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Die Berechnung des jahrlichen Risikos
schwierigerer Versicherungsarten.
| Von Hans Koeppler, Berlin.

Y orwort.

Unter dem Titel ,Risikoberechnungen bei mehr
als zwel Ereignissen ein und desselben Zeitraumes®
hatte der Verfasser im 4. Hefte des 63. Bandes der
Zeitschrift fiir Mathematik und Physik!') den in der
vorliegenden Abhandlung bearbeiteten Gegenstand
bereits veroffentlicht. Da aber die genannte Zeitschrift
wohl nur von wenigen Versicherungsmathematikern ge-
lesen wird, so diirfte eine Neubearbeitung in einer
Fachzeitschrift nicht unzweckmissig erscheinen. Im
Laufe der Zeit hat der Verfasser auch noch mehrere
andere Darstellungen der bereits mitgeteilten Ergeb-
nisse gefunden. Daher glaubt er, diese Neubearbeitung
als weitere Beitrdge zur Ermittlung des Risikos ver-
wickelterer Versicherungsformen bezeichnen zu diirfen.
Bei den gewihlten Darstellungsweisen hatte der Ver-
fasser nicht immer die mathematische Kiirze allein im
Auge, vielmehr leiteten ihn bei der Abfassung auch
die geschichtliche FEntwicklung der Wahrscheinlich-
keitsrechnung sowie die Formenschonheit der Analysis.

1) Leipzig, Druck und Verlag von B. G. Teubner, 1915.



86 —

HErstes Kapitel.
Das Risiko des einzelnen Vertrages.

Wir beschrinken unsere Untersuchungen auf zwei
Falle. ' |
Fall I.

Gegen Erlegung des Einsatzes oder der Priimie 7
und des bereits bestehenden Guthabens V des Spielers
schliesst ein Unternehmer einen Vertrag ab, nach
welchem er dem Spieler beim Eintritte des Ereignisses
E , dessen Wahrscheinlichkeit p, ist, die Summe K
auszahlt, hingegen die Betrige Il und V einstreicht.
Sollte ein anderes Ereignis £, eintreffen, dessen Wahr-
scheinlichkeit p, ist, so wiirde der Spieler sowohl den
Einsatz IT als auch sein Guthaben V verlieren. Das
Stattfinden eines dritten Ereignisses F,, dessen Wahr-
scheinlichkeit p, ist, hat zur Folge, dass der Spieler
nur den Kinsatz I verliert, das Anrecht auf das Gut-
haben V aber behilt. Zwischen den Wahrscheinlich-
keiten p , p, und p, bestehe die Bezichung

p1+p2+p3:1'

Soll der Vertrag die Eigenschaften einer sogenann-
ten gerechten Wette aufweisen, so muss die Verlust-
erwartung des Unternehmers

H, =p (E— ¥ — 1) (1)

gleich sein seiner Gewinnerwartung
H,=p,(V+ L)+ p, 1L (2)

Hiernach besteht die Gleichung
p,(V+I)+p =p (K—V—1I) (3



— BT e

aus welcher sich einerseits die Formel fiir den EKin-
satz ergibt _ .
N=p (K—V)—p,V, (4)

welche iibereinstimmt mit der Formel fiir die aufge-
zinste Risikoprdmie, sofern man unter V die Reserve
am Schlusse des Versicherungsjahres versteht.

Anderseits folgt aus (3) die Gewinn- und Verlust-
gleichung

[ (E— V—ID)] 4p,(V 4+ 1)+ p, T=0. (5)

Als mittleres Risiko des beschriebenen Vertrages
bezeichnen wir die Grosse

M= 1p,(K—V—1I) + ps(V+II) + ps IT", (6)

welche erhalten wird, wenn wir die Gewinn- und Ver-
lustbetrige quadrieren und die mathematische Hoffnung
der Quadrate radizieren.

Losen wir die Quadrate des Radikanden auf, so
konnen wir dem Ausdruck (6) auch die Formen geben

M=1/p,(1-p)(K-VY +2p,p,(E-V)V+p,(1-p) V*

und (@)
M=1p,(E—Vi+p,V'—I (8
Fall II.

Das Vorhandensein der drei Ereignisse £, E,
und E, und das Bestehen der Gleichung ihrer Wahr-
scheinlichkeiten p - p, + p, = 1 vorausgesetzt, nehmen
wir wieder an, dass der Spieler einen Einsatz oder
eine Prdmie II entrichten muss und bei dem Unter-
nehmer das Guthaben V hat, dessen Besitz und Ver-

6
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dnderlichkeit von den Bestimmungen des Vertrages
abhdngen. Der letztere sei nun von der Beschaffenheit,
dass der Spieler durch Hintritt des Erecignisses ' , die
Summe K gewinnt, indessen das Guthaben V und den
Einsatz II verliert. In gleicher Weise soll er beim
Eintreffen des Kreignisses £, den Betrag K, gewinnen,
das Guthaben V und den Einsatz Il aber wiederum
einbiissen. Findet das Ereignis I statt, so verliert der
Spieler nur den Einsatz II, wihrend ihm das Gut-
haben V verbleibt. Damit auch dieser Vertrag die
Eigenschaften einer gerechten Wette aufweise, muss
wiederum die Verlusthoffnung des Unternehmers

H, = p, (K, — V— )+ p,(K,— V—11) (9)
gleich sein seiner Gewinnhoffnung
H =p I, (10)
woraus die (tleichung folgt
Pyl =p, (K, — V— 1)+ p, (K, — V—II). (1)
Aus dieser erhdlt man fiir den Einsatz die Formel
H=p (K, —V)4+p,(K,— V), (12)
welche gleichbedeutend ist mit der Formel fiir die auf-

gezinste Risikoprimie. Die Gewinn- und Verlust-
gleichung hat hier die Form

p[— (B, —V—I)]+p,[— (K,—V—1I)]
+p,11=0 (13)

und liefert fiir das mittlere Risiko die Formel (14)

Mlz-l/pl(Kliv—H)z+¢’{J2(K2~V—H)2-+—2)3,[]2.

Durch zweckmiissige Umgestaltungen finden wir
hieraus die weiteren Formen
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A= o, (0 —p) (K — V) 2,0 —p) (K, V)

—2p, p, (K, — V) (K, — V)] (1)

und

M, =/p, (K, — V) 4 p, (K, — V) —I’. (16)

Die Bezeichnung der Formeln (6) und (16) als
mittleres Risiko wird durch die Fehlertheorie erhértet.
Die Risikopriamie oder der Einsatz I7 hat ndmlich die
Eigenschaft, die Funktionen

F (i) =p, (K—V—0y?4p, (VA ity 4 p, I
F)=p (K, —-V—-Up4p,(K,—V— Uy -+pdi*

in bezug auf die in jedem der beiden Félle einen
anderen Wert vorstellende Grosse £/ zu kleinsten
Werten zu machen. Differentiiert man beispielsweise
die Funktion £ (/1) zweimal nach 77, so ergibt sich
mit Beriicksichtigung der Gleichung (3)

Fy=—p (K—=V—1)4+p,(V4+ 1)+ p, 11 =0
F'(f)y=p, 4 p,+p,~—1, also >10.

Uberdies erkennt man, dass die Funktionen #'(77)
und F' (1) die Summen der mathematischen Hoffnun-
gen der Quadrate der KErgebnisse sind, welche der Ver-
lauf des betreffenden Spieles herbeifithren kann. Sie
sind daher als die mittleren Werte der Quadrate der
etwaigen Erfolge anzuschen.

Fiir den Fall V= 0 hat die Formeln (11) bis (16)
bereits I'. Hausdorff in seiner bekannten Abhandlung
»Das Risiko bei Zufallsspielen® (Berichte iiber die
Verhandlungen der Koniglichen Séchsischen Gesell-
schaft der Wissenschaften zu Leipzig, 47. Band, 1897)
mitgeteilt.
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- Zur Berechnung des mittleren Risikos kann man
sich aber auch der Formel bedienen

M= ]/xj + X2, (17)

in welcher die Grossen X, und X, bei der ersten Ver-
tragsart aus den Proportionen

p, (K — V)__ X,
X T K—-V—1In
18
»,V X, (16)
X, V4

zu bestimmen sind, hingegen bei der zweiten Vertrags-
art aus den Proportionen

p (K — V) B X
X - K —-V—-0n
(19)
v, (K, — V) B X,
X, - K, —V-—n

Aus (18) findet man
X=p,0—p)E =V +p2,(E—V) V} (18%)
@ - 83
X;=p,p,(K— V)V +p,(L —p)V*

mithin ergibt die Formel (17) fiir diese Werte die
Formel (7).

Aus (19) erhilt man

2 2 l 7
X =p,A-p)(E -V)-pp, (K -V)(E-V)

(19%)
X, =p,(1-p) (B,~V) -p,p,(E - V)(E,-V)

.
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Daher geht fiir diese Werte die Formel (17) in die
Formel (15) iiber.

Hiernach kann man das mittlere Risiko dieser
Vertragsarten auch darstellen als die Quadratwurzel
aus der Summe der Quadrate zweier geometrischen
Mittel, fiir deren Bestimmung die Eigenschaften dieser
Vertrige massgebend sind. - |

Zrweites Kapitel.

Das Risiko s gleichartiger Vertriige.

1. Das mathematische Risiko.

Wir wollen jetzt annehmen, dass der Unternchmer
s Vertrdge der ersten Art auf das Eintreffen des Kr-
cignisses F abgeschlossen habe. Alsdann besteht fiir
ihn die aus der Entwicklung des Polynomens

(p, +2,+p)°
hervorgehende Wahrscheinlichkeit

5l 8, 8
Peos)="rsrti bt (@)

(5,4 5,45, = 9

in s, Fillen den Schaden (K — V— 1) zu erleiden,
in s, Fillen den Gewinn (V4 I7) und in s, Fillen
den Einsatz I7 zu gewinnen. Mit der Wahrscheinlich-
keit (1) hat der Unternehmer daher die Gebarung

N, 8) =8 (K—V—0)—s,(V+ 1) —s 1T
=8 (K—V)—s,V—sll (2)



zu erwarten, welche ein Gewinn ist, sofern die Un-
gleichung statthat

s, (KE— V) —s,V<sl,

aber cinen Verlust vorstellt, im Falle die Ungleichung

besteht
s, (K —V)—s,V=>sll.

Setzt man s, =sp, 4 o0,, 5,=sp, +0,, 5,= 8,40,
wobei wegen s, s, s, =s, ist 6, -+ o0, 40, =0,
so geht P(s,s,) in P(g, ¢,) iber.

Fiir N (s , s,) erhilt man wegen I/ =p (K— V)
a4

N(o,,0,)=0(p,+0)HE—V)—(sp,+0,)V-—si
=0, (K—V)—o,V. (3)

Dieser Ausdruck gewéhrt einen vollstindigen Ein-
blick in das Risiko der beschriebenen Versicherungs-
art. Nimmt derselbe positive Werte an, so entsprechen
denselben immer Verluste. Da aber N(o,, 0,) auch
noch grosser als null sein kann, wenn sowohl ¢ <70
als auch 0, <70, so erkennt man, dass beispiclsweise
ein Bestand gleichaltriger Invaliditdtsrentenversiche-
rungen noch verlustbringend sein kann, wenn nicht
allein die Invaliditit, sondern auch die Aktivensterblich-
keit hinter der erwartungsméssigen Zahl zuriickbleibt.

Nach Kanner versteht man nun unter der Verlust-
hoffnung oder dem mathematischen Risiko des Unter-
nehmens den Ausdruck

B =233P(s,,0,)[0,(K—V)—o0,V], (4)

in welchem geméss der vorausgehenden Erdrterungen
die Summationen iiber alle jene Werte von ¢, und o,
zu erstrecken sind, welche der Ungleichung



o (K—V)—0,V=>0

geniigen. Die allgemeine Durchfiihrung dieser Summen-
bildung ist ein sehr schwieriges Problem. Geht man
aber von der diskreten zur kontinuierlichen Summe
iber und setzt die Grossen s, s,, s, also so gross
voraus, um das Bernoullische Theorem anwenden zu
kionnen, so erhidlt man fiir das mathematische Risiko

den Ausdruck

R= [[P(o,,0,)[o,(K—V)—0,V]do do, (5)

Um die angedeuteten Integrationen ausfithren zu kon-
nen, ist es zunédchst erforderlich, der Wahrscheinlichkeit

P s!
(00 %) = G o) G, F ot Gy — o, — o)
piprm pzpﬁmz pzpa“'fl ~ (1%)

einc exponentielle Form zu geben. Dies ist durch An-
wendung der Stirlingschen Formel leicht erreichbar;
man findet vermdge bekannter Umformungen

P(o,, 0,) (1%)
1—}92 2 1"_191 2 i

_ 1__ e o 2sp P, L 2sp, p, %2 sp., %1%

207/, 1,1,

Diesen Ausdruck fiir die Wahrscheinlichkeit P(o,, 0,)
kann man aber noch dureh verschiedene andere Né-
herungsmethoden herleiten, so z. B. durch ein Ver-
fahren, welches jenem von I. J. Bienaymé im ,mé-
moire sur la probabilité des erreurs d’apres la méthode
des moindres carrés“ angewendeten nahe verwandt ist.
Wir gehen von der erzeugenden Funktion aus
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X — (pl e'lll ) + pz (?ug z + pB)S

und entwickeln dieselbe in ecine nach Potenzen der
Zahl e fortschreitende Reihe. Das Ergebnis dieser
Entwicklung sei

>p (81 ’ 82) e——(sl g8y ug)

Um nun die Wahrscheinlichkeit zu erhalten, dass das
Ereignis F s mal und das Ereignis £, s, mal ein-
tritt, bilden wir die Gleichung

SP (SJ , 82) 8(81—8:) 1y i—l—(&‘z—si) upi __ X e_( s, U+, ug)

Integrieren wir diese sowohl nach u, als nach u, zwi-
schen — 7 und —+ 7, so ergibt sich

P(s, s,)= f f Xt gy gy (6)

@)y, L,

als Ausdruck der gesuchten Wahrscheinlichkeit.
Fiir jede ganze Zahl @ ist nimlich einerseits

7T 7T
. ¥ . 2 .
fe‘ltm”du :] (cos au 414 sin an) du = —sin ax =10
a
— —

und anderseits

j du = 2m, somef /du du, = (27)°.

—T —3

Um aus der Wahrscheinlichkeit P(s, s';) einen
geeigneten N#herungsausdruck fiir die Wahrschein-
lichkeit P (o , 6,) zu bekommen, fiihren wir zunfchst
die Werte ein

!
= 8p, + o,, 8, = sp, + o,.



Weiterhin suchen wir nach einem Néherungs-
ausdruck fiir X, indem wir in bekannter Weise setzen

: 1 ‘
X=[p (1 "I‘ulz_?“f---)—l‘%(l + Ut —
1 by
— 5 %)+ 2]
.1 :
- [1 + (2)111'1 ‘|‘P2152)‘?/ —*‘*2— (pluf —{»—_pzué i ']3
- . 1
InX=sln[14 (p,u, 4 p,u,)1 —E—(pluf _|_p2%z)_“_]
1 ,
- 3(2)1“1 —I_—:pguz)z_—Q—spl (]_ -——pl)u,l B
1 .
"—"Q_sz (1 _Pg) “; -+ SP P, U, Uy

= s(p,u, 4 p,u,) et — L (u, u).

