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Beiträge zur mathematischen Theorie der

biometrischen Funktionen.

Von Dr. Tadeusz Poznanski, Bern.

§ 1-

Unter einer biometrischen Funktion versteht man
in cler Versicherungslehre und in der formalen

Bevölkerungstheorie gewöhnlich eine Grösse, die über
den Sterblichkeitsverlauf Aufschluss zu erteilen geeignet
ist1). Als unabhängige Variable (Argument) werden
wir bei diesen Funktionen das Alter des Individuums
betrachten.

Zu den biometrischen Funktionen gehört in erster
Linie die sogenannte Überlebensordnung; sie gibt die
Anzahl der Personen an, die in einer geschlossenen
Gemeinschaft einen bestimmten Zeitpunkt erleben. Die
Zahl der x-jährigen, die wir mit l oder /(,-r)
bezeichnen wollen2), ist ihrer Bedeutung nach eine nicht
zunehmende, diskontinuierliche Funktion des Alters x)
sie soll gleich Null sein für x^> o), wo co die Maximaldauer

des Menschenlebens bedeutet. Um die
mathematische Analysis auf diese Funktion anwenden zu
können, insbesondere die fruchtbaren Methoden der

') Lflewy im Versicherungslexikon von Manes, p. 12.
3) In der vorliegenden Arbeit werden wir die in der

Versicherungswissenschaft übliche internationale Bezeichnungsweise
derartabändern, dass wir die Argumente nicht als Indices, sondern
in Klammern setzen, wie es in den mathematischen Disziplinen
üblich ist.
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DifFerental- und Integralrechnung, wollen wir ihr die

Eigenschaft der Differenzierbarkeit zuschreiben; sie

wird dann stetig und integrierbar und auch monoton
sein. Jede analytische Funktion muss aber identisch
Hull werden, wenn sie für ein endliches oder — wie
in diesem Falle — unendlich grosses (von m bis oo)
Intervall des Argumentes verschwindet. Um aber die

tiberlebensordnung durch eine stetige, analytische Funktion

darstellen zu können, nehmen wir folgendes an:
der Wert l(x) für a?)> co wird so klein, aber von Null
verschieden, dass er praktisch zu vernachlässigen ist,
und er verschwindet erst im Unendlichen (also für
x-= oo), d. h. die Funktionskurve l(x) ist zur
positiven .-r-Achse, — der Altersachse asymtotisch.

Die übrigen hier betrachteten Funktionen lassen

sich leicht durch die Uberlebensordnung definieren;
wir werden uns dabei hauptsächlich auf die
mathematische Definition mit Hülfe von Gleichungen
beschränken.

Die Zahl d(x) der im Altersintorvalle x bis x -f- 1

Gestorbenen ist

(1) d(x)=l(x)— l(x-1-1).

Die einjährige Uberlebenswahrscheinlichkeit ist

1 (x -j-1)
(2a) p (x)

und die «-jährige

(2b) nP (®)

l(x)
und die «-jährige

l {x -f n)
l{x)

Die einjährige resp. die w-jährige Sterbenswahrscheinlichkeit

ist

(3a) g(x)=^z.= l—p(x)
resp.
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(db) „g(j)- - j >—\—np(x).

Nimmt man l(x) als diffcrentierbare Funktion des

Argumentes x an, so wird durch die Gleichung

1 dl(x)
(4) u (x) -

I (pc) dx

die von Gomportz1) im Jahre 1825 eingeführte
Sterblichkeitsintensität definiert. Da nach der Annahme l(pc)

eine monoton abnehmende Funktion dos Argumentes
dX (oo)

ist, so ist der Differentialquotient —stets negativ,

somit iä(x) stets positiv; für x i> o) wird, wie erwähnt, ^ ^ ^

l(x)_ der,IJuU zustreben und daher /i(x) ins ünend- kusL,

liehe wachsen. \
Der Ausdruck

(5) ji (x) dx

Ou..
w ^u\,j *—*

dl {x) ff h cccA t. i
l(x) o-b>0 "fu

Ii f ^ i

drückt die unendlich kleine Wahrscheinlichkeit aus, * '

dass ein x-jähriger im nächsten Momente stirbt, d. h.
im unendlich kleinen Altersintervalle von x bis x-f-dx.

In seiner „Theorie analytique des probabilites"
führt Laplace eine Funktion <p(x) ein, die so gedacht
ist, dass das Produkt q?{x)dx die Wahrscheinlichkeit
ausdrückt, dass der Neugeborene im unendlich kleinen
Altersintervalle von x bis x -j- dx stirbt. Zwischen <p(x)
und ,u(x) besteht, wie unsere Gleichung (10?/) zeigt
die Beziehung

i

cp (x) — g (x) e l'{)d

*) Philosophical Transactions of the Koyal Society of London

1825.
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fu(x) stimmt also nur für x 0 mit cp(x) iiberein.
Die Punktion (p{pc) wurde von Czuber in seinem
Berichte „Über die Entwicklung der Wahrscheinlichkeitstheorie

und ihrer Anwendungen" (Leipzig 1899)
unrichtig als Sterblichkeitsintensität bezeichnet1).

Der reziproke Wert —~ wird die Lebenskraft
100j

genannt und ist in jedem Punkte dargestellt durch die

Subtangente der Kurve, welche der Funktion I(x)
entspricht.

Um die einjährige Lebens- und
Sterblichkeitswahrscheinlichkeit durch die Sterblichkeitsintensität
auszudrücken, multipliziert man die Definitionsgleichung

1 dl{y)_ dLogZQ/)
W) l(y)

'

dy dy '

wo Log durchweg den natürlichen Logarithmus
bedeutet, mit — dy und integriert dann die so erhaltene
Delation
(6) d~Logl{y) — y(y)dy

von y x bis y ~ x -j- 1. Man erhält dann :

LogZQ/) Log l (x -)- 1)—Logl(x)= •

!/=»
JC—|— 1

==-_/',«(!/)<%
X

Hieraus ergibt sich durch Potenzierung die einjährige
Überlebenswahrscheinlichkeit des »-jährigen,
ausgedrückt durch die Sterblichkeitsintensität:

tc-j-l

-mr=*(x)=' •

0 Siehe weiter unten die Bemerkung zur Seite 102.



— 51 —

Vermittels der Substitution y x-\-r, wo t die neue

Integrationsvariable bedeutet, geht (7a) über in
i

- rii(x-\-r)dr
(71.) p(x) e l
Integriert man die frühere Relation (6) yon x bis x -f- n

wo n eine beliebige positive Zahl bedeutet, so erhält
man durch nachherige Potenzierung einen Ausdruck
für die Wahrscheinlichkeit, dass ein x-jähriger nach

n Jahren noch am Leben ist. Es wird
x-\-n

l(x-\-n) ~[My)dy
(8a) "bp nP(x) e "

Durch die angewendete Substitution y — x -f- r, geht
der Ausdruck (8a) über in

n
— fß(x+ r)dr

(8b j np (x) e {
Für ganzzahlige n kann man diesen Ausdruck für ,j> (>*•')

auch aus demjenigen für^j(x) erhalten unter Anwendung
des Satzes über zusammengesetzte Wahrscheinlichkeit.

Nach diesem Satze ist:

np(x)=p(x) • p(x+l) p(x-\-2) p(x + 3) • •

• • p (x -f- n — 1).
Setzt man für^>(x-j-t) die entsprechenden Werte nach
(7a) ein, so erhält man durch Umformung:

•P-j-1 ai-j-2 x~\~v—l x-\-n
— p(y)dy — fi(y)dy —[tu{y)äy — ft*(y)dy

nP (*^) ® x ' & aH-l ' ' ' X-\-n~2 ' & x-\-n— l
| a?—(—1 x-\-2 x-\-n » x-\-n

—j j !<y)dy+fMv)dy+ +JMv) 'hJi — fMy) äy
— £ 'a; cc—|—x x-\-n—l ' 6 x ~~

n

— /
e o

wie früher (8a) und (8b).
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Die Wahrscheinlichkeit, dass ein a>j ähriger das

Alter c erreicht, also mindestens noch c — x Jahre

loht, ist:
C—X

[u(X-\-T)ä.T

(9) c_J>(x) e l
Die Wahrscheinlichkeit, dass ein x-jähriger im unendlich

kleinen Zeitintervalle x -f- t his x -f-t -|- dt stirbt,
ist eine zusammengesetzte Wahrscheinlichkeit; nach der

Wahrscheinlichkeitsrechnung also gleich dem Produkte

tp(x) ,u(x-\-t)dt. t

— / fi(x-\-T)rU
Ersetzt man hier tp (x) nach (8b) durch e i
so geht der obige Ausdruck über in

t
— / ii{X-\-x)dx

(10a) ju(x-\-t)e o dt.

Wird in (10a) x 0 gesetzt, so gibt dieser Ausdruck
die Wahrscheinlichkeit an, dass ein Neugeborener nach

t Jahren im Altersintervalle von t bis t -f- dt stirbt;
es wird

t

(10b) (p (t) dt u (f) e / dt.
wo cp (:t) die erwähnte Laplacesche Punktion ist.

Integriert man die Grösse (10a) von t 0 bis
t -w, so erhält man die Wahrscheinlichkeit, dass ein

x-jähriger innerhalb n Jahren stirbt. Der Ausdruck
dafür ist:

n t

l — f
(1 Oc) q (x) / ,u (x -f-1) e { dt.

Der Integrand dieser Formel ,«(x -f-1) e J^x+j)'h

ist nichts anderes als der absolute Wert des Differentialquotienten

nach t genommen vom Ausdrucke
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t
— fu(X-\-r)dT

tp(x) e {

Es ist nämlich:
t t

d [u(X-\-T)dt —

— e { — g(x-{-f)e {

Somit wird:

r
1 r *

r — [,u(x+T)dT - / — f
q(cc)— I tu(x-{-t)e I clt=— I d(e -u

0

t n
I

e o

— fu(X-^-T)dr t n* ff.t{X-\-x)dT
1 -=1 — e O

t— 0

was die bekannte Relation

(11) „2(®) 1—„M®)
ergibt.

§ 2.

In unsern weitern Betrachtungen werden wir als

fundamentale biometrische Funktion die
Sterblichkeitsintensität annehmen, und die andern als„ von ihr
abhängig, ansehen.

Die Kurve der Storblichkeitsintensität (als Funktion

des Alters betrachtet) verläuft im allgemeinen wie
folgt: Sie nimmt bis zu einem gewissen Alter, das wir
e. nennen wollen, ab, um dann beständig zuzunehmen;
so dass u(e) das einzige Extremuin (Minimum) ist1).

') Es gibt aber auch Mortalitätstafeln, deren Sterblichkeitsintensität

mehrere Extrema aufweisen, immer aber eine ungerade
Anzahl. So haben z. B. die ausgeglichenen Tafeln A. F., B. F.,
M. & W. und andere je drei Extrema: zwei Minima und ein Maximum.

Selbstverständlich können unausgeglichene Mortalitätstafeln
mehrere Extrema aufweisen.
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Zur Darstellung des Sterblichkeitsverlaufes während
der ganzen Lebensdauer durch eine einzige analytische
Punktion des Alters kann man sich der Lazarusschen
Formel bedienen1). JNach dieser wurde von Laudi und
Lazarus die Mortalitätstafel L. L. der k. k. priy. Assi-
curazioni Generali in Triost ausgeglichen auf Grund
der Beobachtungen der 17 englischen Gesellschaften.

