Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 11 (1916)

Artikel: Näherungsformeln zur Kontrolle der Reserve ganzer

Versicherungsbestände

Autor: Göring, E.

DOI: https://doi.org/10.5169/seals-550790

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Näherungsformeln zur Kontrolle der Reserve ganzer Versicherungsbestände.

Von Dr. E. Göring, Cöln.

Versicherungsgesellschaften, die keine Gruppenrechnungsmethode anwenden können, haben jährlich für jede einzelne Versicherung eine neue Reserve zu rechnen. Gebraucht werden aber für die Bilanzrechnung nicht diese Einzelreserven selber, sondern ihre Summen für ganze Versicherungsbestände.

Für einen solchen, aus beliebigen Versicherungen (in einem Reserveregister) zusammengestellten Bestand sei die Reserve "Mitte des laufenden Kalenderjahres" mit V_{m-1} , Mitte des folgenden Jahres mit V_m , die Nettoprämie mit P und die gesamte Versicherungssumme mit K bezeichnet.

Die Bilanzreserve Ende des Kalenderjahres beträgt dann

1)
$$V_{m-\frac{1}{2}} = \frac{1}{2} \left[V_{m-1} + V_m + P \right].$$

Für den folgenden Rechnungsabschluss kann man den neuen Bestand gebildet denken aus dem "alten" (d. h. bisherigen) Bestand (mit derselben Summe K und derselben Nettoprämie P), vermehrt um den Zugang und vermindert um den Abgang. Umwandlungen von Versicherungen können als Abgang der ursprünglichen Versicherung und Zugang der geänderten angesehen werden.

Es sind nun für den neuen Bestand und das neue Kalenderjahr die Grössen V_m' , V_{m+1}' , P' und K', die den Grössen V_{m-1} , V_m , P und K des vorhergehenden entsprechen, zu bestimmen und die neue Bilanzreserve ergibt sich zu

2)
$$V'_{m+\frac{1}{2}} = \frac{1}{2} \left[V'_m + V'_{m+1} + P' \right].$$

Für den Zu- und Abgang seien die entsprechenden Grössen V_m'' , V_{m+1}'' , P'' und K'', sowie V_m''' , V_{m+1}''' , P''' und K'''. Dann ist

3)
$$V'_m = V_m + V''_m - V'''_m, P' = P + P'' - P'''$$

 $V'_m = V_m + V''_m - V'''_m, P' = P + P'' - P'''$

Addiert man schliesslich noch für den alten Bestand die für das neue Kalenderjahr gerechnete Reservekolonne und bezeichnet man die so erhaltene Summe mit V_{m+1} , so ist noch

4)
$$V'_{m+1} = V_{m+1} + V''_{m+1} - V''_{m+1}.$$

Fehlt für eine abgehende Versicherung die neu zu rechnende Reserve, oder ist die Berechnung derselben zu umständlich, so wird sie durch eine im Einklange mit folgenden Ausführungen gebildete Hülfsreserve ersetzt, welche durch dieselbe Grösse im Abgange wieder in Wegfall kommt.

Nun bestehen zwischen den beiden, schon vorhandenen Reserven V_{m-1} und V_m und der neu gerechneten Reserve V_{m+1} des alten Bestandes einfache Näherungsbeziehungen. Die bekannteste ist (falls mit dem Zinsfuss $3^{1/2}$ % gerechnet wird)

5)
$$V_{m+1} = 2.035 V_m - 1.035 V_{m-1}$$
.

Die allgemeinste Form einer solchen Näherungsformel lautet, wenn noch die gegebenen Grössen P und K mitberücksichtigt werden:

6)
$$V_{m+1} = g \cdot V_m - h \cdot V_{m-1} + j \cdot P - s \cdot K;$$

wo g, h, j und s näher zu bestimmende Konstante bedeuten.