Wir kommen so zu der Néherungsformel

1 M1 7T '
P (o, 0,) = (9. f f e 2Tt gy gy o (69)

—at —IT

In der Annahme, dass der Integrand bereits fiir
missige Werte von #, und u, eine sehr kleine Grosse
ist, erweitern wir die Integralgrenzen bis — co und
-+ co. Auf die dadurch entstehende Formel

1 oo o0 '
P(o,, 0,) 2@35 / f e~ () (rttes Ug) ¥ du, du, (6%

— o3 — o0

wenden wir das Bienaymésche Verfahren an, welches
fir einen dem vorliegenden dhnlichen Fall bereits
Laplace in der ,Théorie analytique des probabilités®



mitgeteilt hat. Behufs Ausfithrung der Integration
setzen wir

1 2
5 Sy 1 —p) u + 5 P (1 —p,) u, — sp, p, u, u, +
~+ (o,u, 4 o,u,) i

== h“ 3 . (hlq —+- 7&22) u —+ 2h, b, u v, 4+
+ 2h, bt u i+ 2(h, 0t + hﬁto) u, ¢

= (hy, + hgu, 4+t 87 4 (hy,u, 41,0 + £ + £
2 2 2
=t o 8
und bedienen uns der Beziehung
1
du, du, = _ dv, dv,,

wobei A die Transformationsdeterminante ist, welche
‘den Wert hat

ov, oOv

1 1
(3u1 6u2 |] " ]’12
4= — = By .
ov, Ou, 0 7,
_@; ou,

Beriicksichtigen wir dann noch die Formel
Jea=va,

1 >y
2°n bos Pl

so finden wir

P(Gp 62) = (7)



Nun ist aber

2 5
pap— (2 by, 0)“
1 2 4;& 2h,,  2h, R, *

117712 71

47’&?1 hz2

(B hyy) oy —2hy hyyo, 0,41,

1 1
9 8Py (1 *“_292) of +Sp1p2 0,0, +"§_Sp1(1 —px)G:
o 4an° h 7

11 "22

sowie
!
Ry gy = I 5P Py Dy

daher ergibt sich auch auf diesem Wege die Formel
(1°). Diese Formel weist folgende bemerkenswerte
Eigenschaft auf:

Setzt man
L — 2, = L= = I = 2
sp.p, W 2spp, T T oapy 0 B

und trifft die Bestimmung, dass werden moge

oQ oo
—0yy 0} —Qgg 03 —2019 61 0y -
k[ [e do, do, = 1,

—_—c0 — 0

so erhélt man wegen

oo [-%5) V‘_ v
—Cyq 6oy 62 —2a ( J’I)
f fe 11 74 220, 12 71 02 dGJ dﬁg e

L e e VD

und

2
= gy Ogy = Oy




fiir die Konstante

1 ]/_ ‘ 2
K= e Uyy og = Gyyr
Setzt man fiir @, a,, und a, dic Werte, so er-
gibt sich in Ubereinstimmung mit der Formel (1)
1

K == —
27 1/32191192133

Das Gesetz

2

. Vall a22 T 6612 —ay ) 6F (g9 67 —20 5 04 Og I

Po,0,) = e
ez A

ist allgemein unter dem Namen ,Gesetz der Fehler
in der Ebene* bekannt. Ausfiithrliche Erorterungen iiber
dasselbe findet man beispielsweise in der Czuberschen
»Lheorie der Beobachtungsfehler® (Leipzig, 1891).
Um die durch die Formel (5) angedeutete Integra-
tion durchzufihren, kann man verschiedene Wege
cinschlagen. Hier soll zuvorderst eine Methode Ver-
wendung finden, wie sie in den artilleristischen Lehr-
biichern behufs Umformung des Fehlergesetzes in der
Ebene gezeigt wird. Es geschieht dies, um in formaler
Hinsicht die nédmlichen oder doch &hnliche Integra-
tionen vornehmen zu kénnen, wie sie bereits Hatten-
dorf in Masius’ Rundschau, 1868?), zur Berechnung
des mathematischen Risikos angewendet hatte. KEine
der ersten Arbeiten iiber die Transformation des Fehler-
gesetzes in der Ebene verdankt man dem Hollinder
Ch. M. Schols (Over de Theorie der Fouten in de
Ruimte en in het platte Vlak). Die hier vorgenommenen

1) Vgl. Wagner, ,Das Problem vom Risiko in der Lebens-
versicherung®, Jena, 1898.
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- Umformungen sind als eine Vervollkommnung der
Ausfiihrungen anzusehen, die man bei N. Sabudski-
Ritter von Eberhard (Die Wahrscheinlichkeitsrechnung,
ihre Anwendung auf das Schiessen und auf die Theorie
des Einschiessens) findet.

Zuniichst versuchen wir, die Wahrscheinlichkeit (1¢)
vermoge der Invariantentheorie umzubilden. Fiihrt man
in die bindre quadratische Form

@y 1—}—0,23 2-—[—20&1, 1% (A)
die neuen Variabeln ¢ und ¢, durch die Substitutionen
o, =1 a ——Itg a,
o,=ta,+%a

ein, so erhdlt man die andere binére quadratische Form

11 1 + b2’ 2 + 2blZ 1727 (B)

in welcher ist
bn = Ay a1 + a72a2 4 26&12 1 %
b, =ua, a +a, d —2a, 0 a
22 11 72 22 71 12 71 72?

2

. 2 2
bm — (a?fz _ an) Oy g — Byy (a2 T aj)'
Bezeichnet man darauf die Determinante von (A)
mit A, jene von (B) mit 4, so ist

A, = M4, ()

wobei M den Modulus der Transformation bezeichnet
(vgl. beispielsweise Diedr. Aug. Klempt, , Lehrbuch zur
Einfiihrung in die moderne Algebra“), welcher dar-
gestellt wird durch die Determinante des Substitutions-
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systems. Die Determinanten 4 und A heissen dabei
die Invarianten der zugehorigen Funktionen. Weil
aber

1 e b b, b
dy == b b — Y11 Y2 7 Yieo
41 “92
1 a’ua’m .
“p — - =y Ugy = Ay
21 Va2
o, —d
M= = a, -+ a,,
a, a,

ist, so ergibt sich die besondere Form der Invarianten-
gleichung

2 2 2 2.2
bn bzz ,_, br_) - (a’u Qop — alz) (al = az) g

Die ziemlich allgemein durchgefiihrte Transforma-
tion ist jedoch nur von Wert, im Falle sie zu wesent-
lichen Vereinfachungen fithrt. Um ihr diese Eigen-
schaften zu geben, denke man sich die Koeffizienten
a, und a, zuniichst von der Beschaffenheit, dass b,
verschwindet. Daraus ergibt sich

b12 = (“22 an) a a, — &, (a:, - a1) =0
a, a, . Gq
2 2 = .
ay — G, Byg ™0y

2 2 -
Um nun auch a + a, zu entfernen, setze man
a, == €08 ¢, a,==sin @,
so wird einerseits

2 2 2 2
a, fa, =cos g 4sin"p =1



und anderseits

4% COS @ 8in @ 1
e g 2 :_?tg2¢'
—a, sin“@ — cos" g

32 )

Folglich ist der Winkel ¢ aus der Gleichung zu be-

rechnen
tg 9(p — ——*2“12
4 @ — ¥

11 a22

und gleichzeitig hat man die vereinfachte Invarianten-
gleichung
2
bu bfzz = Oy Ogy T Uyt
Somit gelingt es, das Fehlergesetz (1¢) in das ein-
fachere zu verwandeln

b b, i B o
Pit ty= 120 it g

*) Das hier benutzte Verfahren findet auch Anwendung bei
der Umformung der in rechtwinkligen Koordinaten gegebenen
Mittelpunktsgleichung

e v 2 _
@ &+ 20,2y + Ay Yy = ¢

einer Ellipse oder Hyperbel in die entsprechende Hauptachsen-
gleichung
by ey + by i = c.

Die Gleichung

2a
12
tg2¢ =
) — Qg9

dient dabei zur Berechnung des Drehungswinkels ¢, um welchen
das alte Koordinatensystem im positiven Sinne gedreht werden
muss, damit es in die Lage des neuen gelange. Zur Berechnung
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Die Berechnung der Prizisionen ]/E: und /b,
fiir welche kiinftig #, und A, geschrieben werden soll,
ist vermdge des Winkels ¢ leicht ausfiihrbar. Aus

hf =a , cos’p 4 a,,sin’p + 2a, sing cos @
findet man durch einfache Umformungen
e @, + @y, tgPe + 2a,,tg @
: 1 Fig% '

Auf dieselbe Weise gelangt man zu der ent-
sprechenden Formel

72 a’ntg?(p +a22_2a12 tg(}?.

L T+ i5%

Um die Funktion ¢y ¢ aufzufinden, gehe man von
der Formel aus

2ty g
L—tg*p’
welche sich in bezug auf fg¢ in eine quadratische
Gleichung umbilden ldsst, deren Wurzeln aus der Formel

g 2=

+ V149?20 —1
1y 2¢

tgp —

gefunden werden.

der Konstanten b;; und by, kann man sich auch der Gleichungen
bedienen

by + boy = ayy + ay,,

Ay — Uy 209

by 0y = cos2¢  sm2g

(Siehe beispielsweise ,Des Ingenieurs Taschenbuch®, heraus-
gegeben von dem Verein Hiitte.)
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Um das Risiko der ersten Vertragsart mittelst des
Gesetzes (19) berechnen zu konnen, muss man auch
die Abweichungsfunktion

N(o,,0,)=(K—V)o,—Vo,=c, 0, —c,o0,

17 %9

als eine Funktion von ¢ . und t, darstellen. Durch die
Substitutionen

6, =1, cosp —{ sing

0, =1, sing -+ 1, cos ¢

erhilt man

N(t,,t,)==1(c, cosg —c,sing)t, —(c, sing 4 ¢, cos ¢) ¢,

wobei angenommen werde, dass B, eine positive

Grosse ist.
An die Stelle der Formel (5) tritt nun die Formel

hy h, NELY Y
- lnsze " Tt(Bltl_B2t2)dt1dt27 ey

bei welcher die Integrationen derart vorzunehmen sind,
dass stets der Ungleichung

Bt — B,t,>0

1

geniigt wird, Das letztere wird erreicht, indem man setzt

R—_ h h /e—hztzdt fe—httat dt e

Etﬂ

., 47 —ha tz .
dt fe t,dt,;




man erhilt sodann

1 [ h B] hy B]
RZQV_ 7;_ 2 p2 1 12 p2 +71m 2 2 2 2
T Il/h,?Bl—I_hl Bz 2]/h2 B1+h1 Bz,

/1. B, 4 1 B, -
h h, )

2Ya

Substituiert man nun die Werte fiir 2, und 7;, sowie
fir B, und B,, so findet man vermdge der Bezichung

( 99 11) sin 2(]/ + @,, Cos 2:] =3

fiir das mathematische Risiko die Formel

b=

— 0
2)n A1y Yo “jz o

1 ]//a1102+a3201+2a12 1 2

Nun noch fiir a,, a,,, @,, ¢, und ¢, die Werte

einfithrend, ergibt sich hieraus die endgiiltige Formel
1 3 ;
R:}ﬁEW&HaU~mQUC~Vf+ﬁﬂlfmfw+—

+ 2p, p, (K—V)V]. (9

Zur Berechnung des mathematischen Risikos der
zweiten Vertragsart, fiir welche ist

NTl (017 02) - (Ki -7) o + (]fz - V) Oy = Cl 0y + 4—2 O35
erhilt man durch Substitution der Werte von o, und o,

Nl(ap 9)'“”(C cosg +g Slll(])t +( C Sln(ﬁ_i_‘ﬂocoqq)t
= 0,1, + 0,t,.



_ 8y —

Das mathematische Risiko wird daher symbolisch
dargestellt durch den Integralausdruck

hl / (5 [ i D3t » .
R = e (Cl %, =G, tE) dt dt,, (1)

g

welcher in derselben Weise wie der Integralausdruck
fiir £ behandelt werden muss, wenn man annimmt,
dass C, negativ ist. Macht man aber die Voraussetzung,
dass C, positiv ist, so fithrt die Bedingung der stiin-
digen Befriedigung der Ungleichung

0,4, - 0%, =0

zu der bekannten Integration

- hlﬂf’l? 1f€—l)z e dtz/e_’“ it dr 4
S, Uy
[
]l h 2 2 2
1 202] ()—hm dtlfe—hm t2 dtg,
7 ) o
_.C_';tl

welche ebenfalls ergibt

/ E p
1 YR+,
ST h h,

R

Wenn man nun in diesen Ausdruck die Werte von
h,, C, und C, einsetzt, so bekommt man

B o 1 ‘/“’115; =+ “225f —26&1251 é'-z (10)

1 /— 2
2L 7% Ay Aoy = Gy

h

1?
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Durch Einfihrung der Werte von a , a,,, .,
£, und £, geht dieser Ausdruck alsdann in die end-
giiltige Formel tiber

R ———/slp,(1-p) (K, ~ 7Y+, (1-p,) (K, - V)"~

V2n

—2pp, (K, — V) (K,— V). (109

Einfacher als die vorausgehende Berechnungsweise
ist wohl der Losungsweg, den der Verfasser in seiner
ersten Arbeit angestrebt hat. Es sei das Integral

-I / 2
B @y Xgg — aflzf/ e—all 63—Qgg 0672019 61 O
T

(¢,0,—¢,0,)do, do, (5%)

wieder derart zu integrieren, dass stets die Ungleichung
co=>¢ o, —c,0,>0

befriedigt wird.
Erteilt man den Variablen o, einen beliebigen
Wert, so ergibt sich
6,0, —C0,=0,.
¢

2 .

sofern man setzt ¢, = — o,; es wird aber
¢
1

co =>¢, 0, —¢,0,>0,

wenn man fiir ¢, alle jene Werte wiihlt, welche grosser

02
als — ¢, sind.
¢ 1
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Geht man von einem beliebigen Werte der Va-
riablen ¢ aus, so erhilt man

¢, o, —¢,0,=0,

¢
1 .
falls man setzt ¢,=—o . Um aber zu erreichen,
2

dass wieder die Ungleichung

oo__>_610'1—020'2)0

befriedigt wird, muss man die Variable o, alle jene
Werte durchlaufen lassen, welche kleiner sind als

b

*(—::2—'(71.
Aus diesen Uberlegungen folgt, dass man dem

Integrale (A) die Form zu geben hat

R —l 11 22 fe—(a22—ﬂl)a dO’

T

fe(w: V) gy

""“—0
Cq “

c1
1 ”1

— fe (@11—0p) oF dir fe—(Va2202+ﬁol) 7, dO‘ (5b)

wobei die Koeffizienten o, und ¢, aus den Gleichungen

]/a11 , und a ]/a22 ,
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zu bestimmen sind. Dieses Integral ldsst sich in der
angegebenen Form noch nicht auswerten. Beachtet man
aber weiterhin, dass man zwei Koeffizienten 12, und 2,
derart bestimmen kann, dass stets die Gleichung er-
fiillt wird

¢,0, - (0, ,1[1/‘101+]/a a'] }[]/amfr]/a o-]

go ist damit die Losung gefunden.