Die Lazarussche Formel lautet für die Absterbeordnung

wie folgt:

(12a) l(x) k sx g° f'1

• wo alle 6 Konstanten Je, s, g, c, f und h positiv sein

müssen. Diese Funktion kann man in der Form

Ii-\-Sx+GcX+FhX
(12b) l(x) — e

schreiben, wo K= Logk, S Logs, G Log// und

F — Log/' bedeutet. Die Storhlichkeitsintensität lautet
sodann

(13)
1

_
<Wß_ _S_QCcz_FRhxl (X) tlx

wo C Logc und H Log/? ist.

Setzt man in der Lazarusschen Formel

/ 1 also F 0

so erhält man die Makehamsclie Funktion:

l (x) k sx gc und g (x)= — S — G C cx

Das Glied —FIIhx im Ausdrucke (13) soll das

Absterben im Kindesalter charakterisieren.
Die Lazarussche Formel ist, wie die Makehamsche

(deren Yerallgemoinerung sie darstellt), ein Spezialfall

') Vgl. Wilhelm Lazarus: „Über Mortalitätsverhältnisse und
ihre Ursachen.'1 Hamburg 1867, auch abgedruckt im I. I. A.
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tier allgemeinen Quiquetschen Funktion1); sie stellt
ein „Überlebensgesetz" zweiter Ordnung dar, während
die Makehamsche ein „Gesetz" erster Ordnung
darstellt. Ein Spezialfall der Lazarusschen Formel ist für
s - -1 die Funktion

7 / \ 7 CX j>hXl(x)=-kff f
die schon Gauss (Werke Bd. 8, Seite 155) zur
Ausgleichung „der Erfahrungen über die Tontinen"
gebraucht hat. Sie ist aber nicht ein Spezialfall der

Makehanischen2).
Oer Wort der Sterblichkeitsintensität ist bei der

Annahme der Lazarusschen Formel abhängig von den

Parametern c, g, s, f und Ii.
Mit zunehmenden Parametern g, s und h nimmt

der Wort der Funktion fi(x) ab; er nimmt dagegen zu
mit wachsendem c und /', was leicht durch Differentiation

nachzuweisen ist8).
Man kann sich den Lazarusschen Ausdruck für die

Sterblichkeitsintensität, als aus drei Summanden
bestehend, denken: Einer positiven Konstanten A — S
und zwei positiven Exponentialfunktionen:

l) Vgl. (juiquet, Representation algebrique de tables de sur-
vie. Bulletin de l'Institut des Actuaires Frangais, Tome IV.

z) Vgl. die Behauptung von Bolilnaann in der Enzyklopädie
der mathematischen Wissenschaften, Bd. 1, S. 870, Anm. 47, und
die Widerlegung bei Lcewy in der Zeitschrift, für die gesamte
Versicherungswissenschaft, 6. Bd. (1906), S. 517.

3) Der freundlichen brieflichen Mitteilung des Herrn X. R.
Jörgensen-Kopenhagen verdanke ich die Bemerkung, dass es eine
unbeweisbare Erfahrungstatsache sei, dass eine grosse Sterblichkeit
in den mittlem und .jungen Altersklassen auf einen hohen Wert von
A — — S deutet und die Konstante c nur Bedeutung für grosse
Werte von x bekommt. In diesem Sinne ist auch der Passus auf
Seite 71 des Jörgensenschen Werkes „Grundzüge einer Theorie der
Lebensversicherung" (Jena 1913) zu verstehen.
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f\(x) — —FHhx — MJix und f^x) — —Q C cx-~Ncx

Die positive Konstante A — — 51 soil eine allen Altersjahren

gemeinsame und gleich stark wirkende Ursache
des Todes zum Ausdruck bringen. Die Punktion

f {pS) M.hx soll, wie gesagt, die Sterblichkeit im
Kindesalter zum Ausdruck bringen; ihr Wert wird also

mit wachsendem x abnehmen, d. h. der Differential-
quotient nach x genommen, wird negativ.

d f (x)

dx

Es rnuss also _F>0 sein, und hieraus f e1 ~^> 1.

DaP>0 und die Punktion fi(x) =— FHhx positiv
ist, so muss H negativ sein, d. h. A eJ/< 1. Die
zweite Punktion f2(x) — GrCcx soll die Sterblichkeit
des Erwachsenen darstellen; ihr Wert muss also mit
steigendem Alter zunehmen, d. h. ihr Differentialquotient
nach x genommen, wird positiv:

elf (x)
dx

: — GC'c >0

also O < 0 und daher g e <A- Da f^(x) — GCcx

positiv ist, so muss C positiv und c=ec>-l sein.
Somit haben die Konstanten der Lazarusschen Pormel
und ihre natürlichen Logarithmen folgende Grenzen:

0 < s < 1 S < 0

0<^<1 6? < 0

c > 1 C > 0

/> 1 _F> 0

0 < < 1 HC 0

So hat z. B. die erwähnte Tafel der Assicurazioni
Generali folgende Konstanten:
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,s 0,9929949 S — — 0,0070298

g — 0,9991717 ff — 0,0008287

c 1,0987718 G— + 0,0941930

f 1,2912919 F= + 0,2555867

h 0,4 S= —0,9162907

Die Sterblichkeitsintensität hat den Wert:

tu{x) 0,0070298 + 0,234192 (0,4)® +
+ 0,0000780578 (1,0987718)®

Für die Konstanten /t und /der Funktion fi(x)=—FHhJ'
wählt man solche Werte, dass der Ausdruck f\{x) für
x /> e verschwindend klein wird, im Vergleiche mit dem

Ausdruck f9(x)] sodann kann man die Funktion f\{x)
für x^> s vernachlässigen. So ist z. B. bei den obigen
Konstanten:

/( (10) 0,000024568 • f2 (10) 0,00020021 •

fx (15) 0,0000003466 • f2 (15) 0,00032065 • -

fx (20) 0,0000000035493 • f2 (20) 0,00051353 -

usw.

Geometrisch kann man sich den Verlauf der Lazarus-
schen Formel für die Sterblichkeitsintensität wie folgt
vorstellen. Es seien zwei Exponentialkurven gegeben:

f1(x) Mh* und f2(x) Ncx,
wo M=—FH> 0 und iV= —GC>0.

Da h </ 1 ist, so fällt die Kurve fx(x) stets und ist
der positiven x-Achse asymptotisch. ft(x) Ncx

dagegen ist, weil c > 1 eine steigende Kurve und der

negativen x-Achse asymptotisch.
Der Wert der Sterblichkeitsintensität wird erhalten,

wenn man zu der Summe fx{x) + f2{x) noch die posi-
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tive Konstante — S A addiert. Die zwei Kurven

/' und f schneiden sich in einem Punkte, dessen

Abszisse f die Gleichung

Da h O 1 und c > 1 ist, so wird die Differenz

logc— log h positiv; wird dabei log.M>logA sein,
also M Z> N d. h. (— Cr) C <C (— H) F, so wird die

Abszisse f des Schnittpunkes positiv. In der Tafel der
Assicurazioni Generali ist f 7,92 Jahre.

Um das Alter e zu ermitteln, bei dem das Minimum
der Sterblichkeitsintensität vorkommt, differenzieren wir
/((aj) nach x und setzen den so erhaltenen Differentialquotienten

gleich Kuli:

— Q- (f c — FH^ti NCc 4-MH Ii 0
dx x=f

und hieraus

MF — NF

erfüllt. Hieraus ergibt sich

fiY— -\h) N

log M — log N
log c — log h

wo II' — H )> 0 ist.

e wird also:

)' —MH_MH

(15) e
log M — log N-\- log H' — log C

logc — log h

log M— log A log H' — log C
1 r\ n» n Inn» Ii

'
] r\ er n 1 rv r>» Z>logc — logh logc — log h
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Nach. (14) ist der erste Bruch gleich der Abszisse des

Schnittpunktes £ der beiden Kurven f und f.,. Man

kann also setzen:
log H'— log C

log c — log h

Ist die Differenz log#' — log C positiv, also R' > C,
so ist die Abszisse des Alters s, bei welchem das

Minimum der Sterblichkeitsintensität stattfindet, grösser
als die Abszisse des Schnittpunktes der beiden

Exponentialkurven f und fi.
Da in (15) s eine positive Grösse sein muss und

die Differenz log c — log h^> 0 ist, so muss auch der
Ausdruck

log M — log N -)- log H' — log C

positiv sein; setzt man hier für M und N die

entsprechenden Werte, so muss

log A -f- 2 log AT — 2 log C — log G'

positiv sein, also

-A (J~
—;— > 1 oder 7^7 > —-
C2G' G H-

wo G' —- G^> 0 ist.

Diese Bedingung muss bestehen, wenn die Lazarussohe
Formel während der ganzen Lebensdauer gültig sein soll.

In der genannten Tafel der Assicurazioni
Generali ist

e 10,17 Jahre

dx

Da der Wert des zweiten Differentialquotienten

— GCd cx — FH3 hx — NC~ cx 4- MH2 h*
d nn'6 er T]'6
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für jedes x positiv ist, so ist die Kurve ,u(x) zur x-
Achse stets -fewifar. koviihs^<

Ist die Absterbeordnung l(x) nicht analytisch
gegeben, so kann man die Sterblichkeitsintensität aus der

Definitionsglcichung
1 dl(x)fi(x)

l(x) dx

mittels numerischer Differentiation nur approximativ
berechnen.

Aus den bekannten Interpolationsformeln von Newton,

Bessel und Stirling leitet manJ) folgende Formeln
für die numerische Differentiation ab:

"•-^=(+2-.i)4<±i'2>4(-+I'3)+

+ j(±2,4)±5( + |,5) + ..-.

+ 12
(2 '4) "120(2 '°) + "

(S) k!Vfe) (o>1)_J(0,3) + ^(0,ö)_....

Yernachlässigt man in den obigen Formeln die
Differenzen fünfter und höherer Ordnung, und drückt

') "Vgl. z. B. H. Bruns, Grundlinien des wissenschaftlichen
Rechnens (Leipzig 1903). Die dort gebrauchte Gauss-Enckesche.
Bezeichnung der Differenzen wurde von Prof. Dr. Mauderli-Bern
in obiger einer Erklärung wohl nicht erforderlichen Weise
vereinfacht.
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die Differenzen rekkursiv durch solche niedrigerer
Ordnung und endlich durch die Funktionswerte selbst

aus, so erhält man für die Sterblichkeitsintensität
folgende Kaherungsformeln:

<B> m=~mz){lix+s>~
H{x+2) + 2ßl(x+l)-10l(x)—lll(x-l) + l(x—2)<A

W M*0 • | 3 Ks + 4) - 16 l(x + 3)

-f 36 l(x-f-2) — 48 l(x-f 1) + 25 l(x)J

(S) /Ks) Y27^^{8[Ks—1) —/(«+!)]—

— \l{x— 2) — Z(s-(- 2)]j

Beachtet man die vernachlässigten Glieder, so bemerkt

man, dass die Koeffizienten der Differenzen fünfter
Ordnung hei der Besseischen Formel am kleinsten,
und bei der Newtonschen am grössten sind. Somit
ist die Berechnung nach der Formel (B) die genaueste,
nach der (S) dagegen die bequemste1); die Kewtonsche
findet ihre Anwendung am Anfang, und entsprechend
umgeformt, am Ende der Tafel. Braktisch geben
aber alle 3 Formeln im allgemeinen dieselben Werte;
für eine Parabel vierter oder niedrigerer Ordnung
stimmen sie auch genau überein.

