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Die Berechnung des jährlichen Risikos

schwierigerer Versicherungsarten.

Von Hans Koeppler, Berlin.

Vorwort.
Unter dem Titel „Risikoberechnungen bei mehr

als zwei Ereignissen ein und desselben Zeitraumes'"
hatte der Verfasser im 4. Hefte des 63. Bandes der
Zeitschrift für Mathematik und Physik ') den in der

vorliegenden Abhandlung bearbeiteten Gegenstand
bereits veröffentlicht. Da aber die genannte Zeitschrift
wohl nur von wenigen Versicherungsmathematikern
gelesen wird, so dürfte eine Neubearbeitung in einer
Fachzeitschrift nicht unzweckmässig erscheinen. Im
Laufe der Zeit hat der Verfasser auch noch mehrere
andere Darstellungen der bereits mitgeteilten Ergebnisse

gefunden. Daher glaubt er, diese Neubearbeitung
als weitere Beiträge zur Ermittlung des Risikos ver-
wickelterer Versicherungsformen bezeichnen zu dürfen.
Bei den gewählten Darstellungsweisen hatte der
Verfasser nicht immer die mathematische Kürze allein im
Auge, vielmehr leiteten ihn bei der Abfassung auch
die geschichtliche Entwicklung der Wahrscheinlichkeitsrechnung

sowie die Formenschönheit der Analysis.

T Leipzig, Druck und Verlag von B. G. Teubner, 1915.



Erstes Kapitel.
Das Risiko des einzelnen Vertrages.

Wir beschränken unsere Untersuchungen auf zwei

Gegen Erlegung des Einsatzes oder der Prämie 77

und dos bereits bestehenden Guthabens V des Spielers
schliesst ein Unternehmer einen Yertrag ab, nach
welchem er dem Spieler beim Eintritte des Ereignisses
7? dessen Wahrscheinlichkeit pl ist, die Summe K
auszahlt, hingegen die Beträge 77 und V einstreicht.
Sollte ein anderes Ereignis E2 eintreffen, dessen
Wahrscheinlichkeit p2 ist, so würde der Spieler sowohl den

Einsatz 77 als auch sein Guthaben V verlieren. Das
Stattfinden eines dritten Ereignisses 7? dessen

Wahrscheinlichkeit pg ist, hat zur Folge, dass der Spieler
nur den Einsatz 77 verliert, das Anrecht auf das

Guthaben V aber behält. Zwischen den Wahrscheinlichkeiten

pL, p2 und ps bestehe die Beziehung

Soll der Yertrag die Eigenschaften einer sogenannten

gerechten Wette aufweisen, so muss die Yerlust-
erwartung des Unternehmers

Fälle.
Fall I.

P1 + P2+P3 1-

(1)

(2)

p2(V n) -\-pgn~pl (K— v—77), (3)
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aus welcher sich einerseits die Formel für den Einsatz

ergibt
n Pl(K-7)-PiV, (4)

welche übereinstimmt mit der Formel für die aufge-
zinste Risikoprämie, sofern man unter V die Reserve

am Schlüsse des Versicherungsjahres versteht.
Anderseits folgt aus (3) die Gewinn- und Verlust-

gleichung

Pl[-(K- v—ri)]-\-p2(V + n)-\-Pan=o. (5)

Als mittleres Risiko des beschriebenen Vertrages
bezeichnen wir die Grösse

m ]/Pl(k-v—n)2 +p2(V+ nf + P,ri\ (6)

welche erhalten wird, wenn wir die Gewinn- und
Verlustbeträge quadrieren und die mathematische Hoffnung
der Quadrate radizieren.

Lösen wir die Quadrate des Radikanden auf, so

können wir dem Ausdruck (6) auch die Formen geben

M= -\/Pl(1 -Pl) (K- Vf + 2Plp2 (K-V)V +p2 (1 -j)2) V2

und ^
M= (K — F)2 -|-p2 V'-lf. (8)

Pall II.
Das Vorhandensein der drei Ereignisse Ev E2

und E und das Bestehen der Gleichung ihrer
Wahrscheinlichkeiten Pl -\-p2 -\~P3 1 vorausgesetzt, nehmen
wir wieder an, dass der Spieler einen Einsatz oder
eine Prämie II entrichten muss und bei dem
Unternehmer das Guthaben V hat, dessen Besitz und Ver-

6
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änderlichkeit von den Bestimmungen des Vertrages
abhängen. Der letztere sei nun von der Beschaffenheit,
dass der Spieler durch Eintritt des Ereignisses E, die

Summe K gewinnt, indessen das Guthaben Bund den

Einsatz II verliert. In gleicher Weise soll er beim
Eintreffen des Ereignisses E den Betrag K„ gewinnen,
das Guthaben V und den Einsatz 77 aber wiederum
einbüssen. Findet das Ereignis E statt, so verliert der

Spieler nur den Einsatz 77, während ihm das
Guthaben V verbleibt. Damit auch dieser Vertrag die

Eigenschaften einer gerechten Wette aufweise, muss
wiederum die Verlusthoffnung des Unternehmers

Ä1 P1(A1-U-7/)-fp2(7T2-7--77) (9)

gleich sein seiner Gewinnhoffnung

hs=psii, (io)

woraus die Gleichung folgt

iJ377 p1(W1-F-77)+J,3(W2-U-77). (11)

Aus dieser erhält man für den Einsatz die Formel

n vx (Ax - f) + p, (A2 -v), (12)

welche gleichbedeutend ist mit der Formel für die auf-

gezinste Risikoprämie. Die Gewinn- und
Verlustgleichung hat hier die Form

px [- (Kx-V- 77)1 + P2 L- (A, -V- 77)1

+ p377= 0 (13)

und liefert für das mittlere Risiko die Formel
(14)

mx yPl(Kx -v-nf +p2(K2- v nf + Pji\
Durch zweckmässige Umgestaltungen finden wir

hieraus die weiteren Formen



G9

^ |/bi -P) (K1 - 7)2 + ** (1 -*>,) - "T)2

-2^^^(15>
unci

J/2 ]/^(Z, — vf+p2(K2-vf-n2. (16)

Die Bezeichnung der Formeln (6) und (16) als

mittleres Risiko wird durch die Fehlertheorie erhärtet.
Die Risikoprämie oder der Einsatz 77 hat nämlich die

Eigenschaft, die Funktionen

F{11) Pl (K- F- ny +P2 (F + uy +Paii*
F^ll) =pl(K1 - V-Iiy +p2(K2 - F — 77 )3 +PSIF
in bezug auf die in jedem der beiden Fälle einen
anderen Wert vorstellende Grösse 77 zu kleinsten
Werten zu machen. Differentiiert man beispielsweise
die Funktion F(IJ) zweimal nach 77, so ergibt sich

mit Berücksichtigung der Gleichung (3)

F' (U) -pl (K- V- 77) +Pi (F+ 77) + ps 77 0

F" (77) =Pl + p2 p., — 1, also > 0.

Überdies erkennt man, dass die Funktionen F(fl)
und F1(IJ) die Summen der mathematischen Hoffnungen

der Quadrate der Ergebnisse sind, welche der Verlauf

des betreffenden Spieles herbeiführen kann. Sie
sind daher als die mittleren Werte der Quadrate der
etwaigen Erfolge anzusehen.

Für den Fall F 0 hat die Formeln (11) bis (16)
bereits F. Ilausdorff in seiner bekannten Abhandlung
„Das Risiko bei Zufallsspielen" (Berichte über die

Verhandlungen der Königlichen Sächsischen Gesellschaft

der Wissenschaften zu Leipzig, 47. Band, 1897)
mitgeteilt.
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Zur Berechnung des mittleren Risikos kann man
sich aber auch der Formel bedienen

M K + Xh (17)

in welcher die Grössen Xx und X2 bei der ersten Yer-
tragsart aus den Proportionen

Pl(K-V) X.

*1 K — V-

Xa

II

x„ 7+ n

(18)

zu bestimmen sind, hingegen bei der zweiten Vortragsart

aus den Proportionen

p^-V) X,

PliZt-V)
X* ~ K,

Aus (18) findet man

- 7 — II

7—II

(19)

K Pl (1 Vf + Vxp,{K- 7) 7j

X*=pA(X- 7)7+j,2(1-^)72 |
(18")

mithin ergibt die Formel (17) für diese Werte die

Formel (7).

Aus (19) erhält man

K P, (1 -P1) - Vf -P,P2 - V) (Xä- 7))

K P2 (1 -P2) (Za ~ V)' -lhP, (X, - V) (X2- 7)1.
(19a
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Daher geht für diese Werte die Formel (17) in die

Formel (15) über.

Hiernach kann man das mittlere Risiko dieser

"Vertragsarten auch darstellen als die Quadratwurzel
aus der Summe der Quadrate zweier geometrischen

Mittel, für deren Bestimmung die Eigenschaften dieser

Yerträge massgebend sind.

Zweites Kapitel.

Das Risiko s gleichartiger Yerträge.
1. Das mathematische Risiko.

Wir wollen jetzt annehmen, dass der Unternehmer
s Yerträge der ersten Art auf das Eintreffen des

Ereignisses E abgeschlossen habe. Alsdann besteht für
ihn die aus der Entwicklung des Polynomens

(Pt +P2 +P8)'

hervorgehende Wahrscheinlichkeit

F(s''
s1!

8S\ s,l p?1 p?p3* W

Oh + S2 + S3 S)

in s Fällen den Schaden (K—V—TJ) zu erleiden,
in s2 Fällen den Gewinn (V-\-II) und in s Fällen
den Einsatz II zu gewinnen. Mit der Wahrscheinlichkeit

(1) hat der Unternehmer daher die Gebarung

N(s,, s2) s1(K — V —II) — s2 (7+ II) - s3n

— st(K — V) — s2 V — sll (2)
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zu erwarten, welche ein Gewinn ist, sofern die

Ungleichung statthat

(K— V) — saVCsH,

aber einen Yerlust vorstellt, im Falle die Ungleichung
besteht

s1 (W—7) —s27>s//.
Setzt man Sj spl -f- av s2 sp2 -(- o sä — spg -f- u„,
wobei wegen s1-}-sg-f-s s, ist a -f- a2 + ag 0,
so geht P (st, s in P (öj aj über.

Für N(sy,s2) erhält man wegen II j\(K—V)
-psV:
NK) — (sPi + aj) (K — v) — (SP2 + °3) v — s!1

— °i(K Y) a2 V. (3)

Dieser Ausdruck gewährt einen vollständigen
Einblick in das Risiko der beschriebenen Yersicherungs-
art. Nimmt derselbe positive Werte an, so entsprechen
denselben immer Yerluste. Da aber N(a1, a2) auch
noch grösser als null sein kann, wenn sowohl a <i 0

als auch a9<^0, so erkennt man, dass beispielsweise
ein Bestand gleichaltriger Invaliditätsrentenversicherungen

noch verlustbringend sein kann, wenn nicht
allein die Invalidität, sondern auch die Aktivensterblichkeit

hinter der crwartungsmässigcn Zahl zurückbleibt.
Nach Kanner versteht man nun unter der Yerlust-

hoffnung oder dem mathematischen Risiko des
Unternehmens den Ausdruck

R 2SP (0l, a2) [0l (K V) — u2 7], (4)

in welchem gemäss der vorausgehenden Erörterungen
die Summationon über alle jene Werte von a und a

zu erstrecken sind, welche der Ungleichung
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al (.K— V) — o2V~2> 0

genügen. Die allgemeine Durchführung dieser Summen-

hildung ist ein sehr schwieriges Problem. Geht man
aber von der diskreten zur kontinuierlichen Summe
über und setzt die Grössen si; s2, s& also so gross

voraus, um das Bernoullische Theorem anwenden zu

können, so erhält man für das mathematische Risiko
den Ausdruck

E ffP(a1,a2) [at {.K-Y)- a2 7] dat da,. (5)

Um die angedeuteten Integrationen ausführen zu können,

ist es zunächst erforderlich, der Wahrscheinlichkeit

s!
P(Ö1' °ä)

(sp1 + ox)! (sp2 -f a2)! (sp3 - a, -^)!
P*Pl+"i pSJ>2+"2 pSPs—" 1 ~a2 ^

eine exponentielle Form zu gehen. Dies ist durch
Anwendung der Stirlingschen Formel leicht erreichbar;
man findet vermöge bekannter Umformungen

P(aHaS) (lb)

1~P2 2 *—-Pi ä_J_
—

1
e 2sPxP-i

01
2sp2P3

°s
sP3

0102

2n~\/s2plp2p3

Diesen Ausdruck für die Wahrscheinlichkeit P(a a
kann man aber noch durch verschiedene andere

Näherungsmethoden herleiten, so z. B. durch ein
Verfahren, welches jenem von I. J. Bienayme im
„memoire sur la probability des erreurs d'apres la methode
des moindres carresa angewendeten nahe verwandt ist.

Wir gehen von der erzeugenden Funktion aus
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x=(p1 eUli +P,eU3i + Pt)s

unci entwickeln dieselbe in eine nach Potenzen der
Zahl e fortschreitende Reihe. Das Ergebnis dieser

Entwicklung sei

s,) e~(s

Um nun die "Wahrscheinlichkeit zu erhalten, dass das

Ereignis E s, mal und das Ereignis E2 s'2 mal
eintritt, bilden wir die Gleichung

zp (Sl, s2) e^Hl i+(S2~',:) *2 ' x e~{ K Ul+< "2)'

Integrieren wir diese sowohl nach u als nach u
zwischen — n und n, so ergibt sich

TT- TT.

