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Eine lineare Integralgleichung auf dem Gebiete der
Lebensversicherungsrechnung,

Von Dr. 0. Schenker, Bern.

Die vorliegende kleine Arbeit kniipft an eine
solche im eclften Heft der ,Mitteilungen* an, kann
also als deren Fortsetzung betrachtet werden. Iis handelt
sich um die Auflésung der linearen Integralgleichung:

/F(a — ) dx —[—./f(ac)F(a —2) - de=1 (1)

F(a — x) ist gegebene Funktion von a— x, f(x) ist
gesuchte Funktion von z; o kann man jeden beliebigen
Wert beilegen, ¢ ist eine verfiighare Konstante. Wir
werfen nun die Frage auf: welche Funktionen 77 ge-
statten eine exakte Auflosung der Gleichung (1)? Wir
haben bereits im elften Heft der ,Mitteilungen* ge-
sehen, dass man eine exakte Auflosung erreicht, wenn
I (« — x) eine algebraische Funktion ist. Es gibt aber
noch andere solcher Funktionen, z. B. die Funktion:
F@)=a E°4+0b . E*,

wo @, b und E verfigbare Konstanten sind. Wir
wollen diese Funktion gleichzeitig dazu beniitzen, um
die  Uberlebenswahrseheinlichkeiten eines Ehepaars,
sagen wir vom Alter 31/26, nidherungsweise darzu-
stellen. Wir setzen zu diesem Knde:



B 7 A

0Py WPy = @ E' 4+ 0B = F(0)
s0P31 " 50Pss (Y’E30+ bE® =F (30)
: s LLESO _+_ bEl:Zi) s IP (60)?

== i —+ b
0,65953 =a B+ b - EV

0,19638 = B+ b - B,
wenn fiir F Zahlenwerte gesetzt werden.

I

coPs1 " 60los

Setzt man abkiirzend E° = K, so resultieren
die Gleichungen:

y(J:]' == +b
g/] — 0765 953 — (1 E + b . Iuj
y,=0,19638 =a B 4 b - E';

Rechnet man aus den beiden ersten Gleichungen
@ und b aus und substituiert die erhaltenen Werte in
der dritten, so bekommen wir die Gleichung:

1 123 ‘ ’31 yof
gﬂEEim Z/E +E411Ey1‘f’
oder
‘Z/ l1 1\) i)
oder

y, B —1)=E(y, B —y)+ B (y, —y, L),
oder
WB —(+ )B4+ +y)E—y,=0;
Diese Gtleichung ist fiir E=1 erfiillt; das Glei-
chungspolynom linker Hand ist daher ohne Rest durch
E —1 teilbar. In der Tat ist:

fnE""~(JO+J>E"’+(J1+;/Q)E— TE— 1=
_—U()E E —y]L+y;?
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B wird darum aus der Gleichung bestimmt:
K 0,65953 E* — 0,65953 E + 0,19 638 — 0

Wir wollen bloss denjenigen Wert von k festhalten,
welcher zwischen 0 und 1 liegt. Die Anwendung des
Sturmschen Satzes bestitigt das Vorhandensein ciner
solchen Wurzel, welche sich nach der Newtonschen
(von Fourier verbesserten) Nidherungsmethode berechnet
zu B =0,2573529; die entsprechenden Werte von
@ und b sind a-=—3,104282; b— — 2,104 282, ferner
hat F:E%_lo den Wert 0,955 7647; darum ist nun
F(2)=3,104282.0,95D 7647"— 2,104 282.0,955 7647 :

Da F (x) von der Form a I 4 1 E* ist, so lautet

nunmehr die Gleichung (1):
t

f la E“7% 4 b B dor + / fx) o B +

0

+ b B dp — 1 (1%);