') Vgl. die Ableitung der Formel (S) fur eine C4 bei Dr. Bohren.
Ztschr. fur Schweiz. Statistik (1903) und im Text-Book.



— 62

In der Tafel L. L. geben die Formeln B, N und S

für ,u(20) entsprechend folgende Werte:

(B) ,u(20) 0.007542

(N) ,«(20) 0.007544

(S) /t(20) 0 007543

Der Wert /<(20) berechnet nach der Formel

g{x) 0.0070298 -f (0.234192) (0.4)* +
+ 0.0000780578 (1.0987718)'"

ergibt den Wert

,u{20) 0.007543

Die approximativ berechneten Werte stimmen also in
der fünften Dezimalstelle mit dem exakten Werte überein;

dies ist aber in diesem Falle eine vollständig
genügende Annäherung.

§ 3.

Bei Annahme einer analytischen Funktion ist die

Uberlebensordnung l(x) einer geschlossenen Gemeinschaft

eine monoton abnehmende Funktion des Alters
x. Die Grösse — dl(x) stellt die Zahl der Gestorbenen
im Zeitintervalle dx dar. Nimmt man l(x) als differen-
tierbare Funktion an, so wird

ChOO

eiue bestimmte positive Grösse darstellen; sie gibt die
Zahl der Sterbefälle im Zeitpunkte x an, bezogen auf
die Zeiteinheit. Wir wollen diese Funktion als die
absolute Häufigkeit der Todesfälle bezeichnen.
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Diese biometrische Funktion steht in sehr nahem

Zusammenhang mit der Laplaceschen Funktion cp(x).
Es ist nämlich

T(x) - -1(0) cp(x)

wo 1(0) die liadix der Üborlebensordnung ist, d. h.

die Anzahl der Neugeborenen angibt.

Man kann deshalb auch die Laplacesche Funktion
als relative Häufigkeit der Todesfälle bezeichnen.

Die Funktion T(x) ist bei Annahme der Moivroschen

Hypothese des gleichförmigen Absterbens konstant. Iii
diesem Falle besteht für jedes x die Beziehung

cfm =0
&x

Bei Annahme einer andern Formel für die Überlebensordnimg

wird die Zahl der Sterbenden und somit auch
die Häufigkeit der Todesfälle nicht konstant; sie wird
vielmehr in gewissen Abschnitten der Lebensdauer
zunehmen, in andern abnehmen. Zunehmen wird sie, wenn

—
^

positiv ist,also < 0; abnehmen wird
dx~ dx

d2l(x) ^ Asie, wenn —0 ist.
dx

Die Extroma der Häufigkeit der Todesfälle finden
in denjenigen Altersjahren statt, welche die Gleichung

im.=o
dx2
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erfüllen. Ein Maximum besteht dort, wo

— dt l (x)

dx°

und ein Minimum dort, wo

— et l (x)
dot

'

0 ist,

0 ist.

ist 3 dasjenige Alter, welches den Beziehungen

') und -^-<0
dz" dz"

genügt, so wird z — x die wahrscheinlichste Lebensdauer

des tc-jährigen genannt. Nach Ablauf von z — x
Jahren ist die Zahl der Sterbefälle am grössten. z ist
die wahrscheinlichste Lebensdauer des Neugeborenen
und wird von Lexis die „normale Lebensdauer" genannt.

Wir wollen für die Wurzeln der Gleichung

d2l(x) _n
dot

einige Anhaltspunkte finden. Zu diesem Zwecke bilden
wir aus der Definitionsgloichung der Intensitätsfunktion

u(x\ — !_ c^if)n) l{x) dx

die Relation

T{x) -^ p(x)l{x)

und differenzieren diese Relation nach x1). Es wird

Wir setzen voraus, dass der Differentialquotient von T(r)
existiert
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dH(x)
__ dT(x) _ _ | cO(x) dfxjx) a

dx1 dx 1 dx dx I

J(x\ a(x\ — dl(X) d'U{X)]'
1 l(x) ' dx dx

Ersetzt man hier —
dl(x)

^

1
durch u(x), so erhält

dx l(x)
man die Beziehung

d? l(x)Die Auflösimg dor Gleichung —~~ 0 führt somit
dx

zur Bestimmung dor Wurzeln der Gleichung

/"17\ - { \ du (od)
<17a) ,« (x) ^~={i
oder

d'ju(x)
(17b) fi\x) dx

Da die linke Seite der Gleichung (17h) für jedes x
positiv ist, so muss für die Wurzeln der Gleichung
auch die rechte Seite positiv sein ; d. h. die Wurzeln
der Gleichung

fi\x)
61 dz

und somit auch der Gleichung

üiM-n
do?

liegen in demjenigen Abschnitte der Lehensdauer, wo
d

- positiv ist, also dort, wo die Sterblichkeits-

intensität mit steigendem Alter zunimmt.
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Geometrisch bedeuten die Wurzeln der Gleichung

^=0 die Wendepunkte in der Kurve der t'ber-
dx

lebensordnung. Der erste, der die Absterbeorduung
oder die Zahl der Lebenden geometrisch interpretierte,
war, laut Czuber, d'Alcmbert]). Er bemerkte auch2),
das« diese Kurve weder ständig konvex, noch konkav
zur x-Achse verläuft, d. h. class sie Wendepunkte
besitzt.

d Li (oc)
Im Kindesalter, wo negativ ist, folgt aus

der Gleichung

d2 l(x)
class positiv ist; die Kurve der Lobenden

dx
wendet also in diesem Zeitabschnitte der x-Achso ihre
konvexe Seite zu. Im Greiscnalter verläuft die Kurve
der Lebenden asymptotisch zur x-Achse, ist also wieder
konvex. Die Zahl ihrer Wendepunkte muss also gerade
sein. Darum besitzt auch die Kurve der Häufigkeit

der Sterbefälle T(x) — ejn0 gerade Anzahl
dx

von Extremalpunkten, wobei keiner in das Kindesalter
(bis e) zu liegen kommt.

Eür die wahrscheinlichste Lebensdauer muss, wie
erwähnt,

äS l(x)
Q

dx2

b Opusc. math. Tome II „Theorie mathematique de Pinocu-
lation".

2) Opusc. math. Tome IV „Sur les caleuls relatifs ä Pino-
cnlation".
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sein, d. h. die Kurve muss hier von der Konkavität
indie Konvexität übergehen. Dieser Wendepunkt der
Kurve der Lebenden kann also der Reihenfolge nach

nicht der erste sein. Vielmehr nmss ihm ein Wendepunkt

vorangehen, wo die Kurve von der Konvexität
in die Konkavität übergeht. Wir können hieraus

schliessen, dass die Kurve der Storbenshäufigkeit bei
Vorhandensein eines Maximums vorerst auch ein

Minimum besitzen muss. Auch die Umkehrung dieses

Satzes trifft zu, denn die Kurve der Sterbenden steigt
nach einem Minimum, und da sie ins Unendliche nicht
steigen kann — sie wird vielmehr zu Kuli —, so muss
auf das Minimum ein Maximum folgen.

Um die Beziehung zwischen der Anzahl der
Gestorbenen in einem endlichen Intervalle A, x und der

Sterbenshäufigkeit zu ermitteln, entwickeln wir die

Funktion l{x-\- /\x) in eine Taylorsche Reihe. Iis
wird:

A C 7/ N I dl(x) (Axf d?l(x)i(*+A*) i(.o+T, Tsr+nrU- A+
+-(A^)3 l(x)

^ • da?

oder

*(* + A x) !(*) +

3 '• da?

wo das Restgliod in der Lagrangeschen Form
dargestellt ist. Bei unsern weitem Untersuchungen werden
wir in der letzten Relation das Restgliod vernachlässigen;

das ist erlaubt, da, wie man sich durch ein

Differenzschema, oder bei analytisch gegebener Funktion
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i(x) direkt überzeugen kann, sind die dritten Differenzen
und mithin die dritten Differentialquotienten im
Vergleiche mit den ersten und zweiton von verschwindend
kleiner Grösse.

Die obige Relation wird also approximativ lauten:

(18) %+A»>=«»>+$ • ^+ • &
während ihre exakte Form ist:

l (x -|— / \ x) — l (x) —\-

,Av

/\x dl(x) (A,x)2 d2 l(x-\- d)

1! dx 2F" ax-

(0 < «5 < 1)

Setzt man in (18) statt des Differentialquotienten
,ll(x)
dx ^ ®^erbenshäufigkeit 80 wird

A x T{x) l(x) — l(x + A x) -f * dx
oder

l(x)—l(x-\-/\x) /\x d2l(x)
1\X): Ax 2 dx 2

Die Sterbenshäufigkeit stimmt also in ihren Ex-
tremalpunkten, d. h. in den Wendepunkten der Öber-

lebensordnung, mit dem /\x-ten Teil der Sterbefalle
überein, die im Intervalle Ax stattfinden1).

Ist in einem Punkte x der zweite Differential-
d~ l (x\

quotient negativ, d. h. die Kurve der Überlebens-
dx

r) Genauer: in Punkten, die den Extremalpunkten bzw.
Wendepunkten vorangehen; die Differenz ist aber praktisch zu
vernachlässigen.
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Ordnung zur Altersachso konkav und die Sterbens-

liäufigkoit eine zunehmende Funktion dos Argumentes,
so ist die Sterbenshäufigkeit kleiner als die

entsprechende Anzahl der Sterbefälle. Ist dagegen in
einem Punkte x der zweite Differentialquotient
tl" ^ *
—positiv, d. h. die Kurve der Uberlebensordiiung
dx~

zur Altersachse konvex und die Sterbenshäufigkeit
eine abnehmende Funktion des Argumentes, so ist
letztere grösser als die entsprechende Anzahl der
Sterbefälle.

Um bei Annahme der Lazarusschen Formel die

Wendepunkte der Kurve der Lebenden und zugleich
die Extrema der Kurve der Sterbenden zu finden,
setzen wir in der Gleichung

die "Werte

und
n{p)=A-\-Mli* + Ncr

dj*(x) —. M J£Jix ]y (J Qx
dx

Wir erhalten zur Autlösung die Gleichung

(19) A* + M2 h2x + W2 c-* + 2 M A If+ 2 NA c* +
+ 2 MNlf f— MHh* — XCc*= 0

Diese in x transzendente Gleichung ist aber nicht
direkt auflösbar. Um dennoch die Wendepunkte der
Kurve und die Extremalpunkte der Kurve T(x)
wenigstens annähernd zu finden, verfahren wir wie

folgt: Die "Wurzeln der Gleichung ,a2(x) —^liegen,
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wie gezeigt, nicht im Kindesaltor. Wir finden sie

vielmehr dort, wo man die Ausdrücke mit dorn Faktor
hx vernachlässigen kann.