P (<, h) 7^5 / [X Ui+K "2) ' du, du2 (6)

als Ausdruck der gesuchten Wahrscheinlichkeit.
Für jede ganze Zahl a ist nämlich einerseits

71 TT

Jg+aui du j (C08 au + i sin au) du — sin an — 0

—TT TT

und anderseits

TT. TT TT

j du 2n, sowie J J du, du2 (2ji)2.
TT TT. TT

Um aus der Wahrscheinlichkeit P(s s„) einen

geeigneten Aäherungsausdruck für die Wahrscheinlichkeit

P(a ö9) zu bekommen, führen wir zunächst
die Werte ein

SPl + °1> S2 «Pä + <V



— 75 —

Weiterhin suchen wir nach einem Näherungsausdruck

für X, indem wir in bekannter Weise setzen

X [Pi C1 + ui1 — Y ui •) + l»g (!+«»* —

2
ul •) +P3]6

[l + (iJ,«, + j»2tt2)»— Y Cpi«? + jp2«I) - • • -]s

ZnA~ sZn [1 + H-jPgMg)* — yCpX + .PgMg)--]

«(?!«! +P2«2)*— _~~
— Y*P* ^ ~^s) "a + SW(1«!

«(?!«! +P2«g)*— ß(«H "g)-

Wir kommen so zu der Näherungsformel
71 7t

P (°i' (2^ / / e~"Q(Ul' 2)_("1 "2)' dMa- (0a)

—-T —rr

In der Annahme, dass der Integrand bereits für
massige Werte von u und u2 eine sehr kleine Grösse

ist, erweitern wir die Integralgrenzen bis — oo und

+ oo. Auf die dadurch entstehende Formel

^ oo oo

P(pltos)=-^fJ J e^Q(-Ul'u^~(-aiUl+a2U2'>idu1du2 (6b)

— oo — oo

wenden wir das Bienaymesche Yerfahren an, welches
für einen dem vorliegenden ähnlichen Fall bereits

Laplace in der „Theorie analytique des probabilites"
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mitgeteilt hat. Behufs Ausführung der Integration
setzen wir

Y sl\ (1 — 1\) ui + Y SP2 i1 ul — sPi P2 ui u2 +
4- (44 + o2u2)i

~ KlU\ + (^12 + Ki) U2 + 2'<11 K2U1U2 +
4- 2hn tt i + 2 (/i12 ^ -|- h2212) m2 i

(KlUl + ^12 M2 + ^1 ^ + Ql2ili2 + ~f~ ^ + t~2

2 1 2 I »2 I »2

4 + v2 + h + h

und bedienen uns der Beziehung

dux du2 dvx dv2,

wobei A die Transformationsdeterminante ist, welche
den Wert hat

A

dvt dUj

dul öu2

dv9 8v2

öu1 öu2

o K„
hnK-

Berücksichtigen wir dann noch die Formel

J dz |/4,

so finden wir

P(ov 4)
2 71 Kl ]l-22

2 2

(7)



< + <

Nun ist aber

2
rr

— +2 I

12

4Ä* 2h 2KK 1

(fe)2 + O °1 — 2ftll ^12 °1 g2 + fel! g2

K<*

~ sp2 (1 ~P2) o\ + spx P2 oxo2+y spx (1 -px) o\

KK2 '

sowie

ÄnV *2WV

daher ergibt sich auch auf diesem Wege die Formel

(lb). Diese Formel weist folgende bemerkenswerte

Eigenschaft auf:
Setzt man

l~P-2 1~Pl _ _L 0,
2sp1p,d

öl1' 2sp9p3
a22'

sp3
C12

und trifft die Bestimmung, dass werden möge

KJ J e~Hi"X~aw "l~2ai2"l"2 dax da2— 1,
OD OO

so erhält man wegen

(]/'nf
OO OO

J Je~"n "l~a22°l~Ui201 das do2

- OO OO

und
VD

I)
ai2a22
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für die Konstante

K= IT y^iia22—

Setzt man für au, a22 und a12 die Werte, so

ergibt sich in Übereinstimmung mit der Formel (lb)

2n ys2p1pips
Das Gesetz

—g—all"l—a2S"l—~a12 "'2 (1°)

ist allgemein unter dem Namen „Gesetz der Fehler
in der Ebene1' bekannt. Ausführliche Erörterungen über
dasselbe findet man beispielsweise in der Czuberschen

„Theorie der Beobachtungsfehler" (Leipzig, 1891).
Um die durch die Formel (5) angedeutete Integration

durchzuführen, kann man verschiedene Wege
einschlagen. Hier soll zuvörderst eine Methode
Verwendung finden, wie sie in den artilleristischen
Lehrbüchern behufs Umformung des Fehlergesetzes in der
Ebene gezeigt wird. Es geschieht dies, um in formaler
Hinsicht die nämlichen oder doch ähnliche Integrationen

vornehmen zu können, wie sie bereits Hattendorf

in Masius' Rundschau, 18681), zur Berechnung
des mathematischen Risikos angewendet hatte. Eine
der ersten Arbeiten über die Transformation des

Fehlergesetzes in der Ebene verdankt man dem Holländer
Ch. M. Schols (Over de Theorie der Fouten in de

Ruimte en in het platte Vlak). Die hier vorgenommenen

Vgl. Wagner, „Das Problem vom Risiko in der
Lebensversicherung", Jena, 1898.

i>(' aü)
v «11 «22 '

e
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Umformungen sind als eine YervollkommnuDg der

Ausführungen anzusehen, die man bei N. Sabudski-
Ritter von Eberhard (Die Wahrscheinlichkeitsrechnung,
ihre Anwendung auf das Schiessen und auf die Theorie
des Einschiessens) findet.

Zunächst versuchen wir, die Wahrscheinlichkeit (1°)

vermöge der Invariantentheorie umzubilden. Führt man
in die binäre quadratische Form

ail ai ~t" a22 °2 + 2®12 °1 °2

die neuen Yariabeln t und t durch die Substitutionen

°l ti ai — f2a2

o, igCj

ein,1 so erhält man die andere binäre quadratische Form

+ *„«: +26^ (B)

in welcher ist

in au a\ + a22 a\ + 2al% cq ag,

^22 ®11 a~2 "t" a22 °"1 2®12 a\ °2 '

b12 (ü22 — «J «1 U2 ~ Ct12 («2 — «1

Bezeichnet man darauf die Determinante von (A)
mit zl, jene von (B) mit zl so ist

/J1 j¥2ZI, (C)

wobei M den Modulus der Transformation bezeichnet

(vgl. beispielsweise Diedr. Aug. Klempt, „Lehrbuch zur
Einführung in die moderne Algebra"), welcher
dargestellt wird durch die Determinante des Substitutions-
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systems. Die Determinanten A und A heissen dabei
die Invarianten der zugehörigen Punktionen. Weil
aber

an°i*

a21%2

bnb22- C

an a22 au '

M-- 2 I

öj + a.2'

ist, so ergibt sich die besondere Form der Invariantengleichung

bn K / 2 w 2 | 2X2(ftll a22 ~~~ ai2) (ttl + "ü) "

Die ziemlich allgemein durchgeführte Transformation

ist jedoch nur von Wert, im Falle sie zu wesentlichen

Vereinfachungen führt. Um ihr diese
Eigenschaften zu geben, denke man sich die Koeffizienten

a und a2 zunächst von der Beschaffenheit, dass bl9

verschwindet. Daraus ergibt sich

12 (a22 — an) «1 «2 — Cl12 («2 — ai) 0

a,«...
Um nun auch a^ ajj zu entfernen, setze man

a1 cos 92, a9 sin 9?,

so wird einerseits

2 1 2 2 • 2
« -j- a2 cos 99 sin cp 1
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und anderseits

ai a2 cos q> sin tp 1

2 F ~ 1 2 2 Ö"
a — öi sm <P — cos <P

ig 2g.

Folglich ist der Winkel q> aus der Gleichung zu
berechnen

2ci
tg2<p

an —

und gleichzeitig hat man die vereinfachte Invariantengleichung

~ ai2-

Somit gelingt es, das Fehlergesetz (1°) in das

einfachere zu verwandeln

p t3)
^&n &22

erhiitf~6wil *) (id)

*) Das hier benutzte Verfahren findet auch Anwendung bei
der Umformung der in rechtwinkligen Koordinaten gegebenen
Mittelpunktsgleichung

2 2
anx +2a12 «y + a22 =c

einer Ellipse oder Hyperbel in die entsprechende Hauptachsengleichung

^ii^i ^22 ~
Die Gleichung

2a,.,
tg 2 <p —

dient dabei zur Berechnung des Drehungswinkels (f, um welchen
das alte Koordinatensystem im positiven Sinne gedreht werden

muss, damit es in die Lage des neuen gelange. Zur Berechnung
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Die Berechnung der Präzisionen "j/ bn und j/ &,2,

für welche künftig h1 und h2 geschrieben werden soll,

ist vermöge des Winkels <p leicht ausführbar. Aus

h* a cos2 <p -j- a22 sin2 <p -|- 2a sin 95 cos 99

findet man durch einfache Umformungen

2 au + a22tgz<p + 2a12tg<p
1 + tg'y

Auf dieselbe Weise gelangt man zu der
entsprechenden Formel

,2 alltgs<p + assi — 2aiatg<p
K

1 + tg*i

Um die Funktion tg <p aufzufinden, gehe man von
der Formel aus

*9 % <P TT-»l — tgcp

welche sich in bezug auf tgcp in eine quadratische
Gleichung umbilden lässt, deren Wurzeln aus der Formel

+ l/'l + tg'2m — 1

'"y=" 'tgip

gefunden werden.

der Konstanten und J.2.> kann man sich auch der Gleichungen
bedienen

&11 + &22 °11 "b a22 '

an a22 ^a12
0,1 — 0„.i11 cos 2y sin 2 (p

(Siehe beispielsweise „Des Ingenieurs Taschenbuch",
herausgegeben von dem Verein Hütte.)
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Um das Risiko der ersten Vertragsart mittelst des

Gesetzes (ld) berechnen zu können, muss man auch
die Abweichungsfunktion

N(°1,a2) (:K— V) ai~ V a2 C1 Ö1 — C2 °2

als eine Funktion von t, und t darstellen. Durch die
Substitutionen

ox t, cos (p — t sin qp

a2 — h V -\~t2 cos 9
erhält man

N(t,, t — (c cos <p— c2 sin cp) t — (Cj sin <p -\- c2 cos </) t2

B\tl B2t2'

wobei angenommen werde, dass B eine positive
Grösse ist.

An die Stelle der Formel (5) tritt nun die Formel

B JJe~nl tl-hl tl
(-B, t, - B212) dt, dt2, (I)

bei welcher die Integrationen derart vorzunehmen sind,
dass stets der Ungleichung

Bi ti B2 h ^ 0

genügt wird. Das letztere wird erreicht, indem man setzt

oo oo

r=b, fe~hl tl dt2Je~hl tl h dti —
oo

lhh

V1
h. hn r ,2 2 f 2 2

—e~h^dt, e-h*ht2dt2;
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man erhält sodann

B==_ i i\ K ,h K
\hi ]/K K + K BI h ]/h\ B\ + hl Iii /

i_iKK±ÄK. (8)
2yn W

Substituiert man nun die Werte für h und h9, sowie

für jB und I?2, so findet man vermöge der Beziehung

022 — au) ~ sin 2g + a12 cos 2g 0

für das mathematische Risiko die Formel

J{ __
1

J /«n cl + «22 ci + 2«i2 ci
(9)

«11 «22— «18

Run noch für a a22, a c und c2 die Werte

einführend, ergibt sich hieraus die endgültige Formel

R-.
]/2

V® [Pl (1 -Pl) (K- V)2 + P2 (1 :p2) V2 +

+ 2Plpa(K-V)V]. (9»)

Zur Berechnung des mathematischen Risikos der
zweiten Vertragsart, für welche ist

N, (a,, as) (K1-V)oi + (K2-V)o2 ^ f2 a2,

erhält man durch Substitution der Werte von o und o2

N!K, fg) (f! cos 5P + fg sin <l) t, + (- f! sin g + C2 cos g) t2

Gltl + ^8 V
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Das mathematische Risiko wird daher symbolisch
dargestellt durch den Integralausdruck

j^tlh) dK dh, CD)

welcher in derselben Weise wie der Integralausdruck
für R behandelt werden muss, wenn man annimmt,
dass C2 negativ ist. Macht man aber die Voraussetzung,
dass C positiv ist, so führt die Bedingung der
ständigen Befriedigung der Ungleichung

C^ + C^O
zu der bekannten Integration

©O CXP

R1
hh. cje~hl tl dt-Je~kl tl

K dk +
—do a2

^

CO

K r+~irc>Je 'dt e~hUlt2dt,

welche ebenfalls ergibt

It i V*;c; + >x
1

2 |/jr W
Wenn man nun in diesen Ausdruck die Werte von

h1, h2, C und C2 einsetzt, so bekommt man

R -Lr +
(10)

2J/« I ancin — a*is



— 86 —

Durch Einführung der Werte von an, a22, «

f und C2 geht dieser Ausdruck alsdann in die

endgültige Forme] über

E,
!%=lA [P, (i -px) - yf +Pt a -P2) (E2 - v)2

2p1p3(K1-V)(K3-V)]. (10»)

Einfacher als die vorausgehende Berechnungsweise
ist wohl der Lösungsweg, den der Yerfasser in seiner
ersten Arbeit angestrebt hat. Es sei das Integral

~|/ an aaa — a22 12 / / ^—^11 "J—^22 —2#i2 &2E K 11 22 if / / e

(Clffl~ C2a^d(7ld<Ti (5&)

wieder derart zu integrieren, dass stets die Ungleichung

co Cj <r1 — c„ uo 0

befriedigt wird.