Mittelst einer derartigen Näherungsformel kann die neue Reserve des alten Bestandes stets auf ihre ungefähre Richtigkeit geprüft werden. Zur vollständigen Prüfung der neuen Reserve V'_{m+1} des neuen Bestandes erübrigt sich also gemäss 4) nur noch die Betrachtung der Reserven V''_{m+1} und V'''_{m+1} . Die Reserve V''''_{m+1} des Abgangs besteht aus Posten, die in der Summe V_{m+1} enthalten sind, also gleichzeitig mit dieser geprüft werden. Die Reserve V''_{m+1} des Zugangs endlich (in dem auch die geänderten Versicherungen enthalten sind) kann am besten durch eine Gruppenrechnungsmethode geprüft werden. Alle Versicherungen des Zugangs werden nämlich gewöhnlich, um eine Sterblichkeitsstatistik durchzuführen, nach Altersklassen sortiert, und zwar ohne Rücksicht zu nehmen, in welchem Reserveregister sie zusammengestellt sind. Für dieselbe Altersklasse werden nun sämtliche Versicherungssummen addiert, für das Alter y erhalte man die gesamte Versicherungssumme K''_{y} .

Diese Arbeit muss schon zur Durchführung der Sterblichkeitsstatistik erledigt werden. Man addiere jetzt weiter, für die einzelnen Jahrgänge gesondert, die Nettoprämien, sowie die Reserven am Anfang und am Ende des laufenden Versicherungsjahres für den ganzen Zugang und erhalte die Werte P_y'' , V_y'' und V_{y+1}'' . Die Änderungen abgesehen, werden die meisten Summanden

von V_y'' gleich Null sein. Will man die Versicherungen, bei denen im Todesfalle nicht die Versicherungssumme fällig wird, nicht aus der Zusammenstellung fortlassen, ersetze man hier die Versicherungssumme durch die auf Ende des Versicherungsjahres diskontierte Leistung im Todesfalle. (Diese Modifikation hat hauptsächlich bei den Fix-Versicherungen einzutreten.) Die so korrigierte Versicherungssumme sei S_y'' . Dann ist

7)
$$V''_{y+1} = S''_y - \left[v \cdot S'''_y - (V''_y + P''_y)\right] \cdot u_y,$$

wobei $v = \frac{1}{1+i}$ den Abzinsungsfaktor bedeutet und

8)
$$u_{y} = \frac{1+i}{p_{y}} = \frac{D_{y}}{D_{y+1}}$$

der gebräuchlichen Bezeichnung gemäss ist.

Formel 7) ist auch bei veränderlichen Prämien, bei denen die übliche Gruppenrechnungsmethode sich kompliziert, wenn nicht gar unmöglich wird, anwendbar.

Durch dieses Kontrollverfahren wird die neue Reserve des Zugangs für jeden einzelnen Jahrgang, damit die Gesamtreserve des Zugangs und folglich auch die Reserve V''_{m+1} jedes in einem Reserveregister zusammengestellten Einzelbestandes geprüft. Durch 7) wird endlich noch die Reserve V''_m mitgeprüft, soweit sie nicht null ist, damit ist auch V'_m kontrolliert, da V_m und V'''_m im vorjährigen Bestande schon enthalten waren. Damit sind alle Reserven, die gemäss 2) die neue Bilanzreserve zusammensetzen, auf ihre ungefähre (resp. absolute) Richtigkeit nachgeprüft.

Die Formel 7) könnte auch zur Prüfung des ganzen Bestandes verwendet werden, wenn die Grössen V''_{y+1} , V''_y , P''_y und S''_y sinngemäss durch die Grössen V'_{y+1} ,

 V_y' , P_y' und S_y' ersetzt werden; ja die Reserven könnten überhaupt dadurch gerechnet werden, dass alle Bestände nach Altersklassen zerlegt werden und für jede Altersklasse die Reserve aus der vorhergehenden bestimmt wird.

