ist 7, =1 (l—u)=1(1—47)

zu setzen,
T

/ébr (1 —27) - dr
"ot o

=1 e i . ¢
L W T (20)

/‘-em - (1—ix) - dr

0

Das unbestimmte Integral J = f e” - (1 — 1)« dr er-
gibt sich zu

e (0 — 1) — Adre”
== __,52

J

folglich ist

oy 1 (a——x)(E“”’“——1)m—ax(ne“““*’v~f)(21)
11—t (0—24) (édnm-h 1)— din é’m

i

Von dieser Formel werden wir spéiter noch Ge-
brauch machen. Fiir jetzt bemerken wir, dass

10



d(n—t) n—t
e

und
édn__ 1 — Uvz 4

negative Grossen sind; wir drehen daher im Zihler
und Nenner von (21) das Vorzeichen um und finden
Z 1 S o (A —™ )

Fe=] -
¢ 1— 7t JAnv" 4 (6 —4) (1 — ")

(22)

Von dieser Reservenformel wollen wir nun aus-
gehen und wiederum die Funktion ,V(4), d. h. die
Abhéngigkeit der Reserve von der Sterblichkeit unter-
suchen. Das geometrische Bild dieser Funktion ist
wiederum eine Kurve dritten Grades mit den drei
reellen Asymptoten

| S J(1—v")

S T gy VT O

Die zwei Pole 4, und 1, der Funktion V(1) sind —
wie es auch in der Natur der Sache liegt — beide

.o 1 e 5] . . -
grosser als —; fiir 4, siecht man dies ohne weiteres
n

ein und fiir /ZH resultiert dies z. B. aus der kleinen
Zusammenstellung

. 1 1
1 ;’; AII
i==003 1=0035 i=10.04
20 0.05 0.111 0.112 0.115
25 0.04 0.091 0.093 0.095

30 0.033 0.078 0.080 0.082
40 0.025 0.062 0.064 0.067
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Uns interessiert nun wieder am meisten das Inter-
. 1 i . ) )
vall 0 <74 < Sy wie verliuft die Funktion ,V(4) in
diesem ?

Vorerst dic Werte an den Grenzen des Intervalls:

—t -
1—1?% vn t_vn

V(0)y=1-—- == 99
V' (0) 1—2" 1—v" (227
1Y n 1 —" 7 —d (1) .
tvkia"')—l*n_t' s &

Durch Subtraktion folgt

eI

__n (n—1t)d ('c)"*t_@") =M1 — ,Un—-t)
(n—1t)(1—v") (1—v"—dn)

(23)

Mittelst Reihenentwicklung wollen wir nun zeigen, dass
diese Differenz positiv ist. Vorerst betrachten wir den
Nenner; die Faktoren (n — t) und (1 — ¢") sind beide
positiv; wie steht es mit dem dritten Faktor?

1—1"—0n=1— (1413 "—nLog(141i), wo0<i<1,

; a i A
=1- [1—m+n(n+1)§—, —+ } —n ‘1H éﬁt

e, s

- = —n{% (n+1-1 1)—% [(n+1) (n+2)—2 ! ]+— -

Die Konvergenz der Reihe in der geschweiften
Klammer lisst sich leicht nachweisen. — Die Glieder
dieser Reihe sind abwechselnd positiv und von Anfang
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an ist jedes Glied grosser als das unmittelbar nach-
folgende; wenn wir uns daher auf die ersten Glieder
beschrénken, so folgt:

1o 4 T
—v ——dnm——n{nﬁﬂ é—!(n +3n)}

.9
21

)

Da fiir alle praktisch vorkommenden Fille
1< 0045

vorausgesetzt werden darf, so ist fiir alle n < 63 die
geschweifte Klammer sicher ein posétiver echter Bruch;
daraus folgt, dass

1—9" —dn<0

ist; somit ist der Nenner des Bruches in (23) negativ.

Den Zihler formen wir ebenfalls durch Entwicklung
von J = Log (1 414), v"~, ¢" in absolut konvergente
- unendliche Reihen und nachherige gliedweise Multiplika-
tion dieser Reihen in eine ebenfalls konvergente un-
endliche Reihe um, welche nach Potenzen von ¢ fort-
schreitet; die Koeffizienten dieser Reihe sind allerdings
nicht sehr einfach, doch findet man, wenn man nur
die zwei ersten Glieder der Entwicklung beriicksichtigt,
dass der Zihler sich auf die Form bringen ldsst:

nn—t) @ "—v") —t(1—v") (1 —v")

_ wlti—o)' i
12

d, h. auch der Zihler ist negativ.
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Aus dieser Betrachtungsweise ergibt sich nun, dass
die durch Gleichung (23) dargestellte Differenz einen
positiven Wert hat; daraus folgt

T ) > 7o) (28)

Wir bestimmen weiter den Differentialquotienten
4,V
d A
der Kurve ,V(4) im Punkte [0,,V(0)] anzugeben. Wir
ordnen in (22) Zahler und Nenner nach 4 und differen-
zieren ; es ergibt sich, wenn wir den Zéhler des Diffe-
rentialquotienten auch wieder nach Potenzen von 1

, um mit seiner Hiilfe den Richtungskoetflizienten

ordnen :

a,vay
L

I 2 R e ¥ R e i LA RN - (24)

(1—4g? - [2[dnv"—1 40"+ o (1 — ")
Die drei Koeffizienten haben folgende Werte:

(2] =¢t[0nv""— dt— 141" [dnv" — 140"

[A] =20¢[1—v" ] [dno" —1-40"]

=" (n—O)— 0" - (t—1tv" )]

Daher ist
(L) "
ai i o (11—’

T e— ) — " (e — ")

: (25)
(1—v")°
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Der Zihler dieses Bruches ist eine positive Grosse;
dies ldsst sich folgendermassen nachweisen:

Damit
T m— ) — " (e —tv"H > 0
sel, muss
=) > (n— "
sein oder

v —t0" < m—t ()
Dies ist in der Tat der Fall! Denn

nv'=n {1——?575—{—15(15—{—1) g1 t(t+1)(t+2)_.d+ . }

2 <

tv"wt[l—nz—i—n(n—{—l)?—n(n—}—l)(n+2)—~+— 1

und durch Subtraktion

b = )t [ D) — (D] —
—nt [ 1) (¢ 2)—

— oD O+ —
= (n-—1) 1——nt%—}—nt(n—{—t+3)31 —+ ]
:(n—t):1~—nt;(I—ﬂ_l%%z‘—t-—---)}

21
.
?:2
=(n—1) 1~—nt—2—'—-e} , wo 0<Te<C1,

W=t = — 1) - A @
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-2

wo A =1—mnt éTe cinen positiven echten Bruch be-

deutet; aus ) ist ersichtlich, dass Ungleichung o) er-
fiillt ist. Damit ist bewiesen, dass

P s

A=0

in Worten: Die Kurve V(L) fallt im Nullpunkt gegen
die positive Abszissenachse ab.

Halten wir dieses Resultat mit der Ungleichung
(23%) zusammen und beriicksichtigen wir ferner, dass

naturgemiiss |, 17(4) im Intervall 0 <7 4 < -, nie gleich
0 werden kann (es sei denn ¢==0), so ist bewiesen,

; ; _ ; 1
dass die Funktion ,V(4) im Intervall 0 <4 <C o

(mindestens) ein Minimum besitzt. Wir haben also
den Satz:

Wenn die Sterblichleitsintensitit 2 = u_ von 0
his 2 wichst, so nimmi die durch Gleichung (22)
"

dargestellte Reserve wvorerst ab bis zu einem Mini-
mum und dann wieder zu.

§ 6.
Einfluss des Zinsfusses auf die Hohe der Reserve.
Ausgehend von Formel (21) bilden wir den Differen-

tialquotienten

GO SO I ol e N

AT A=A (5 — ) (" —1) — din "]
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Die Koeﬁiziénten haben die Werte
[0% 1= (1 —Zn) |n ("™ — ")+ Antv” (1—0"7) —
—t" (1 _ ™) |

;':’n) [}' tvn_t 3 (] e Q)n) — 2" n (,U'n—tm_ bn)] L

[0] =(2

s Al 5 A= B (1—1)'2—t)

[0°] =0t (1—v") (1—v"™) >0.

Ist nun der Zihler des Bruches in (a) positiv, so ist

dtV

a3 <0 g ()

Fiir d == 0 ist diese Ungleichung erfiillt, weil der Zihler
- sich auf [0"] > 0 reduziert?); wir wissen somit, dass
d,V

75| <0 ()

d=0

Diese Ungleichung besagt, dass die Kurve ,V(d) im
Punkte 0 =0 gegen die positive Abszissenachse ab-
fallend ist.

Da ferner der Zahler von ) eine stetige Funktion
ist, so ist zum vornherein gewiss, dass die Ungleichung
f) nicht nur fiir =0, sondern auch in einer Um-
gebung von J =0 erfillt ist; da nun J fir die ge-
brauchlichen Zinsfiisse sehr nahe bei 0 liegt, so darf
man folgenden Satz aussprechen:

Mit wachsendem Zimsfuss nimml bei Zugrunde-
legung der Hypothese von Moivre die Reserve ab.

2 . . . 112
) Man hat allerdings vor dem Grenziibergang mit (1—v )-

n—t .
e (1—v ) wegzudividieren.
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Beispiel.
V(@) (n=20)
) )
A==1) A==0,02H
Abnahme Abnahme
0 0 0.250 0.214 |
0.018 0.015
| 0.01 0.00995 | 0.232 - 0.199
| 0.018 0.015
- 0.02 | 0.01980 | 0.214 0.184
| 0.008 | 0.007
0.025 | 0.02468 | 0.206 0.177 |
| 0.008 0.007
- 0.03 0.02956 | 0.198 0.170
- 0.008 ' 0.007
0.035 | 0.03440 | 0.190 0.163 |
0.008 - 0.006
0.04 0.03921 0.182 0.157 |

Aus diesem Beispiel ersehen wir, dass die im letzten
Satz ausgesprochene Abnakme schr regelmiissig vor
sich geht und um so kleiner wird, je grosser J aus-
fillt. Die durch Gleichung (21) dargestellte Funktion
,V(9) besitzt ndmlich die positive Abszissenachse zur
Asymptote. Dies zeigen wir, indem wir in (21) den
Bruch mit ¢ kiirzen und ausgehend von

, (¢)
4 (1 - %) @ —1)—ime™ P —1)
T(0) = 1— L : -
t . _
= (1 ——g) @ —1)—ine"
den Limes bilden
limes . 1—4t
rf:m"ootv(d):: T el =1
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Kiirzen wir in (¢) mit ¢, so wird

- ) (1 _%‘:) (edt_ eén) L /1 (ﬂ edt_ ¢ e:)-n)
fV(d) —_— 1 o i:-)—-t* ————d lﬁ — e _
' (1——5) (1—e"") —An

Hieraus ergibt sich der andere Grenzwert

1 0
1—At 1—in

limes
d=—00f

=41

V(@) =1—

Auch die zur negativen Abszissenachse im Abstand
—- 1 gezogene Parallele ist somit eine Asymptote der
Kurve ,V(d); wir konnen also die Abhingigkeit der
Reserve von der Verzinsung durch folgende Figur ver-
anschaulichen.

Asymptote
::_..___________,__ —_—— e — == 41
~

—
~

V)

L P

o

Asymptote

*

Gleich wie wir oben (§§ 2 und 3) bei der Unter-
suchung des Einflusses der Sterblichkeit auf die Hoéhe
der Reserve die Verzinsung gleich O setzten, konnten
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wir hier, wo es sich um den Einfluss des Zinsfusses
handelt, die Sterblichkeitsintensitiit 4 vernachlissigen.
Setzt man in (22) 41==0, so erhilt man die Reserven-
formel
- 1 ’Uﬂ_t /U'M———t L Un
g ¥ ==1— = 7 (26)
1—w 1—w

Fiir diesen Fall hat Herr Prof. Moser fiir den oben
aufgestellten Satz einen exakten Beweis aufgestellt
(Vorlesungen {iber Reservenrechnung, W. S. 1914/15).
Der Beweis ldsst sich aber auch mit Hiilfe der im § 5
verwendeten Reihen durchfithren. Wir schreiben zu
diesem Behufe bequemer

— S(n—t)
1—6____ (2 6&)

—5n

1—e

Diesen Ausdruck leiten wir nach ¢ ab und finden:

o, V(N 24 ,
oL A T 26°
) (1H_“é<m)2 [”’ (1—v)—t(l—v )] (26")

Entwickeln wir o' = (1 447" und v" = (1 ¢ " in
Binomialreihen, so geht die eckige Klammer iiber in

n iz n+t+3 . \
"Z(lmvt)-—t(l——v ):nt(n—t)ﬁ{l—- g +A...J,

2
¢

=nt(n—1>0zye,

n—t+t—+3 . :
wo abkiirzend ¢ =1 — ——I-_—S—L i - gesetzt ist;

fiir alle gebriuchlichen Werte von n und ¢ ist 0 <Te<T1;

mithin ist
n(l—vHh—t(1—v")>0.
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Der durch Gleichung (26°) ausgedriickte Differential-
quotient ist somit negativ.

Mit wachsender Verzinsungsinlensitit nemmt die
durch (26) bzw. (26%) dargestellte Reserve ab.

Auch in diesem Spezialfall ist iibrigens

limes V(d) = 0

():—1»—00 t
limes
s V@) =41,

wie sich ohne weiteres aus (26%) ergibt.

® % ®

Aus den durchgefithrten Beispielen lisst sich
schliessen, dass es gestattet ist, beim Studium der
Abhingigkeit der Reserve von der Sterblichkeit die
Wirkung der Verzinsung zu vernachlissigen, aber auch,
wenn man nur den Hinfluss der Verzinsung nachpriifen
will, die Sterblichkeit als nicht vorhanden vorauszusetzen.
Man darf somit die Wirkungen aus beiden Veriinder-
lichen fiir sich betrachten, ohne falsche Schliisse zu
ziehen.

Diese Tatsache wird vielleicht fiir andere Félle und
fiir kompliziertere Annahmen iiber den Verlauf der Uber-
lebensordnung mit Nutzen verwendet werden kinnen.

§ 7.
Der Zeichenwechselsatz.

Herr Prof. Moser beweist im 9. Heft der ,Mittei-
lungen der Vereinigung schweizerischer Versicherungs-
mathematiker“ den folgenden allgemeinen Satz:
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, Wird die Reserve einer gemischten Versicherung
nach zwei Uberlebensordnungen gerechnet, von denen
die eine fiir ein im Verlaufe der Versicherung ge-
legenes Intervall eine grossere Sterblichkeitsintensitiit
angibt als die andere, so weist die Reservendifferenz
in jenem Intervall stets einen Zeichenwechsel auf.“

Man nennt diesen Satz den Zeichenwechselsatz.

Im folgenden soll dargetan werden, dass dieser
Satz, allerdings unter einer gewissen Bedingung, auch
dann gilt, wenn fiir die ganze Versicherungsdauer (und
nicht nur fiir ein im Verlauf der Versicherung ge-
legenes Intervall) die eine Uberlebensordnung eine
grossere Sterblichkeitsintensitdt angibt als die andere.
Vorausgesetzt bleibt auch hier ein geradliniger Verlauf
der Uberlebensordnung. '

Wir gehen aus von der Formel (6), § 2.
AL +1

- n—1 2
=17 ()

t an
" ﬂdﬂ@—dg)

Nun wollen wir die Reserve fiir die nédmliche Ver-
sicherung berechnen, wenn eine Uberlebensordnung
zugrunde gelegt wird, bei welcher wihrend des ganzen
Intervalls 0 <7t < n
lu’ayc—{—t = "u’w—l-t
ist. Der Akzent soll angeben, dass sich die Grosse auf
die zweite Uberlebensordnung bezieht. Letztere Un-
gleichung ist identisch mit
A p
=7 T—H

oder

ATk
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Die Reserve mnach dieser zweiten Uberlebensordnung
betrigt ‘

PO i
= _1__-)2———25 2 )

¢ an T ;
=2 (1_1' g)

Die Differenz zwischen den zwei Reserven lisst
sich fiir jeden Zeitpunkt ¢ innerhalb der Versicherungs-

dauer bestimmen:
- (27)
., 11 e
S g W R Sl Bt
Ve V' 1 2 L 2 n—r1t

t t

"

. /4 , n o - . N
(1—21t) (14 E) (1— ) (1&-._/@)

Dies ist eine gebrochene rationale Funktion von #; wir
wollen ihre Nullstellen bestimmen, bzw. die Wurzeln
der Gleichung ,V— V' =0.

Vorerst formen wir (27) ctwas um, indem wir
beide Briiche auf gemeinsamen Nenner bringen und
im Zihler nach Potenzen von ¢ ordnen; es kommt:

e SR L. R i

o & (1_);::)(1th)(1—-,1'9)(1_?)( )
o\

WO

[+ n;{ﬂ;’ 7 -
o T el ¥ )
[F1=—3~4—2)

1 = 0 [ — O - pan’]

[t"]=0.
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Aus (27% und (27" folgt unmitteibar :
Die Gleichung |V — CT7’ =0 besitzt die reellen
Wurzeln

t=0,
b=,
An (A 4 1)—n2il —2
fie= W ),., =1 (28)
i&/\,/y 8

Dass dic Wurzeln ¢ =0 und {==# auftreten, ist selbst-
verstindlich, denn

V=,V'=0

Anders verhilt es sich mit der dritten Wurzel, welche
wir mit ¢ bezeichnen wollen und welche in (28) ange-
geben ist. Liegt diese Wurzel innerhalb des Intervalls
0 < t<'n oder anders gefragt: unter welchen Be-
dingungen ist dies der [all?

Vorerst die Ungleichung # < #n ist stets erfiillt;
sic lisst sich nidmlich umformen in

1 1 1 1 )
—_—— 1 29
ni +n}t' nt ni s (29)

: N : 1.
Da aber sowohl 4 als auch A’ kleiner als 1 ist,

s0 1st |
e "
A =

1

¥ N,

folglich, wenn A, und A, zwei positive Grossen be-
zeichnen,



1
T A
L—14A
ar 1A,
Daraus kommt
1 1 1 1

n A +nl’ T nA onl ==l =, 1,
il |
Die Bedingung (29) ist somit stets erfiillt, es ist also stets
< m.

Die zweite Bedingung, dass ¢ > 0 sei, also

20 44)— n AN —2

Wik =@
ist wegen nAl" >> 0 dquivalent mit
2n (A 4+4)—n'2ld —2>0 (30%)

Diese Ungleichung (30%) besagt, dass zwischen den drei
Grossen 4, 4" und » eine gewisse Bedingung erfiillt
sein muss, wenn die zwei Reservekurven ,V und ,V"’
ostlich der Ordinatenachse einen Schnittpunkt besitzen
sollen. Wir losen diese Ungleichung nach A" auf;
es folgt

, 1 2—2n4
il W e s i 300
= n 2—mnl (30
oder .
1 2—2np,

T N

n 2—mnn
i



g LU |

. -1 .
Der Faktor T ist wegen A<—2 gicher ein
7

=N
positiver echter Bruch. Wenn somit 4 bestimmt gegeben
ist, so kann 4" nur das Intervall

durchlaufen, wenn die Funktion ,V— V" im Intervall
0<Zt<_n eine Nullstelle besitzen soll. Wir kleiden
das gefundene Resultat in den Satz:

Die Reservendifferenz ,V— V' erleidet im Inter-
vall 0 <" t<n stets einen Zeichenwechsel, wenn die
Sterblichkeitsintensitiit nach der zweiten Uberlebens-
ordwnung der Bedingung (30°) geniigt.