Die aufzulösende transzendente Gleichung lautet
in diesem Falle

(19a) N2 c2x — N(C — 2 Ä) cx -f Ä2 =- 0

Sie entspricht also dem Makehamschen Gesetz.

Diese in cx quadratische Gleichung hat zwei Wurzeln

; wie man aus der Form der Gleichung ersieht,

werden, falls sie reell sind, beide positiv oder beide

negativ.

Nur im Falle, dass beide Ausdrücke für c' positiv
und grösser als 1 sind, erhalten wir zwei positive;
Wurzeln x der transzendenten Gleichung (19a). Yon
diesen entspricht die kleinere x einem Minimum, und
die grössere x.y einem Maximum in der Kurve der
Hterbenshäufigkeit.

Die in der Gleichung (19) vernachlässigten Glieder

M'2 Ji2x + 2 MA hx + 2 MNh* cx — ALB hx

sind sämtlich positiv; wenn man nun die auf obige
Art näherungsweise berechneten Wurzeln x und x9
in den Ausdruck für den zweiten Differentialquotienton

einsetzt, so wird die rechte Seite und somit auch der
B l(x\

zweite Differentialquotient —y positiv. Die berechneten
dx"

Wurzeln entsprechen somit nicht den Wendepunkten,
sondern Punkten, die sich in deren Nähe befinden.
Es sind Punkte, die in konvexen Abschnitten der
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Kurve der Lebenden liegen, d. Ii. die Wurzel wird
zu klein und die Wurzel x2 zu gross.

Die Differenzen zwischen den wahren Wurzeln
der Gleichung

dfl (3)
!l W dx —

und den auf obige Weise approximativ berechneten
Wurzeln werden desto kleiner, je grösser die berechneten
Wurzeln sind.

Die Auflösung der Gleichung (19) führt zum
Ausdrucke

/ore C-2A±\/C(C-4A)
MO C -
Diese beiden Ausdrücke für cx werden reell bei

C>4A d. h. wenn

Log c (> Log W4 oder c ~Z> W4 also es4 (> 1 ist.

In diesem Kalle werden aber beide xlusdrücke für e

positiv, denn C — 2 A ist positiv und stets grösser als

AjC" — ±AC \'C{Ü— 4Ä);
sollen die beiden Wurzeln x und x,2 positiv sein, so

muss der Ausdruck

C — 2 A — )/C(C— 4A)

grösser als 2 N sein. Dann wird auch

C-2A-\-yC(C — ±A)>2N.
Aus (20) folgen für x die Werte:

<21) ,x
2 A±)'C(C-4 A)]- log 2 N

logc
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Diese Wurzeln sind abhängig von den Parametern der
Makehamschen Überlebensordnung. Um die Abhängigkeit

der Wurzeln (21) von den Parametern c, g und s

zu untersuchen, bilden wir die Differentialquotienten
dx dx dx
Tic' lg

lmä Ii
Es ist:

dx1 i
C— 2 A

)/C{C—4A)
C—2A — \/G{C—AÄ)

C — Ci

JJ
cC\ |/C(C — AA) C -1{

x'i <°
und

dx
2

1
1 +

0—2 A

fC(C— 4 A)
C — 2A+)JC{C — AA) C_

C—xs C[

'
cC\yo{C—AA) G 2\

Die Differenz

1 1
ist

C ^1
C\'C(C— AA) G

Djl1 c) f

J_ J J- WA 3^ 15 (**VV~ C i 2 D ' 8 \C / ' 16 l C /

{^o~) ' kann man vernachlässigen, so dass



dx2 _ i j2Ä
sr-^e"'-*<(wM

dor Ausdruck —wird aber im allgemeinen kleiner
2A
AT

dx2
als x„ und somit auch —r— <T 0 d. h. die Abszissen, bei

2 de

welchen die Überlebensordnung bei Annahme der Makc-
hamschen Funktion Wendepunkte besitzt, nehmen mit
wachsendem Parameter c ab.

Anderseits ist:
dx 1

dg g Q' 0

Da dieser Ausdruck positiv ist, so nehmen beide Wurzeln

xt und x2 mit wachsendem g zu.

Ferner ist:

200 —
2/-W '

6 c-2A±m:-iA) >c\c,2-4 + |/gfd--4
also

(«) ti ^ I,- c i

& sü(ü- 2 A -|/C(C-4 A) | |/C(C— 4 A)\

und

(b> 'fa. 1, + ^ l
ds sC{C-2A+\iC(C-iÄ)\ )'C{C-±A)\

Man hat

somit
J/C(C— 4A)<<7

|/C(C— 4A)
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(lio Klamm ergrösse

C

\ |/(7(C-4 4)!

hei (a) wircl also negativ. Da aber S <( 0 ist, und alle
dx1

andern Kaktoren positiv sind, so wird —^— W 0 d. h.
cts

(las Alter x bei welchem das Minimum der
Sterbenshäufigkeit stattfindet, nimmt mit wachsendem s zu.

Die Klammergrösse

ji+_==£=r
1 |/C(C-4M)|

dx2
bei (b) ist positiv, ~—yy

also <( ü, d. h. die wahrscheinlichste

Lebensdauer nimmt mit wachsendem s ab.

Bei den angegebenen Konstanten der Mortalitätstafel

der Assicurazioni Generali in Triest ist:

x% 22,026 und x% — 73,533.

Der Wert der Sterblichkoitsintonsität in den Dunk-
ten x und x0 wird erhalten, wenn man die Gleichung

ju(x) — A -f- Ncx

für c nach (20) die Werte

X_C— 2Ä±]/C(C — 4M)
c ~ 2 N

einsetzt. Man erhält

c \ a i
C

a
1 ,/rün TUR G+ VC(C—4Ä)/i(x)=A + - —Ä±YV C{-°~ 4 =—^—

2 "•

Diese Werte sind vom Parameter y unabhängig.
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Im Falle, dass die Wendepunkte der Uberlebensordnung

in einem Gebiete liegen, wo die Makehamsche

Funktion niobt angewendet werden kann, oder bei

Mortalitätstafeln, die nicht nach der Makehamschen

Funktion ausgeglichen sind, kann mau die Wurzeln
der Gleichung

od« „»(*)_ M?l=0
dx dx

mittels numerischer Differentiation und Interpolation
bestimmen. So findet man in der Mortalitätstafel der
schweizerischen Bevölkerung für die Periode 1876/77
bis 1880/81 die Wendepunkte der l(x) in der Nähe des

Alters won 14 und 71 Jahren. Bei der mechanischen

Ausgleichung dieser Tafel nach der Methode von Wool-
house hat Dr. G. Scheertlin gefunden1), dass 1(1) < 1(8)
wurde und hat dies dadurch erklärt, dass ,,in der Nähe

jenes Alters die Kurve der Lebendon einen Wendepunkt

aufweist", was, wie auf Seite 66 gezeigt wurde,
nicht möglich ist, da die Sterblichkeit nach dieser
Tafel bis zum Alter von 12—13 Jahren abnimmt2).

§ 4.

In analoger Weise, wie die Sterblichkeitsintensität
aus der Uberlebensordnung /u(x) abgeleitet wird, kann

b Zeitschrift für Schweizerische Statistik 1887, pag. 330 ff.
2) Auf meine Anfrage hat Herr Direktor Dr. Schmrtlin die

Freundlichkeit gehabt, mir folgendes zu antworten: „...ich stelle
gerne fest, dass ich mit Ihrer Auffassung einig gehe. Als ich den
von Ihnen erwähnten Satz schrieb, wollte ich nichts anderes
ausdrücken, als dass der Wendepunkt in der Kurve der l(x) bei der
mechanischen Ausgleichung die erwähnte Wirkung habe. Damals
muss ich angenommen haben, dieser Wendepunkt liege dem Z(8)
näher als es tatsächlich der Fall ist. Er liegt tatsächlich aber weiter
oben, vielleicht bei l (14) oder 1 (15). .".

8
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man auch eine weitere Punktion aus ,u(x) ableiten1);
man nennt sie die Intensitätsfunktion zweiter Ordnung.
Sie ist definiert durch die Gleichung

„
1

' 3 dx lu(x)

Allgemein kann man die Intensitätsfunktion )/,8r Ord-

uung definieren durch die Gleichung

dp (x) l
dx

wo pn_l (&) die Intensitätsfunktion n— 1ter Ordnung
darstellt.

Durch Einführung der Intensitätsfunktionen
höherer Ordnung nimmt die frühere Bedingung für die

Wendepunkte der Kurve der Absterbeordnung, und für
die Extrema der Sterbenshäufigkeit, folgende Form an :

,ux(x) + 0.

Bei Annahme der Lazarusschen Formel lauten
die Intensitätsfunktionen wie folgt:

^{x) A + Mhx + Ncx

-MRhx — NC cx
,uJx)

A + Mhx + Ncx

,u3(x)

- MJfA hx-N C2Ä cx - MIRNif cx-MN C2 cx hx + 2 MX C Hcx

{A -f- M hx -f Nc") (M Hhx -\- N C cx)

') Prof. Dr. Moser: Die Intensität der Sterblichkeit und die
Intensitätsfunktion, Bern 1906.
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Besonders bemerkenswert werden die Intensitätsfunktionen

höherer Ordnung unter Annahme der Make-
hamschen Punktion. Es ist dann:

X
(x) A -j- Nc'

NCcx AC
***{X)~

A + N cx
~~

A + Ncx'

AC
A + Ncx

50*0 — +iw3(a:)

,"ß(aO - - + A»4(®) — ,«2 0*0

usf.1).

Allgemein wird

(a;)— — fj, (x) C — 0— für n > 1^ ; ;
A-f-iVc /*(»)

und
AC AC

A-f-IVe*

Hieraus folgt:

,^n{x) — C-

Die frühere Bedingung für den Wendepunkt der
Überlebensordnung iu(x) — /u2(x) wird (unter Annahme
der Makehamschen Punktion) zu

!,i(x) ^n{x) n > 1

Aus den Ausdrücken für die Intensitätsfunktionen
verschiedener Ordnungen ersieht man, dass sie alle

,^n-^X) — T i — T77ZÄ für » > 1

1) Bei Annahme der Gompertzschen Funktionen wird
Lhn(x~) — ^(«0 G und F2«-iÜ) 0
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monoton sind, und zwar ist (x) abnehmend, während
die Intensitätsfunktionen aller andern Ordnungen (auch
der ersten) zunehmend sind.

Durchläuft die Variable x alle reellen Werte von
— oo bis -f- oo, so nehmen die Intensitätsfunktionen
ungerader Ordnung (mit Ausnahme der ersten) die

negativen Werte von — C bis Null an:

(»i > 1);

die Intensitätsfunktionen gerader Ordnung (die zweite

ausgeschlossen) nehmen dabei die positiven Werte von
Null bis -|- C an.

0<^,u2„(a:)<C. («>1);
Die Intensitätsfunktion erster Ordnung

(Sterblichkeitsintensität) wächst bei zunehmendem x ins Unendliche;

diejenige zweiter Ordnung nimmt die negativen
Werte von Null bis — C an. Zusammenfassend stellen
wir folgendes fest: Bei Annahme der Makehamsehen
Funktion _

l(x) k sxgCJ

liegen die Werte ihrer Intensitätsfunktionen aller
Ordnungen, mit Ausnahme der ersten, zwischen den engen
Grenzen — C und -J- C *).