Zur Ableitung einer Kontrollformel von der Form 6) denken wir uns ebenfalls den bisherigen Bestand nach Altersklassen zerlegt, ohne jedoch diese Zerlegung effektiv ausführen zu müssen. Für das Alter y erhält man, dem Frühern entsprechend, die Reserven V_y und V_{y+1} , die Nettoprämie P_y und die korrigierte Versicherungssumme S_y . Dann ist zu 7) entsprechend

9)
$$V_{y+1} = S_y - \left[v S_y - \left(V_y + P_y\right)\right] \cdot u_y,$$

wo u_y durch 8) gegeben ist und v wieder den Abzinsungsfaktor bedeutet.

Diese altbekannte Gleichung entspringt folgender Überlegung: Es ist

10)
$$V_{y+1} = (1+i)(P_y + V_y) - q_y(S_y - V_{y+1}),$$

woraus folgt, wenn diese Gleichung nach V_{y+1} aufgelöst wird und $1-q_y=p_y$ gesetzt wird,

11)
$$V_{y+1} = \frac{1+i}{p_y} [P_y + V_y] - \frac{q_y}{p_y} \cdot S_y,$$

eine Gleichung, die an Stelle von 9) gebraucht werden kann. Durch Umformen erhält man hieraus

$$V_{y+1} = S_y - \frac{1+i}{p_y} \left[\frac{1}{1+i} S_y - (P_y + V_y) \right].$$

Setzt man hierin noch $\frac{1}{1+i} = v$ und $\frac{1+i}{p_y} = u_y$,

so erhält man direkt Gleichung 9).

Die Gleichung 9) könnte man näherungsweise direkt auf einen nicht nach Altersklassen geordneten Bestand anwenden, indem man y durch ein mittleres Alter z ersetzt. Man erhält so, wenn zunächst S_y wieder durch K_y ersetzt wird, näherungsweise

12)
$$V_{m+1} = K - \left[v \cdot K - (P + V_m) \right] \cdot u_z.$$

Um den Mittelwert z nicht willkürlich annehmen zu müssen, kann man weiter setzen

13)
$$V_m = K - [v \cdot K - (P + V_{m-1})] \cdot u_{z-1},$$

indem man in 12) alle Alter um 1 verkleinert. In dieser Näherungsgleichung sind P, K, V_{m-1} und V_m aus der vorjährigen Reserveberechnung bekannt, also kann z näherungsweise ermittelt werden durch

14)
$$u_{z-1} = \frac{K - V_m}{v \cdot K - (P + V_{m-1})}.$$

Hieraus ergibt sich u_{z-1} , daraus z-1, also auch z und u_z , wodurch aus Gleichung 13) z ohne Willkür, aber trotzdem nur näherungsweise bestimmt ist.

Diese Methode liefert um so genauere Resultate, je weniger die Alter y der Altersklassen, aus denen der betrachtete Versicherungsbestand zusammengesetzt ist, voneinander abweichen; in der Regel wird aber eine Näherungsformel von der Formel 6) und auch die einfache Formel 5) genauere Resultate liefern.

Analog zu 9) kann gesetzt werden:

15)
$$V_y = S_{y-1} - [v \cdot S_{y-1} - (V_{y-1} + P_{y-1})] \cdot u_{y-1};$$

dabei beziehe sich V_y in dieser Gleichung auf denselben Versicherungsbestand wie in Gleichung 9) (nur

um ein Jahr früher betrachtet). Diese Gleichung addiere man mit einem willkürlichen Faktor λ multipliziert, zu Gleichung 9), dann erhält man

$$\begin{split} V_{y+1} + \lambda &\cdot V_y = S_y + \lambda S_{y-1} - \left[v \, S_y - (V_y + P_y) \right] u_y \\ &- \lambda \left[v \, S_{y-1} - (V_{y-1} + P_{y-1}) \right] u_{y-1} \\ &\quad \text{oder} \end{split}$$

$$\begin{split} V_{y+1} &= (u_y - \lambda) \; V_y + \lambda \cdot u_{y-1} V_{y-1} \\ &+ (u_y \cdot P_y + \lambda u_{y-1} \cdot P_{y-1}) + \left[S_y + \lambda S_{y-1} \right. \\ &- v \; (u_y S_y + \lambda u_{y-1} S_{y-1}) \right]. \end{split}$$