Erteilt man den Yariablen einen beliebigen
Wert, so ergibt sich

— csff* °»
•

C2
sofern man setzt a1 — a2; es wird aber

ci

°°s^ci ^ —cs«rg>0,

wenn man für a alle jene Werte wählt, welche grösser

als — er, sind.
ci
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Geht man von einem beliebigen Werte der
Variablen o-j aus, so erhält man

C2(72 0'

falls man setzt a — <7 Um aber zu erreichen,
c„

dass wieder die Ungleichung

00 C2 "2 > 0

befriedigt wird, muss man die Variable <r2 alle jene
Werte durchlaufen lassen, welche kleiner sind als

ci

c2 ^
Aus diesen Überlegungen folgt, dass man dem

Integrale (A) die Form zu geben hat

B :

]/a'lia22
OO

c1Je~(-"22~ai)"lda2

-(l/«ll®l+l/ai^)8<y d(T

-o2

Je daje-(Va"°r\-V"^y ö-2 da, ^
— 00 —00

wobei die Koeffizienten a1 und a2 aus den Gleichungen

'=~laua1 Ulld «,,= l/«Ma,
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zu bestimmen sind. Dieses Integral lässt sich in der

angegebenen Form noch nicht auswerten. Beachtet man
aber weiterhin, dass man zwei Koeffizienten X und /
derart bestimmen kann, dass stets die Gleichung
erfüllt wird

ci""i ~ + ]/«! <?2] ~ ["|/«ää^2 + ]/«2 "l] '

so ist damit die Lösung gefunden.

Zur Bestimmung der Koeffizienten X und X dient
das Gleichungssystem

Kian~
K Y«~i— K ]/a22 ~ C2>

aus welchem man erhält

2
C1 Vg22 + C2 "l/S

}
Cl ]/«! + C2 "|/an

«a' 2

Vana22— l/ai«2

Setzt man nun für die Yariable c <r die andere

"2) un<^ an Stelle der Yariablen

c2<r2 die neue Yariable X% ("]/ aJa<r3 -(- |/a2 «rj, so hat

c2 I c
man für die Grenze — a. zu nehmen Ii a,, f-

ci
2

V Ci

-4- l/Iö\ für die Grenze — <7, aber 11 fa~ —- -4-r 7 2
c2

1 y 22
c2

Dadurch aber geht das Integral (5b) über

in das entsprechende
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R
]/' aua22 ®I2

V1
e («32 ai) a^da2 e u u du

(y«n +y«i) °2

(y^ ~+y«s) «1

g—(«ii «2) "5^0- / g vl vdv
(5°)

aus welchem folgt

R
]/®llffi22 '

2n

Y

und ferner

3

g-[(a22-«i)+ (y«n—+y «1) \\ da2 +

o

00

^i— fg-[(an-«i)+(y«22—+y«s) ]«?
da^

t a J
(5d)

R -

aiia-22 ai2

2\n y a„ et + an c2 + 2alt c, c2 l/% 1^22
• (5e)

Führt man in diesen Ausdruck die Werte von

«j, a2, X und X2 ein, so erhält man mit Berücksichtigung

der Beziehung

]/aua22— Y^Ü-2

abermals die Formel (9).

«lia22 — aU

Yanaj2
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Um die letztere herzuleiten, kann man aber noch

zwei andere Lösungswege einschlagen.
Da sich die stets gültige Gleichung aufstellen lässt

Ciai—C*ai hai — h (]/a22ff2+ }/a2ffl)>

aus welcher man erhält

G «22 + ^2 «12 r

so findet man, Y a22°2 -|- ~\j a2ai <p setzend,

1.
E

}/aua22~al
y

fe~rp" dy faaaJ J

u

Ya22J_Je^-^^d^Je^ yd 9
(50

Durch mehrfache Umformungen ergibt sich hieraus

Ä,
B ±-y «ii «2ü—«i2

pir u—f ^1/Ki_cts)+db (5s)
2in y «22 («H a2) I K

und wenn man für a /.l und die Werte einführt,
so bekommt man wieder die Formel (9).

Ferner besteht aber auch die stets gültige Gleichung

G«i — c2«2 K ["[/% «i + ]/«i «?] — k°2>

für welche ist

C1 C2«11 + C1«12
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Setzt man ~j/an a,1 -f- "|/ at a2 — ip, so erhält man

durch Anwendung der vorstehenden Gleichung den
Ausdruck

R
a'ua22 ai2

f<-

CO CO

_J da2Je-y'*yd ip

IX — CO

—7= e~

11 — OOfa.
2

dipJ i
"i)a' a2dff2

(5h)

Denselben in entsprechender Weise wie den
Ausdruck (5g) behandelnd, findet man

R- _/v» — al

YVn— :l/(flM~ai)+7"- (5i)

y an (a22 — «0 r

Indem man nun noch für a X und X2 die Werte
einsetzt, gelangt man nach zweckdienlichen Umgestaltungen

wieder zu der Formel (9).

Das mathematische Risiko der zweiten Yertragsart
wird in Analogie zur Hattendorffschen Berechnungsweise

aus dem Doppelintegrale

R .Yana22 — an

(5k)

~a\i °i—a2S °l—2a12 al o2 + W d"l d(T2

gefunden, indem man setzt
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+ C2Je~^an~a2)a] d<rxje^a'22 "3 + 1/a2 "l)S
<ra da2

— oo
—̂Ol
k2

Um diesen Ausdruck einer Lösung zuzuführen,
kann man setzen:

1. c,^1 + C2ö-2=^1(ya11ö-1+y 0l ^) + ^(]/i^2+]/s<7i)>

2. + Z202 — h°l + K ^ati°2 + ]/a!! °"l)'

3. £1<J1 -f C2U-2 11 + y«!^) + V*-
Für die erste dieser Gleichungen findet man

-,/ ^ia2 i ^1^12 -,/ ^2ai\ ^Iai2
;h=yaii *-> s=y«„ r-»r «n»« —«» f auoM — «12

für die zweite ergibt sich

£l ö22 ^2 ®12 ^2
X1 ' ' k2 / '

V a22

und für die dritte folgt
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Endlich sei noch bemerkt, dass sich die hier vor
Augen geführten Berechnungen umständlicher gestalten
würden, wenn man sich der Integrale

00 00

Jl Je~an^a^\-^2oin.2 ^
0 — 00

_
21/^ y »ai«2o — «12

00 00

J2 Ja2 da2Je~lhl "I-0"":-8»""!«'« iax
0 —00

"[/ an

2 l/^]/aua22 —a",

bedienen wollte, die besondere Fälle eines von Czuber

auf Seite 276 der Theorie der Boobachtungsfehler
angegebenen w-fachen Integrals sind.

2. Das mittlere Risiko.
Das mittlere Risiko s gleicher Verträge wird ähnlich

berechnet wie die mittlere Abweichung von dem

wahrscheinlichsten Werte einer Ereigniszahl (vgl.
Czuber, „Wahrscheinlichkeitsrechnung", 3. Auflage,
§ 96), oder wie die mittlere Abweichung aller nur
möglichen Einzelwerte von ihrem arithmetischen Mittel
(vgl. G.E.Lipps, „Die psychischen Massmethoden",
Abschnitt 15: Die Mittelwerte der Beobachtungsreihen).
Wir beschäftigen uns wieder mit der ersten Yertrags-
art. Um die mittlere Abweichung vom rechnungs-
mässigen Ergebnisse zu bestimmen, bilden wir den

Hoffnungswert von Quadraten
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m2=22
Si,

°\K1 p7p13 h (K-r-n)-
-st(V+n)-s3nf, (li)

für welchen wir auch schreiben können

M2 2 2 -P «,) [»! (K—V) — s2V—s nf. (1 1»)

Die angedeutete Summation ist hierbei über alle

nur möglichen "Werte von s s2, sg zu erstrecken,
welche der Gleichung

si + sä + ss s

genügen. Lösen wir die Quadrate auf, so geht die

Gleichung (11) über in

M2 (K- Vf 2 2 P(sv s2) sl + V2 2 2 P{sv s2) s\ +
+ s2/722Si3(«1,s2)-2(^~F)L22P(s1,Osis2-

— 2s(K— V) /722-P(v s2) s1 +
+ 2sF/722J>(«1,«2)V (Hb)

Weil nun die Formeln bestehen

ZyiP(svs2)s1 sp1, 22i3(s1,s2)Si =8(8-1)^1

22p (81, S2) S2 sp2, 22P (81, S2) s\ s (s -1 )p2 + sp2,

22 P(s1,s2)s1 s2 s(s—l)Plp2,

zu deren Auffindung bereits Laplace Anlass gegeben
hat, so ergibt sich die Gleichung

M'2 (K~ F)2[s(s-1)i^ + sj?J + F2[s(s-l)p2 +sp2] +

+ II2 s2 - 2 (K - V) VsPl -2 {K-Y) ns2Pl +
+ 2 Vns2p2.
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Entfernt man aus derselben 77 vermöge der Formel

77 =Pl(K-V)-PsV,
so lässt sich die mittlere Abweichung auf die Form
bringen

M Y^T-Pl) (.K- Vf + p2 72 +
+ 2•pip2(K-V)V]. (11")

Um das mittlere Risiko der zweiten Vertragsart
zu bestimmen, hat man von der Quadratsummo

M\ 22 PS: P7PIS k - F- 77) +V V V
+ s2 (V2 V 77) s3 77]2 (12)

auszugehen, die auch in der Form geschrieben werden
kann

M\ 22P(8l, g [gl (E, - F) + {K2 - V) - s77]!. (12»)

Nimmt man dieselben Umformungen vor wie beim

vorhergehenden Beispiele, so erhält man als endgültige
Formel des mittleren Risikos

Mi Vs [Fi C1 - Pi) F)2 + i?2 (1 - p2) {K% - F)2 -

-2plpi{Ki-V){Ki-V)\. (12")

Zu denselben Ergebnissen gelangt man bei einer
kontinuierlichen Behandlung der Abweichungen.
Dieselbe erfordert, dass man beispielsweise das Quadrat
des mittleren Risikos der ersten Vertragsart durch das

Doppelintegral
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M2 ^ 011022 0,12

jJ(Cj fft — C2<rX~ Cl<ri da2 (13)
- OO CO

darstellt. Indem man sodann das im Intcgranden
auftretende Quadrat auflöst und sich der Integralwerte

2 OO oo
l ana2i ai2 r r^—allol~a2iol—2ano1o;!^>^ff ^

2(ana22 — alj8 \ >

y2 oo oo

J je~ai1 "2~arl"* a\ d(71 d(J2

- oo oo

«11

2(«ll«M —«1»)
2 \ '

y2 oo oo
«11«M~«12 J Je~an „]-a22 aj-*»,,,, „t ^ ^^^

- oo — oo

2(«11«22 —«»)

bedient, welche Czuber in der bereits erwähnten

„Theorie der Beobachtungsfehler" angibt, erhält man

ra,,
c„ + a„. c: -f 2 a c, c11 2 22 1

x12
1 2. (13a)

2 («a'«« — «!*)
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Wenn man in diesen Ausdruck die Werte für

a a22, a cx und c% einsetzt, so ergibt sich wieder
die Formel (llb).

Das Risiko der zweiten Yertragsart erhält man
aus dem Integrale

anCi22 ai2
1

71

oo oo

OO OO

Behandelt man dasselbe wie das Integral (13), so

ergibt sich für das mittlere Risiko die Formel

M yan^ +
^ (14a)

2(®n«22 — ai2)

welche durch Einsetzen der Werte von an, a22, a
t, und C2 übergeht in die Formel (12b).

3. Die Wahrscheinlichkeit eines Verlustes
oder Gewinnes.

Um aus der Wahrscheinlichkeit (lc) die
Wahrscheinlichkeit einer Abweichung

A N(av <T2) «Tj Cj — <T2 C2

herzuleiten, eliminieren wir aus (1°) etwa <t1 vermöge
der Gleichung

e71—~(A-j-ff2 c2).



Es ergibt sich dadurch der Ausdruck (15)

welcher, wie man sieht, rocht unhandlich ist. Wendet
man auf denselben zunächst die Stirlingsche Formel
an und nimmt alsdann die vereinfachenden Entwicklungen

vor, derer man sich auch zur Darstellung des

Bernoullischen Theorems bedient, so ergibt sich für
die Abweichungen A und a ein gemeinsames Gesetz,
welches dem Gesetze der Fehler in der Ebene

entspricht. Darauf A als konstant ansehend, entferne man

<t2 durch Integration, so bekommt man das Gesetz der

Abweichung A. Diese Darstellung ist immerhin
umständlich, weil sie eine Reihe von vereinfachenden
Yornahmen notwendig macht, welche bereits zur
Darstellung der Formel (1°) erforderlich sind. Gehen wir
von der letzteren aus, so können wir den Satz

aufstellen, dass die Funktion

dem Wahrscheinlichkeitsgesetze

P(/0=-^e^2 (16)
y n

unterliegt, für welches die Präzision ?/ nach der Formel
zu berechnen ist



Für die zweite Vertragsart würde sein

A ai + ff2

und man erhielte

\ TT

mit der Präzision

a\i ^2 + ®22 ^1 2a!2 £l ^212 *=1 s2

In dem Aufsatze „Allgemeine Herleitung eines

Satzes yon Laplace11 im Bande IV von Lcewenbergs
Sammlung versicherungstechnischer Arbeiten hat der
Verfasser die Entstehung der Gesetze (16) und (17)

ganz allgemein behandelt. Hier werde die Entwicklung

mit Hilfe des Diskontinuitätsfaktors von Dirichlet

kurz vor Augen geführt, welchen man schon bei

Poisson (Lehrbuch der Wahrscheinlichkeitsrechnung)
vorfindet, und dessen sich auch Markoff
(Wahrscheinlichkeitsrechnung) bisweilen bedient hat.

Dieser Faktor ist gleich 1, wenn (fc1<r1 + Ä"2<x2)

zwischen — A und -f- A liegt, und verschwindet, sofern

{ko +kit2) ausserhalb dieser Grenzen liegt. Für

(k1ol + k2cr2) — A und Qc1al + &2<r2) — A nimmt er

den Wert an.

Um die gesuchte Wahrscheinlichkeit zu erhalten,

multiplizieren wir die Summe der Wahrscheinlichkeiten

oo

CO
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V "i2 j Je-«i1"l-a22ol^al2„in2dff^dff^ 1

2 oo oo
'«12

- oo — oo

mit diesem Faktor, so wird

1/ «„ a99 — a,,
W(— A, A)

1 11
222

CO oo

/ I Je~an"l~a22nl~2ai2aia2+{kia'+k2a2y4i^^ da^da^dz.