Die Kurven ß2n_1(cc) und ,u-2n(x) verlaufen zwischen
zwei parallelen Linien, denen sie asymptotisch sind:
i"s„—i(.x) liegt zwischen den Geraden y C und y 0,

y2n(%) zwischen den Geraden y 0 und y--C, beide
Kurven besitzen also je einen Wendepunkt. Wir wollen
zunächst die Lage dieses Punktes für die Kurve
.'On—i ix) bestimmen. Zu diesem Zwecke bilden wir den
zweiten Differentialquotienten nach x genommen. Es ist

') Vergleiche Figur.
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(x) _NC:iA cx (A — Nc*)
dx2

~~
(A + Wc*)3

Für den Wendepunkt muss also Ncx= A sein. Hieraus

folgt:
x A

° IT
oder

x — '°g A — Jog &
logo

Der Wert y2u_l (x) wird in diesem Punkte zu

AG C
>U2n-l(X)- A + A'~ 2

Wegen der Beziehung
C

/S»(®) — At,(®) ~2 + AW-i (®)

v
haben die Abszissen der Wendepunkte der Kurven

y — y,2(x) und y y, (x) ebenfalls den Wert

log A — log N
logc

Die entsprechenden Ordinanten werden

AC C
'''<a;) T+X-C -Tund

r r 0

Da in den Wendepunkten die Werte y2(x) und

übereinstimmen, so durchschneiden sich diese beiden
Kurven in ihren Wendepunkten.

Bekanntlich hat der Parameter c in allen Mortalitätstafeln

annähernd denselben Wert, daher unterscheiden
sich die Intensitätsfunktionen höherer Ordnung in den



— 80

Wendepunkten bei verschiedenen Mortalitätstafein nicht
.wesentlich voneinander.

Die Sterblichkeitsintensität selbst hat in diesem

Punkte den Wert
A

f,i(pc) A -\- N cx — A N 2i
ist also nur vom Parameter s abhängig.

Die Abszissen der Wendepunkte der Üborlebeiis-

ordnung sind (bei Annahme der Makehamschon Formel)

die Wurzeln der Gleichung

Diese Gleichung lautet:

t\n ÄC
(A (x) =C ^

Man kann hieraus direkt die Werte der Storblich-
keitsintensität in den Wendepunkten der £(;»)-Kurvo
bestimmen.

Es ist
,u2(x) — CX®) + A (7 0

und hieraus, wie früher (Seite 74) gefunden,

W 2

Sollen diese Werte reell sein, so muss, wie oben

ausgeführt, C>4A sein. Dann wird der eine Wert
0 ckleiner als — und der andere grösser als — sein,
u

wie es die Figur zeigt.
Bei der Annahme der Konstanten der L. L.-Tafel

wird in den Wendepunkten der ?(.«)-Kurve

jw (x) — 0,00763 für xl 22,026
und

,« (x) — 0,0865 für x2 — 73,538
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dri2 n

während die Abszisse der Wendepunkte der inten-
sitätsfunktionen höherer Ordnung den Wert x- 47,8

Q
hat und dessen Ordinate — 0,0470965 ist.

Li

§ 5.

Die Wahrscheinlichkeit, dass ein »-jähriger nach

n Jahren noch lebt, ausgedrückt durch die

Sterblichkeitsintensität, ist nach (8b)
n

— ff.i(X-^-r)dT

o

Dieser Wert ist, ausser vom Verlaufe der Sterblichkeit,

auch noch vom Alter x des Individuums und der
Dauer u abhängig.

Da der erste Differentialquotient nach n genommen
n

$ — fLt{x+T)dr

^nl}(x)=~ — e o ,u(x-t-n)

negativ ist, so nimmt diese Wahrscheinlichkeit mit
steigendem n ab, was aus dem Begriffe der
Überlebenswahrscheinlichkeit von selbst folgt.

Wir wollen nun die Kurve, welche die
Wahrscheinlichkeit np(x) als Punktion von n geometrisch
darstellt, auf ihre Konvexität und Konkavität hin
untersuchen. Zu diesem Zwecke bilden wir den zweiten

Differentialquotienten des Ausdruckes (8b) nach n

genommen. Es ist:
n n

„ (X) _ jfMH-») + ») eA"l*+'""l
:

n

np{x)f.i(x+n) |fi(x-j- n) -f-(x+ «)}
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Somit hat die Kurve, welche die Wahrscheinlichkeit

np(x) als Punktion von n darstellt, dieselben
Eigenschaften in bezug auf Konvexität und Konkavität wie
die Uberlebensordnung; dies folgt übrigens auch aus

der Definition:

(2t>) .*<*) -Ajgp-
Hat die Absterbeordnung zwei Wendepunkte x und

x wobei x2 > xs ist, so besitzt auch die
Wahrscheinlichkeitskurve zwei Wendepunkte: für die Dauer

nx x{ — x
und

U2 — X-2 X

wo x das gegebene Alter des Individuums ist.
Ist x<C_x so gibt es zwei positive n, bei

welchen die Kurve der n'p(x) Wendepunkte besitzt; ist

x <k x <k x so gibt es nur ein solches w; ist endlich

x^>x2, so findet man keine Wendepunkte; in diesem

Palle vorläuft die Kurve konvex zur w-Achsc.
Um die Abhängigkeit der Wahrscheinlichkeit jp(x)

vom Alter x des Individuums zu untersuchen, bilden

wir den Differentialquotienten j~np(x).
(IOC

Es ist

*0

Da aber
d,a(x-\- t) d{i(x-j-r) ^

dx dx
1S '

so wird

n n

dr=fd,«(®+t) =,«(x+«)—,«(®)
o o
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und somit

Yl

d l ffl(x+r^T
j-nP0) p"(») — i«(x + n)) e o

Wäre die Sterblichkeitsintensität in ihrem ganzen Verlaufe

eine monoton wachsende Punktion, so wäre die
Differenz

fi(x) — tu(x -f- n)

stets negativ und somit auch der Differentialquotient

„P(x) negativ, da der Ausdruck

n
— fU(X-\-t)<IT

e o ll'P(x)

positiv ist.

Da aber die Sterblichkeitsintensität nicht im ganzen
Verlaufe eine wachsende Punktion ist, so kann die
Differenz

tu(x) — ,u (x n)

und somit auch der Diffbrentialquotient positiv werden.
Dies trifft zu, wenn im betrachteten Intervalle die
Sterblichkeitsintensität eine abnehmende Punktion ist;
das ist aber dann der Fall, wenn x-\-ri, also auch xy
kleiner als e ist, d. h. kleiner als dasjenige Alter, bei
welchem die Sterblichkeitsintensität ihr Minimum
besitzt. Hat man gegen x<ie und r-f-w>e, so kann
die Differenz ,u {x) — ft {x-\-n) sowohl negativ als auch

positiv sein; ihr Vorzeichen hängt ab von der relativen
Grösse des Alters x und der Dauer n. Geht diese
Differenz von negativen Werten in positive über,
genügt also x der Gleichung

(22) ß(x) — ft (x -j- n) -= 0
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so wird dor Differentialquotient ^ np (x) gleich Null;
somit hat die Überlebenswahrscheinlichkeit für diese

Alter ein Maximum, und mit ihr hat die «-jährige
Sterbenswahrscheinlichkeit nq(x) ein Minimum wegen
der Beziehung
(11) „2(®)= 1 — »y«)
Soll die Beziehung (22) stattfinden können, so muss
die Punktion im Intervalle (cc, x-j-n) eine nicht
monotone sein und das Extremum muss zwischen x und

x -j- u liegen, während das Extremum der Funktionen
p(pc) und nq(x) bei x ist. 1st speziell n= 1, so folgt

hieraus das Resultat, dass die einjährige
Sterbenswahrscheinlichkeit q ihr Extremum bei einem

niedrigeren Alter hat als die Sterbensintensität ,u; die
Differenz kann dabei aber ein Jahr nicht überschreiten.
So ist z. B. in der Tafel L. L. das Minimum für q bei

x 9,71 und für ,u bei e= 10,17.
Die Wurzel x der Gleichung ,u ([x) — /i (x-\- n) — 0

hängt ausser von der Beschaffenheit der Intensitätsfunktion

noch vom Parameter n ab. Um diese Abhängigkeit

zu untersuchen, differenzieren wir die obige

Gleichung nach w, indem wir beachten, dass in diesem

Falle auch x eine Funktion von n ist.
Es ist:

d(i(x) dx dfi(x-\-n) d(x-\-n)
dx dn d(x -f-n) dn

df.i(x) dx d/.i(x-\-n) \dx ff
dx dn d(x-\-n) \dn J

dxidfi(x) d ß (x -{- n) dfi(x-\-n)
dn\ dx d(x-\-n) j d{x-\-n)

hieraus folgt:



dfi(x-\- n)
dx d(x-\-n)
dn dfi(x) dß{x-\-n)

dx d(x~j~n)

Besitzt die Sterblichkeitsintensität nur ein Extremuni
(Minimum) beim Alter e, so ist die Wurzel x der

Gleichung (22) eindeutig bestimmt; für diese Wurzel
müssen dann, wie wir gesehen haben, die Ungleichungen

x < f und x -f- n > e bestehen ; es wird

4ll(-X) -"0 und dtl(x + n)
Q

dx ~~ d(x-\-n)

da die Sterblichkeitsintensität bis zum Alter e abnimmt
und dann zunimmt. Wie man sieht, wird in diesem

Falle der Differentialquotiont («) negatiy, d. h. die

Wurzel x der Gleichung (22) fi (x) — ß (x-\-n) — 0

nimmt mit wachsendem Parameter n ab.

Besitzt aber die Sterblichkeitsintensität mehrere

Extrema, wie es z.B. die Tafeln AF, BF, M& W und
andere aufweisen, so kann die Wurzel x mehrdeutig
sein. In diesem Falle können x und x-j-n sowohl im
absteigenden als auch im aufsteigenden Aste liegen.

Liegt x im absteigenden und x-j-n im aufsteigenden
Aste, so wird wie früher

5<°"
Liegt x im aufsteigenden und x-j-n im absteigenden

Aste, so wird auch hier
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Liegen endlich x und x -f- n beide in aufsteigenden
oder beide in absteigenden Asten, so wird das

Vorzeichen des Differentialquotienten

-f- n)
dx d(x-\-n)
dn d ,u (x) d /x(x-\- n)

dx d(x-\-n)

abhängen von der relativen Grösse der Differentialquotienten

dj.i(x) i dta(x-\-n)
un

d(» + «)

d. h. von der Laschheit der Zunahme, resp. der
Abnahme der Sterblichkeitsintensität in diesen beiden
Punkten.

Unter Annahme der Lazarusschen Formel lautet
die Gleichung ,«(x) ,u(x-\-n) wie folgt:

(ff) A 4- MW -\-Ncx — AMhx+n + Ncx+n

Umgeformt hat man:

MW( 1 — W) Ncx(cn— 1)
und

f e\x_M(l — W)

\h!~N{cn— 1)

log iL-f- log(l — hn)—logiV—log(c"— 1)

log c — log h

Für die einjährige Uberlebenswahrscheinlichkeit («—1)
wird das Alter, bei welchem das Maximum stattfindet,
durch die Gleichung f.i(x) 1) definiert.