Setzt man hierin $P_{y-1}=P_y$ und $S_{y-1}=S_y=K_y$, d. h. nimmt man an, dass die Prämie für den alten Bestand gleichgeblieben ist und das im Todesfalle fällige Kapital wieder gleich der Versicherungssumme ist, so ist hieraus

$$\begin{split} & V_{y+1} \! = \! (u_y \! - \! \lambda) \; V_y \! + \! \lambda \, u_{y-1} \; V_{y-1} \\ & + \! (u_y \! + \! \lambda \, u_{y-1}) \; P_y \! - \! \left[v \left(u_y \! + \! \lambda \, u_{y-1} \right) \! - \! \lambda \! - \! 1 \right] K_y. \end{split}$$

Man wende nun näherungsweise diese Formel auf den nicht nach Altersklassen geordneten Versicherungsbestand mit der Versicherungssumme K, der Nettoprämie P und den drei aufeinanderfolgenden Reserven V_{m-1} , V_m und V_{m+1} an und erhält:

18)
$$V_{m+1} = (\underline{a+c}) \ V_m - \underline{c \cdot b} \cdot V_{m-1} + (\underline{a-c \cdot b}) \ P - [v(\underline{a-c \cdot b}) + c - 1] \cdot K.$$

Hierin bedeuten a und b geeignet gewählte Mittelwerte für u_y und u_{y-1} , und der Wert c, der für $-\lambda$ gesetzt ist, ist noch näher zu bestimmen.

Setzt man noch

19)
$$g = a + c, h = c \cdot b, j = a - c \cdot b$$

 $und s = v (a - c \cdot b) + c - 1,$

so geht Gleichung 18) über in

$$V_{m+1} = g \cdot V_m - h \cdot V_{m-1} + j \cdot P - s \cdot K,$$

also in Gleichung 6).

Aus den Gleichungen 19) ergeben sich noch die Beziehungen

20)
$$s = v \cdot j + c - 1$$
 und $g - h = j + c$

und aus diesen Gleichungen

$$s = g - h - d \cdot j - 1,$$

wobei d = 1 - v.

Soll die Näherungsformel 6) brauchbar sein, muss sie näherungsweise für alle Altersklassen gelten, d. h. die Differenz

22)
$$\varDelta_y = (g \cdot V_y - h \cdot V_{y-1} + j \cdot P_y - s \cdot K) - V_{y+1}$$
muss für alle y klein bleiben.

Für V_{y+1} den Wert aus 17) eingesetzt, erhält man aus dieser Gleichung

$$\begin{split} \varDelta_{y} &= \left(g - u_{y} + \lambda\right) \, V_{y} - \left(h + \lambda \, u_{y-1}\right) \, V_{y-1} \\ &+ \left(j - u_{y} - \lambda \, u_{y-1}\right) \, P_{y} - \left\lceil s - v \left(u_{y} + \lambda \, u_{y-1}\right) + \lambda + 1 \right\rceil K_{y} \end{split}$$

Setzt man hier $\lambda = u_y - g$, so fällt das Glied mit V_y fort, und man erhält einen Ausdruck von der Form

23)
$$\Delta_{y} = \chi \cdot P_{y} + \varphi \cdot V_{y-1} - \psi \cdot K_{y}$$

Darin ist

24)
$$\chi = j - u_y + (g - u_y) u_{y-1},$$

ferner

$$\varphi = (g - u_y) u_{y-1} - h$$

und

26)
$$\psi = s - v \left(u_y - [g - u_y] u_{y-1} \right) - g + u_y + 1.$$

Aus 24) und 25) folgt

$$\chi - \varphi = j + h - u_y$$

und aus 24) und 26)

28)
$$\psi = v(\chi - j) + u_y + s - g + 1,$$

und aus den beiden letzten Gleichungen

29)
$$d \cdot \chi - \varphi + \psi = s - (g - h - d \cdot j - 1),$$

wobei wieder d = 1 - v gesetzt wird.