Wenn /:Lg__—%ﬂ ist, so fallt der Ort des
n 2—mni 4

Zcichenwechsels in den Punkt { = 0; wenn

W s , so findet der Zeichenwechsel
no 2—ni

_ . 1 .
links vom Nullpunkt statt. Ist 4’ =y 80 findet der
, | e
Zeichenwechsel im Punkt ¢ — »n statt; ist 4 >W’ S0

fallt der Schnittpunkt ¢ ausserhalb des Intervalls,
rechts von t=m=n.

Beispiel zum Zeichemvechselsatz.

. 1 3
/yﬁ—O— t — 15

5
P
T30

11
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1.00000

t v TV V=7

0 0 0 0

1 0.03347 0.03527 — 0.00180

2 06722 07061 — 0.00839

3 10128 10603 —0.00475

4 18565 14154 — 0.00589

5 17087 17714 — 0.00677

6 20545 21286 — 0.00741

7 24093 24870 —0.00777

8 27683 28468 — 0.00785

9 31817 32082 —0.00765
10 35000 35714 —0.00714 |
11 38735 39368 —0.006338 |
12 42526 43048 —0.00522 |
13 46378 46756 —0.00378 |
14 50296 50500 — 0.00204 |
15 54286 54286 0 |
16 58353 58122 4000281 |
17 62505 62022 -+ 0.00483
18 66750 66000 -+ 0.00750

19 71097 70078 4 0.01019
20 75556 74286 + 0.01270

21 80138 78667 -+ 0.01471

29 84857 83286 4+ 0.01571

23 89728 88245 1+ 0.01483

24 94769 93714 4 0.01055
25 1.00000 0




i
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Wir fassen die gefundenen Resultate iiber die
Zusammenhinge zwischen der Sterblichkeitsintensitit
und der Hohe der Reserve noch kurz zusammen: Der
Sterblichkeitsparameter 4 kann variieren zwischen den

Grenzen A=—0 und l:%; dann bewegt sich die

Uberlebensgerade in nebenstehender Figur im schraf-
fierten Intervall. Jeder Lage der Geraden entspricht
eine hestimmte Reservekurve, und zwar lehrt die Unter-

: .1
suchung, dass, wenn A zunimmt von 0 bis =ty dann

nicht etwa die Reserve ,V bestindig abnimmt, sondern
nur bis zu einem Minimum, das erreicht wird fiir eine
bestimmte Lage der [ -Geraden, und hicrauf wieder zu-
nimmt. Zwei bestimmte Lagen der [ -Geraden (d. h.
zwei verschiedene Werte von 4, 4 und 4") fithren in
einem bestimmten Punkt ¢ auf die gleiche Reserve, wenn
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2n (M +A)—n*ld —2 .
:t ,*tl’
X I8t7)

Wenn die Gerade, welche die Uberlebensordnung
darstellt, sich zwischen den Lagen I und II (vgl. die
letzte Figur) hinbewegt, so schwankt in jedem Punkt

A

. ) . t
t die Reserve zwischen den zwei Grenzen — und
n

V7 hin und her; V¥ bedeutet die in § 4 behandelte
Grenzfunktion. Sémtliche Reservekurven verlaufen also
zwischen der Geraden g und der Grenzkurve , V7.
Die Untersuchung zeigt uns somit, dass — trotz
der elementaren Voraussetzung iiber die Rechnungs-
grundlagen — die Reserve eine recht komplizierte
Funktion der Sterblichkeit ist; ecine Anderung der
'Uberlebensordnung kann auf eine grossere, aber even-
tuell auch auf eine kleinere Reserve fithren. Die Be-

") Vgl hierzu die erste Figur in § 8; die Werte 7 und 71
sind zwei solche Werte 1 und 1’, welche dieser Gleichung geniigen.
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urteilung der Hohe der Reserve nach einer Anderung
der Rechnungsgrundlagen erfordert also stets grosse
Vorsicht.

§ 8.
Einfiithrung eines andern Sterblichkeitsparameters.

Die Hypothese von Moivre hat die Annchmlichkeit,
dass wir nur einen einzigen Sterblichkeitsparameter zu
beriicksichtigen haben, Der in unsern bisherigen For-
meln verwendete Parameter, der im endlichen Intervall
0 bis — variieren kann, ldsst sich nun wie folgt durch

"
einen in einem unendlich grossen Intervall variierenden
Parameter ersetzen.

Y

Die Uberlebensordnung hewegt sich bei Verdnde-
rung von A im schraffierten Gebiet!). Setzen wir nun

n+h=o—zx (o)

"y Der Einfachheit halber gehen wir in dieser Figur nicht
von H Personen, sondern von [/, Personen aus.
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so hat & diec in der Figur angegebene geometrische
Bedeutung. Aus o) ergibt sich sofort der Zusammen-
hang zwischen 4 und %, nédmlich

(#)

und umgekehrt

()

Die Grenzen von % sind somit, wie man schon
aus der Figur erkennt, co und 0. Fiihren wir diesen
neuen Sterblichkeitsparameter 7 in unsere frithere For-
mel (6) ein, so wird diese zu

Tf:l__(l"—%) (1“”"-:2_,’?_} (31)

! (1=

Diese einfache Reservenformel eignet sich sehr gut,
um alle unsere frithern Schliisse zu verifizieren. Wir
wollen uns hier enthalten, dies zu tun, und nur be-
‘merken, dass der in § 7 gefundene Zeitpunkt ¢ , welcher
den Schnitt von zwei Reservekurven bezeichnet, unter
Beniitzung des Parameters % die einfache Gestalt an-
nimmt

_2RA

n

tszn



et Y, = e

IL. Teil.

§ 1.
Einleitung. Das Gompértz-Makehamsche G.esetz Y.

In Wirklichkeit lisst sich, wie eingehendere Unter-
suchungen gezeigt haben, das Absterben einer Gesamt-
heit von Personen nicht durch einen einzigen Parameter
(Moivre) charakterisieren. Die Sterblichkeit ist vielmehr
eine komplizierte Funktion mehrerer Parameter. Die
Eirfahrung lehrt vorerst, dass — abgesehen vom Kindes-
alter — mit wachsendem Alter die Sterblichkeit be-
stindig zunimmt. Dieser Tatsache muss man bei der
mathematischen Formulierung Rechnung tragen; dies
kann man mit der Annahme, dass sich die Sterblich-
keitskraft (Intensitit der Sterblichkeit) jedes Alters in
zwel Teile, einen konstanten und einen mit dem Alter
wachsenden Teil, zerlegen lasse

pur)y=A4+ Y(x),

wobei der variable Teil Y (x) in gleicher Weise wachse,
wie ein Kapital durch Zins und Zinseszins; wir sagen:
Die Einheit von Y (z) nimmt in gleichen Zeiten um
gleichviel zu (Hypothese von der konstanten Aufzinsung
der Sterblichkeitskraft).

Angenommen némlich, die KEinheit wachse in

1 @ 0 0
— der Zeiteinheit um — , also an auf 1 +E . Dann
7 m

1) Wir folgen in der Ableitung dieses Gesetzes dem Gedanken-
gang von Prof. Dr. Moser (Vorlesungen S.S. 1914: Die Konstanten
der Makehamschen Uberlebensordnung).



y .1 b / )
wiichst 1+')(Tz,m P der Zeiteinheit an auf (1—{—--’-%) :

)

. (1—}—5—) = (1+%)— Nach der Zeit n - 1 ist somit

m m
die Einheit angewachsen auf

(’1+ i)

oy
Gehen wir nun von cinem Zeitnullpunkt x, aus;
. . L, |
in der Zeit x—x,=m(x—x,)— ist Y(x) angewachsen
m
vom Anfangswert Y(z,) auf

Y(r)=Y(x,) - (1 + _‘f-)m(m_%)

m

Lassen wir m sehr gross werden, also die Zeit-
teilchen sehr klein, so wird, wenn wir zur Grenze
m=—=o< iibergehen,

V() =Y (z,) - €7

Bezeichnen wir abkiirzend den konstanten Faktor

Y () - e* mit B, ferner e’ mit ¢, so wird
Y(@)==DBc", so dass u(x)=—A4 Bc".
Da aber
lm: x5 \é--j‘,,.(:c);da:: % - EA’C—%

so wird, wenn gesetzt wird

—A4
S§—e¢

: } 8

I =gty (1)
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Diese Formel heisst das Gompertz-Malkehamsche
(7esetz. Die Erfahrung hat gezeigt, dass dieses Gesetz
mit grosser Treue die Resultate der Beobachtung wieder-
zugeben vermag; daher seine héufige Anwendung zur
analytischen Ausgleichung von Sterbetafeln und zu
theoretischen Betrachtungen.

Aus o) folgt umgekehrt

_ 1§
= Log?, Vi Log%}—Log ¢

und daher

w () == Log !

S

~+ ¢" Log ¢ Log ; (1%

Es treten drer Parameter s, g, ¢ auf, welche ge-
wohnlich den Bedingungen geniigen?):

V=851 l
0<9<1‘ (2)

g >1

£

Will man nun den Einfluss einer Verdnderung der
Intensitidtsfunktion wp  auf Grossen der Liebensversiche-
rung analog wie im I. Teil dieser Arbeit untersuchen,
so kann man dies dadurch, dass man sich dic Ver-
inderung der p-Funktion als durch Variation jedes der
drei Parameter s, g, ¢ entstanden denkt, und demnach
in den auf Grund des Makehamschen Gesetzes wuf-
gestellten Formeln fiir die Versicherungswerte der Reihe

1y Es sei hier bemerkt, dass das Makehamsche Gesetz auch
dann einen Sinn beibehilt, wenn statt (2) die Bedingungen erfiillt

sind: ¢<1, s<1, wihrend g% 1 sein kann. Vgl. Vorlesungen
von Prof. Dr. Moser im W.-S. 1916/17.
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nach jeden der drei Parameter s, g, ¢ variiert und
den Finfluss dieser Variationen untersucht.

Bis jetzt nahm man an, dass fiir fast alle Absterbe-
ordnungen der Parameter ¢, bzw. dessen Logarithmus,

einen beinahe unverdnderlichen Wert besitzt, nédmlich
10

log ¢ o0 0,04 "). Schon Makeham hat auf diese Eigen-
tiimlichkeit der Konstanten ¢ hingewiesen; er schreibt
z. B. im J. 1. A. %), Bd. XIII, 8. 347: _ ... that this
important constant (¢) differs from the others in the
formula in being independent of the conditions which
determine the mortality in different classes of indi-
viduals. . .. % Ahnlich fussert er sich im Bd. XVI,
S. 345: ,In my paper ,The Law of Mortality* J stated
that ./ had found the constant ¢%), in the formula
above quoted, to be nearly the same in different ob-
servations. The average value of the common logarithm
of ¢ in the best observations appears to be 0 - 04, very
nearly. ... “ Dann weiter unten: ,I may add that
Mr. Woolhouse, in constructing his Mortality-Table
according to the formula above mentioned, takes log
g = - 04 as a sufficient approximation to the true

value, ... “

Die Ergebnisse neuerer Sterblichkeitsmessungen

lassen jedoch darauf schliessen, dass es mit dieser
10

Konstanz von log ¢ doch nicht so weit her ist. Man
sche z. B. die Zusammenstellung der Konstanten s, ¢, ¢
fiir 80 verschiedene Absterbeordnungen im Aufsatz von
Blaschke: ,Die Todesursachen bei dsterreichischen Ver-

Y Vgl z B. Jorgensen, Grundziige einer Theorie der Lebens-
versicherung (1913), p. 71.

) Diese Abkiirzung soll verwendet werden fiir ,Journal of
the Institute of Actuaries®.
) Makeham verwendet statt ¢ den Buchstaben q.
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sicherten nach fiinfjdhrigen Geschiftsperioden im Zeit-
raume von 1876—1900“ in den Osterreichischen ver-
sicherungswissenschaftlichen Mitteilungen [9. Bd., erstes
Heft (1914), 5. 33]. Dieser Zusammenstellung entnchme
ich folgende Werte:

10
} log ¢ Abweichung von 0,04
Osterreichische Tafel 'Y 0,0459954 +0,0059954=15%o

Osterr. -ungarische Tafel 4 H(;]._'('rlo) 0,0281115 —0,0118885=—230%,

Auch fiir viele andere Tafeln erreicht die Abwei-
chung vom hypothetischen Wert 0,04 betréichtliche
Werte. Die von Makeham ausgesprochene Vermutung,
dass die Konstante ¢ ,unabhiingig sei von den Bedin-
gungen, welche die Sterblichkeit in verschiedenen
Klassen von Personen bestimmen®, wird somit durch
diese neuen Sterblichkeitsmessungen widerleyt. Es ginge
daher nicht an, kurzerhand log ¢=0,04 zu setzen,
wie es dieser Autor vorgeschlagen hat.

Diese Tatsache bewog mich, im nachfolgenden
nicht nur die Variationen der Parameter s und g,
sondern auch diejenigen des chbenso wichtigen Para-
meters ¢ in ihren Wirkungen auf die Versicherungs-
werte zu verfolgen.

§ 2.

Der Barwert
der kontinuierlichen Leibrente, ausgedriickt durch
die unvollstindige Gammatunktion.

Der Barwert der kontinuierlichen Leibrente 1,
d. h. ciner Leibrente, die in unendlich vielen gleich-
missig iiber das ganze Jahr verteilten Terminen mit
unendlich kleinen Raten bezahlt wird, ergibt sich aus
der Formel
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_ 1 ooT -
af‘” = Ty/‘U Y l:r+r Sdr (3)
0

Fiir das Folgende ist es vorteilhaft, die Intensitéits-
funktionen der Verzinsung und der Sterblichkeit ein-
zufithren,

=5
s g :
o :‘Edz:g([&dt ()
Ferper ist
dl
m+t R ‘U.- Lt
lm+c - di T
oder
d Log{ = Mgy dt
Log ’ZEJ” :%/”m-u dt
v 0
folglich
Z T “ T:! o{i
QZH_ :e,O/‘L“"H . (ﬁ)

X

Fithrt man die Substitutionen («) und () in (3) ein,
so wird

Em :/EJ{[Cm+t+(ﬁ)-(lt . (Z'[ 1) (4:)
0

Analog ist der Barwert der temporiren Leibrente

) Jorgensen, Grundzige ciner Theorie der Lebensversiche-
rung (1913), p. 138. '
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£Tn

(E :/.onctbm+t+6)-dt ) dl' (4”)
0

Aus (4) und (4%) ist ersichtlich, dass sowohl @,
als auch E;ﬁzl bei wachsendem Zinsfuss sowohl als auch
bei wachsender Sterbliclikeitsintensitiit abnehmen.

Wir gehen nun daran, fiir die Absterbeordnung
einen bestimmten, analytischen Ausdruck, das oben
angegebene Gompertz-Makehamsche Gesetz, zu setzen,
und werden zeigen, dass sich alsdann Ew durech eine
bekannte transzendente Funktion ausdriicken ldsst. Wir
gchen aus von Formel (4).

Nach Makeham ist

S 1 x4t . ‘ 1
Py s == Log e + ¢ Logec Log n

| . 1 , M |
f("’m+t+d) « dt = (Log—;+ ())’L’ ~+ ¢ Loge¢ Log-g;i-ag«(;
0

/

PR T S
el Log?—l—(hog—s——kd) T
m[ . 1 N
+¢ ,4037 e
Wir setzen nun abkiirzend
i y 1 R
I. ¢"Log—=41>0
Y

und erhalten demnach aus (4):

o0

1
/. —(Log— o 7—AcT
a Ae’/e“o"s"l'a) T dr

@€x

0



so dass
Logu — Log 4 Grenzen:
T ==
Loge _ : l "
0| 4
dr:——i— : El}j |
Log c " O ’ O
i ee 6—|—L0g—1~
= g @ TR et . du
= Logec u
1
m. ——— =¥,
Log ¢

W0 wegen r)‘>0,—1;>1, ¢ >1 stets £ <70.

Es ergibt sich somit folgender Ausdruck fiir den
Barwert a,

oo

A
- e — - -
T 4" - Loge
7
Diese Formel wurde zuerst von Makeham auf-
gestellt!). Sie wurde ferner von Clintock?), Blaschke?)
und andern verwendet.

- Das Integral in (5) hat die Form des Eulerschen
Integrals II. Art. Fiihren wir nun mit Hiilfe der Defini-
‘tionsgleichung

H J. 1A, XIIT und XVIIL

2y J. 1 A., XVIIL

%) Mitteilungen der ¢sterreichisch-ungarischen Versicherungs-
techniker, Jahrgang 1902, ferner Versicherungswissenschaftliche
Mitteilungen, 9. Bd., 1. Heft, Wien 1914.
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s P co
u f—1 — k—1 ) -
[e u -(Zu:/e‘-w -d'sz—}—/e”-ukl-d'z.o
n V2

Q

oder

I'(k)= P, (k) + Q,(k) (6)

wo 4 >>0, zwei Funktionen

A

1);_(41‘5) :]‘wé-ﬂ w
0
Q= [ e - du

2
oo
ein, welche wir im Gegensatz zu I'(k) = [ e v du
b
(Gammafunktion)  wunvollstindige  Gammafunktionen
nennen, so geht (5) in die geschlossene Torm iiber

= o Q,(k) (M)

" M Loge

- Damit ist der Barwert der kontinuierlichen Lieib-
rente mit Hiilfe einer in /£ ganzen transzendenten
Funktion €, (k) ausgedriickt?); und zwar haben im
vorliegenden Fall die untere Grenmze 4 und das Argu-
ment £ die in I und III gegebene Bedeutung

A=¢"Log jT =0

S
d‘+Logi (5)
]{:——-w—];ag-‘—(}—<0

1) Diese Funktion wird auch etwa die Prymsche Funktion
genannt. :



Die Funktion a_w wurde in der Form (7) zum ersten
Male von Blaschke') gegeben; er berechnete fiir die
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Grosse % folgende Werte:

Tafel

| i=—0 i =0.05
‘ RB. F. — 0.05865 —0.57018 |
| 4. F. — 0.05340 —0.61340 |
| H" — 0.06784 —0.60227 |
30 Am. —0.06638 —0.57970
i (fotha — 0.04494 — 0.57992
I Carlisle — 0.08949 —0.62979

M — 0.06055 — 0.67743

Aus dieser Tabelle und aus den Resultaten andever
Ausgleichungen ist ersichtlich, dass fiir alle gebriuch-
lichen Absterbeordnungen und Zinsfiisse die Beziehung
besteht

— 1< k<0 (9N

Die Formel (7) war fiir Blaschke der Ausgangs-
punkt zu sehr interessanten Untersuchungen. Diecse
Formel enthélt nédmlich nur noch drei Bestimmungs-
sticke 4, k, ¢, wihrenddem die Formel fiir die Le-
benden eines bestimmten Alters allein vier Konstante
und das Alter, also fiinf Bestimmungsstiicke enthiilt und

g /

1 ,Uber eine Anwendung des Sterbegesetzes von Gompertz-
Makeham, von Prof. Dr. E. Blaschke, Mitteilungen des Verbandes
der osterreichischen und ungarischen Versicherungstechniker, Wien
1902. Blaschke verwendet statt ¢, (k) das Zeichen (k). -
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in die Formel fiir die Leibrente noch ein sechstes Be-
stimmungsstiick, decr Zinsfuss, hinzutritt. Blaschke ver-
wendet diese Tatsache zur Konstruktion eines wvoll-
staindigen Leibrentensystems, d. h. ciner Tabelle, welche
gestattet, die Leibrentenwerte fiir eine beliebige, nach
Makeham ausgeglichene Tafel und fiir einen beliebigen
Zinsfuss zwischen 0.1°5 und 5. %o fir alle Alter von
250—100 zu entnehmen; als Grundlage fir dieses
Standardsystem“ wihlte Blaschke die Tafel H".