Zur Bestimmung der Koeffizienten 2 und 2, dient
das Gleichungssystem

A ]/a—n—)%z VE;:CN
WY Y=

aus welchem man erhilt

o Yot 6o 011/?-7—%621/5;

v

1 ’ /. '
]/a’u 292 ]/a1a2 @y Qo Va1az

Setzt man nun fiir die Variable ¢, o, die andere
A (]/a,n o, + ]/_&1- 02) und an_die Stelle_d_er Variablen
¢,0, die neue Variable 1, (1/(@22024— ]/aaa), so hat

. 0') T C‘
man fiir die Grenze — ¢, zu nehmen ]/a BLANE
¢, 2 11 g
1 1
= V 5o . Ci cl
+]/a1 o,, fiir die Grenze — o aber a,zgc——}—
2 2

+]/E;)al. Dadurch aber geht das Integral (5°) iiber

in das entsprechende
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-l/ an 22 = a’d

7T

IF ==

o0 ) o0

A,
- / (aoa——al) agdofe wd udu—
1/%

e B0 — Cg —
]/“11 o + 1/‘41‘ 25
1

@fng
;j"( | /( ) (59
"1%2) % g odo ;
Van

o0 —_—00

aus welchem folgt
V @y gy — O

2n

oo

1 / [(“22‘““1)4“ (]/“11 4 ]/Oq) ]03 da.z +

-+ ;3,." fem[(a“_'al)'f“ (]/@Z—:-F 1/;;)2]“: da] (59)

und ferner

. 1/m @, 0, — O, I Aoe, e 59
2) = 2,01+a11 02+2a12cl %I]/“n }/a,

Fihrt man in diesen Ausdruck die Werte von
1 Oy A, und 2, ein, so erhdlt man mit Beriicksich-
tigung der Bezichung

o

2
a. a. —da

11722 12
Va’u 22 Vaiaz a
]/ 1%

abermals die Formel (9).
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Um die letztere herzuleiten, kann man aber noch
zwel andere Losungswege einschlagen.
Da sich die stets giiltige Gleichung aufstellen lésst

€0y~ GO, = Ao, — 4, (Vam 7, + V %, 0'1)7
aus welcher man erhilt
# cl 6‘22 + C2a12 C2
/ul b 3 12 e 3
a
22 V s

so findet man, 1/?2202 -+ 1/(,4_201 — ¢ setzend,

/ oo
Rﬁ-i 11 22 12 |—}L fe @ dfpfe (“11_“2)‘7;0. dO' _
T V”ag

A
7, %

j,‘ oo
__WL e (au*az)"*da e " gdyl.

Vs

Dureh mehrfache Umformungen ergibt sich hieraus

R ]/6611 6529 ‘) 2 , (5g)
2 1/“7 Vazz (an G ) R

und wenn man fiiv a,, 4, und 22 die Werte einfiihrt,
s0 bekommt man wieder die Formel (9).

(5%

Ferner besteht aber auch die stets giiltige Gleichung

€0, — €0, =4, [l/ a,o, + ]/al 0'__,] — 4,0,

fiir welche ist

C‘1 1 2 11 + Gla'12

1 /—7 2 a
] a,, 11
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Setzt man ]/Zal + ]/oc—1 o, =1, s0 erhilt man
durch Anwendung der vorstehenden Gleichung den
Ausdruck

2
B— ]/011%2 @12 /° fe (age—ai)o da /‘ it wiy —

11—
__,,2

11

—_ e/;

- dl/)/ e () ,do . (5"

11—-

Denselben in entsprechender Weise wie den Aus-
~druck (5%) behandelnd, findet man

2
—l/ @y Gy — ]“1 ]‘2 ;
a,—a)+—. (5
21/75 I/ By (azz o al) ( . 1) )Li
Indem man nun noch fiir o, 1, und 4, die Werte ein-

setzt, gelangt man nach zweckdienlichen Umgestal-
tungen wieder zu der Formel (9).

Das mathematische Risiko der zweiten Vertragsaft
wird in Analogie zur Hattendorffschen Berechnungs-
weise aus dem Doppelintegrale

2
R— Ay gg = Qyy

7 (5%)

—y1 07— (o 03—201 9 0y 09 7
[fe 0, + 20 do, do,

gefunden, indem man setzt



2
B— Kf’i I (5Y

Cl fe—(a:):oq) ol dazfe(]/&:; 51+]/f1_1—62)2 7, dal +

o2

&y

+ 4‘2.[8_(“'11_“2)”: dalfem(l/@;%‘l"]/a;mf a, d0’2
Y s E, §

Um diesen Ausdruck einer Losung zuzufiihren,
kann man setzen:

1 Cia'1+C202:21(V&L—ual-ﬂ/zﬂ?)‘i‘ﬂg(l/“—gg%"' a201)’
2. Lo+ o, =ho, + 14, (V;;% + VOT?U])’
3. Lo+ Lo, =14, (]//;[1_10-1 + V’a_la’z) + 4oy

Fiir die erste dieser Gleichungen findet man

— § 8y, — 10y, T Lyay —Eiay,
Vau V“zz

dy == 2 by == P z
@11 o2 12 11 %2 ™ Ay
fiir die zweite crgibt sich
51 Ayg — Cz @iy ] — __Ez__
L a R e
22 ]/ Gyg
und fiir die dritte folgt
& Czau T 51 2




Endlich sei noch bemerkt, dass sich die hier vor
Augen gefithrten Berechnungen umsténdlicher gestalten
wiirden, wenn man sich der Integrale

oo oo
2 2
— —(Ls —2 51 O
Jl_falda.{/e 1y 0y —0gp 0y——20136, 03 do‘_)x
0 — 00

l/w_z;
2]/7.5 1/@

.’.
]1 2’ 1

oo

o0

o0
J2 - [0_2 LZG'Q /eﬁﬂll ot —gg 0l —2M19 01 0y da'] .

0

I "
21/7[ V A1y =

bedienen wollte, die besondere Fille eines von Czuber
auf Seite 276 der Theorie der Beobachtungsfehler an-
gegebenen n-fachen Integrals sind.

2. Das mittlere Risiko.

Das mittlere Risiko s gleicher Vertridge wird dhn-
lich berechnet wie die mittlere Abweichung von dem
wahrscheinlichsten Werte einer Ereigniszahl (vgl.
Czuber, ,Wahrscheinlichkeitsrechnung®, 3. Auflage,
§ 96), oder wie die mittlere Abweichung aller nur
moglichen Einzelwerte von ihrem arithmetischen Mittel
(vgl. G. F. Lipps, ,Die psychischen Massmethoden®,
Abschnitt 15: Die Mittelwerte der Beobachtungsreihen).
Wir beschiiftigen uns wieder mit der ersten Vertrags-
art. Um die mittlere Abweichung vom rechnungs-
méssigen Ergebnisse zu bestimmen, bilden wir den
Hoffnungswert von Quadraten
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2 5! 89 8
M =33 Wpfll’?i’sg 8 (K= Vo= JI)~
17 "2 T8

— 8, (V4 II) — s, ], (11)
fiir welchen wir auch schreiben konnen
Mzzng(gl,sz [s, (K — V)—SQV——S]]]z. (11%)

Die angedeutete Summation ist hierbei {iiber alle
nur moglichen Werte von s, s,, s, zu erstrecken,
welche der Gleichung

§,+8,+8,=s

geniigen. Losen wir die Quadrate auf, so geht die
Gleichung (11) {iber in

M =K —VyREP(s,s)s +VIXP(s,,s)s +
+ S XY P(s,,5)-2(E-V)VEX P(s,,s,)s,5,~
—2s(K—V)YUXXP(s,s,)8 + |
+2sVIIYY P(s,,8,) s, (11%)

‘Weil nun die Formeln bestehen

SN P(s,,8,)s, =sp,, BT P(s),8,)s; =s(s-1)p] +sp,

BN P (5, 8,)8, = p,, IRP(s,,5,)8, =s(s-1)p; + 51,

22P(s,8,)8 8,=8(s—1)p,p,,

zu deren Auffindung bereits Laplace Anlass gegeben
hat, so ergibt sich die Gleichung

M= (K-V)[s(s-1)p; +sp,]+ V[s(s-1)p +sp,]+
+ n*s"—2(K - V) Vsp, — 2(K — V) Us*p, +
+ 2 VIIsgp2.
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Entfernt man aus derselben 17 vermige der Formel
I]:pl(K— V) -—pQV,

so lisst sich die mittlere Abweichung auf die Form
bringen

M="/slp, (1 —p) (E— V¥ +p,(l—p) V" +

~+ 2p p,(K— V) V]. (11%)

Um das mittlere Risiko der zweiten Vertragsart
zu bestimmen, hat man von der Quadratsumme

s!
M{=3% vy v rsls (K, —V—1) +
1Y Rgt e

+ s, (K,— V—1) — s, I (12)

auszugehen, die auch in der Form geschrieben werden
kann

ﬂf? — Z‘E‘P(SN 5:2) [81 ('Kl -V)+ S, (K_) - V) —sll]®. (12%)

Nimmt man dieselben Umformungen vor wie beim
vorhergehenden Beispiele, so erhdlt man als endgiiltige
Formel des mittleren Risikos

M, =1/s[p,(1-p) (E—V)* +p,(1 - p) (K,— V) -
—2p,p,(K,— ") (K,— 7] (12%)

Zu denselben Ergebnissen gelangt man bei ciner
kontinuierlichen Behandlung der Abweichungen. Die-
selbe erfordert, dass man beispielsweise das Quadrat
des mittleren Risikos der ersten Vertragsart durch das
Doppelintegral
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9
a, o, — a
2 V 1122 12
M=
JT

/ / et m e (0 o o 5 g da, (13)

- O T OO

darstellt. Indem mé,n sodann das im Integranden auf-
tretende Quadrat auflost und sich der Integralwerte

a ﬂ;
—l - 12[ fe au,ﬁagon Eamolaq (ZO’ dO’ ——

— o0 — oo
- oy
— =
2 (“11%2 - am)

a, . .
-I/ 11 %2 IZf /6—011"—“210-"“12"102 d(f dO' g

00 == OO

- ey
- )
2(a a,, “‘12)
;IQIL .. f fe—“u"_“?zﬂ_mw“l”z 7, dO' d(r
Yool

L @y

o 2(@ a az)
11 722 12

bedient, weleche Czuber in der bereits erwihnten
»Theorie der Beobachtungsfehler® angibt, erhilt man

T e 2
all 02 + a22 C1 + 2a’12 CI C2
5 :
Z(a — )

11 22 12

M= (13%)
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Wenn man in diesen Ausdruck die Werte fiir
(b, y Cyyy @,y ¢, Und ¢, einsetzt, so ergibt sich wieder
die Formel (11P),

Das Risiko der zweiten Vertragsart erhilt man
aus dem Integrale

- 2
l/ Uyy gy — Uy

4

2
M =

f U[B_all 0] —ll9g 03201291 73 (510.1 —+- 5202)2 dol d0’2- (14)

—00 — OO0

Behandelt man dasselbe wie das Integral (13), so er-
gibt sich fiir das mittlere Risiko die Formel

o, 0+ a,li—2a,C L,
I'Ilzl/ 11 °2 22 21 12 1 , (14&)

2
2(“11 L @12)

a

welche durch Einsetzen der Werte von a,, a,,, ¢,

£, und £, iibergeht in die Formel (12P).

3. Die Wahrscheinlichkeit eines Verlustes
oder Gewinnes.

Um aus der Wahrscheinlichkeit (1¢) die Wahr-
scheinlichkeit einer Abweichung

A= N(s,0,)=0,¢ —0a,0,

herzuleiten, eliminieren wir aus (1°) etwa o
der Gleichung

, vermige

1
0'1::7([1—1—0'202).
1
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Es ergibt sich dadurch der Ausdruck (15)
[sp1 44+ 62—6'—2] [sp3 cg—Ad— (e + €3) 02]
pl 51 p2(8p2+02)p3 Cy

P(4,0)=s!

+ 4 9 s —_d—
[S_Pj 41 ./ +026’2]! (sz n 0_2)1 [1’3 51 (01‘1*02)"2]!

[N €

welcher, wie man sicht, recht unhandlich ist. Wendet
man auf denselben zunichst die Stirlingsche Formel
an und nimmt alsdann die vereinfachenden Entwick-
lungen vor, derer man sich auch zur Darstellung des
Bernoullischen Theorems bedient, so ergibt sich fiir
die Abweichungen 4 und ¢, ein gemeinsames Gesetz,
welches dem Gesetze der Fehler in der Ebene ent-
spricht. Darauf 4 als konstant ansehend, entferne man
o, durch Integration, so bekommt man das Gesetz der
Abweichung 4. Diese Darstellung ist immerhin um-
stindlich, weil sie eine Reihe von vereinfachenden
Vornahmen notwendig macht, welche bereits zur Dar-
stellung der Formel (1°) erforderlich sind. Gehen wir
von der letzteren aus, so konnen wir den Satz auf-
stellen, dass die Funktion

A.:aJ g, — 6,6,

dem Wahrscheinlichkeitsgesetze

P(d)— % e (16)

unterliegt, fir welches die Prézision 5 nach der Formel
zu berechnen ist

2
a,..a.. — a,.
11722 12
n = 5 5 ; (16%)
ajll 62 + a22 cl —|_ 261;12 Gl C'Z
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Fiir die zweite Vertragsart wiirde sein
4 =08+ 0,0,

und man erhielte
1 2 2
P(d)=Let"
E

mit der Priizision

f

, gy gy = Gy
e T e
all C2 _l_ a’gg él - alQ Cl CQ

In dem Aufsatze . Allgemeine Herleitung eines
Satzes von Laplace” im Bande IV von Loewenbergs
Sammlung versicherungstechnischer Arbeiten hat der
Verfasser die Entstehung der Gesetze (16) und (17)
ganz allgemein behandelt. Hier werde die Entwick-
lung mit Hilfe des Diskontinuitidtsfaktors von Dirichlet

v .
C(‘——‘——"wl—/e(klol"*kn%)zz'%ln__d%‘dz
7 z
— o0

kurz vor Augen gefithrt, welchen man schon bei
Poisson (Liehrbuch der Wahrscheinlichkeitsrechnung)
vorfindet, und dessen sich auch Markoff (Wahrschein-
lichkeitsrechnung) bisweilen bedient hat.

Dieser Faktor ist gleich 1, wenn (k o +k,0)
zwischen — A und -+ A4 liegt, und verschwindet, sofern
(k,o, + k,0,) ausserhalb dieser Grenzen liegt. Fir
(ko, + k,o,)==—4 und (k o, +k,0,) = 4 nimmt er
den Wert % an.

