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Reserve und Rentenbarwert

als analytische Funktionen.

(Beiträge zu der Theorie des Einflusses einer

Veränderung der Intensitäten der Sterblichkeit und der

Verzinsung auf Grössen der Lebensversicherung.)

Von Dr. Werner Friedli, Bern.

Vorwort.
Die vorliegende Arbeit zerfällt nach den zugrunde

gelegten Hypothesen in zwei Teile, die grundsätzlich
voneinander verschieden sind. Der I. Teil handelt von
der Hypothese von Moivre und den aus ihr auf die
Deserve gemischter Versicherungen zu ziehenden
Schlüssen; Hauptzweck war, auf Grund einer ganz
elementaren Hypothese den Einfluss der "wichtigsten
Variabein zu untersuchen. Der II. Teil fasst mehr die
tatsächlichen Verhältnisse ins Auge; Grundlage bildet
das Oompertz-Makeharnsche Gesetz; hier wird vorerst
dem Barwert ax das Hauptaugenmerk zugewendet und
alsdann werden die gewonnenen Resultate zur
Untersuchung anderer Versicherungswerte benützt.

Gemäss diesen zwei Hypothesen führt die
mathematische Behandlung im ersten Teil auf algebraische,
im zweiten Teil auf transzendente Punktionen. Die
Eigenschaften der Versicherungswerte sind implicite
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in diesen Funktionen enthalten und werden durch

Benützung der Eigenschaften dieser analytischen Funktionen

schrittweise bestimmt. Beispielsweise wäre o*

schwierig, aus einer Tabelle der Rentenbarwerte
Beziehungen zwischen den aufeinanderfolgenden u

herauszufinden, noch schwieriger aber, Beziehungen
zwischen den ax und den Rechnungsgrundlagen
aufzudecken ; hier aber sind diese Zusammenhänge
unschwer zu bestimmen, sie liegen in der mathematischen
Formel begraben und brauchen nur herausgeholt zu
werden.

Beiden vorerwähnten Teilen ist das gemeinsam,
dass das Studium des Einflusses einer Veränderung
der Sterblichkeitsintensität auf Grössen der
Lebensversicherung in den Vordergrund gestellt wurde.

I. Teil.

Einleitung. Die Hypothese von Moivre.

Wenn man eine grosse Gesamtheit von
neugeborenen Personen durch die ganze Dauer ihres
Loben« verfolgt, so sieht man, dass diese Gesamtheit
mit der Zeit abnimmt und verschwindet. Die Abnahme

geht nach keinem bestimmten Gesetz vor sich; doch

haben die Statistiker von jeher versucht, dieser
Abnahme ein bestimmtes Gesetz unterzuschieben, um
ungefähr den Verlauf des Absterbens zu charakterisieren

und die Erscheinung der mathematischen
Behandlung zugänglich zu machen. Die einfachste
Annahme, welche man treffen kann, ist diejenige von
Abraham de Moivre, nach welcher in gleichen Zeiten
gleich viele Personen sterben.
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Stellt man die in jedem Alter x vorhandene Zahl
der Überlebenden der Gesamtheit fest und trägt sie

in eine Tabelle zusammen, so erhält man die Übcr-

lebensordnung der Gesamtheit und als graphische
Darstellung derselben die Überlebenskurvo. Aach der

Hypothese von Moivrc ist die Überlebenskurve eine

gerade Linie. Die Gleichung dieser Geraden erhalten
wir durch folgende Überlegung:

Die Lebenden des Alters x sind mit l bezeichnet.
X

Während eines Jahres stirbt ein gewisser Bruchteil
dieser l Bersonen, etwa X l wo 0 X < 1, aus,
so dass

/ l —XI
aj-j-1 X X

Aach Moivres Hypothese sterben in gleichen Zeiten

gleichvielc Personen weg, also jedes Jahr X l
Personen, in t Jahren somit t XL so dass

' X '

Der positive, echte Bruch X ist nun näher zu
definieren. Bezeichnet w das Schlussaltcr der
Überlebensordnung, so dass ist, so folgt aus (1)

la=lx(l-*(<»-x))=0
Hieraus bestimmt sich / zu

/ - —- (2)
co—x

Dieses Resultat erhält man auch folgendermassen:
Wenn die l Personen vom Alter x in derZeit w — xX

gleichmässig aussterben sollen, so müssen pro

Zeiteinheit (Jahr) ^ Personen sterben; somit hat in
0} — x

der Tat X den in (2) angegebenen Wert.



Alis untenstehender Figur ergibt sieh noch die

geometrische Deutung des Parameters X

—— tg<p,
(O — X

so dass

X — ^--tgtp (2a)
X

Bezeichnen wir die Lebenden des Alters 0, also

/ mit H, so gilt die Beziehung

a ü-
— — —-— konstant,
(O ü)—x

woraus

(3)x 10

Dies ist die Gleichung der Überlebensgoraden.
A. di> Moivre setzte speziell <o — 86 und nannte o>—x
die „Lebensergänzung"' des »-jährigen (vgl. Böschen-
stein, Mitteil. Schweiz. Versicherungsmathematiker,
3. Heft).

Die Intensität der Bterblichkeit des Alters x -f-1
ist definiert durch

X-\-t
'Uz+f lVM

wo Vx+t den Difforentialquotienten von lx^_t nach t
bedeutet; im vorliegenden Fall bestimmt sie sich zu

u'x+t 1 —Xt
(4)

d. h. wenn die Kurve der Überlebenden eine gerade
Linie ist, so ist die Kurve, welche die Intensitätsfunktion
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der Sterblichkeit darstellt, eine Hyperbel mit der reellen

Asymptote t =-7 bzw. x -j- t x-\—= co.
X

Aus (4) folgt für t — 0

,u — A' X (4-)

Der Parameter X ist somit nichts anderes als
die Intensität der Sterblichkeit des Alters x. Wir
haben somit für / folgende Ausdrücke zur Yerfügung

x -(ol-x T-tgfpz=^

Ferner sei hier beigefügt, dass unter Zugrundelegung

der Hypothese yon Moivre qx+t und yx+t identisch

sind.

*

In der Wirklichkeit liegen nun die Verhältnisse

so, dass das Absterben einer Cfosamtheit nicht gleich-
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massig, sondern in den verschiedenen Lebensaltern
verschieden intensiv erfolgt. Die Uberlebenskurve ist
nicht eine Gerade, sondern eine Kurve mit
Wendepunkten. Greift man einen bestimmten Punkt (x, U)
dieser Kurve heraus und zieht in ihm die Tangente
an diese, so schneidet sie die Abszissenachse in einem

Punkt mit der Abszisse x -f- —-, denn die Subtangento
^X

im Punkt (x, Z ist gleich der reziproken /(-Punktion

J). Die Gleichung der Tangente lautet nach (1)

y i+t lx(i— ,%-ty

Der Akzent soll dartun, dass sich diese Zahl y von
der wirklichen Anzahl der Lebenden des Alters x-\-t
unterscheidet. Je nachdem nun der Verlauf der Kurve
der Lebenden im Punkt (x, l nahezu geradlinig ist
oder nicht, wird der Unterschied zwischen l und

' X {—C

lx_^t klein oder gross sein; hierdurch erhält man einen

Anhaltspunkt, inwieweit es in einer gewissen
Altersperiode zulässig ist, für die Kurve der l eine Gerade

zu substituieren.

Wenn man in jedem Punkt der Kurve die
Moivresche Gerade in der skizzierten Art konstruiert,
so stellt sich diese Kurve als Enveloppe aller Moivre-
schen Goraden dar. Beim Betrachten einer solchen

Pigur kommt man auf folgenden Vergleich :

Wirken auf einen Körper zwei Kräfte ein, eine
translatorische und eine Zentripetalkraft, so wird er
eine krummlinige Bahn durchlaufen; hört die Wirkung

') Siehe „Die Intensität der Sterblichkeit und die
Intensitätsfunktion", von Prof. Dr. Gh. Moser. Mitteilungen Schweiz.
Versicherungsmathematiker, 1. Heft.
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der Zentripetalkraft plötzlich auf, so fliegt der Körper
tangential an die Bahnkurve weiter.

Ganz analog kann man sich die Sterblichkeitskraft,

die auf eine Gesamtheit wirkt, aus zwei
Komponenten zusammengesetzt denken; die eine

Komponente, die translatorische, wirkt für alle Alter gleich
stark und bewirkt eine gleichmässige Abnahme der
Gesamtheit (geradlinige Bahn); die zweite, veränderliche

Komponente bedingt den krummlinigen Verlauf.
Fällt in einem gewissen Punkt x diese Wirkung des

zunehmenden Alters weg, so macht sich der weitere
Yerlauf des Absterbons tangential an die Absterbekurve

in gerader Linie. Die Hypothese von Moivre
läuft somit auf eine Vernachlässigung der veränderlichen

„Zontripetalkomponente"1 hinaus; sie gibt infolgedessen

nur ein grobes Bild des Yorgangos.

Immerhin ist deswegen das Yorgehen des
Mathematikers Moivre nicht gering einzuschätzen. Ks war
für die damalige Zeit ein kühner Gedanke, das
Absterben einer grossen Gesamtheit von gleichaltrigen
Personen durch eine mathematische Formel charakterisieren

zu wollen; diese wissenschaftliche Tat Moivros
bedeutete einen bahnbrechenden Schritt für die spätem
Forschungen im Gebiet der Sterblichkeitsmessung.

§ 2.

Die Reserve einer gemischten Yersichernng bei

Vernachlässigung tier Verzinsung.

Die Reserve einer gemischten Versicherung im

Betrage 1, die im Alter x auf die Dauer von n Jahren
abgeschlossen wurde, beträgt nach t Jahren:
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,— [VTt- l*+r ' Ch

ixn 7j _ 1 n
'

axn ± r T

lx jv -Iv+r-dr
0

Durch spezielle Annahmen über den Verlauf von
l gelingt es, diese Integrale zu berechnen und eine

zu Berechnungszwecken geeignete Formel aufzustellen.
In unserm Fall ist die Integration leicht durchführbar.
Wir machon jedoch vorerst die weitere vereinfachende

Voraussetzung, dass die Verzinsung gleich 0 sei, dass also

v 1 («)

sei. Dadurch verliert die Untersuchung natürlich noch
mehr den Charakter der Allgemeinheit; dafür worden
die gewonnenen Resultate, was den Einfiuss der

wichtigsten Variabein, der Sterblichkeit, auf die

Reserve anbetrifft, um so deutlicher. Wir werden in § 5

zeigen, dass diese letztere vereinfachende Annahme
für unsern Zweck gestattet ist.

Unter Berücksichtigung von (n) und

Wr lx0-— kr) (/;)

geht (5) über in
1

Jlx{\-h)drU1 -U)
V - 1 —t x n ^

oder

lx flxO-—h)dr

n-\-t

d-«). (i-;.f)
.7^ 1~Vr1 («)
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Wenn man hierin l und n als Konstante ansieht
und t als die unabhängige Yariable, so stellt diese

Gleichung eine Hyperbel dar mit der einen Asymptote

t— \ —co —x. Die Keserve fF, und die Intensitätsfunktion

sind also Hyperbeln mit einer gemeinsamen

Asymptote, nämlich der im Schlussalter co

errichteten Ordinate. „7- — 0; V — 1-
0 X 71' ' 11 X 11

Naturgemäss ist stets n <loo — cc, somit

— Hl ——, d. h. es ist stets
U — CO — X

0 < I < — (7)— — n

Für den Spezialfall / 0, wo die Überlebenskurve

eine zur Altersachse parallele Gerade ist, wird

n n

In diesem Fall degeneriert somit die Hyperbel zu einer
durch den Nullpunkt gehenden Geraden. Und so muss
es auch sein; denn wenn keine Sterbefälle eintreten

(/ 0), so hat die fteservenbildung einzig darin zu

bestehen, class im Verlauf von n Jahren die Summe 1

angesammelt wird. F=0; V 1.

Unter Zuhülfenahme der //-Funktion können wir
Formel (6) etwas umformen. Aus

9
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^- 1=1!folg': 1~',S=7T7 V^' x+t fJ-x+t

n a
analog 1 —X-— ' X

2 u n' x-\
2

,« + * px

folglich

,« «-H' ®+—r

„ — t ^x+^-Vx+tv- l— (6a)
1 ®" n u • ,u v+t

Die Formel ist deswegen beachtenswert, weil nur
Intensitätsfunktionen vorkommen.

Ersetzen wir in (6) X durch den in Formel (2)
angegebenen Wert, so kommt

f _ _ i _ ÜZlL m~x 2(co—a;) —Q-f-Q b
t xn n co—•(x-\-t) 2 (co—x) — n

Über diese Funktion (6b) könnte man nun 4

verschiedene Untersuchungen anstellen:

1. Die Variable ist t, während co, x, n konstant sind.

2. Die Variable ist x, das Eintrittsalter, während

/, n und co konstant sind.

3. Die Variable ist n, die abgemachte Versichc-

rungsdauer. co, tf, x konstant.

4. Die Variable ist co. t, x, n konstant. Dies

kommt darauf hinaus, das Verhalten der Reserve fFbei
Veränderung der Sterblichkeit zu studieren; denn

eine Verschiebung des Schnittpunktes co auf der Altersachse

hat eine Drehung der Uberlebensgeraden um
den Schnittpunkt H auf der Ordinatenaehse zur Folge.
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Der Behandlung von Fall (4) sind die folgenden
Ausführungen im wesentlichen gewidmet; nur wählen

wir statt w X —-— als unabhängige Yariable.
(0— x

Aber auch die Untersuchung der Fälle (1), (2),
(3) wäre nicht ohne Interesse; wie bereits bemerkt
wurde, führt Fall (1) auf eine Hyperbel, während die

Fälle (2) und (3) auf Kurven dritten Grades führen
würden.

§ 3.

Einlluss einer Yeränderung der
Sterblichkeitsintensität auf die Höhe der Reserve.

Es handelt sich darum, zu untersuchen, welchen
Einfiuss eine Yeränderung der Sterblichkeitsintensität
auf die Grösse der Reserve in jedem Zeitpunkt während
der versicherten Dauer hat. Eine solche Untersuchung
stösst bei sich dem wirklichen Yerlauf der Absterbeordnung

und bei Mitberücksichtigung der Verzinsung
sehr bald auf beträchtliche mathematische Hindernisse;
man ist daher vorläufig gezwungen, bescheiden
anzufangen und den Berechnungen ganz elementare
Annahmen zugrunde zu legen, um so wenigstens einiges
Licht in das Dunkel dringen zu lassen.

Wir gehen aus von der Formel

1
n + 1

,V.==1-^ r—n\ (6)

(i-w (i—dfj
Hierin soll X die Rolle der unabhängigen Yariabeln
übernehmen, während £C, n, t Konstante sein sollen.

Die Kurve, welche der Abhängigkeit y — (V{X) ent-
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spricht, ist vom dritten Grade; sie besitzt die drei
1 2

reollen Asymptoten k — —k —, ferner y (V= 1,
b Ifl

denn

Junes yfö — „
hmes

,F(2) 4 1.
A — OO t K ' A=~ OO * V ' 1

Die Kurve besitzt also das Maximum der für eine

Kurve dritten Grades möglichen Asymptoten (siehe

Eig. 1 hinten).

Die praktischen Grenzen der Yariaboln k sind

(vgl. (7)) 2 0 und k An diesen beiden Grenzen

hat unsere Funktion die Worte

,m Ai) ^ (8)

Wie ist nun der Yerlauf der Funktion im zwischenliegenden

Intervall Wir bilden

d,V{k) n—t 1

dk
('-«)*•(i-4)'

!('+<-**))
Den Klammerausdruck ordnen wir nach Potenzen

von k; es folgt

d tX (n—t)t 1

dk 4n / w \2d-^ • (1-4)
| (?i -f-1) n t — 4n A -\- 2 j (9)
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Hieraus ergibt sich das Steigungsmass der Kurve im

Punkte — 0, tV nämlich

(^L=-^i<» <*)

d. h. im Punkte ^0, sinkt die Kurve y — fF(/1)

gegen die positive Abszissenachse ab; wegen der
Isolation (8) besitzt die Kurve daher im Intervall

0 <" X <T — ein Minimum, da sie in diesem Intervall
n

stetig verläuft.

Dies können wir rechnerisch nachweisen und überdies

die Abszisse x bestimmen, für welche das Minimum

eintritt. Aus (9) ergibt sich, dass die Punktion
tV(Ä) einen extremen Wert erreicht, wenn die Gleichung
erfüllt ist:

(n -\-t)nX2 — 4w k -)- 2 0 (10)

Diese quadratische Gleichung besitzt die zwei
Wurzeln

2«—y 2n(n—t)
1 n (n 4-1)

j 2n-yj2n{n — t)
v2

n (n t)

(10a)

welche wegen t^n beide reell und positiv sind; die
Punktion t~V(X) besitzt demnach zwei extreme Werte.

Kun ist

\' 2n (n — t) — ~j n— 2nt -)- nz > ]/ n— 2nt tl

> (n — t)

2n —2n(n — t) n -f-t,
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somit =i (a)
1 n(n-\-t) n

Ferner ist

n (n -(-1)
K 2n—Z 2n(n—t)

-r fr I fi Zn+]/2n(n — t) n(n + t)
— n{n-\-t) 2»(»+0

"
2 2'

dalier ist wegen der Ungleichung (a):

2
K > —7—r~A n oderi n (n +1)

1 2_ A. — J_
2 n -f-t 2»? w '

d. h.

K >
1

J ft
iß)

Aus (a) und (ß) folgt, dass die Funktion tV{t) im

Intervall 0<C/t<U—- einen einzigen extremen Wert
n

besitzt, nämlich im Punkte Xl; dass dieser extreme
Wert ein Minimum sei, folgt aus

^ t(ß—n) 1

äJ? 4M

| (i _)df (1-4)2 [2 (» +0 MA-4H]

[(„ +1) nt - 4 nl + 2] ff} [(1 - Itf • {1 - l^f]}
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Wogen (10) ist nämlich

/ ^ ^ „ — t(n — t) / n (n ~f" 0 ~l — 2 n \

\^)Zh Tn \(i

— *(" — Q — ]/2w(w — Q
0

2« (1— Xjf (l—

Dagegen bezeichnet der ausserhalb unseres Intervallen
liegende Wert 2ä ein Maximum der Funktion; denn

(ditV\= tin — t) +l/2 w(w — Q

U/2/,=,2 "2w

Wir haben nun ein genaues Bild über die Funktion

d. h. über die Abhängigkeit der Höhe der
Reserve von der Sterblichkeit erhalten; wir fassen

unsere Ergebnisse im Satz zusammen:

Wenn die Sterblichkeitsintensität l zunimmt von

0 bis zu — so nimmt die Reserve .V vorerst ab bis
n *

zu einem Minimumwelches erreicht wird beim Wert

2 n — ]/2 n(n — t)
d n (n -f-1) '

und dann ivieder zu bis zum Atisgangswert (vgl.

nachstehende Figur).
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Aus der Figur kann man ferner schliessen: In
jedem Zeitpunkt t (t kann irgendeinen Zeitpunkt
zwischen 0 und n bedeuten) lassen sich stets Wertepaare

l angeben, welche auf dieselbe Reserve führen,
nämlich ein Wert I vor dem Minimum und ein Wert II
nach dem Minimum; wir werden auf diese Tatsache
in § 7 eingehend zu sprechen kommen.

ifC &
*

Wie gezeigt wurde, ist der Wert von /, für
welchen 4F(/) ein Minimum erreicht, abhängig von t\
daher ist auch die Grösse des Minimums selber,
abhängig von t-, in jedem Punkt t kann die Reserve

nur schwanken zwischen den Grenzen — und F(x,);
n

in der nachfolgenden kleinen Tabelle sind für einige
Werte von t diese beiden Grenzen, sowie die Schwankung

a=4-^
angegeben.



t h
t
n A ;

0 0,5858
1

n
0,00000 0,00000 0,00000

n
: 4

0,6202-
1

n
0,20696 0,25000 0,04304

n
| ~2~ 0,6667-

1

ii
0,43750 0,50000 0,06250

3 n
4

0,7388-
1

n
0,68566 0,75000 0,06434

n 1,0000
1

n
1,00000 1,00000 0,00000

Wenn man nun t variiert und in jedem Punkt
t dieses Minimum tV{X^) als Ordinate aufträgt, so

erhält man als geometrischen Ort aller Punkte [t, tV(X )\
eine gewisse Kurve, welche wir die „Grenzkurve"
nennen wollen. Ihre Gleichung lässt sich, wie im
folgenden Paragraphen gezeigt werden soll, leicht finden.

Vorerst wollen wir noch zeigen, dass eine solche
Grenzkurve überhaupt existiert. Es bezeichne Ä' den
einem bestimmten Zeitpunkt f entsprechenden „Mini-
malwerf" / wie er sich aus (10a) ergibt; setzen wir
diesen Wert ).' in die Reservengleichung (6) an Stelle

von l ein und lassen alsdann t variieren und zeichnen
die entsprechende Reservekurve (Hyperbel), so wollen
wir diese mit K bezeichnen; sie trifft die in t'
errichtete Ordinate in einem Punkt T', dem „Minimal-
punkta. Einem andern, sagen wir spätem Zeitpunkt
t" entspreche der Minimalwert die Kurve K" und
der Minimalpunkt T". Die Kurve K" muss nun die
im Punkt f errichtete Ordinate oberhalb T' treffen,
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da T' das Minimum der Reserve im Punkt t' darstellt;
ebenso muss die Kurve K' die im Punkt t" errichtete
Ordinate oberhalb T'' treffen aus dem gleichen Grunde.
Hieraus folgt nun: Die zwei Kurven K' und K"
schneiden sich zwischen t' und t". Da dies für zwei

K'

'r
f

t' t"

beliebige Punkte t' und t", also auch für zwei unendlich

benachbarte gilt, so sehen wir ein, dass die
Aufeinanderfolge aller dieser Schnittpunkte eine gewisse
Kurve stetig erfüllt; diese Kurve ist nichts anderes
als die Aufeinanderfolge aller Minimalpunkte; sie ist
identisch mit der Enveloppe der Kurven wo t
die unabhängige Yariable ist und a als veränderlicher
Kurvenparameter aufgefasst wird (vgl. § 4).