Es kann nicht unsere Aufgabe sein, hier auf die
Iirgebnisse der sehr interessanten Untersuchungen
Blaschkes einzutreten,

Doch sei hier auf die Tatsache aufmerksam ge-
macht, dass der kiirzlich verstorbene dénische Mathe-
matiker J. P. Gram, ohne die Arbeit von Blaschke zu
kennen, auf dasselbe Verfahren verfallen ist?), d. h.
mit Hiilfe einer sogenannten Universaltafel die Leib-
rentenbarwerte fiir eine beliebige, nach Makeham aus-
geglichene Tafel und fiir jeden beliebigen Zinsfuss direkt
zu bestimmen ; die beiden Autoren kommen unabhéngig
voneinander im wesentlichen auf dasselbe Resultat;
allerdings ist das Verfahren von Gram als das all-
gemeinere zu bezeichnen, weil seine Formeln fiir dic
temporiire Leibrente gelten, wéhrend Blaschke mehr
die lebenslingliche Rente ins Auge fasst.

Bei dieser Gtelegenheit sei bemerkt, dass man eine

zu a ganz analoge Formel fiir die gewdhnliche post-

1) Die sehr interessante Arbeit Grams, betitelt ,Om Makehams
Dodelighedsformel og dens Anvendelse paa ikke normale Liv*
ist veroffentlicht in der Zeitschrift ,Aktuaren®, I. Heft, 1904.

12
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numerando zahlbare Leibrente a, erhalten kann. Setzt
man nimlich in

e Z‘}‘D:Jc«I»-l
="
das Makehamsche CGlesetz [ — ks” 9°° ¢in und verwendet
die Abkiirzungen A = — Log(vs), 4= ¢* Log —}]m S0
wird
i N “p(htich)
—
=1
wihrend (10)
‘;m: eﬂ, ] E(rk+},cf) . e
=0

Damit ist sowohl a_ als auch ¢ mit der in der ganzen
Mathematik so tiberaus wichtigen Exponentialfunktion
¢® in Zusammenhang gebracht.

§ 3.
Finige Beziehungen aus der Theorie der Gamma-

funktion. Darstellung des Barwertes @, durch
Kettenbruchentwicklungen.

Da wir uns im folgenden mit der durch Gleichung
(7) ausgedriickten Beziehung, in welcher die Gamma-
funktion auftritt, zu beschiftigen haben werden, wollen
wir in einem besondern Paragraphen die fiir unsere
Ableitung in Betracht fallenden Relationen aus der
Theorie dieser Transzendenten zusammenstellen. Wir
stlitzen uns dabei in erster Linie auf die beiden Werke
von Dr. N. Nielsen: ,Handbuch einer Theorie der
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Grammafunktion“ ') und ,, Theorie des Integrallogarithmus
und verwandter Transzendenten* ).

Aus den Definitionsgleichungen

i
g —u fo—
P}_(k)::fe cuw e du

0

-

P (k) -+ Q,(k)= e“u’“" du == I'(k)

ist ersichtlich, dass die Funktionen P und @ von zwei
Verédnderlichen % und 4 abhangen. Betrachtet man 4
als einen Parameter und % als die unabhdngige Variable,
so erhilt man die gewdhnliche unvollstindige Gamma-
funktion ; ihre Theorie ist von vielen Autoren aufgebaut
worden; eine ziemlich ausfithrliche Darstellung findet
sich z. B. bei Dr. H. Bier: (Dissertation, Bern 1912),

Sieht man dagegen % als einen Parameter und 4
als die unabhingige Variable an, so stOosst man auf
eine besondere Klasse von Funktionen, welche den

Integrallogarithmus

o0

zz(e“’):—[?‘- %

und die Krampsche Transzendente
L(z) = [ - du

1) Leipzig, 1906,
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als Spezialfille enthilt; es ist das Verdienst der Mathe-
matiker Schlomileh und Nielsen, diese Zusammenhinge
aufgedeckt zu haben; es sei besonders erwihnt das
schon zitierte interessante Werk von Nielsen iiber den
Integrallogarithmus.

I. Wir setzen vorerst 4 als konstant voraus, so
dass % die unabhéngige Variable bedeutet. Durch Ent-
wicklung der Exponentialfunktion in eine Potenzreihe
und nachherige gliedweise Integration folgt

‘ A -k k41 k-2
Dy [ u k—1 4 A A 1 4 B
P,;(/‘)“—E/e CU duh—}—t‘—--—k+1+§k+2 s
-—.5'=oo (— 1)3 )vk'-Jrﬁ' .
PB=) 5T Fra (11)
§=0

Daraus folgt, dass die P-Funktion die Punkte 0,
—1, —2,... —mu,..- zu ecinfachen Polen hat, mit

den Residuen = wo =0, 1, 2,...). Da auch
n! . : 4

~ die Funktion ['(k) die némlichen Pole mit den ném-
lichen Residuen besitzt, so folgt, dass die Funktion

Q,(B)=T"(k)— P,(k) (a)
eine in k ganze, transzendente Funktion ist.
“Aus (11) ergibt sich
P+1)+e* A=k Pk (12)
anélog wegen (o)

Qk+1)—e" - 1=k Q) (129
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Die Funktion P,(k) lasst sich in folgende, von

Legendre gefundene Fakultitenreihe entwickeln

§=oc ll{'-*'—-.’?

Py=e": 2-4 REFD)- (it o)

S

(13)

IL. Setzt man dagegen % als Parameter und 4 als
unabhiingige Variable voraus, so gelangt man zu Funk-
tionen von der Form

P, k):f?‘ N
0

o0
~

Q4 k)= j e du
2

Wegen («) folgt:

AdQt,ky  dP(4k) :
A T T T an (1)
Bezeichnen wir mit /() den Integranden 2" ".e",
so folgt
di

an_ / f) - du= — ()

'_—-—*'—‘—-;Lk_l . 8;. (15)

Von diesem Differentialquotienten werden wir in
den folgenden Paragraphen Gebrauch zu machen haben;
wir kénnen ihn auch wie folgt erhalten:



Aus (13) folgt

dP N BT ()
Zk(ﬁ—}—l) (k+s—1D(k+5)

= 7+s
Z k1) (kFs)

)! —1-+5
—<k—1>e>;@ DEGFD - (=145 7

d. h.

SPLE ——1) - PO, k—D— P,

und unter Anwendung der Rekursionsformel (12):

dP(, K = e
g% ARy

folglich wegen (14):

dQ(;L, k) L ‘é). ) )l-c—l

di R 7
wie oben.

Fiir den Spezialfall 4 =0 erhalten wir die Funktion

. w—udu
Q(/,,O):fe =,

ihren entgegengesetzten Wert bezeichnet man als den
»Integrallogarithmus von " %,

lie) = (2, 0)#__/ i (16)
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Auf weitere Einzelheiten aus der Theorie dieser
Funktionenklasse brauchen wir hier nicht einzutreten;
dem Integrallogarithmus speziell werden wir in §§ 6
und 10 wieder begegnen.

In diesem Zusammenhang sei jedoch erwéhnt, dass
fir die Funktion @ (z, ») einige interessante Ketten-
bruchentwicklungen existieren, welche man Legendre
und Nielsen verdankt und die uns gestatten, den Bar-
wert Em in einen konvergenten Kettenbruch zu ent-
wickeln. In dem schon erwihnten Werk von Nielsen
finden wir nédmlich folgende Kettenbriiche:

€T

, e’
O Q="
X —f— —“T
14—
2 —y
x -+ g
1+ 33—
x + 17¢
1 —v»
o e
e o x
T R |
L 2 —9
) X
14 —
L4
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(L) Q(x,»)=

__el'-:c"
— 1(1—v»)
*'H“’”*‘” : 2(2—)
B —fReg 3G—)
m—-{-—5~—-w—x+7__v“m
dV) Qz,»)=
-;i':-:z:_l'_ 77777777
(1——0})3,
o ie—y
ol ) 2(3—»)
Bfell = 3(4—9)

Die Entwicklungen (I) und (II) rithren von Le-
gendre, die Entwicklungen (1II) und (IV) dagegen von
Nielsen her; sie gelten fiir positives 2 und reelles ».

Nun fanden wir

— QML k)
a  — 3
® Loge

so dass beispielsweisé aus (I) folgt:

— 1 1
I» s
(9 Sy i—n -
1
14 ‘
l+2i“g
1~
P c, PNy
b-{-H_' S
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WO

6+ Log

. i 1
A== L0g7>0, h— — — 0.

Log ¢

_ ; L. . :
Der reziproke Wert — ist mit Hiilfe der Int-
o
&

wicklung (II) durch den Kettenbruch darstellbar:

1=k
) L —iLege[t4 -+
a".": l
i

S

7
14—
2
T

Beispielsweise folgt noch aus (ILI) die Entwicklung:

1 1

(110 PP —
Loge ;11 4

_ 1(1—k)

. 2
/.+3~_k—} _— 56K
5 2l e

2—1r)

welche zur weitern Verwendung geeignet zu sein scheint,
wihrend (I?) und (II*) hierfiir nicht sehr taugen, da 4 im
allgemeinen kleiner als 1 ist und diese Entwicklungen
daher nur langsam konvergieren.
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§ 4.

Der Barwert
der kontinuierlichen Leibrente, ausgedriickt mit
Hiilfe einer hypergeometrischen Reihe. Zusammen-
hang zwischen unvollstiindiger Gammafunktion und
hypergeometrischer Reihe. Eine lineare Differen-
tiaigleichung II. Ordnung fiir die unvollstindige
Gammafunktion.

H. Poterin du Motel erwiahnt in seinem Aufsatz
,Technique de Passurance sur la vie“ in der fran-
zosischen Ausgabe der Enzyklopéddie der mathematischen
Wissenschaften ') folgende von H. A. van der Belt?)
herriihrende Formel fiir den Barwert der kontinuier-
lichen Leibrente, bei Voraussetzung des Makehamschen
(resetzes:

— _F(=k 4 L ra+-k) an
*  —kLogc — k Log ¢

wobei F'(—k, 4) die Summe der speziellen hyper-
geometrischen Reihe

42
A

T+HE+D
1 }'l
T AFBEFR G H T

bedeutet, welche man erhélt, wenn man in der all-
gemeinen hypergeometrischen Reihe

A
]'+1—|—-/,':+ +or

1) Encyclopédie des sciences mathématiques pures et ap-
pliquées, tome I, volume 4, p. 531.
*) Archief voor de Verzekerings-Wetenschap 8 (1906).
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a(a+1)ﬁ(ﬁ—|—1)w2+___
y(&r+1) 2!

lﬂ(“?ﬂayax):l_i“gy_ﬂ%‘l_

A
f=1,y=14%k, a= , setat und alsdann « gegen

co streben lidsst. & und 1 haben die oben, in § 2
angegebene Bedeutung.

Es darf jedoch nicht iibersehen werden, dass
Me. Clintock die néimliche Formel, wenn auch in etwas
weniger eleganter Gestalt, schon viel frither gegeben
hat 1).

Eine andere Bemerkung betriftt die Grossenordnung
von Z; an der betreffenden Stelle?) der Enzyklopidie
wird behauptet, dass 1 stets ein positiver echter Bruch
sei; es lisst sich jedoch leicht zeigen, dass i nur so
lange kleiner als 1 ist, als das Alter x der Bedingung
genigt

— log (Log é)
log ¢ '

&

beispielsweise fiir die Tafe_l M* nur so lange o« < 71. —
Wir hatten nun fiir o, die Formel aufgestellt

A
4, = ——— Q,(k)
4" Liog ¢
Diese muss mit der socben zitierten Formel (17) identisch
sein, . h. es muss zwischen der unvollstindigen Gamma-
funktion und der hypergeometrischen Reihe ein direkter
Zusammenhang bestehen. Um diesen Zusammenhang
zu finden und die Identitit der zwei Barwertformeln
nachzuweisen, gehen wir direkt von der hypergeome-

) J. 1. A, 18 (1875), p. 245.
) pag. H32.



trischen Funktion aus, und zwar einerseits von der
hypergeometrischen Reihe, anderseits vom hypergeome-
trischen Integral.

Flapinam1 4202 SCHDEGH

_ () : o BT T o
= rHro—s)° (1( ? o
i o (1 =g . do

Das Integral konvergiert fiir alle Werte von x,
vorausgesetzt, dass die reellen Teile von g und y —§
positiv sind, also

R >0
Ry—p >0;
die Rethe konvergiert nur, wenn |x| <7 1 ist.

L
Fiir =1 und durch die Substitution = —"
o
gehen die Ausdriicke, wenn der Index 1 gleich wieder

weggelassen wird, iber in:

F(a,l, ” f;;): 1 +%x+(1+3)ﬁwz+m

a

_ % /I ( —s)‘/—‘-’-(1 . %)_jads

Die Reihe konvergiert fiir |a| < |al, das Integral fiir
alle Werte von «, vorausgesetzt, dass H(y — 1) > 0.
Lassen wir nun o der Grenze oo zustreben, so

wird die Konvergenzbedingung fiir die Reile

d. h. diese konvergiert nun fiir jeden endlichen Wert
yon .
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llmesF(a 1, %, T) —

=00

+

+}’(7+1)+

.. 1
' 5 _‘ Sx
- h,fni“’r(q,(,y_)l) (=5 '(1“ a) s, Ry) > 1.

Nun ist aber

—
. s o
limes (1 -, —): Pl :
a

a=o0

daher

] b 12
ﬁmes/a—s)H : (1*”) s =

a=co (04
1]

1
:/(L—s)}'—2 ™ . ds;
0

im letztern Integral setzen wir 1 —s==1u, so dass

es iibergeht in

@ x
e . s
— [ " dw
cry—l
! 0

—e"r' P (y—1),R()>1Y

1) Diese Bedingung ist hier identisch mit der, dass y nicht

gleich 1 oder 0 oder einer negativen ganzen Zahl sein darf.
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e . I'(y)
W h beriicksichtigt wir e
enn noch beriicksichtigt wird, dass T —1)
—y — 1 ist, so folgt schliesslich aus diesem Grenz-

ibergang:

P , X
‘LiiebF(a717/? a)““l—f_ + 7(7’+1)+

=@—1) " P (y—1) (18)

womit der Zusammenhang der unendlichen Reihe mit
der unvollstindigen Gammafunktion gezeigt ist; dieser
Zusammenhang ldsst sich auch ohne Verwendung des
hypergeometrischen Integrals zeigen, wenn man be-
denkt, dass die Reihe die Form der Legendreschen
Fakultdtenreihe (13) hat.

Setzen wir nun speziell x=—=1,

y—1=F%, so
erhalten wir aus (18): '

/

2

A A

FEbI=trrtagnesn
—ke . 17" Pk);

setzen wir dies in der eingangs gegebenen Formel
(17) ein, so kommt

L [T k)
» ] Loge¢ | i L Pﬁ‘(k)f

a

Q; (k)
»-v——"-——\ 1
J

= T Tg o {6 — P

und damit ist die Identitit der beiden Formeln (7)
und (17) nachgewiesen.
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Mit Hiilfe des gefundenen Zusammenhangs zwischen
der Funktion P (y — 1) und der hypergeometrischen
Funktion #'(a, p, y, x)

1) - e”sgl_" - Py—1)= }iriles F(a,ﬁ, y,%)

p=1

(v

muss es moglich sein, eine lineare Differentialgleichung
IL. Ordpoung fiir die unvollstindige Gammafunktion
herzuleiten.

Die Funktion F(a, f, 7, «) ist ein partikulires
Integral der hypergeometrischen Differentialgleichung

d2y

D z(l—=) o

+ly— (s 1) Y —apy—o

welche man auch schreiben kann

. d*y : 4y

M 1—2)——+4ly—1—(a &) e —

1) =o)Ll —1— D] g
—afxy=01"

Denn es gelten die Differential-Relationen

(1) iy _ %
d log « dx

('V) . g e == x _dm

Y Heinrich Weber, Die partiellen Differentialgleichungen der
mathematischen Physik (1912), Bd. II, p. 12.
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Aus (u) und (») ist ersichtlich, dass

L :diloy - und & ¥ - == dz .
dlog * &% d log” —i( d log" x
L

a

Man erhilt daher aus (1) fiir f = 1 und wenn & durch

a o y
— ersetzt wird :

o
a’y
11 (1_5?>___‘_
= . 'dlog2w+
B [ 1\ 7 dy .
+_7_1—(1+;>w dIoga:_bcyHU

Diese Differentialgleichung besitzt als partikuldires
Integral die spezielle hypergeometrische Reihe

(1Y) F(a,l,y,f)_1+ +(1:;13,.2+

Wir lassen nun a der Grenze oo zustreben; dann
geht die Differentialgleichung iiber in

oder wegen den Beziehungen (u) und (»)

d?/

(11D

Ein partikulires Integral dieser Differentialglei-
chung ist



¥ = limes I (rx, 1, ) + + SO o
=00 ’\1 (}’ + 1)

=0—1-¢ 27 P -1

oder, weil es auf einen konstanten Faktor nicht an-
kommt:

(I y=e"2"" - P (r—1)

Das allgemeine Integral dor Differentialgleichung
(I11) lautet

M) y=" 2, Py — 1)+ ()Y

wo () und C, zwei willkiirliche Konstanten bedeuten ;
dieses gilt in der ganzen Ebene, vorausgesetzt, dass
y nicht gleich 1, 0, oder gleich einer negativen ganzen

Zahl wird.