Weil sich nun die Funktion

2 2
au «1 + «22 «2 + 2 «12«! «2 + (^«l ± ^

auf die Form bringen lässt

k,z 2

(l/au<r 1 + -—^ff2 + ~=i) +
1/an 2yan

'

«11 a22 ~~ «12 ± «11 K ~ «12 lc

— <r2 +
i]/«n(<«n 2 (/ a,, a11a22 — a

L^»V
»«) I

a0Jc, -4- a..h0 h- 2&10/i" Jc0
0 0 „ loo12 1 2_;82=^+t?2+

X ^2^
4 («U «22 —a®2)

l man statt nacl
nach v2 integrieren. Zu diesem Zwecke setzend
so kann man statt nach a nach vx und statt nach a

dvx "1/ au
diyt da2~ dvv

Van ]/«n «22 — «12

bekommt man
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t,w ^ ^ 1 r —AtoV sin zlg f —vz 7
/" _K* 7

W(rA,A)-——Je 2 —-—dzj e ^dv^Je ldv{

oo

(A)

einen Ausdruck, der ein besonderer Fall eines bei Laplace
und bei Poisson mehrfach vorkommenden Integrals ist.
Derselbe stellt bereits die Wahrscheinlichkeit dar, dassdie

Abweichung zwischen -A und -f-zf liege. Da man aber-

die Wahrscheinlichkeit P (A)
^^ ^ ^ kennenv 1 dA

lernen will, so differentiiere man den obigen Ausdruck
(A) nach A mit Berücksichtigung der Beziehung

Sinzig 1 r— / cos zlz dA.
Z u J

—A

Man erhält dadurch das Integral

P(A)^^fe^m2z2cosAzdz, (B)

dessen Lösung bereits Laplace auf verschiedene Weise
gefunden hatte. Eine derselben möge an dieser Stelle
Platz finden.

Aus der vorstehenden Formel erhält man durch
Differentiation nach zl

dP(A) 1

dA 2n

2 2

e 2
2,5 z sin A z zdz.

Wendet man auf das so entstandene Integral die

partielle Integration an, so ergibt sich
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dP(A)

dA
1

2 nSffl
—— SCR2 a2 • ag 2 sin A z

2 7T 9J?2

Nun ist offenbar

f
e 2 " cos Az dz.

lim e 2®"'"' sinz(2 0,
Z=-\- oo

daher kommt man zu der linearen Differentialgleichung

(D)
dP{-A) + —2P(d) 0,

dzl

deren Lösung auf verschiedene Weise vorgenommen
werden kann. Da die Differentialgleichung eine homogene

ist, so bietet sich die seltene Gelegenheit, die

Integration durch Reihen zur Anwendung zu bringen.
Durch aufeinanderfolgende Differentiation der
ermittelten Gleichung erhält man die neuen Gleichungen

p'j> + fflPPw=0

p" + L-i'p,,(zl) m2 (J) ^2 u

P" -i- ^ P" -1-
^

P
(J) an2 (A) arc2 (J)"

piv_]_ Ap1" -i-Ap
2 ^ (ä) '
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Da diese Gleichungen für jeden Wert yon A gelten,

so müssen sie auch für A 0 richtig sein. Für
diesen Wert von A erhält man aber

P(A) —; 0

p" _j L p o p" — p
(0) 9R (0) (0) TO2 (0)

p'" J—— p' ~ o p " — 0
(0) 9R (0) (0)

PIV 4-
^ p" 0 Plv —

^ p" __
^ p

(0) SR2 (0) (0) 9R2 (0) SR4 (0)

Nach Mac Laurin besteht die Reihe

P - P -4- AP' -1- —!— p" _L p'" _l Piv_lx (zi) x (0) ~T ^ (0) ~r 2! (°) "r" 3! (°) ^ 4! (°>

Setzt man nun in diese die vorstehenden Werte

von P{'0), P"0), P'y, P. ein, so ergibt sich

zl2 A4
P =p — P -L P —(/l) 0) 29R2 (0) 8 9R4 (0)

P(o, (i-—+-f—V-
\ 23R2 2! \2 9R2/

(2

p(0) e 2

Um noch P(0) zu bestimmen, setze man in dem

Laplaceschen Integralausdruck A — 0, so folgt wegen
cos 0 — 1,
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2"l„ ' V» 1/2 501'

Es ergibt sich mithin die bekannte Formel

1 ^"2-
plu -~=—<rs®t2. (E)

Das hier angewandte Integrationsverfahren mittelst
Reihen pflegt sonst nur bei verwickeiteren Differentialgleichungen

Anwendung zu finden. Als Beispiel findet
man die hier gegebene Lösung in dem Leitfaden für
den Unterricht in der höheren Mathematik von Emanuel

von Budislavljevic (Wien, 1900).

Die Differentiation
^ ^ erübrigt sich,

sofern man die Wahrscheinlichkeit zu bestimmen sucht,
dass A zwischen A und A -j- dA liege. Die Berechnung

kann dann mittelst des in den Czuberschen
Werken vorkommenden Diskontinuitätsfaktors

£ dA dz
2 n J

— CO

vorgenommen werden, für den man übrigens bei Hack
(Wahrscheinlichkeitsrechnung) eine elementare
Herleitung findet.

An Einfachheit werden aber alle Darstellungen
durch ein anderes Yerfahren übertroffen, welches auch
schon Laplace ersonnen hatte.

Es werde wieder nach der Wahrscheinlichkeit
gefragt, dass nach Ablauf des für alle Yerträge
gleichen Zeitraumes dem Unternehmer ein Glesamtschaden

s/7-1- A
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erwachse. Dabei bedeutet A den Betrag, um welchen
die erwachsenden Schäden grösser sind als die zur
Deckung des rechnungsmässigen Yerlaufs des

Versicherungsgeschäfts ausreichende Risikoprämiensumme
s/7. Zur Ermittlung der gesuchten Wahrscheinlichkeit
stellen wir die erzeugende Punktion auf

deren Entwicklung uns die Wahrscheinlichkeiten
sämtlicher Verluste und Gewinne vor Augen führt. Um
nun die Wahrscheinlichkeit des Rettoverlustes A zu

erhalten, multiplizieren wir die erzeugende Funktion
mit g~~un(j integrieren darauf nach z zwischen

— 7i und -f- 7i. Alsdann stellt das Laplace-Poissonscho
Integral

7t

die gesuchte Wahrscheinlichkeit dar.
Um uns von der Richtigkeit unserer Behauptung

zu überzeugen, denken wir uns die erzeugende Punktion

in der bereits angedeuteten Form

e+Kzi

geschrieben. Sodann geht aus dem Integral (18) die

gesuchte Wahrscheinlichkeit hervor, weil stets ist

~ fdz 1 und fß±azt dz -= 0.
ItiJ 2 TiJ

7t 7t

Die erste dieser Gleichungen bedarf keiner
weiteren Erläuterungen. Die zweite lässt sich für eine

ganze Zahl a leicht beweisen; denn es ist für eine
solche
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1 (* -j- ciz i i •• \ -j S1H CUT _

6 az K— (c,osaz±z$maz)dz 0,
2nJ 2nJ an

weil für jeden Wert von a ist 2- j"sin az dz 0.

Mithin bleibt nur der Fall zu erörtern, dass a
eine irrationale Zahl ist. Zu diesem Zwecke setzen wir

a — m±k,
wo m die a am nächsten liegende ganze Zahl vorstellt
und k + (a — m) einen irrationalen Dezimalbruch
bedeutet, welcher stets kleiner als 1/z ist. Durch diese

Vornahme kommt man zu einer der Gleichungen

1 r 7
sin An

cos az az — +
2 nj an

— 7

Weil nun stets ist sin An kn, so wird man den

_TT sin An k sin k nrecht kleinen W ort ; m den mei-
an a kn

sten Fällen vernachlässigen dürfen. Anderseits aber
kann man wohl zu der Annahme Zuflucht nehmen,

dass sich ebenso oft ein positiver Rest
^n

wie
an

ein negativer — ergibt, woraus sich dann

folgern lässt, dass sich die Integrationsergebnisse nahezu
aufheben. Denkt man sich die Werte k durch eine
kontinuierliche Folge von Zahlen ersetzt, welche

zwischen und -f- -i- liegen, so ergibt sich ebenfalls
Li Li

1

— / sin kn dk 0.
a n J
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Fernerhin kann man auch die neue Variable
u z= nz einführen, wobei n eine sehr grosse Zahl
bedeutet. Man erhält so

1
-T

i
TT11

Tr— / cosazäz—-— / cos sacht.
2 n J 2 n n J

71 TT n

worin gesetzt wurde e — —. Für nn oo setzend,
n

findet man darauf näherungsweise

1
*T °°

jr— / cos azdz—Tz— co» su du —0,2 TT J 2 anj
— 71 — oo

weil für irgendeine angebbare Grösse s ist

oo

Jcos eu du 0,

£
und man überdies auch s 0 setzen kann.

2 an
Ungeachtet dieser Untersuchungen kann man sich

aber sämtliche vorkommenden Gewinne und Verluste
auf ganze Zahlen abgerundet vorstellen.

Schreiben wir zur Abkürzung wiederum

K- U=Cl und V— c2,

so nimmt die vorhin mitgeteilte generierende Funktion
die Form an

x=(p1ec"i-hp2e~C2Si+psy.

Zur Auffindung eines geeigneten Näherungswerts
von P(jj suche man nach einem Näherungsausdruck
für X. Zu diesem Zwecke führe man zunächst die

Näherungsgleichung ein
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lnX= s In [l -|- (pl ci —p2 c2) zi —

— y (Pi c\+P2cl)z%

welche erhalten wird, sofern man die g-Koeffizienten
in X in Reihen entwickelt und darauf sämtliche den
zweiten Grad übersteigenden Potenzen von z vernach-

lässigt. Ferner beachte man, dass man für kleine "Werte

von x setzen darf

In ^1 -j- axi 4/^) — axi \(ß — ß2) ß2>

man erhält dadurch in dem Ausdrucke

X es (4 C1 P% c2) zi-Y[lh (!—Pl) Cl+P2 (1-P2) cl + 2i>i P2 Ci C2J

einen gut verwendbaren Näherungswert für X.
Denselben in die Formel (18) einführend, und in der
Annahme, dass der Integrand bereits für mässige "Werte

von 2 sehr klein wird, die Grenzen dos Integrals bis

— 00 und -{- 00 ausdehnend, bekommt man

00

po) äje~ (is-)
OO

worin zur Abkürzung wieder gesetzt wurde

M2 s [p1 (1 —pß c2 4-p2 (1 —p2) c\ + 2plPi cl c2].

Wendet man hierauf noch die Formel an

00 00

/4—ax2~^~bxi 1 _—— f „—(]/ax-\j ~1 / ^ „— —je ax e iaJ e -^>dx=y — e

so ergibt sich das endgültige Gesetz
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(19)

Um das Gesetz der Gewinn- oder Verlustabwei-
chungen für die zweite Vortragsart herzuleiten, gehe

man yon der erzeugenden Funktion aus

in welcher in Übereinstimmung mit der früheren Be-
zoichnungsweiso bedeutet

Durch Betrachtungen, welche den vorausgehenden
analog sind, gelangt man dann zu dem Gesetze

in welchem ist

M] s \Pl (1 —pj + pa (1 —pa) d — 2pxpa ^
Die Aufstellung des Gesetzes der Abweichungen

von dem rechnungsmässigen Ergebnisse führt uns
zunächst zu weit einfacheren Berechnungen des

mathematischen und mittleren Risikos. Wie Wittstein (Das
mathematische Risiko der Versicherungs-Gesellschaften)
das mathematische Risiko durch die Formel

Zi (Pi + Pa e'SZ' + Pa)\

Cx — Kx — V und c9 K2 — V.

oo

0

und das mittlere Risiko durch die Formel

— oo



erklärend, erhalten wir die bereits im ersten und zweiten
Abschnitte dieses Kapitels berechneten Werte.

Kür den heutigen Stand der Wissenschaft und für
die Erfüllung der etwaigen Erfordernisse einer
praktischen Anwendung ist es aber weit wichtiger zu wissen,
mit einer wie grossen Wahrscheinlichkeit man einen
Verlust oder einen Gewinn von bestimmter Grösse

erwarten kann.

Von der bekannten Rechtecksformel

rl ,1
yx dx Y y«- "f" ^«+1 + • • + iJb-1 + Y yb

Anwendung machend, findet man für die Wahrscheinlichkeit

eines Verlustes innerhalb der Grenzen 0 und

K die Wahrscheinlichkeit

W
(0, K)

I=K K

ZX> IPi,,d^+Y(Pi« + Pi")' (21>

1=0 0

wobei ist

K tt K HK

jP{ dA Je~n2 je-*"dz=\(l>{HK).
o \'n o \'n0 *

Setzt man HK y, also
jEp 80 kann man

mit der Wahrscheinlichkeit

"V«=«v=| ^ 0+e-'') m
erwarten, dass der etwaige Verlust innerhalb der

Grenzen 0 und liegen wird.Ii
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Für die Wahrscheinlichkeit eines Gewinnes innerhalb

der Grenzen — K und 0 findet man durch eine

entsprechende Betrachtung
/l-O 0

"W,.>==/p(J>" + Ith-« + hA (22>

-i=—ir K

und da stets ist P(__^ P
X),

so folgt

„=p„.=t % + i§r 0 + (22,)

Schliesslich ergibt sich noch für die Wahrscheinlichkeit

einer Abweichung innerhalb der Grenzen — K
und -f- K

\=K K

Zu diesem Ergebnisse käme man auch durch
Vereinigung der Formeln (21a) und (22a), wenn man dabei

beachtet, dass ist

w(0:K-p(,y (24)

Wie Moser und später Eggenbergor (Beiträge zur
Darstellung des Bernoullischen Theorems, der Gamma-
funktion und des Laplaceschen Integrals) gezeigt haben,
kann man (beispielsweise nach dem Taylorsehen Satze)

näherungsweise setzen

2fP(J)dA + P(K) 2fP*)dA,
0 0
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daher ist weiterhin

W{~K, K, " ^(H Äff) • (25)

Bei den vorliegenden Berechnungen darf man sich
aber damit begnügen, für

W (ß,r(-s,K) J(7)

zu nehmen, weil H wohl eine so kloine Grösse ist,

dass man sie ohne Bedenken vernachlässigen kann.