Um die gesuchte Wahrscheinlichkeit zu erhalten,
multiplizieren wir die Summe der Wahrscheinlich-

keiten
8
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‘l/a, a 2 oo co
' "
1 Ay —dyq 6% —ag 02—2615 71 0
1722 ™ j ] oMo M 2201 02 dO'l da, 1

JT

—_—0 — O
mit diesem Faktor, so wird

2
]/ Uiy Qgg — lhyo

2

W (— 4,4y =

i 4

/ / fe——au oy—lyg 03 —2013 91 53+ (K1 oy HRgog)zi DT A= s Az do- da' dz.
2

—- 00 — 0

Weil sich nun die Funktion
a, 1+ Ay Ty }-2& o,0,+ (ko +ko,)z

auf die Form bringen lisst

a k.2 o
Va, 0, +——0,+——1i) +
( 1%+ V@n 2 2]/%1 )

4 2
@y gy — gy “12 + a k,— a,k, A\

2vy +
a
i 2V ll(all 29 12)

Cngk‘i+“11kz+Q:’12k1k2 2___v _l_fu _|__ 93} Z,
4(@ a @ )

11 722 12

so kann man statt nach ¢ nach v, und statt nach ¢
nach v, integrieren. Zu diesem Zwecke setzend

2
dv, o ]/?é;

Va,
a [y, -
3 1 (g Oy — 2

d"l = clv

bekommt man
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1 wai 2,2 in/Az Oo_e O‘Q_Uz
W(—A,A)-_._-;;Q_fe R e [e v, e av,

S .
1 Aémﬂzz sin Az

7 4 2

— 00

dz

; (4)

einen Ausdruck, der ein besonderer Fall eines bei Laplace
und bei Poisson mehrfach vorkommenden Integrals ist.
Derselbe stellt bereits die Wahrscheinlichkeit dar, dass die
Abweichung zwischen — 4 und + 4 liege. Da man aber
; ; . ; AW (— 4, A)

die Wahrscheinlichkeit P (4) = 7 kennen
lernen will, so differentiiere man den obigen Ausdruck
(A) nach 4 mit Beriicksichtigung der Beziehung

andz

S 2f00%Asz

Man erhalt dadurch das Integral

1 Oo_.iﬁ.]jezzz
P(A):%fe 2 cosdzdz, (B)

dessen Losung bereits Laplace auf verschiedene Weise
gefunden hatte. Eine derselben moge an dieser Stelle
Platz finden.

Aus der vorstehenden Formel erhdlt man durch
Differentiation nach A

dP (A)

j I
I L
fe e Fgindz - zdz.

Wendet man auf das so entstandene Integral die
partielle Integration an, so ergibt sich



o0

1 2 9
——M 2" .
e 2 sin dz| —
— o0

dP() 1
a4 2 W

A
2 7 M?

o0
1 .22
—— Mz
/8 27" ecos Az dz.
— o0

Nun ist offenbar

1 oo 2
lim € ™ ¥ sin Az =0,

z=-to0

daher kommt man zu der linearen Differentialgleichung

AP A B |
Tt gaP@O=0, O

deren Losung auf verschiedene Weise vorgenommen
werden kann. Da die Differentialgleichung eine homo-
gene ist, so bietet sich die seltene Gelegenheit, die
Integration durch Reihen zur Anwendung zu bringen.
Durch aufeinanderfolgende Differentiation der er-
mittelten Gleichung erhélt man die neuen Gleichungen

241) + 53/;“3 =0
Pyt 5%3 T “gy“l;z Py =
P} + o5 P+ g P =0
Py + —g;;—z PE;—F%—Z =0

..................

-------------------
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Da diese Gleichungen fiir jeden Wert von 4 gel-
ten, so miissen sie auch fiir 4==0 richtig sein. Fiir
diesen Wert von A erhilt man aber

P =70
P P’ i
o T =1, «u):“‘gj}{zptm
P, + =), P e
8 . 3

...........................

...........................

Nach Mac Laurin besteht die Reihe

" IX
P o + 4P, +2,P0)+3,P(0)-|—4,P

Setzt man nun in diese die vorstehenden Werte
von P , P, P P(I;)f .. ein, so ergibt sich

10) ? 0)?

4

P P 8%14 (O)W

(D) \0) 29;]’1

A2 2
= %o ( 29r2+ 21 (29’)}2)" o

2

2P0)+

A

ZP(O) 8_2_%&2

‘Um noch Py, zu bestimmen, setze man in dem
Laplaceschen Integrahusdruck A=20, so folgt wegen

cos 0 —1,
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1 m_mm, 1
(O)WWQMM/‘ fg— e .

Vo y2m

Es ergibt sich mithin die bekannte Formel

A2

2 am?, (E)

P e=——
() ]/.7?,' ‘|/2 am ¢

Das hier angewandte Integrationsverfahren mittelst
Reihen pflegt sonst nur bei verwickelteren Differential-
gleichungen Anwendung zu finden. Als Beispiel findet
man die hier gegebene Lésung in dem Leitfaden fiir
den Unterricht in der hoheren Mathematik von Ema-
nuel von Budislavljevi¢ (Wien, 1900).
dW(—4, 1)

d A
sofern man die Wahrscheinlichkeit zu bestimmen sucht,
dass 4 zwischen 4 und A4 - d4 liege. Die Berech-
nung kann dann mittelst des in den Czuberschen
Werken vorkommenden Diskontinuitétsfaktors

Die Differentiation

eritbrigt sich,

£ e gi fe[(klgd-icgag)_ljm dz

—_ 00

vorgenommen werden, fiir den man iibrigens bei Hack
(Wahrscheinlichkeitsrechnung) eine elementare Her-
leitung findet.

An Einfachheit werden aber alle Darstellungen
durch ein anderes Verfahren iibertroffen, welches auch
schon Laplace ersonnen hatte.

Es werde wieder nach der Wahrscheinlichkeit
gefragt, dass nach Ablauf des fir alle Vertrige glei-
chen Zeitraumes dem Unternehmer ein Gesamtschaden

sli+ 4
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erwachse. Dabei bedeutet 4 den Betrag, um welchen
die erwachsenden Schiden grosser sind als die zur
Deckung des rechnungsmissigen Verlaufs des Ver-
sicherungsgeschifts ausreichende Risikoprimiensumme
s /1. Zur Ermittlung der gesuchten Wahrscheinlichkeit
stellen wir die erzeugende Funktion auf

X — (pl e(KﬂV)zi_r_p2 eaVzi_l_])s)s,

deren Entwicklung uns die Wahrscheinlichkeiten sémt-
licher Verluste und Gewinne vor Augen fithrt. Um
nun die Wahrscheinlichkeit des Nettoverlustes 4 zu
erhalten, multiplizieren wir die erzeugende Funktion
mit e Tt 4ngd integrieren darauf nach z zwischen
—r und ~+ 7. Alsdann stellt das Laplace-Poissonsche
Integral

1 nX W(SH~|—A)zz'd .
= 2
P(A)Mzﬂf e (18)
die gesuchte Wahrscheinlichkeit dar.,

Um uns von der Richtigkeit unserer Behauptung
zu iberzeugen, denken wir uns die erzeugende Funk-
tion in der bereits angedeuteten Form

L +Kzi
X = ZP(J?K) €

geschrieben. Sodann geht aus dem Integral (18) die
gesuchte Wahrscheinlichkeit hervor, weil stets ist

1 5 o 1 - +azi o
ﬁ_fdz__l und 2—518 5 == 1),

Die erste dieser Gleichungen bedarf keiner wei-
teren KErliuterungen. Die zweite ldsst sich fiir eine
ganze Zahl a leicht beweisen; denn es ist fiir eine
solche
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T T
1 ; 1 r L. sin @
.V/e+““ B8 == /(cos @z+isinaz)dz = =114
27 27, a7
—5T — T
it
weil fiir jeden Wert von a ist —— /sin azdz=0.

T
—

Mithin bleibt nur der Fall zu erdrtern, dass «
eine irrationale Zahl ist. Zu diesem Zwecke setzen wir

a=m+4,
wo i die ¢ am néchsten liegende ganze Zahl vorstellt
und 1= TF (a—m) einen irrationalen Dezimalbruch
bedeutet, welcher stets kleiner als '/ ist. Durch diese
Vornahme kommt man zu ciner der Gleichungen

i A

1 7 sin A7
Sho / cos az dz — +
27 s
— T
Weil nun stets ist sin A < 27, so wird man den
; sin A A sindm . :
recht kleinen Wert ———— = — — . 1n den mei-
a7 a A

sten Fillen vernachlissigen diirfen. Anderseits aber
kann man wohl zu der Annahme Zuflucht nehmen,

‘ " . sin A 7r .
dass sich ebenso oft ein positiver Rest ——— wie
aT
. . Sill /17:'7 . .
ein negativer — ———— ergibt, woraus sich dann fol-
ax

gern lésst, dass sich die Integrationsergebnisse nahezu

aufheben. Denkt man sich die Werte 2 durch eine

kontinuierliche Folge von Zahlen ersetzt, welche zwi-
1 1 .. _——

schen — > und - > liegen, so ergibt sich ebenfalls

— [sindadi=0.

a T
Loy
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Fernerhin kann man auch die neue Variable
1 = nz einfithren, wobei # eine sehr grosse Zahl be-
deutet. Man erhéalt so

an

by 4
; fo azd L f d

— jcosazdz — cos e du
2n 2amn >

==L gL 1

. a .
worin gesetzt wurde ¢ = —. Fiir an = co setzend,
n

findet man darauf néherungsweise

oo

fcos e du=20,
207

— — o

1 7T
%feosazdz:

weil fiir irgendeine angebbare Grisse & ist

oo
fcos et da=—=1_0,

" . &
und man tberdies auch —— =0 setzen kann.

207

Ungeachtet dieser Untersuchungen kann man sich
aber sdmtliche vorkommenden Gewinne und Verluste
auf ganze Zahlen abgerundet vorstellen.

Schreiben wir zur Abkiirzung wiederum
K—V=¢ und V=g,

so nimmt die vorhin mitgeteilte generierende Funktion
die Form an

N (pleclzz' +p2 e—c2z£ +_29)))5

Zur Auffindung eines geeigneten Néherungswerts
von Py suche man nach einem N&herungsausdruck
fir X. Zu diesem Zwecke fiihre man zuniichst die
Niherungsgleichung ein
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X =sln|1+(p, ¢, —p,0)zi—
i
— 5 (0, ¢ +2,6) 7],

welche erhalten wird, sofern man die @-Koeffizienten
in X in Reihen entwickelt und darauf sémtliche den
zweiten Grad iibersteigenden Potenzen von z vernach-
ldssigt. Ferner beachte man, dass man fiir kleine Werte
von x setzen darf

In (1 ~+ ami——%ﬁxg):axi — —%m(ﬁﬂ @22

man erhilt dadurch in dem Ausdrucke

.8 .
X = @516z €2)#i— 5 [P1 (1=P1) €1 +P2 (1-P2) 3 + 2P Py €1 C2] 2°

einen gut verwendbaren Néherungswert fiir X. Den-
selben in die Formel (18) einfithrend, und in der An-
nahme, dass der Integrand bereits fiir méissige Werte
von z sehr klein wird, die Grenzen des Integrals bis
— oo und -+ oo ausdehnend, bekommt man

1 Dj)*_{ '2g2_/zi- .
P(J):ﬂ/e I g, (18

worin zur Abkiirzung wieder gesetzt wurde
MP=s [pl (1—p) cf +p, (1—Dp,) cz + 2p,p, ¢, 02].

Wendet man hierauf noch die Formel an

oo oo
2

2 s b* s b . ‘ — X
/‘e—cbxdﬂ‘.bwzdwze——:ﬁfew(]/a a,il/—?ij) d%x]/%e-z&,

—_—c0 _—0

s0-ergibt sich das endgiiltige Gesetz
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42

1 _a
e ar. (19)

_P e e
W VayeM

Um das Gesetz der Gewinn- oder Verlustabwei-
chungen fiir die zweite Vertragsart herzuleiten, gehe
man von der erzeugenden Funktion aus

Xl:-: (ple:flzi +p2 65235 +1)3)s7

in welcher in Ubereinstimmung mit der fritheren Be-
zeichnungsweise bedeutet

(=K —Vud {,—=K,— 7.

Durch Betrachtungen, welche den vorausgehenden
analog sind, gelangt man dann zu dem Gesetze

A

1 . 1

. 3 20
Play== /7 V§11Il€ S a

in welchem 1ist

Die Aufstellung des Gesetzes der Abweichungen
von dem rechnungsméssigen Ergebnisse fithrt uns zu-
néchst zu weit einfacheren Berechnungen des mathe-
matischen und mittleren Risikos. Wie Wittstein (Das
mathematische Risiko der Versicherungs-Gesellschaften)
das mathematische Risiko durch die Formel

R:__H_fe""Hz'JgAdA: L —
Vr
0]

2H |/n

und das mittlere Risiko durch die TFormel

HJ)?2

H 7 .
M‘?:ﬁfe“‘f“’ AW:ML-
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erkliarend, erhalten wir die bereits im ersten und zweiten
Abschnitte dieses Kapitels berechneten Werte.

Fiir den heutigen Stand der Wissenschaft und fiir
die Erfillung der etwaigen Erfordernisse einer prak-
tischen Anwendung ist es aber weit wichtiger zu wissen,
mit ciner wie grossen Wahrscheinlichkeit man einen
Verlust oder einen Gewinn von bestimmter Grisse er-
warten kann.

Yon der bekannten Rechtecksformel

b
1 1
[, 00 =| 5 VAVt F Uy F 5 1)

Anwendung machend, findet man fir die Wahrschein-
lichkeit eines Verlustes innerhalb der Grenzen 0 und

K die Wahrscheinlichkeit

A=K

K
, ) 1
W o 10— Z‘P({I):me a4+ (P + Py (21)
1=0 0

wobei 1ist

{1’ H K ) s 1 HK ) 1
P odd="2|e " 4= e ds—— B(HK).

7

Setzt man HK =y, also Kzﬁ, so kann man

mit der Wahrscheinlichkeit
| H 2 ]
Voo=% =35 %t N (1 t+e ) (=l
erwarten, dass der etwaige Verlust innerhalb der

Ar
Grenzen 0 und %= liegen wird.

H



S, |

Fiir die Wahrscheinlichkeit eines Gewinnes inner-
halb der Grenzen — K und O findet man durch eine
entsprechende Betrachtung

Ad==0 0
1 ,
W(_K, 0 ZP(_i) :,_[5(_1) d 4 +?(P<_Jc) .k P(o)): (22)

A=—I

und da stets ist P(_f =P,

so folgt

1) 1)?

1 H ) .
Wemo—ly—g 2yt 5= (1 +e7) @2

Schliesslich ergibt sich noch fiir die Wahrscheinlich-

keit eciner Abweichung innerhalb der Grenzen — K

und -4 K

' i=F K ,

Wermn= ZJP o / II: 94+ "g"(P —x)t ) (28)
A=—K o

H _ 2
::@(;f)—i"lf/;e "

(23)
Zu diesem Ergebnisse kiime man auch durch Verei-
nigung der Formeln (21%) und (22%), wenn man dabei
beachtet, dass ist
-VV(——K; K) }/V(—K, 0) + W(O, K) P(O)' (24)
Wie Moser und spéter Eggenberger (Beitrige zur
Darstellung des Bernoullischen Theorems, der GGamma-
funktion und des Laplaceschen Integrals) gezeigt haben,
kann man (beispielsweise nach dem Taylorschen Satze)
niherungsweise setzen

K K+%

Qme dd+ Pyy=2 [P, dd,
0 0



daher ist weiterhin

I/V(——K, B (p(y-f%H)' (25)

Bei den vorliegenden Berechnungen darf man sich
aber damit begniigen, fiir

14 D

(—K, K) ()

o1 : , .
zu nehmen, weil ?H wohl eine so kleine Grisse ist,

dass man sie ohne Bedenken vernachlissigen kann.