Wir betrachten nun speziell das partikuldre Inte-
gral (ITI%), ndmlich

\ ’ I-_}J
y=¢ x - P (yr—1),
woraus

4 4P ,
y === a g e e (l—y+a) Po

1 Die Differentialgleichung (III) ist namlich ein Spezialfall
der Differentialgleichung @y’ + (y—e)y’— ey =0, deren allgemeines
Integral darstellbar ist durch y=¢s - G(u, yy )40 - 21V 0 G ati—y,

. 1 .
2—y, @, wobei Ga,y, »)= 1-|— 2,(:;__!_3)m2—}—--- . Siehe

E. Goursat, Cours d’analyse mathemanque (1911), tome II, page
464. — Setzt man hierin «=1, so erhilt man unschwer den Aus-

druck (IITb).
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dz

’ 2 J—y X 2 By 1 - d'Pﬂ»'
y=gs=ta - i ~+2e 2 7 ( —y+‘%)—da) &

+o a1+ —yay1— %ﬂ P,

7 als

v, v, v enthalten alle drei das Produkt e”x—

Faktor; dieses konnen wir daher beim EKinsetzen in

(III) absondern und die Differentialgleichung lautet

demnach, wenn wir ordnen nach dem Grad der Glieder:
] q' P, aP,

@) et @yt =0

Dies ist die gesuchte Differentialgleichung der P -
Funktion. Wir erhalten somit aus einer Spezialisierung
der hypergeometrischen Differentialgleichung den Satz:

Die unvollstindige Gammafunktion y = P (y—1)

geniigt der linearen Differentialgleichung I1. Ordnung
d* d

PR ROl

X

Weil die ¢ _-Funktion sich von der P -Funktion nur
durch eine Konstante, ndmlich /'(y—1), unterscheidet,
s0 gilt dieser Satz ohne weiteres auch fir y = () (y—-1).

Kirsetzen wir fiir spiter y—1 durch %, so lautet
die Differentialgleichung

4’y dy (
y . — Q
vt @+1—R) =0 (19)

welche y = P(x, k) bzw. y = Q(z, k) als partikulires
Integral enthélt?).

") Der direkte Nachweis ergibt sich ibrigens ohne weiteres
aus der Integraldarstellung dieser Funktionen.
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Die mit diesen eng verwandte Funktion

o N w*tz 1 2 1
y_ﬁL(a,)_fe -dt_—z—Q(m ,?)

ist ein partikuldres Integral der Differentialgleichung

d’y dy
§ 5

Yariierung der Konstanten ¢ des
Makehamschen Gesetzes.

Nach diesen mehr mathematischen Betrachtungen,
die wir an die Barwertformel (7) anschlossen, kinnen
wir zu unserm eigentlichen Thema iibergehen,

Aus der Formel (4) des § 2 ist sofort ersichtlich,
dass d_m wdchst, wenn w abnimmt, also z. B., wenn
beim Makehamschen Gesetz der Parameter g erhiht
wird [vgl. (1%) in § 1]. Damit ist jedoch nur der Sinn
der Verinderung von @ bei Verinderung von g, d. h
nur das Vorzeichen des Differentialquotienten

da,(9)
ao

bestimmt ; wir konnen aber den Wert dieses Differential-
quotienten selbst berechnen und damit die Funktion
c[ (¢9) niiher untersuchen,

Der Parameter ¢ bewegt sich zwischen den Grenzen
0 und 1 und liegt gewdhnlich nahe bei 15 ist y=0,
80 ist A=—oo; ist g =1, s0 ist 1=0.



Daher P

a = Limes —— d
@) =g e
Wir werden zeigen, dass diese Grenzwerte in der
Tat existieren. Vorerst nehmen wir
FQk 0k
Limes ———— — Limes ——-
j=c0 l A=co 8 I{-
Wegen k<0, 4> 0 wird der Nenner beim Grenziiber-
gang gleich 0, der Zahler wird gleich dem Grenzwert

oo

Limes @Q, (k) —= lees [e W du =01,

d=co =o0o
&

Wir erhalten demnach die unbestimmte Form - R
deren wahren Wert wir nach der bekannten Regel
finden.

ad e,
— = Limes — i :
0 J=o0 _d_ (““) )k)
da )
somit nach Formel 15, § 3:
0 2

— — Limes P
k=7 | —Aq k—1
0 J=oc0 F— . 8, —|— e kA

') Denn beim Grenziibergang fillt die untere Integralgrenze
mit der obern zusammen und der Integrand verschwindet an der
obern Grenze.
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folghch aus (a):

(@) 0 (20)

g=0

Nun bestimmen wir den in (§) enthaltenen Grenz-
wert, Die unvollstindige Gammafunktion ist nur fir
/%0 definiert und wir werden sogleich sehen, dass
@, (k) fiir 4 = O unstetig wird. Setzt man néimlich in

0

Q, (k) = /—e;“ ™" duw direkt A==0, so resultiert

@ (k) = I"(k)

4

Diese Schlussweise wére jedoch falsch; es ist ndmlich

Limes (), (k) = I'(k)— Limes P, (k)
=0 ’ A=0 ’
Die P-Funktion ist definiert durch

B, (k)= s e du
/

Wenn 4 =0 wird, so fallen beide Integralgrenzen zu-
sammen, allein es existiert kein endlicher Grenzwert

Limes P, (k) ,

A=0

da k <70 vorausgesetzt ist und der Integrand an der
untern Grenze sich verhilt wie

—1 Tu |
u @ =g | =00,
u=0 u u=0
und das Integral selbst wie
; o
/th_l'di(:T = 102,

v =0



Somit ist fiir k<0
Q)= I'(k) 4o .

. G ()
Dagegen existiert Limes ———"(T-—, denn dieser ist
=0 2
gleich
I'(ky— P, (k
s . AL
2=0 A 5
R A
— Limes s
J=0 kA
1
— >
k— 0

‘Wir haben also das Resultat, & <7 (0 vorausgesetat:

— k&)

Limes —————=1 (21)
A=0 A

Demnach resultiert, falls (21) in (f) eingesetzt wird:

- 1
(a'm)gz‘l ~ kLoge

Aber wegen Beziehung (8), § 2 ist
— k Liog ¢ =d + Log%

— ] —+— ",

: ; 1
Denn fiir g =1 ist n = w = Log — = konstant; daher
g

schliesslich

- 1 1
(@), = = (22)
"™ 4 Log i e
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Die Richtigkeit dieser Formel kann man leicht nach-
priifen, indem man direkt in der allgemeinen Formel

, 1
(4), § 2 den Wert oy, durch Log e konstant crsetzt.

Die Formel (22) besagt, dass, wenn die Uberlebens-
ordnung durch dic Form

=04 D)

dargestellt wird, die Zahlen der Lebenden also eine
geometrische Reihe bilden, der Barwert der Leibrente
unabhingiy vom Eintrittsalter, also konstant ist?). In
dem Werk ,Actuarial Theory* von W. A. Robertson
und F. 4. Ross?®) ist dieser Spezialfall besprochen und
gezeigt, dass dann auch die Funktion éx, die ,voll-
stindige Lebenserwartung® des 2z-jihrigen, zu einer
Konstanten degeneriert. In der Tat! e

-z ongh:

‘ /
8;._' :/ 92—{—‘[ . dT / d’lf == i
€T Log .

0

Wir zeigen nun weiter, dass (r& den grosstmoglichen
Wert von a »(g) darstellt, d. h. dass diese Funktion

mit g monoton wichst.
b i 1 ;
Weil A=c"Log—, so ist
g _

1y Formel von Dormoy; sie ist ein Spezialfall der Make-
hamschen Formel, nimlich der Fall, wo g=1 gesetzt ist.

%y Dies trifft auch zu fiir die gewdhnliche Leibrente,
. == L :
T 1—ws

%) Verlag Oliver and Boyd, Edinburgh and London, 1907,




di o _
dg g g ]mgi
und daher
da(y) da, ) b da,
dy ~— di dg = glLogl di
g
Aus
AR, )
= TLoge
folgt

Log EJ; ==/ — k Log 4 + Log Q(4, /) — Log (L.og ¢)
woraus durch Differenziation nach 1 folgt:

1 dax 1 ﬁﬁ_zﬁ
a, di A QGLk

1 Log ¢ \
== p IJog' P 1(/{."‘-—— /t) LOg G == Q()—}€57]
1

. I Tan L1
- LLoge 1(A k) Log ¢ };wl

Aber
(A—Fk) Log ¢ =¢" - Log%ﬂ Log ¢ -+ Log 2— -+
== J"((L- + J )
folglich
da, \

- S . . 29
73 5 Log p \(l“:c ~+ 0) a 1’ (23)




und hieraus

a0 10D o

g Log 7 Log ¢

Nun gilt ganz allgemein die Formel
da, )
—=gq_ (¢t +d)—1 (25)

(le‘L‘

Diese lasst sich auf elegante Art beweisen, wenn man
direkt von der Formel ausgeht

?L;r _-_.__j E./ ('L"53‘|*t+0) - di % d T y
i §
b}

aus welcher folgt:

da -
’WTT“T‘* f j (g F-0)- A6 (w— / Fl% (T —+d) - dt) cdr
; 6 4

d : d ;
Ao (:“‘_»,;_}_f, +d)= at (‘U'~‘«‘+45 +9),

so dass

123 S) e di —
d Kﬁ k—/ “/‘( a+t+ " (—— ” d)tfz(l - d
= (u,+ 9 e f<-m+¢+a>- @ e —
o 3
0

_—f;f('“x_"t_l—a)‘dc ‘ (.”a«+r+(\) dT
0

O

= (‘u.;c e 0) . (;r —
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WO

J / /(Nm }_{"E‘h) [ - (l”;;-;—%—r + ()) . dl’ 3

oder wenn substituiert wird

Y :[ (s, 0) - dt = /f(f) . di

du

f(t) _(iuq-j..!...y +9d},

t=r

7—f du ¥ —

woraus folgt

ia, +Na —1
"ﬂ—(ﬂ ()“,,;— )

was zu beweisen war!).

Unter Beriicksichtigung dieser ganz allgemeinen
Formel ergibt sich nun, wenn wir der Deutlichkeit
halber dic partiellen Differentialquotienten setzen:

o
(0 a":z:

oa "B

L ox (25;1)
0y 1
g Log ? Log ¢

Da der Nenner des Quotienten rechts positiv ist,
so besagt diese Gleichung folgendes:
Ewn Anwachsen des Parameters g hat auf den
Eentenbarwert Em den entgegengesetzten Einfluss wie
eine Erhohung des Eintritisaliers (Satz I).

'Y Andere Beweise dieser Formel findet man bei Robeirtson
and Ross, p. 216, und N. R. Jirgensen, p. 147 und 148.
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Dieser Satz bestitigt uns unsere Vermutung; da
ndmlich bei Voraussetzung des Makehamschen Gesetzes
~die Rentenbarwerte bei wachsendem Alter = stets ab-
nelunen '), wie wir noch an einer spitern Stelle (§ 9)
niher ausfithren werden, so muss nach diesem Satz
ein Anwachsen des Parameters ¢ cine Hrhohuny des
Rentenbarwertes zur Folge haben; os ist daher wirklich

(26)

Der oben hervorgehobene Satz lisst sich auch aus
einer von Robertson and Ross durchgefiihrten Betrach-
tung ?) ableiten:

Eine Frhohung von B im Makehamschen Ausdruck

;“‘T . __Il_ B C:L'

hat den gleichen KEinfluss wie eine Erhohung des Alters ;
sel némlich

w =4+ B -, wo B >B,
so lidsst sich stets cine Grosse /i so bestimmen, dass

B = B¢,

woraus
o @t ath
W =A4 B =" wo x-+h>u.

Dieses Resultat sprechen die beiden englischen
Autoren in dem Satze aus: ,An increase in the constant
B has the same effect as increasing the age.®

Nun kann aber die Erhohung von

Be=Tiog g = Log%

1, Es handelt sich hier stets nur um erwachsene Personen,
das Kindesalter wird vom Makehamschen Gesetz nicht umfasst.
®) Op. cit,, pag. 233.
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nur herrithren von einer Verkleinerung des Parameters g.
Daraus folgt unmittelbar der allgemeinere Satz:

Fin Anwachsen des Parameters g hat auf die
Intensitiitsfunlction der Sterblichkeit und also auch
auf alle Versicherungswerte den gleichen Finfluss wie
ewnie Herabsetzung des Alters . (Satz 1),

In diesem Satz ist der als Satz 1 ausgesprochene
spezielle Fall der Leibrente &m inbegriffen.

Kennt man demmach fiir alle Versicherungswerte
den Einfluss der Variationen von ¢, so kennt man da-
mit auch den KEinfluss einer Herabsetzung (bzw. Er-
hohung) des Kintrittsalters = und umgekehrt!

Da die Relation gilt
A =1—4da_,
€ &
s0 kann man setzen
\ iz R k!
1—(u,+da, =4,

d. h. der Ausdrucklinks ist nichts anderes als die ein-
malige Priamie fiir die Todesfallversicherung 1 des x-
jahrigen, wobei statt der Zinsintensitit J die grissere
Zinsintensitit d'=u_--J genommen ist; A’, ist natur-
geméiss wie E_m positiv, woraus wegen '

d gw 4,
dg —

g Log % Loge¢

wiederum Ungleichung (26) folgt.

Ferner ist

A4 . da()
dg dg )



und
4Pl 1 da()
dy (a'm)‘f dyg
s #
s

Da fiir jeden Wert von ¢ zwischen 0 und 1 die
Ungleichung (26) besteht, so folgt

1 > (Iu’w + d) ' Ew?

. 1 ;
a, < P
Sl =T

Diese Ungleichung gilt fiir jeden Wert von g; einzig

d. h.
(27

: 1
fir g=0 (n,=co0) und g= (fww s g Jabee < )
geht sie in eine Gleichung iiber.

Ahnliche Ungleichungen lassen sich fiir 2 und 4
aufstellen; aus

_i>fuw+d"
a

&

folgt nimlich unmittelbar

—_1—— —d > u_,
0 o
d. h.
P >u," (27")
Ferner aus (27%):

_ g

e B Pl
Ay —~ w40

") Wegen a,, < Em und d < 4 gilt P, > P, und daher um
$0 mehr P, > 4 .
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- 5
—d 1=
t=da, > l—2 T3
d. h.
1 . .
£, > ——‘—_T_—B‘.“‘ (2 { )

u, -

TRinzig fir g =0 und y==1 gehen diese Unglei-
chungen in Gleichungen iiber.

Zusammenstellung.
7 " . a 4, | P,
0 OO 0 i oo
1 1 " |
1 e | U g 1Yy
Liog 4 w—d w—d )

Der Nachweis, dass Ex stets wichst, wenn der
Parameter g vergrossert wird, ldsst sich noch auf einem
andern Wege leisten. Wir geben auch mnoch diesen
Beweis an, und zwar deshalb, weil wir in § 10 von
diesem némlichen Verfahren, das nun entwickelt werden
soll, Gebrauch machen werden.

Wir setzen

1
I ==

') Dieser Fall besagt speziell, dass, wenn die Zahlen der
Lebenden eine geometrische Reihe bilden (Dormoy), die Pramie P
konstant und gleich der Intensilit der Sterblichkeit wird.
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, 1
/(g) == 1 1__ bl
¢® Log 7 Log ¢4 d + Log —

so dass wegen (24)

d&m (@) w, 0
dg

g Log — Log ¢ ' [f(g) '— E‘;;(y)]
| g

Aus dieser Formel schliesst man, dass @ _(g) nur dann
einen extremen Wert haben konnte, wenn

a,(g) = (y)

wiirde; ist /'(9) > a_(g), so ist a_(g) eine wachsende
Funktion.

g=0; f(0)=0=ua_(0)

. 1 s
g=1; fl)y=——g——=a,(})
Log%—-{-a‘
g=g, =" 2.5 flg)=F oo

g=00; f(e0)=—0.

Abgesehen vom Punkte g, ist /(g) eine stetige und
wegen :

df(g) _ c¢"Loge 0

i = >

eine monoton wachsende Funktion (siehe Figur).




fo)

Diese Funktion f(g) dient uns nun in schr an-
schaunlicher Weise dazu, das Verhalten von a (g) zu
untersuchen. Bis jetzt wissen wir

f(0)=a,(0)
f)=a,1).

Wiirden zwischen g=0 und g=1 noch andere Stellen
existieren, wo f(g)=a (g) wiirde, so miisste a_(y) an
diesen Stellen extreme Werte besitzen. Solche sind
aber nicht moglich, und zwar aus folgendem Grunde:

Angenommen, es existiere eine solche Ixtrem-
stelle g von a_(g), und zwar charakterisiere sie ein
Il_/[a:mm”r_wn ; demnach miisste a_(¢g,)=/(g,) sein (Schnitt-
punkt ). Da aber unmittelbar nach dem Maximum
die Funktion a(g) abnehmen muss, jedoch fiir g =1
wieder mit f'(g) zusammentfillt, so muss a_(g) bei dieser
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Annahme im Intervall g, < g <1 noch ein Minimum
besitzen; dieses miisste aber auch von der Form

1
} lu’a;—’_d‘ '—f(g)
sein, d. h. in diesem Punkte wiirden die Kurven a »(9)
und f'(g) sich schneiden; letzteres ist aber unmoghch
da, wie soeben bewiesen worden ist, f(gy) eine mit g
monoton wachsende Funktion ist. —

Damit ist nachgewiesen, dass die Funktion a_(g)
i Intervall 0 <Z g < 1 weder ein Mazximum noch ein
Minimum besitat.

Denn ganz analog kann man zeigen: Wenn EJ}
vorerst ein Minimum hat, so schneiden sich an dieser
Stelle die ci - und f-Kurve; da aber fir y—0 a
und / uberemstlmmen und a stets positiv ist, so musste
vor dieser Minimalstelle die Funktlon @, noch ein Maxi-
mum haben, welches auch auf / liegen miisste; um
von diesem Maximalpunkt zu dem hypothetischen Mini-
malpunkt zu gelangen, miisste man aber, da f(g)
monoton wichst, aufsteigen; dies ist aber widersinnig.
Die Unmbglichkeit extremer Werte der Funktion ?tx (9)
ist damit erwiesen.

Wir schliessen hieraus: Da die ;Lm-Funktion im
betrachteten Intervall weder ein Minimum noch ein
Maximum noch eine Unstetigkeit aufweist, ist zu.
schliessen, dass Ex (9) selbst eine stetige monoton wach-
sende Funktion st (‘de’nn a (1)>a, (0)) Daraus folgt,
wie oben: ‘ -

da, "
dg =
was zur Folge hat, dass f(g) >a,(g), d. h. die a-
Kurve verlduft stets unter der f-Kurve (vgl. die Figur
14
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oben);. diese Feststellung ist aber identisch mit der
Ungleichung (27%):
1 _

Dieses Verfahren, eine homplizierte Funktion in
einem gewissen Intervall mit Hiilfe einer einfachern
Funktion, welche mit dieser in den Grenzpunkten iiber-
einstimmt, zu untersuchen, werden wir in einem andern
Fall (Reserve, § 10) gut verwenden konnen.

Die temporidre Leibrente.

Die auf Ew (9) angewendete Methode lidsst sich ver-
allgemeinern und auf den Barwert der temporédren Leib-
rente anwenden. Ist ndmlich die Rente nicht lebens-
linglich, sondern nur = Jahre zahlbar, so erhalten wir
den Barwert

und bei Voraussetzung des Makehamschen Gesetzes
i ictt
0, = [u ce” - du
LR -k
A - Loge

%

. Log ¢ ]}' {

;y (o w] (o]
¢ | - Bt = |
s s fu e’ v du— [u e’ - du
Acht

oder

>,“.
A e L O () — |
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f‘-- o 2 — . - . a -
I<u.r n=oco geht o . in a  iber, denn @, , wird
beim Grenziibergang gleich 0.