Bei Annahme der Lazarusschen Formel wird diese

Wurzel dargestellt durch folgenden Ausdruck:
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log M-\- log(l — h) — log W— log(c— 1)

logc— log//.

]n der Tafel der k. k. priy. Assicurazioni Generali ist,
wie erwähnt, dieses x 9,71, während s 10,17 ist.

Die Gleichung (22)

haben wir nach der Unbekannten x aufgelöst; man
kann sie aber auch als Gleichung mit der Unbekannten
>i und dem Parameter x ansehen. Geometrisch wird
das heissen, man soll zu einem gegebenen Punkte mit
der Abszisse x einen andern Punkt der Kurve der
Sterblichkoitsintensität finden, dessen Ordinate gleich
derjenigen des ersten ist. Die Wurzel n ist jetzt vom
Parameter x abhängig; kehrt man den frühern Aus-

cloC

druck («) für -j- um, so erhält mau
Qjiv

dtu(x) d(i(x-\-n)

Die Abhängigkeit der Wurzel n von x ist dieselbe

wie in der frühern Betrachtung die umgekehrte
Abhängigkeit x von n.

Die Auflösung der Gleichung (ß) nach n ist nur
dann möglich, wenn das gegebene Alter x klein ist;
u wird in diesem Falle gross, und man kann dann die

Glieder mit hn vernachlässigen; die Gleichung lautet
somit:

fi(x) — ;i(x -j- n) 0

dn
dx

dx d(x-\- n)

dfi(x -j- n)
d (x -jL- n)

N cx~l~n— Mhx-\- N cx
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Daraus folgt
1 \M(h\x .1

"=ki?log{ffW + 1[

Wir sahen, class die Kurve der Überlebenswahrscheinlichkeiten

ein Maxiraum besitzt. Darum ist sie in
diesem Punkte zur x-Achse konkav. Treffen wir für
die Uberlebensordnung die Annahme einer analytischen
Punktion, so nähert sich diese Kurve asymptotisch der

»-Achse, sie ist also im Dreisenalter zur x-Achso
konvex.

Daher muss sie nach demjenigen Alter, bei
welchem das Maximum stattfindet, eine ungerade Anzahl
von Wendepunkten besitzen. Will man diese Wendepunkte

analytisch finden, so setzt man den zweiten

Differentialquotienten der Überlebenswahrscheinlichkeit
nach x genommen gleich Kuli und löst die so erhaltene

Gleichung nach x auf.
Es ist i

Die aufzulösende Gleichung lautet also:

<l{.i(x-\-ri) dfx(x) i G

VSPPö 5u {.«w-f.o+ »)|

Bei Annahme der Makehamschen Formel wird sie

NCcx+n- NCcx= (Ncx- Ncx+n)2

Ccx(cn— 1) — Nc2x(cn— l)2

C ~ (cn—l)N
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hieraus folgt

log C — log (cn — 1) — log iV

logc

Diese Wurzel nimmt mit wachsenden n ab.

In der Tafel L. L. ist

für n 1 x 99,91

n 2 x — 89,80
«==3 x 87,21

n= 5 x 80,73
n 10 as 70,73 usw.

Die Wahrscheinlichkeit für einen as-jährigen das

Alter c zu erreichen ist nach (9)

C—X

— fß(x-\-r)dr
c_xp{x)=e

Um die Abhängigkeit dieser Wahrscheinlichkeit vom
Alter x zu untersuchen, differenzieren wir den obigen
Ausdruck nach as; es ist

d

dx

C—X C—X

— fti(x+z)dr fd.u(x-4-t) 7." -j-AsrJi' +

C—X
fu(X-\-T)äT

+ e o Kx+t) e 0
T—c—X

jW(as) e

C—X

|-^(c)+/t(as)+,(/(c)|=

C—X

J!!.(x-\-r)dr

d
Der Ausdruck „ p(x) wird somit für alle xdx c~x

positiv; die Wahrscheinlichkeit eines as-jährigen, das

Alter c zu erreichen, nimmt also zu mit wachsendem

Alter x.
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Aus

C—X

,] — fU(X+r)dr

jxC-,P (x) n{x)e {

folgt durch nochmalige Differentiation nach x
c—X C—X

et da(x) -fa(X+r)dr -fu(x+T)är
— p e o 4- /I F e ö ~

rf» c_x'dx i f w u

C—£

_ f», ^0*01-e° V

.Nimmt die Sterblichkeitsintensität mit wachsendem
et LI (ec\

Alter zu, so wird der Ausdruck ', und somit aitch
et

- — p (x) positiv, d. h. die Kurve, welche die Funk-
clx c x

tion _xp(x) geometrisch darstellt, ist in diesem

Abschnitte zur »-Achse konvex. Sie kann nur dann kon-
d ii (ec\

kav sein, wenn negativ ist und absolut genommen

grösser als ,«(»). Ist — /}(x) so hat c_xp (x)

einen Wendepunkt; dieser liegt im Kindesalter und
ist von c unabhängig.

§ 6-

Wird in der frühern approximativen Relation

l{x) — l(pc-\-Ax)
T(x)

^X
2 dot

Ax gleich 1 gesetzt, und werden beide Seiten dieser

Gleichung durch l(x) dividiert, so erhält man

l(x) — Z(x+1) T{x) 1 d2l(x)
l(x) ~ l(x) Tf(^y

'
dx2
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was die Näherungsgleichung
%

1 ctl(x)
' — " ~%X(3)

' —faT
ergibt.

Die genaue "Beziehung heisst:

fi(x) - q(x) -jjfö- d,x2
0 < ö < 1

welche sich in der Praxis von der obigen approximativen

kaum unterscheidet
Aus den obigen Gleichungen sehen wir, dass das

Vorzeichen der Differenz J) g— q vom Vorzeichen des
(ü21 (x)zweiten Differontialquotionten abhängt. Die

dx
Differenz g— q ist also positiv, wenn die Kurve der

Absterbeordnung zur .«-Achse konvex ist, und sie ist

negativ, wenn die Kurve l(x) zur «-Achse konkav ist.
In den "Wendepunkten der Kurve l{x) oder genauer
in den Punkten, die um nicht Merkliches (jedenfalls
weniger als ein Jahr) sich von jenen unterscheiden,
und zwar kleiner sind, ist

Aber auch umgekehrt, nach dem Vorzeichen der
Differenz g — q kann man über den Verlauf der Kurve
l{x) urteilen. So ist z. B. in der Tafel A. P. (1892)2).

') Der Einfachheit halber sind die Argumente weggelassen.
2) Der Verlauf der Absterbeordnung dieser und anderer

Sterblichkeitstabellen ist aus einer graphischen Darstellung
ersichtbar* die dem Werke „Tables de mortalite du Comite des

Oompagnies d'assurance ä primes fixes sur la vie" (Paris 1895)
beigelegt ist.
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X ,w (x) q(x) * ,u — q l(x)

9 0,00410 0,00388 -f 0,00022 konvex]
10 372 364 + 08 »

i

11 362 366 — 04 konkav
12 374 387 — 13

11

19 0,00665 0,00675 — 0,00010
20 687 690 — 03
21 0,00695 0,00692 + 0,00003 konvex
22 690 681 + 09

23 670 662 -j- 08

24 663 641 — 08 konkav
1 25 628 625 — 13

V)

26 636 640 — 04
11

70 0,06859 0,06897 — 0,00038 Vi

71 7442 7462 — 20
11

72 8078 8076v + 02 konvex
73 8773 8741 -f 22

r>

Betrachtet man die Beziehungen zwischen den

beiden Kurven, welche die Sterblichkeitsintensität, resp.
die einjährige Sterbenswahrscheinlichkeit als Punktionen
dos Alters x darstellen, so bemerkt man folgendes:

Im Kindesalter nehmen beide Kurven ab, wobei
die Sterbenswahrscheinlichkeit q kleiner ist als die

Sterblichkeitsintensität Die Kurve q erreicht ihr
Minimum früher als die Kurve ,u; q fängt also früher
an zu steigen, bleibt aber bis zum Wendepunkte x
der Überlebensordnung kleiner als ß. Im Punkte mit
der Abszisse x schneiden sich beide Kurven und von
hier an verläuft q höher als ,u. So bleibt es bis zum
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nächsten Wendepunkte xr Hier schneiden sich die
beiden Kurven wieder, wonach q tiefer verläuft als /i.
Die Sterbenswahrscheinlichkeit q hat als obere Grenze
die Einheit, während die Sterblichkeitsintensität ,u ins
Unendliche wächst.

Da die Kurve l(x), wie oben gezeigt wurde, immer
eine gerade Anzahl (2 k) von Wendepunkten besitzt,
von denen keiner in das Kindesalter zu liegen kommt,
so folgt, dass die Differenz g — q dieselbe gerade
Anzahl von Nullstellen besitzt, und daher nach dem
Satze von Rolle muss sie eine ungerade Anzahl,
mindestens 2k — 1 von Extremalpunkten besitzen, und

zwar mindestens k Minima und k — 1 Maxima.

Wir gehen über zu dessen Aufsuchen.

Zu diesem Zwecke bilden wir den Differentialquotienten

d_ | _ l _d 1 d* l@)
dx\'a dx\2l(x) gx2

Es ist, wie gesehen,

und

1 d*l(x) If 3 dg(x)\ K%) Ll(x) un (,\
2i(x) ~jj~ ~t v w~j ~~r i flw+^xh

Daher

Ä(n_0)==Äl± 1 d^x) 1-
dx dx 12 ' 2 dx j

y |2 ,«(«) t1' (x) — <A')j
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Da für ^'(sXO und ,u"(a;)>0 ist,

mindestens bei Annahme dor Lazarusschen Formel

i« (x) — A -j- B cx F hx,

d

A, ß, c > 0,

c > 1 h < 1!'

so ist für das Kindesalter ^ j,a — <1 0, d. Ii. die

positive Differenz ii — q nimmt in diesem Intervalle
mit wachsendem x monoton ab.