§ 4.

Die GrenzkiU've.

Die Gleichung der Grenzkurve, welche als der

geometrische Ort der Minimalpunkte definiert wurde,
wird gefunden, indem man in der Ausgangsformel für
die Reserve
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,7= 1

den Wert

i x n + t

n—t 2

T~ (i^oii—4)

2 n —y 2 n{n — t)

n(n-\-t)
einsetzt.. Es wird

^
• AM)

wo nun f'(t, «) bestimmt werden soll.

AM)

(11)

(n -{- ff y2 n {n — t)

4nt(n — i) + [ri(n — 0 + 2 0] • |/2n(n — t)

(n + ff |/2 n {n—t) 14 {n—t) - [n {n—t)+2 0] ~\/2 n (n— t) |

[4nt(n — <)] —[ra(w—t)-|-2t2] • [2n(n — t)]

21{n-\-ff ^2n{n-—f) — (n-j-t)2 [ra(n — 0+ 2 ^2]

8 nt2 (n — f) —[w (m — 0 + 2 0]'

Dieser Ausdruck lässt sich überführen in ein

vollständiges Quadrat, nämlich

AM):
n Jrt

yn (n — f) +]/2 <

wo beide Wurzeln im Nenner das positive Yorzeichen

besitzen; dies setzen wir in (11) ein und erhalten die

gesuchte Gleichung der Orenzkurve
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.V": n-\-t
]/w (n - -t) —|—j/2 • t

(12)

Spezielle Punkte der Kurve sind:

t 0; 0"T o

*=1; Vg 1

Aus (12) ist ersichtlich, dass alle Kurvenpuukte, für
welche t^> n ist, imaginär sind; den Punkt t n
werden wir daher noch etwas näher untersuchen

müssen; für negative Werte von t dagegen wird der
Ausdruck (12) reell.

Einfacher erhalten wir die Gleichung der Grenzkurve,

wenn wir sie als Envoloppe der durch die

Gleichung (6) dargestellten Hypcrbelschar auffassen.

Wir ersetzen der bessern Übersichtlichkeit wegen tV
durch y und t durch a;, so dass die Gleichung lautet

1 't ^ ~~ü ^
— 1 n~x ~'' ~2~~

V~ n (1 — — Af)
od er

w(1_;-|)(l Xx)(y-l) + (n--x)^l~lt~1)-= 0 (13)

Wir ordnen die linke Seite nach Potenzen des

Kurvenparameters A; die Koeffizienten von A2, A, A° bezeichnen
Avir kurz mit [A2], [/], [Ab] und finden:
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n(y — 1) Yx =a

[X\ — n(y — 1) (|+»)— 2b
(14)

[/°] w(y—1)-\-n — x =c
so dass

f{x, </, X) a)? -j-2 b X -f- c 0 (15)

Die Bedeutung von a, 6, c ist aus (14) ersichtlich.
Aus (15) folgt:

i^M 2(aJl+J) 0 (16)

Nach der Theorie dor ebenen Kurven ergibt sich nun
die Gleichung der Enveloppe, indem man aus den zwei
Gleichungen

f(x,y, X) 0

<*/(«, ZG ^) 0
bX

den veränderlichen Kurvenparameter X eliminiert; das

Resultat der Elimination, eine Gleichung in x, y allein,
stellt die Enveloppe dar. In unserm Falle ist diese

Elimination sehr einfach; aus (16) folgt

a

und wenn man diesen Wert in (15) einsetzt, erhält
man als Gleichung der Enveloppe

b2 — a c 0

«der nach Einsetzumg der Ausdrücke (14):
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\n(n+2x)(y— \) + n2—x2j—8n-x(y—l)+w—x']=0 (17)

Die Enveloppe ist somit eine Kurve vierten Grades.

Bedenkt man nun, dass die Einsetzung der Wurzeln

der Gleichung — 0 in die Gleichung (6) identisch
& X

ist mit der Elimination des Parameters /, so müssen
die Gleichungen (12) und (17) die gleiche Kurve
darstellen. Kur ist zu bedenken, dass wir oben bloss die

eine Wurzel der Gleichung 0 berücksichtigt

haben; daher kommt es, dass die Gleichung (12) nur
den einen Zweig der Enveloppe (17) darstellt. Dieser
Zusammenhang zwischen (12) und (17) soll noch kurz
gezeigt werden.

Wir ordnen in (17) die linke Seite nach Potenzen

von y—1; die Koeffizienten werden

\{ij — l)2] vi {n — 2a;)2

| (y — 1)] =2 h (n — x) [(« -)- 2 x) (n -)- x) —• 4 n a;j

[(y — 1)°] 0+«)* 0»—xf

Lösen wir die in (y—1) quadratische Gleichung auf,
so kommt

—-n (n — x) [(«-\-2x){u~\-x)— 4 nx1 + )'D
y — 1

5 3

n (n — 2 xy

Für die Diskriminante T) erhalten wir nach einigen
Umformungen

D — vi2 (n — x)2 4 x2 2 n (n — x).
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Daher folgt, wenn wir den Bruch rechts etwas
vereinfachen

y — 1

n (n — x) (ri-\-2x){n-\-x) — 4 nx + 2x \2 n (n — xj
n1 in — 2 xf

Den zweiten Paktor verwandelt man in ein vollständiges
Quadrat und findet

\'2 x | n (n—x)
n — 2x

so dass schliesslich

n — x 1 n 4- x
y= 1 I -n \| 2 x + ]jn{yi — x)

Abgesehen vom doppelten Vorzeichen im Nenner,
stimmt diese Formel vollständig mit (12) überein; die
Formel (12) stellt somit in der Tat nur den einen Zweig
der Enveloppe (17) bzw. (18) dar.

Um die Kurve konstruieren zu können, gehen wir
zu einer kurzen Diskussion der Kurvongleichung (17)
über. Sie lautet, wenn sie nach dem Grad der Glieder
geordnet wird :

x [2ny — xf— 2 nx[2nzy1 -f-nxy — 2x~\ —

(19) —nfix2 — 4 nxy — n% yi} 0

Da die Gleichung erst mit Gliedern zweiten Grades

beginnt, so besitzt die Kurve den Nullpunkt als Doppelpunkt;

die Gleichungen der Doppelpunktstangenten
lauten

y—1
(n—x)
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und

-2 + 212^

— 2 — 2 |/2
?/= x

Ihre Konstruktion liefert uns den Vorlauf der Kurve
in der Nähe dos Nullpunktes.

Wegen der an Gleichung (12) angeknüpften
Bemerkung interessiert uns noch speziell der Punkt

(' —re, y 1); durch Koordinatentransformation
machen wir ihn zum Nullpunkt und finden, dass er eine

Spitze der Kurve ist; die Gleichung der Spitzentangento
lautet

2
y=—x~1 >

diese Gerade schneidet somit die x-Achse im Punkt
n

Die Kurve besitzt in der zur Ordinaten-Achse
71

parallelen Geraden £ — zwei zusammenfallende
u

Asymptotenrichtungen; im unendlich fernen Punkt
dieser Richtung berührt unsere Kurve die unendlich
ferne Gerade.

Die durch das doppelte Vorzeichen der Quadratwurzel

in (18) gekennzeichneten zwei Zweige der
Kurve tendieren beide mit sehr grossem negativem x
gegen — oo denn aus (18) folgt für x — — oo
y — oo

Die Kurve ist in Figur 2 hinten dargestellt für die
Annahme n 20.
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§ 5-

Die Reserve bei Berücksichtigung der Verzinsung.

Wir gehen wieder aus von der allgemeinen Formel

n
l

x-\-t

tT= i 4-

l'T ^x+r ' C^T

~Y~ fif • l ,c(tl / ab¬

setzen wir hierin vT e*r, so bedeutet ö Log(l-)-i)
— Log v die Verzinsungsintensität. Auf Grund

unserer Hypothese ist l — lx (l — /ia,r) lx (1 — Xr)
zu setzen.

e* • (1 — Xt) • dr

n

je • (1 — /t) • dr

,u J

(20>

Das unbestimmte integral J Je** (1 —Xt) • dr
ergibt sich zu

j e (<5 — X) — Xär e&1

folglich ist

y_<
1 )-dX(neSln~t)~t)

1 -u w
Von dieser Formel werden wir später noch

Gebrauch machen. Für jetzt bemerken wir, dass

10
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und

ö(n—t) _ n—t
e — \—v

~8n -i n
e — 1 V

negative Grössen sind; wir drehen daher im Zähler
und Nenner von (21) das Yorzeichen um und finden

Y=l
1 dA(W f) + (d-/)(l-n-0

* \ — H §Xnvn-\-(d— /)(1—vn)

Yon dieser ßeservenformel wollen wir nun
ausgehen und wiederum die Funktion fV(X), d. h. die

Abhängigkeit der Keserve von der Sterblichkeit
untersuchen. Das geometrische Bild dieser Funktion ist
wiederum eine Kurve dritten Grades mit den drei
reellen Asymptoten

1 x „ d(i-p
/ ' 'II i n c> n1 ] — v — o nv*i=-r, \ v-n>y tm +1-

Die zwei Pole XT und X der Funktion tV(X) sind —
wie es auch in der Natur der Sache liegt — beide

grösser als —: für XT sieht man dies ohne weiteres
n 1

ein und für Xu resultiert dies z. B. aus der kleinen
Zusammenstellung

1

n '•n

2 0.03 i — 0.035 i 0.04

20 0.05 0.111 0.112 0.115
25 0.04 0.091 0.093 0.095
30 0.033 0.078 0.080 0.082
40 0.025 0.062 0.064 0.067



— 141 —

Uns interessiert nun wieder am meisten das Intervall

0 wie verläuft die Punktion tV(X) in

diesem

Vorerst die Werte an den Grenzen des Intervalls:

f 1^(0) =1
1 72
1 V

1 «l V

n—t n
V —V

i n1—V
(22")

V 1 1

n — t

1 —vn f—d(w — t)
1 — vn— 3 n

(22b)

Durch Subtraktion folgt

.7(1 ,7(0),

n (n — t)r)'(v"
1

— vn) — t (1 — vn) (1—vn J)

(w — 0(1 — vn)(l — vn—ßn)
~~ (23)

Mittelst Reihenentwicklung wollen wir nun zeigen, dass

diese Differenz positiv ist. Vorerst betrachten wir den

Nenner; die Faktoren (n — t) und (1 ~vn) sind beide

positiv; wie steht es mit dem dritten Faktor?

\—vn—Sn= 1 — (l-f-ff-—w Log (1 + 0) woO<D<Tl,
' i i

l—ni + n(n+l)-^-. —+2!

s

— n
1

-+•

-»{^(»+1-1 !)-|j [(«+!)(»+2)-2!]+--!

Die Konvergenz der Reihe in der geschweiften
Klammer lässt sich leicht nachweisen. — Die Glieder

dieser Reihe sind abwechselnd positiv und von Anfang
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an ist jedes Glied grösser als das unmittelbar
nachfolgende; wenn wir uns daher auf die ersten Glieder

beschränken, so folgt:
-2 -3

1 — l,n— d'noc — 2] — 3! ^")}

Da für alle praktisch vorkommenden Fälle

i ^ 0 • 045

vorausgesetzt werden darf, so ist für alle n <Z 63 die

geschweifte Klammer sicher ein positiver echter Bruch;
daraus folgt, dass

1 — vn — d n <( 0

ist; somit ist der Nenner des Bruches in (23) negativ.

Den Zähler formen wir ebenfalls durch Entwicklung
von d Log(l —j— i), vn~l, vn in absolut konvergente
unendliche Reihen und nachherige gliedweise Multiplikation

dieser Reihen in eine ebenfalls konvergente
unendliche Reihe um, welche nach Potenzen von i
fortschreitet; die Koeffizienten dieser Reihe sind allerdings
nicht sehr einfach, doch findet man, wenn man nur
die zwei ersten Glieder der Entwicklung berücksichtigt,
dass der Zähler sich auf die Form bringen lässt:

n(n — t) d (vn~1— vn) — t (1 — vn) (1 — vn~l) co

n2 t(n— t)2 i*
12

d. h. auch der Zähler ist negativ.
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Aus dieser Betrachtungsweise ergibt sich nun, dass
die durch Gleichung (23) dargestellte Differenz einen
positiven Wert hat; daraus folgt

«y(~)>,n0) (23-)

•* ifc
><

Wir bestimmen weiter den Differentialquotienteu
dtV(X)
—dl—' Um se*ner ^ülfe den Bichtungskoeffizientcn

der Kurve tV{X) im Punkte [0,^(0)] anzugeben. Wir
ordnen in (22) Zähler und Kenner nach / und differenzieren

; es ergibt sich, wenn wir den Zähler des Diffe-
rentialquotienten auch wieder nach Potenzen von l
ordnen:

dtV(X) __
dl

~~

[Xs]. A'+m x +[/]. 2°
^ (24)

(1 — Itf \l[dnvn— 1-f vK] + d(l — w")}S

Die drei Koeffizienten haben folgende Werte:

|A2] t[tinv"'~~t— dt — 1 -f-w"-4] [dnvn — 1 -f- vn]

[/] =~2cB[l— v[dnvn—l-\-vn]
[Z°] c)2• (n — i) — vn (n—tvn-')]

Daher ist

idty^)\ [ä°]

dl /,=0 d2 • (1 — vnf

vn~l (n — t) — vn (n — tn^) ,OR,— ^0)
(1 v



144

Der Zähler dieses Bruches ist eine positive Grösse;
dies lässt sich folgendermassen nachweisen:

Damit
1

V

sei, muss

sein oder

(n — t) — vn(n — tvn e) > 0

vn
1

• (n —1)^> vn (n — t vn l)

nv — tv <in — t

Dies ist in der Tat der Fall! Denn

(«)

nv —n

tv —t

1 — t(t-j-l)(t-j-2)^ +

t %

l~ni-{-n{n-\-l)^—n{n+ l){n + 2)-^

und durch Subtraktion

n r — tv ={n — t) -f- n t [(< -j-1) — (n -|- 1)J

— nt[(f + l)(t + 2) —

(w + l)(w +2)]^j -|

=- («-- 0

-=(n — t)

1 — t(n ~)~13!

(n — i)

wt—tvn {n- t) A

1 — nt jr-.- e
U •

wo 0 < e < 1

(/>')
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I"
wo A 1 — nt gl-s einen positiven echten Bruch

bedeutet; aus ß) ist ersichtlich, class Ungleichung a)
erfüllt ist. Damit ist bewiesen, dass

in Worten: Die Kurve fV(X) fällt im Nuttpunkt gegen,
die positive Abszissenachse ab.

Halten wir dieses Resultat mit der Ungleichung
(28a) zusammen und berücksichtigen wir ferner, dass

naturgemäss t
V (1) im Intervall 0 < X < — nie gleich

0 werden kann (es sei denn t — 0), so ist bewiesen,

dass die Funktion V (I) im Intervall 0 < / <" —1 n

(mindestens) ein Minimum besitzt. Wir haben also
den Satz:

Wenn die Sterblichkeitsintensität X a von 0
1 X

bis ~ wächst, so nimmt die durch Gleichung (22)

dargestellte Reserve vorerst ab bis zu einem Minimum

und dann wieder zu.

§ 6.

Einfiuss des Zinsfusses auf die Höhe der Reserve.

Ausgehend von Formel (21) bilden wir den

Differentialquotienten

^ i LA2] d2+w • ä 4- Lrf0] • <*°

(a)
dd \ — Ü [(#_A)(ita-l)-
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Die Koeffizienten haben die Werte

[42] (1—/ n) \n{v'l~t—vl)-\-lntvn{l— vn~l)—

-tvn~l{ l-vn)]
[f)] =(2 — ).n)[}.t v'l~t • (1 — v'1) — In (y""1—v") ] —

— In • it v" • (1 — vn~'f)

[d°| oH (1 — v") (1 — v'l~) > 0

Ist nun der Zähler des Bruches in (a) positiv, so ist

d.V
t«t<°- <*>

Für 6 — 0 ist diese Ungleichung erfüllt, weil der Zähler
sich auf [()"] > 0 reduziert'); wir wissen somit, dass

dtV
dö < o (r)

<5={)

Diese Ungleichung besagt, dass die Kurve fV(o) im
Punkte 6 0 gegen die positive Abszissenachse

abfallend ist.
Da ferner der Zähler von a) eine stetige Funktion

ist, so ist zum vornherein gewiss, dass die Ungleichung
ß) nicht nur für 6 0, sondern auch in einer
Umgebung von 6 0 erfüllt ist; da nun 6 für die
gebräuchlichen Zinsfüsse sehr nahe bei 0 liegt, so darf
man folgenden Satz aussprechen:

Mit wachsendem Zinsfuss nimmt bei Zugrundelegung

der Hypothese von Moivre die Reserve ah.

') Man hat allerdings vor dem Grenzübergang mit (1—v )•
n—t

(1 — 0 wegzudividieren.
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Beispiel.

i ()'

BP(d) (» 20)

x 0 A 0.025

Abnahme Ahnahme

0 0 0.250 0.214
0.018 0.015

0.01 0.00995 0.232 0.199
0.018 0.015

1

0.02 0.01980 0.214 0.184
0.008 0.007

0.025 0.02468 0.206 0.177
0.008 0.007

0.03 0.02956 0.198 0.170
0.008 0.007

0.035 0.03440 0.190 0.163
0.008 0.006

0.04 0.03921 0.182 0.157

Aus diesem Beispiel ersehen wir, dass die im letzten
Hätz ausgesprochene Abnahme sehr regelmässig vor
sich geht und um so kleiner wird, je grösser
ausfällt. Die durch Gleichung (21) dargestellte Punktion

tV(d) besitzt nämlich die positive Abszissenachse zur

Asymptote. Dies zeigen wir, indem wir in (21) den

Bruch mit <? kürzen und ausgehend von

(0

:v(d)=i-

den Limes bilden

limes „ 1—Xt

1 _Jjjj (e-v-o — \) —X(n- /)

1 —X t l, X\ ,-gn in
l1_ d/(e _ ^

d oo^^1-T^=°
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Kürzen wir in (r) mit ein, so wird

f^=x-du
11 ^A / ^n\ 'i / ÖH\

II—"j)(e —e — —te

(i—-j)^—ß'5") ~Xn

Hieraus ergibt sich der andere Grenzwert

Auch die zur negativen Abszissenachse im Abstand

-\- 1 gezogene Parallele ist somit eine Asymptote der
Kurve tV{d)\ wir können also die Abhängigkeit der
Reserve von der Verzinsung durch folgende Figur
veranschaulichen.

Asymptote
+ 1

d
d Asymptote

\

*

Gleich wie wir oben (§§ 2 und 3) bei der
Untersuchung des Einflusses der Sterblichkeit auf die Höhe
der Reserve die Verzinsung gleich 0 setzten, könnten
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wir hier, wo es sich um den Einfluss des Zinsfusses

handelt, die Sterblichkeitsintensität vernachlässigen.
Setzt man in (22) 2 0, so erhält man die Reserven-
fonnel

-t n—t n—t n

,7=1-1=^- ^-=^- (26)t 1 n 1 n v *

1 — V 1 — V

Für diesen Fall hat Herr Prof. Moser für den oben

aufgestellten Satz einen exakten Beweis aufgestellt
(Vorlesungen über Reservenrechnung, W. S. 1914/15).
Der Beweis lässt sich aber auch mit Hülfe der im § 5

verwendeten Reihen durchführen. Wir schreiben zu
diesem Behufe bequemer

_ 1

^=1 (26')
1 — e

Diesen Ausdruck leiten wir nach d ab und finden:

itn>) ~ö{n—t)

'js (26")

inEntwickeln wir v (1 -f-i) und v" (1 -f- i)
Binomialreihen, so geht die eckige Klammer über in

n{ 1—v) — t(1—vn) — nt(n — +~ "/

j2
nt(n— 0gl"« >

yi _j_ i _J_ 3
wo abkürzend s 1

—^ i + • • gesetzt ist;

für alle gebräuchlichen Werte von n und i ist 0 < e < 1;
mithin ist

»(1— v) — t{\— vn)>0.
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Der durch Gleichung (26b) ausgedrückte Differentialquotient

ist somit negativ.

Mit wachsender Versinsungsintensität nimmt die
durch (26) bzw. (26a) dargestellte Reserve ab.

Auch in diesem Spezialfall ist übrigens

^oo^)= + 1-

wie sich ohne weiteres aus (26a) ergibt.

Aus den durchgeführten Beispielen lässt sich

schliessen, dass es gestattet ist, beim Studium der

Abhängigkeit der Reserve von der Sterblichkeit die

Wirkung der Yerzinsung zu vernachlässigen, aber auch,
wenn man nur den Einfluss der Yerzinsung nachprüfen
will, die Sterblichkeit als nicht vorhanden vorauszusetzen.
Man darf somit die Wirkungen aus beiden Veränderlichen

für sich betrachten, ohne falsche Schlüsse zu
ziehen.

Diese Tatsache wird vielleicht für andere Fälle und
für kompliziertere Annahmen über den Verlauf der

Überlebensordnung mit Nutzen verwendet werden können.

§

Der Zeichenwechselsatz.