Wir finden folgende spezielle Werte :

9="0; a,5(9)=0 l
AN e GO (289
g=1; %m(g)—T'_lu—[
Ferner ergibt sich der Differentialquotient
da, ,(9) 1= o) —(u,+9)a,, 28")
“y g Log L Log ¢
C g
Diesen kann man ersetzen durch
da,z(9)  1—0"- p,—@,+da,, )
9 g Log % Log ¢
g Log L] Log ¢
g
oder schliesslich
dam m(g) _ 4, e (E’T i “+u, - Ew ?fl) sy

‘9 q Log—;—Log ¢

Der Zahler enthélt lauter bekannte Versicherungswerte.
Von diesem Differentialquotienten beweist man mit
Hiilfe einer Funktion

e z:t:—|—n

Al — T(en_.
') Denn (S'U)ne’h(c D — . Laf 1) — p®. =

— _ . x
=4 n-prc—"Ew n|"
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. A1) n
1—e - (sv) |

o= w0

oder auf anderm Wege, dass er positiv ist. Dies hat

eine Reihe von Ungleichungen zur Folge, z. B.

A > Bt n, - oy
_ 1 —F

Oy < .
xrn )
o, + 0

_ L J- K
A’ I>Lm+ x n|
ke w,—+ 0

- w,+d B o

x n|

(28°)

Diese gehen nur fiir ¢ =0 und g==1 in Glei-
chungen iiber, so dass speziell bei Voraussetzung der

Formel von Dormoy folgt:

L i B
e utd
_rOE
@nl " w40
:Eﬂ"i_f-"'—d,q
er]” 1 —F.

n|

L.

P

1
wo w = Liog— =konst. , E. = (sv)"= konst.
o) I3 7 n|

Y FO =, 7O £V =a,351); LD 0.

dg

(28°)
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VI

6.

Variierung
der Konstanten s des Makehamschen Gesetzes.
Die Transzendente S (o, &) und ihr Zusammen-
hang mit dem Integrallogarithmus.

Der Einfluss der Variationen des Parameters s des
Makehamschen Gesetzes

u () = Log “,19_ + ¢ Logec Log-;~

ist im allgemeinen leicht zu untersuchen, wie sich schon
; . . 1
schliessen lisst aus der Formel fiir w_, wo Log =

als vereinzeltes Glied auftritt. Zudem ist eine Erhohung
von s dquivalent eciner Herabsetzung des Zinsfusses
(vgl. § 9 hiernach); schon hieraus folgt:

dﬁw (s)
ds

denn

da A/
x :“fzez)r . ____m—l—r g e B,

dod

Das gleiche ersieht man aus der eingangs gegebenen
Formel

o T
— - - d). dt
am:fe,/(u”+t+ e dr
0
0
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Wir geben nachstehend noch den Beweis mit Hiilfe
der Rentenformel

_ ¢ Q . (k)

aq —= ———
“ 2*Loge
um daraus einen Spezialfall herzuleiten.

HEs ist

da, dk 1 Oa,
ds ok ds  sLoge ok

—Logi- i7" q, (/L-)}

I

6E;v ¢ fi—% ?Qﬁ. (%)
ok Loge | ok

- Log—- - Q,(h)

e;' {0 Q; (k 3)

i*Log ¢

Fiihren wir nun eine neue Kunktion

S, k)= —~ ‘)’( ) -|-Loo- - Q, (k) (29%)

ein, so wird

oc, ¢ S,k 29!
(3k - l’c-LOgc (’4“1 ) ( )

so dass
da,(s) ¢

—— Sk 29°
ds s}t’”(Logc)z( ) 99

Die Funktion S(1, k) ldsst sich durch ein Integral
darstellen :
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(=]

0 ~u  k— 1 OQ_& k—
S().,k):%je w” 1-du—1—L0g7- [ezul Yodw
p i

o0
u
. ¥

" Tog u-du —{—f?‘ u* " Log /L “du
: ]

|

|

i
D'o““n fk—1 1
=] & =W (Logu—}—Log—[) -~ du
i
so dass

oo

S(h, k)— jE W Log - du (30)

A

Da 4 >0 ist, so ist wegen h = 1 auf dem ganzen

Integrationsweg A < w4 < oo der Integrand positiv, so-
mit auch das in positivem Sinn lings der reellen Axe
genommene Integral, so dass S(4, &) > 0. Damit folgt
aber aus (29°) unmittelbar

d&m(s)
ds =
(ranz analog ist (31)
da_—(s)
T T
ds J
Denn
da 3ot

i By s B
fu]” 1-8”'1“0%‘7 cdu -

~

K
ds s 2 (Log ¢)*

Eine Vergrosserung des Parameters s im Make-
hamschen Gesetz hat somit stets ein Wachstum der
Leibrentenbarwerte zur Folge. Dr. Julius Graf findet
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in seiner Arbeit!): _Welche Vorteile kann die An-
nahme einer analytischen Funktion fir die Absterbe-
ordnung in technischer Beziehung bieten?*, fiir die
gewbhnliche Leibrente, sowohl was das Verhalten in
bezug auf den Parameter g als auch in bezug auf s
anbetrifft, das gleiche Resultat. Ir geht beispielsweise
aus von

c® (c—1)

b,=35g

Fiir ein grosseres s wird, ¢ und ¢ konstant vorausgesetzt :

]; . S_gc‘tj (e—1)
m t s
und daher

Lo s

d. h. mit wachsendem « nimmt die einjihrige Uber-
lebenswahrscheinlichkeit und damit wegen

a’.n:]‘—*—vpm—l_vzpwpw-{—l—'_”

auch der Rentenbarwert zu.

Aus der Definition

2 |
N"—“‘
o
?
&
T
]
T
&
~

") VI Internationaler Kongress fiir Versicherungswissenschaft,
Wien 1909, Bd. II, 8. 429 ff.
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welche Funktion man als die vollstindige Lebenser-
wartung (complete expectation of life) oder volle mittlere
.. Lebensdauer des x-jihrigen bezeichnet. Auch diese
Funktion ist bei Voraussetzung des Makehamschen
(tesetzes durch eine unvollstindige Gammafunktion
darstellbar, némlich, weil £ fiir 6 =0 in

7 o Log? ~ Logs 0
17 T Loge Loge =
iibergeht, durch
‘ e’ _ be
6, — Q, () (32)

Was iiber die Funktionen a_(g) und Em (s) gesagt wurde,

gilt unverdndert auch fir ;m (9) und F’x(ﬂ), speziell

deg)  l—eu, ,

dg 1 ol

g Log 1 Log ¢

de (s) (32%)

ids =

S N == lonst
(eﬂ)q:1 1 == ;l: == KOnst.
Log ? J

Analog der Ungleichung Jf < 5 gilt fiir jeden

1
- l‘ "w +

Wert von g und s zwischen 0 und 1 die Bezichung

e (33)
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d. h. die volle mittlere Lebensdauer.im Alter x ist
stets kleiner als die ., Lebenskraft® des betreffenden
Alters. Einzig im Fall 4 =1 (Formel von Dormoy)
sind volle mittlere Lebensdauer und Lebenskraft gleich

gross, nédmlich fiir alle Alter konstant und gleich JL
u

Ferner gilt den Ungleichungen (32%) zufolge:

fiir jeden Wert von g < 1: few &7 1

1

Loz —

0g —

fiir jeden Wert von s< 1: em - (;x)s:l'

Im Spezialfall s =1 wird %k =0 und daher
wegen (32): -

x

e

@)= Toge 4O
somit wegen Formel (16), § 3:
b 5
o —e - li(e)
€)= Toge (34)

Nun fithrt aber diese Annahme, s==1, auf das so-
genannte Gompertzsche Gesetz [ =k ¢°. Wir finden
somit den Satz:

Folgt die Absterbeordnung dem Gompertzschen
(esetze, so ist die wvolle mittlere Lebensdawer des
a=jiihrigen durch dem Integrallogarithmus darstellbar.

* *

Wir wollen nun unser Interesse kurz der oben
eingefithrten Funktion
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S(J,,k)—fe " 1Log%du

oder

S(o, k=20 H)

+ Lo g—- @ (x, k)

zuwenden. Da @Q(x, k) in bezug auf & eine ganze
transzendente Hunktion ist, so ist auch S(x, k) in bezuy
auf k eine ganze transzendente Funktion. Im folgenden
ist stets o > 0 vorausgesetzt, da der Punkt o =0 fir
8(x, k) die ndmliche Singularitit bedeutet wie fiir Log «.
Nun ist

0Qx, k) 0P (v k)

_ok =13 (k)—————_,/1c ;
und wenn wir mit Nielsen die Bezeichnung
I (k)
¥l = T

verwenden 1Y), so wird

S, k)_—-.f‘(k)-W(k)+L0g%Q(w, k)moP(w J

5 ()

Nun beniitzen wir die in § 3 erwidhnte Legendresche
Fakultidtenreihe fir P (x, %),

i 5T

"
ZA /{(7{—}—1) (ks

§=0

P(l‘ ]1,

welche in der ganzen k-Ebene, mit Ausnahme der
Punkte 0,—1,—2,... Giltigkeit besitzt. Durch
Differenzieren folgt:

Y Ludwiy Schlifli verwendete fiir diese Funktion das Sym-
bol A(k). ~
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22 = "
Lyig_’ﬁl:Logm-P(m,k)—

k—{-—l L +h+s
Z k(?{%—l) (k- s)

$=0

't (£)

Bezeichnen wir mit » das allgemeine Glied der
neuen Reihe, so folgt aus

1! 1
._k_+..,_|_ ...... -

" k(k41) <k+n)

w . 1
; -1 ’ .
limes | "+ ‘: | limes

n=co M?Z/ i 1 N=o0 /f: + 7@ -|— 1 1‘

U

- limes |14 :

e (k+n+41) (;{+"'+A:41—n)

. * 3

=0,

womit die Konvergenz der Reihe nachgewiesen ist.
Setzen wir () in («) ein und beriicksichtigen die be-
kannte Beziehung aus der Theorie der gewthnlichen
Gammafunktion :

I'ky - k(k+1)-- - (k+s)=1"(k+s+1),
so folgt flir die Transzendente S(x, k) die Entwicklung
S, k)y=1 (k){If(k)—{—Logw—}—

1
S +k+1+ +k—f—q |
TEFs D) o

S=

4o (35)
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Diese Formel eignet sich fiir unsere Zwecke schr
gut, da die unendliche Reihe wegen 4<_1 (nur fir
die hochsten Alter wird 4>1) und — 1<k <0
ziemlich rasch konvergiert und die Werte von ¥'(k)
und °(k) leicht zu berechnen sind oder aus Tafeln
entnommen werden kénnen.

Aus der Definitionsformel (29%) ergibt sich die
Differentialbeziehung

08(x, k)  Qx, k)
5 B .
~oder
y 08 (x, k)

ox

Q(”:k):_

Unter Beriicksiehtigung der in § 4 aufgestellten Differen-
tialgleichung ergibt sich dann, dass die Funktion
y# =Sz, k) der linearen Differentialgleichung III. Ord-
nung genuigt:

(36)
d’y 4y
da’ + 1= da

2

H S

Die Formel (35) fiithrt auf einen interessanten
Spezialfall. Setzen wir nimlich k=1, so folgt:

Sz, 1):[5“ . Log% - de

&

o 1+ L + - +—1
1. — 2 1 .0
—I"(1)+ Log e S o

Tl 1)

§=0

oder wenn wir nach dem Vorgang von Nielsen die
Bezeichnung

Mo =145+ +S+1



S 7

einfithren und bedenken, dass /" (1)= — ' (Eulersche
Konstante), so folgt

S(m,l):f?‘ : Log% - du

J=co

— As41) oy
——C(C—Togux-+e T
1H!
~ (s+1)
— —C—Loga-¢e° Z —ls(f) a’ (37%)
8=1

Nun kann man aber das Integral direkt berechnen.

Nach Nielsen, ,Theorie des Integrallogarithmus und
verwandter Transzendenten“, p. 11, gilt die Relation:

x (m)
feta - Log t - dt:% [li(e®)— C—e™ Liog x— Loga|
0 :

Lésst man o unendlich gross werden, so folgt, da

a > 0 vorausgesetzt ist:

/.Et“ - Log t - dt = % |— ' — Log «] (n)

0
so dass durch Subtraktion von (m) und (n) folgt:

Fot - tagt s 4G gl

€T

1 w“‘u U 1 WA ax
—&fe Log7-du:——7[lz(e ) —e* - Log a]

o
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Setzt man hierin & =1, so folgt:
f?‘ : Log%— cdu=—1i(e"

oder wenn man statt « die Variable x setzt:

/?u ~ Log% cdu=—1i(e”) (37%)

&

Dies ist nichts anderes als unser Integral S(ax,1).
Sz, 1) =—1i(e" (37%)

Vergleicht man dies mit dem Resultat (37%), so
resultiert fiir den Integrallogarithmus die folgende Eut-

wicklung :
§=co
A

li(e®)=C - Logm—?’z

[= 1

3(13) o (38)

Diese Formel ist aber schon ldngst bekannt; sie
wurde zuerst von Bessel!) gefunden; Nielsen leitet sie
in seinem Werk ab mit Hiilfe des Grenzwertes

i (e%) — limes 22 @ W1+ 1)

=0 L4

wahrend wir sie hier als Spezialfall der Funktion S(.z, k)
gefunden haben. Gleichzeitig ergibt sich aus dieser
Untersuchung, dass die Funktion

y=>=8(x,1)=—1i(e")

der linearen Differentialgleichung I11. Ordnung geniigt

") Abhandlungen, Bd. IL.
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d*y d*y . dy ‘
x—+2)—-+4+-—=0 (39)
dos’® T + ) d’ +d-’1’

x

%

Fiir grosse Werte von x wird S(x, k) sehr klein,
wenn k als echter Bruch vorausgesetzt wird. Aus

S(x, k) :/Euuk*l - Log% cdu

folgt die Ungleichung
S(x, k) < a;k_lfgu : Log%—du

coder

S(e, k) < —a" - li(e?)

denn f(x)=x""" stellt den grosstmoglichen Wert der
Funktion f (w)=u""" auf dem Wege &< u < co dar.
Beispielsweise ergibt sich

10
8(10, 0) < —_?0& oder S(10,0) < 0,000 0004157
—1i(e" |
8(10, 1)< — X L oder S(10, =1) << 0,000 00004157

100
dagegen

§(10, 1) =—1i(e'’) oder S(10, 1) = 0,000 004157 1)

1) Dieser Wert wurde aus der Tabelle der Funktion /i (e®)

in den Funktionentafeln von Jahwnke und Emde (Teubner, 1909)
entnommen,
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§ 7.

Variierung
der Kounstanten ¢ des Makehamschen Gesetzes.
Zusammenhang zwischen den Variationen von «
in bezug auf alle 3 Parameter s, ¢, ¢. Einfiithrung
der ,relativen Variationen‘*. Die Gesamtvariation
yon a,.

Wie schon in der Einleitung zum II, Teil dieser
Arbeit betont wurde, ist es notig, auch die Variationen

des Parameters ¢ zu untersuchen, da neuere Unter-
10

suchungen ergaben, dass die Relation log ¢ o0 0,04
durchaus nicht fiir alle Absterbeordnungen zutrifft.

Aus

| KA A
W, == Log—é— + ¢” Logc Log v

schlhiesst man
0 i,

0¢

o)

und infolgedessen wegen

o0 T

&,=| 5! UatstDnat , g
0
sofort
a}iﬂv‘

=5 <0 (40)

D. h. wird im Makehamschen Gesetz der Para-
meter ¢ wvergrossert, so nehmen die Barwerte der
kontinuierlichen Leibrenten aller Alter ab. Der

15
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Parameter ¢ wirkt also entgegengesetzt wie die Para-
meter g und s ). '
Wir wollen nun auch hier einen Differentialquo-
tienten aufstellen und werden hierbei eine Beziehung
zwischen den drei Differentialquotienten

Oam oa, o a,

og > 0s ' dc¢
finden, welche einen interessanten Kinblick in die Ver-
kettung der 3 Parameter gestattet.
Setzen wir abkiirzend £ (4, k) =¢" 2F Q(4, k),
so lautet die Formel von Blaschke

3 — f(lak)’
% Log ¢

woraus

G, 1 g fO, B o 1y
MT”%_(Logc)Q g e ¢ f(’t’k)”o?l (@)

Die Konstante ¢ kommt sowohl in %, als in 4 vor;

m—_— i . @,
l:C ]JOg:(;, b‘;g*zﬂ.
1
dep bl i I
]{2_414'5@;3—_3 %IM?IJogc
0f(A,k)y of o4 a_f ok
“oc 84 d¢ Tk e
—~ | 1 X e"'A—";'S Ak —k
(ﬁ) :[a"r:(l”’a,—}— ())_"—'1";;—!'— IJOg(C’ ) & ¢

) Das nidmliche Resultat findet in seiner zitierten Arbeit
Dr. Julius Graf fir die gewdhnliche Leibrente.
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Setzt man dies in («) ein, so folgt unter Beriick-
sichtigung der frithern Gleichungen (24), (25), (29°):

oa, 1 oa, L - B
de  cloge \F o OBy Ty (41)
bzw.
GEH; 1 L 1L oa -
o T " TTegs W LesyLoge— st a,—
S(Lo 1—}—&) 4, ) (41%)
o &5 os J ’

Damit ist dargetan, dass der Differentialquotient

G
i

5o s 3 Komponenten besteht, aus 2 negativen und
oc '
einer positiven

oa

2 =T T4 10,
WO
gl %%
I— cLoggac 5g sl
II:mcLogc<
1 ;
Log;—{—d oa
M=o 55 = 0

wobei die Komponenten I und II gegeniiber III iiber-
wiegen.
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Die durch Verdnderung von ¢ bewirkten Varia-
tionen des Rentenbarwertes lassen sich somit auf die
Variationen in bezug auf die beiden Parameter g und
s zuriickfiihren. Die Gleichung (41%) kann auch wie
folgt geschrieben werden:

~ ~

oa

o i 1 . 7 £
— ¢ Log ¢ 50 _gLogg—Logcw -y —+ |
(L ! d) % _, 42;
+8 Ogg_i_ 0s — &, ( )

Diese Relation zeigt, wie seltsam die Variabeln
durcheinanderspielen; sie ist giiltig fir jede Absterbe-
ordnung, die nach Makeham ausgeglichen wurde, und
fiir alle Alter und Zinsfiisse. —

Man kann hier auch die Intensitdt der Verzinsuﬁ?
hineinbringen; aus der Leibrentenformel von Blaschke
kann man namlich leicht herleiten, dass

oa, 65@; 45
EI T} (#3)

Weshalb man beispielsweise statt (41) schreiben kann:

~

g oa, [— (L 1 ()‘) 0 a@ 0 Em_
slogt: o=ty g =+ |~ —

o x

Wichtig ist es nun, den relativen Einfluss eines
Jeden der drei Parameter und der Zinsintensitit auf
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.die Hohe des Barwertes zu kennen, d.h. zu wissen,
wie die Winheit des Rentenbarwertes fiir jedes Alter
durch diese Variationen beeinflusst wird; denn dass
diesen 4 . Verinderlichen“ s, g, ¢, d in den ver-
schiedenen Altersstufen ungleiche Schwankungen des
Barwertes a_ entsprechen werden, liegt auf der Hand.