Immerhin sei hierzu noch bemerkt, dass Czuber und
1 ^1

nach ihm Kozäk K -|- -yy -yy setzen. Diesenfalls ist
2 IL

<P(yi) die Wahrscheinlichkeit, dass die etwaige Ab-

'7i 1_'

l~H ~2.weichung innerhalb der Grenzen + V^y ^-1 liegen

werde.

4. Das Risiko auf Grund der Wahrschein¬
lichkeiten a posteriori.

Die Methode, das llisiko mittelst der Wahrscheinlichkeit

eines Gewinnes oder Yerlustes zu berechnen,
bietet den weiteren Yorteil, die Wahrscheinlichkeit a

posteriori anwenden zu können. In bezug auf einfachere

Yersicherungsformen wurde auf diesen Yorzug der
Yerlustwahrscheinlichkeit bereits von E. Blaschke
(Vorlesungen über mathematische Statistik, § 46, Die
Versicherungsprämie) aufmerksam gemacht. Zur Ausführung

der geplanten Berechnung ist es notwendig, die

Formel von Condorcet zu verallgemeinern.
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Nachdem bei s s1-f-s2 + ss Yersuchen die Ereignisse

E1, E2, E beziehungsweise Sj, s2, sg mal

eingetreten sind, soll die Wahrscheinlichkeit bestimmt
werden, dass dieselben Ereignisse bei s' weiteren
Yersuchen beziehungsweise s'2, s'g mal eintreffen. Sind

nun x x2, xg die unbekannten Wahrscheinlichkeiten
für das einmalige Eintreffen der Ereignisse E E E„,
so ist die Wahrscheinlichkeit des s4 maligen Eintreffens

von E des s2 maligen Eintreffens von E2 und
des s3 maligen Eintreffens von E bei s Yersuchen
gegeben durch den Ausdruck

^ Si So So
»vi 1 rp & rp o
tK/. ia/0 «X/ •»i'VV 1 2

Da aber die Wahrscheinlichkeiten x{, x2, xg
unbekannt sind, so hat man die Wahrscheinlichkeit zu

bestimmen, dass die Kombination (sx, s2, s3) stattgefunden

hat, sofern den Ereignissen die Wahrscheinlichkeiten

xv x2, x„ zukommen. Diese Wahrscheinlichkeit

beträgt nach der Bestimmungsweise der
wahrscheinlichsten Hypothese

y/V>^l /v»^2 rl rp /"? O1 /7 V>

(3) 2 X 2 3

s!
denn der Faktor —; r—— fällt aus dem Zähler und

Sl! V V
Nenner fort. Die Integration des Nenners ist derart
auszuführen, dass stets der Bedingung

*i + ®a + ®s 1
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genügt wird. Setzt man daher für das Integral des

Nenners das andere

1 ^
I T

/a* dxx Jxs* (l — ,x1 — x2)h dx2 S(^2)S;

so bekommt man für die betrachtete Wahrscheinlichkeit

den Wert

(S + 2) Th «2 rh«X/,
„ s t l 2 3

•

V V V
Unter Zugrundelegung der Wahrscheinlichkeiten

x x2, x beträgt die Wahrscheinlichkeit, dass die

Ereignisse bei s' weiteren Versuchen s'2, s' mal in

beliebiger Reihenfolge eintreten werden

s • S':
00 00- 00

S[\ S'2l S'sl
1 * 3 •

Die zusammengesetzte Wahrscheinlichkeit der
nacheinander stattfindenden Erscheinungen ist gleich

(S ~t~ 2) ' sl+s'l ,v,sl+s'2 S3+S'.3
s- ' s ' <? ' s'' s'* s'' 1 2 3 '
Äi - -2- V V V V

und da man 0-/^ y 002 y 00^ nicht kennt, so hat man die
Summe aller nur möglichen Wahrscheinlichkeiten zu
bilden. Die gesuchte Wahrscheinlichkeit wird darnach
durch den Ausdruck dargestellt

l
17=

(S ~l~ 2) • S ' f Tsl+s'l r»2+S'2 rS3+'»'3 At flr fl,n
„ t v i a i o'i o' f <j't / (s) i 2 X3 axlax2a«

1 2 * 3" 1 2 3"

in welchem man der Bedingung a; + x2 -f X3 ~ *

nügend, setzen muss
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f spS2-\~st2 ^,53+53 y-7/V» flJ (3) l 2 1 2 3

0

1 1—x1 1—Xi~X3

Jx8^8'1 dx{Jx*2+s'2 dx2Jdxs^s'z
0 0

1 1—a?-

I" :++s 1

dxx J ay*-1-8'2 (l — x1 — x2)S3+s'3 dx2
5 o

(si + sl) • (s2 + sh) (Ss + s'<)'

~ (» + »' +2)! •

Es ergibt sich so die erste Erweiterung der Condorcet'
sehen Formel

w (g + 2)! s'! (si + «|)! («2 + Sg)! (s3 + sä)!

S1!S2!S3! «i!*2!S8! (« + *'+2)1

Setzt man in derselben

si — S'~<T + °v — S'^1 <Tv S'2 — S' ~f~ + "2 — SX + °21

si
S's s "7" + ai sPs + ffs>

80 lässt sich vermöge des Ausdruckes

K=3

TT [(s + s')pK +
tyr_ (s + 2) K=1

** *=? (s + s' + 2)!
iTv ][(s>a-+-K)!

K-l K-1

xrxs.x3
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die Wahrscheinlichkeit der Abweichungen <7 er a
ableiten. Die Stirlingsche Formel auf die in der
vorstehenden Formel vorkommenden Fakultäten anwendend,

erhält man nach Ausführung der üblichen
Reduktionen

s. K=3

si'x TT p~spK
1 /~K=3 I I K '

K=1

^1/ s I \ Pk
£=1

K=3 A=3

2^i/ sTr^

^ .-(s'Pk+°K)

SP*K=1 K=1 ^ ^ Ä /

K
K= 1

X.
4/TK

r s=i
ife3/ ^ i[(s+s')fx+"Ä]

i+
(s 4- s') 11 K II s'p rV 1 ' Ä=1 K= 1 '

Multipliziert man nun diese Werte miteinander,
so ergibt sich

W=-
/ A=3

2tj\ s'2(S + S')2 |[J»K:
I K=1

«= - l ff Uls+sOPK+ffjr]

I+F+75fc
K^l ^ A A/ 7f=l * v 1K'+sr

Vermöge bekannter Vornahmen, die auch zur
Herleitung des Bernoullischen Theorems notwendig sind,
findet man weiterhin
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K~* ' 0,r \-(S'-Pjr+»A-) K~'

!+^- =e K-*=il 8p*l

fr( \[s+s'^+°a-] /
IfJ'+ra;) =e->*+ *

%»+>') PkJ

wodurch sich ergibt

F(an av as) :

2 its' (S + S) I P^'Pz
I 01 o\ 03 \
VpT++g 2s'(s+s') \ p, JPB v-i

Da wegen

Py+Pi+P3=1
und

S1 ~t~ S2 "I" SS S P\ G\ "I" S 1}2 4~ ff2 ~f~ S P» aS

—s (Pi +P'i + Ps) ffi + °2 ~t~ ai — S'l

stets die Bedingung

a\ + + °3 ~ 0

befriedigt werden muss, so hat man eine der
Abweichungen durch die beiden anderen auszudrücken. Setzt

man daher

°\ ("i + a\ + a\ + 2*i <V

SO folgt

P{<TV CT,)

2ns (s-f s) jp1p2ps

g~ «'(«+«') j^2s ("pT" + ~p^~) + 2« ("p7 + "p7) "' +
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oder

P (p., a2)
5

2TTs (s + s)fp1p2ps

e-^i7j [»nol+ a^ol + ia^aq

Für den Fall von n Ereignissen hat der Verfasser
diese Formel in seiner Abhandlung „Die Hauptsätze
der höheren Wahrscheinlichkeitsrechnung bei n
Ereignissen" im 37. Jahrgange des Ehrenzweigschen
Assekuranz-Jahrbuchs veröffentlicht.

Setzt man noch zur Abkürzung

„2

ara ^ in >

s (s -f- s) Kl Kl'

so geht die vorstehende Formel über in

P(*V ff2) :

2ns (s + s) h\P2Pi

für welche die Beziehung gilt

S -1/7 7 7 2

2 s (s +«') ypYp2 ps
1 b„b,11 22 12"

Um vermöge dieses Gesetzes die Wahrscheinlichkeit

abzuleiten, dass ein Verlust oder Gewinn
eintreten werde, welcher innerhalb der Grenzen

d > kl al t k2 a2 > — b

liege, hat man die Grenzen des Doppelintegrals

JJdav d<r2
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der vorgeschriebenen Ungleichung entsprechend zu
bestimmen und eine der beiden Variablen ax und <x2

vermöge der Gleichung

A — k1al + k2 cr2

zu eliminieren. Beispielsweise <71 y~ (A + k2a^) sub-
l

stituierend, bekommt man

bllb22— b12

^
(5 o

dA fe *! " *; ^ao*+^ß'i? dAdo„
— d — c

wobei ist

^11^2 + ^22^1 + 2 ^12W
a -—-——

Ä9
l

2

ß_
(bi2ki + bn\)

bllK + b22^\ + 2^12^1^212 12
und

bn~ß biib22~ bn

K bll K + b22 K + 2 bl2 K K

Zur Vereinfachung der Integration noch die neue
Variable ]/a <r2 -(- ]/ß A u einführend, findet man
weiterhin

w(-Ö, b) ^fe-"'AldA J e~u* du
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und hieraus

w(— s, d) cid,

wobei ist

s ]/~ KK-bl
]/ ^11^2 + ^22^1 + 2

Auf Grund dieser Wahrscheinlichkeit kann man
aber mit der Wahrscheinlichkeit

0

erwarten, daas die Abweichung

N{al,a.^al{K-Y)-aiV
zwischen die Grenzen

±,.yW(i+i)«
und die Abweichung

Ari (al, <T2) Oy {Ky — 7) -f <T2 (K2 — 7)

zwischen die Grenzen

+ r-|W (l + ^
fallt.

Für die Praxis ist diese Wahrscheinlichkeitsbestimmung

bei weitem nicht so bedeutungsvoll, als

man zunächst anzunehmen geneigt sein könnte. Wie
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einleuchtet, rückt der Faktor 14-— der Einheit um so
s

näher, je kleiner die Zahl s im Yerhältnis zur Zahl
s ist. Nun hat die Praxis eher mit Fällen zu rechnen,
in welchen die Zahl s der Yersicherten bedeutend kleiner
ist als die Zahl s, welche letztere durch das

Zusammenfassen mehrerer Beobachtungsjahre gefunden
g

wurde. Yernachlässigt man aber den Quotienten —,
so gelangt man zu der gebräuchlicheren Methode des

vorstehenden Abschnitts.

Drittes Kapitel.
Das Risiko m verschiedener Gruppen

gleichartiger Verträge.

i.
Das im vorhergehenden Kapitel für eine Gruppe

gleichartiger Yerträge Besprochene behält auch

Gültigkeit, wenn ein Unternehmer m verschiedene Gruppen

von gleichartigen Yerträgen unterhält Die als sehr

gross zu behandelnden Anzahlen der Yerträge, welche
die einzelnen Gruppen bilden, seien der Reihe nach

S(l)' S(2,' ' ' " ' S(m—1)' S(m)'

Bezeichnet alsdann K eine Zahl aus der Reihe
der natürlichen Zahlen von 1 bis m, so ist

^-erHKä* (i)
\'n

die Wahrscheinlichkeit, dass der Yerlust oder Gewinn
der KXm Gruppe gerade betrage. Die Präzision

Hz dieser Wahrscheinlichkeit ist dabei gleich
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H
1 _}

i/2i/WA (2)

Infolge der Kenntnis des Wahrscheinliehkeits-
gesetzes (1) wird unsere Aufgabe auf die Ermittlung
der Wahrscheinlichkeit zurückgeführt, dass die
Ungleichung

K—m

u <C
i u (3)

K=l

erfüllt werde. Uber die Lösung dieser in der Methode
der kleinsten Quadrate eine grosse Rolle spielende
Aufgabe liesse sich allein eine Abhandlung schreiben.

Hier werde eine Lösung auf Grund der leicht ver-
ständlichen, von Gauss herrührenden Formel')

U U

JP (u) du— J (j, (tt — A2 — 4,- • • ~ AJ du
— U — U

oo oo oo

J<f2 (4) dA2 J<p3 (zQ dAs...JCfm (AJ dAm (4)
OO CO — oo

angestrebt. Wendet man auf die Wahrscheinlichkeitsfunktion

gx(u — A —A — AJ, welche aus g^(Ax)
Yermöge der Substitution A —u - A2 - Ag - - Am

hervorgeht, die bekannte Fouriersche Formel an

oo oo

rt«) AJe""iy

') Abhandlungen zur Methode der kleinsten Quadrate, von
Carl Friedrich Gauss. In deutscher Sprache herausgegeben von
Dr. A Borsch und Dr. P. Simon, Berlin, 1887.

fe xyi f{x) dx,
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die man beispielsweise auch bei Dienger (Die Differential-

und Integralrechnung, Stuttgart, 1862) findet, so

erhält man

(u — A — A. —. — A
-* 1 ^ 2 3 m'

oo oo

jei-u~i2~'h~'"~~Am^yi dy I*e~yAli Ax.