Durch Differenzieren nach a erhélt man hieraus
die Gileichungen:

log E f [0 B* 4 25 B** ] do 4 £ (o) (a < b) +

+ log E f £@) [a B 4 2 b BX—] dz=0 (1)
t

(log B)? f [0 B 4 45 B**™] do - £'(a) (@ + b) +

+ log B - f(a) (4 20) + (log B’ f F@) [a B +

+ 40 B - de=0; (19)
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Aus diesen drei Gleichungen, némlich:

"
t

/“!:U;Eu € + bEQ(u—m)] dw +/"f(x) [a ‘ I‘_fj”“w‘*— b .
t

0
C BT de =1

2

f[aEa‘” + 25 E¥ ] 4o 4

0

- 12(oi—iz) f(a) (w+40)
+[f(x)aﬁ LB e L2 T 2 Ty = ()

t

t

/[G Ea——a,_i_ 4Z)E2(a—:7:)] do +ff(x) [a e W{_

0

B(a— f(a)(a+b) f@)(@+20b)
+4b . B*] da 4 (o ' =8 fog =0

kénnen wir eine gewohnliche Differentialgleichung
zur Bestimmung von f(a) herleiten, indem wir die
erste Gleichung mit 1 und die beiden andern mit den
verfiigbaren Konstanten % bzw. &, multiplizieren und
die so erhaltenen Gleichungen addieren; man erhilt
so die Gleichung:
f
j la(U4-k, k) E“™" 4+ b (1 +2k, 4 4k) B do -

0

 f@-atb) . fl@@+20)
+ - log £ + 5, - log &/ ale &
Ma)(e+b)

(log E)’
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‘Setzt man 1 4% 4 k,=0 und 14-2k 44k, =0,

. 3 1
also k1:~—»~§ und k;g:"?jv so verbleibt die Diffe-
rentialgleichung :

1 a-0 , 1 .
— . = - e 1+ 2b—38a—30) -
5 ey Ot g a—381)

’ f(a) — 1,

oder

L a4b o 1 gt
T GogEy @ igp @D T@=1 0

Durch Differentiation nach « erhilt man hieraus
die weitere Gleichung:

(04 b) - () —log B (2a4-d) - /(@) 0; (29

f(a) hat somit die Form: f(a)=—C -+ C, - e, wo
Cl’ C, und A4 zu bestimmende Konstanten sind. A be-
kommt man durch Substitution von f(a)-— C 4 C, -
- ¢ in die Gleichung (2%); man erhiilt:

(@4Db) - A° . e* —logE(2a—+b)- 4 ¢""=0,
oder :
Af(a+b) - A—1logE2a—+ b)] - e =0;
Diese Gleichung ist bloss erfiillt, wenn
20+ 0 e
P log I;
die partikuldren Integrale der Gleichung (2*) sind also

- von der Form f(a)=C, und

ie—aj_—b«-10g‘E - a

f(a): 02 - eatb )

das vollstindige Integral von (2%) lautet demnach:

2a-1+b N
f@)==C,+ C, - eatt ¥5° (3)

A_ m— “4‘1 =) Odel‘ A= A_2 e




C, wird ermittelt, indem man diesen Wert von /(a)
in der Gleichung (2) substituiert:

< 2a--b -
1 _a_—l-ji C’ , ‘fa'+b . 10gE . -logL L7

) eatd e

2 (ogB} o+l

i » logE -y
STog B 45 NG+ G « ot =1
_ . 2log I ‘
also: Ol = W{ ‘“5, (4)

Substituiert man die Werte von /(«) und € ge-
miss den Gleichungen (3), bzw. (4) in der Gleichung
(1), so erhélt man:

t 7

i 10— '112(0'-—'93) s - 2 log_[jj’
][aL +bE ]al¢+/[2a+b
i

0

2a-+b

+ C, Eavs ] [a B 4 b B de =1,

oder

2a -+ b

o
t

i 22
/[aE(Fw + b B dx — aa logE[_E“_w - dx
0

o,

2b . ]OgE E?(a“:r) da a Cy ﬁ7ft—}—-~g— - L
— e T . : Y a—+b . d,,(,

Ralb T ’ T
A

t

9 b
+ - CQ/EZ’“—;@'“’ cde=1,

t



oder
|t b
o a o—x Y 2(a—x)
log &7/ 2log I/ = +
0 0
2 @ T o—x b | 2 (a—2x)
Yoot Taage® T
¢ '
@D O ey @AD O
log I/ log &
t
oder
o a yoa—T1 o @y b 2(a—T) 20
l()gE’( E) QIOgF[E = |+
2 a a—t b a—rt)]
a0 — F ) bl - T
((,t —-l— b) C 2a-+0 " (l,
0 Gl e prvate
(@=8) - C,p_ 204b o2
- logk :[]—” 5 — B t]zl,
oder

2a

(@+0) - C,.

[mgﬁ- ’f+10gL QatbEt  logE

'f__al__.'t o "_b b
- B J+E t2]ogE’-E2t+219gE_
b (a4 0) - C, E&%b't—
g : 2t—F log £/ - ! ok
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Da diese Gleichung fiir jeden Wert von « be-
stehen muss, so miissen die Koeffizienten von /£” und
E™ cinzeln Null sein, also:

o 4+ a 2a _(“‘1—5)02_
log £ - &' " logh (24 4 b) E* log &
Bt =0 )
b b b (a++0)C
T DlonE v~-1—22—{— 2log £ N 2t+ log I/ - :
2log Il - ogl (204-1)E og
o,
: Ea+;—= 0 (6);
¥

Multipliziert man Gleichung (6) mit Z' und
addiert das Produkt zur Gleichung (5), so bekommt
man :

2a—+0b 20+ b - B 1. 0
et

2log & - B 2log &/ E!

oder

bE” +2a - BE'—QRa+b+2log ) =0,

somit

g — 0t Va+b@atb+2l0gE)
- b

—at V@b L2blog B
— b ) (7)

Diese Gleichung dient zur Bestimmung von f.
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Zur Bestimmung von ¢/, multiplizieren wir die
Gleichung (5) mit b, (6) mit — 24 - £’ und addieren
die Produkte, so resultiert die Gleichung:

2
{I;-b—C&-Z)-Et C~E‘&?¥T)'t
log I/ 2 logE

(b+2a) (@ —+b) = 0,

woraus

O =ab(l—EY: (@tb)@atb)Ea ' (8)

Zur Kontrolle kann man C, aus (5) berechnen;
man bekommt:

¢ :—'()}(2(L—}- b)+a(2a+b) : E‘t__ 2a - 10%‘,&/“
z E'(2a—+b) (a4 b) Bap !

Diese beiden Werte von 02 miissen einander gleich
sein; in der Tat ergibt die (leichsetzung:

@ - b(1—EY E'=—a@a+b)+a@a+tb) K —
— 2a - log F, oder

b E'42a- B —(2a+b+2logE)=0 und

 —a+V(a-F0)+20blogE,
e b

wie es auch nach Gleichung (7) sein soll.

t
E

Zur Uberpriifung der Rechnung lohnt es sich, C,
mittelst Gleichung (1Y) zu berechnen, indem man hier
f(a) und C, gemiiss den Gleichungen (3) und (4) sub-
stituiert; in der Tat erhdlt man:
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t
0= /[Ct-Ea_m + 20 B* ) dp

0
(L

e D ) ' . o
T / {}7[ g 1 +C,- Eatt J [a-B“ 20 B*].
¥
» a+b(——210g11] : ,M—E,u)
.dle‘logl?} 20 4 b + O, B i
oder
= — & (EU'—{‘_____ E"‘) . b [112(@*1‘) E‘.’.u] _|_
' log &/ log &/
! 2(1; ro—t o= v . 1’((1#1‘)
Tﬁ_*_b(l - J )‘|”2 —|—b[1 E iE