Bezeichnen wir mit

Ag=g,—y,
As=s,—3,
To=rc,— e,
Ad==d,—¢

die wirklichen Variationen der 4 Grissen g, s, ¢, d
beim Ubergang von einem Leibrentensystem (I) zu
einem andern (II), so ergibt sich anndhernd als ,,ab-
solute Variation™ des Barwertes Ew der Reihe nach

. e 0@
Aa (g)=4yg y

" . da,

da,(s)=4s rre

(44%)

_ EIPIPR Ex

da_(©)=A4dc 3

A(%(()):Ad 0d




o994

vorausgesetzt, dass die absoluten Betriige Ag, As, Ac,
Ad geniigend klein sind. Wir definieren alsdann als
srelative Variationen™ des Rentenbarwertes, d. h. die
Variationen der Einheit des Barwertes, die Ausdriicke

. da,(9)
B (9)=—=
a,
Aa (s)
€&
B ()=——=
€ZT
(44Y)
da (c)
1 a
Qﬁm (C) _
aﬂ:
Ada_ (0
5 1y %0
aﬂ}
oa 65‘ 0
wobei die Differentialquotienten T ey e,
L 0y 0s 0¢
Ja
55 geméss den aufgestellten Formeln und aus den

Angaben der Absterbeordnung I. zu berechnen sind.
Liin Zahlenbeispiel wird uns bald ndhern Aufschluss
geben.

Wenn wir die absoluten Variationen addieren, so
erhalten wir als Ausdruck der Gesamtvariation des
Rentenbarwertes den folgenden:

da,==4a,(g)+ da,() + da,(c) + Aa,(9)
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oder unter Beniitzung von (41%) und (43):

s Ag  Ade 1 )
ACL,:(mm%Lo wa,)( “
2 g 5 gg g 57 —+
- L Ly —
4_(_13_*4_(5‘_;_ dc % s +r)s 04, . (45)
C, ¢ Log ¢ 0§
ﬁf'i_?i?v,
¢ Logc

woraus man sofort auch die relative Gesamtvariation

a.
——* berechnen kann.

a
a

Aus (45) konnen wir beispielsweise ersehen, dass

bei gleicher Grisse von As und AJ der Kinfluss von
s und 0 auf den Rentenbarwert absolut genommen

daher oo As. Wir haben damit eine mathema-

<
tische Begrindung des von Robertson und Foss auf
empirischem Wege gefundenen Resultates ):

,lt may be mentioned that an increase of 0,01
in the force of mortality is very nearly equivalent
to a rise of 1 per cent. in the rate of interest.

) Robertson and Ross, Actuarial Theory, pag. 232.
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Kin Bewspiel soll nun iiber die obwaltenden Ver-
héltnisse orientieren. Wir nehmen als Ausgangstafel
die franzosische A. F. 3° und wollen verfolgen,
wie gross fiir die verschiedenen Altersstufen die
Differentialquotienten

R |

N o ~
Uﬂw o 9

T €T
0 g

) (3.5' 7 0

S

ausfallen und hernach die absoluten und relativen
Schwankungen der Rentenbarwerte berechnen, wenn
wir jeden der 3 Parameter um eine kleine Grisse,
z. B. 0,001 variieren; wir greifen die Alter 25, 50,
75, (95) heraus.

Tafel A. F. 3°.

7= 0,098 4400 Tog ; 0,001 5612
5-=0,9949950  Log - — 0,005 0196
¢== 1,091 6817 Log ¢ = 0,087 7193

J = 0,029 5587

f = — 0,394 1925



% a, A Sy k)Y

| |
25 21,550 | 0,01399 14,7960 |
50 14,052 0,12539 23343 ||
5 5,369 1,12372 0,0828 ‘ |
95 (1,473) 6,49499 P 1

a) Werte der Differentialquotienten :

| oa oa. oa
@ & T @
' 0g 08 oc
l 25 1669,58 364,175 153,797
50 2629,24 152,455 279,673
5 2085,20 | 34835 266,851
(95) 803,30 : ?

Man sieht hieraus folgendes: Der Difterential-

@x

quotient erreicht viel hohere Betrdge als die beiden

-

andern, welch letztere von gleicher Grissenordnung
sind; die frither gezeichnete Kurve a_(g) steigt somit
sehr steil an, beispielsweise ist der zu ¢ g ¢ = 2629,24
gehorige Winkel ¢ oo 89”59'; eine sehr kleine Ver-
dnderung des Parameters g kann also schon betrichtliche
Verdnderungen der Rentenbarwerte nach sich ziehen.

) Die Werte dieser Funktion wurden gemaéss (35) berechnet ;
fiir die Funktionen 7'(k) und ¥ (%) wurden die Werte gefunden:
(k) =—3,71817; w(k)= + 1,01733. Fiir das Alter 95 wird
4 schon ziemlich gross; wegen der fiir solche Félle langsamen
Konvergenz der Reihe (35) wurde dieser Fall nicht weitergefiihrt,
doch ist fir z=95: S(2., k) < 0,0000 176. —



0) Die absoluten und relativen Variationen.

Ag=As=dc¢=1 0,001
@ - Aa in }_mzug auf’: o B in bezug auf
g s ¢ total g s ¢ total
25 | 1,66958 @ 086418 | — 0,15380 | - 1,87996 | 0,0775 | 0,0169 | — 0,0071 | 0,0872 |
50 | 2,62924 0,15246 | — 0,27967 | 4 2,50203 0,1871 | 0,0108 | — 0,0199 | 0,1781
75 | 2,08520 | 0,03484 - 0,26685 | + 1,85319 | 0,3884 | 0,0065 . 0,0497 | 0,3452
(95) | 0,80330 0,5454

8GG
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Aus dieser kleinen Zusammenstellung b ist crsicht-
lich, dass der Parameter s eine Sonderstellung ein-
nimmt; bei diesem nimmt ndmlich sowohl die absolute
als auch die relative Variation bei zunehmendem Alter
ab. Die Parameter ¢ und ¢ dagegen verhalten sich in
dieser Beziehung anders: Bei beiden nimmt die ab-
solute Variation des Barwertes a,x mit zunehmendem
Alter vorerst zu bis zu einem Maximum und hernach
ab; die relative Schwankung dagegen nimmt bei ihnen,
absolut genommen, mit wachsendem Alter zu. Diese
Resultate treten iibrigens viel deutlicher in die K-
scheinung, wenn man sie sich durch cine kleine gra-
phische Darstellung veranschaulicht.

Zusammenfassend kann man sagen, dass eine Ver-
danderung von s am stdrksten die Rentenbarwerte der
jungen Alter beeinflusst, wihrend cine Verdnderung
von ¢ oder g am intensivsten auf die Barwerte der
hiochsten Alter einwirkt.

Gerade dieses Verhalten der Variationen 3 werden
wir im folgenden zu weitern Untersuchungen beniitzen
kiénnen.

§ 8.

Untersuchung der mathematischen Reserve mit
Hiilfe der relativen Schwankungen von «_ .

Die Verfolgung des Verlaufs der relativen Varia-
tionen von a_ bei zunehmendem Alter gestattet cinen
Schluss auf das Verhalten der Reserve bei variablem
Parameter g.

Nimmt némlich in einem positiven echten Bruch
sowohl der Zidhler als der Nenner zu, so wird der
Wert des Bruches vergriossert, wenn die relative Zu-
nahme des Zghlers grosser ist als die relative Zunahme
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des Nenners; denn bezeichnen wir die zwei Werte
des Bruches mit o und o«  derart, dass

_a,
“= 90
. a
a "—“B‘f’

wo a' >a, 0" > b, soist o’ > a, wenn die Bedinguny
erfiillt ist:

o

—_— 1

a
oder

_
sy

@'@\

was zu zeigen war.

Sind speziell die Briiche a und « die folgenden

wo die a’-Werte aus der durch Variation von g ent-

standenen Absterbeordnung berechnet sind, so ist nach
dem soeben Gesagten stets

o~

a >a,
wenn die Bedingung erfillt ist:

a’ a
e, W (46)
aa:+t a:c
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absoluten Betrag nach klein ist — gesetzt werden:

- Oa,
m:qgj—}-ﬁg- 5

<&

J

_ __ da N
' o R )
Ayt ™= Gy s + Adg (-;vg - aq:+t[1 _i_ ’()Bm_;f(g)]

wo ¥ und B, die in § 7 ecingefiihrten relativen
Variationen von a, bedeuten. Daher geht die Un-

gleichung (46) iiber in
B,,,(0) > B, () (47)

Dies ist die Bedingung dafiir, dass

a!m—i-t s ai-{—t

a

a

!
&£ ax
und somit dafiir, dass

t Vw’ < tVa: (471))

Hierin bedeutet ,V_ die Reserve einer Todesfall-
versicherung 1 und ,V die ecntsprechende Reserve,
aber berechnet mit Hiilfe einer Absterbeordnung, welche
aus der vorigen durch Erhohung des Parameters g um
den kleinen Betrag Ag entstanden ist. Die Unglei-
chungen (47%) und (47" lassen sich durch den Satz
ausdriicken: ., Wenn die relative Variation des Renten-
barwertes in bezug auf den Parameter g eine mit dem
Alter z wachsende Funktion ist, so ist stets
Vi<<,V.,

t
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d. h. die Reserve um so kleiner, je grosser der Para-
meter g ist?).*

Es soll jetzt gezeigt werden, dass in der Tat die
Variation T_(g) eine mit dem Alter «x wachsende Funk-
tion ist. Zahlenméssig haben wir dies schon in § 7 an
einem Beispiel bewiesen, indem nachfolgende Werte
berechnet wurden (4. F. 3%0):

z  B,(9)
25  0.0775
50 0.1871
75 0.3884
95 0.5454

Man kann diesen Nachweis aber auch etwas allge-
meiner fithren:

= Alg (:1— — b, — (}\
g Log ) Loge¢ ‘% ¢

so dass

0 ‘Bm (9) o 2]-; (__ i ‘ aaw B'u.x)
nE g Log —}Log ¢ (

') Hierbei ist natiirlich auch wieder vorausgesetzt, dass s
und ¢, sowie &, konstant gehalten werden.



0L (9)
~3g = (48)
Ay = Ew (w, 4+ 9) . 1 J
— : - o — ¢ Log — (Log ¢)°
1 ( (%)2 g 7 (Liog ))

¢ Log i Liog ¢

Aber weil (Log ¢)’ sehr nahe an 0 liegt und ¢” Log ; =X}

abgesehen vom Greisenalter, ein echter bruch ist, so gilt
@ 1 ’
¢ Log; (Loge¢)" o0 0

so dass (48) nahezu identisch ist mit

035 An 1 ﬁd J
o XD B T L U NP
” g Log ] Loge (@,)
was zu beweisen war.
Die Differenz
T — i, e~ )
A= L O i (Log ¢)*

A2

(a,)
ist tibrigens auch fiir sehr hohe Alter positiv, wic man
aus folgendem DBeispiel (4. . 3°0) erkennt:

i A

95 - 0,00028
50 - 0,00086
75 4 0,00124
95 - 0,00062
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womit Ungleichung (48%) neuerdings als richtig erkannt
ist. Den oben ausgesprochenen Satz konnen wir nun
positiw aussprechen wie folgt:

Iir eine nach Makeham ausgeglichene Absterbe-
ordnung ist die relative Variation des Rentenbar-
wertes in bezug auf den Parameter g eine mit dem
Alter x wachsende Funktion. Daraus folgt: /e
Reserve einer Todesfallversicherung nimmt stets al,
wenn der Parameter g wichst.

Als Formel:

e, ) (49)

Wir werden versuchen, in § 10 mit Hiilfe von unvoll-
stindigen Gammafunktionen einen direkten Beweis zu
erbringen.

Die Untersuchung der Reserve bei Variierung von
s wird zweckméssig im Zusammenhang mit der Frage
der Zinstuss-Variierung erledigt; dies soll im folgenden
Paragraphen geschehen.

§ 0.

Kinfluss einer Zinsfuss-Erhohung
und einer Verinderung des Parameters s auf die
mathematische Reserve bei Todesfall-- und ge-
mischten Versicherungen. Der Parameter ¢ und
die Reserve der Todesfallversicherung.

I. Wenn die Absterbeordnung dem Makehamschen
‘Gresetze folgt, so lédsst sich mit aller Schiirfe beweisen,
dass die Reserve bei wachsendem Zinsfuss abnimmt.
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Wir gehen aus von einem Satze von W. Sutton '),
weleher besagt, dass die Reserve um so grosser ist, je
niedriger der Zinsfuss ist, vorausgesetzt, dass die Leib-
rentenwerte der Alter x, «#—+41,... eine monoton
fallende Reihe bilden. Zum Beweis dieses Satzes geht
Sutton von der Iormel aus

Jo=1—(0— VL~ Verl) o1 —-1'Vm_‘_t_]), (a)

By o

aus welcher man schliesst, dass es geniigt zu unter-
suchen, wie sich die Reserve einer ein Jahr dauernden
Versicherung bei Verinderung des Zinsfusses verhilt.

a a
A, .. v O [ z
Lz a, vp, (1 —}—um)

oder kiirzer

a

Ty

Nach » differenziert:

da
v i Ygg T ]
== B 2 2 (00)
dv p v (L4 a)

Den Zahler suchen wir durch eine Reihe auszudriicken :

w=v-p o gt e e

wobeil

1 J. 1. AL (17), 1873, pag. 227/28.
16
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hieraus folgt

da

.v%:vp—-’—27)22p+3033p+_‘_+}L_U).ip+‘_.

:am—{—vpam+1+v22pa,m+2+... l
a(l+a)—a,+vpa,+o' pa,+ - |

woraus sich der Zihler des obigen Quotienten als die
Reihe ergibt

da 2 ‘
Lo P A+ a)=vp(a, , — ) +v P (d, ,— a’m)_+ e

Wenn nun a, grisser ist als alle folgenden Rentenbar-
werte

o ; 5 5 av .
so ist sicher dieser Zidhler negativ, und —— ist als-

dv
dann positiv, d. h., wegen v = ———, je niedriger der
)

Zinsfuss, um so grosser ist die Reserve V.

Analog gilt: wenn « grosser ist als a

93—}‘-1 m}_g ¥

zu, wenn ¢ abnimmt; all-

Byygyer 8O nimmt  V, 4

gemein, wenn die Leibrentenwerte der Alter «, x4 1,
x -+ 2,... eine stets abnehmende Reihe bilden, so
nechmen die Reservenwerte V., V, g 3 stets  zu,

wenn der Zinsfuss abnimmt. Woraus wegen (a) un-
mittelbar folgt, dass die Reserve .V  wdachst, wenn der
Zinsfuss abnimmt. Dieser Satz hat ohne weiteres auch
Giiltigkeit fiir die Reserve einer gemischten Versiche-
rung ; man braucht im Beweise einzig die Entwicklung
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ch:uf)m+-022px—{----

durch
1

H—
. . 2
a'mf?—‘-_]:?}pm-{“u pr—f——!—v ' n—]pm

zu ersetzen und erhiilt dann als Bedingung fiir

d tVa: n| > 0
dv
an Stelle von
@y = a’:c—i—l = Gpyg s (¢)
die Bedingung
B =i = Bpt1 78— Cppang — " ()
welche sich aber auf (¢) reduziert, wie man sofort aus
L Da:+m
e D x-{-m
€

erkennt.

Der nichste Schritt besteht nun darin, zu zeigen,
dass bei Zugrundelegung des Malkehamschen Gesetzes
die Leibrentenbarwerte der aufeinanderfolgenden Alter
esne monoton fallende Reihe bilden. Am einfachsten
zeigt man dies anhand von Formel (4), § 2, indem
man bedenkt, dass beim Makehamschen Gesetz die
w-Funktion mit wachsendem Alter stets wichst (dies
ist ja auch die Grundidee Gompertz.) Damit ist schon
bewiesen, dass Em > as:+1 -t Em“ > ..., WOraus wegen
der Beziehung

L\DI =

am:aw——-

sofort auch die durch (¢) ausgedriickte Tatsache folgt.
Dies erkennt man iibrigens direkt aus [vgl. § 2, Formel

(10)]:



=W i i
o, = Z 'g[_rh-i-i.(c’—l)_l

i

: 1 , 1 , N
worin 2 = ¢ Log —, h = Log ; nimmt nédmlich »
V8§

und damit 1 zu, so werden alle Summanden der Reihe
und damit die ganze Summe verkleinert.

Halten wir dies mit dem Satz von Sutton zusammen,
so erhellt:

Liegt der Absterbeordnung das Malkehamsche Ge-
selz zugrunde, so gilt ohne Vorbehalt der Satz: Die
Reserve der gemischten und der Todesfallversicherungen
nimmt zu, wenn der Zinsfuss abnimmd.

1. Einfluss einer Veriinderuny des Parameters s
auf die Hohe der Reserve. Der soeben bewiesene Satz
gestattet eine interessante Anwendung, wenn wir uns
vor Augen halten, dass eine konstante FErhohung der
Sterblichkeitskraft bei Voraussetzung des Makehamschen
Gesetzes dquivalent ist mit einer Erhohung des Zins-
fusses ).

Die konstante Krhohung der Sterblichkeitskraft
betrage Log—i—, wo o ein positiver Bruch ist; dann
geht

1, = Log L + LogiLogc ¢’
: P 7

iiber in
’—Loov~1 -+ Lo ] Logec”
- C
1) Siehe W. A. Robertson and F. A. Ross, op. cit., p.232.

Vergleiche hierzu auch die in vorliegender Arbeit an Formel (45),
§ 7 angeschlossene Bemerkung.



woraus

und

Daher wird der Barwert einer Leibrente nach der
Absterbeordnung [’ :

~
LT ) T 2 r__ ¢ t )
Ctm(l)—Z o tpm_z‘v Q - tpa:

a, (1) =a,)

wobel a_(2') den Barwert des w-jihrigen nach der ur-
spriinglichen Absterbeordnung ¢ , aber zum neuen
Zinsfuss ¢ bedeutet, wobei i" sich aus der Gleichung

oder

r
=T

bestimmt; da o als positiver, echter Bruch voraus-
gesetzt ist, folgt hieraus '

S,
B P

1 1
142" = 141

cd hi >

Nun kommt aber, wie man sicht, eine konstante Er-
’ 1

. i r g 5

hohung von u = 4 + B¢ = Log = -+ Bc¢” auf nichts

anderes heraus als auf eine Verkleinerung des Para-
meters s; da sie nach dem soeben Bewiesenen auch
iquivalent ist einer Erhohung des Zinsfusses, so konnen
wir folgendes Resultat hervorheben:

Eine Erhohung des Parameters s im Makehamschen -
Greselz ist cquivalent einer Herabsetzung des Zinsfusses,
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hat also genau den gleichen Finfluss auf die Hohe der
Versicherungswerte wie diese. Insbesondere folgt, ge-
stiitzt auf den vorhin bewiesenen Satz: Die Reserve
nimmi zu, wenn der Parameter s zunimmi. Als Formel
ausgedriickt :
oV
0s

=~ 0 (51)

Diese Feststellung gilt nicht nur fiir Todesfall-, sondern
auch fiir gemischte Versicherungen. Ist dies nicht ein
Widerspruch zu dem im I. Teil dieser Arbeit zitierten
Moserschen Zeichenwechselsatz? Nein! Der Zeichen-
wechselsatz setzt nimlich bloss eine Erhdhung von «
in einem gewissen Zeilbereich innerhalb der versicherten
Dauer voraus, wihrend hier ¢, in der ganzen Absterbe-
ordnung als erhtht gedacht ist.