Ist nun Gleichung 6) aus Gleichung 18) durch Einsetzen der Werte 19) entstanden, so gilt auch Gleichung 21), und es ist dann

$$d \cdot \chi - \varphi + \psi = 0,$$

und Gleichung 28) kann transformiert werden in

31)
$$\psi = v \cdot \chi + u_y - h - j.$$

Man setze nun in Gleichungen 24), 25) und 26) für g, h und j die Werte aus 19) ein und setze zur Abkürzung

$$\frac{u_{y-1}-b}{u_y-a}=\omega_y,$$

dann ergibt sich

$$\begin{split} & \chi = a - c \cdot b - u_y + (a + c - u_y) \cdot u_{y-1} \\ & \varphi = (a + c - u_y) \ u_{y-1} - c \cdot b \\ & \psi = v \left(a - c \cdot b - u_y + \left[a + c - u_y \right] u_{y-1} \right) + u_y - a \end{split}$$

oder nach einiger Transformation

33)
$$\chi = (1 + u_{y-1} - c \cdot \omega_y) (a - u_y)$$

34)
$$\varphi = (u_{y-1} - c \cdot \omega_y) (a - u_y)$$

35)
$$\psi = \left[v \left(1 + u_{y-1} - c \cdot \omega_y \right) - 1 \right] (a - u_y).$$

Setzt man diese Werte in 23) ein, so erhält man

$$\begin{split} \varDelta_{y} &= \left[(P_{y} + d \cdot K_{y}) \right. \\ &- \left. (v \cdot K_{y} - P_{y} - V_{y-1}) \left. (u_{y-1} - c \cdot \omega_{y}) \right. \right] (a - u_{y}). \end{split}$$

Für $u_y = a$ verliert 32) und damit Gleichung 36) ihre unmittelbare Bedeutung; nach dem den Gleichungen 33) bis 35) vorhergehenden Gleichungssystem ist dann

$$\chi = c \cdot (u_{y-1} - b) \,,\, \varphi = c \cdot (u_{y-1} - b) \ \text{ und}$$

$$\psi = v \cdot c \cdot (u_{y-1} - b).$$

Ist dann ebenfalls $u_{y-1}=b$, so ist $\chi=0$, $\varphi=0$ und $\psi=0$ und damit nach 23) $\Delta y=0$. Wird u_y als kontinuierliche und stetige Funktion gedacht, so geht für

$$a = u_y$$
 und $b = u_{y-1}$ der Wert $\omega_y = \frac{u_{y-1} - b}{u_y - a}$ über in

 $\omega_y = \frac{d \ u_{y-1}}{d \ u_y}$ [wo an dieser Stelle d als Differentiations-

zeichen gilt], und es wird für diese Werte auch nach Gleichung 36) $\Delta y = 0$.

Sind also a und b so als Mittelwerte von u_y und u_{y-1} aufgefasst [s. Erläuterung zu Gleichung 18)], dass es ein Alter z gibt, für das

37)
$$u_z = a \text{ und } u_{z-1} = b \text{ ist, so ist}$$

$$38) \qquad \Delta_z = 0;$$

d. h. für das Alter z stimmt dann für jede Wahl von c der durch Gleichung 18) gegebene Wert von V_{y+1} [wenn die Gleichung speziell auf die Altersklasse y angewandt wird] mit dem richtigen überein. Dieses Resultat geht auch unmittelbar aus der Vergleichung von 18) mit 17) hervor.

Ist $y \neq z$, so lässt sich bei willkürlich gegebenen Werten von K_y und V_{y-1} für P_y ein Wert P_y^* bestimmen, der so beschaffen ist, dass

39)
$$(P_y^* + d \cdot K_y)$$

$$-(v \cdot K_y - P_y^* - V_{y-1}) (u_{y-1} - c \cdot \omega_y) = 0$$

ist. Es ist dann für $P_y = P_y^*$ ebenfalls $\Delta y = 0$.