So haben z. B. in der Tafel A. F., die in diesem

Intervalle nur mechanisch ausgeglichen ist, d. h. nicht
unter Zugrundelegung irgendwelcher analytischen Formel,

ß(x) und q(x) folgende Werte:

X ß (x) q(x) ß (x) — q (x)

0 0,04181 0,03602 0,00579
1 0,03186 0,02749 0,00437
2 0,02415 0,02085 0,00330
3 0,01821 0,01575 0,00246
4 0,01370 0,01187 0,00183
5 0,01032 0,00897 0,00135
6 0,00782 0,00687 0,00096
7 0,00605 0,00540 0,00065
8 0,00485 0,00443 0,00042
9 0,00410 0,00388 0,00022

10 0,00372 0,00364 0,00008

Bs ist auch

dx 0 — 0.)
d I d?l(x)
dx\2l(x) '

fa*
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1 ,d3l(x) dl(x) d*l(x)\

2 (2{x) \ dxA dx dx2

1 Idsl(x) (flte)]
—J-r¥+#*(®) • ~Y\dx dx I2 l(x) j

Für das Extremum der Differenz ,« — q muss also

d?l(x) dil(x)
sem-

L{ kXJ (A/IAS

Zwischen den Zeitpunkten xl und a; wo dieses Ex-
tremum liegt, ist aber die Überlebensordnung zur

a;-Achse konkav, d.h. r-<0. Es muss daher
dx2

dsl(x)
für dieses Extremum -V— positiv sein.

dx'

Wegen der Beziehung

T(x) -

ist

dl{x)
dx

ctl(x) d2T(x)
dx dx'

Somit im gesuchten Punkte muss —y-7j— negativ sein,
dzT(x)

dx2
d. h. die Kurve der „ Todeshäufigkeit•t verläuft hier
zur £C-Achse konkav. Da sie aber im Punkte a? ein
Minimum und im Punkte x2 ein Maximum besitzt, so ist

^M>0und^M<0
dx" dx

» '
Hieraus kann man schliessen, dass das Extremum der
Differenz ,«— q bei einem höheren Alter als der

AVendepunkt der Todeshäufigkeit stattfindet.
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Anderseits ist auch

di l d

dxT~~q\-äx\T^i +^p
1 / | /ll 'M2 f 1

~2~ K K 'S 'SK | 2 12 'S ~t" 'S+ fh,}

Unter Anwendung der Makehamschen Funktion ist:

(«j (as) A -f- A7

und
^s(®) + Jt8(») — C-

Für das Extremum der Differenz ,u — g muss also

2 (A -(- Ncx) — C 0 sein, woraus

C--^Ä- und s loglog2UV
2 A log c

Wir haben früher gesehen, dass diejenigen Altersjahre,

bei welchen die £(A)-Kurve einen Wendepunkt
hat, oder genauer, in deren Aäho sich ein Wendepunkt
befindet, den Gleichungen

ai C— 2A — fC(C— 4A)
C ~ 2 N

as
C — 2A-\-VC(C—4tA)

c 2 ^ " genügen.

Dividieren wir diese Werte durch den vorigen

x C—2A
c ___

so erhalten wir

j l/C(C-4A)
C—2A
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Hieraus

Nun ist aber

|
l'C(C-4A)

(7—2 4

T J, W—4 4)1
L°g I1 Ö=2J-|

Log c

t n11 !'G(L=T4)1
L°gl + C-2JTI

2 ""
Log c

r f, \'G{G— 4 4)11. i1 \'C(C -4 4)|M1 ~ C-'AA |! > L°! J1 +
clonn es ist:

I J \/C{C- 4 4)1 j |/L(L" 4X) 1 C( C-4 4)
Logl1 CT2Ä~t "-C-TÄ-+ 2 +

und

J (/C (C 4 4)} _ | C'(6T— 4 4) 1 (7(6'-44)
81 C(C-2A)\ " (7-24 2 2 4)'j"'

Somit ist die Differenz x2— x <C x— x d. b.
das Extromum der Differenz /t (x) — g (x) liegt näher
zum Nullpunkt xg als zum Nullpunkt x

Die Differenz /< — g nimmt also mit wachsendem

x langsam ab bis zum Minimum und dann rasch zu1).
Bei L. L. ist

x,- 22,03 x 66,26 xt= 73,53

Um die Lage des "Wendepunktes der Kurve, welche
die Differenz (x — q darstellt, zu bestimmen, bilden wir
die Gleichungen

') Vgl. Figur.
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it i i dr I 1 <f((x-){

Bei Annahme der Makehamschen Formel wird:

et

dx
{fi(aj) — 2(»)J

j(2 Ä N — NC) C2 <f + 4 iV2 C2 cto] -= 0

*
N C2 {2 A — C + 4 AV'J * ö

Hieraus

1) -logi*.
4 A >FP log c

Die Differenz

_ _ log (C — 2 A) — log 2 A
at r> ^ r;ßin log 6'

log (0 — 2 A) — log 4 N log 2

logc log c

hängt also nur vom Parameter c ah.

Da dieser Parameter c in allen nach Makeham

ausgeglichenen Tafeln nur innerhalb enger Grenzen
variiert, so ist die Differenz zwischen den Altersjahren,
bei welchen einerseits das Extremum und anderseits
der Wendepunkt in der Kurve jit — q stattfindet,
annähernd konstant. Yariiert log c zwischen den Grenzen

0,039 und 0,041, so variiert die Differenz xEp — xwp
log 2

zwischen 7,52 und 7,34 Jahren (mit wachsendem
log C i i \

c nimmt sie ab). In der Tafel ist diese Differenz 7,36.
Der Wendepunkt liegt beim Alter xJrp=58,9 Jahre.
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Die Lebenskraft -j gibt an, nach wieviel Jahren
\pCJ

würbe eine Personengruppe eines gegebenen Alters
ausgestorben sein, wenn die Sterblichkeitskraft während

der ganzen Existenz dieser Gruppe beständig die

nämliche wäre wie im Momente dieses Alters.
Diese biometrische Punktion nimmt dort zu, wo

die Sterblichkeitsintensität abnimmt, und umgekehrt;
sie hat also ein Maximum im Alter e und nimmt von
hier ab.

Während die Kurve der Sterblichkeitsintonsität,
als Punktion des Alters x betrachtet, beständig zur
,/>Achse konvex verläuft (mindestens bei Annahme der
Lazarusschen oder Makehamschen Pormel), kehrt die

Lebenskraft zeitweise ihre konkave, zeitweise ihre
konvexe Seite der Altersachse zu. Es ist:

Cd/u
(x)\

dx J

_
d / OZON

dx\/.i1(x)/

/«>! — ,'L (.U2 Kl <U2l |

Ml«* /'j '"3|

besitzt also einen AAendepunkt dort, wo die zweite
und dritte Intensitätsfunktionen einander gleich sind.

Wie auf Seite 80 gezeigt wurde, schneiden sich
die Kurven /<2(x) und /j ,(x) bei Annahme der
Makehamschen Punktion in einem Punkte, bei welchem die
Sterblichkeitsintensität den Wort 24 hat.

Die Lebenskraft hat also hier den Wert -^.-f bis
2AlL »

zur Erreichung dieses AVertes verläuft —-r-~ sinkend
j/1 \pü I

zur a>Achsc konkav und von hier an konvex.
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§ <•

Unter der mittlem "Lebensdauer e(x) eines tc-jährigen
verstellt man eine Grösse, welche die von einem tc-jährigen

durchschnittlich noch zu erlebende Anzahl von
Jahren angibt.

Erfolgen die Sterbefälle nach der angenommenen
Uberlebensordnung, so ist die Zahl der heute tc-jährigen

Personen der Gemeinschaft, welche nach t Jahren
im unendlich kleinen Intervalle t bis t dt sterben,

gleich
l{x 1) — dt) — dl{x-\-f)

Jede von ihnen wird, vom heutigen Momente gerechnet,
noch t Jahre leben; zusammen erleben sie

— tdl{x^\-t)
Wird diese Grösse summiert über alle entsprechenden
t von 0 bis w — x, bei welchem Alter keine Lebenden
mehr vorhanden sind, so erhält man die Anzahl der

Jahre, welche die l(x) gemeinschaftlich noch durchleben:

CO—X

— j"t dl(x -f-1).

0

die mittlere Lebensdauer dos tc-jährigen wird somit
CO—X

° 1 fe (x) — ^ t dl(x -ft).
0

Partiell integriert erhält man:
(O—X

1 L t=w—x r
e(x)=

|
j t l{x -|- 0

^
— j lipo -f t)dt\

0

Der Ausdruck tl (tc -(- t) wird aber für t 0 und für
t=M-—tc zu Null; wir erhalten also
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co—x fa—ai co —x

(24) 8*w ~W)fl(x+t}"/M =f,J,(X)dl;
0 0 0

hier tritt die mittlere Lebensdauer als eine Summe

von Überlehenswahrscheinlichkeiten auf. Wird tp(x)
— f/i(X-\-T)dr

durch e { ersetzt, so erhält man für die mittlere
Lebensdauer den Ausdruck

CO—X t
O f — f/i(a:+r)dT
e(x) / e o dt

0

(25) oder
oo t

o
C — f i.v{X-\-r)dT

ß (sc) / e o dt

wenn wir statt der obern Grenze m — x, wie
einleitend bemerkt, oo setzen.

Die mittlere Lebensdauer wurde von altern
Autoren J) oft mit der tvahrscheinlichen Lebensdauer
verwechselt. Letztere gibt diejenige Anzahl W(x) von
Jahren an, nach welcher die Zahl der heute x-jährigen
auf die Hälfte reduziert wird. Die Wahrscheinlichkeiten

für einen as-jährigon, das Alter x-{-W(x) zu
erleben oder früher zu sterben, sind gleich gross.
Diese wahrscheinliche Lebensdauer wird durch
folgende Gleichung definiert:

8\ l(x) =1 (x + W(®)) odor
w(x) P(x) \

also

0 Vgl. Daniel Bernoulli, Histoire de l'Acadeinie Royale des
Sciences. Annee 1760.



— 102 —

W(x) W(x)
— / U(X-\-r)dr J r

e o ="2" oder/,«(»-)-t)Jt Log 2 l)

0

Die Verwechslung dieser zwei verschiedenen
biometrischen .Punktionen kann man durch das damalige
Vorherrschen der Moivreschon Hypothese erklären,
nach welcher die mittlere und die wahrscheinliche
Lebensdauer für alle Alter einander gleich sind.

1st nämlich l{x)--k{m — x)

so wird
O) X (O—X

e(x) Tj fl(x + t) dt — y~?—~—v fk(o)—x—t) dt —
l(x)J k(o)—x)J 2

0 0

') Die von Czuber 0- c- P- 2-17 und 248) für e^(x) und IF(.r)
angegebenen Befinitionsgleichungeu '

•

a'(®) o>

dx=Jv(x)dx
x x- - IV(.c)

und
CO

Jx v{x) dx

M(x) e(x)= — -
J<r(x) dx
X

sind nur dann richtig, wenn cp(x) nicht die Sterblichkeitsintensität,
sondern die Laplacesche Funktion darstellt.
Auf meine diesbezügliche Anfrage hat Herr Professor Dr.

E. Czuber die Freundlichkeit gehabt, mir folgendes mitzuteilen.
„Ihre Bemerkungen zu meinem Berichte vom Jahre 1899

sind zutreffend; ich bin auf das arge Versehen bald nach dem
Erscheinen des Buches gekommen; die Bezeichnung ,Sterbens-
intensität' ist dort in unrichtigem Sinne gebraucht. Ich hatte
keine andere Gelegenheit, den Fehler gutzumachen, als in meinem
Lehrbuche der Wahrscheinlichkeitsrechnung ."
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und

*
k(co — x) k(w — x — W(x)) ;

also auch

w^) ^-
Dass nur die Moiyresche Hypothese diese Eigenschaft

besitzt, kann man folgenderwcise zeigen1).

Es sei y f{rj) die zur Überlebensordnung

t-j l{y) inverse Funktion. Wir entwickeln f(y) in
eine Maclaurinscho Reihe:

V fiv) ==YjArn\
r

wo die Summation sich auf die Zahl r bezieht.

Ersetzt man in (24) t durch y — x, wo y die

neue Integrationsyariable bedeutet, so wird die fernere
mittlere Lebensdauer eines rr-jährigen ausgedrückt
durch:

O) (D

6 ^=uß) flwdy=-jfi> dy

X X

wo f l(x) ist.