Immerhin sei hierzu noch bemerkt, dass Czuber und

nach ihm Kozak K -+ ; = setzen. Diesenfalls ist

T H
@, die Wahrscheinlichkeit, dass die etwaige Ab-
weichung innerhalb der Grenzen F (% — %) liegen
werde.

4, Das Risiko auf Grund der Wahrschein-
lichkeiten a posteriori.

Die Methode, das Risiko mittelst der Wahrschein-
lichkeit eines Gewinnes oder Verlustes zu berechnen,
bietet den weiteren Vorteil, die Wahrscheinlichkeit a
posteriori anwenden zu kénnen. In bezug auf einfachere
Versicherungsformen wurde auf diesen Vorzug der
Verlustwahrscheinlichkeit bereits von E. Blaschke (Vor-
lesungen iiber mathematische Statistik, § 46, Die Ver-
sicherungspriimie) aufmerksam gemacht. Zur Ausfiih-
rung der geplanten Berechnung ist es notwendig, dic
Formel von Condorcet zu verallgemeinern.
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Nachdem hei s==s, s, s, Versuchen die Ereig-
nisse &, F,, F, beziehungsweise s, s,, s, mal ein-
getreten sind, soll die Wahrscheinlichkeit bestimmt
werden, dass dieselben Ereignisse bei s weiteren Ver-
suchen beziehungsweise s,, s, s, mal eintreffen. Sind
nun ,, %,, x, dic unbekannten Wahrscheinlichkeiten
fir das einmalige Kintreffen der Ereignisse £ , £,, E,,
so ist die Wahrscheinlichkeit des s, maligen Eintref-
fens von K, des s, maligen Eintreffens von £, und
des s, maligen Eintreffens von &, bei s Versuchen ge-

geben durch den Ausdruck

8!

! ! !
S0 8ye 83.

8 8 s.
1 2 3
A R

Da aber die Wahrscheinlichkeiten x,, x,, z, un-
bekannt sind, so hat man die Wahrscheinlichkeit zu
bestimmen, dass die Kombination (s, s,, s,) stattge-
funden hat, sofern den Kreignissen die Wahrschein-
lichkeiten x , x,, x, zukommen. Diese Wahrscheinlich-
keit betrigt nach der Bestimmungsweise der wahr-
scheinlichsten Hypothese

S1 So .53
Ty Xy Ty .
1 7
3y 8y Sy
/(3):101 X2, dml dacZ das3
0

g
denn der Faktor ——— - fillt aus dem Zahler und
s, b sl s,!
Nenner fort. Die Integration des Nenners ist derart

auszufiihren, dass stets der Bedingung
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geniigt wird. Setzt man daher fiir das Integral des
Nenners das andere

1, 1—

[xs’ dx f;cS?l(l x x)s*“‘ 0 Sl! SQ! S"}I
] 1 2 TSy T g 2 (e 9!
; ; (s 4+ 2)!

so bekommt man fiir die betrachtete Wahrscheinlich-
keit den Wert

(s + 2)!

! ! !
8- 82. 8-

31

2y

Sy 8
B
Unter Zugrundelegung der Wahrscheinlichkeiten
x,, Z,, x, betriigt die Wahrscheinlichkeit, dass die
Ereignisse bei s* weiteren Versuchen s, s,, s, mal in
beliebiger Reihenfolge eintreten werden
Sl ! g! s'! s’
1, 2 3
i D
Die zusammengesetzte Wahrscheinlichkeit der nach-

einander stattfindenden KErscheinungen ist gleich

(S + 2)’ s'! s11s"y mf1+3'2 xierS':a

X
! 1 ¢! "1 M ?
8+ S'Z' St .S‘l. 8, - g

1

und da man z, x,, @, nicht kennt, so hat man die
Summe aller nur mbglichen Wahrscheinlichkeiten zu
bilden. Die gesuchte Wahrscheinlichkeit wird darnach
durch den Ausdruck dargestellt

1
AS1tsty  satsty sebs’s 7 ) .
i [(3),)3 X x, dmldxgd,

1 2

(s + 2)! s'!
W= 71

s lslgl N
S;+ Syt S0 St

in welchem man der Bedingung x, 4 x, 4 2, =1 ge-
niigend, setzen muss
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1

sits'y Setsls 8318y A
% X, x, d:cl dx2 dx3 =
0

1 11—, 1—w; —xq

— a:f1+s" dx f 22 f dafs s
1 2 2 3
0 0 0

1 l—axy
:[ ZTS g f gletes (1—a, — x2)83+3'3 da,
0 0
B (s, +sPb (5,4 s)! (s, 4 8))!
o (s+ s 4+ 2)! '

Es ergibt sich so die erste Erweiterung der Condorcet’
schen Formel

o G 1 G 64!

s,!s,ts,l sls)ls! (s+s +2)!

Setzt man in derselben

§ §
' r 1 ’ ' ;2 ’
Sl—%sﬁs —'—al—msp1—|—01, §,=—3§ ——s +ao,=8p,t+ 0,

S"' ’
8;28’70—}—63:8]93—1—0'3,

so ldsst sich vermdge des Ausdruckes

K=3
TG+ 5)px + o!
W 5+ 2)! s'! E=1 -
— K= K=3 (s+s +2)!
-”_ 8,1 -”-(s’ph, + o )!
K=1 K=1
==X X5 X,



die Wahrscheinlichkeit der Abweichungen ¢, o,, o,
ableiten. Die Stirlingsche Formel auf die in der vor-
stehenden Formel vorkommenden Fakultiten anwen-
dend, erhélt man nach Ausfithrung der iiblichen Re-
duktionen

s K-d
— S —SP]{
— " K=3 Il 7
1
IIPK
K=3 K=3 8D +o
¥ 1 (o) -(8'Pxtog)
e ./ E=s Pg p - ’
] E=1 K=1 \
2nl/ s ﬂp -
K=1

4 [E=5
/ e
(1+

K'*

) [(sts )PK+"K]
i

Multipliziert man nun diese Werte miteinander,
so ergibt sich

)

l/’Q@—+S) ijg

ok )—<+>f-f|— ( g )[(5+8')PK+"K]
HAT 0 5+ 8)pg

W—

Vermoge bekannter Vornahmen, die auch zur Her-
leitung des Bernoullischen Theorems notwendig sind,
findet man weiterhin



= =3 2
K=3 o —(s’p;{+01() S (O n Oy )
1 4 — =€ 2, \ 2y

K=3 r

G, [ s+ Ptog] = ok
1+ —”‘—) —e~ \"* Tty
(S + $ )pK A=l &

K=1 ’

wodurch sich ergibt

P(s

1y Oy Og) =

2ms’ (s+5)1'p, 2, p,

s ( oy gy 02)
€ 2'(s+s) \ py + Py + g
Da wegen

p,+p,+p,=1

und
s$i+s,+s;=sp +a,+5p, 40, +5p,+ 7,
=5, +p,+p)+o,+o,+0,=5,
stets die Bedingung
o, + 0,4+ 0,— 0

befriedigt werden muss, so hat man eine der Abwei-

chungen durch die beiden anderen auszudriicken. Setzt
man daher

az = (‘71 —+ 02)2 = 0'? —+- O'Z ~+ 20, 0,,
so folgt
s
P(al, ,) =

2rs (s+5)Vp, v, p,

s 1 /1 N .. L f1 1y ., 1
e*m[a;(f*”ﬁ)wm(EJFF;)%*%”““J



— 118 —

oder
S
Fla. a,) = e
1?7 g ’ ‘
278 G+5) Vpr 2, Dy
e ;7“5_::7) [“11 ”H‘“w oy +2a130 "2]

Fiir den Fall von » Ereignissen hat der Verfasser
diese Formel in seiner Abhandlung ,Die Hauptsitze
der hoheren Wahrscheinlichkeitsrechnung bei # Er-
eignissen“ im 37. Jahrgange des Ehrenzweigschen
Assekuranz-Jahrbuchs verdffentlicht.

Setzt man noch zur Abkiirzung

82
s (s I+ 5) Wy = by

so geht die vorstehende Formel iiber in

L —byy 0} —bgp 0} —2D130( o3

2ns (s—I—S)Vp P, 0, ’

fiir welche die Beziehung gilt

_]/bu 22

P(Uu 9)

S

25" (s +5) Vp, 2, p,

Um vermdge dieses Gesetzes die Wahrscheinlich-
keit abzuleiten, dass ein Verlust oder Gewinn ein-
treten werde, welcher innerhalb der Grenzen

6>i‘;1‘71 e k202>——5

liege, hat man die Grenzen des Doppelintegrals

—i/ bll 22 b :_p, :_op
TR %y Vg0, et g0 0y
: e do‘l da,2




— 119 —

der vorgeschriebenen Ungleichung entsprechend zu be-
stimmen und eine der beiden Variablen ¢, und o,
vermoge der (tleichung

1
A=k o + k,o,

... .. ) 1
zu eliminieren. Beispielsweise ¢, —=-— (4 * k_o.) sub-
P 1 % 299
1.

stituierend, bekommt man

b b b

11722 Y12

ak

1

W (—3, §) = V

? . co_ by—>8 g 1 e .
fcufe a e Vet VI g,

—d — o0

wobel ist
2 2
by A bk F 20,0k
= I8 ’
1
_ \2
g = (b12k1+ b, kz)
R 2 _
0,y ke =+ gy k? F 20,k k,
und
bn =2 i _ bu b22 T b?z
K by, K+ by ks F 20,k k,

Zur Vereinfachung der Integration noch die neue
Variable 1o o, + |/ 4 = u einfilhrend, findet man
weiterhin

J oo
W(—S, a)zgfe““”z(mje‘“z du
¥ A
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und hieraus
)
W(—, 8=t [ e g5,
A
0

wobel ist

2
i — bn bzz — bl2
b ks + by k, F2b,k k,

Auf Grund dieser Wahrscheinlichkeit kann man
aber mit der Wahrscheinlichkeit

o)== [ at
Va
0
erwarten, dass die Abweichung
N, 0)=0c (KL—V)—0a,V
zwischen die Grenzen
: s
iy]/?s (1 —|—-—S—)M

und die Abweichung ,
Nl (0'1? ‘72) — 0 (Kl - F) == g, (Kg - V)

zwischen die Grenzen

=y 1/és’ (1 -+ _‘?;_) M,
fallt.

Fir die Praxis ist diese Wahrscheinlichkeits-
bestimmung bei weitem nicht so bedeutungsvoll, als
man zundchst anzunehmen geneigt sein konnte. Wie
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einleuchtet, riickt der Faktor 1 4 % der Einheit um so

niher, je kleiner die Zahl " im Verhiiltnis zur Zahl
s ist. Nun hat die Praxis cher mit Féllen zu rechnen,
in welchen die Zahl s der Versicherten bedeutend kleiner
ist als die Zahl s, welche letztere durch das Zu-
sammenfassen mehrerer Beobachtungsjahre gefunde:n

- . s
wurde. Vernachlidssigt man aber den Quotienten —,
§

so gelangt man zu der gebriiuchlicheren Methode des
vorstehenden Abschnitts.

Drittes Kapitel.

Das Risiko 7 verschiedener Gruppen
gleichartiger Vertrige.

|

Das im vorhergehenden Kapitel fiir eine Gruppe
gleichartiger Vertriige Besprochene behélt auch Giil-
tigkeit, wenn ein Unternechmer m verschiedene Grup-
pen von gleichartigen Yertrigen unterhilt Die als schr
gross zu behandelnden Anzahlen der Vertrige, welche
die einzelnen Gruppen bilden, seien der Reihe nach

Sy S s
R,

a
Bezeichnet alsdann K eine Zahl aus der Reihe
der natiirlichen Zahlen von 1 bis m, so ist

@2 0 Sm—yy S

H,
grdg="% ¢ Fx'x (1)
Vo
die Wahrscheinlichkeit, dass der Verlust oder Gewinn
der K'*» Gruppe gerade Ax betrage. Die Priizision
Hg dieser Wahrscheinlichkeit ist dabei gleich



H L == == — &
K YD o 12 (2)
Vs M Y 2,

Infolge der Kenntnis des Wahrscheinlichkeits-
gesetzes (1) wird unsere Aufgabe auf die Ermittlung
der Wahrscheinlichkeit zurtickgefiihrt, dass die Un-
gleichung

——u<ZAK<u (3)

erfiillt werde. Uber die Losung dieser in der Methode
der kleinsten- Quadrate eine grosse Rolle spielende
Aufgabe liesse sich allein eine Abhandlung schreiben.
Hier werde eine Losung auf Grund der leicht ver-
stindlichen, von Gauss herrtihrenden Formel?)

U

fP(u)du——jgl(u—A — A—...— A4 ) du

1 —

‘[WQ (A:z) ddz fg’s} (As) dda o './(me (Am) aum (4)

— o3

angestrebt. Wendet man auf die Wahrscheinlichkeits-
funktion ¢ (4 —4,—A4,...—4, ), welche aus 9‘1(A1)
vermige der Substitution A = sl e =l

hervorgeht, die bekannte Fourler%ohe Formel an

o0 o0

f(w)“—ﬁ f Vay e @) de,

OO

1) Abhandlungen zur Methode der kleinsten Quadrate, von
Carl Friedrich Gauss. In deutscher Sprache herausgegeben von
Dr. A. Borsch und Dr, P, Simon, Berlin, 1887.
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die man beispielsweise auch bei Dienger (Die Differen-
tial- und Integralrechnung, Stuttgart, 1862) findet, so

erhilt man
¢, —dy—d, —sun— 4, J=

1 C:-I T I . - — yi oo— A48
— g [ty [evity () aa,

 9x
Setzt man nun diesen Wert ein in die Gaullsche For-
mel, o ergibt sich die Beziehung

fuP(zL) da ==

H=m

L. if cou i oo——./.l i :
zz_n/du/e “ay /e vt g (4,)ddg, ()

e K=1

zu welcher man auch durch die weniger einwandsfreie
Darstellung des Engléinders Ellis gelangen wiirde, die
F. W. Hultman in den . Minsta Qvadratmetoden “
wiedergegeben hat.