Herr Prof. Moser beweist im 9. Heft der „Mitteilungen

der Vereinigung schweizerischer Versicherungsmathematiker"

den folgenden allgemeinen Satz:
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„Wird die Reserve einer gemischten Versicherung
nach zwei Überlebensordnungen gerechnet, von denen
die eine für ein im Yorlaufe der Versicherung
gelegenes Intervall eine grössere Sterblichkeitsintensität
angibt als die andere, so weist die Reservendifferenz
in jenem Intervall stets einen Zeichenwechsel auf."

Man nennt diesen Satz den Zeichenwechselsatz.

Im folgenden soll dargotan worden, dass dieser

Satz, allerdings unter einer gewissen Bedingung, auch

dann gilt, wenn für die ganze Versicherungsdauer (und
nicht nur für ein im Verlauf der Versicherung
gelegenes Intervall) die eine Überlebensordnung eine

grössere Sterblichkeitsintensität angibt als die andere.

Vorausgesetzt bleibt auch hier ein geradliniger Verlauf
der Überlebensordnung.

Wir gehen aus von der Formel (0), § 2.

n+t
fV =l — ~— —1

_ (a)xn n n\

Nun wollen wir die Reserve für die nämliche

Versicherung berechnen, wenn eine Überlebonsordnung

zugrunde gelegt wird, bei welcher während des ganzen
Intervalls 0 •< £ < w

Px+t ^ ^x+t

ist, Der Akzent soll angeben, dass sich die Grösse auf
die zweite Überlebensordnung bezieht. Letztere

Ungleichung ist identisch mit

l — X't > l — lt
oder

X' > it.
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Die Reserve nach dieser zweiten Überlebensordnung
beträgt

,F'- — 1 •

t xn
n — t l-X'^-

(i_A'o (I—A- |)
(!>)

Die Differenz zwischen den zwei Roserven lässt
sich für jeden Zeitpunkt t innerhalb der Yersicherungs-
dauer bestimmen:

(27>
nff-t1—X' i.2 l n-

(1 —X't) 1—Av n
(1—iU) Ii — X n\

Dies ist eine gebrochene rationale Funktion von t; wir
wollen ihre Vullstellen bestimmen, bzw. die Wurzeln
der Gleichung (F— F' 0.

Vorerst formen wir (27) etwas um, indem wir
beide Brüche auf gemeinsamen Venner bringen und
im Zähler nach Potenzen von t ordnen; es kommt:

F— F':f tr
n-—t L<V+[q • t + [f]

(l—^)(i—^o(i—|)
(27«)

WO

[f]:==nXX{X,_X)

M Q-'-i)

[f°] o.

1
/»' i nn i i i'n

2 — ff
(27b)
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Aus (27il) und (27b) folgt unmittelbar:
Die Gleichimg tV—tV' Q besitzt die reellen

Wurzeln

7=0
t — n,

2w(A'-f-A) — n'kX— 2

nkk (28)

Dass die Wurzeln 7 0 und 7 w auftreten, ist
selbstverständlich, denn

o^=o^ 0

V T" l.n n

Anders verhält es sich mit der dritten Wurzel, welche
wir mit 7 bezeichnen wollen und welche in (28)
angegeben ist. Liegt diese Wurzel innerhalb des Intervalls
0 < 7 n oder anders gefragt: unter welchen

Bedingungen ist dies der Fall

Vorerst die Ungleichung 7s < n ist stets erfüllt;
sie lässt sich nämlich umformen in

It — -=-^ry<l (29)
n k nk n k n k

Da aber sowohl k als auch k' kleiner als — ist,
n

so ist

T>«

y>»,
folglich, wenn und /\9 zwei positive Grössen

bezeichnen,
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1

_ni
-^7 1 4- A,nK A

Daraus kommt

nX^ n 'tI' n X n X'v + i-i^='-A.A.
<1

Die Bedingung (29) ist somit stets erfüllt, es ist also stets

<,<«•

Die zweite Bedingung, dass # )> 0 sei, also

2 n (X' -(- X) — n X X' — 2
^

n X X'

ist wegen n X X' > 0 äquivalent mit

2 n (X' — n* XX' — 2 > 0 (30a)

Diese Ungleichung (30a) besagt, dass zwischen den drei
Urössen X, X' und n eine gewisse Bedingung erfüllt
sein muss, wenn die zwei Reservekurven tV und tV'
östlich der Ordinatenachse einen Schnittpunkt besitzen
sollen. Wir lösen diese Ungleichung nach X' auf;
es folgt

r>V^r ^>
oder

i 2 — 2 nit
I \ 1 ' X

i« > -* n 2 — nn
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Tin 2 2 111
L

1
Der h aktor —pr ;— ist wogen K < — sicher ein

2 — n l n

positiver echter Bruch. Wenn somit l bestimmt gegeben
ist, so kann /' nur das Intervall

1 1 2 — 2 nl> *•

n n 2 — n "l

durchlaufen, wenn die Funktion V— V' im Intervall
0 < t < n eine Nullstelle besitzen soll. Wir kleiden
das gefundene Resultat in den Satz:

Die Reservendifferenz V—tV' erleidet im Intervall

0<It<In stets einen Zeichenwechsel, wenn die
Sterblichkeitsintensität nach der zweiten Überlebensordnung

der Bedingung (30b) genügt.

Wenn Z — ist, so fällt der Ort des
n 2 — n a

Zoichenwochsels in den Funkt t 0; wenn

X' <-
_A JL—^n jl"

so findet der Zeichenwechsel
n 2 — n/.

links vom Nullpunkt statt. Ist V —, so findet der

1

Zeiclienwechsel im Funkt t — n statt; ist / >—, so
s ' n

fällt der Schnittpunkt ts ausserhalb des Intervalls,
rechts von t=n.

Beispiel zum Zeichenwechselsatz,

n — 25

1

/
1

k z~w

t 15

Ii
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t 7 J' 7— V'
i, tr

0 0 0 0

1 0.03347 0.03527 — 0.00180 ;

2 06722 07061 — 0.00339

3 10128 10603 — 0.00475

4 13565 14154 — 0.00589

5 17037 17714 — 0.00677

6 20545 21286 — 0.00741

7 24093 24870 — 0.00777 ;

8 27683 28468 — 0.00785

9 31317 32082 — 0.00765

10 35000 35714 — 0.00714

11 38735 39368 — 0.00633 :

12 42526 43048 — 0.00522

13 46378 46756 — 0.00378 1

14 50296 50500 — 0.00204 :

15 54286 54286 0

16 58353 58122 + 0.00231

17 62505 62022 + 0.00483 ;

18 66750 66000 + 0.00750

19 71097 70078 + 0.01019 ;

20 75556 74286 + 0.01270

21 80138 78667 + 0.01471

22 84857 83286 + 0.01571

23 89728 88245 + 0.01483

24 94769 93714 + 0.01055

25 1.00000 1.00000 0
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Wir fassen die gefundenen Resultate über die
Zusammenhänge zwischen der Sterblichkeitsintensität
und der Höhe der Reserve noch kurz zusammen: Der
Sterblichkeitsparameter / kann variieren zwischen den

Grenzen X — 0 und X — -^-- dann bewegt sich die

Uberlebensgerade in nebenstehender Figur im schraffierten

Intervall. Jeder Lage der Geraden entspricht
eine bestimmte Reservekurve, und zwar lehrt die

Untersuchung, dass, wenn X zunimmt von 0 bis dann

nicht etwa die Reserve t V beständig abnimmt, sondern

nur bis zu einem Minimum, das erreicht wird für eine

bestimmte Lage der £ -Geraden, und hierauf wieder
zunimmt. Zwei bestimmte Lagen der ^-Geraden (d. h.

zwei verschiedene Werte von X: X und X') führen in

einem bestimmten Punkt t auf die gleiche Reserve, wenn
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2n(X'-\-X) — nil'— 2

Wenn die Gerade, welche die Überlebensordnung

darstellt, sich zwischen den Lagen I und II (vgl. die

letzte Figur) hinbewegt, so schwankt in jedem Punkt

t die Reserve zwischen den zwei Grenzen und
n

hin und her; tV° bedeutet die in § 4 behandelte
Grenzfunktion. Sämtliche Reservekurven vorlaufen also

zwischen der Geraden g und der Grenzkurve tP-9.

Die Untersuchung zeigt uns somit, dass — trotz
der elementaren Voraussetzung über die Rechnungsgrundlagen

— die Reserve eine recht komplizierte
Funktion der Sterblichkeit ist; eine Änderung der

Uberlebensordnuug kann auf eine grössere, aber eventuell

auch auf eine kleinere Reserve führen. Die Bc-

') Vgl. hierzu die erste Figur in § 3; die Werte I und II
sind zwei solche Werte X und X', welche dieser Gleichung genügen.
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urtcilung dor Höhe der Reserve nach einer Änderung
der Rechnungsgrundlagen erfordert also stets grosso
Vorsicht.

§ 8.

Einführung eines andern Sterblichkeitsparameters.

Die Hypothese von Moivre hat die Annehmlichkeit,
dass wir nur einen einzigen Sterblichkeitsparameter zu
berücksichtigen haben. Der in unsern bisherigen
Formeln verwendete Parameter, der im endlichen Intervall

0 bis -- variieren kann, lässt sich nun wie folgt durch

einen in einem unendlich grossen Intervall variierenden
Parameter ersetzen.

Die Überlebensordnung bewegt sich bei Veränderung

von / im schraffierten Gebiet!). Setzen wir nun

n-\-h — w — x («)

]) Der Einfachheit halber gehen wir in dieser Figur nicht
von II Personen, sondern von lx Personen aus.
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so hat h die in dor Figur angegebene geometrische
Bedeutung. Aus a) ergibt sich sofort der Zusammenhang

zwischen X und h, nämlich

1

u> — x ' n-\-h
und umgekehrt

* rr-T <W

1—nX
h — (y)

Die Grenzen von h sind somit, wie man schon

aus der Figur erkennt, oo und 0. Führen wir diesen

neuen Sterblichkeitsparameter h in unsere frühere Formel

(6) ein, so wird diese zu

1 t\L t

n] \ n -)- 2 Ii
ttv=i--— — (3i)

n-\-h

Diese einfache Reservenformel eignet sich sehr gut,
um alle unsere frühern Schlüsse zu verifizieren. Wir
wollen uns hier enthalten, dies zu tun, und nur
bemerken, dass der in § 7 gefundene Zeitpunkt i welcher
den Schnitt von zwei Reservekurven bezeichnet, unter
Benützung des Parameters h die einfache Gestalt
annimmt

2 h ti
t. — n
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EI. Teil.

§ 1-

Einleitung. Das Gompertz-Makehamsclie Gesetz1).

In Wirklichkeit lässt sich, wie eingehendere
Untersuchungen gezeigt haben, das Absterben einer Gesamtheit

von Personen nicht durch einen einzigen Parameter

(Moivre) charakterisieren. Die Sterblichkeit ist vielmehr
eine komplizierte Funktion mehrerer Parameter. Die
Erfahrung lehrt vorerst, dass — abgesehen vom Kindes-
altor — mit wachsendem Alter die Sterblichkeit
bestandig zunimmt. Dieser Tatsache muss man bei der
mathematischen Formulierung Rechnung tragen; dies

kann man mit der Annahme, dass sich die Sterblichkeitskraft

(Intensität der Sterblichkeit) jedes Alters in
zwei Teile, einen konstanten und einen mit dem Alter
wachsenden Teil, zerlegen lasse

ß (x) A -f- Y(x),

wobei der variable Teil Y(x) in gleicher Weise wachse,
wie ein Kapital durch Zins und Zinseszins; wir sagen:
Die Einheit von Y(x) nimmt in gleichen Zeiten um

gleichviel zu (Hypothese von der konstanten Aufzinsung
der Sterblichkeitskraft).

Angenommen nämlich, die Einheit wachse in
1 ö ö

— der Zeiteinheit um — also an auf 1-1 Dann
m m in

') Wir folgen in der Ableitung dieses Gesetzes dem Gedankengang

von Prof. Dr. Moser (Vorlesungen S. S. 1914: Die Konstanten
der Makehamschen Überlebensordnung).
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(5 1 5

wächst 1-1 in — dor Zeiteinheit an auf (1 -f-
m m \ Dil

• (1-h—)=-== (1-j--<M Nach der Zeit n - ist somit
V m! \ ml m

die Einheit angewachsen auf

:-h4)"
Gehen wir nun von einem Zeitnullpunkt x0 aus;

ler Zeit x—x0 m(x—x0

vom Anfangswert Y(x0) auf

in der Zeit x—x0 m(x—xo)~^ Y(x) angewachsen

r(x)=y(«0). (i + Z)j
n m(as—x„)

Lassen wir m sehr gross werden, also die
Zeitteilchen sehr klein, so wird, wenn wir zur Grenze

m=oo übergehen,

Y(x)=Y(x0) e(x-x<>)

Bezeichnen wir abkürzend den konstanten Paktor
Y(x0) e6x° mit B, ferner e mit c, so wird

Y(x) Bcx, so dass fi(x) A'+Bcx.

Da aber
Bcx

l=k- eJt,(')-d"=li „ AX' te TiO? c

so wird, wenn gesetzt wird
—As=e

B
Los1 c

g e -
(a)

i=h*gc (1)
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Diese Formel heisst das Gompertz-Mahehamsche
Gesetz. Die Erfahrung hat gezeigt, dass dieses Dosetz
mit grosser Treue die Resultate der Beobachtung
wiederzugeben vermag; daher seine häufige Anwendung zur
analytischen Ausgleichung von Sterbetafeln und zu
theoretischen Betrachtungen.

Aus a) folgt umgekehrt

A L°gy, B LogyLoge
und daher

fi (x) Log -f cKLog c Log
X

(1")

Es treten drei Parameter s, <7, c auf, welche
gewöhnlich den Bedingungen genügen x):

0 < s < 1 1

0<fir<l (2)
G > 1 J

Will man nun den Einfluss einer Voränderung der
Intensitätsfunktion ,u auf Grössen der Lebensversiche-

' X

rung analog wie im I. Teil dieser Arbeit untersuchen,
so kann man dies dadurch, dass man sich die

Veränderung der ,«-Funktion als durch Variation jedes der
drei Parameter s, g, c entstanden denkt, und demnach

in den auf Grund des Makehamschen Gesetzes

aufgestellten Formeln für die Versicherungswerte der Reihe

') Es sei hier bemerkt, dass das Makehamsche Gesetz auch
dann einen Sinn beibehält, wenn statt (2) die Bedingungen erfüllt

\
sind: e < 1, s < 1, während g 1 sein kann. Vgl. Vorlesungen

von Prof. Dr. Moser im W.-S. 1916/17.
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nach jeden der drei Parameter s, g, c variiert und
den Einfluss dieser Variationen untersucht.

Bis jetzt nahm man an, dass für fast alle
Absterbeordnungen der Parameter c, bzw. dessen Logarithmus,
einen beinahe unveränderlichen Wert besitzt, nämlich

10

log c oc 0,04 '). Schon Makeham hat auf diese
Eigentümlichkeit der Konstanten c hingewiesen; er schreibt
z. B. im J. 1. A.2), Bd. XIII, S. 347: „ that this

important constant (c) differs from the others in the
formula in being independent of the conditions which
determine the mortality in different classes of
individuals. " Ähnlich äussert er sich im Bd. XYI,
S. 345: „ In my paper ,The Law of Mortality' J" stated

that -J had found the constant q8), in the formula
above quoted, to be nearly the same in different
observations. The average value of the common logarithm
of q in the best observations appears to be 0 • 04, very
nearly. ..." Dann weiter unten: „I may add that
Mr. Woolhouse, in constructing his Mortality-Table
according to the formula above mentioned, takes log
q — 04 as a sufficient approximation to the true
value. ..."

Die Ergebnisse neuerer Sterblichkeitsmessungen
lassen jedoch darauf schliessen, dass es mit dieser

iü
Konstanz von log c doch nicht so weit her ist. Man
sehe z. B. die Zusammenstellung der Konstanten s, g, c

für 30 verschiedene Absterbeordnungen im Aufsatz von
Blaschke: „Die Todesursachen bei österreichischen Yer-

0 Vgl, z. B. Jorgensen, Grundzüge einer Theorie der
Lebensversicherung (1913), p. 71.

2) Diese Abkürzung soll verwendet werden für „Journal of
tlie Institute of Actuaries".

h Makeham verwendet statt c den Buchstaben q.
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sicherten nach fünfjährigen Geschäftsperioden im
Zeiträume von 1876—1900" in den österreichischen
versicherungswissenschaftlichen Mitteilungen |9.Bd., erstes
Heft (1914), 8. 33], Dieser Zusammenstellung entnehme
ich folgende Werte:

10
logc Abweichung von 0,04

Österreichische Tafel 0,0-15995-1 + 0,0059954^ 15%

Österr.-ungarische Tafel A 0,0281115 —0,0118885=—30%

Auch für viele andere Tafeln erreicht die Abweichung

vom hypothetischen Wert 0,04 beträchtliche
Werte. Die von Makcham ausgesprochene Vermutung,
dass die Konstante c „unabhängig sei von den

Bedingungen, welche die Sterblichkeit in verschiedenen
Klassen von Personen bestimmen", wird somit durch
diese neuen Sterblichkeitsniessungcn widerlegt. Es ginge
daher nicht an, kurzerhand log c 0,04 zu setzen,
wie es dieser Autor vorgeschlagen hat.

Diese Tatsache bewog mich, im nachfolgenden
nicht nur die Variationen der Parameter s und g,
sondern auch diejenigen des ebenso wichtigen
Parameters c in ihren Wirkungen auf die Versicherungswerte

zu verfolgen.

§ 2.

Der Barwert
der kontinuierlichen Leihrente, ausgedrückt durch

die unvollständige Gamniafunktion.

Der Barwert der kontinuierlichen Leibrente 1,

d. h. einer Leibrente, die in unendlich vielen gleich-
massig über das ganze Jahr verteilton Terminen mit
unendlich kleinen Raten bezahlt wird, ergibt sich aus

der Formel
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oo

ax j- fv l*+r dr (3>
X J

0

Für das Folgende ist es vorteilhaft, die fntensitäts-
funktionen der Verzinsung und der Sterblichkeit
einzuführen.

—<5

v e
x

t 6r f6>dt / \v =e =eJ (a)

Ferner ist

oder

dh+t _l dt ~
03-f t

drLoSlx+t= — !'x+t dt

L°§•JrL=—f^ dt

folglich

l.

L o

efrx+t•«= (jß)

Führt man die Substitutionen (a) und (ß) in (3) ein,
so wird

cxj r

ax= _ (h^
0

Analog ist der Barwert der temporären Leibrente

') Jörgensen, Grundzüge einer Theorie der Lebensversicherung

(1913), p. 138.
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71 Z

a,xn J g J t"a;+ t+3) •dt dx (4->)

o

Aus (4) und (4a) ist ersichtlich, dass sowohl a
als auch ar—

|

bei wachsendem Zinsfuss sowohl als auch
bei wachsender Sterblichkeitsintensität abnehmen.

Wir gehen nun daran, für die Absterboordnung
einen bestimmten, analytischen Ausdruck, das oben

angegebene Gompertz-Makehamsche Gesetz, zu setzen,
und worden zeigen, dass sich alsdann a durch eine

bekannte transzendente Punktion ausdrücken lässt. Wir
gehen aus von Formel (4).

Nach Makeham ist

/i"x+t+d) dt (hog1-+ d) t + cxLog c L°g~^ \
0

c* Logy+(Logy+ d) • r

I X r 1 '+ c Los— ' C

fj
Wir setzen nun abkürzend

J. c Log — l 7> 0
fj

und erhalten demnach aus (4):

a e(h0ST+6>-z-,xT dr

0
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Ii. lc —U

Log u — Log / Grenzen:

Loge T
I

u

dr T1^-dl °
Loge u CO

/
oo

~ ,5_|_LogL

ä (Log*-Logi) -U dll
x Log C 7 u

X

d + Log~
III. - k,

Log c

wo wegen r) )> 0 > 1 c > 1 stets k < 0

Es ergibt sich somit folgender Ausdruck für den

Barwert ax
oo

X r*

öL= —r.—6 / eu •
1

• du (5)" r Log cj

Diese Formel wurde zuerst von Makeham
aufgestellt1). Sie wurde ferner von Clintocks), BJaschke9)
und andern verwendet.

Das Integral in (5) hat die Form des Eulersehen

Integrals II. Art. Führen wir nun mit Hülfe der
Definitionsgleichung

1) J. I. A., XIII und XVII.
2) J. I. A., XVIII.
3) Mitteilungen der österreichisch-ungarischen Versicherungstechniker,

Jahrgang 1902, ferner Versicherungswissenschaftliche
Mitteilungen, 9. Bd., 1. Heft, Wien 1914.
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00 A oo

j ev ul 1

• du — j"e" • • du j e
u lc—i

0

oder

r(k) Ptf)+Ql(k)
wo / b> 0 zwei Funktionen

du

(6)

p#)=y
o

e n
k~1 du

QJk) etl uk 1
• du

ein, welche wir im Gegensatz zu F(k) / e
u k—i du

(Gammafunktion) unvollständige Gammafunktionen
nennen, so geht (5) in die geschlossene Form über

X 'Je T/ Loge
Qm (<)

.Damit ist der Barwert der kontinuierlichen Leibrente

mit Hülfe einer in k ganzen transzendenten
Funktion Q; (k) ausgedrückt *); und zwar haben im

vorliegenden Fall die untere Grenze l und das Argument

k die in I und III gegebene Bedeutung

l cx Log — ">0
9 '

ö + Log —

Log c <0

(8)

b Diese Funktion wird auch etwa die Prymsche Funktion
genannt.
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Die Funktion a, wurde in der Form (7) zum ersten
Male von Blaschke1) gegeben; er berechnete für die

Grösse k folgende W erte:

Tafel
k

7 0 i 0.05

B. F. — 0.05865 — 0.57013

A. F. — 0.05340 — 0.61340

hm — 0.06784 — 0.60227

30 Am. — 0.06638 — 0.57970

Gotha — 0.04494 — 0.57992

Carlisle — 0.08949 — 0.62979

MJ — 0.06055 — 0.67743

Aus dieser Tabelle und aus den ßosultaten anderer

Ausgleichungen ist ersichtlich, dass für alle gebräuchlichen

Absterbeordnungen und Zinsfüsse die Beziehung
besteht

— 1 < h < 0 (9)

Die Formel (7) war für Blaschke der Ausgangspunkt

zu sehr interessanten Untersuchungen. Diese
Formel enthält nämlich nur noch drei Bestimmungsstücke

/, k, c, währenddem die Formel für die
Lebenden eines bestimmten Alters allein vier Konstante
und das Alter, also fünf Bestimmungsstücke enthält und

0 „Über eine Anwendung des Sterbegesetzes von Gompertz-
Makeham", von Prof. Dr. E. Blaschke, Mitteilungen des Verbandes
der österreichischen und ungarischen Versicherungstechuiker, Wien
1902. Blaschke verwendet statt Q} Qt) das Zeichen l) (k).
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in die Formol für die Leibrente noch ein sechstos

Bestimmungsstück, der Zinsfuss, hinzutritt. Blaschke
verwendet diese Tatsache zur Konstruktion eines

vollständigen Leibrentensystems, d. h. einer Tabelle, welche

gestattet, die Leibrentenwerte für eine beliebige, nach
Makeham ausgeglichene Tafel und für einen beliebigen
Zinsfuss zwischen O.i °/o und 5.o % für aHe Alter von
25 —100 zu entnehmen; als Grundlage für dieses

„Standardsystem" wählte Blaschke die Tafel HM.