— oo — oo

Setzt man nun diesen Wert ein in die Gaußsche Formel,

so ergibt sich die Beziehung
7t

JP(u) du —
— IL

IL co „ oo
1 m

=-2- fdu fe"yi dy ]\ fe~yARi VK ^dA^ (5)

j J K=1 j— U — oo — co

zu welcher man auch durch die weniger einwandsfreie

Darstellung des Engländers Ellis gelangen würde, die
P. W. Ilultman in den „ Minsta Qvadratmetoden"
Aviedergegeben hat.

Um die Formel (5) einer Lösung zuzuführen,
nehme man die bereits yon Laplace herrührende

Yereinfachung vor
oo

j<pK{AK)e-yAKidAE
— co

oo

J9k (Ak) — VAki — Y y*Ak~--) dAic

— oo

1 00

OD 1 —-Fjry2Jv'K^k) AKdAK
— oo

cv 1
1- M2. y2 oe
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mittelst derer man erhält

U oo

P (ü) du — ~JduJe 2 ~ Mk v uyi dt/

Weil nun aber ist

1 r 1 v ,r2 2
J- / _ y m T,- n —e~S*X * ~Uyi dlj ~~= C ir*'2nJ k

so folgt weiter

P (llj d % —7= / £ 2V *

tnV22M*J K

Man kann somit mit der Wahrscheinlichkeit

y

^ fe~t2dt

erwarten, dass der Gesamtverlust oder -Gewinn aller
Yertrage innerhalb der Grenzen

±u ±y lj2ZM2K

liegen wird. Die Grösse

K y^22MiK,

welche für den Pall y -J auch Landre

(Mathematisch-Technische Kapitel zur Lebensversicherung)
mitgeteilt hat, ist daher als das Risiko des ganzen
Bestandes zu bezeichnen.
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Anmerkung: Würde man auf die Wahrscheinlichkeits-
funktion </x(m— zl,2— A„— — Am) die andere Fourier-
sche Formel

f/i (« — A2 — As — — AJ
-j^

oo oo

2rr f^s(u-A2-A3~. .-An)ydyfy>1(Al)ooayAldAl
— OO oo

angewendet haben, so hätte sich nach einigen
Umformungen die auch aus der Besseischen Formel
hervorgehende Beziehung ergeben

U

JP(u) du —
U

^
ti oo K=^n

2- f du fcos nydy 11 <pK (As) cos (ijAk) clAR,
' ~u —00 K=1

aus welcher weiterhin folgt
U

JP(u)du i-
— U

Wie beiläufig noch bemerkt werde, findet man einige
elementare Ausführungen über das Besseische Fehlergesetz
bei G. Zachariae (De mindste Kvadraters Methode, Ny-
borg, 1871).

II.
Eine andere, in den Rahmen dieses Kapitels

gehörige Wahrscheinlichkeitsbestimmung hat Bienayme
ersonnen. Überträgt man seine auf Fehler von
Messungen Bezug nehmende Untersuchung auf die hier
angestellten Betrachtungen, so handelt es sich um die

Bestimmung der Wahrscheinlichkeit dass der

Yerlust oder Gewinn in der Kten Gruppe der "Verträge

sin uy
y

dy.
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ynicht grösser ist als Die Lösung dieser Aufgabe,
°-K

welche in einer grossen Zahl von Schriften Erwähnung

gefunden hat, so auch bei Lindelöf (Über die

Ermittlung der Genauigkeit der Beobachtungen bei
der Analyse periodischer Funktionen und in der
Methode der kleinsten Quadrate, Helsingfors, 1901), wird
darauf zurückgeführt, das w-fache Integral

K—m

^K f K=m (] \

W.r/r""']!".
derart zu integrieren, dass stets der Ungleichung

+ + + (2)

oder der mit dieser gleichbedeutenden Ungleichung

0 < H\ A\ + H\ A\ + + Hl Al < y2 (3)

genügt wird. Findet nämlich (3) statt, dann besteht

um so eher die Ungleichung

TT 2 *2 ^ 2
H-K k y i

aus welcher folgt

74K<±

Um die weitläufige Berechnung des vorgelegten
Integrals zu umgehen, stütze man sich auf eine im
zweiten Teile des Schlömilchschen Kompendiums der
höheren Analysis abgeleitete Formel, nach welcher
man die allgemein gültige Beziehung aufstellen kann
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\ [f{y\ + y'l + • • • + ym) dy, dy3... dym
n 2 (m)

— —[f(u2) u"1^1 du. C4^mi
° < y] + y\ + • • • + y2m < r2

Boi der Horlcitung derselben hat man, wie schon

Bienayme hervorhob, jede Integration doppelt zu zählen,

weil u sowohl einen positiven als auch einen

negativen "Wert haben kann. Wendet man nun die
vorstehende Formel auf das Integral (1) an, dabei

HkAk=ijk setzend, so erhält man für die gesuchte
Wahrscheinlichkeit

nr) j~^fe~"\<m~1du. (5)

Sehr anregend gestaltet sich die Ermittlung dieser

Wahrscheinlichkeit mit Zuhilfenahme des bereits

angewandten Diskontinuitätsfaktors

oo

e — fe+v*iSin^dx,
TT J X

0

welcher den Wert eins hat, solange die Ungleichung

y <i u besteht und zu null wird, wenn y^> u ist.

(Vergleiche hierzu auch L. Hatani, „Die höhere
Analysis", Berlin, 1866.)

Um die Wahrscheinlichkeit des Bestehens der

Ungleichung

+ AI + + HI A"m</
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zu ermitteln, multipliziere man das Produkt der Wahr-
scheinlichkeitenintegrai e

K--~m tt

»i J
CO

mit dem den obigen Angaben entsprechenden Paktor

CO

e lleW+sl4+-+"l4^ sin^ dy,
0

so bekommt man für die gesuchte Wahrscheinlichkeit

OO r- OO
* 9

K—Dl TT

0 — CO

OO y> OO (-0)

' { J i o 0-»0T

Mit Hilfe der Formel

r(-)-i 0—(i—yt)<« V 2 /X2~l e-[i-yi,xdx
o (1 —2/0 "2

findet man nun ferner

f cos zyäy fus le (1 yi)udu

{ {l-yi)s Hs)J J
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und hieraus vermöge weiterer Umformungen

f cos zw 1 /' 7 [/ / 008 zlJ&y ui £ cos yudu.
J (l-yi)* {

Setzt man diesen Wert ein in die Formel für die

Wahrscheinlichkeit fF{y), so folgt

y" oo co

l f 2 f f m i uViy) - - I dz— / cos zy dy I u~z~l ~u cos yu du.
" 2 > n n Ii

Wendet man auf diesen Ausdruck noch die
bekannte Fouriersche Formel an

f(z) — Jcos zy dy Jf{u) cos yu du,
0 0

die man beispielsweise auch hei Cournot (Elementarbuch

der Theorie der Funktionen, deutsche Ausgabe,
Darmstadt, 1845) findet, so gelangt man zu dem
Ausdrucke

r
1 f m

'?<?'> Yprj " e-d*,
V 2 / 0

welcher die gesuchte Wahrscheinlichkeit darstellt. Setzt

man nämlich in demselben z u%, so geht die Formel

(7) in die Formel (5) über.
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Viertes Kapitel.

Das Risiko s von einander unter¬
schiedenen Verträge.

1. Anwendung des Tschebyschefi'schen
Theorems.

Wie man schon seit geraumer Zeit weiss, lässt
sich das Risiko s von einander unterschiedenen
Verträge einfacherer Beschaffenheit mittelst des ersten

Tschebyscheffschen Satzes ermitteln. Czuber bespricht
diesen Gegenstand auf Seite 191 und 192 der ersten

Auflage seiner Wahrscheinlichkeitsrechnung, während
die Ausführungen im § 19 (Das Risiko beim Spiel)
der Markoffschen Wahrscheinlichkeitsrechnung ebenfalls

auf die Anwendbarkeit des Tschebyscheffschen
Satzes hinweisen. Immerhin mag eine auf die von uns
betrachteten Verträge besonders eingerichtete Darstellung

den Ausgang unserer weiteren Betrachtungen
bilden.

Es seien s von einander unterschiedene Verträge
vorhanden. Beim xtea Vertrage ist zu erwarten mit
der Wahrscheinlichkeit

der Verlust ^K— V — (x)J2

oder der Verlust (x)Ei — w V— {h)TI,

p9 der Gewinn ^V-j-^ll
oder der Verlust —^II,

x^ps der Gewinn MII.



Entsprechend unseren früheren Yorausschickungen sei

+ {X)P2 + ^P-i 1

und ferner für die erste Yertragsart

^p^k- {H)r— {x)n) —

— [M pa (w v + (K)n) + wj)3 {Kn\ o,

für die zweite Yertragsart aber

{")pl((K)Ki — WY — {H)n) +
+ {K)P2 (ä) k2 - w v — (K)n) — (K)pg {H)n o.

Bezeichnet man nun mit S einen der möglichen
Q-esamtverluste oder Gewinne, welcher mit der
Wahrscheinlichkeit

wn ('2>n (3) »i z, I i2 p%2 ' • i iK • •

(<* 1, 2, 3)

eintreten kann, so stellt

v«,92(V <V (V •••%J 'i 1 H 1 H 1

die mathematische Hoffnung der Quadrate aller nur
möglichen Yerluste oder Gewinne dar. Führt man die
Summation in bezug auf den ersten Yertrag aus, so folgt

s'-YV {1)sl-\-{\ (1)s2 +
+ V3) VV-^V'-

Es lassen sich aber die Yerluste oder Gewinne
('1'>81, (1^S2, (1)Y3 zerlegenindiedenWahrscheinlichkeiten

entsprechenden Erfolge des ersten

10
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Vertrage» und einen unbestimmten, Torderhand
konstanten Teil, welcher von den Wahrscheinlichkeiten
des ersten Vertrages unabhängig ist. Setzt man daher

beispielsweise

(iy ((1)w—(1) v — {1)n) + {2)s

«52==-((1)^+(1)//) + (2)Ä

(»Ss - (1)U + (2)V,

so ergibt sich

2(s"1) {(1y [({1)-5T — (1)F— (1)/l)2 +
+ 2 ((1)A — (1)7— mri) mS + (2}V2]

+ Wp2 [(<» 7+ ^nf _ 2 ((1) F+ (1)/y)(2)Ä + (2,V2]

+ (1)^ [(»/7^2(1)//(2)n(2,S2]}

S(s-X) {(1)M2 + (2)S2} <K\
Wiederholt man nun die Summation in bezug auf

den zweiten Vertrag, so bekommt man

vf-2) ((1)jt/2 + (2)i¥2 + (3)Ä2} (3)p.

und gelangt durch Fortsetzung des Verfahrens zu der

Gleichung

yw (v (v... (*y
(«if2 + <2)i|l2 _j_ <«i¥2 + + +

wobei zu bemerken ist, dass das Zeichen V.',s) nur auf
die Anzahl der Verträge bezug nimmt, während mit
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der Behandlung eines einzigen Vertrages sogleich
3 Summationen ausgeführt werden. Im ganzen kann
aber das Unternehmen 3S verschiedene Erfolge bzw.

Misserfolge zeitigen. Die weitere Herleitung des Theorems

unterscheidet sich nicht von den Darstellungen,
wie man sie bei Czuber, Sabudski oder Markoff findet.

Bezeichnet man die Wahrscheinlichkeit

mit und den ihr entsprechenden Gewinn oder
Verlust mit S so kann man für die gefundene
Beziehung auch schreiben

Vermöge einer vorläufig unbestimmt gelassenen
Grösse t kann man die neue Gleichung bilden

Legt man nun der Zahl t die Eigenschaft bei,
dass eine Anzahl der Quotienten

v p ,92 — V1r (;.) {i) — JXL

woraus folgt

fy {k)M
y.~l
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der Ungleichung genügen

<1,
(a)t*Y (">M2

x=l

die übrig bleibenden Quotienten aber der Ungleichung

entsprechen, so ist damit ein Mittel zur Lösung
gefunden. Setzt man nämlich die Quotienten, welche die

Ungleichung (a) befriedigen, gleich 0, und setzt für
die Quotienten, welche der Ungleichung (b) genügen,
den Wert 1, so muss die Summe W der Wahrscheinlichkeiten,

welche zu den Quotienten der Ungleichung
(b) gehören, der Ungleichung unterliegen

Bezeichnet man die Summe der Wahrscheinlichkeiten

der Ungleichung (a) mit W, so muss sein

(b)

W+ 1^ 1.

Weil nun aber ist

w+4r>'
so folgt daraus, dass ist

W>1~T
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Endlich noch t2 2 y1 setzend, gelangt man zu
dem Satze:

Mit einer Wahrscheinlichkeit

W> 1——,
2 y

darf man erwarten, dass der eintretende Gesamtverlust
oder Gewinn durch die Ungleichung

begrenzt wird.

2. Die Berechnung des Risikos mittelst der
Wahrscheinlichkeit der Abweichungen, deren
Summe oder Differenz eine Abweichung vom

rechnungsmässigen Verlaufe des Unter¬

Behufs Abkürzung der Darstellung mögen auch

in diesem Teile beide Vertragsarten gemeinsam
betrachtet werden.

Setzt man

(y)^l + 11 ' ^2 2 W
/c2 + V '

Ki * K2 2( ± (")p2 + (M ± V)

nehmens erzeugt.