Interessant ist, dass die Reserve — im (iegensatz
zum Leibrentenbarwert — auf die verschiedenen Varia-
tionen der beiden Parameter s und ¢ verschieden reagiert.
Ein Erhohen des Parameters ¢ bewirkt eine Abnahme
der Reserve, ein Erhthen des Parameters s dagegen
bewirkt eine Zunahme der Reserve, wihrend beim
Barwert am beide Variationen im nédmlichen Sinn (Zu-
nahme) erfolgen. Es ist daher nicht ganz richtig, wenn
Dr. Julius Graf in seiner mehrfach zitierten Arbeit
sagt!): ,Die Konstante s verhilt sich somit riicksicht-
lich ihres Binflusses auf die Uberlebenswahrscheinlich-
keiten, auf die wahrscheinliche und mittlere Lebens-
dauer, auf die Leibrenten und iibrigen Versicherungs-
werte analog wie die Konstante ¢ und entgegengesetzt
wie die Konstante ¢.“ Seinen weitern Ausfiithrungen
5+, dass eine fiir die Absterbeordnung gutgewihlte

) 8. 436.
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analytische Funktion (wie es die Makehamsche Formel
ist) uns in die Lage versetzt, den innern Zusammen-
hang zwischen Absterbeordnung und Versicherungs-
werten zu erkennen und aus den Verdnderungen in
den Konstanten der Funktionalgleichung zuverldssige
Schliisse auf die Verdnderungen der Versicherungswerte
zu ziehen...“ dagegen konnen wir uns durchaus an-
schliessen, —

1I. Der Parameter ¢ und die Reserve der Todes-
fallversicherungen.

Wir gehen nun den umgekehrten Weg wie im
vorigen Paragraphen; dort schlossen wir vom Verlaaf
der Funktion ¥ (g) bei wachsendem « auf das Ver-
halten der Reserve in bezug auf g. IHier wollen wir
aus dem Verhalten von ,V_ bei variablem s auf die
Funktion B_(s) i bezug auf x zuriickschliessen, Wir
fanden némlich, dass die Bedingung

0B (9) _ 5
0x al

die Ungleichung

nach sich zog. Ganz analog schliessen wir aus der-
Ungleichung (51):
0.V

e 2

dass
0B (s)
<0

0 x

()




= PAY w

Denn aus (a) folgt fiir zwei Absterbeordnungen I und
II (Parameter s und s" > s):

»

—, —
am—[—t ~4 am—}—t
— T =

b— =
a'ac a'a:
oder
”al Er
x4t x
2 e
“:Jc—l—t a':):

was man auch schreiben kann (vgl. die Ausfiihrungen
in § 8):
: %m_;_,:(s) <, %*(S) (y

d. h. die relative Variation ¥_(s) nimmt ab, wenn wx
wichst, was man — da man sich die Veriinderung
von & als stetig denken kann — auch durch Un-
gleichung (8) ausdriicken kann ).

Diese Ungleichung (f) im Verein mit der Un-
gleichung (48%) gestattet uns nun, das Verhalten der
Leserve bei variablem ¢ zu prifen.

oa
Wir wissen bereits, dass —% < 0. Hat man
oc

demnach zwei Absterbeordnungen I und II, fiir welche
c,=c¢, + de, wo d¢ >0, so folgt, wenn wir die Bar-
werte nach der Absterbeordnung IT mit Akzenten ver-
sehen :

" _— ' o
g S gy Doy a’m+t :

Wie steht es dann mit tVﬂ; und th?

') Dieses Resultat haben wir in § 7 hereits an einem Bei-
spiel zahlenméssig nachgewiesen.
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Nehmen in einem positiven echten Bruch Zihler
und Nenner ab, so wird der Wert des Bruches dann
verkleinert, wenn die relative Abnahme des Zihlers
grosser ist als die des Nenners, d. h. es ist

wenn

_ 0

r=a, Ao <=0, (14-9B,()

A = — 0 Ea:—{—t —
DATES cszrt—f——Ac 5 T Y (1—}—%%“(0))

so folgt, dass

1 Lot o Sy PR ..
@, o
oder was dasselbe ist,
L ) 8 (9)
wenn
%m-i—t(c) < 2333(0) (F)

Ist die Richtigkeit der Ungleichung (¢) erwiesen, so
zieht diese die Ungleichung (9) nach sich; wir haben
demnach das Verhalten von 23_(¢) bei wachsendem x
zu studieren.
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Aus (41‘”‘), (44*) und (44°) ergibt sich, dass

o da - Ac 1 ax Ay Gﬁw
B (0) =— cLOfrc\gLOgg Log ¢ 97 . 99
As Oa,
I—W(Lo = a) £
—I'_ As g + wa 08 f
Ac : 1 &
N - ) T it s : S L
\j*”(c) cLOgc 19[ °8 q Log ‘ ]j Bm(g)—{—l
8 1 \ \ o
. Log—,_H) B0 (52
As &
WO

B_(c) _

a o
B, (9) ¢ = relative Variation von @, in bezug aut { g, wobei s und ¢ konstant.
%:L‘ (\)

¢, wobei s und g4 konstant.

s, wobei ¢ und g konstant.

Aus (02) folgt, wenn a als stetige Variable angenommen

wird :
B (c) e i 1 58 O
— == (Log g+‘)) —5
aas (g) 0, ()

Aber weil B (¢) und - positiv, dagegen _&—sc__"

negativ ist, so sind in del geschweiften Klammer alle
Glieder positiv; daraus folgt
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Damit ist aber die Richtigkeit der Ungleichung (g)
und deshalb auch diejenige von (6) erwiesen. In Worten
ausgedriickt :

Wenn der Parameter ¢ des Makehamschen Gesetzes
vergrossert wird, so wird auch die Reserve ,V_ der
lebensidnglichen Todesfallversicherung verqrissert.

Der Einfluss des Parameters ¢ auf die Hohe der
Reserve macht sich demmnach im gleichen Sinne geltend
wie derjenige von s und im entgegengesetzten Sinn wie
derjenige von g.

Die fiir die Reserve entwickelten Sétze basieren
alle auf der Voraussetzung, dass Ag, As, Ac sehr
klein seien; diese Bedingung konnen wir rasch be-
seitigen, wir brauchen bloss zu bedenken, dass wir
beispielsweise, um von ecinem Ausgangswert g, des
Parameters g zu einem betrdchtlich grossern Wert g,
zu gelangen, schrittweise von g, zu g;:gi—l—%, von
g, mu g'=g, + Ag, usw. bis g, fortschreiten konnen,
wo stets die Bedingung Ag = sehr klein erfillt ist
und die Ungleichungen

) Dieses Resultat wurde bereits in § 7 zahlenmissig
festgestellt mit dem Beispiel 4. F. 8%, B, (c) =—0,0071,
W (¢) = —0,0199, By, (¢) = —0,0497. Absolut genommen Wachst
also die Funktion 8, (¢) mit 2; weil sie aber negatives Vorzeichen

besitzt, so ergibt sich die Ungleichung (52%).
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ti ((/,) < t,le (le)

AACARSAMUSEY
statthaben, welche auf |V (g,) <,V (y,) fihren.

Es gilt daher in bezug auf die Reserve fiir alle
vorkommenden Absterbeordnungen - der Satz:

Fine Erhohung des Parameters ¢ oder s bewirkt
etne Iirhohung der Reserve der lebensliinglichen T'odes-
fallversicheruny, ein Erhihen des Parameters g dagegen
fithrt zu einer Verkleinerung der Reserve.

Es ist uns nicht gelungen, diese Untersuchung der
relativen Schwankungen und der Reserve auf gemischite
Versicherungen auszudehnen ; einzig fiiv den Parameter
s haben wir das Resultat auch auf die gemischten Ver-
sicherungen anwendbar gemacht. Eine Ubertragung
der auf .V angewendeten Methode auf V'~ fiihrt aber
voraussichtlich auf &hnliche Resultate. Doch wiirde
mich die allseitige Untersuchung dieser doch vorwiegend
theoretischen Frage zu weit fithren. Dagegen findet
sich im folgenden Paragraphen ein Versuch, das fiir
.V _(9) gefundene Resultat auf einem andern Wege zu
verifizieren.

§ 10.
Die mathematische Reserve, ausgedriickt durch
Gammafunktionen. Einige Spezialfille.

Unter Beniitzung der fiir den Barwert der kon-
tinuierlichen Leibrente gefundenen Formeln konnen



wir einen analytischen Ausdruck fir die Reserve einer
im Alter = abgeschlossenen Todesfallversicherung und
einer gemischten Versicherung finden.

Aus
B %
a"c s YR
’ A Lioge

y k)

wo A —cmLog—;— folgt, wenn & in 2 -t ibergeht:

At

-t

a, =—————@(c,k

(1) Loge )

denn 1 geht dabei iiber in 2'=¢" . 1; weiter ist nun

Man erhélt also fir die Reserve folgende Formel:

Fo_y 0 ead,n
e (sv) QU k)

(83)

Fir ¢ —0 wird V ==, P F==ac Wird V =1
welch letztern Wert man durch Ermittlung deq Wahren
Wertes der entstehenden unbestimmten Form findet.

Wir stellen uns nun die Aufgabe, das Verhalten
der Funktion |V bei veriinderlichem 4, also bei Varia-
tion des Parameters g, zu untersuchen oder doch
wenigstens die Werte dieser Funktion an den Inter-
vallsgrenzen ¢g-=—=0 und g==1 zu bestimmen. Die
Schwierigkeiten, denen wir hierbei begegnen, liegen
darin begriindet, dass hier iiberall Quotienten nicht
sechr einfacher transzendenter Funktionen auftreten.
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o} §=10; i=06g,

(F) =1— ' limes %
g=0 (31;) =0 eﬂ(C =] Q,

1,5 U
(sv)

Fir U ergibt sich die unbestimmte Korm —3—,

=1—

deren wahren Wert man durch zweimaliges Differen-
zieren unter Beriicksichtigung von

O P
ol
findet zu
4
sV
7 — _(__t_)___
¢
so dass
— 1 )
(t Vm)gzo = _C_a' (34)

Wegen der Bedeutung von ¢ und ¢ ist dies ein
positiver echter Bruch, der den Bedingungen V =0
und |V =1 geniigt.

J.(ct—l)
_ e - Q
(Vo) :1—471111193 —
% g=1 (sv)" =0 QJ_
Q
—1— —1—t . limes —2¢
(sv) = @

Der auftretende Grenzwert nimmt vorerst die

unbestimmte Form ———— an; sein wahrer Wert ist:
O



e A Tt »
limes ; . — "' = (sv)-
1=0 - j.k—l ) el ( )
somit ist
t
e $v)
V =1— (
(t $)g:1 (8 T))t
oder
(z Vm)g:i =0 (55}

Lietztere Formel folgt jedoch auch unmittelbar aus
der Uberlegung, dass bei Annahme eciner konstanten

; ; - . 1
Sterblichkeitsintensitét (,u,m: Log T> der Rentenbar-

wert fiir alle Alter konstant ist!), so dass direkt

(t Vm)gzl 1 0

Fiir die Reserve einer gemischien Versicherung
auf » Jahre findet man:

C{, s,
T7 -+t n—it
Vo =1——
a -
Tz nl

oder
T Qi ) — Qe k) )
Ehew (sv) QUK — Q(Ad", k)

Um die Werte der Funktion ,V, . (¢) an den Grenzen
g=0 und g=1 zu bestimmen, hat man auch wieder

cinige (renziibergiinge zu machen.

a) g=0.
th%’f(O): 1 —

F

(sv)t b

1y Vel 1L Teil, § 5.
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WO
7 s 1 Qﬂ.ct T Qﬁ,c’”
F = limes —
A=oo e’“(c _"1) (J; — QJ(’”
0
0
_'Ez‘ct, gk—1 C’tt_}_e;c ) »k— . Gku
= limes et R kl*ﬁ"*""/iy
= — -, % - fk— en.
Jmoo _ pHE—1) ( Mi) [Q Q,C] o )[/1 e __efc ) » n]
G"ft__ E}.(c"‘—ct) : Glm
= limes -
i=o0 1c™ 2(c—1) -
( - ]) —) lk__ + 1‘“‘” - C
. ¢ (sv)
e = ==
df—1+41 ¢t
denn .
i (C{);._QACR L 0 1
MRS = —% 1 — 7§ —
f=oo £ - A
wir finden somit den Wert
: (b7)
: H
5673! (’

welcher mit jw(()) {ibereinstimmt.

b) g == 1.
1
t mm( )_1— (8??3?sz
‘WO man
F = limes ei(cthl) Q’”" Ae Q)Cn
’ i=0 Qz — Q.
Clﬂt L 0]‘-.;? o (8 ?))t - (8 v)n

1— 11— (sv)



findet; daher ist
1 L (g v)n—t
1—(s2)"

Dies ist stets ein positiver cchter Bruch. Man erhilt
diese l'ormel auch ohne Grenziibergang direkt aus
Gleichung (28%) in § 5.

In diesem Spezialfall ist es ein Leichtes, den Ein-
fluss ciner Verdinderung des Parameters s auf die Hohe
der Reserve zu ersehen?!). Diese Formel (58) ist nichts
anderes als die im I. Teil unserer Arbeit (§ 5) auf-
gestellte Formel

V- ()=1—

t xn

(58)

Vy=1— — ()

wobei ¢ lbergegangen ist in den kleinern Wert (sv).
Beriicksichtigen wir nun, dass v mit wachsender Ver-
zinsungsintensitdt abnimmt, so konnen wir umgckehrt
sagen, dass die Substitution v ==sv einer Vergriosserung
der Intensitit ¢ gleichkommt. Da aber nach einem in
§ 6 des I. Teils bewiesenen Satz bei wachsender Ver-
zinsungsintensitit die durch (w) dargestellte Reserve
~abnimmt, so ist vorerst zu schliessen, dass der Aus-
druck (w) grosser ist als (58). Lassen wir ferner s
ibergehen in s > s, so kommt dies auf cine Ver-
kleinerung der Zinsintensitdt in (w) hinaus, und dies

hat dic Ungleichung

Vi(s) > V(s)
zur Yolge, d. h. mit wachsendem Parameter s nimmi
die durch (58) dargestellte Reserve zu. Dieses Resultat
stimmt vollstindig mit dem in § 9 fiir die Funktionen

V(s) und ,V - (s) allgemein bewiesenen Satz iiberein.

1) Vgl. z. B. Goldmann, Mitteilungen schweizerischer Ver-
sicherungsmathematiker, 10. Heft, 1915.

17
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Wir kehren nun zu Formel (53) zuriick. Bis jetzt
ist gezeigt, dass die Funktion ,V_(¢) an den Grenzen
g=0 und g=1 die Werte

== 4 0.
tV@(O):I——Gt—; W, (1)=0
besitzt, somit ist

V0) >,V (1). (0)

Weiter folgt, dass ,V(g) im Intervall 0y <1 stetig
verliuft, denn a_ und a 4, Vverlaufen stetig und a, hat
in diesem Intervall keine Nullstelle.

Setzen wir abkiirzend

_ O,
!
a = —
@ g’
o a a’aﬂ—’- i
aert o —a-L—q— 3
so folgt
o } o s e B _"f
a,} T R s R Y
oy (@,
a| @ @
o JZ—[—-ﬁ L"JZ . :]'J—l—‘; l (59)
@y a’.v a’:u—}-t ,

Diese Gleichung besagt, dass die Funktion ,V(g) nur
dann einen extremen Wert besitzen kann, wenn die
logarithmischen Ableitungen der Rentenbarwerte a

und @, einander gleich sind 1),

+

') Dieses Kriterium gilt tbrigens immer fiir den Quotienten
zweier [Funktionen, vorausgesetzt, dass die Nennerfunktion im
betreffenden Intervall keine Nullstelle besitzt.



Wir fanden
_ 1—(u,+9) Em

! —
a,—

g Log—;— Log ¢

= (' a:+t + d) E’m+t

¢ Log »g—Log ¢

so dass statt (59) gesetzt werden kann:

1
~ T - S e ) . TR L
( tV:c — am—{—t a, “.1:+
g D g LogﬁLegc
g
— (!u‘aﬁ—l—t £ ) a’sc—l—f th ‘ (60)

gLog?Logc ca

oder unter Hinfithrung einer Hiilfsfunktion

f(g) — ("‘i'a:-i-r& i iu'a;) _ua;_I_t | (GOH)
0. (0=%) o
o (/ il

gLogg_Logc - a

Der Nenner dieses Bruches hat fiir 0 <Zg<_1 einen
positiven endlichen Wert; daher ist

5.V .
r <0, wem T,0)> )

Wegen Ungleichung (0) muss diese letztere Ungleichung
wenigstens fiir ein gewisses Stiick des Intervalles
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0<"g <1 gelten; wir werden sogleich schen, dass
sie im ganzen Intervall gilt. Wir betrachten die Hiilfs-
funktion f(g), fiir die sich unter Beniitzung der friithern
Ausdriicke ergibt:

f i,ct
, ;.Y | e -
FO=" i (60)
Man findet ferner:
o] ()
g=0: FO)=S " . limes— ¢
(S ’U) I e}.C . )‘,k:—l

ct—l__ 0 d—1  (sv)

(sv)’ 0 (sv) 'ct

oder schliesslich

FO =1~ =7,0

g=1: Wegen My = M, = Log % wird aus (60%):
f(1)=0=,7,(1)

Stimmen der Funktionen fund V an einer weitern
Stelle, innerhalb der Grenzen 0 wund 1, iberein, so
besitzt .V _(g) nach (61) dort einen extremen Wert.

Unser Ziel ist nun, den Verlauf von f(gy) zu ver-
folgen und dann riickwiirts auf denjenigen von ,V (y)
zu schliessen. Aus (60°) ergibt sich nach einiger Um-
formung der Differentialquotient:

b Ad 41—k .
ic c e 2 l— o
le(g) = Ct_l Q}.ct'e . ——-—_,4!"' I_C/t

dg g (sv)’ o

v
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Fiir das Yorzeichen dieses Differentialquotienten ist der
Zihler ausschlaggebend. Mit Hiilfe einer von Schiomilch
gegebenen Reihe fiir die @-Funktion habe ich diesen
Zihler in  eine unendliche Reihe entwickelt und
schliesslich das Resultat erhalten

— <0 (609)

d. h. die Hiilfsfunktion f(y) nimmt monoton ab, wenn
g von 0 bis 1 wiichst. Ich verzichte darauf, hier den
etwas langwierigen Beweis fiir die Richtigkeit  von
(60%) mitzuteilen.