Um die Formel (5) einer Losung zuzufiihren,
nehme man die bereits von Laplace herriithrende
Vereinfachung vor

f g (A )e ¥ E gA =
m—m( (4)(1—yA Lo Yd A
= [ 95 (g ( Yigh—5 § Lg—wg g

I 2
g8 [ iy IZK(AK)AKcZAK

1 2 2 lMgrﬂ
~ LY ~ — 5 K/'
o1 5 M, .y cce

?
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mittelst derer man erhilt
1

: 1 : N——I- Sars i sy
/P(u)du:%/dufe Rt
4 —_— 0

S — U

Weil nun aber ist

_1_ e—%}:ﬁ[%—y?—uyi Bl s s 1 e
27 Vm V2 S M%

— 0 9

so folgt weiter

(2

1 < o
Pu)du —— fe ox 22 AU .
f VeVesaz ] TUE

—u — U

Man kann somit mit der Wahrscheinlichkeit
}’ s
G (y) — i]e—” dt
Vrey

erwarten, dass der Gesamtverlust oder -Gewinn aller
Vertrige innerhalb der Grenzen

tu=-+y /230

liegen wird. Die Grisse

K=y)/23M,

auch Landré (Mathema-

welche fiir den Fall y = 1

/9

tisch-Technische Kapitel zur Lebensversicherung) mit-
geteilt hat, ist daher als das Risiko des ganzen Be-
standes zu bezeichnen.
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Anmerkung : Wiirde man auf die Wahrscheinlichkeits-
funktion ¢ (4 —4,—4,—...— 4 ) die andere Fourier-
sche Formel

(jl(% T Az— A:—)-— e A-m) —

oo

1 B _
:Q—chos (=l ~dlly, — s » _Av;l)ydyf9’1(dl)003ydl d4,

— 00

angewendet haben, so hiitte sich nach einigen Umfor-
mungen die anch aus der Besselschen Formel hervor-
gehende Beziehung ergeben

fuP(u) du =

% oo E=m

1 =l
== fdu fcos uy dy ” $i () cos (ydy) dAy,

—% e K=1

aus welcher weiterhin folgt
U oo
1o .,2 2 g
Py du=L [e—5=ui S0 4,
T Y
__.u —kD

Wie beildufig noch bemerkt werde, findet man einige
elementare Ausfiihrungen iiber das Besselsche Fehlergesetz
bei G. Zachariae (De mindste Kvadraters Methode, Ny-
borg, 1871).

II.

Eine andere, in den Rahmen dieses Kapitels ge-
hérige Wahrscheinlichkeitsbestimmung hat Bienaymé
ersonnen. Ubertriigt man seine auf Fehler von Mes-
sungen Bezug nehmende Untersuchung auf die hier
angestellten Betrachtungen, so handelt es sich um die
Bestimmung der Wahrscheinlichkeit ¥(y), dass der
Verlust oder Gewinn in der K'® Gruppe der Vertrage
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nicht grosser ist als E}}—. Die Losung dieser Aufgabe,

. K
welche in einer grossen Zahl von Schriften Erwih-

nung gefunden hat, so auch bei Lindelof (Uber die
Ermittlung der Genaunigkeit der Beobachtungen bei
der Analyse periodischer Iunktionen und in der Me-
thode der kleinsten Quadrate, Helsingfors, 1901), wird
darauf zuriickgefiihrt, das m-fache Integral

K=m

E HK f 9 K=m (1)

[(BX

derart zu integrieren, dass stets der Ungleichung

2
S H A
g Ry Ak dd,

(m) K=1

—Vy < ]/Hf L4 A4 H AL <Yy (2
oder der mit dieser gleichbedeutenden Ungleichung
O<H, £+ H A2+ ... H. A <y* (3)

geniigt wird. Findet ndmlich (3) statt, dann besteht
um so eher die Ungleichung

Y by

aus welcher folgt
F e
BT H

Um die weitliufige Berechnung des vorgelegten
Integrals zu umgehen, stiitze man sich auf eine im
zweiten Teile des Schlomilchschen Kompendiums der
hoheren Analysis abgeleitete Formel, nach welcher
man die allgemein giiltige Beziehung aufstellen kann
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L )y, dy, =

2 (m}

3 X
—— [FD)u" " du.

O<yi+uo+ .. <<y

Bei der Herleitung derselben hat man, wie schon
Bienaymé hervorhob, jede Integration doppelt zu zéh-
len, weil % sowohl einen positiven als aueh einen
negativen Wert haben kann. Wendet man nun die
vorstechende Formel auf das Integral (1) an, dabei

H, 4,=1yy setzend, so erhilt man fiir die gesuchte
‘Wahrscheinlichkeit

A
i

2 f -u2 m—1 R
= e u du. (5)
I'(3)

Sehr anregend gestaltet sich die Ermittlung dieser
‘Wahrscheinlichkeit mit Zuhilfenahme des bereits an-
gewandten Diskontinuititsfaktors

Y (y) =

oo

2 ; sln U
Vo S e—}—'y:ﬂt 4-—-—36 dx,

7T
0

welcher den Wert eins hat, solange die Ungleichung
y < u besteht und zu null wird, wenn % >u 1ist.
(Vergleiche hierzu auch L. Natani, ,Die hohere Ana-
lysis“, Berlin, 1866.)

Um die Wahrscheinlichkeit des Bestehens der
Ungleichung

0 H} £ | H) &4+ HY £, <y



zu ermitteln, multipliziere man das Produkt der Wahr-
scheinlichkeitenintegrale

1\ m

f AL i,
h =1 I/IT

mit dem den obigen Angaben entsprechenden Faktor

(e o]

8:3./8(3%"1?+P} (S +H”Jm)ﬂ sin y® y dy,
3 Y

0

so bekommt man fiir die gesuchte Wahrscheinlichkeit

o oo

2 [sin y?y T Hy — B2 A%, (0%
O I £ [e ki raa,

Y Ve
(] -—

2 Oosin »2q d 2 ?'2 mcosz (6)
:___f Z// / s nz:?/dZ/ ymdy‘
7T i LA
0 (1'_93)2 0 0 (1_?/2)2

Mit Hilfe der Formel

oo
m , i i
'/,’I}Eml e——(l—yl)w dop — (2) —

0 (1—y2z2

findet man nun ferner

o0 (& o] : o0

8z 1 v m .
f--—--(»jos ym dy:wr(m)m/cos 2y dy ch?—le“(l_yz)”du
1) 2 2
0

0 (1~yz)2 0




und hieraus vermoge weiterer Umformungen

o0 oo o

1 . L G—
f cos Zym dy=—— /cos 2y dy /uz Le " cos yu du.
d-ynr  TG)

0 0 0

Setzt man diesen Wert ein in die Formel fiir die
‘Wahrscheinlichkeit ¥ (y), so folgt

a oo
Wiy = -p—lgz—-/dz?r—/cos 2y dy
(3) ,

Wendet man auf diesen Ausdruck noch die be-.
kannte Fouriersche Formel an

oo

m
——T — .
/u‘z e " cos yu du.

0

oo

f(z):jz%——/‘cos zydy/f(u) cos yu di,

0 0

die man beispielsweise auch bei Cournot (Elementar-
buch der Theorie der Funktionen, deutsche Ausgabe,
Darmstadt, 1845) findet, so gelangt man zu dem Aus-
drucke

y®
1 L R
Yf(«/-):——m—fzz e “dz, (7)
I'(3) 4

welcher die gesuchte Wahrscheinlichkeit darstellt. Setzt
man némlich in demselben 2= u?% so geht die For-
mel (7) in die Formel (5) tiber.
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Viertes Kapitel.

Das Risiko s von einander unter-
schiedenen Vertriige.

1. Anwendung des Tschebyscheffschen
Theorems.

Wie man schon seit geraumer Zeit weiss, ldsst
sich das Risiko s von einander unterschiedenen Ver-
trige einfacherer Beschaffenheit mittelst des ersten
Tschebyscheffschen Satzes ermitteln. Czuber bespricht
diesen Gegenstand auf Seite 191 und 192 der ersten
Auflage seiner Wahrscheinlichkeitsrechnung, wiihrend
die Ausfiihrungen im § 19 (Das Risiko beim Spiel)
der Markoffschen Wahrscheinlichkeitsrechnung eben-
falls auf die Anwendbarkeit des Tschebyscheffschen
Satzes hinweisen. Immerhin mag eine auf die von uns
betrachteten Vertrdge besonders eingerichtete Darstel-
- lung den Ausgang unserer weiteren Betrachtungen
bilden.

Es seien s von einander unterschiedene Vertrige
vorhanden. Beim =x'® Vertrage ist zu erwarten mit
der Wahrscheinlichkeit

(x>p1 der Verlust K — Py —_®pg
oder der Verlust (”)Kl __ 09 V_(Z)HJ

(”\‘pz der Gewinn @V 4 “m
oder der Verlust WK, — @V — g

F1

”)pg der Gewinn “11.
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Entsprechend unseren fritheren Vorausschickungen sei
(H)pl _|_ (Z)Pz _|__ (”)pa sy

und ferner fiir die erste Vertragsart

(H)p_l_ ((%)K _ Wy __ (z)]]-) L
» » 3 % (2" g
—[“p,(PV + ¥m) 4 ©p “H] =0,

fiir die zweite Vertragsart aber
% 2 # 3) 3y
( )pl(( )Kl . ()V_ ( 11) +

L (“)p2 ((Z) K2 (= vV (H)H) . (’ﬂ)p3 (K)II: 0.

Bezeichnet man nun mit S einen der moglichen
Gresamtverluste oder Gewinne, welcher mit der Wahr-
scheinlichkeit

(1) @, @ ()
Py, Py Py

iy iy
(ix S 17 27 8)
eintreten kann, so stellt

@) (8) (K)
I T R FER

s

w8 g2

die mathematische Hoffnung der Quadrate aller nur
moglichen Verluste oder Gewinne dar. Fiihrt man die
Summation in bezug auf den ersten Vertrag aus, so folgt

~(§—1 ik 1 o2 1 D a2
E(S )(()P1()Sl+()172()52+

m,, a2y @, (3) (&)
o 83) Py By Dy

Es lassen sich aber die Verluste oder Gewinne
(I)Sl, (1)82, (”83 zerlegenin die denWahrscheinlichkeiten

(l)pl, (@jpg, (l)p:; entsprechenden Erfolge des ersten

10



T

Vertrages und einen unbestimmten, vorderhand kon-
stanten Teil, welcher von den Wahrscheinlichkeiten
des ersten Vertrages unabhéngig ist. Setzt man daher
beispielsweise '

Mg — (VK — Oy _ Opp) 4 ©g

(1)82 — (VY 4Oy 4 B8

so ergibt sich
E(s—l) {(upl [((”K—— Wy __ (l)ﬂ)2+
4 2(WE — Oy _ W) ®gy @ge
4 (1)p2 [((”V—|—(”II)2 _a (W I—’+(1)l])(2)8—|—(2)82]

W, [ oWy ®q | (B2
+®p, [V® — 21 s 4 S]}

@, ® (K)
Dy "By P

(=D S g2 @2 (2, (3) (K)
= 5 4 B Py, Py P

g z

“Wiederholt man nun die Summation in bezug auf
den zweiten Vertrag, so bekommt man

~(5—2) (1) 442 (2) 242 3) o2\ (3 (K)
Wil {( M4+ PM _|_( S}()pis... P;

und gelangt durch Fortsetzung des Verfahrens zu der
Gleichung

(5) o2 (1 2 3 #%)
59 g2 (W, ()Pazt)i"fg---( By =

=M 4L OO Y

wobei zu bemerken ist, dass das Zeichen 3 nur auf
die Anzahl der Vertrdge bezug nimmt, wéihrend mit
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der Behandlung eines einzigen Vertrages sogleich
3 Summationen ausgefithrt werden. Im ganzen kann
aber das Unternehmen 3° verschiedene Erfolge bzw.
Misserfolge zeitigen. Die weitere Herleitung des Theo-
rems unterscheidet sich nicht von den Darstellungen,
wie man sie bei Czuber, Sabudski oder Markoff findet.
Bezeichnet man die Wahrscheinlichkeit

,, @, ) (»)

By Py Py ]91»”---

mit P, und den ihr entsprechenden Gewinn oder
Verlust mit ), so kann man fiir die gefundene Be-
ziehung auch schreiben
=8
\ 2 (%) 202
z P(i) S(l) T Z M,

z:l

woraus folgt

W y '\'2

o P(A) b(i.) =
x=8 *
e

»=1

Vermoge einer vorliufig unbestimmt gelassenen
Grosse £ kann man die neue Gleichung bilden

- 9
2 P(l) S(?J

=
t‘ZZ (/.)MZ

n=1

ww[ -

Legt man nun der Zahl ¢ die Eigenschaft bei,
dass eine Anzahl der Quotienten

2
S

»=S

t?Z (/)Mz
#=1
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der Ungleichung geniigen

£y e g

die iibrig bleibenden Quotienten aber der Ungleichung

2
___‘SL(Z‘)____>1

#=8

th () 2 (b)

2=1

entsprechen, so ist damit ein Mittel zur Losung ge-
funden. Setzt man némlich die Quotienten, welche die
Ungleichung (a) befriedigen, gleich 0, und setzt fiir
die Quotienten, welche der Ungleichung (b) geniigen,
den Wert 1, so muss die Summe W, der Wahrschein-
lichkeiten, welche zu den Quotienten der Ungleichung
(b) gehdren, der Ungleichung unterliegen

1
W<

Bezeichnet man die Summe der Wahrscheinlich-
keiten der Ungleichung (a) mit I, so muss sein

W4+ W =1
Weil nun aber ist
1
W+ 72_ = 1 ?

so folgt daraus, dass ist

1

Wirl—s
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Endlich noch # =2y" setzend, gelangt man zu
dem Satze:

Mit einer Wahrscheinlichkeit

Ws1—

2
2y
darf man erwarten, dass der eintretende Gesamtverlust
oder Gewinn durch die Ungleichung

begrenzt wird.

2. Die Berechnung des Risikos mittelst der
Wahrscheinlichkeit der Abweichungen, deren
Summe oder Differenz eine Abweichung vom

rechnungsmassigen Verlaufe des Unter-
nehmens erzeugt.

Behufs Abkiirzung der Darstellung mogen auch
in diesem Teile beide Vertragsarten gemeinsam be-
trachtet werden.

Setzt man

==$ #=8
(=) (=) 7. . () ) e
K1:Z P,k KZ_Z pg( ky, 4 v,
=l #=1
so wird
»=§s
- NYoe (), (%)
K + K = ( [ R B 7{2) + (v £ v)
»=1

=8
- Z(”)[[ ~+ (1 £+ ).
w=1
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Um nun die Wahrscheinlichkeit des gleichzeitigen
Auftretens der einen Verlust oder Gewinn erzeugenden
Grossen K und K, herzustellen, welche gleichbedeu-
tend ist mit der Wahrscheinlichkeit des gleichzeitigen
Stattfindens der Abweichungen # und », kann man
von den Verallgemeinerungen ausgehen, welche fir die
Cauchyschen und Laurentschen Potenzreihen gegeben
worden sind. (Siche z. B. IFricke, Analytisch - Funk-
tionentheoretische Vorlesungen.) Nach diesen werden

die Koeffizienten AK1 K, und AK1 _x, der nach beiden
Seiten ins Unendliche laufenden Potenzreihe f(%1 s
dargestellt durch die symbolischen Doppelintegrale

(1)
(K1) —(K +1)
AK,, oy (2 /”) fff(rl 29 %1 T dx, de,
(¢
2
4 / e (K?_l)dac dx o
]\rl I(a (2 f@) . (T]’GJZ) 1 9°

Setzt man in diesen Ausdriicken

iyt g i

x, =@ und z, =€

so werden die unteren Grenzen beider Integrale O,
withrend fiir die oberen Grenzen in beiden Fillen 21
zu nchmen ist.

Durch diese Vornahme findet man

27 27 (Ia)

A,[, e _— T ff effl ()a)qt ()“"—(]ﬁl £)1-+—] 9 l}E)t (,l L)’ Ll?9'
‘l, \2 (2 )

2z 27 (2:1.)

(eﬂl ?f’ 8,{)21‘) ew(kl H—kyg 792) ‘ d(_(}L ﬁl'ﬂg.