Bs kann nicht unsere Aufgabe sein, hier auf die

Ergebnisse der sehr interessanten Untersuchungen
Blaschkes einzutreten.

Doch sei hier auf die Tatsache aufmerksam
gemacht, dass der kürzlich verstorbene dänische
Mathematiker J. P. Gram, ohne die Arbeit von Blaschke zu

kennen, auf dasselbe Yerfahron verfallen ist'), d. h.

mit Hülfe einer sogenannten Universaltafel die Lcib-
rentenbarwerte für eine beliebige, nach Makeham

ausgeglichene Tafel und für jeden beliebigen Zinsfuss direkt
zu bestimmen; die beiden Autoren kommen unabhängig
voneinander im wesentlichen auf dasselbe Resultat;
allerdings ist das Verfahren von Gram als das

allgemeinere zu bezeichnen, weil seine Formeln für die

temporäre Leibrente gelton, während Blaschke mehr
die lebenslängliche Rente ins Auge fasst.

* *

Bei dieser Gelegenheit sei bemerkt, dass man eine

zu a ganz analoge Formel für die gewöhnliche post-

') Die sehr interessante Arbeit Grams, betitelt „Om Makehams

Dadelighedsformel og dens Anvendelse paa ikke normale Liv"
ist veröffentlicht in der Zeitschrift „Aktuaren", I. Heft, 1901.

12
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numerando zahlbare Leibrente a erhalten kann. Setzt
X

man nämlich in
2I>ai-f-l

D

das Makehamsche Gesetz l k sx if ein und verwendet
X

die Abkürzungen h — Log(i;s), X — ex Log — so

wird

während

_ el e (**+>

l l ijh-V-'t.c1-}
a e e T

cr)

dr

(10)

Damit ist sowohl a als auch a mit der in der ganzen
Mathematik so überaus wichtigen Exponentialfunktion
ez in Zusammenhang gebracht.

§ 3.

Einige Beziehungen aus der Theorie der Gannua-
funktion. Darstellung des Barwertes ax durch

Kettenbruchentwicklungen.

Da wir uns im folgenden mit der durch Gleichung
(7) ausgedrückten Beziehung, in welcher die Gamma-
funktion auftritt, zu beschäftigen haben werden, wollen
wir in einem besondern Paragraphen die für unsere

Ableitung in Betracht fallenden Relationen aus der
Theorie dieser Transzendenten zusammenstellen. AVir
stützen uns dabei in erster Linie auf die beiden AVerkc

von Dr. N. Nielsen: „Handbuch einer Theorie der
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Gammafunktion" ') und „Theorie desIntegrallogarithmus
und verwandter Transzendenten" *).

Aus den Definitionsgleichungen

ist ersichtlich, dass die Punktionen P und Q von zwei
Veränderlichen k und k abhangen. Betrachtet man /
als einen Parameter und k als die unabhängige Variable,
so erhält man die gewöhnliche unvollständige Gamma-

funktion; ihre Theorie ist von vielen Autoren aufgebaut
worden; eine ziemlich ausführliche Darstellung findet
sich z. B. bei Dr. PL. Bieri (Dissertation, Bern 1912).

Sieht man dagegen k als einen Parameter und l
als die unabhängige Variable an, so stösst man auf
eine besondere Klasse von Punktionen, welche den

Integrallogarithmus

o

Qx(k)=Jeu uk 1
• du

o

oo

X

und die Krampsche Transzendente

oo

>) Leipzig, 1906.
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als Spezialfälle enthält; es ist das Verdienst der
Mathematiker Schlömileh und Nielsen, diese Zusammenhänge
aufgedeckt zu haben; es sei besonders erwähnt das

schon zitierte interessante Werk von Nielsen über den

Integral 1 ogarithm us.

I. Wir setzen vorerst X als konstant voraus, so

dass k die unabhängige Variable bedeutet. Durch
Entwicklung der Exponentialfunktion in eine Potenzreihe
und nachherige gliedweise Integration folgt

r "F 1 P'+2
T) / 7 \ / W &—1 7 ** ** A

Px(k)-je
0

1 '

(— l)s /+sp^=Zl-7r-r+. (»)
S-0

Daraus folgt, dass die P-Eunktion die Punkte 0,
— 1, — 2, • • • — //,• zu einfachen Polen hat, mit

(— 1)"
den Residuen

p— (wo n 0, 1, 2,---). Da auch

die Punktion I\k) die nämlichen Pole mit den
nämlichen Residuen besitzt, so folgt, dass die Funktion

Qi(k)=r(k)—P!L(k) («)

eine in k ganze, transzendente Funktion ist.

Aus (11) ergibt sich

PA(fc _|_ 1) -f7 lk k PjfJt) (12)

analog wegen (a)

Q;(A- + l) — el kQ,<Lk) (12»)
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Die Funktion Px(k) läset sich in folgende, von
Legendre gefundene Fakultätenreihe entwickeln

8=00 /c_|_5

P.(k) e * }j -f- i) -T7(Ä^+r^~
(1<i)

.s'-0

JI. Setzt man dagegen k als Parameter und X als

unabhängige Yariable voraus, so gelangt man zu Funktionen

von der Form

X

P(/1, k)=Jeu u^1 • du
0

Q(X, k)—j euuk 1
• du

1

Wegen («) folgt:

dQ(X, k)
d X

dP(X, k)
dX (14)

Bezeichnen wir mit f(u) den Integranden tik 1-eu,

so folgt
00

4r=-£-ffv
X

— (15)

Yon diesem Differentialquotienten werden wir in
den folgenden Paragraphen Gebrauch zu machen haben;
wir können ihn auch wie folgt erhalten:
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Aus (13) folgt

Ah y ^ • (*+«)
dl 6 Z_i k (k -f- 1) • • (k -)- s—1 )(k-\-s)

-xV ^6 Zj Ä(Ä+l)...(/t+8)
0

^ 1-I-

(k — 1) (Ä_l)fc(fc + l)...(Ä=ir+ij ~ P>-

0

d. h.

dPf;1i) (Ä- 1) • P(l, k- 1)-P;.(A:)

und unter Anwendung der Rekursionsformel (12):

dP(l,k) —5fc_]
dl ' — e-A >

folglicli wegen (14):

d Q(l, &) —7^—1
dl ~ 6 '

wie oben.

Für den Spezialfall k 0 erhalten wir die Funktion

oo

«(1,0)=y«"!=;

ihren entgegengesetzten Wert bezeichnet man als den

„Integrallogarithmus von eA",
oo

« (e"A) __ Q(2, 0) —J7" • ^ (16)
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Auf weitere Einzelheiten aus der Theorie dieser
Eunktionenklasse brauchen wir hier nicht einzutreten;
dem Integrallogarithmus speziell werden wir in §§ 6

und 10 wieder begegnen.

* *

In diesem Zusammenhang sei jedoch erwähnt, dass

für die Funktion Q (x, v) einige interessante Ketten-
bruchentwicklungen existieren, welche man Legendre
und Nielsen verdankt und die uns gestatten, den

Barwert a in einen konvergenten Kettenbruch zu
entwickeln. In dem schon erwähnten Werk von Nielsen
finden wir nämlich folgende Kottenbrüchc:

(I) Q(X,V):
e x

1 — v

i +
+

i +
X -f

3 — v

1-f

X v—1

(ii) 4^^-= i X

Q(x,v)
1 + 2 — v

X
2

x
i + '
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(III) Q(x,r)
X v

e x

,1 i(i—r)x-\-\ —v 2(2 —f)
'X —j— o — v

* 3(3 —f)x -f 5 — v v

x-\-l—v

(IV) Q (»,*)
a; v

e • a?

,+i-lfcuO
as —(— 4 — v-

3<4-">
as —(— 6 — v—

Die Entwicklungen (I) und (II) rühren von
Legen (Ire, die Entwicklungen (III) und (IV) dagegen von
Nielsen her; sie gelten für positives x und reelles v.

Vim fanden wir

n
K Log c '

so dass beispielsweise aus (I) folgt:

1 1

(*') *„ Loc c 1 — k/+ --
14- —

* + 2"*
l + ~

A+3-A
1 +
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wo

l
<5 + L°g ~

/ c* Log — > 0, k — f L o
g Log c

Der reziproke Wert -J1- ist mit Hülfe der Ent-

wicklung (II) durch den Kettenbrueh darstellbar:

1_—k

(ii») -L n,oSc[i + -~-a J
X

2— k

1+W

Beispielsweise folgt noch aus (III) die Entwicklung:

(HD) l i
1(1-/0
A+3—k-

2(2 — k)

/t—(-5—Ii —
3(3 — k)
X+f—k

welche zur weitern Verwendung geeignet zu sein scheint,
während (Ia) und (ID) hierfür nicht sehr taugen, da X im

allgemeinen kleiner als 1 ist und diese Entwicklungen
daher nur langsam konvergieren.
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§ 4.

Der Barwert
der kontinuierlichen Leibrente, ausgedrückt mit
Hülfe einer hypergeometrischen Reihe. Zusammenhang

zwischen unvollständiger Gainmafuiiktion und

hypergeometrischer Reihe. Eine lineare
Differentialgleichung II. Ordnung für die unvollständige

Gammafunktion.

H. Poterin da Motel erwähnt in seinem Aufsatz

„Technique de l'assuranco sur la vioa in der
französischen Ausgabe der Enzyklopädie der mathematischen

Wissenschaften') folgende von H. A. van der Belt2)
herrührende Eormel für den Barwert der kontinuierlichen

Leibrente, bei Voraussetzung dos Makehamschen
Gesetzes:

F{-k,X) rk eTjl + k)
* — k Log c — k Log c

{ '

wobei F{—k, A) die Summe der speziellen
hypergeometrischen Reihe

A A2
] + 1+T + (1+/c)(2 + A-) + "- +

1

7'
-L

(1 + &) (2 -f- k) (i k)

bedeutet, welche man erhält, wenn man in der

allgemeinen hypergeometrischen Reihe

') Encyclopedie des sciences mathematiques pures et ap-
pliquees, tome I, volume 4, p. 531.

2) Archief'voor de Verzekerings-Wetenschap 8 (1906).



F(a,ß,y,z) I «(« + 1)/?(l+1K
K " J ^ y 1 ^ y(y_|_ 1) 2

/? 1, y 1 -)- k, x —- setzt und alsdann « gegen

oo streben lässt. Zc und % haben die oben, in § 2

angegebene Bedeutung.
Es darf jedoch nicht übersehen werden, dass

Mg. Clintock die nämliche Formel, wenn auch in etwas

weniger eleganter Gfostalt, schon viel früher gegeben
hat1).

Eine andere Bemerkung betrifft die Grössenorclnung
von /; an der betreffenden Stelle2) der Enzyklopädie
wird behauptet, dass / stets ein positiver echter Bruch
sei; es lässt sich jedoch leicht zeigen, dass 1 nur so

lange kleiner als 1 ist, als das Alter x der Bedingung
genügt

— log (Log -i-

x < -
log c

beispielsweise für die Tafel M1 nur so lange cc< 71. —
Wir hatten nun für a die Formel aufgestellt

% 7^7— WA Log c,

Diese muss mit der soeben zitierten Formel (17) identisch

srnn, d. h. es muss zwischen der unvollständigen Gamma-

funktion und der hyporgeometrischen Keihe ein direkter

Zusammenhang bestehen. Um diesen Zusammenhang

zu finden und die Identität der zwei Barwertformeln

nachzuweisen, gehen wir direkt von der hypergeome-

b J. I. A., 18 (1875), p. 245.

2) pag. 532.
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iIrischen Funktion aus, und zwar einerseits von der
hypergeometrischen Reihe, anderseits vom hypergoomo-
trischen Integral.

F(n ß v x) — iiaßx I «(ct + 1)ig(^ + 1;^
|I l«i P, 7i x) — + y jj-h y (y _|_ i) 2!^

—
J (y) f ß-1 / J sy-/i-i

0
(1 -~sx) " ds

Das Integral konvergiert für alle Werte von x,
vorausgesetzt, dass die reellen Teile von ß und y — ß
positiv sind, also

iß(ß)>o
m(y-ß)> 0;

die Reihe konvergiert nur, wenn | x \ <ß 1 ist.

x
Für ß 1 und durch die Substitution x

a
gehen die Ausdrücke, wenn der Index 1 gleich wieder
weggelassen wird, über in:

0

Die Reihe konvergiert für \x \ < |a|, das Integral für
alle Werte von x, vorausgesetzt, dass iß (y—1) > 0.

Lassen wir nun a der Grenze oo zustreben, so
wird die Konvergenzbedingung für die Reihe

\x\<ß oo
d. h. diese konvergiert nun für jeden endlichen AYert
von x.
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limos f(ü, 1, y,~)
«=oo V O. j

1 + — + '*
h

y ^Ky + i) ^

M TW^ft—y ''«fr»1'
Nun ist aber

limes (l — —)—e"
\ CK j

daher
\

0

1

\y—2 SX

J(1—sy-* e dn-
o

im letztern Integral setzen wir 1—s — u, so dass

es übergeht in

i

exJicr~2 • ex" du, ux v

0
7 dv

du —x
X X

V~2 • civ
y — 1

X'

-exxl~" P,(y-l),M(y)>l1)

') Diese Bedingung ist hier identisch mit der, dass y nicht
gleich 1 oder 0 oder einer negativen ganzen Zahl sein darf.
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r(y)Wenn noch berücksichtigt wird, dass

y — 1 ist, so folgt schliesslich aus diesem

Grenzübergang :

Limes f{o. 1, y, —) — 1 — -f-
X*

+ •

V a 1 y y (y -f 1)

(18)

womit der Zusammenhang der unendlichen Reihe mit
der unvollständigen Gammafunktion gezeigt ist; dieser

Zusammenhang lässt sich auch ohne Verwendung des

hypergeometrischen Integrals zeigen, wenn man
bedenkt, dass die Reihe die Form der Legendreschen
Fakultätenreihe (13) hat.

Setzen wir nun speziell cc — A, y — 1 — k, so

erhalten wir aus (18):

F(—k, A) 1 + + (Ä+IHÄ+ 2) + '

^ke A-1' • Px(k)-,

setzen wir dies in der eingangs gegebenen Formel
(17) ein, so kommt

1 je*r(l + Z0 ke'- \

/fLogcl xk ll

{kr(k) — kP}{k)\
Xlc k Log c *

* Qxm

und damit ist die Identität der beiden Formeln (7)
und (17) nachgewiesen.
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Mit Hülfe des gefundenen Zusammenhangs zwischen
der Punktion Px(y— 1) und der hypergeometrischen
Punktion F(a, ß, y, x)

(y — 1) eV~!' • Px(y—1)= limes F(a,ß,y,—)
Ct=oo \ O. /a=oo
ß=\

muss es möglich sein, eine lineare Differentialgleichung
II. Ordnung für die unvollständige Gfammafunktion
herzuleiten.

Die Punktion F (a, ß, y, x) ist ein partikuläres
Integral der hypergeometrischen Differentialgleichung

(I) x(l-x)^ + [y-(a + ß + l)x] dg -aßy^O

welche man auch schreiben kann

(i") (i-Bh—^ + Lr-!-(<*+/*)*]• dy
d logx2 d\ogx

— aßxy 0 ')

Denn es gelten die Differential-Relationen

00 *y —xdy
d log x " dx

ä'y Oäv) 4t
: X

d log x d log x dx

dy 2d2y
dx dx

') Heinrich Weher, Die partiellen Differentialgleichungen der

mathematischen Physik (1912), Bd. II, p. 12.
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Au« (,u) und (r) ist ersichtlich, dass

dy

cl log¬
os d log x

dy d~ yy und - * d'y
d log

2 x_ d log x

Man erhält daher aus (la) für ß 1 und wenn x durch

x ersetzt wird:

(U) x __
d'-y

a1 $log2as

d log x x y — 0

Diese Differentialgleichung besitzt als partikuläres
Integral die spezielle hypergeometrische Reihe

(II») F[a,\,y, x x (1+t)
1 -| 1 j -p- - x~ -f-

7 7(7+
Wir lassen nun a der Grenze oo zustreben; dann

geht die Differentialgleichung über in

i lJ i-*] iy
d log2 ac ^ '°g x

•oder wegen den Beziehungen (,u) und (V)

x y 0

(n,)

Ein partikuläres Integral dieser Differontialglei-
•chung ist



187 -
y limes F (a, 1, y, 1 4- — J—--*? i

«=»
V a! y 7 ()' —f— 1)

0'— 1) • e* • x~y • Px(y — 1)

oder, weil es auf einen konstanten Paktor nicht
ankommt :

(HI»; y exx^.P(y- 1)

Das allgemeine Integral der Differentialgleichung
(111) lautet

(1ID) y ex Px(y- 1) + Ca)')

wo ,C1 und Cg zwei willkürliche Konstanten bedeuten;
dieses gilt in der ganzen Ebene, vorausgesetzt, dass

y nicht gleich 1,0, oder gleich einer negativen ganzen
Zahl wird.

"Wir betrachten nun speziell das partikuläre Integral

(III"), nämlich

y ex x1 7 Px(y— 1),
woraus

' dy J l ^ PX
j y X f-t 1 \ 7)y — -r~ — e x h- x e • (1 — y + x) • Px

dx dx 1

') Die Differentialgleichung (III) ist nämlich ein Spezialfall
der Differentialgleichung xy" + (y—x)y' — ay o, deren allgemeines
Integral darstellbar ist durch y Ct • ff(a, y, ao + Ca • x1—r • ff(«+i—7,
ä —;•,»), wobei ff (n, r, «0 i + -jj— & + x2 + • Siehe

1. y & y (ZT"
H. Goursat, Cours d'analyse mathematique (1911), tome II, page
464. — Setzt man hierin «= t. so erhält man unschwer den
Ausdruck (HD).

13
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(fy x <l2Px x _y-TH-=" gj+!'" (1-'+'c>ihr+

+ X -e x 1+(1 —)- +»)(!—£) p

y, </, y
Faktor; dieses können wir daher heim Einsetzen in

(III) absondern und die Differentialgleichung lautet
demnach, wenn wir ordnen nach dem Grad der Glieder:

d2 P dP
dY) •<•,/+(2 ;• + .<)•,,/ "

Dies ist die gesuchte Differentialgleichung der P -
Funktion. Wir erhalten somit aus einer Spezialisierung
der hypergeometrischen Differentialgleichung den Satz :

Die unvollständige Gamma,funktion y — Px(y—1)
genügt der linearen Differentialgleichung II. Ordnung

't0+(2-1-+*)S=°
Weil die Q -Funktion sich von der P -Funktion nurlX X

durch eine Konstante, nämlich P(y—1), unterscheidet,
so gilt dieser Satz ohne weiteres auch für y— Q (y—1).

Ersetzen wir für später y — 1 durch k, so lautet
die Differentialgleichung

XS+(X+1-",S 0 <"'>

welche y P(x, k) bzw. y Q(x, k) als partikuläres
Integral enthältJ).

') Der direkte Xaehweis ergibt sich übrigens ohne weiteres
aus der Integraldarstellung dieser Funktionen.
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Die mit diesen eng verwandte Funktion

CO

y L(x)= fet2 dt ^Q(x\^r-

ist ein partikuläres integral der Differentialgleichung

*'» '.!J= 0
dx äx

§ 5.

Variierung der Konstanten y des

Makehanischen Gesetzes.

Nach diesen mehr mathematischen Betrachtungen,
die wir an die Barwertformel (7) anschlössen, können
wir zu unserm eigentlichen Thema übergehen.

Aus der Formel (4) dos § 2 ist sofort ersichtlich,
dass ax wächst, wenn <i abnimmt, also z. B., wenn
beim Makehamschen Gesetz der Parameter g erhöht
wird [vgl. (Is) in § 1]. Damit ist jedoch nur der Sinn
der Yeränderung von a bei Yeränderung von g, d. h

nur das Vorzeichen des Differentialquotienten

Aax{g)
dg

bestimmt; wir können aber den Wert dieses Differentialquotienten

selbst berechnen und damit die Funktion

at.(g) näher untersuchen.