Wir haben aber

dy d f{rf) Är rf^1 d y

und

>1 dp Arrjr dy

') Vgl. Beiträge zum Gebrauche der Mathematik und deren
Anwendungen yon J. H. Lambert, III. Teil, S. 502 ff.
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Ging die Integrationsvariable y von x bis w, so geht y
entsprechend von f bis 0, weil l(x) f und l(&>) ist.

Es wird also

o

«m-t *'<=-( 2 r+i! ''=0

*r + 1
A V

—12 r-if* f"+' - -2ffr^-
Anderseits wird die wahrscheinliche Lebensdauer
definiert durch

l{x + W{x)) ~l{x).

Es ist also, nach obigem,

^+irw-r(|)-2>'(l)'-
und hieraus die wahrscheinliche Lebensdauer

=2>, (I)'—2X (I)-2-^

Soll nun e(x) für jedes x mit W(pc) übereinstimmen,
so müssen die Ausdrücke

—Va —f—f und —Vl.Wl
1 r-fl Z_j r \ 2

identisch sein, d. h. die Koeffizienten von gleichen
Potenzen müssen einander gleich sein.
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Es muss also für jedes >

oder

1

2'' seiu.

Die Klammergrösse
2 '• r + 1

kann aber nur für

r 0 und r 1 verschwinden; somit müssen für
alle andern r die Koeffizienten A 0 sein. Soll also

e (x) W(x) sein, so können in der obigen Entwicklung
nur die Glieder mit den Exponenten r 0 und r — 1

vorkommen. Wir haben dann

JDie Absterbeordnung muss somit, wie behauptet, eine
lineare Funktion des Alters sein 1).

') Gruäer in seinem Gutachten: „Die mittlere Lebensdauer
auf Grund der österreichisch-ungarischen Sterblichkeitsmessung'',
vorgelegt dem VII internationalen Kongress für Versicherungswissenschaft,

behauptet, ohne zu beweisen, dass die arithmetische
Reihe nur eine ganz spezielle derjenigen Funktionen ist, fur welche
sich die Gleichheit der mittlem und der wahrscheinlichen Lebensdauer

ergibt.

und umgekehrt

i==l{x) ~(x — A0)
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Wird für die Absterbeordnung eine andere Funktion

gesetzt, so werden e(x) und W(x) nicht identisch

gleich sein. Z. B. bei Annahme der ersten Formel von
Dormoy') mit konstanter Sterblichkeitsintensität /i, wird
die mittlere Lebensdauer:

£ 00

0
0

sie ist somit konstant und der Lebenskraft gleich.

Die wahrscheinliche Lebensdauer wird gegeben
durch die Gleichung:

W(x)
— f/tdt l

e 0 =Y?
daher

—uW(x) 1
6 ~Y

und

W(x)
^

log 2.
f-1

c

Sie ist also auch konstant und kleiner als e(x).

Bei den komplizierteren Absterbeordnungen kann

die Differenz e(A) — W(x) sowohl positiv als auch negativ
sein. W. Karup bemerkt in seinem Werke „Handbuch
der Lebensversicherung11,, dass die wahrscheinliche
Lebensdauer fast durchgängig grösser in der .ersten

Hälfte des Lebens, dagegen kleiner in den spätem
Jahren ist; so ist z. B. nach der Tafel A. F.

') Dormov, Theorie mathematique des assurances sur la vie,
Paris 1878.
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X e{x) TV Cr) Differenz

0 52,0187 60,0880 negativ
1 52,9434 60,1975 1"

2 53,4257 59,9870 11

3 53,5528 59,5476 "j"

50 19,6593 19,9029 *>">

51 18,9784 19,1432 T»

52 18,3059 18,3932 11

53 17,6424 17,6548 11

54 16,9882 16,9286 positiv
55 16,3440 16,2137 ii
56 15,7101 15,5155 ii

97 1,36754 0,9791 V)

98 1,27286 0,9234 »

Die mittlere Lebensdauer für ein gegebenes Alter
x ist nur vom Vorlaufe der Sterblichkeitsintensität
abhängig; in Mortalitätstafeln mit durchweg grösserer
Sterblichkeitsintensität wird die mittlere Lebensdauer
kleiner. Bei einer gegebenen Absterbeordnung ist die
mittlere Lebensdauer vom Alter abhängig. L'm diese

Abhängigkeit zu untersuchen, bilden wir ^~e(x).
Es ist

=o t
d c cl f — f."('"+Xjdr

0

rf i — / /Ua+Üdr '
— — / !e o Ult ^

6
0

8
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j- — J ß[X+z)dz
==— e o (,u (a?-f-<)—f.i(pc))dt

0

°° /
e o ^ (x)—a (x ~\~ t)^ dt

0

Wäre die Sterblichkeitsintensität eine stets monoton

wachsende Funktion des Alters x, so wäre die
Differenz u (x) — ,« (x -j-1) und somit auch der letzte
Ausdruck stets negativ. Dies ist aber nicht im ganzen
Verläufe der Lebensdauer der Fall. Ist x~>t\ so ist

'
{ tatsächlich ,u(aQ—fi (x1)_ stets negativ; es nimmt

somit für x e die mittlere Lebensdauer mit
steigendem Alter ab. Ist aber x<^s, so ist die Differenz
a (x) — für ein bestimmtes Intervall positiv,

d
und somit kann der Differential quotient e(;r) positiv

sein, d. h. die mittlere Lebensdauer kann mit
wachsendem Alter zunehmen.

Aus dem letzten Ausdrucke folgt:
OO ^ CO ^

O (* — I u(X-\-r)ch r — fu(x~\-T)lh

~Y-e{x)=^{x) e o dt— / i{x+t)e { dt=

0 0

fi (x) e{x)—\=(! (x) (e(x) —

Hieraus ist folgendes ersichtlich: Die mittlere Lebensdauer

nimmt zu, wenn sie grösser ist als die Lebenskraft

des entsprechenden Alters, und sie nimmt ab,
• •

1 ')
wenn sie kleiner ist als —-r^r-.

fi (x)

e(x) orreicht ihr Maximum für dasjenige Alter,
° 1

für welches e (x) ~ —rw So ist z- B. in der Tafel A. F.
,u (er)

') Vergleiche Figur.
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1 X
i

(tix)
1

(i(x) e(x) kx)~ib>

1 0,03186 31,387 52,943 positiv
2 0,02415 41,408 53.426
3 0,01821 54,915 53,553 negativ
4 0,01370 72,993 53,401

Das Maximum der mittlem Lebensdauer findet
also hier zwischen den Altern x — 2 und x 3 statt.

Ebenso wie die mittlere Lebensdauer ist auch die

wahrscheinliche Lebensdauer vom Alter abhängig
Um diese Abhängigkeit zu untersuchen, bilden wir
aus der Definitionsgleichung

W(x)
— ffl(x+r)dT J

e b =-ir
den Ausdruck

d W{x)
dx

Es ist

c o

W(x)

J ß<X-\-T)är

;i(x + W(x)j
d W (x)

dx
\V{x)

— / fe o / dfi(x -f- r) 0

oder

\V(x)

-)- /I (x + W(xj) — (i{x)) — 0

(I (x + W(x)) + ,'<(® + W(X) — /t(»)) 0



Daraus folgt

d W{x) _ p 0) fx{x -\-W(x))

,u (x -f- W(x)j

Wäre die Sterblichkeitsintensität monoton wachsend,

so wäre die Differenz (x{x)—[t(x -irW{xj^ stets

negativ und somit auch

dW{x)
dx

Dies trifft für > e zu. 1st also x > e, so nimmt
die wahrscheinliche Lebensdauer mit wachsendem

Alter ab. Ist dagegen a? < e, so kann die Differenz

,ti(x) — [i(x -f-II7(je)) positiv werden; die wahrscheinliche

Lebensdauer kann also mit wachsendem Alter
auch zunehmen.

Sie erreicht ihr Maximum, wenn

fi(x) fi{x -(- W(a;)) ist.

So ist z. B. in der Tafel A. F.:

X W(x) iu (x) /i(x + W{x)~)
Diff.
,.(D-

ti(x + IFpc))

0 60,0880 0,04181 0,03168 positiv
1 60,1975 0,03180 0,03442 negativ
2 59,9870 0,02415 0,03650 T,

Das Maximum trifft hier also zwischen x 0

und x—l ein 1).

Das Alter x -f- e(x) können wir als das „mittlere
Todesalter1,1 des heute x-jährigen bezeichnen. Es folgt aus

') Vergleiche Figur.
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class dieses Toclcsalter mit wachsendem Alter zunimmt.

Analog nennen wir x-j-W(x) das „wahrscheinliche

TodesalterA Aus

folgt ebenso, dass das wahrscheinliche Todesalter mit
wachsendem Alter zunimmt.

Wie wir gesehen haben, hat e(x), als Funktion
des Alters betrachtet, ein Maximum. Die Kurve der
mittlem Lebensdauer ist also in diesem Punkte zur
Altorsachse konkav. Im Gfreisenaltcr nähert sie sich

asymptotisch der x-Achse; sie muss also nach dem

Maximum eine ungerade Anzahl von Wendepunkten
haben. Um diese Wendepunkte analytisch zu finden,
bilden wir den zweiten Difforentialquotienten von e(x)
nach x genommen.

d(z + W(x)) dW(x) _dx dx *

(x-f-~W(x)) ' /.i(x-\-W(x))u

Es ist:

e(x) (jt(x) e(x) — 1) ,h (x) (ji(x) e(x) — l) +

1 m Punkt x e wird

d ß(x) q
dx
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Wir haben also

7 2

dxl

Es ist aber

e(e) e(e) ß2(e) — ß(s) ß(e) |e(r) ß(e) — l]

p(e) ß(e) — 1 < 0

und somit

®(e) < 0
ax"

d. h. die Kurve der Punktion e(x) ist im Punkte x — e

zur x-Achse konkav.

Man hat anderseits:

d° \ ° \ \ I
* ^ h(A') 1

1— e (x) u (x) e (x) 1 ß (x) -I ^ —w-
dx2 w I /»(®) d® e(£c)|

soll also e(x) einen Wendepunkt besitzen, so muss

1 dß(x) 1

u(x) -\ ^-r • —— ö— 0 sein.
,u (x) «x r^

Es ist aber 7—, • -^~-=ß(x) die zweite Inten-
,u(x) ax 2

sitiitsfunktion.

Die Bedingungsgleichung lautet also

!\{x) — fis(x)
e(x)

o

Da e(x) bei komplizierten Absterbeordnungen sich

nicht durch eine endliche Anzahl von elementaren
Punktionen ausdrücken lässt so kann man obige

*) Bei Anwendung der Makeharaschen Funktion wird e(x)
durch eine unvollständige Gammafunktion dargestellt.
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Gleichung nach x nicht aufläsen. Sind aber die Werte
der mittlem Lebensdauer auf irgendeine Art näherungsweise

gefunden, so kann durch Yergleichung der
Zahlenwerte

f.i1(2:) — /( (as) und
e(pc)

nachgeprüft werden, wo die Kurve der mittlem Lebensdauer

konkav bzw. konvex verläuft und ob sie einen

Wendepunkt beim gegebenen Alter besitzt.




	Beiträge zur mathematischen Theorie der biometrischen Funktionen