AJ\',’ Ky @ 7{)2
0
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Man erkennt nun sogleich die Verwandtschaft dieser
Ergebnisse mit dem durch Verallgemeinerung des
Poissonschen Theorems auffindbaren Wahrscheinlich-
keitsausdrucke

1 ﬂ (“p, et 4

(K B 2
v ’ (27—{) il lzj »=1 (3)

# () gl % — ; 9 Z9)t
+ ( )I)z ei ky @yt + ( )ps) e (Kl @+ K, zo) i leL‘l CtCEZ,

auf welchen sich unsere weiteren Berechnungen stiitzen
sollen, weil die Anpassung des durch die Formeln (1%)
und (2*) veranschaulichten Theorems auf das hier zu
behandelnde Problem immerhin zu weitliufigeren
Untersuchungen fiihrt.

Zur Abkiirzung schreibend

»=8

»=1

—(IG @4 Ky @p)d .

= X, ) € Ve, w9,

werde die néherungsweise Berechnung des Integrals

[ [ Yo, oy o, d,

mittelst der Laplaceschen Formel

J 4
CL1 (62

f f Y(“’l, 2) dw, dx, =

g Cg

27 V(b o)

&’lnY Yy (WYY
o, JoO\ o0z a8 \om oz, ) o0l
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vorgenommen, deren Herleitung man auch bei Moyer
(Vorlesungen iiber Wahrscheinlichkeitsrechnung, deutsch
von Czuber) findet.

Um in Kiirze zu einem brauchbaren Resultate zu
gelangen, fithre man fiir X, o, den auf bekannte
Weise darstellbaren Néherungsausdruck ein

®=8

Wy 2 * ) - .
n X, :1:2);‘“2!‘(( )pl ( )7.61951 + ¢ )pz ( )/:;2582) i —

x=1

=8
= [ :
() G (g (%) .
X 2 [ p,p, Tk /{2] T, T,
n=1

Vermoge desselben erhilt man
1 1 5

In Y(wl, w) T T g L ?“22‘”2

— UL+ ULy,

2
1 it T

wobeil 1st

7=S8

|
o (%) (=), (%) 7.2
“11**2; b, (1 pl) 2

-

=1
':;:;5“
— (%) (%) %) 7.2
Ay = Py (1 — p2) ( s 5
=1
%
_ (), (), (g, ()
Ayg == [ P, Py k1 kz]

#=1
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Diese angeniiherte Funktion von 2, und z, diene
nun zur Auswertung der Laplaceschen Formel (4).
Um das Maximum von Y(%, ) beziehungsweise von
i Y@ oy zu finden, werden die Differentialquotienten

0 ln Yu;‘;, %)

—_— 0 |U___‘ ) ——
I Q1% . Q1% ur=1>0
6931
o) Zi’l I,mu 22
_____ et B g 0 g b T e
0 T T Ygate . Mgy —
ox

gebildet, aus welchen man findet

o Uop U+ G o VAU
xl ey ‘ ) Z, ,’,(,‘2 = 4 5 2.
g lhyy — Gy Ay Gy — Uy

Substituiert man nun diese Werte in In Y(m?,wg),
so erhélt- man zunéchst

2
_— Mia AN N
@, @) T 9 Y 2
Ay Gy —

12
9 X
4 1 a0+ G, u . (Aot + ap V)@, v+ a,u)
?“22 az 22 (0& a0 — a2 )2
@y oo 12 11 %9 12
A a0 Ayt
— 5 — 5
Uy Qgp — Ay gy gy — Ay

und hieraus nach mehrfachen Umformungen

2 2 | < .
Wy 10 -+ @, v -} 2a, v

2
Q(anazz - a12)

InY,

0 0, —
(@, )



— 140 —
‘Weiterhin folgt

(53 ln Y(‘Cl, 1'2) (52 {n Ir(l«l’ fﬂz)

— 7
2 117 2 227
6901 (3932
2
& i Yo s
( 1, 2) = 4+
(S:vl 5902 - T

daher ist

8 In Yis,, ) Ol Yo, ep)
(59’3? x}, x} 5-133 @, a)

52 In Y(%, w2) 9

o = Ay Gy, — A,
dx, Oz, )3;;) 2 11 %22 12

Es ergibt somit fiir die gesuchte Wahrscheinlich-
keit der Ausdruck

1 g uz—l— gy U2+2 U UV
P = [a-a,—d, € (mardy) - 0
2171 @y Uy — Gy

Indem man aus diesem etwa u vermoige der
Gleichung 4 —=wu + v eliminiert, erhdlt man die Wahr-
scheinlichkeit

| ap 4°4(y g v+y/ag 4)?
P('l(,, ’b‘) == 2 ‘ ___2_ e 2 (all (222_(1?2)
’T]/Qua?z Ty ;
in welcher ist
a — az
11 %0 12

o, ===
] —
Oy + 0y + 20,

’ l/azg l/a’n + ay, + 20,

@y + Ay

Vo, = ey
’ Va, +ay, + 20,
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Setzt man noch

Va, v+ Va, 4 t
. S=haa
2(“11“’22 — am)
mithin |
2
dv :W 2(6&11%2 ﬁ* a’rz) 1t
a,+a, ¥ 2a,
und beachtet gleichzeitig, dass ist
% o 1
2(“11“22 — “32) 2(ay, + 0y ¥ ay)
sowie
2
1 2(“11“22 — “12) _
2]/“’11 Doy — “fg “1 + Ay + 24,
1

= — b]
/2 (an +a,, ¥ 2 )

s0 bekommt man

Y —n? 4E Coftz :
P(;J):?{e) f@ dt

17 _7]2 A.’Z
:—_—e
l/ﬂr ?
worin # nach der Formel zu berechnen ist

1

?:2 (84 F g F 2a,)
K=s
-:gz[mpl(l Lp ) g P (12 Gy G
R=1

— g G, () (a)g. (%)
¥ 2%p, Tp, Tk, kg].
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Dabei ist das Minuszeichen zu nehmen, sofern 4 =—
u - v, hingegen das Pluszeichen, wenn A=u—v ist.

3. Unmittelbare Berechnung der Wahrschein-
lichkeit eines Verlustes oder Gewinnes.

1. So anregend die im vorangehenden Abschnitte
gegebene Darstellung auch ist, so kann man sie von
dem Vorwurfe der Weitliufigkeit nicht vollig frei-
sprechen. Zweifellos verdient ein Verfahren, welches
die unmittelbare Berechnung eines Verlustes oder Ge-

winnes
=8
Vo= Z("‘)II + 4
H:]_

gestattet, den Vorzug. Kin solches ist durch das La-
place-Poissonsche Integral

1 ﬂf}—?ﬂf

—Kxt
P(.;f) :% fX(;lj) e CZQS' (1)
oder
1 7 BB ,

-

gegeben, iiber dessen Entstehung hinweggegangen
werden kann, weil dieselbe fiir s einander gleiche Ver-
triige bereits besprochen wurde. Fiir einfachere Ver-
sicherungsformen gibt die Darstellung dieser Integrale
auch Kittner (Das Risiko der Lebensversicherungs-
anstalten und Unterstiitzungskassen, Berlin, 1906). I'ir
die erste der hier betrachteten Vertragsarten ist

* (=) ) = —("*)91" »
(()ple cloz_i_()pze cua,z_’_ (>193)7
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hingegen fiir die zweite Vertragsgattung

S
P (”): xi” ”-_ @i
()ple L | P : | .pg)

=

Beide erzeugenden Funktionen lassen sich unter
der gemeinsamen Iform

H=3
s () Jo. i (5 (N wi ®
:r(()ple 7('1.1.2 +( )pzei 7‘39” +( )pg)

darstellen, bei deren Anwendung man zu setzen hat

“=§ H=8

‘j [ o . . . P
K = /. i+ 4 :Z(M D, (”)]cl % '(‘)pz (”)kz) + 4.

#n=1
In Ubereinstimmung mit diesen Erdrterungen lassen
sich den Ausdriicken (1) und (1%) auch die Formen geben
u-{—z—r

#=3

o 1 () Fey— G Ir) wi
Py gt [ T e mey

a

+ (}:)p2 ()+( (%) lg— (”)H) a:z‘_|_ (;z)p3 e_ (%) H;ci) eizl @i d.%' (I)

n=1

() (( Yey— A IT) i
(d) TI-( ' +

% (D pg— D 11) i ” — (®) e @i
+ P, @XMty @)y o= P2 ket gy (1),

In seiner fritheren, diesem Gegenstande gewidmeten
Abhandlung hat der Verfasser die Ubereinstimmung
der Formeln (1%) und (I*) ausfithrlich besprochen.
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Zur ndherungsweisen Berechnung der in den
Ausdriicken (1) und (1*) vorkommenden Integrale gibt
es verschiedene Verfahren. Erstlich kann man sich der
einfachen Umwandlungsmethode bedienen, wie sie im
dritten Abschnitte des zweiten Kapitels zur Anwendung
kam. Fernerhin bietet aber die Laplacesche Néherungs-
formel

; 7 Yo

« |/ _L(FmYe)
2 d.il’)z T=x

deren Entstehung auch Poisson und Meyer gezeigt
haben, cinen Losungsweg. In Ubercinstimmung mit
den Formeln (1) und (1%) setzend

(2)

== H,\?: () II-{—A) xi
7 ( e L
V=X, e \a

fithre man fiir Y(w) die auf bekannte Weise herleit-
bare Néherungsfunktion ein

gy bogus
i —— M2 3
¥ =8 z (3)

in welcher bedeutet

x=8

MQ*:Z[(H)Pl(l — ¢p) ¥R+

x=1
+ (/)pz (1 L -(2)1)2) (A)k; _t 2 (-‘«t)pl f”)pz (%) kl (%) ]52]. (4)

Um den Wert #, zu erhalten, welcher ¥ , zu
einem Maximum macht, setze man

diny, . '
——@ 0, ®)
dx



man erhilt sodann aus

dinY,
) T Ai— Mz, —0:
dxu
1] + Il/l2 °

Substituiert man diesen Wert in (3), so folgt

T At L e+ A2\2
Yy=e"" (+ 1&12)z 7 (+ Mg)

0 O S
—€ w 2xy—=€ . (6)
dinX
Aus - findet man durch nochmalige Dif-
ferentiation
) ¥ )
— e —— ¥ ™
dx”
und mithin
dnY ‘
ﬁﬁ)_) N (8)
da” T=1

Setzt man die Werte (6) und (8) ein in die durch
Verbindung von (1) bzw. (1*) und (2) entstehende Formel

Yy

Vr s (_d2 i Y(m)) | ()
dao” 2=,

80 erhdlt man fiir die Wahrscheinlichkeit P(d) das be-
kannte Gesetz

P(J> T

2

1 4

P.v i = e e 2M2 * (10)
e, V/T 2M2
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2. Ein anregendes und in einigem einwandfreieres
Verfahren zur Berechnung der Wahrscheinlichkeit P,
nach dem Laplaceschen Gedankengange hat Arany in
seiner Abhandlung ,Bin Beitrag zur Laplaceschen
Theorie der erzeugenden Funktion“ (Fonction géné-
ratrice) im 2. Hefte des 9. Bandes der versicherungs-
wissenschaftlichen Mitteilungen, im Hmbllck auf ein-
fachere Félle besprochen.

Mittelst der aus

Fiay = Xy €' — Xy €75 K0

hervorgehenden Gleichung

X/a dlin X
Lii:i(mwﬂ), (11)
b Xiwy 7 dx 2=z,

in welcher x, den Wert des Arguments z darstellt,
welcher zu K gehort, findet er zuniichst

%o
- i K da
‘(Y(J’U) == 0 0
und sodann
iL'O
T z'fK de—Kwxyi
(1“) X(azo) 8 —— 8 0

Ist nun K der Wert, welcher zu x==0 gehort, so
ergibt sich durch partielle Integration
K Zo
[ 2dK — (Kac);;;“ - fK(l.’L‘,
K, 0
daher kann man auch setzen
K

: j;qdh (12)
Y(xu)::e K,
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Um nun noch fiir einen

V_ 9 cl In Ym)

Wert zu erhalten, welcher dem Aran}schen Ergeb-
nisse entspricht, hat man sich zu vergegenwirtigen,
dass die Ableitungen von In ¥ in der Voraussetzung
gebildet werden, dass K eine konstante Grosse ist.
Aus der Gleichung

In Y(m) = lnX(x) — Kzt

erhilt man durch zweimaliges Differentiieren

dlnY(m) _ dlnX(x) K,

dx dx

9 2
d’nY @) d lnX(m)

da” dx’

Aus der von Arany aufgestellten, fiir jeden be-
liebigen Wert von K geltenden Gleichung
i dhnX,,
dx
folgt aber allgemein

1K d2 nX,,
i

d £ dmz

)

mithin ist auch

dglnY(m) - (ZQZnX(x . (d[()
dl’f}z &:'-—-—_3:0 dvbg T=xg dCE T=12

Durch Einsetzen dieses Wertes kommt man nun
zu der der Aranyschen Formel entsprechenden

11
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K
—ijaxed K
| e,
P, = . (13)

. (dK
/=2 (5E) .

Dieses Ergebnis lasst sich noch vereinfachen, in-

dem man setzt
1 din X(w

S R I

und ¢ (x¢) nach dem Maclaurinschen Satze entwickelt;

man erhilt so
2

s X "
K=g¢p+2igq—37%0

Fir =0 wird K zu K, und daher ist ¢ = K.
Vernachlissigt man alle hoheren Potenzen von z, mit
der zweiten beginnend, so ergibt sich die Niherungs-
gleichung

K=K +zig), (14)

aus welcher folgt

t A=K—K,=zigy

und

RES S (15)

Fiithrt man die Werte (14) und (15) in die Glei-
chung (13) ein, so bekommt man die stets anwend-
bare Néherungsformel

4%

| e 2w
P Y (16)
(1) = ]

/)29,
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Im vorliegenden Yalle ist 9"’(,0) aus der Gleichung

»=S
- Y (e, wi x gt #
dzln((ﬂ)ple )iey AL ()pz e‘_i'( Vkywi = ()1)3)
K o - 2

) dx

. - 17)
=8 (%), G ey i () #) + kg () (
.\ ( pe 6 /{1i—< p,e- kz == ¢ (1)

% QF¥D # (OF M #)
— ()_2718 124 + ()p2ei' Cpit + ( D,

zu bestimmen. Auf dem bereits beschriebenen Wege
findet man die Néherungsgleichung

K:K0+M2xi,

in welcher ist

o N (=), (%) (%), (#)]
K = Z( p, k£ T, kz)
’ n=1
und
p /i‘; # P #) 7.2
M&Z[Mpl(l @) R 4
#=1

4 (H)p2 (1 . (2)1)2) () ki + 2 () P, (;f)_p2 () ]{"1 (32) /ﬁz]
Sohin ergibt sich wiederum die Formel (10).