Der Parameter g bewegt sich zwischen den Grenzen

0 und 1 und liegt gewöhnlich nahe bei 1; ist # 0,
so ist / oo; ist g 1, so ist l 0.
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Daher ;
1 r.

e Q, (k)
[a t Limes 5-— (a)1 *>9=a Log c fcoo Xk

K '

1
e>' Q>. h

(a Limes f— (/>)
^ x)g^ Log c i=0 Xk V'

Wir werden zeigen, dans diese Grenzwerte in der
Tat existieren. Vorerst nehmen wir

e'Qxfi) Q,(Jc)
Limes ^ Limes

^

/.—GO X l—OO 0 X

Wegen lc < 0, X > 0 wird der Nenner heim Grenzübergang

gleich 0, der Zähler wird gleich dem Grenzwert

Limes Qx(k) Limes / euuk 1
• du 0 J).

).—oo A=oo /
;

Wir erhalten demnach die unbestimmte Form -jj-,

deren wahren Wert wir nach der bekannten Regel
finden.

dQx
0 r. dX

Limes
0 A=oo d "1 - K

JI<6 •*>

somit nach Formel 15, § 3:

0 — Xk~x eA

Limes
o it r I A 7 k'—iu i=oo — i e e k /.

l
--- Limes -

oo X — k

0 Denn beim Grenzübergang fällt die untere Integralgrenze
mit der obern zusammen und der Integrand verschwindet an der
obern Grenze.
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folglich aus («):

„
0 (20)

Nun bestimmen wir den in (ß) enthaltenen Grenzwert.

Die unvollständige Gammafunktion ist nur für
/ 4= 0 definiert und wir werden sogleich sehen, dass

Qx(k) für l 0 unstetig wird. Setzt man nämlich in

©o

Q. (Je) j e11 • uk~1 • d u direkt — 0, so resultiert

Q0(k) r(k)

Diese Schlussweise wäre jedoch falsch; es ist nämlich

Limes (k) P(k) — Limes P. (k)
fco " fco

Die P-Funktion ist definiert durch

X

P, (k) fuk 1

e " du

Wenu A 0 wird, so fallen beide Integralgrenzen
zusammen, allein es existiert kein endlicher Grenzwert

Limes P (k),
fco

da k <Z 0 vorausgesetzt ist und der Integrand an der

untern Grenze sich verhält wie

k—1 u
u - e

1

l—k |

u=o
U !«=(>

und das Integral selbst wie

~hI uk 1
• da -

k
Ii

— oo
u=0
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Somit ist für k - 0

Qoify -^r(k) + 00 •

Q> (k)
Dagegen existiert Limes —^—, denn dieser ist

gleich

F(k) P (k) _j_ ooLimes " —
;.=o t 00

pfc—i
Limes -

/ 1 —1
;.=o ä /

~T>°-
"Wir haben also das Resultat, k <k 0 vorausgesetzt:

- kQAk)
Limes 7*^=1 (21)

;.=o A

Demnach resultiert, falls (21) in (ß) eingesetzt wird:

1

' Üx'g=i ft Log C

Aber wegen Beziehung (8), § 2 ist

— /.• Log c r)' -j- Log ~
r) -|- ii

Denn für g 1 ist gx= g Log — konstant; daher

schliesslich

<°'U=-—TT=rh (22>
c) Los* --~ n s
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Uie Richtigkeit dienet' Formel kann man leicht
nachprüfen, indem man direkt in der allgemeinen Formel

(4), § 2 den Wert durch Log-— konstant ersetzt.

Die Formel (22) besagt, dass, wenn die Überlebens-

ordnung durch die Form

h c°Xl)

dargestellt wird, die Zahlen der Lebenden also eine

geometrische Reihe bilden, der Barwert der Leibrente
unabhängig vom Eintrittsalter, also konstant ist2). In
dem Work „Actuarial Theory" von W. A. Robertson
und F. A. Rosss) ist dieser Spezialfall besprochen und

gezeigt, dass dann auch die Funktion e die

„vollständige Lebenserwartung" des .-r-jährigen, zu einer
Konstanten degeneriert. In der Tat! _

oo

ex ~ I dr f sr dr —y-
konst.

o
" o Log -s

Wir zeigen nun weiter, dass (ax)y=1 den grösstmöglichen
Wert von a (g) darstellt, d. h. dass diese Funktion
mit g monoton wächst.

Weil l cx Log —, so ist

0 Formel von Dormoy; sie ist ein Spezialfall der Make-
hamschen Formel, nämlich der Fall, wo g 1 gesetzt ist.

2) Dies trifft auch zu für die gewöhnliche Leibrente,
1

er,
1 — v s

') Verlag Oliver and Boyd, Edinburgh and London. 1907.
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di__cx____A

unci daher

dajg) dax d). A dax

dtj d). dg g Log 1 d'k

it
Aus

/rkQ(Ä,k)
Loge

folgt

Log a A — k Log A -(- Log Q(A h) — Log (Log c)

woraus durch DitfercnziaHon nach A folgt:

1 dax k VA*-1. -

dx A Q (A, k)

- {(A — A) Log c
L°g C

xLog c I 8 elX~kQ{}.,k)\

{o—*)Log«—=-}

Aher

(A — A) Log e cv Log — Log c -j- Log — -j- d
9 s

« -I- d
' X 1 '

folglich

da1 t — \
,.x 0* -fd) • a — 1 (28)d /. t. Log c T * ' ' * I v '
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(24)

und hieraus
d aM ^

1 -%(!<„-+-,v)
da 1 r9 L°g y L°g c

Nun gilt ganz allgemein die Formel

«>„+'» • (25)

Diese lässt sich auf elegante Art beweisen, wenn man
direkt von der Formel ausgeht

a
K

0

aus welcher folgt:

d a

du:

eJ(."x+t+V-dt (It,

°° T- X
J

0

aber

0< +t + d) — C(D+« + ^'dxv °+^ J~~ dt v

so dass

4J- =/V""+i+""" « *'
0

0

oo l

B y f))JeJ
•dt dr —

0

—J-ej<»»+<*>•*< (u^ + d) dr
0

Od -f" ' ax J1
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wo
oo

J=j'^J(l'*+t+*)-dt • (gx+r + <)) dx.
0

oder wenn substituiert wird

u -

o

[0ix+t +r5) • dt =j f(t) • dt
0

0u+T +f))>

7 f" u du -•/ / e • w— • «t 1
J (IT
0

woraus folgt
du, _—= (b -|- d) a — 1
dx v' K ^ y » '

was zu beweisen war*).
Unter Berücksichtigung dieser ganz allgemeinen

Formel ergibt sich nun, wenn wir der Deutlichkeit
halber die partiellen Differentialquotieriten setzen:

a a

° ax dx

t 1
T

g Log — Log c

(25»)

Da der Nenner des Quotienten rechts positiv ist,
so besagt diese Gleichung folgendes:

Ein Anwachsen des Parameters g hat auf den

Rentenbarivert ax den entgegengesetzten Einßuss wie
eine Erhöhung des Eintrittsalters (Satz I).

') Andere Beweise dieser Formel findet man bei Robertson
and Ross, p. 216, und iV. R. Jörgensen, p. 147 und 148.



Dieser Satz bestätigt uns unsere Vermutung; da

nämlich bei Voraussetzung des Makehamschen Gesetzes
die Rentenbarwerte bei wachsendem Alter x stets
abnehmen '), wie wir noch au einer spätem Stelle (§ 9)
näher ausführen werden, so muss nach diesem Satz

ein Anwachsen des Parameters g eine Erhöhung des

Rcntenbarwertes zur Folge haben ; es ist daher wirklich

(26)
ag

Der oben hervorgehobene Satz lässt sich auch aus
einer von Robertson and Ross durchgeführten Betrachtung

2) ableiten:

Eine Erhöhung von B im Makehamschen Ausdruck

a =A + Bcx
• x 1

hat den gleichen Einfiuss wie eine Erhöhung des Alters ;

sei nämlich

/P A -j- B' rx, wo B' > B,
so lässt sich stets eine Grösse h so bestimmen, dass

B=Bch, '
woraus

,<P A + B cx+k gx+h, wo x -f h > x.

Dieses Resultat sprechen die beiden englischen
Autoren in dem Satze aus: „An increase in the constant

B has the same effect as increasing the age."

Nun kann aber die Erhöhung von

B — Log c Log

11 Es handelt sich hier stets nur um erwachsene Personen,
das Kindesalter wird vom Makehamschen Gesetz nicht umlasst.

2) Op. cit,, pag. 233.
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nur herrühren von einer Yerkloinerung des Parameters g.
Daraus folgt unmittelbar der allgemeinere Satz:

Ein Anwachsen des Parameters g hat auf die

Intens itcitsfunkt ion der Sterblichkeit und also auch

auf alle Versicherungswerte den gleichen Einfluss wie

eine Herabsetzung des Alters .> (Satz 11).

In diesem Satz ist der als Satz 1 ausgesprochene

spezielle Fall der Leibrente ax inbegriffen.
Kennt man demnach für alle Versicherungswerte

den Einfluss der Variationen von g, so kennt man
damit auch den Einfluss einer Herabsetzung (bzw.
Erhöhung) des Eintritten Iters x und umgekehrt!

Da die Relation gilt

A =1 — da
X X

so kann mau setzen

1 — 0'»+^)®» -^®)

d. h. der Ausdruck" links ist nichts anderes als die

einmalige Prämie für die Todesfallversicherung 1 des x-
jährigen, wobei statt der Zinsintensität r) die grössere
Zinsintensität d' n -4-J genommen ist; A' ist natur-

1 X ' © ' X

gemäss wie Ax positiv, woraus wogen

da A'
dg

^LogyLogc
wiederum Ungleichung (26) folgt.

Ferner ist

d\(9) __d dax(F)

dg dg
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und

dPJß) 1 dax(g)
^

dg (o f dg

**

Da für jeden Wert von g zwischen 0 und 1 die

Ungleichung (26) besteht, so folgt

1 > (Px + «0 • %,
d. h.

a>- < (2?1)
' x 1

Diese Ungleichung gilt für jeden Wert von g\ einzig

für g — ü (fix — oo) und g 1 g — Log --- j
geht sie in eine Gleichung über.

Ahnliche Ungleichungen lassen sich für Pv und A
aufstellen; aus

> Px + d

%

folgt nämlich unmittelbar

1
a -— d > gx

a

d. Ii.

p,>mFerner aus (27a):
d

Sa
llX

9 Wegen ax <( ax und d <Z <5 gilt Px ^> IJX und daher um

so mehr Px > ßx
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d. h.

Einzig für g 0 und y 1 gehen diese

Ungleichungen in Gleichungen über.

Zusammenstellung.

9 n "' X a
X

A
X

P
j X

0 oo 0 1 oo
'

1 LogW- /'
1 /<

9 *)

1
1

,u -{- ^ ii -|- d

Der Nachweis, dass a stets wächst, wenn der
Parameter g vergrössert wird, lässt sich noch auf einem
andern Wege leisten. Wir gehen auch noch diesen

Beweis an, und zwar deshalb, weil wir in § 10 von
diesem nämlichen Verfahren, das nun entwickelt werden

soll, Gebrauch machen werden.

Wir setzen

0 Dieser Fall besagt speziell, dass, wenn die Zahlen der
Lebenden eine geometrische Reihe bilden (Dormoy), die Prämie P.c
konstant und gleich der Intensität der Sterblichkeit wird.



— 201 —

/'(.»)-
1

-,
c* L°g — L°g c + 6 + L°g ~r!/ *

so dass wegen (24)

da (g)
f(9)-%{g)dg T

1
T

9 gy g6'

Aus dieser Formel sehliesst man, dass a {g) nur dann
einen extremen Wert haben könnte, wenn

ax(d) /'(</)

würde; ist /'(g) > ax{g), so ist ax{g) eine wachsende

Funktion.

g 0; f(0) 0 aa(0)

g= i; /'(1)= f ax(1)
L°g—+ r)'

Log' —

C^LOff C n \ _9=90 e ;f(9^)=:±00

g oo; f(oo) — 0

Abgesehen vom Punkte ,</0 ist /'(#) eine stetige und

wegen
cxLogc

Q

dd £ + rf)2"""

eine monoton wachsende Funktion (siehe Figur).
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Diese Funktion f(g) dient uns nun in sehr
anschaulicher Weise dazu, das Verhalten von a {g) zu
untersuchen. Bis jetzt wissen wir

/'(°) ax (°)

/'(l) «x(l).

Würden zwischen g 0 und g— 1 noch andere Stellen
existieren, wo f(g) — ax(g) würde, so müsste a (g) an
diesen Stellen extreme Werte besitzen. Solche sind
aber nicht möglich, und zwar aus folgendem Grunde:

Angenommen, es existiere eine solche Extremstelle

g von ci (g), und zwar charakterisiere sie ein

Maximum; demnach müsste ax(g1)=f(gl) sein (Schnittpunkt

S). Da aber unmittelbar nach dem Maximum
die Funktion a (g) abnehmen muss, jedoch für g— 1

wieder mit f(g) zusammenfällt, so muss a (g) bei dieser
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Annahme im Intervall g <f g -< 1 noch ein Minimum
besitzen; dieses müsste aber auch von der Form

1

mg -I- d
1 a I

sein, d. h. in diesem Punkte würden die Kurven ax (g)
und f{g) sich schneiden; letzteres ist aber unmöglich,
da, wie soeben bewiesen worden ist, f(g) eine mit g
monoton wachsende Punktion ist. —

Damit ist nachgewiesen, dass die Funktion ax{g)
im Intervall 0 < g <f 1 iveder ein Maximum noch ein
Minimum besitzt.

Denn ganz analog kann man zeigen: Wenn ax
vorerst ein Minimum hat, so schneiden sich an dieser
Stelle die a - und f-Kurve; da aber für q =- 0 aX 1 ' J X

und f übereinstimmen und ax stets positiv ist, so müsste

vor dieser Minimalstelle die Punktion ax noch ein Maximum

haben, weiches auch auf f liegen müsste; um
von diesem Maximalpunkt zu dem hypothetischen
Minimalpunkt zu gelangen, müsste man aber, da f(g)
monoton wächst, aufsteigen; dies ist aber widersinnig.
Die Unmöglichkeit extremer Werte der Punktion ax{fj)
ist damit erwiesen.

Wir schliessen hieraus: Da die «^-Punktion im
betrachteten Intervall weder ein Minimum noch ein

Maximum noch eine Unstetigkeit aufweist, ist zu

schliessen, dass ax{g) selbst eine stetige monoton wachsende

Funktion ist (denn ax(l)i> ax(0)). Darausfolgt,
wie oben:

da„
~dg~ > °'

was zur Polge hat, dass f(g) > ax(g), d, h. die a-
Kurve verläuft stets unter der /"-Kurve (vgl. die Pigur

14
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oben); diese Feststellung ist aber identisch mit der

Ungleichung (27s-):

1

Dieses Verfahren, eine komplizierte Funktion in,

einem gewissen Intervall mit Hülfe einer einfachem
Funktion, welche mit dieser in den Grenzpunkten
übereinstimmt, zu untersuchen, werden wir in einem andern
Fall (Reserve, § 10) gut verwenden können.

Die auf ax(g) angewendete Methode lässt sich

verallgemeinern und auf den Barwert der temporären Leibrente

anwenden. Ist nämlich die Rente nicht
lebenslänglich, sondern nur n Jahre zahlbar, so erhalten wir
den Barwert

und bei Voraussetzung des Makehamschen Gesetzes

i—T ax •

.,U+c)

Die temporäre Leibrente.

n

0

4*Loge jj/
T _ i

k—1 n i / k—l 7 I

u • e 'du— u *e - du}/
oder

(28)
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Für m oo geht a - in a über, denn Q. „ wird^ X 71 [ Co ' Z C

beim Grenzübergang gleich 0.

Wir finden folgende spezielle Werte:

5r=°; aaS[(sO 0

1 - S.
1 (sv)" f

s U o.ato)= ,+„ [
l — (28">

Ferner ergibt sieb der Differentialquotient

(28b)
d ax n^ _

1 — e''{Cn ^
' (SV)n — (,ux + ö')ax«\

dg 1

tfLogyLogc

Diesen kann man ersetzen durch

da —da) 1—vn p —(u 4-ö')ax »| w/ n* x v x l / as ti| n
da 1 _

£ Log— Loge
y

1 — E — (u 4" d) a -.£ n) vjb ' > x n\

ff Log y Loge

oder schliesslich

— + • S»|)
d9

9 Log y Loge
(28c)

Der Zähler enthält lauter bekannte Versicherungswerte.
Von diesem Differentialquotienten beweist man mit
Hülfe einer Funktion

>) Denn (svfV^-V vn s* g^n-V B»
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1 _ (s V)n

tv>= ''

odor auf anderm Wege, dass er positiv ist. Dies hat
eine Reihe yon Ungleichungen zur Folge, z. B.

' axh

1 —E

A i>a; n|

P >m «.i

'% +d'

u 4- d • Er X 1
03 «|

u -f- Ü
i rc i

y 4- d • E —.

1 — Z?

(28d)

Diese gehen nur für ff 0 und 1 in
Gleichungen über, so dass speziell bei Voraussetzung der
Formel von Dormoy folgt:

" l~EH 1

_ ii 4- ü .24,
4 —

r ' "I
" 35 4 y + S

— En\ + t1 ' °4[

p + J-lg-,
xn\ J

(28°)

wo ,u Log — konst. Ü4- (sv)n= konst.

no) «* Si (0); /(!) ae ^(1 j; > 0
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§ 6.

Yariierung
der Konstanten s des Makehamschen Gesetzes.

Die Transzendente 8(x, k) und ihr Zusammen¬

hang mit dem Integrallogarithmus.

Dor Einfluss der Variationen des Parameters s des

Makehamschen Gesetzes

fi {x) Log i- + c" Log c Log ~

ist im allgemeinen leicht zu untersuchen, wie sich schon

schliessen iässt aus der Formel für nx, wo Log

als vereinzeltes Glied auftritt. Zudem ist eine Erhöhung
von s äquivalent einer Herabsetzung des Zinsfusses

(vgl. § 9 hiernach); schon hieraus folgt:

da*(s\>0

denn

ds

d(lx f ~Sz h+r 7 n— xe —i-5— dx -v 0
do / l

Das gleiche ersieht man aus der eingangs gegebenen

Formel

äx= dx

0
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Wir geben nachstehend noch den Beweis mit Hülfe
der Rentenformel

e- Q,(k)
X n IC T '

A Log c

um daraus einen Spezialfall herzuleiten.

Es ist

da da ah i da
X X t(j Ii/ X x

ds dk ds sLogc dk

8a* _
e'' fl-k dQ>W

T „
dk ~ Logc \ " dk ^

£ (<5Q#)
| T

1 ,W7,)7L„g7l~+LosT ' ^(4)1

Führen wir nun eine neue Funktion

d Q (k) iSß,k) —£-L + LogT -Qß) (29»)

ein, so wird

d a

1Ä Xk Log c

6
S(X,k) (29")

so dass

da (s) el

~-7hn (29«)
® s k (Log c)

Die Funktion 8(Xy k) lässt sich durch ein Integral
darstellen:
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S(X,k) — I etl tk 1
d u -f- Log Ar- I e"uk 1

• du

- jeu-uk 1
• Log u- du -\-Jeuuc 1,Log - du

I i

=fe". uk 1

• ^Log u -f- Log -)j~) • du
>.

so class

8 (A, k)=j eu u
1

• Log d u (30)

Da X > 0 ist, so ist wegen -y- > 1 auf dem ganzenK

Integrationsweg / •< u <Z oo der Integrand positiv,
somit auch das in positivem Sinn längs der reellen Axe
genommene Integral, so dass S(X, k) > 0. Damit folgt
aber aus (29°) unmittelbar

dax{s)
ds

Ganz analog ist

da —As)
x n\ V /
ds >0

(31)

Denn

da
ds s A1, (Loge)

/. ?.cn

i1 rn*-i .-? hog IL .du-k,T / /

Eine Yergrösserung des Parameters s im Make-
hamschen Gesetz hat somit stets ein Wachstum der
Leibrentenbarwerte zur Folge. Dr. Julius Graf findet
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in seiner Arbeit1): „Welche Arorteile kann die
Annahme einer analytischen Funktion für die Absterbeordnung'

in technischer Beziehung bieten ?a, für die

gewöhnliche Leibrente, sowohl was das Yerhalten in
bezug auf den Parameter g als auch in bezug auf s

anbetrifft, das gleiche Resultat. Er geht beispielsweise
aus von

CX (C—1)
px *g

Für ein grösseres s wird, g und c konstant vorausgesetzt:
— cx (c—1)

px »g

und daher

Px 8 > '

d. h. mit wachsendem x nimmt die einjährige
"Überlebenswahrscheinlichkeit und damit wegen

ax l-++
auch der Rentcnbarwert zu.

Aus der Definition.

folgt für ü 0 :

0 VI. Internationaler Kongress für Versicherungs-wissenschaft,
Wien 1909, Bd. II, S. 429 ff.
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welche Funktion man als die vollständige Lebenserwartung

(complete expectation of life) oder volle mittlere
Lebensdauer des a;-jährigen bezeichnet. Auch diese

Funktion ist bei Voraussetzung des Makehamschen
Gesetzes durch eine unvollständige Gammafunktion
darstellbar, nämlich, weil k für r)' 0 in

1

Log-
k.

Log s

Log c

übergeht, durch

).1Ci Log c

Log c
0

Was über die Funktionen a (g) und a (s) gesagt wurde,
o o

gilt unverändert auch für e (g) und fi (s), speziell

dejg) 1 —e uX F x

dg

dex{s)
ds

o

(O

>0
q Log — Log c
- ö g

>0
1

9=1

LogT
konst.