Ubertriigt man nun den in § 5 hiervor entwickelten
(Gedankengang (vgl. Seite 202 ff.)) auf diese Funktion,
so erkennt man, dass auch die stetige Funktion tﬁ_v(g)
keine extremen Werte besitzt und wegen V(0) = V(1)
eine monoton fallende ist.

Léév)(g) e
¥ B 20,
dy
was zu beweisen war. In Worten:

Variiert der Paraneter g von 0 bis 1, so
wimmt die Funktion V_ stetig ab von

_ L
tV(O):-l—?bis 7 (1)="0.
Bs ist dies einc schone Bestitignng des in § 8
auf ganz anderem Wege gefundenen Resultates.

*k E3
B3
Der socben skizzierte Beweis wird recht einfach

in demjenigen Spezialfall, welcher entsteht, wenn
¢ =0 und s=1 gesetst wird, d.h. wenn man die
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Verzinsung ausser Acht lisst und statt des allgemeinen
Gompertz-Makehamschen Ausdruckes das von Glompertz

stammende Sterbegesetz | = k < sugrunde legt,
g P g o] g

Alsdann wird nédmlich der Parameter 2= 0 und
die Reserve kann durch die unter dem Namen Inte-
grallogarithmus bekannte Transzendente ausgedriickt
werden :
ei,(ct—d) 0 (l ct, 0)

Jo=1=""0a,9

oder
e/‘.ct _ H("Eﬂ.ct)

T (62)

Die Formel (60°) des Differentialquotienten der Hiilfs-
funktion f(g) geht fiir diesen Spezialfall iber in:

. x b
. y—1) 1, et =i
4rlg) _ €= 1041y, 2 10 () 4-1] (63)
dg g
Der Faktor vor der eckigen Klammer ist positiv; das
Vorzeichen des Differentialquotienten héngt also nur
vom Klammer-Ausdruck ab. Wir setzen abkiirzend

;‘»Ct:?/ﬂ

Die eckige Klammer wird = (u—1) - e"li(e") =+ 1
Um das Vorzeichen dieses Ausdrucks zu bestimmen,
entwickeln wir /i(e") in eine konvergente, unendliche
Reihe, welche von Schlomilch stammt ):

lz’(eu)=—e—u{1—- ! e L - = _—
u w+1  (ut+l) (u+2)  (ut1) (42) (u+3)
. .
) (ur2) @y ey O

) Zeitschrift fiir Mathematik und Physik, 1859, Bd. 4, 8. 401.
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Hieraus

(n41)e"li(e" )+ 1=
N e W 1 5
- w w1 T (1) (u+2)  (u+1) (w+2) (u+3) " _}

" 1(@(-4—1). w+2)  (ut1) (u42) (u+3) +— ll

Das Bildungsgesetz des Koeflizienten dieser Fakul-
titenreihe ist allerdings nicht sehr einfach; doch fallt
fiir uns nur die Tatsache der Konvergenz der Reihe
und der Wert der ersten Entwicklungskoettizienten in
Betracht. Hs ist nimlich fiir « > 0 in der geschweiften
Klammer von Anfang an') jedes Glied kleiner als
das vorhergehende ?), d. h. die geschweifte Klammer
besitzt einen positiven, endlichen Wert, daher ist

(1) - e"li(e"y4+1<20

Daraus folgt weiterhin gemiss Gleichung (63):

Damit ist f(g) als eine im Intervall 0 < g <1 monoton
fallende erkannt, und gleich wie im allgemeinen Fall
(s+1) schliesst man hieraus

0,V,
——= < 0.
0q )
1) Das Unterstrichene ist wichtig; dass die spétern Glieder alle
dieser Bedingung geniigen, ist ja eine notwendige Voraussetzung

fiir die Konvergenz.
2) Beispielsweise kann das zweite Glied geschrieben werden :

1 1 1
(u+1) (u+3) H“ﬂ* = (u+1) (n+2)

2

&




Wird die Ulerlebensordnung durch das Gom-
pertzsche Geselz dargestellt, so nimmt die Reserve
V. monoton ab, wenn der Purameter g von 0 bis 1
wiichst, vorausgesetzt, dass man hierber auf den

FEinfluss der Zinsintensitit keine Riicksicht nimmd.

Man kann nun hier auf den I. Teil dieser Arbeit
verweisen, wo dargelegt wurde, dass eine Vernach-
lissigung der Verzinsung beim Studium des Einflusses
von u  die Verhiltnisse nicht entstellte, nnd schliessen,

dass der soeben bewiesene Satz auch fiir 0 +0 Giiltig-
keit besitzt.



Anhang.

Schiitzung des Restgliedes in der Formel

- T w49
a,=a,+ 5 — o +R.

ks ist Ofters von Vorteil, eine Formel zu kennen,
welche den Ubergang von a, bzw. a_ zu é;, vermittelt.
Solche Néherungsformeln sind verschiedene bekaunt;
ich erwihne als Beispiele die folgenden?):

S _id_i—d
- (52 a (32

und

-, L
T 8Ty T g

Eine weitere sehr bekannte Formel ist die von
Woolliouse ?) aufgestellte, welche lautet :

_ 1 O

T

welehe neben der Verzinsung auch noch eine Korrektur
fiir jedes Alter x beriicksichtigt. Mit dieser Formel
wollen wir uns in diesem Anhang befassen und zwar
gehen wir aus von der folgenden erweiterten FFormel:

) Vgl. z. B. Yorlesungen von Prof. Dr. Moser iiber ausge-
wiahlte versicherungswissenschaftliche Kapitel, 5. 5. 1917.
5 J.I. A, Bd. XV, p. 106. »
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a,—a + % 1‘2" (65)
WO
t(l-—t) DY (x4 n 1) .
R=— / ) At (659

n=0

Ihre Ableitung verdankt man dem franzosischen Ver-
sicherungsmathematiker H. Poterin du Motel, der
wohl als erster diese Restfunktion R beriicksichtigt
hat. Zu ihrer Herleitung geht du Motel aus von der
bekannten Hulerschen Summenformel, die er auf die
Sumine

D(rl:)—|—])(.7;—[—%)—|—])(@ + m) A

wo D(x)=10v"-1_, anwendet. Voraussetzung ist hier-
bei, dass D () eine Funktion sei, welche ebenso wie
ihre aufeinanderfolgenden Differentialquotienten stetig
verlauft und welche ferner der Bedingung geniigt:

Doc)= D{co)= D'(co)== = 1.

Diese Summe ldsst sich dann durch ein Integral
ausdriicken, wozu noch eine Reihe von Ausdriicken
in den einzelnen Differentialquotienten von D (2), ver-
bunden mit gewissen Koeffizienten (Bernoullische
Zahlen) treten. Von diesen Ausdriicken, die in ihrer
Aufeinanderfolge cine alternierende Reihe und zwar
eine  sogenannte semikonvergente Reihe darstellen,
berticksichtigt du Motel nur die drei ersten Glieder
und stellt den Rest durch das der Eulerschen Summen-
formel cigene Restintegral ') dar. Dadurch gelangt er

") Vgl. z. B. Markoff, Differenzenrechnung (1896).
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auf eine lineare Beziehung zwischen den Barwerten
o und @, welehe sich im Spezialfall m =1 auf die
Formel (60) reduziert. Die skizzierte Ableitung von
du Motel findet sich in seiner weiter oben erwédhnten,
schonen Arbeit ,Technique de I'assurance sur la vie* 1),

Die Formel (65) bzw. (652) soll uns nun dazu dienen,
zu schitzen, welchen Fehler man begeht, wenn man
die gewthnliche Formel von Woolhouse verwendet,
s ist ja in der Tat bei Niherungsformeln in der
Mathematik und ihren angewandten Gebieten stets
sehr wichtig, anzugeben, innerhalb welcher Grenzen
sie giiltig sind.

Um diese Untersuchung durchfiihren zu konnen,
miissen wir iiber den Verlauf der Absterbcordnung
cine bestimmte VYoraussetzung machen; wir nehmen
an, sie gehorche dem Makehamschen Gesetz.

Die Summe unter dem Integral (65%) soll vorerst
etwas umgeformt werden. D'(x) bedeutet die vierte
Ableitung von D(x)=v"1(x) nach .»; durch sukzes-
sives Differenzieren findet man

Di@y="" l — A, ) 48 ()
HG("'&B'*‘@)Q ‘ '“,i;—l-(um—}—a)“}

Nun ist nach Makeham
b =ks" 7
== I, ! *“ Log ¢ Lo .
Wy, = og?—kc og ¢ Log 7

1

€T ]' ‘
u,+0="Loge [FH-C Log-;;] , WO 0 = (Log—~+t5) Log ¢

1) Encyclopédie des sciences mathématiques, tome I, volume 4,
page 527.



ul = ¢"Log - (Log ¢)’

J—tQQ.—L

=0 Log — (Log ¢)"

"“"‘Q

Y ==e Log (Log e)".

- 4 .
Daher wird, wenn (Log ¢)” vorweggenommen wird :

D* (@) = v"1_(Liog ¢)* { —" Log;

) L '1 mw '1
+4(8+c Log_;)c Log—!-/—

)

1\
S(CJ'LO Sl
+ 5|
&£ 1 2;(;- : 1
—6(8+0 LOgE")C LOD—(I‘
ze 1 ¥
8 - ¢ Log —
+( -+ ) g>]

und infolgedessen, wenn wir x durch o - n - ¢
ersetzen und mit D(x) d1v1d191<3n sowie gleichzeitig
die Abkiirzung
A=c"Log 4
g
einfithren :

()
D (af-D_g_ ;& —|— ll) = ('U )n+t . EF-(C“‘H('—I) ; (Log 6)4 {__;t Cw+t+‘

3 _1: (e _*/- c'n+?f) ;L C’)I,—l—f- I 8 (}‘» c??+t)2 . 8 (6+ j, C’)‘I,v—-'—t)':f. ';‘- C?Eml—l‘, n

n +t—1)

+(0+ c"+t)4}:(vs)n+t-?(c '(Loge)'-F, (66)



wo I den Ausdruck in der geschweiften Klammer
bedeutet. Wenn wir diesen Quotienten in der Rest-
funktion (65%) einsetzen, so geht diese iiber in

3 4 e (67)
; AT 4 tz (1 o t)g t \ | & ™R Cn+t
£ = e (Logc) *T——v(sv) Z(sv) e” - I.di
0 ) n=0
Wir betrachten nun das Produkt E;'C}Hq - I, in

welchem wir abkiirzend
g e gy s 0
sotzen; es ergibt sich, wenn gleichzeitig nach Potenzen
von i geordnet wird:
B

PR Ry - g“ { o + ﬁu, + y 1,52 + 0 '263 + 26‘1} 4 (68)

worin die Koefhzienten bedeuten:

o= 0 , wobei

f=—(1—4.-0+6-0"—4.06% Logé W, |
y=T—12.046 - 6% = Toge "
d=—(6—4 . 0) (vgl. § 2, Besichung (8)).

Weil 0701, so gehorchen diese Koeffizienten
den Ungleichungen :

O<a<+11
— 1< <1
+ Ll =T

o —2.

(68°)
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- Statt (63) konnen wir setzen:

"t atfutyu+ou 4o

= W oW wt WP
1+%+2—I+§I—+H+H+“'

4 a4 Butyut+ouw +ut _

414 4w+ 1294 4’ + 214—}—4!{%%—---}
oder ' '

— -t - ;
LN Y, (69)

denn infolge der Ungleichungen (68%) sind stets die
entsprechenden Koetlizienten der Potenzen von # im
Zihler kleiner als die im Nenner, und zudem schreitet
im Nenner die Potenzreihenentwicklung weiter.

Wir erhalten auf diese Weise die Ungleichung

N=c0

R < ¢ (Log ¢)" / £(1—1)°(s v)tZ(s o) - dt

n=0
— e

oder weil
0<sv<1

b ~

2 !
B ¢ (Log ¢)*
Sl —sw
U.

R £ (1—1t) (sv) - dt (70)

Bezeichnen wir das Integral mit J,

1
T= [#(1—1) (sv) - dt
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so gilt, weil fiir 0 <" t<T1 stets Ogg(sv)tg_;:_l 1st:

1
J</t2(1—t)“ . dt
0

oder

: 1
-If\ ;5—367

so dass als erste Schitzungsformel fiir den Rest & die
cinfache Ungleichung resultiert:

(Log )

M B <30 a—sm

. 1
wobel 4 = ¢" Log — .

Y

Das Integral J kénnen wir jedoch genau berechnen :
1 X :
.7':/t2(s'v)t - dt— Q/ts(s v) dt 4 [ti(s v) - dt
0 0 0

N— o s t T
Wir substituieren (sv) —e",

1w=—-—tLog(sv)=¢t, Grenzen:
t 1 U
010
1] e

& £

: sy - 9 — 1 = y |
J:—quuz . eu-du-—%fug-e“-du+5f@44'8 "
: e

A €y © 0

Pe,3) 2P(e 4) 9 P(e 5) (11)

a
E.) 8

of 2
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d. h. wir haben unser Integral auf 3 wnvollstindige
Gammafunktionen mit ganzzahligem Argument zuriick-
gefithrt, wobei zur Abkiirzung

: . 1 .
s:m-Logsv:Log§>O

gesetzt wurde. Soleche Funktionen sind mit Hiilfe der
Legendreschen PFakultitenreihe als einfache Reihen

darstellbar, allgemein
v=n—1 7] 1)
&

Ple,n)=(n—1)! 1_-?5*:2

()

!
=0 da;HH

2 . I :
J== { 1B —Big]- g M1 - Bl & }
. _

und durch Entwicklung der lxponentialfunktion

, 1 & & 5e
30 60 e 210 30 -7 - 24 +
30 g ' % §.24 o

Es ist dies eine alternierende Reihe, deren Glieder
sehr rasch abnehmen und die wie die Entwicklung
fiir e” absolut konvergent ist. Setzen wir sie in (70)
ein, so erhalten wir

- ¢ (Log c)’ € & b o
A 1Y (i s e i Sl 7 S IR

woraus man sofort die Schitzungsformel 1 erhélt,
wenn man sich in der Klammer auf das erste Glied

1) Nielsen, Handbuch der Theorie der (Gammafunktion,
pag. 28.
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beschriinkt. Nun ist aber e sehr nahe bei 0 gelegen,
die Niherung I also berechtigt. Eine bessere Niherung
erhalten wir dagegen, wenn wir in der Klammer die
drei ersten Glieder beriicksichtigen; dies ergibt die
brauchbarste Niherungsformel :

e

: 2
= B 30 (1 —s0) ¢
Beriicksichtigen wir noch, dass sv=-e", also
g? . b gt . .
l_sv_eh—2——{—ﬁ—~ﬁ+—_---, so konnen wir
statt (II) setzen:
€ &2
(Log ¢)' 2 +7 2
Bt 4
30 & e &
2 T%
und um so mehr
~ 4
(II1) B 189

30 ¢
tets 1 = ¢ L .. — Liog —
wo stets 1 =¢ og_g—,e__ gsv'

Aus dem Bau dieser drei Restformeln ersieht man
wegen des Faktors e’, dass der Rest B um so kleiner
wird, je kleiner « ist; ferner wird B um so kleiner aus-
fallen, je kleiner v ist, d. h.

Die Niiherungsformel von Woolhouse

— 1 O )
=0t 5= "1g

trifft wm so besser zu, je niedriger das Fintrittsalter

und je hoher der Zinsfuss ¢ ist.
18
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Es soll nun die in den Formeln (1), (II), (III)
enthaltene obere Schranke fiir das Restglied £ in
cinem konkreten Beispiel berechnet werden; wir
withlen die Tafel 4. F., den Zinsfuss 3 °/; fiir diese
Schranke ergeben sich folgende Werte:

x nach Formel T nach Formel II nach Formel I1I
25 0.0000 59 0.0000 58 0.0000 58
50 0.0000 66 0.0000 65 0.0000 65
5 0.0001 79 0.0001 76 0.0001 76
95 0.0384 34 0.0377 76 0.0377 94
Aus dicser Tabelle ist ersichtlich, dass — wenn man

von den hochsen Altern absieht — der Rest I kleiner
ausfillt als 0.00018 (im Alter T5), ja fiir die meisten
fiir die Praxis in Betracht fallenden Alter erreichi
1 N
10000 Erst fiir
Alter @ >> 85 ergeben die Restformeln Betriige, die

der Rest R nicht einmal den Wert

; 1 ;
grosser sind als 10067 erst von diesem Alter an kann

also die dritte Dezimalstelle im Barwert ¢ ungenau
werden; vom Alter 95 an kann sich der Fehler auch
in die zweite Dezimalstelle verpflanzen:

x = 85 R < 0,000 851
2 = 86 R << 0,001 090
z = 87 R < 0,001 278
z = 90 R < 0,003 766
z =95 R < 0,037 794

Da aber Rentenbarwerte fiiv so hohe Alter iiberhaupt
im allgemeinen ausser Betracht fallen, so kann fiiglich
aus dieser Untersuchung geschlossen werden, dass man
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praktisch in der Woolhouseschen Iormel die Eestfunl-
tion I vernachlissigen darf.

Die in § 7 verwendeten Rentenbarwerte wurden
deshalb folgendermassen berechnet (A. . 3°/):

dJ -
@ i, O ) ~flﬁ—— a, -+ 0,5 @,
25 0,00625  0,08581 0,003 21,553 21,550
50 0,01602  0,04558 0,004 14,056 14,052
75 0,10859  0,13315 0,011 5,380 5,369
95  0,57476  0,60432 0,050 1,523 (1,473)

In gleicher Weise zeigt man, dass in der Formel %)

— 1 w40
(m) z 37
a,=a, -t 5o T 1o + B (73)

wo a'" den Barwert der in m Raten postnumerando
zahlbaren Leibrente 1 bedeutet, der Rest B bei Vor-
aussetzung des Makebamschen Gesetzes der Ungleichung
geniigt:

’ 2
gt (1— & e
(Log ¢) (1 3 - 7) 4

112 B
() B0 [1 — (s v)”m] m°

y 1 i ; . ’
WO & == Log gt diese kann iibergefiihrt werden in

. , _ (Log 0)4 P}
W B e mE

wo e:—_-Log—s%. Wegen des Faktors m* im Nenner

fillt diese Restfunktion £’ noch viel kleiner aus als

) H. Poterin du Motel, loc. cit.
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R, 8o dass mit noch grosserer Berechtigung diese andere
Néherungsformel von Woolhouse

- 1 t,+9
= (m) — i o T
@, =0, + 2m 12m? (59

gilt. Durch Elimination von’ ZL;U zwischen (73) und (65)
erhilt man wegen der Kleinheit der Differenz F— K’
die bekannte Formel fiir den Barwert der in unter-
jahrigen Raten zahlbaren Leibrente

(m) m—1 L m2—1 .
a’a: —(tw—-l— 2Qm 12 m? (Ju’m-i—d)

bZW. A { (74)
(my m—1 e m2— 1 , J
8y =8 2 m 12mt e )
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