Wird Gleichung 39) mit $(a - u_y)$ multipliziert und von Gleichung 36) subtrahiert, so erhält man für die Differenz Δy

40)
$$\Delta y = (1 + u_{y-1} - c \cdot \omega_y) (P_y - P_y^*) (a - u_y).$$

Die Konstante c kann nun so festgesetzt werden, dass man in Gleichung 39) bei einem vorgegebenen Alter y_1 und gegebenen Werten K_{y_1} und V_{y_1-1} ein bestimmtes $P_{y_1}^*$ festsetzt. Dann ist für diese Werte gemäss 39)

41)
$$u_{y_1-1} - c \cdot \omega_{y_1} = \frac{P_{y_1}^* + d \cdot K_{y_1}}{v \cdot K_{y_1} - P_{y_1}^* - V_{y_1-1}},$$

und da auch $a=u_z$ und $b=u_{z-1}$ und damit auch ω_{y_1} gegeben sind, ist hiermit die Konstante c bestimmt.

Für andere Werte von K_y und V_{y-1} und für andere Alter y ist dann wieder aus 39) P_y^* bestimmt durch

$$\begin{split} \textbf{42)} \ \ P_y^* &= \frac{(v \cdot K_y - V_{y-1}) \; (u_{y-1} - c \cdot \omega_y) - d \cdot K_y}{1 + u_{y-1} - c \cdot \omega_y} \\ &= \frac{(K_y - V_{y-1}) \; (u_{y-1} - c \cdot \omega_y)}{1 + u_{y-1} - c \cdot \omega_y} - d \cdot K_y. \end{split}$$

Hieraus ist weiter

43)
$$\frac{P_y^* + d \cdot K_y}{K_y - V_{y-1}} = \frac{u_{y-1} - c \cdot \omega_y}{1 + u_{y-1} - c \cdot \omega_y} \cdot$$

Wird bei demselben Alter y für eine weitere Zusammenstellung von K_y und V_{y-1} , nämlich für 1K_y und ${}^1V_{y-1}$ der Wert ${}^1P_y^*$ so bestimmt, dass für $K_y = {}^1K_y$, $V_{y-1} = {}^1V_{y-1}$ und $P_y = {}^1P_y^*$ ebenfalls $\Delta y = 0$ wird, so ist nach 43)

$$\frac{{}^{1}P_{y}^{*} + d \cdot {}^{1}K_{y}}{{}^{1}K_{y} - {}^{1}V_{y-1}} = \frac{u_{y-1}}{1 + u_{y}} - \frac{c \cdot \omega_{y}}{1 - c \cdot \omega_{y}}.$$

In Verbindung mit 43) ergibt sich hieraus die Proportion

44)
$$({}^{1}P_{y}^{*} + d \cdot {}^{1}K_{y}) : ({}^{1}K_{y} - {}^{1}V_{y-1})$$

$$= (P_{y}^{*} + d \cdot K_{y}) : (K_{y} - V_{y-1}),$$

also nimmt bei gleichbleibendem Alter y und Versicherungssumme K_y der Wert P_y^* ab, wenn die Reserve V_{y-1} durch eine grössere ersetzt wird. [Man beachte, dass eine grössere Reserve bei gegebenem gegenwärtigen Alter und gegebener Versicherungskombination auf eine längere, schon durchlaufene Versicherungsdauer und damit auf ein niedrigeres Eintrittsalter und eine kleinere Nettoprämie hinweist.]