(32a)

Analog der Ungleichung ax gilt für jeden
/', 4-üi x 1

Wert von g und s zwischen 0 und 1 die Beziehung

(33)
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d. h. die volle mittlere Lebensdauer. im Alter x ist
^tets kleiner als die „Lebenskraft" des betreffenden
Alters. Einzig im Pall g— 1 (Formel von Dormoy)
sind volle mittlere Lebensdauer und Lebenskraft gleich

gross, nämlich für alle Alter konstant und gleich —-.

Ferner gilt den Ungleichungen (32a) zufolge:

für jeden Wert von g < 1 : ex<Z —j— ;

Log--
o o

für jeden Wert von s < 1 : ex <C (ea,)s=1 •

Im Spezialfall s 1 wird k 0 und daher

wegen (32): •

i
v x's=i Log c ;-

somit wegen Formel (16), § 3:

(e) (34)
®-s=i Log c

iNun führt aber diese Annahme, s 1, auf das

sogenannte Gfompertzsche Gesetz l kgc Wir finden
somit den Satz:

Folgt die Absterbeordnung dem Gompertzschen
Gesetze, so ist die volle mittlere Lebensdauer des

x-jährigen durch den Integrallogarithmus darstellbar.

* **

Wir wollen nun unser Interesse kurz der oben

eingeführten Funktion
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S(x,k) — f eu iic 1

Log — d u
t x

oder

S(x, + Log i- • Q(x, k)

zuwenden. Da Q(x, Je) in bezug auf Je eine ganze
transzendente Punktion ist, so ist auch 8 (x, Je) in beziig

auf Je eine ganze transzendente FunJetion. Im folgenden
ist stets x > 0 vorausgesetzt, da der Punkt — 0 für
8(x, Je) die nämliche Singularität bedeutet wie für Loga;.

Nun ist

öQ(x,Je) r„/7A dP{x, Je)

dJe {) dfe

und wenn wir mit Nielsen die Bezeichnung

w r(/c)
verwenden J), so wird

Je) F(Je) WQe) + Log -1 Q (x, Je) - («)

Nun benützen wir die in § 3 erwähnte Legendresche
Fakultätenreihe für P(x,Je),

_ ä+A-

P (x, Je) e 2^ lyNQt If^T '
.s—0

welche in der ganzen /oEbene, mit Ausnahme der

Punkte 0, — 1, — 2,... Gültigkeit besitzt. Durch
Differenzieren folgt:

b Ludwin Schläfli verwendete für diese Funktion das Symbol

A(k). -



214 —

öP(x,k)
dk

1

Log x P(x,k) —

s=00 L -
1

I I

_7* V k /t' + 1 kJrs *+« (ß)Lj k(k+i)--.(k + 8)
s=0

Bezeichnen wir mit u das allgemeine Gr 1 iod der

neuen Reihe, so folgt aus

--—| 1 —k k -)- n i£-\~n— x
ä(Ä + 1)--.(Ä: + »)

limes
n=oo

"n+1 — x | limes
n=oo

• limes
ft—oc>

1

k-\-n-j- 1

1

1

'

(& + « + + + /; +
«)]

— 0,

womit die Konvergenz der Reihe nachgewiesen ist.
Setzen wir (ß) in («) ein und berücksichtigen die
bekannte Beziehung aus der Theorie der gewöhnlichen
Gammafunktion:

r(k) k (k -j- 1) • • (k -f- s) / \k -(- s -)- 1),

so folgt für die Transzendente S(x, k) die Entwicklung

8(x, k) I\k) j Wik) -f Log — +

j L_
I ox V k ^ + 1 k~^s Tk+S l+ Zu 1)

}
5=0 '
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Diese Formel eignet sich für unsere Zwecke sehr

gut, da die unendliche Reihe wegen X <L1 (nur für
die höchsten Alter wird X > 1) und — 1 < k -< 0

ziemlich rasch konvergiert und die Werte von W{k)
und l"(k) leicht zu berechnen sind oder aus Tafeln
entnommen werden können.

Aus der Definitionsformel (29a) ergibt sich die

Differentialboziehung

dS(x,k) Q(x,k)
dx x

oder
dS(x, k)

Q (x, /t) x

Unter Berücksichtigung der in § 4 aufgestellten Differon-

tialgleichling ergibt sich dann, dass die Funktion

!/=S(x, k) der linearen Differentialgleichung III.
Ordnung genügt:

(36)

* • 4t + (* + 3-A)* Ä + (a.+ i_Ä)^=0
dx ax ax

Die Formel (35) führt auf einen interessanten

Spezialfall. Setzen wir nämlich /c 1 so folgt:

S(x, 1)=J eu ' Log • du

1
1 1

CO ^ _j 1— • —|

r'(i)+Log l
8=0

oder wenn wir nach dem Yorgang von Nielsen die

Bezeichnung

M8 + + 4" H h
1

« + 1
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einführen und bedenken, dass /"(1)= — C (Eulersche
Konstante), so folgt

CO

S(x, 1) — f ew Log — du
J 00
X

S—oo

- C- Log ® +e*2 «'+'
.9=0

.S—oo

— — C—Log x -f- ex ^ xs (37a)

8=1

Nun kann man aber das Integral direkt berechnen.

Nach Nielsen, „Theorie des Integrallogarithmus und
verwandter Transzendenten", p. 11, gilt die Relation:

O)
Jeia • Logt- dt — —\li{eax)—C—eaxLogx—Loga]
0

Lässt man x unendlich gross werden, so folgt, da

a > 0 vorausgesetzt ist:

oo

I eta Log t dt — — [— C — Log a] («)
o

so dass durch Subtraktion von (m) und (w) folgt:
oo

Jeta Logi • dt — [Zi(eaa5)—e~ax-Log x],ta=u.
X

oo

— fe"Log ^~[li(eax)—eax • Loga:]
aj ° a a
ax
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Setzt man hierin x 1 so folgt:

e" • Log — • du — Ii (ea)

oder wenn man statt a die Variable x setzt:

CO

/'
Ol

eu • Log— • du — li{es) (37b)
X

Dies ist nichts anderes als unser Integral S (x, 1).

S(x, 1)=- — li(ex) (37°)

Vergleicht man dies mit dem Resultat (37"), so

resultiert für den Integrallogarithmus die folgende
Entwicklung :

6—oo

li(ex)—CLogx — ~7T" x' (^)
«=i

Diese Formel ist aber schon längst bekannt; sie

wurde zuerst von Bessel') gefunden; Nielsen leitet sie

in seinem Werk ab mit Hülfe des Grenzwertes

• t vP(x,v)—LYr-j-l)D (e limes v ; ^ '
r=0 V

während wir sie hier als Spezialfall der Funktion S(x, k)
gefunden haben. Gleichzeitig ergibt sich aus dieser

Untersuchung, dass die Funktion

y S(x, 1 —li{ex)

der linearen Differentialgleichung III. Ordnung genügt

') Abhandlungen, Bd. II.
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# *

Für grosse Werte von x wird S(x,k) sehr klein,
wenn k als echter Bruch vorausgesetzt wird. Aus

oo

5(as, 7c) f e"wfc—1 Log • du
J cc
x

folgt die Ungleichung
oo

8 (x, k) < xk~1j e
u Log d n

X

oder

S(x,k) < — a3fc—1 li{ex)

denn f(x) xk~1 stellt den grösstmöglichen Wert der

Funktion f(u) uk~1 auf dem Wege tc<M<oo dar.