[

g b
—{—02/(‘L-E+ +Cf Vi(l—m-a:_dx+

a—}—b(—?logE
+ log ' \ 20+ D

200
ro, B8,
oder

1:wt~t o b 2(a—t) 207
léoE(l ) = logElE — B

2a

2a+D Qct—l—b

Za—‘—b @
+6 (é}iEb“)[ o — BTt —

,0_

o g (0 — BT g [1— B 4

2 C, b) ¢ a(2a+b) b
" log lo(?;__z[ i — B 4

cc+b(—210gF 20-+b “)
+10gE 2[&+b + O E(‘l—]—b




oder nach Reduktion:

S a—t - (o—1) Zal _‘%L i
logE(E E) logE[E — B} 2a+0b
o—t 20 2e—t) () a + b a+ -t
I PR * TogB L A
+202(T;gi_1§ )u;?’ ‘=0,
oder
1 — a—-b O a ]
g, 7 t_‘_ 2a - (a+b) . B4
log E - E ooE 2a—+b) E log B B
| — 0 b 2b 2(a+b)C, papst
it T _" T : —|=0;
llog £- E* 1ogE  (2a+b) E log E E

Indem man die Koeffizienten von E“ und
Null setzt, erhélt man wiederum die Gleichungen (5)
und (6). Aber auch Gleichung (1°) muss die Gleichungen
(5) und (6) ergeben; in der Tat, fithrt man in ihr die
Werte von f(«) und C| entsprechend den Gleichungen
(83) und (4) ein, so werden wir auf die Gleichung
gefithrt :

. —a a—it ay 20 2o—x) Q0
OwglogE(E =& IogE[E E"] +

2a a—t 40 (1)
—F = |1 — E7"
+2u—{—b(1 2 )+2a—{—b[ ]+
+€%@%@[.E“%§WE“+@+1)]
0g
40 (u—{—b)[ +b_E2“*E_] C,2a 4 1) .
log IV log &

4



206
L 2a-}-0 2 OEEGG-_H? 9 )
+b+_2a+b+ 10 E (a+ )'"_(7
oder - -
L t a—rt R 7L 2 b 2(a—1) _______EQ(L
o _logE(E £ ) logE“E I—
L %0 g 40 ey GEED)
2a 4 b 2a +b log £
a-t 4.0 (a0 b
. a-}- iy 2 A 7 20— =
E*"ate 4 “Tog B E ko,
oder
2a
0 — E(L ]:_— a a R . .
log & - E* T logl (24 + b) B
(a/+b) * C.) w_a'_.g ,2(1_ b
e Rt A - 2ET | ———
oz & Fatb ]+ logE-E2t+
L b w2640 ma
log 2 (24 4 b) B* log E B |

Diese Gleichung kann wunabhéingig von « bloss
bestehen, wenn die Koeffizienten von E“ und E™
einzeln Null sind, d. h. wenn die Gleichungen (5) und
(6) bestehen.

Die gesuchte Funktion f(x) hat also nun die
Grestalt :
a-b(1—EY 20t

— Eapp ",
(@ 4b) (2a-+b) Eapp ™

wo ¢ mittelst der Gleichung:

gt —0E) (@40 42blog E
- b

2 log K
@=—g 3+

bestimmt wird.



Fiir unser zahlenméssiges Beispiel ist:

a=3,104 282, == — 2,104 282

B 0,955 7647 ; log E—= — 0,019 6490
2a-+4-6

C == 0,009 575 Eatt — 0,830 5294
E'-—=0,980 742;  t — 0,429 803

E'"=1969701; t = — 14,982 951;
Zu ¢ gehort: C,—= — 0,032 5578;

Zu t, gehort: ', —= 0,188 1765 ;

Je nachdem man also ¢ oder ¢, wihlt, bekommt
man fiir f(x) die beiden Werte:
fir ¢ : f(z) = 0,009 575 — 0,032 5578 - (0,830 5294)"
fiir ¢,: f(xz)=0,009 575 40,188 1765 - (0,830 5294)" .
/(x) néhert sich daher mit wachsendem x asymptotisch
dem Werte 0,009 575.
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