-S

so wird
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Um nun die Wahrscheinlichkeit des gleichzeitigen
Auftretens der einen Yerlust oder Gewinn erzeugenden
Grössen K und iV2 herzustellen, welche gleichbedeutend

ist mit der Wahrscheinlichkeit des gleichzeitigen
Stattfindens der Abweichungen u und v, kann man
von den Verallgemeinerungen ausgehen, welche für die

Cauchyschen und Laurentschen Potenzreihen gegeben
worden sind. (Siehe z. B. Pricke, Analytisch - Funk-
tionontheoretische Vorlesungen.) Nach diesen werden
die Koeffizienten ATi. und A„ „ der nach beiden

A1;A2 A15 —A2

Seiten ins Unendliche laufenden Potenzreihe f,' (xl, x2)

dargestellt durch die symbolischen Doppelintegrale

i r f _
W

Ak k v fr .x7<-hl+1^x~(~K,'+l)dxdx
(2rr ifj y(C7'>^ '

1 ff - ^
A — r- / If ,x~(Al+1) xiK'2~~l) d,x dx

(2 rifJ 1 2

Setzt man in diesen Ausdrücken

xy — (fl1 und x0 — p''2'

so werden die unteren Grenzen beider Integrale 0,
während für die oberen Grenzen in beiden Fällen 2 n
zu nehmen ist.

Durch diese Vornahme findet man

ü U



Man erkennt nun sogleich die Verwandtschaft dieser

Ergebnisse mit dem durch Verallgemeinerung des

Poissonschen Theorems auffindbaren "Wahrscheinlichkeitsausdrucke

71

p =-—- f TT "1*4-<WJr p)
-- TT

+ e±(K,fc«3:24 + wp3) e^ Xl+K> *>' dxx dx2,

auf welchen sich unsere weiteren Berechnungen stützen

sollen, weil die Anpassung des durch die Formeln (1")
und (2a) veranschaulichten Theorems auf das hier zu
behandelnde Problem immerhin zu weitläufigeren
Untersuchungen führt.

Zur Abkürzung schreibend

y.=S

(x) (*) y» 4" ^ &•> x.) i (y.) \ Kipß + p2eT -f p3)c { }

y=l

Y o~(Ki kz)T v

werde die näherungsweise Berechnung dos Integrals

TT 71

/ I ~^(xh ®2) ^xi
TT TT

mittelst der Laplaceschen Formel

a[ a\

I I ~^(xh xz) ^Xl ~
«1 «2

2/r 7(*°v4)

1 Ud2lnY\ / d2 In F l
[/ \ dx\ )\ dx\ J*» yöx^xj
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vorgenommen, deren Herleitung man auch bei Meyer
(Vorlesungen überWahrscheinlichkeitsrechnung, deutsch

von Czuber) findet.
Um in Kürze zu einem brauchbaren Resultate zu

gelangen, führe man für »2) den auf bekannte
Weise darstellbaren Näherungsausdruck ein

X—S

InX(x,'"'S», ± "'p, wVi) * -

2 WP, (1 - MP,) ""*>

2 "V c - "'?)
x—1

+ {")p* W/fa] xixr
X=l

Vermöge desselben erhält man

2
®a -t

in Y(xh ®2)

wobei ist

«11

«12 :

1 2 1
„

'2

— x1 i + v x2 i,

2<"V, (i -'"»?,)
«=1

2 C1 - 'V)<"V -

K=i

x=S

x-1
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Diese angenäherte Funktion yon x und x2 diene

nun zur Auswertung der Laplaceschen Formel (4).
Um das Maximum von beziehungsweise yon
In x2) zu finden, werden die Differentialquotienten

<5 In Y, (.o^ 0,0 n— — a,,x, + a,„x„ — ui= 0
dx0 11 1 - 12 2

6 In Y.~° „o,
• " Xl) 0 0 — • n

7^ ~ Vz ± «12^! + VI 0
ÖX2

gebildet, aus welchen man findet

0 «22M + "l2U • ,0 - <*nV + ai2U
2 '^2 ~~~~ "®~

2

a]2a22 ai2 aiia22 ß12

Substituiert man nun diese Werte in In Y^°,

so erhält man zunächst

ln Y(x'u x\) =\ail f -JE~L V l +

(a22u + al2v)(anv + al2u)
'22 / 2 \2

/ ct^ + a^vY
V rtU Ö

22 "12 /
1 /unW + ai2MY

U O a22 I 2 I ""22 / 2 V
V ^11 «22 tt12 / \a\\a22 ai2)

-U( a22U + a!2V\ ffill^ + Ct22^\

\ ailß22 ~ ai2 / \ ail®22 ai2 /
und hieraus nach mehrfachen Umformungen

a22u2-\-anv +2al2 uv
In Y{x\, x\) 2K^-«a
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Weiterhin folgt

(i In Y(xh ar2)
<5 In I (xh x.y

8x\ 11' bx\

d2 In Yrx x \1 ' ; — + a
(Sajj da;2 12'

daher ist

d In Y(xtjI
$ ln ^i, g2)1 I

\ dxl )x\,x\ \

_ I äx1 dx2 Jx\,

&x:

"ll°22 — «12-
Xt

Es ergibt somit für die gesuchte Wahrscheinlichkeit

der Ausdruck

P
(u, v) j 2

2/Tl/ «11 »12

»22 u' B' +2»I2 u v

£ 2(on »22 ai2) '

Indem man aus diesem etwa n vermöge der

Gleichung A — u + v eliminiert, erhält man die
Wahrscheinlichkeit

P
1

(M' v) O T / 22„y
in welcher ist

«11 «22 «12

«1 P+(l/a3®+l/aB ^f)2

£ 2 (»u »22 »12)

2
«11 «22 «12 ,/— ,/ r =~S(/«o—|/an + a22 + 2a' «n + ®22 + 2a12

./ «11 + «22

]/an + a22 + 2 a12
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Setzt man noch

]ja v -(- j/a A

]/2(an«22 —ai2)

mithin

V =t,

iv \
X «11 + a22 + 2 a12

und beachtet gleichzeitig, dass ist

2 («ii «22 — «12) 2(ffn + a'22+ «12)

sowie

1 y 2(allaw — a\a)

2 j/ aua22 — «J2 p «11 + «22 + 2 «12

1

(/2(a11 + a22 + 2a12)
'

so bekommt man
00

p(J>=iK*''7f'* "
\!Tr '

worin r/ nach der Formel zu berechnen ist

2
2 («11 ~t~ "22 + 2 «12)

V

K=s

:2
K=1

2j [ W
Pi - ('"'}Pi) k\ + W^2 - {X)lh

K=1

+ 2 w/«.,].
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Dabei ist das Minuszeichen zu nehmen, sofern A

u-v, hingegen das Pluszeichen, wenn/l ic— v ist.

3. Unmittelbare Berechnung der Wahrscheinlichkeit

eines Verlustes oder Gewinnes.

1. So anregend die im vorangehenden Abschnitte
gegebene Darstellung auch ist, so kann man sie von
dem Vorwurfe der Weitläufigkeit nicht völlig
freisprechen. Zweifellos verdient ein Verfahren, welches
die unmittelbare Berechnung eines Verlustes oder
Gewinnes

y.—S

K= 2^/7 ± A

*=i

gestattet, den Vorzug. Ein solches ist durch das La-
place-Poissonsche Integral

-j

F<-t) 2-Jx„e-""ix (i)
a

oder

7t

gegeben, über dessen Entstehung hinweggegangen
werden kann, weil dieselbe für s einander gleiche
Verträge bereits besprochen wurde. Für einfachere

Versicherungsformen gibt die Darstellung dieser Integrale
auch Küttner (Das Risiko der Lebensversicherungsanstalten

und Unterstützungskassen, Berlin, 1906). Für
die erste der hier betrachteten Vertragsarten ist

*„=![(<>»,+ "•V-1"1"*' + '%),
X=1



hingegen für die zweite Vertragsgattung

y=S

^(v) (\ew^'"+(\d(z,^i+ (^3)-
x—l

Beide erzeugenden Punktionen lassen sich unter
der gemeinsamen Form

K=S

-Yw U(("hie<""''"' +wP.)
y.=l

darstellen, bei deren Anwendung man zu setzen hat

y.=S y.~S

K--=y^{x)i/+(ä>äi - {*)p* {y')]i^± a-

X=I H=1

In Übereinstimmung mit diesen Erörterungen lassen

sich den Ausdrücken (1) und (la) auch die Formen geben

a-f-2.-r

p">-k I |[(wAe(w*'-w"'- +
a

+ MJ,jß+(w»rw«)«( + ^p3e-'H)nxl)e±/Utdx (i)

x-8

P, — ' |]"((K)_p1e(W'Cl"(;i)iT)xi +
X=1

W 2 TC

+ wP2e±(Wfc2"Wff)a;i+ lK)p3e~lH)nx{)e±äxidx (ia)

In seiner früheren, diesem Gegenstande gewidmeten
Abhandlung hat der Yerfasser die Übereinstimmung
der Formeln (la) und (Ia) ausführlich besprochen.
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Zur näherungsweisen Berechnung der in den

Ausdrücken (1) und (la) vorkommenden Integrale gibt
es verschiedene Yerfahren. Erstlich kann man sich der
einfachen Umwandlungsmethode bedienen, wie sie im
dritten Abschnitte des zweiten Kapitels zur Anwendung
kam. Fernerhin bietet aber die Laplacesche Näherungsformel

deren Entstehung auch Poisson und Meyer gezeigt
haben, einen Lösungsweg. In Übereinstimmung mit
den Formeln (1) und (la) setzend

führe man für Y(x) die auf bekannte Weise herleitbare

Näherungsfunktion ein

-f (f°i>2(l — wp2) t 2 (>"px mp2 (")k1 w/c2]. (4)

Um den Wert xß zu erhalten, welcher Y^x) zu
einem Maximum macht, setze mau

(x)
(3)

in welcher bedeutet

(5)
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man erhält sodann aus

d In Y(x \
+ A i — M*xa 0:

dx 0

_ Ai
35,1 — + W'

Substituiert man diesen Wert in (3), so folgt

V»):1 — 6 \ mV 2 \ m2J

6 M2 2 M2 ~ 2J/S • (6)

d In Y,
Aus — findet man durch nochmalige

Differentiation

und mithin

d2 In Y.
lx) M2 (7)

dx'2

d2 In Y,
(a) 1 — M2 (8)

doc

Setzt man die Werte (6) und (8) ein in die durch

Yerbindung von (1) bzw. (la) und (2) entstehende Formel

P.
Yr(x»)

(J) / 7~YIM^) <9)

f V dx / X=xa

so erhält man für die Wahrscheinlichkeit P(J) das

bekannte Gesetz

rA=e (10)
\'it \'2M'2
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2. Ein anregendes und in einigem einwandfreieres
Verfahren zur Berechnung der Wahrscheinlichkeit P,,,o (a)
nach dem Laplaceschen Gedankengange hat Arany in
seiner Abhandlung „Ein Beitrag zur Laplaceschen
Theorie der erzeugenden Funktion" (Fonction gene-
ratrice) im 2. Hefte des 9. Bandes der versicherungs~
wissenschaftlichen Mitteilungen, im Hinblick auf
einfachere Fälle besprochen.

Mittelst der aus

4o) 4*0) - 4-») Ki o

hervorgehenden Gleichung

<")
* £(x0) 1 V /x=x0

in welcher x den Wert des Arguments x darstellt,
welcher zu K gehört, findet er zunächst

Xq

i fK dx

4-o) ei
und sodann

Xo

ifKdx—Kx0i
Y(xo) e °l e o

Ist nun K der Wert, welcher zu x - - 0 gehört, so

ergibt sich durch partielle Integration

k x»

J xdK (Kx)l=*° — JKd x,
K0 0

daher kann man auch setzen

Y -e't"" ('S)
(®o) -d
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Um nun noch für — einen

| cfin

\ (Jj'/j / 0Z=Xn

Wert zu erhalten, welcher dem Aranyschen Ergehnisse

entspricht, hat man sich zu vergegenwärtigen,
dass die Ableitungen von In Y^ in der Voraussetzung
gebildet werden, dass K eine konstante Grösse ist.
Aus der Gleichung

In Y. lnX, — Kx i
(;X) (as)

erhält man durch zweimaliges Differentiieron

dlnY(x) __dlnX(x) _Ridx dx

d? In Y, d? In X,
w (®)

dx2 da?

Aus der von Arany aufgestellten, für jeden
beliebigen Wert von K geltenden Gleichung

dlnX,
Ki =r-

iX)

dx

folgt aber allgemein

dK d2lnX
% W

dx" dx '

mithin ist auch

/ d2 ln Y(x)\ /d2lnX(x)\ /dX\
\ dx2 /x=x0\ dx" /x=x0 \ dx )x=x0

Durch Einsetzen dieses Wertes kommt man nun
zu der der Aranyschen Formel entsprechenden

11
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K
—ijxdK

e s0

Pw= (13)

Dieses Ergebnis lässt sich noch vereinfachen,
indem man setzt

1 dln Xfa

i dxK=^r zXr~ <t <si)

und cp (xi) nach dem Maclaurinschen Satze entwickelt;
man erhält so

2
X n

^=^0)4-^(0)-"21 </>)•• •

Für x=0 wird K zu K0, und daher ist (p =K0-
Yernachlässigt man alle höheren Potenzen von x, mit
der zweiten beginnend, so ergibt sich die Saherungs-
gleichung

K=K0 + xüj>[0), (14)

aus welcher folgt

+ A K—K0 xi(j[0)
und

A
® ±-r^. (15)V

Führt man die Werte (14) und (15) in die
Gleichung (13) ein, so bekommt man die stets anwendbare

Maherungsformel
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Im vorliegenden Falle ist <j' aus der Gleichung

y,=S

zu bestimmen. Auf dem bereits beschriebenen Woge
findet man die Näherungsgleichung

K=K0 + M*xi,
in welcher ist

N-SUVA ± "W"\)
x~l

und

+ ("V2(l — MP2) {k)K ± 2 {")kl w/cJ.

Sohin ergibt sich wiederum die Formel (10).