Beispielsweise ergibt sich

7 " / 10\

Ä(10, 0) <
~~~

ye j oder 5(10, 0) < 0,000 0004157

— Ii te10l
5(10,—1)< ^ J oder 5(10, -1) <0,000 00004157

dagegen

5(10, 1) — li(e16) oder 5(10, 1) 0,000 004157 J)

0 Dieser "Wert wurde aus der Tabelle der Funktion It (ex)
in den Funktionentafeln von Jahnke und Emde (Teubner, 1909)
entnommen.
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§ 7'

Yariierung
der Konstanten c des Makehamsehen Gesetzes.

Zusammenhang zwischen den Yariationen von ax
in bezng auf alle 3 Parameter s, g, c. Einführung
der „relativen Yariationen". Die Gesamtvariation

von ax.

Wie schon in der Einleitung zum II. Teil dieser
Arbeit betont wurde, ist es nötig, auch die Yariationen
des Parameters c zu untersuchen, da neuere Untcr-

10

suchungen ergaben, dass die Relation log c oo 0,04
durchaus nicht für alle Absterbeordnungen zutrifft.

Aus

;Log4- + C*LogCLog-L
5 y

schliesst man

d„
0

o c

und infolgedessen wegen

oo

sofort

da

o c
0 (40)

D. h. wird im Makehamsehen Gesetz der Parameter

c vergrössert, so nehmen die Barwerte der
kontinuierlichen Leihrenten aller Alter ah. Der

15
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Parameter c wirkt also entgegengesetzt ivie die Parameter

g und s x).

Wir wollen nun auch hier einen Differentialquotienten

aufstellen und werden hierbei eine Beziehung
zwischen den drei Differentialquotienten

oa o a 0 «„

dg ' ös ' de

finden, welche einen interessanten Einblick in die
Verkettung der 3 Parameter gestattet.

Betzen wir abkürzend f(X, k) e X~k Q (X, k),
so lautet die Formel von Blaschke

V _ W, Ä)

Log G

woraus

{L°g c ' — f{X, k) - -*-} («)d o (Log cf » " d c

Die Konstante c kommt sowohl in k, als in X vor;

X c' Log;
9

d + L.
k

o/. x
de e

3 k k

Log c ' ö c

df(X,k) df ö/t df dk
de d X de dk de

(,ß)
x

c Log c

eX~l'S{X,k) — Ar

Log c

') Das nämliche Resultat findet in seiner zitierten Arbeit
Dr. Julius Graf für die gewöhnliche Leibrente.
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Setzt man dies in (a) ein, so folgt unter
Berücksichtigung der frühern Gleichungen (24), (25), (29°) :

da i da da
—^- —v ks Loge x —a l (41)de c Log c I oi ° ds I

bzw.

du„ 1 1 dos1 t !y °a»
- — -f Kg Log - Log c —-— • xoc c Log c r D g ° dg

i \ da •.1
-L A 5.1

a —

s
ML°g-„ + <>) ^7-} <41a)

Damit ist dargetan, dass der Differentialquotient

- aus 3 Kc

einer positiven

o a
aus 3 Komponenten besteht, aus 2 negativen und

wo

oa-^i + ii + in,

a 1 da
I —^Log-u;^raL<0

C g dg

II < 0
cLogc

Log- + d d~
III — — 0

c Log c ds

wobei die Komponenten I und II gegenüber III
überwiegen.
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Die durch Veränderung von c bewirkten Variationen

des Rentenbarwertes lassen sich somit auf die

Variationen in bezug auf die beiden Parameter g und
s zurückführen. Die Gleichung (41a) kann auch wie

folgt geschrieben werden:

da i öax
— c Log c — q Log — Log c x „ -4-

de g "9

/ 1 \ da _+ Ä(Lo«7 + ')^f=fl» (42)

Diese Relation zeigt, wie seltsam die Variabein
durcheinanderspielen; sie ist gültig für jede Absterbeordnung,

die nach Makeham ausgeglichen wurde, und
für alle Alter und Zinsf'üsse. —

Man kann hier auch die Intensität der Verzinsung
hineinbringen; aus der Leibrentenformel von Blaschke
kann man nämlich leicht herleiten, dass

oa oaX X / o\— — (43)
od os

Weshalb man beispielsweise statt (41) schreiben kann:

oa,
cLog c

de

1 \ da daJ- \ X X

s / öd dx

Wichtig ist es nun, den relativen Einfluss eines

jeden der drei Parameter und der Zinsintensität auf
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die Höhe des Barwertes zu kennen, d. k. zu wissen,
wie die Einheit des Hentenbarwertes für jedes Alter
durch diese Variationen beeinflusst wird; denn dass

diesen 4 „Yeränderlichen" s, g, c, ä in den
verschiedenen Altersstufen ungleiche Schwankungen des

Barwertes a entsprechen werden, liegt auf der Hand.

Bezeichnen wir mit

A9=9i — 91

A 8 st —

A c c2 — c1

die wirklichen Yariationen der 4 Grössen g, s, c, d

heim Übergang von einem Leibrentensystem (I) zu
einem andern (II), so ergibt sich annähernd als
„absolute Variation" des Barwertes a der Reihe nach

Aa (c) Ac

na
A%(g)=Ag -;°9

oa„
A a (s) A s ——x w ds

°a„

°a_

(I4a)
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vorausgesetzt, dass die absoluten Beträge Ag, As, Ac,
A S genügend klein sind. Wir definieren alsdann als

„relative Variationen" des Kentenbarwertes, d. h. die

Variationen der Einheit des Barwertes, die Ausdrücke

AaM

iß (S):
Au (s)

^ «„(c)

(44")

/Ja (d)

da da, da
wobei die Differentialquotienten x

^ ^
x-,

0 ax
y

gemäss den aufgestellten Formeln und aus den

Angaben der Absterbeordnung L zu berechnen sind.

Ein Zahlenbeispiel wird uns bald nähern Aufschluss
geben.

Wenn wir die absoluten Variationen addieren, so

erhalten wir als Ausdruck der Gesamtvariation des

Kentenbarwertes den folgenden:

A ax — A au, (g) -f- A ax (*) -)- A ax (c) -f- A ax (d)
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oder unter Benützung von (41ft) und (43):

T- Ag Ac 1 \ da

+
Z7 — Äf LogV+r) uA<f-

Log c os

Ac «L

c Log c

(45)

woraus man sofort auch die relative Giesamtvariation

Äax
— _

x berechnen kann.

Aus (45) können wir beispielsweise ersehen, dass

bei gleicher Grösse von A s und A <f de> Einfluss von
s und <) auf den Rentenbarwert absolut genommen
nahezu gleich gross ist; denn s liegt sehr nahe an 1,

A s
daher oo/Ls'. Wir haben damit eine mathematische

Begründung des von Robertson und Ross auf

empirischem Wege gefundenen Resultates1):

„Lt may be mentioned that an increase of 0,01

in the force of mortality is very nearly equivalent
to a rise of 1 per cent, in the rate of interest."

') Robertson and Ross, Actuarial Theory, pag. 232.
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Ein Beispiel soll nun über die obwaltenden
Verhältnisse orientieren. Wir nehmen als Ausgangstafel
die französische A. F. 8 % und wollen verfolgen,
wie gross für die verschiedenen Altersstufen die

Dilferentialquotienten

da da daXXXdg ' ds ' de

ausfallen und hernach die absoluten und relativen
Schwankungen der Rentenbarwerte berechnen, wenn
wir jeden der 3 Parameter um eine kleine Grösse,

z. B. 0,001 variieren; wir greifen die Alter 25, 50,
75, (95) heraus.

Tafel A. F. 3%.

//= 0,998 4400 Log — 0,001 5612

s — 0,994 9930 Log — 0,005 0196

c — 1,091 6817 Log c =0,087 7193

<J 0,029 5587

k — 0,394 1925
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X a
X

X S'(A, Ä)1)

25

1

21,550 0,01399 14,7960

50 14,052 0,12539 2,3343

75 5,369 1,12372 0,0828

95 (1,473) 6,49499

a) Werte der Differentialquotienten :

da da da
X

dg ds d c

25 1669,58 364,175 — 153,797

50 2629,24 152,455 — 279,673

75 2085,20 34,835 — 266,851
'

(95) 803,30 y p

Man sieht hieraus folgendes: Der Differential-

quotient x erreicht viel höhere Beträge als die beiden

andern, welch letztere von gleicher Grössenordnung
sind; die früher gezeichnete Kurve affg) steigt somit
sehr steil an, beispielsweise ist der zu iig y 2629,24
gehörige Winkel 95 ext 89° 59'; eine sehr kleine
Veränderung des Parameters g kann also schon beträchtliche

Veränderungen der Rentenbarwerte nach sich ziehen.

9 Die Werte dieser Funktion wurden gemäss (35) berechnet;
für die Funktionen r(k) und v(k) wurden die Werte gefunden:
r(k) =— 3,71317; v\k) + 1,01733 Für das Alter 95 wird
A schon ziemlich gross; wegen der für solche Fälle langsamen
Konvergenz der Reihe (35) wurde dieser Fall nicht weitergeführt,
doch ist für x 95: f?(A, k) <( 0,0000 170. —



b) Die absoluten und relativen Variationen.
\

X

*9 — A s — A c + 0,001
" "

1

A a in
X bezug auf: + in bezug auf

total ;9 .<? c total 9 s c

25 1,66958 0,36418 - 0,15380 + 1,87996 0,0775 0,0169 — 0,0071 0,0872
1

50 2,62924 0,15246 — 0,27967 + 2,50203 0,1871 0,0108 — 0,0199 0,1781 |

75 2,08520 0,03484 — 0,26685 + 1,85319 0,3884 0,0065 — 0,0497 0,3452 |

(95) 0,80330 0,5454
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Aus dieser kleinen Zusammenstellung b ist ersichtlich,

dass der Parameter s eine Sonderstellung
einnimmt; bei diesem nimmt nämlich sowohl die absolute
als auch die relative Variation hei zunehmendem Alter
ab. Die Parameter g und c dagegen verhalten sich in
dieser Beziehung anders: Bei beiden nimmt die
absolute Variation des Barwertes a mit zunehmendem

X

Alter vorerst zu bis zu einem Maximum und hernach

ab; die relative Schwankung dagegen nimmt bei ihnen,
absolut genommen, mit wachsendem Alter zu. Diese
Resultate treten übrigens viel deutlicher in die
Erscheinung, wenn man sie sich durch eine kleine
graphische Darstellung veranschaulicht.

Zusammenfassend kann man sagen, dass eine

Veränderung von s am stärksten die Rentenharwerte der

jungen Alter beeinflusst, während eine Voränderung
von c oder g am intensivsten auf die Barwerte der
höchsten Alter einwirkt.

Gerade dieses Verhalten der Variationen 33 werden
wir im folgenden zu weitern Untersuchungen benützen
können.

§ 8.

Untersuchung der mathematischen Reserve mit
Hülfe der relativen Schwankungen von av.
Die Verfolgung dos Verlaufs der relativen Variationen

von a bei zunehmendem Alter gestattet einen

Schluss auf das Verhalten der Reserve bei variablem
Parameter g.

Nimmt nämlich in einem positiven echten Bruch
sowohl der Zähler als der Nenner zu, so wird der

Wert des Bruches vergrössert, wenn die relative
Zunahme des Zählers grösser ist als die relative Zunahme
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dos Nenners; denn bezeichnen wir die zwei Werte
dos Bruches mit a und a derart, dass

a
a T,

a
« =y,

wo a > a, b' i> b, so ist a f> a, wenn die Bedingimg
erfüllt ist:

a

oder

a V

a ^ b

was zu zeigen war.

Sind speziell die Brüche a und a die folgenden

ax+t
a — —=—

%+t
a'

'

wo die a-Werte aus der durch Variation von g
entstandenen Absterbeordnung berechnet sind, so ist nach
dem soeben Gesagten stets

a a,

wenn die Bedingung erfüllt ist:

a' a'
(46)

%+t ax



.Nun darf — vorausgesetzt, dass die Variation A g dem
absoluten Betrag nach klein ist — gesetzt werden:

_ _ da _
a'x axJrA9 ax [i+^xCv)]

aL+t \'+t + ^9 • «^[1 + ®b+4(^)]

wo iß^, und die in § 7 eingeführten relativen
Variationen von a bedeuten. Daher geht die

Ungleichung (46) über in

3Wt(flO > (47a)

Dies ist die Bedingung dafür, dass

®x-\-t ^x-\-t

a' aX X

und somit dafür, dass

tK<Jx (47b)

Hierin bedeutet .V die Reserve einer Todesfall-t X

Versicherung 1 und V die entsprechende Reserve,
aber berechnet mit Hülfe einer Absterbeordnung, welche

aus der vorigen durch Erhöhung des Parameters g um
den kleinen Betrag Ag entstanden ist. Die
Ungleichungen (47") und (47b) lassen sich durch den Satz

ausdrücken: „Wenn die relative Variation des Renten-
barwertes in bezug auf den Parameter g eine mit dem

Alter x wachsende Punktion ist, so ist stets

,V <Jt X ^ t '



— 232 —

d. h. die Reserve um so kleiner, je grösser der
Parameter g ist1)."-

Ks soll jetzt gezeigt werden, dass in der Tat die
Variation {g) eine mit dem Alter x wachsende Punktion

ist. Zahlenmässig haben wir dies schon in § 7 an
einem Beispiel bewiesen, indem nachfolgende Werte
berechnet wurden (A. F. 3 °/o):

X

25 0.0775

50 0.1871

75 0.3884

95 0.5454

Man kann diesen JSlachweis aber auch etwas
allgemeiner führen:

Ig d%

a d9
X

^
g Log — Log c \ W I

so dass

_ Ig / 1 d% dfix
1 \ (a f dx dx

g Log — Log c y

') Hierbei ist natürlich auch wieder vorausgesetzt, dass .v

und c, sowie ä, konstant gehalten werden.
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oder

—(48)ox

A rj /I et (li —1— d) 1 \ny / as *' ® I ' x r 1 /r \A

g Log-- Loge

Aber weil (Loge)2 sehr nahe an 0 liegt und cxLog —).,

abgesehen vom Glroisenalter, ein echter Bruch ist, so gilt

cx Log — (Log cf oc 0

0 (48")

£

so dass (48) nahezu identisch ist mit

ö

_ Jg 1 —axQlx+ f))

~^x
i

1
T (ä )2

g Log --Loge W

was zu beweisen war.

Die Differenz

1 — ö~ (iL. ~f-
i X Vl X I ' ' /-% \A - - -pr-g / (Log e)

OJ

ist übrigens auch für sehr hohe Alter positivj, wie man
aus folgendem Beispiel (A. F. 3°/o) erkennt:

x A

25 -f 0,00028

50 + 0,00086

75 + 0,00124

95 + 0,00062
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womit Ungleichung (48a) neuerdings als richtig erkannt
ist. Den oben ausgesprochenen Satz können wir nun
positiv aussprechen wie folgt:

Für eine nach Makeham ausgeglichene Absterbeordnung

ist die relative Yariation des Rentenbar-
wertes in bezug auf den Parameter g eine mit dem

Alter x wachsende Funktion. Daraus folgt: Die
Reserve einer Todesfallversicherung nimmt stets ah,
wenn der Parameter g wächst.

Als Formel:
8 V

< o (49)
og

Wir werden versuchen, in § 10 mit Hülfe von
unvollständigen Gammafunktionen einen direkten Beweis zu

erbringen.

Die Untersuchung der Reserve bei Yariierung von
s wird zweckmässig im Zusammenhang mit der Frage
der Zinsfuss-Yariierung erledigt; dies soll im folgenden
Paragraphen geschehen.

§ 9.

Einfluss einer Zinsfuss-Erhöhung
und einer Veränderung des Parameters * auf die
mathematische Reserve hei Todesfall- und
gemischten Versicherungen. Der Parameter c und

die Reserve der Todesfallversicherung.

I. Wenn die Absterbeordnung dem Makehamschon
Gesetze folgt, so lässt sich mit aller Schärfe beweisen,
dass die Reserve bei wachsendem Zinsfuss abnimmt.



Wir gehen aus von einem Satze von W. 6'uttou1)^
welcher besagt, class die Reserve um so grösser ist, je
niedriger der Zinsfuss ist, vorausgesetzt, dass die Leib-
rentenwerto der Alter x, x -f- 1 • • • eine monoton
fallende Reihe bilden. Zum Beweis dieses Satzes geht
Sutton von der Formel aus

f
V — 1 — (1 — V) (1 — t Vx+%) • • (1 j («)

aus welcher man scliliesst, dass es genügt zu
untersuchen, wie sich die Reserve einer ein Jahr dauerndem

Versicherung bei Veränderung dos Zinsfussos verhält.

V =1 — 1

vpx(l + ux)

oder kürzer

F= 1 •

(50)

vp{\-\-a)

Nach v differenziert:

(ia
x

JT- 1 v~3 a(l-f-a)dV l dv vi;
dv ~~

p ?;2(i_|_a)2

Den Zähler suchen wir durch eine Reihe auszudrücken:

a v p -f v2 • 2p + vA 3p-1 1- v }p -\

wobei

p=
lx+'-

>fi i

0 J. I. A. (17), 1873, pag. 227/28.

16
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hieraus folgt

VP-\~2V\P + ^V\P-\ +

ax + vpax+1 + v\pax+2 + .-- j
a(\Jra)^ax-lrvpax-\-v Cipax-\

woraus sich der Zähler des obigen Quotienten als die
Reihe ergibt

\(v — a C1 + a) VP K+i - ax) + v2 *P («»+2 —%)+
Wenn nun a grösser ist als alle folgenden Rentenbar-
werte

% > a*+i
Ux > ax+2

so ist sicher dieser Zähler negativ, und als~

dann positiv, d. h., wegen v — jo niedriger der
1 -f-1

Zinsfuss, um so grösser ist die Reserve F..
Analog gilt: wenn grösser ist als

80 zu, wenn i abnimmt;
allgemein, wenn die Leibrentenwerte der Alter x, x -j-1,
x -f- 2, • eine stets abnehmende Reihe bilden, so

nehmen die Reservenwerte
1 Vx, x

stets zu,
wenn der Zinsfuss abnimmt. Woraus wegen («)
unmittelbar folgt, dass die Reserve t~Vx wächst, wenn der

Zinsfuss abnimmt. Dieser Satz hat ohne weiteres auch

Gültigkeit für die Reserve einer gemischten Versicherung;

man braucht im Beweise einzig die Entwicklung
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ax — °Px~^ U~ A+--
durch

n— 1

ax n—1 -vp 4- v 4- • —I- v prn 1 2-^® ' I rc—i-fx

zu ersetzen und erhält dann als Bedingung fii

cLVt v »I Q
dv

an Stelle von

%> ax+1> %+2> (T)

die Bedingung

ax ax-{-\ n^2 ax+2 3
' ' '

welche sich aber auf (r/) reduziert, wie man sofort aus

xm x jg x-\-m
x

erkennt.

Der nächste Schritt besteht nun darin, zu zeigen,
dass bei Zugrundelegung des Älakekamschen Gesetzes

die Leibrentenbariverte der aufeinanderfolgenden Alter
eine monoton fallende Reihe bilden. Am einfachsten

zeigt man dies anhand von Formel (4), § 2, indem

man bedenkt, dass beim Makehamschen Gesetz die

,«-Funktion mit wachsendem Alter stets wächst (dies
ist ja auch die Grundidee Gompertz.) Damit ist schon

bewiesen, dass ax > ax+1 > > • • •
> woraus wegen

der Beziehung
1

a a —X X 2

sofort auch die durch {<p) ausgedrückte Tatsache folgt.
Dies erkennt man übrigens direkt aus [vgl. § 2, Formel

(10)]:
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r7l-j-Ä(c7—1) |

1 1
worin X — cx Log —, h Log ; nimmt nämlich x
und damit X zu, so worden alle Summanden der Reihe
und damit die ganze Summe verkleinert.

Halten wir dies mit dem Satz von Sutton zusammen,
so erhellt:

Liegt der Absterbeordnung das Makehamsche
Gesetz zugrunde, so gilt ohne Vorbehalt der Satz: Die
Reserve der gemischten und der Todesfallversicherungen
nimmt zu> wenn der Zinsfuss abnimmt.

II. Einfluss einer Veränderung des Parameters s

auf die Röhe der Reserve. Der soeben bewiesene Satz

gestattet eine interessante Anwendung, wenn wir uns

vor Augen halten, dass eine konstante Erhöhung der

Sterblichkeitskraft bei Voraussetzung desMakehamschen
Gesetzes äquivalent ist mit einer Erhöhung des Zinsfuss

es J).

Die konstante Erhöhung der Sterblichkeitskraft

betrage Log —, wo g ein positiver Bruch ist; dann

geht

9 v s

über in

l) Siehe W. A. Robertson and F. A. Ross, op. cit., p. 232.
Vergleiche hierzu auch die in vorliegender Arbeit an Formel (45),
§ 7 angeschlossene Bemerkung.



239 —

woraus
T 1, x CX x 7l z=z KS Q q =Q lX * V '» x

und

tP* Q tP*

Daher wird der Barwert einer Leibrente nach der

Absterbeordnung V :

X"1 t t t" - V & tPx• tp'x=Yj

oder

»;(*)=oB(0

wobei ax (i') den Barwert des n'-jährigen nach der
ursprünglichen Absterbeordnung l aber zum neuen
Zinsfuss >! bedeutet, wobei i' sich aus der Gleichung

1 Q— V= vq -

1 + % * 1 -f i

bestimmt; da o als positiver, echter Bruch vorausgesetzt

ist, folgt hieraus

1 ^ 1
A V, " •>.

-v—i < i i
d- h- % > il-f-i 1 -|-i

Nun kommt aber, wie man sieht, eine konstante

Erhöhung von gx -= A-\-Bcx= Log - Bcx auf nichts

anderes heraus als auf eine Verkleinerung des

Parameters s; da sie nach dem soeben Bewiesenen auch

äquivalent ist einer Erhöhung des Zinsfusses, so können

wir folgendes Resultat hervorheben:

Eine Erhöhung des Parameters s im Makehamschen
Gesetz ist äquivalent einer Herabsetzung des Zinsfusses,
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hat also genau den gleichen Einfluss auf die Höhe der
Versicherungswerte wie diese. Insbesondere folgt,
gestützt auf den vorhin bewiesenen Satz: Die Reserve

nimmt zu, wenn der Parameter s zunimmt. Als Formel
ausgedrückt:

Diese Feststellung gilt nicht nur für Todesfall-, sondern
auch für gemischte Versicherungen. Ist dies nicht ein

Widerspruch zu dem im I. Teil dieser Arbeit zitierten
Moserschen Zeichenwechselsatz? Nein! Der Zeichen-
wcchselsatz setzt nämlich bloss eine Erhöhung Ton /i
in einem gewissen Teilbereich innerhalb der versicherten
Dauer voraus, während hier g in der ganzen Absterbeordnung

als erhöht gedacht ist.

Interessant ist, dass die Reserve — im Gegensatz

zum Leibrentenbarwert — auf die verschiedenen Yaria-
tionen der beiden Parameter s und g verschieden reagiert.
Ein Erhöhen des Parameters g bewirkt eine A bnahme

der Reserve, ein Erhöhen des Parameters s dagegen
bewirkt eine Zunahme der Reserve, während beim
Barwert ax beide Variationen im nämlichen Sinn
(Zunahme) erfolgen. Es ist daher nicht ganz richtig, wenn
Dr. Julius Graf in seiner mehrfach zitierten Arbeit
sagtJ): „Die Konstante s verhält sich somit rücksichtlich

ihres Einflusses auf die Überlebenswahrscheinlichkeiten,

auf die wahrscheinliche und mittlere Lebensdauer,

auf die Leibrenten und übrigen Versicherungswerte

analog wie die Konstante g und entgegengesetzt
wie die Konstante c." Seinen weitern Ausführungen

„ • dass eine für die Absterbeordnung gutgewählte

b S. 436.
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analytische Funktion (wie es die Makehamsche Formel
ist) uns in die Lage versetzt, den innern Zusammenhang

zwischen Absterboordnung und Versicherungswerten

zu erkennen und aus den Veränderungen in
den Konstanten der Funktionalgleichung zuverlässige
Schlüsse auf die Veränderungen der Versicherungswerte
zu ziehen • •" dagegen können wir uns durchaus an-
schliessen. —

TIT. Der Parameter c und die Deserve der

Todesfallversicherungen.

Wir gehen nun den umgekehrten Weg wie im
vorigen Paragraphen; dort schlössen wir vom Verlauf
der Funktion 2? (9) bei wachsendem x auf das

Verhalten der Reserve in bezug auf g. Plier wollen wir
aus dem Verhalten von tV bei variablem s auf die

Funktion 25 (s) in bezug auf x zurückschliossen. Wir
fanden nämlich, class die Bedingung

5 23 (g)

' x
die Ungleichung

dVt X

dg <0

nach sich zog. Ganz analog schliessen wir aus der

Ungleichung (51):

d V
-H- > o («)

d s

dass

<5 23 (s)* ; 0 (/?)
d x



Denn aus (a) folgt für zwei Absterbeordnnngen 1 und

II (Parameter s und s' > s):

^X-\-t ~ -i

%
oder

ax+t %_

%+t %
'

was man auch schreiben kann (vgl. die Ausführungen
in § 8):

SV,» < ®a00 M

d. h. die relative Variation (s) nimmt ab, wenn
anwächst, was man — da man sieh die Veränderung
von x als stetig denken kann — auch durch

Ungleichung (ß) ausdrücken kann ]).

Diese Ungleichung (ß) im Verein mit der
Ungleichung (48a) gestattet uns nun, das Verhalten der
Reserve hei variablem c zu prüfen.

d axWir wissen bereits, dass ——— < 0. Hat man
o c

demnach zwei Absterbeordnungen I und II, für welche

c„ Cj -)- A c, wo zl c > 0, so folgt, wenn wir die
Barwerte nach der Absterbeordnung II mit Akzenten
versehen :

K+t<%+t-

Wie steht es dann mit ,V' und .Vt X t X

') Dieses Eesultat haben wir in § 7 bereits an einem
Beispiel zahlenmässig nachgewiesen.
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Nehmen in einem positiven echten Bruch Zähler
und Nenner ab, so wird der Wert des Bruches dann

verkleinert, wenn die relative Abnahme des Zählers

grösser ist als die des Nenners, d. h. es ist

wenn

^X-\-t Ay-j-i

%+t

«H-t
^

oder da hei genügend kleinem A c

— — öfl _
a'x axJr Ac -gj aa(1 + $ßa(c))

a'x+t %+t + A C ' ax+t + ®Cs+t (6'))

so folgt, dass

^ ax+t ^ j ax+t

oder was dasselbe ist,

wenn

(«)

1st die ßichtigkeit der Ungleichung (e) erwiesen, so

zieht diese die Ungleichung (d) nach sich; wir haben

demnach das Yerhalten von %$x(c) bei wachsendem x
zu studieren.
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Aus (41a), (44a) und (44b) ergibt sich, das»

Ac I 1 x Ay oax
b„ (c) ^ {g Log — Log c 5 rcLogc l &g Ag ax d9

+ 1

SS («) 4^_ f.0 Jjos — Log c -JL- 8 (a) + 1 —* ' cLoge r &
9

8

- (L°g| + ^) •«„(«)) (52)

wo

58^, (c) 1 [c, wobei s und. g konstant.
35 (g) v relative Variation von ax in bezug auf ig, wobei s und c konstant.
58 „(;>') (s, wobei c und g konstant.

Aus (52) folgt, wenn x als stetige Variable angenommen
wird:

d^M Ac i9 1 / ö33,(^)\
t-A^Log— Loge &JA)+£c—rgc^zlu 8

9
8 V dx Idx c Lo, Ag 9

s

A s

I T
1

I ^ Ö33»(S) 1

(Loe(r + t7^H
ä9S,(f) ««„MAber weil 95^. (^) und —^— positiv, dagegen ^

negativ ist, so sind in der geschweiften Klammer alle
Glieder positiv; daraus folgt
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—— < 0 0 (52*)

Damit ist aber die Richtigkeit der Ungleichung (e)
und deshalb auch diejenige von (ö) erwiesen, [n Worten
ausgedrückt:

Wenn der Parameter c des Makehamschen Gesetzes

vergrössert wird, so wird auch die Reserve tV der
lehenslänglichen Todesfallversicherung vergrössert.

Der Einfiuss des Parameters c auf die Höhe der
Reserve macht sich demnach im gleichen Sinne geltend