Anmerkung: Die in den Abschnitten 1 und 2 ge-
gebenen Intwicklungen erfiilllen nicht die von Laplace
aufgestellte Forderung, dass die Integranden der nihe-
rungsweise zu berechnenden Integrale fiir die Integral-
grenzen verschwinden. Wie man sogleich bemerkt, nehmen
die Integranden der hier betrachteten Integrale fiir die
Grenzargumente Werte an, welche in der Umgebung von 0
liegen. Da es sich aber ohnehin nur um Niherungs-
berechnungen handelt, so wird man iiber diese Ungenauig-
keit hinwegblicken diirfen.
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3. Schliesslich kann man die Formeln (1) und (1%)
auch durch Verallgemeinerung des Poissonschen Ver-
fahrens umgestalten. Fihrt man zu diesem Zwecke in
den xt» Faktor der erzeugenden Funktion

») () ey i %) + CDiegas (%)
Wp e T 4 My et T 4 Wy
die Moivreschen Werte ein
*®) : ” P 2Y
e( k‘“:cos“klx—l-zsm”/cgaz

+ Cywi

e cos “ I,z + isin Pk, z,

so folgt

(z}ple(ﬁ)klwi + (z)pz ei () kywi + (z)p3
— ( o p, €08 ) kx -+ (”)pz oS (")kzx -+ (”)p3)
~+ 2 (M p, sin () ko + (”)p2 sin 7€2$).
Darauf bestimme man den Modulus des »!** Vertrags aus
& :((wp1 cos “k z 4 Pp, cos (”)kzw + (“)p3)2 n
- ((”)pl sin (”')klx + (“)p2 gin ka)z, (18)

und bilde zur Berechnung des Arguments ¢ die
Gleichungen
(")pl o8 (“)klx -+ (”)p2 o8 (”)kzx + (‘”)pgz 0, COS ¢

(19)
(")p1 sin @ ko * Mpz sin kyx=p, sing, .



Man erhilt so

((”) P, €08 g k,w + (”)pQ Ol x + (”)133) -+ |

+ ( () p, sin @ kyw + “p_sin (”)kzac) o e
(20)
oder

%, (d)k ; * (")k i » q 3
(@, e 4 O et 4 gy g gt

Durch Auflésen der Quadrate geht die Gleichung
(18) tber in

2 x) 2 %) 2 %) 2
Qz :_—_"()pl ()p2+()p3+
260, U (O 5 ) e
-+ Q(Z)pz (K)pg cos o kl x + 2 i Dy (z)p3 cos (*‘) 7{2 o

Wendet man auf die auf der rechten Seite auf-
tretenden Kosinusse die Formel

.9 a
cosa=—1— 2 sin o

an, so geht die vorstehende Gleichung iiber in
) » Fed . 1 > —— e
o —=1—4 ()pl”pﬁmz?(*()kldr ()kz)x—}—

*® # . 1 P P ® . ]- P
+ p, P, sin® £ w4 D, ¥ sin® )k‘zx]_

Da man der Urvariable 2 zunédchst einen sehr
kleinen Wert erteilen kann, so darf man fiir die
Sinusse die Winkel selbst setzen. Dadurch ergibt
sich
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Qi —1— [(”) P, (”)pz ((”) k, + (‘”)Ar2)2x2
e (fc)p1 (”)pg (H)ki 22 L (”)192 (x)pg () ki .:c2]
1[0, ) R @

# 2) Y1219 (2, () (&g, (7. 7,2
+ “p(1- “p,) P F2 Pp, Pp, Pk Pk, Ja

e ] — W%

Durch Ubergang zu den Logarithmen findet man
die Gleichung : :
2y = (1l — M5, (22)

aus welcher man die weiteren Annidherungen erhilt

ZT'I Q% - % (Z)M‘Z .292 (224)
und
1oy g2,
g, = e~~2—( ) i af*. (22

Endlich bekommt man durch Hinsetzen der Aus-
driicke (20) und (22%) fiir die erzeugende Funktion
den Ndherungswert

=8 1 »=5 #=S8
. 5 2 2 ol g
@, ¢ — )y Tt
X=|le, " '=€ 74 e,

x=1
in welchem man noch zur Abkiirzung setze

#=8
-1 19y §
Z ™ y° — 2,

x=1

Weiterhin handelt es sich um die anniihernde
Berechnung der Amplitide ¢ .



153 —
Aus der Gleichung

o, 8mmy = (”)pl sin Pk oz + “p, sin @ @

findet man

!
. () 122 . (3 .G
sin g = @2 ) s ((”)pl sin (/)klx + (”)p2 sin (")762.%‘)

2 () ?
daher ist

g, =——arcsin [ o

t () , 1-3 (hw
R T e

J

Die Funktion f - entwickle man in die Ma-

claurinsche Reihe
2

v ' A N
fe@="1. 0 T%F q +“2 Tew o

in welcher man zu setzen hat

f_-,_ (0) — 0 l

yy _ { ) (%) G, ()Y . ()
l. (0)_( py Tk £ TRy ) = T
NT :

lo = 0.

Giemiiss dieser Untersuchungen ergibt sich aber die
Niherungsgleichung

_ 1 (Pn)’ | 1.8 (Y0
N O ST
o, = "H w4 5= T aai

Macht man wiederum von der Annahme Gebrauch,
dass der Winkel 2 recht klein ist, so darf man auch
im vorliegenden Falle seine héheren Potenzen ver-



R | -

nachlidssigen. Auf diese Weise kommt man aber zu
der Néherungsgleichung
o, = .z, (23)

durch Anwendung derer man den bekannten Ausdruck
erhélt

»=S
20 ) [rai— —Mz 2

X=gZ

Fiithrt man denselben in die Formel (1%) ein, so
ergibt sich

P

1 [ Ui’y dw "
—— I I A—J4
(f'>*2,r[e 2 d . (24)
Weil man ferner annehmen kann, dass der Inte-
grand bereits fiir missige Werte von x sehr klein
wird, begeht man nur einen geringen Fehler, im Falle
man die Grenzen — 7 und -+ 7 bis — oo und +oco
ausdehnt. Sich hierauf noch der Substitution
erd®t — cos Az + isin dzx

bedienend, gelangt man wieder zu der bekannten ormel.

— L 2
P(A) ane 5 cos Axdux; (25)

denn der imagindre Teil

""‘M © gin Az du
- 2fr~[

verschwindet, weil sein Integrand eine ungerade Funk-
tion von x ist,
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4. Weitere Bemerkungen iiber die Auswertung
der vorkommenden Integrale.

Wie bereits im dritten Abschnitte des ersten Ka-
pitels bemerkt wurde, gibt es verschiedene Verfahren,
um das Integral

B, == 21H Ife—“‘Mdm cos Az dx (1)
umzugestalten. Hier soll noch eine Umformung gezeigt
werden, derer sich Bruns (Wahrscheinlichkeitsrechnung
und Kollektivmasslehre) bediente, und die auch in
mehreren Lehrbiichern der hoheren Analysis Erwih-
nung gefunden hat, so beispielsweise bei J. L. Raabe
(,Die Differential- und Integralrechnung®, Ziirich,
1843) und bei Oskar Schlomilech (,Kompendium der
hoheren Analysis“, Braunschweig, 1895).

Durch Entwicklung von cos bz gelangt man zu
der Gleichung

Koo 2
e_-aac’ cos bx da — Z - 1)K ((2 12—)‘ . (2)
LK=0
Es 1st aber
f e I — ]/i
@
und o

o0 o0

—ax’ K b - -1 szK —an? 2K
[ (-1) ((213), X _—_((2)11')! /8 x dx

— o0 -— o0

= g(_l)ﬂ-3-5...(21{4)(&}2"’
~e Gk




mithin folgt
/e_“’z cos b dic-—=
fef, 1 (b, L {b\ 1{0b)
~ha I_MT?{M/E)JF?’(275)—37{%@) T
b 2

s ] ;z 8‘.‘ (21/}?

Mit Benutzung dicser Bezichung findet man fiir
die Wahrscheinlichkeit £, das bereits mehrfach an-
cefithrte Gesetz

2

1 A

Pooes e e
R O CY R

Um vermoge dieses iiberaus brauchbaren Nihe-
rungswerts  die  Wahrscheinlichkeit W _ -~ zu er-
mitteln, dass die Ausgaben die Risikoprimiensumme
um -+ A Franken iiberschreiten oder um diesen Betrag
weniger als die Risikoprimiensumme ausmachen, stelle
man in Anlehnung an Poisson die Formel auf

oo

K=
_ 1 e O )
W, =gz | € 2 . 4.\/_; cos Kxdx. (3)
h=-4
Nun ist T
=4
ZcosKw:‘)(l+cosx+cos2x—|—...—|—
K=-4 ~+ cos (4—1)x + cos 4x) — 1
cos%dm sin ; 4+
o ' sin <
__sin(d+"))x

: (4)

. 1
8in + @



w3 N ‘ 1 ;
- und wenn man fiir sin -z niherungsweise - x schreibt,

o0

1 =S 2,2 sin (A4 -+ /e)
W(_A’A):_/e M ( _|— /d) (5)

7t

— 00

Dieses Integral stellt, wie schon frither bemerkt
wurde, einen besonderen Fall des von Poisson hdufig
angegebenen Integralausdrucks dar. Um es weiter um-
zuformen, kann man wiederum verschiedene Wege
einschlagen. Entwickelt man beispielsweise in dem In-
tegrale

oo

_ae® SIn bz

ax

f@ a &
z

=

: mbx . . ;
den Quotienten sm{E — in eine Reihe, so folgt

oo

f 8_M2 sin b{_ D
x

—_—o0

o _am b Z( 1) (Q(bx)% dx

K1)
K=oco oo
b21x+L . 9 ok
- Z( Hne ' /e T 2 dax
L RSN

K=o

e N (= 1)[{ L
— 9 VHKZ;; Kl (2K+1) (QV(?)-




Es ist aber

K:OO - 2 V(t

ST ) MY S Rl U I
LK argilegs) = ¢

0

mithin ergibt sich

oo

b
] 2Va
_ax? Sinbx

- d(];:‘)’/; /‘e-—-—tzdt' (7)

v
Gy 0

Aus dieser Untersuchung ldsst sich der Schluss
zichen, dass man mit der Wahrscheinlichkeit

A2
Vo
W_, = [etdi=o (iJFO )
B Vr V2 M

0

einen Verlust oder einen Gewinn bis zur Hohe von
A Franken erwarten darf. In der Formel (8) erkennt man
das Ergebnis, welches Moser und nach diesem Eggen-
berger aus der Beziehung

4

V7 M
2 g 1 4
W gy T é 4 — € oyt ( )
=4, & ]/71‘ / I/;r V2 M -

0

hergeleitet haben. Auch zu der letzteren aber gelangt
man vermige der Beziehung (4). Beachtet man nédm-
lich, dass anderseits ist

KE=4

Z 208, K == 1_1_1_1__41% ~+- cos Az, (10)
. g
K=-4
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und dass man niherungsweise setzen kann

1
tg 5 o 2o ?x,
so folgt aus (5) mit DBeriicksichtigung von (2) die
Formel (9).
Legt man der Grosse 4 die Eigenschaften einer
kontinuierlichen Grosse bei, so kann man einfach setzen

oo 4
1 7LM2m2
W(_d’ H= 5 e 2 dex | cosdxdd, (11)
—o0 —4

woraus sich die fiir Risikoberechnungen hinreichend
genaue Formel ergibt

1 _La2.2 sin Adx
W4, A)—T_/e 2 x dx.  (12)

Dieses uns schon bekannte Integral bietet uns Ge-
legenheit, noch einige Augenblicke bei der Funktion

o0

sgn (4 —2) = ifsm A—go dv (13)

v

— 00

zu verharren, welche Bruns und Czuber zur Darstel-
lung der in der Kollektivmasslehre eine Rolle spielende
Summenfunktion benutzt haben. Solange 4 > 2, ist be-
kanntlich sgn (4-2)=1. Fiir 4 <z wird sgn (4-2)
= — 1, und fiir 4==2 folgt sgn (4 — 2) = 0. Zieht
man ausserdem in Erwigung, dass fiir |— A| >z ist



o (=]

ifﬂln(mll+z)vd’u:——£ /\fl_l}"(/J_Z)‘EdU:_.l’ :
7 v T v

[ %
-_—cQ —_— 00

so kann man die Funktion syn (4 — 2) wie einen Dis-
kontinuititsfaktor anwenden, um das Integral

A

Iff (2) dz

vermige des Integrals

[¢@dea=1
berechnen zu konnen. Bedingung ist jedoch, dass ¢ (2)

eine gerade Funktion ist, welche stets der Gleichung

¢ (2) =g (—2)

unterliegt. In der Voraussetzung, dass dieser Bedingung
Geniige geschieht, stelle man die (leichung auf

] 00 oo
/q (2) ciz:/q(z) dzi/ i ("U‘"Z) Y. (14)
— 4 — 00 —_— 0

Wendet man nun auf ¢ (2) die Formel (25) des
Abschnittes (3) an, so erhiilt man zunéchst

a4
[Py dd
-

1 i L ag sin (4 —
__—éwgfe CR cl:);/cos 22 dzfqm( - ?) v dv. (15)
T

— OO
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Die weitere Vereinfachung dieses Integrals wird
durch Anwendung der bekannten Fourierschen Integrale

oo o0

[ 1) cos (ay) cos uy) dae dy =271 £ (1)
T und (16)
/ ff () sin (zy) cos (uy)dxz dy =0

bewirkt, iiber die bereits kleinere, éltere Lehrbiicher
der hoheren Analysis, z. B. auch Franke (Lehrbuch
der hoheren Mathematik, Hannover, 1851), Aufschluss
geben.

Beachtet man die Beziehung
sin (4 —2z) v ==sin 4v cos 2v — cos 4 v sin zv,

so kann man die beiden Innenintegrale der Ausdriiclze
(5) umformen in die Integraldifferenz

fcos 2 dz[sm (4= Y dy=
:[ fsm?..él v cos (v2) cos (2) dv dz

—0 —o0

f fﬂ‘d_y sin (vz) cos (x2) dv dz. (17)

—_—00 — 00

Zufolge der angefithrten Integrale von Ilourier
ist aber



o0

/

— 00 — 00

f fGOSAU sin (ve) cos (x2) dv dz =0,

—_— o0 — 0
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o

sin 4 v : sin A
o8 (ve)eos (x2)dvdz=2n 1

(18)

oo

v

daher ergibt sich auch auf diese Weise der Ausdruck (12).

Schlusswort.

Den Abschluss der Risikotheorie bildet die Er-

orterung folgender Aufgaben:

1.

6.

Bestimmung des Minimums des Risikos bel kon-
stantem Bestande (Landré, Radtke);

. Bestimmung des Minimums des relativen Risikos

(Radtke) ;

Bestimmung des Maximums der durch neu hinzu-
kommende Vertrige erwachsenden Verbindlich-
keiten (Hausdorff, Landré);

Aufstellung der von Wittstein eingefithrten und
von Bohlmann vervollkommneten Risikoreserve;

. Berechnung der Minimalzahl der Versicherten mit

Hilfe der Risikoreserve (Bohlmann) und Bestim-
mung der Stabilitit des Versicherungsbestandes;
Maximum der Risikoreserve (Broggi).

Fiir die in der vorliegenden Arbeit besprochenen

Versicherungsformen hat der Verfasser diese Fragen
bereits in seiner ersten Abhandlung untersucht. Da er
seinen fritheren Ausfiihrungen nichts wesentliches hinzu-
zufiigen hat, so glaubt er hinsichtlich dieser auf die
erwihnte Arbeit verweisen zu konnen.
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