Anmerkung: Die in den Abschnitten 1 und 2

gegebenen Entwicklungen erfüllen nicht die von Laplace
aufgestellte Forderung, class die Integranden der
näherungsweise zu berechnenden Integrale für die Integralgrenzen

verschwinden. Wie man sogleich bemerkt, nehmen
die Integranden der hier betrachteten Integrale für die
Grenzargumente Werte an, welche in der Umgebung von 0

liegen. Da es sich aber ohnehin nur um
Näherungsberechnungen handelt, so wird man über diese Ungenauig-
keit hinwegblicken dürfen.
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3. Schliesslich kann man die Formeln (1) und (la)
auch durch Verallgemeinerung des Poissonschen
Verfahrens umgestalten. Führt man zu diesem Zwecke in
den pden Faktor der erzeugenden Funktion

(x) I (h) (^Jc2xi I fx)
p1e

1 4- p2 e- 2 4- ' p3

die Moivreschen Werte ein

]£, XI (k) 7 I • • (x) iß 1 cos
v

kxx 1 sin li2x

4- (Pk.X? (x) 7 - (x) I ^ß— ' — cos ^ k2x ± ism 1

k2 x,

SO folgt

fx) | («) „+ (y-)k2xi I fx)
vxß + p2e- + p 3

—
(>/)

'P\ 00S 4" C0S >'y'l^2X WPä)

4" i ^Pj sin ^ t W2>2 sin

Darauf bestimme man den Modulus des y.10" Vertrags aus

@x (W 2h 008 4" Wl>2 COS ^k^x 4- ^P.y +

4- (W2h sin W^j4 ± W2h sin W&2;c)2, (18)

und bilde zur Berechnung des Arguments <fy die

Gleichungen

(*) («) 7 («) (,-i) 7 (/<) \^

'plco$
^

Jkxx + ^

'p2 cos v + p3=@ cos ^
(19)

(<<) • («) 7 (x) • (x) I • I

4h 81n k^x ± p2 sin * k2x — Qy sm <py j



Man erhält so

(^JPjCos ^lc^x + +
+ i ^p1 sin ^Zcjic + wp2 sin ^k2xj — qx ß'r" 1

oder

(<"Pi eM***' + Wp9 e± M*.<» + cy ^ e*,.

(20)

Durch Auflösen der Quadrate geht die Gleichung
(18) über in

2 (*) 2 (x) 2 M 2
£>„ — i>i + P2 + J>3 +

+ 2{y)pl {x)p2 cos w k2 + (x)k2) x -f-

-|- 2 <'^p1 wj?s cos
(k) klx-\-2 ^ p2 ^p.x cos w k2 x.

Wendet man auf die auf der rechten Seite
auftretenden Kosinusse die Formel

1 o • 2 a
cos a — 1 — 2 sin -

Li

an, so geht die vorstehende Gleichung über in

{")px iK}p29,m2~{{y)\ + w7r2)u; +2 1 A
Qy — 1 — 4

+ (x)px Wl?2 s'n2 ^ hxx -(- sin2 ~ ^ k2x
Li ' Li

Da man der Urvariable x zunächst einen sehr
kleinen Wert erteilen kann, so darf man für die
Sinusse die Winkel selbst setzen. Dadurch ergibt
sich



el i T<^2)V +
(*)^ (*)^ 2 ^2 _|_ (x)^ (*)^ (x)^.2 aJ2J

_ Wi,i)W^+ 1(21)

+ (^2(1-

i _ C>mV.

Durch Übergang zu den Logarithmen findet man
die Gleichung

2 In qx In (1 — {H)M2 x), (2 2)

aus welcher man die weiteren Annäherungen erhält

ZMe. —i-M^V (22»)*

und

^ =e-4(,0jttV. (22b)

Endlich bekommt man dui'ch Einsetzen der
Ausdrücke (20) und (22b) für die erzeugende Funktion
den Näherungswert

*=f
y.=l

in welchem man noch zur Abkürzung setze

C—0

2 (K)M8 M1.

y—1

Weiterhin handelt es sich um die annähernde

Berechnung der Amplitüde tp.t
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Aus der Gleichung

8X 8*n V'x W
pl sin ± sin (il)

k2x

findet man

sin (jx ----- ßsin + wp2 sin ^k^x}

fy, (x) '

daher ist

Vy — arG sin f (X)

f _|_ 1 v* w)3
I Ja! (*>)5

--/«(»)+ 2 3 + 2 4 5 + " '

Die Funktion entwickle man in die Ma-
claurinsche Reihe

fx (x) fx «)) + Xfy. (0) + 2
fy. (0) + • 5

in welcher man zu setzen hat

4 (0) ~ 0'

fy.
(0)

{(H)Px ± lX)P2 W/0 ^ <l0/7>

fX(0)~

Gemäss dieser Untersuchungen ergibt sich aber die

Räherungsgleichung

_ ,y, l (<*>11-xf 1.3 ((iä)n.xf- u-x-Y- - (-g—j

Macht man wiederum von der Annahme Gebrauch,
dass der Winkel x recht klein ist, so darf man auch

im vorliegenden Falle seine höheren Potenzen ver-



nachlässigen. Auf diese Weise kommt man aber zu
der Näherungsgleichung

eH lH)n.x, (23)

durch Anwendung derer man den bekannten Ausdruck
erhält

x=s

v „ ZJ WllXh—^rM2x'
A. -— t> «=1 2

Führt man denselben in die Formel (1°) ein, so

ergibt sich

^ 1 f _
1 M2x2+ Jxi /0.,>

± ix. (2D
-T

Weil man ferner annehmen kann, dass der
Integrand bereits für mässige Werte von x sehr klein
wird, begeht man nur einen geringen Fehler, im Falle
man die Grenzen — n und -|- n bis — oo und -|- oo
ausdehnt. Sich hierauf noch der Substitution

A x i __ cog

bedienend, gelangt man wieder zu der bekannten Formel

oo

p _L. [p~\M'x2 cos Ax dx: (25)
W 2 7t J

— oo

denn der imaginäre Teil

oo

+ _L fp~~zm2x" sin Ax dx
2 ic J

— oo

verschwindet, weil sein Integrand eine ungerade Funktion

von x ist.
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4. Weitere Bemerkungen über die Auswertung
der vorkommenden Integrale.

Wie bereits im dritten Abschnitte des ersten
Kapitels bemerkt wurde, gibt es verschiedene Yerfahren,
um das Integral

umzugestalten. Hier soll noch eine Umformung gezeigt
werden, derer sich Bruns (Wahrscheinlichkeitsrechnung
und Kollektivmasslehre) bediente, und die auch in
mehreren Lehrbüchern der höheren Analysis Erwähnung

gefunden hat, so beispielsweise bei J. L. Baabe

(„Die Differential- und Integralrechnung", Zürich,
1843) und bei Oskar Schlömilch („Kompendium der
höheren Analysis", Braunschweig, 1895).

Durch Entwicklung von cos ix gelangt man zu
der Gleichung

cos Ax dx (1)
CO

CO

e ax cos bxdx-
A=o© ,7 \2h'

2 „ (bx)
e~ax Kj2K)\dx- (2)

— oo

Es ist aber

— oo

und

f ~ - a x 2 K »

ß x dx

— oo
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mithin folgt
oo

fß~ax cos bx dx —

' }'-« [' - TF (2^) + ~h - 3! ^ |/«

(1

-f...

Mit Benutzung dieser Beziehung findet man für
VYahrscheinl

geführte Gesetz

die Wahrscheinlichkeit P(J) das bereits mehrfach an

1 __A_
-P(A) — : & 2M2 •(d) 1-thM2

lim vermöge dieses überaus brauchbaren

Näherungsworts die Wahrscheinlichkeit W zu

ermitteln, dass die Ausgaben die Risikoprämiensumme
um -f- A Pranken überschreiten oder um diesen Betrag
weniger als die Risikoprämiensumme ausmachen, stelle

man in Anlehnung an Poisson die Formel auf
00

/K=t
I

g-TwV y ooäKxdx. (3)

X=-d
CO

Nun ist
A=J

'y cos Kx 2 (1 -f- cos x -f- cos 2 x -)-... -|-
K=~/J -(- cos (A — 1) x -)- cos Ax) — 1

cos 4- A x sin * (A-hl)x
2 - ^ 1

sin y x
sin (A -|- 1/>i) x ^sin- x



und wenn man für sin j x näherungsweise ~ x schreibt,

Dieses Integral stellt, wie schon früher bemerkt
wurde, einen besonderen Fall des von Poisson häufig
angegebenen Integralausdrucks dar. Um es weiter
umzuformen, kann man wiederum verschiedene Wege
einschlagen. Entwickelt man beispielsweise in dem

Integrale

CO

W, — -I
(—A, A) n

OO

oo

sm J) oo
den Quotienten in eine Reihe, so folgt

oo

oo

e a*b 2 ^
— oo

/'
oo

e^x x2Kdx
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Es ist aber
b

K=°o K 2V«

y_L-ir />2^ (6)
LKl(2K+l)[2ya) Je '

K=0 \ r /

mithin ergibt sich

b

21/«

Aus dieser Untersuchung läset sich der Schluss

ziehen, dass man mit der Wahrscheinlichkeit

W — — f'p~e dt—0 i/l + 0 " 5 \ (8)e l \'2M
U

0

einen Yerlust oder einen Glewinn bis zur Höhe von
A Franken erwarten darf. In der Formel (8) erkennt man
das Ergebnis, welches Moser und nach diesem Eggen-
berger aus der Beziehung

A

1/I«

Jer*«+-mMer£ (9)

0

hergeleitet haben. Auch zu der letzteren aber gelangt
man vermöge der Beziehung (4). Beachtet man nämlich,

dass anderseits ist
K=A

Z sin Ax
cos Äx — j- 1- cos Ax, (10)

R=-1 tg^X
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und dass man näherungsweise setzen kann

1 1

tg ~2x==Yx'

so folgt aus (5) mit Berücksichtigung von (2) die

Formel (9).

Legt man der Grösse A die Eigenschaften einer

kontinuierlichen Grösse hei, so kann man einfach setzen

Wi-d, aj —2~j e vMx dx j coaAxdA, (11)

— oo — A

woraus sich die für Risikoberechnungen hinreichend

genaue Formel ergibt
oo

A^+rferi** dx. (12)

Dieses uns schon bekannte Integral bietet uns

Gelegenheit, noch einige Augenblicke bei der Funktion

/A \
1 / sin (<4 — z)v

sgn(A—2) — — / —dv (13)

zu verharren, welche Bruns und Czuber zur Darstellung

der in der Kollektivmasslehre eine Rolle spielende
Summenfunktion benutzt haben. Solange A > z, ist
bekanntlich sgn(A-z) 1. Für A<^z wird sgn(A-z)
— — 1, und für A — z folgt sgn {A — z) 0. Zieht
man ausserdem in Erwägung, dass für j—A\^>z ist
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1 I ,m(-ä+,)vdv___l !m_(A-z)vdv__
TV I V TV I V

so kann man die Punktion sr/n (A — z) wie einen Dis-
kontinuitätsf'aktor anwenden, um das Integral

/y (2) dz
— zj

vermöge des Integrals

00

J(f(z) dz — 1

— 00

berechnen zu können. Bedingung ist jedoch, dass </ (0)

eine gerade Funktion ist, welche stets der Gleichung

<J («) g (—«)

unterliegt. In der Voraussetzung, dass dieser Bedingung
Genüge geschieht, stelle man die Gleichung auf

(j (z) dz= / y{z)dz~ / Hin(^ dv. (14)

Wendet man nun auf <f(z) die Formel (25) des

Abschnittes (3) an, so erhält man zunächst

}pi.i,iA

äl» / e~''"dx / / —(i~iv- (15)



Die weitere Vereinfachung dieses Integrals wird
durch Anwendung der bekannten Fourierschen Integrale

J Jf(x) cos {xy) cos {uy) dx dy 2/t f{n)
und

J J fix) ixV) 008 iuH) cix dy 0
- CO — oo

(16)

bewirkt, über die bereits kleinere, ältere Lehrbücher
der höheren Analysis, z. B. auch Pranke (Lehrbuch
der höheren Mathematik, Hannover, 1851), Aufschluss

geben.

Beachtet man die Beziehung

sin (A — z) v — sin A v cos z v — cos A v sin z v,

so kann man die beiden Innenintegrale der Ausdrücke
(5) umformen in die Integraldifferenz

/ sin (A — z)v
cos zx dz I — dv

oo oo

^ V
cos (vz) cos(a;;2) dv dz

OO CO

cos Av
sin (vz) cos (xz) dv dz. (17)

- OO OO

Zufolge der angeführten Integrale von Pourier
ist aber
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oo oo

sin A v „ sin A x
cos (vz) cos (xz) civ dz= in

oo oo

"°-8 ^ V
sin (vz) cos (xz) civ dz — 0,

(18)

daher ergibt sich auch auf diese "Weise der Ausdruck (12).

Schlusswort.
Den Abschluss der Risikotheorie bildet die

Erörterung folgender Aufgaben:
1. Bestimmung des Minimums des Risikos bei

konstantem Bestände (Landre, Radtke);
2. Bestimmung des Minimums des relativen Risikos

(Radtke);
3. Bestimmung dos Maximums der durch neu

hinzukommende Verträge erwachsenden Verbindlichkeiten

(Hausdorff, Landre);
4. Aufstellung der von Wittstein eingeführten und

von Bohlmann vervollkommneten Risikoreserve;
5. Berechnung der Minimalzahl der Versicherten mit

Hilfe der Risikoreserve (Bohlmann) und Bestimmung

der Stabilität des Versicherungsbestandes;
6. Maximum der Risikoreserve (Broggi).

Für die in der vorliegenden Arbeit besprochenen
Versicherungsformen hat der Verfasser diese Fragen
bereits in seiner ersten Abhandlung untersucht. Da er
seinen früheren Ausführungen nichts wesentliches
hinzuzufügen hat, so glaubt er hinsichtlich dieser auf die

erwähnte Arbeit verweisen zu können.
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