wie derjenige von s und im entgegengesetzten Sinn wie

derjenige von g.

Die für die Reserve entwickelten Sätze basieren
alle auf der Yoraussetzung, dass zig, As, Ac sehr
klein seien; diese Bedingung können wir rasch

beseitigen, wir brauchen bloss zu bedenken, dass wir
beispielsweise, um von einem Ausgangswert g1 des

Parameters g zu einem beträchtlich grössern Wert g2

zu gelangen, schrittweise von gl za. g^—g^-^- Ag, von

g\ zu g" — g'-J-Ag, usw. bis g2 fortschreiten können,

wo stets die Bedingung ~Ag= sehr klein erfüllt ist
und die Ungleichungen

') Dieses Resultat wurde bereits in § 7 zahlenmassig

festgestellt mit dem Beispiel A. F. 3%, (c) — 0,0071,

-S0 (D — 0,0199, 3375 (c) — 0,0497. Absolut genommen wächst

also die Funktion (c) mit x; weil sie aber negatives Vorzeichen

besitzt, so ergibt sich die Ungleichung (52a).
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tVx(-'/)<trM
tvx(g") < tyjf/)

statthaben, welche auf V (gf) <tV* führen.

Es gilt daher in bezug auf die Reserve für alle
vorkommenden Absterbeordnungen der Satz:

Eine Erhöhung des Parameters c oder s bewirkt
eine Erhöhung der Reserve der lebenslänglichen
Todesfallversicherung, ein Erhöhen des Parameters g dagegen

führt zu einer Verkleinerung der Reserve.

Es ist uns nicht gelungen, diese Untersuchung der
relativen Schwankungen und der Reserve auf gemischte

Versicherungen auszudehnen; einzig für den Parameter
s haben wir das Resultat auch auf die gemischten
Versicherungen anwendbar gemacht. Eine Übertragung
der auf ,V angewendeten Methode auf .V — führt aber

t x ö t xn
voraussichtlich auf ähnliche Resultate. Doch würde
mich die allseitige Untersuchung dieser doch vorwiegend
theoretischen Erage zu weit führen. Dagegen findet
sich im folgenden Paragraphen ein Versuch, das für
tVx(g) gefundene Resultat auf einem andern AVege zu
verifizieren.

§ 10.

Die mathematische Reserve, ausgedrückt durch
Gammafünktionen. Einige Spezialfälle.

Unter Benützung der für den Barwert der
kontinuierlichen Leibrente gefundenen Formeln können
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wir einen analytischen Ausdruck für die Reserve einer
im Alter x abgeschlossenen Todesfallversicherung und
einer gemischten Versicherung finden.

Aus

/ Loge

wo —cxLog~ folgt, wenn ,r in x -\-t übergeht:

/V

ax+t — n Ukj QO-C, fy
(Ä c) Log c

denn 1 geht dabei über in X c k; weiter ist nun

{- f\ Ic i / \t(/c) — a • (sv)

Man erhält also für die Reserve folgende Formel:

V (53)
(se)4 Qß,k)

{03)

Für t =- 0 wird V — 0, für t oo wird V =10 x ' t x '
welch letztern Wert man durch Ermittlung des wahren
Wertes der entstehenden unbestimmten Form findet.

Wir stellen uns nun die Aufgabe, das Verhalten
der Funktion .V bei veränderlichem /, also bei Varia-

t X '
tion des Parameters g, zu untersuchen oder doch

wenigstens die Werte dieser Funktion an den

Intervallsgrenzen g 0 und g 1 zu bestimmen. Die

Schwierigkeiten, denen wir hierbei begegnen, liegen
darin begründet, dass hier überall Quotienten nicht
sehr einfacher transzendenter Funktionen auftreten.
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a) g 0, / 00.

f.T =1 —r limeslt x,<m> (SVy /.—OO

Qxc1

e• a

1 ~ • u
(.sv)

Für TJ ergibt sich die unbestimmte Form -jj-,

deren wahren Wert man durch zweimaliges Differenzieren

unter Berücksichtigung von

® ~>.cl -.Tc—1 M
— — e • k • c

dX

findet zu

so dass

(.svf
<}

(V) (54)U x'g=0 c( - '

Wegen der Bedeutung von c und t ist dies ein

positiver echter Bruch, der den Bedingungen Vx 0

und V 1 genügt.
00 X OO
b) g l.

1 Q
V =1 r limes{t x)s=1 (sv) fco Qx

Ac1

1 Q
1 r • hmes

'Xc<

(s Vf fco Qx

Der auftretende Grenzwert nimmt vorerst die

unbestimmte Form ^-an; sein wahrer Wort ist:
— 00



— 249

„ /.c' - k—l kt— e / • c ithme» - ckt (s vy
2=0 — / • e

somit ist

TO =1- M
(sw)4

oder

G7*),^0 (55.)

Letztere Formel folgt jedoch auch unmittelbar aus
der Überlegung, dass bei Annahme einer konstanten

Sterblichkeitsintensität ^ Log der Eentenbar-

wert für alle Alter konstant ist1), so dass direkt

TOW 1 — 1 0.

Für die Reserve einer gemischten Versicherung
auf n Jahre findet man:

®x-\-t n—t
4

X V |

oder

v _ i ^ m4 35,41 (sv? Q(^k) — Q(Xcn,k)

Um die Werte der Funktion tVxv\{g) an d°n Grenzen

g 0 und g 1 zu bestimmen, hat man auch wieder

einige Grenzübergänge zu inachen.

a) g — 0.

V —, (0) 1 l—rF.,
t xn\y 1

Vgl. II. Teil, § 5.
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wo
i Qipt Qipft

jF limes j— ^1

a=oo 7;-<c Q, — Q,.

_ 0
~ 0

— e1* Äfc_1 • c" + +c" • l*-1 c"
limes ; 4
*=~ _e^'.(c«_i). [Q.-Qlcn]-el{*-x)[A*""1 • ee;'c • X^ c*"]

kt ~).(cn—c^) kn
c — e • c

hmes

(c«_ i) +1 c*»
e

"
• l

kt / \tc _ (sv)
t III t '

c 1 + 1 c

denn
<l, — QXcn 0

limes _A — =1;
A=oo 6 • /v ^

wir finden somit den Wert
1

t^.i(0)=l—T (5^)
G

welcher mit (0) übereinstimmt.

b) g 1.

.7 (1) 1
4 xnl {sv)*

wo man

A(c4—1) %<* (4c»

A'i 7^ / \t / \>?
6' (s fl) — (5 v)

F„ limes e „ „
;.=o +, —

1 —c 1 — (sv)n
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findet; daher ist

,n.(e=i-i-^r' (58)
1 — (sv)

Dies ist stets ein positiver echter Bruch. Man erhält
diese Formel auch ohne Grenzübergang direkt aus

Gleichung (28a) in § 5.

Iji diesem Spezialfall ist es ein Leichtes, den Ein-
fiuss einer Veränderung des Parameters s auf die Höhe
der Reserve zu ersehen *). Diese Eormel (58) ist nichts
anderes als die im I. Teil unserer Arbeit (§ 5)
aufgestellte Eormel

_ i
V =1 (o>)ix -i n k /

1 — V

wobei v übergegangen ist in den kleinern Wert (sv).
Berücksichtigen wir nun, dass v mit wachsender Yor-
zinsungsintonsität abnimmt, so können wir umgekehrt
sagen, dass diu Substitution v — sv einer Yergrösserung
der Intensität <) gleichkommt. Da aber nach einem in
§ 6 des I. Teils bewiesenen Satz bei wachsender Yer-
zinsungsintensität die durch (co) dargestellte Reserve

• abnimmt, so ist vorerst zu schliossen, dass der
Ausdruck (o)) grösser ist als (58). Lassen wir ferner s

übergehen in s )> s, so kommt dies auf eine

Verkleinerung der Zinsintensität in (co) hinaus, und dies

hat die Ungleichung
V(8l) > V(s)

zur Folge, d. h. mit wachsendem Parameter s nimmt
die durch (58) dargestellte Reserve zu. Dieses Resultat

stimmt vollständig mit dem in § 9 für die Punktionen

f ^(s) und tVx— (s) allgemein bewiesenen Satz überein.

') Vgl. z. B. Goldmann, Mitteilungen schweizerischer Ver-

sicherungsmatliernatiker, 10. Heft, 1915.

17



Wir kehren nun zu Formel (53) zurück. Bis jetzt
ist gezeigt, dass die Funktion t~V {g) an den Grenzen

g 0 und g 1 die Werte

.h(D ci
G

besitzt, somit ist

Weiter folgt, dass tV(g) im Intervall 0<Zg<^l stetig

verläuft, denn ax und ax^_t verlaufen stetig und ax hat
in diesem Intervall keine Aullstelle.

Setzen wir abkürzend

5 %n' _
Of

d a
X

og

' x-11
& X * —^ 1a?-j-t Z, ^ 5

SO folgt

8tV_ ax+t ' ' ax+t

_ '"x+t
'»,,.l w ax+l\

ax+t
(59)

Diese Gleichung besagt, dass die Funktion t~V {g) nur
dann einen extremen Wert besitzen kann, wenn die

logarithmischen Ableitungen der Rentenbarwerto a
und a einander gleich sind B.

CC-H Ö '

l) Dieses Kriterium gilt übrigens immer für den (Quotienten
zweier Funktionen, vorausgesetzt, dass die Nennerfunktion im.
betreffenden Intervall keine Nullstelle besitzt.
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Wir fanden

% 1

g Log —- Log c

x\-t '
1

#L°g —Loge

so das.s statt (59) gesetzt werden kann:

d.V a a a., **' !'x
t X X-\-t X X-\-t

dg a t 1
T® g Log — Log c

iß ,,— ß a — .V^ x-\-t 1 x' X-\-t t X

g Logi Log c ax

dj t 1
T

~~

9 Log — Log c ax
J

(60)

oder unter Einführung einer Hülfsfunktion

f(g) (ßx+t—ßx)%+t (60")

dtfx f(ff)-tV.(0)
(61)

Der Nenner dieses Bruches hat für 0<gg<gl einen

positiven endlichen Wert; daher ist

^<0, wenn tVx(ff)>f(g)
o g

c x

Wegen Ungleichung (0) muss diese letztere Ungleichung

wenigstens für ein gewisses Stück des Intervalles
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0 -< g < 1 gelten; wir werden sogleich sehen, dass

sie im ganzen Intervall gilt. Wir betrachten die Hülfs-
funktion f(g), für die sich unter Benützung der frühern
Ausdrücke ergibt:

(*tf) X

Man findet ferner:

J.
a 0: /'(0) — limes

M *=~> xk~l

c—1 0 c —1 (svf
(s vf 0 (s vf <}

oder schliesslich

no) i-i ,y.(0)
c

f/—l: Wegen /tix Log-|- wird aus (60a):

Ai) o tfa(i)

Stimmen der Funktionen f und V an einer weitern
Stelle, innerhalb der Grenzen 0 und 1, überein, so

besitzt tV (g) nach (61) dort einen extremen Wert.

Unser Ziel ist nun, den Verlauf von f(g) zu
verfolgen und dann rückwärts auf denjenigen von (D ((/)

zu schliessen. Aus (60b) ergibt sich nach einiger
Umformung der Differentialquotient:

(60»)

n -tA X c -j- 1 — k M

fc*—i g^'e x "
^ u 9 (s vf x 1
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Für das Vorzeichen dieses Differentialquotienten ist der
Zähler ausschlaggebend. Mit Hülfe einer von Schlömilch
gegebenen Reihe für die Q-Funktion habe ich diesen
Zähler in eine unendliche Reihe entwickelt und
schliesslich das Resultat erhalten

i0>-<O (60-)

d. h. die Hülfsfunktion f{g) nimmt monoton ab, wenn

g von 0 bis 1 wächst. Ich verzichte darauf, hier den

etwas langwierigen Beweis für die Richtigkeit von
(60d) mitzuteilen.

Uberträgt man nun den in § 5 hiervor entwickelten

Gedankengang (vgl. Seite 202 ff.) auf diese Funktion,
so erkennt man, dass auch die stetige Funktion tVx(g)
keine extremen "Werte besitzt und wegen F(0) "*>U(1)

eine monoton fallende ist.

dfV (<j)t xVJ „0
dg

was zu beweisen war. in Worten:

Variiert der Parameter g von 0 bis 1, so

nimmt die Funktion t Vx stetig ab von

{F(0)= 1 \ bis t7(l)=0.

Es ist dies eine schöne Bestätigung des in § 8

auf ganz anderem Wege gefundenen Resultates.

Der soeben skizzierte Beweis wird recht einfach

in demjenigen Spezialfall, welcher entsteht, wenn

0 und s 1 gesetzt wird, d. h. wenn man die
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Verzinsung ausser Acht lässt und statt des allgemeinen
(tompertz-Makehamschen Ausdruckes das von Gompertz

stammende Sterbegesetz l — kgc zugrunde legt.

Alsdann wird nämlich der Parameter k 0 und
die .Reserve kann durch die unter dem Ramon Inte-
grallogarithmus bekannte Transzendente ausgedrückt
werden:

' - ~ <J(i,0)
oder

iP 7 l ~lct\
V =1— e '

_ ' (62)t X A 7 • / A\ y '
e h(e

Die Pormel (60°) des Differentialquotienten der Hülfs-
funktion f(g) geht für diesen Spezialfall über in:

e&V+i] (63)

Der Paktor vor der eckigen Klammer ist positiv; das

Vorzeichen des Diffcrontialquotienten hängt also nur
vom Klammer-Ausdruck ab. Wir setzen abkürzend

Xcf' — u

Die eckige Klammer wird =(zt-j-l) • e'li(e") 1

Um das Vorzeichen dieses Ausdrucks zu bestimmen,
entwickeln wir li(eu) in eine konvergente, unendliche

Reihe, welche von Schlömilch stammt1):

~eu 1 1 2
+Zz(eM)= —— {1

V l u+1 (w+1) (w+2) (i<+1) (u+2) (?/+3)

+(m+1) (m+2) («+3) (u+4)~ + "
I

*-64)

') Zeitschrift für Mathematik und Physik. 1859, Bd. 4, S. 401.
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Hieraus «7v~A i 1—|- 1 j 6 1%{Q —{- 1 :

l -

u
+A i—Lt I

1 2_
_

|

O+l (m+1) (?<+2) (it+1) (m+2) 0+3) I

M ~t~ 1 / 1 2
^

u t(w+l) (m+2) (m+1) 0+2) 0+3) I

Das Bildungsgesetz des Koeffizienten dieser
Fakultätenreihe ist allerdings nicht sehr einfach; doch fällt
für uns nur die Tatsache der Konvergenz der Reihe
und der Wert der ersten Entwicklungskoeffizienten in
Betracht. Es ist nämlich für a > 0 in der geschweifton
Klammer von Anfang an ^ jedes Glied kleiner als

das vorhergehende3), d. h. die geschweifte Klammer
besitzt einen positiven, endlichen Wert, daher ist

0+1) e l i (ru) + 1 '5 0

Daraus folgt weiterhin gemäss Gleichung (63):

äfig) ^ n
dg ^ '

Damit ist f'(g) als eine im Intervall 0 <Zg <C 1 monoton

fallende erkannt, und gleich wie im allgemeinen Fall
(s 4= 1) schliesst man hieraus

dfV_1_2L < 0.
dg

1) Das Unterstrichene ist wichtig; class die spätem Glieder alle

dieser Bedingung genügen, ist ja eine notwendige Voraussetzung
für die Konvergenz.

2) Beispielsweise kann das zweite Glied geschrieben werden:
1 1

0 + 1)0+3) m (>+1)0 + 2)
'
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Wird die Überlebensordnung durch das Uom-

pertzsche Gesetz dargestellt, so nimmt die Reserve

V monoton ab, wenn der Parameter q von 0 bis 1
t X >'

wächst, vorausgesetzt, dass man hierbei auf den

Einfluss der Zinsintensität keine Rücksicht nimmt.

Man kann nun hier auf den I. Teil dieser Arbeit
verweisen, wo dargelegt wurde, dass eine Vernachlässigung

der Verzinsung heim Studium des Einflusses

von die Verhältnisse nicht entstellte, und schliessen,
dass der soeben bewiesene Satz auch für Gültigkeit

besitzt.
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Anhang'.

Schätzung des Restgliedes in der Formel

— 1 il <5

ft-=°-+2—2riL+Ä-
Es ist öfters von Vorteil, eine Formel zu kennen,

welche den Ubergang von b.x bzw. ax zu a vermittelt.
Solche Vaherungsformeln sind verschiedene bekannt;
ich erwähne als Beispiele die folgenden1):

id i — d
A;

^ 2 ß2

und
— Ii

Eine weitere sehr bekannte Formel ist die von
Woolhouse2) aufgestellte, welche lautet:

- ,1 t-'x+d
ax ax i 2 12 '

welche neben der Verzinsung auch noch eine Korrektur
für jedes Alter x berücksichtigt. Mit dieser Formel
wollen wir uns in diesem Anhang befassen und zwar
gehen wir aus von der folgenden erweiterten Formel:

]) Vgl. z. B. Vorlesungen von Prof. Dr Moser über
ausgewählte versieherungswissenschaftliehe Kapitel, S. S. 1917.

2) ./. I. A, Bd. XV, p. 106. >
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(65)

Ihre Ableitung verdankt man dem französischen

Versicherungsmathematiker H. Poterin du Motel, der
wohl als erster diese Restfunktion R berücksichtigt
hat. Zu ihrer Herleitung geht du Motel aus von der
bekannten Eulersehen Summenformel, die er auf die
Summe

wo JJ(x) vx l anwendet. A'oraussetzung ist hierbei,

dass D(x) eine Punktion sei, welche ebenso wie
ihre aufeinanderfolgenden Differentialquotienten stetig
verläuft und welche ferner der Bedingung genügt:

D (oo) D'(oo) _D"(oo) =••=:().
Diese Summe lässt sich dann durch ein Integral

ausdrücken, wozu noch eine .Reihe von Ausdrücken
in den einzelnen Differentialquotienten von D (./•),
verbunden mit gewissen Koeffizienten (Bernoullische
Zahlen) treten. Von diesen Ausdrücken, die in ihrer
Aufeinanderfolge eine alternierende Reihe und zwar
eine sogenannte semikonvergente Reihe darstellen,
berücksichtigt du Motel nur die drei ersten Glieder
und stellt den Rest durch das der Eulerschen Summenformel

eigene Restintegral *) dar. Dadurch gelangt er

') Vgl. z B. Markoff, Difterenzenrechnimg (189B).
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auf eine lineare Beziehung zwischen den Barwerten
fi^M) und ar, welche sich im Spezialfall m— 1 auf die
Formel (65) reduziert. Die skizzierte Ableitung von
du Motel findet sich in seiner weiter oben erwähnten,
schönen Arbeit „Technique de l'assurance sur la viea 1).

Die Formel (65) bzw. (65a) soll uns nun dazu dienen,
zu schätzen, welchen Fehler man begeht, wenn man
die gewöhnliche Formel von Woolhouse verwendet.
Es ist ja in der Tat bei Näherungsformeln in der
Mathematik und ihren angewandten Gebieten stets

sehr wichtig, anzugehen, innerhalb welcher Grenzen
sie gültig sind.

Um diese Untersuchung durchführen zu können,
müssen wir über den Verlauf der Absterbeordnung
eine bestimmte Voraussetzung machen; wir nehmen

an, sie gehorche dem Makehamschen Gesetz.

Die Summe unter dem Integral (65a) soll vorerst
etwas umgeformt werden. D<4'(x) bedeutet die vierte

Ableitung von D(x) vxl(x) nach ,r; durch sukzessives

Differenzieren findet man

1)'4) (*) v* lx {- /V' + 4 (^ + d) /V + 3 (v'/

— 6 (/L + ^)2 ' P'x (X;
1

j

Nun ist nach Makeham

l k f gcX
X &

ux LoS 7" + c" L°Sc LoSj
ju^+ö — Log« 0+cxLog — wo 0 (Log —+ Loge

') Encyclopedie des sciences mathematiques, tome I, volume 4,

page 527.
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'u'x — °X Lo§
1

(-Log of
9

/t;'= e" L°gy (Loge)3

K' — °x LoS } (Los'

Daher wird, wenn (Log c)4 vorweggenommen wird r

D(i) (as) vx lx (Log c)4 { — cx Log
-1

9

+ 4 (e-f^Log—) cx Log
1

V f /9 '
&

9

+ 3 (c* Logy

— 6 (e + cx Log y) cx Log i
-f- ^6 + c Log — j J

und infolgedessen, wenn wir as durch x -f- n -(- t
ersetzen und mit D(x) dividieren, sowie gleichzeitig
die Abkürzung

X cx Log
9

einführen:

D {x-\- n -\-1) \«+t —;.(c"+i—i) ,T ,4 - «+(
- (P s) (Loge) j-/,c T +

-I- 4 (0-f / cn+t) X c"+t + 3 (/ cn+tf — 6 (0 + X cn+tf • cn+t +

+ (0 + X c"+i)4} (v s)re+i- 7i(c""l"f-1'. (Log c)4- F, (66)
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wo F den Ausdruck in der geschweiften Klammer
bedeutet. Wenn wir diesen Quotienten in der
Restfunktion (65a) einsetzen, so geht diese über in

i a
«=°° (67)

]{ e' (Log c)1 / ^
(s vf (s v)n e'x +t-F-dt

Wir betrachten nun das Produkt elt +
F, in

welchem wir abkürzend

/ cn+t --=u> 0

setzen; es ergibt sich, wenn gleichzeitig nach Potenzen

von u geordnet wird:

e"' F— eu j a -\-ßu-\- yu2-\- d n3 -j- u*1 (68)

worin die Koeffizienten bedeuten:

« r
/i — (W4-0 + 6-e'2-4.e3)

7 7 —-12 0 —(- 6 • 02>

d _ (ß _ 4 • 0)

wobei

Lo

Loge

(vgl. § 2, Beziehung (8))

Weil O<0<(1, so gehorchen diese Koeffizienten
den Ungleichungen:

0 < a < + 1,

-1 <ß< + l

+ 1 </< + 7

(68")
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Statt (68) können wir setzen:

—;.c"+' tt ci —(- ß u —)' u —|- o u -j- u
6

2 3 i s

11 I
U

I
U

I
U

I
U

I

1+m+2T+3T+4T+5T + - '

^
ß Ii —j- y tl —j— o a —|— ii

5

4! -f 4! u + 12 u2+ 4 ?<3-f «*+ 4! {—+ }
oder

~^lc"+t.F< 4! (69)

denn infolge der Ungleichungen (68a) sind stets die

entsprechenden Koeffizienten der Potenzen yon u im
Zähler kleiner als die im Kenner, und zudem schreitet
im Kenner die Potenzreihenentwicklung weiter.

Wir erhalten auf diese Weise die Ungleichung

1 /i—oo

B < e (Log cYj f (1 —1)~ (s v)n dt
0 n=0

oder weil

0 < s v < 1

R < -e1^^ J (svf dt (70)

0

Bezeichnen wir das Integral mit

i

J=!t2(l — tY(sv)t dt
0
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so gilt, weil für 0<^t<^l stets 0<C(s»/<l ist:
1

J<j t2(l ~tf • dt
o

odor

./ -- --" 30'

so dass als erste Hchätzungsformel für den Rest R die
einfache Ungleichung resultiert:

(I) (Log^
U ^30(1 —jh;)

wobei X cx Log —
9

Das Integral J können wir jedoch genau berechnen :

•/ / f(sv)t dt—2l ^{svf dt -f- / • dt

Wir substituieren (s vf e u,

u ——tLog(s«) ep Grenzen:

t \ u

0 0

1 £

J—^fu2 eu-du — ~fu • eu-du+ \Jui-e'tt-dn
o

£
o

E
0

oder

P (e, 3) 2P(e, 4) P(c,5)
J—? g4 + £5
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d. h. wir haben unser Integral auf 8 unvollständige
Gammafunktionen mit ganzzahligem Argument
zurückgeführt, wobei zur Abkürzung

e — Log sv Log — > 0
SV

gesetzt wurde. Solche Funktionen sind mit Hülfe der

Legendreschen Fakultätenreihe als einfache Reihen

darstellbar, allgemein
v=n-l i\

v!iJ(f, n) (n — 1)!

so dass

J= A 1

j 12 — 6f + e — e£(12 + 6e + e)

und durch Entwicklung der Exponentialfunktion

:s

./
1 Of

30 60 210 30-7-24

1

"30 + "i_27 7-24 (71")

Es ist dies eine alternierende Reihe, deren Glieder
sehr rasch abnehmen und die wie die Entwicklung
für e' absolut konvergent ist. Setzen w'ir sie in (70)
ein, so erhalten wir

II
e (Log c)1

30(1 — sv)

•l K ö

1--1-Li. —5Li I

27 7-24 (72)

woraus man sofort die Schätzungsformel I erhält,
wenn man sich in der Klammer auf das erste Glied

') Xielsen, Handbuch der Theorie der üammafunktion,
pag. 28.
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beschränkt. Nun ist aber s sehr nahe bei 0 gelegen,
die Näherung I also berechtigt. Eine bessere Näherung
erhalten wir dagegen, wenn wir in der Klammer die
drei ersten Glieder berücksichtigen; dies ergibt die
brauchbarste Näherungsformel:

(Loge)4 1—£- +
*8

<ü> B< nop-.'.) " *'•

Berücksichtigen wir noch, dass s»=e£, also
g*2 £.3 ^4

1 — sv e ?r + "^ ?rr H • i so können wir26 24 1 '

statt (II) setzen:

s<(Lri_1zi±j /30 1 + 1
2 6

und um so mehr

(III) R
DU £

wo stets X — cx Log —, e — Log —.g sv

Aus dem Bau dieser drei Bestformeln ersieht man

wegen des Paktors eA, dass der Best R um so kleiner

wird, je kleiner x ist; ferner wird R um so kleiner
ausfallen, je kleiner v ist, d. h.

Die Näherungsformel von Woolhouse

1

ax — 2 12

trifft um so besser zu, je niedriger das Eintrittsatter
und je höher der Zinsfuss i ist,

18
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Es soll nun die in den Formeln (I), (II), (III)

enthaltene obere Schranke für das Restglied if in
einera konkreten Beispiel berechnet werden; wir
wählen die Tafel A. F., den Zinsfuss 3 °/o; für diese

Schranke ergeben sich folgende Werte:

X nach Formel I nach Formel II nach Formel III
25 0.0000 59 0.0000 58 0.0000 58

50 0.0000 66 0.0000 65 0.0000 65

75 0.0001 79 0.0001 76 0.0001 76

95 0.0384 34 0.0377 76 0.0377 94

Aus dieser Tabelle ist ersichtlich, dass — wenn man
von den hochsen Altern absieht — der Rost R kleiner
ausfällt als 0.00018 (im Alter 75), ja für die meisten

für die Praxis in Betracht fallenden Alter erreicht

der Rest R nicht einmal den Wert ^ —. Erst für

Alter x > 85 ergeben die Restformeln Beträge, die

grösser sind als
^

; erst von diesem Alter an kann

also die dritte Dezimalstelle im Barwert ax ungenau
werden; vom Alter 95 an kann sich der Fehler auch
in die zweite Dezimalstelle verpflanzen:

x 85 if < 0,000 851

as — 86 if < 0,001 090

x =87 if < 0,001 278

33 90 if < 0,003 766

3: 95 if < 0,037 794

Da aber Rentenbarwerto für so hohe Alter überhaupt
im allgemeinen ausser Betracht fallen, so kann füglich
aus dieser Untersuchung geschlossen iverden, dass man
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praktisch in der Woolhouseschen Formel die Restfunktion

R vernachlässigen darf.
Dio in § 7 verwendeten Rentenbarwertc wurden

deshalb folgendermassen berechnet (zl. F. 3 °/o):

x

25

50

75

95

/U

0,00625

0,01602

0,10359

0,57476

0,03581

0,04558

0,13315

0,60432

<f 4- ö
' X '

—12"~
0,003

0,004

0,011

0,050

a 4- 0,5X ' >

21,553

14,056

5,380

1,523

21,550

14,052

5,369

(1,473)

In gleicher Weise zeigt man, dass in der Formel1)

a — a
(»»)

1 « -4- d
I X I

2m 12 m2 + R' (73)

wo ax den Barwert dor in m Raten postnumerando
zahlbaren Leibrente 1 bedeutet, der Rest R' bei Yor-
aussetzung des Makehamschen Gesetzes der Ungleichung
genügt:

(II*) R
(LogC)4(l-T+T

30 [l — (sü)1/m] m5

wo e — Log : diese kann übergeführt worden in
m sv

(IIIa)
(Log cf x^ 30 e m4

wo e Log Wegen des Faktors m4, im Nenner
sv

fällt diese Restfunktion R' noch viel kleiner aus als

0 H. Poterin du Motel, loc. cit.
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R, 80 dass mit noch grösserer Berechtigung diese andere

Näherungsformel von Woolhouse

i f.i —I—

„ x ' nwax % + 2m 12m2
^ j

gilt. Durch Elimination von a zwischen (73) und (65)
erhält man wegen der Kleinheit der Differenz R— R'
die bekannte Formel für den Barwert der in unter-
jährigen Baten zahlbaren Leibrente

(m> m — 1 m2—1
% —ax+—^ 12m2" x

bzw. j- (74)

tm) _ „ m— 1 m2 — 1

* x 2 m 12 m2
^



A

Fig. 1.

Die Punktion

1-;.^
/•(Ä)=tF(A) l- w 2

n — 20 ; <=15.
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i [Ma* J

- 0 8856

Fig. 2.

Die Grenzkurve.

n — x n-\-x
J/2 x ± J!n{n
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