Untersuchen wir nun den ungefähren Zahlenwert der Grössen, die in Gleichung 40) in Frage kommen: Die Prämie P_{y_1} ist gegenüber der Versicherungssumme K_{y_1} eine kleine Grösse, also wird in Gleichung 41) der Wert $(u_{y_1-1}-c\cdot\omega_{y_1})$ gegenüber der Einheit auch klein sein, solange die Reserve V_{y_1-1} nicht beinahe gleich der Versicherungssumme wird. Da ferner

$$u_{y_1-1} = \frac{1+i}{p_{y_1-1}} \text{ und } \omega_{y_1} = \frac{u_{y_1-1}-b}{u_{y_1}-a}$$

Grössen sind, die nicht sehr von der Einheit abweichen, ergibt sich aus 41) ein c, das ebenfalls der Einheit nahe kommt. Der Wert $c \cdot \omega_y$ kann dann näherungsweise ersetzt werden durch $\omega_y + c - 1$, wo also (c-1) eine (positive oder negative) kleine Grösse ist. Die Gleichung 40) geht dann näherungsweise über in

wo $(u_{y_{-1}} - \omega_y)$ ebenfalls eine gegen die Einheit kleine Grösse ist.

Wir kommen so zu dem Ergebnis:

Setzt man für ein Alter z $a=u_z$ und $b=u_{z-1}$, und wählt man die Grösse c (nahe der Einheit) so, dass für ein anderes Alter y_1 die Gleichung 41) gilt, bestimmt dann gemäss Gleichung 19) die Grössen g, h, j und s und rechnet aus der Gleichung

46)
$$V_{y+1}^* = g \cdot V_y - h \cdot V_{y-1} + j \cdot P_y - s \cdot K_y$$

ein Näherungswert für die Reserve $V_{y \neq p 1}$, so stimmt für das Alter z der Näherungswert mit der wirklichen Reserve überein; ebenso trifft dies zu für irgendein anderes Alter y, wenn die Nettoprämie $P_y = P_y^*$ ist,

wo P_y^{\bullet} durch Gleichung 42) bestimmt ist. Zur Bestimmung von c konnte man hierbei für ein Alter y_1 ein zu den Grössen K_{y_1} und V_{y_1} gehörendes $P_{y_1}^{*}$ willkürlich annehmen. Ist $y \neq z$ und $P_y \neq P_y^{*}$, so ist der Fehler, den man begeht, wenn man statt V_{y+1} den Näherungswert V_{y+1}^{*} setzt, durch Gleichung 40 bestimmt. Dieser Fehler Δy ist gemäss 45) nur um wenig grösser als das Produkt $(P_y - P_y^*) \cdot (a - u_y)$.

Können bei den einzelnen Altern y die Fehler Δy vernachlässigt werden, kann auch die Reserve V_{m+1} eines Versicherungsbestandes, der nicht nach Altersklassen getrennt ist, ersetzt werden durch den Näherungswert

47)
$$V_{m+1}^* = g \cdot V_m - h \cdot V_{m+1} + j \cdot P - s \cdot K$$
.

Betrachten wir nun den eingangs erwähnten Spezialfall dieser Gleichung, nämlich die Gleichung 5):

$$V_{m+1} = 2,035 \ V_m - 1,035 \ V_{m-1}$$

Hier wird also

48)
$$g = 2,035, h = 1,035, j = 0, s = 0.$$

Wie man sofort sieht, ist durch diese Werte Gleichung 21) erfüllt; aus den Gleichungen 20) folgt:

49)
$$c = 1$$
.

Aus den beiden ersten Gleichungen 19) ergibt sich noch

50)
$$a = 1,035 \text{ und } b = 1,035.$$

Die beiden letzten Gleichungen 19) sind dann auch erfüllt.

Gemäss 32) ist dann

51)
$$\omega_y = \frac{u_{y-1} - 1,035}{u_y - 1,035},$$

und gemäss 42) ist

52)
$$P_y^* = \frac{(K_y - V_{y-1}) (u_{y-1} - \omega_y)}{1 + u_{y-1} - \omega_y} - d \cdot K_y.$$

Endlich geht Gleichung 40) über in

53)
$$\Delta y = (1 + u_{y-1} - \omega_y) (P_y - P_y^*) (u_y - 1,035).$$

Es gibt nun zwar keinen Wert z, für den $u_z = 1{,}035$ und $u_{z-1} = 1{,}035$ ist, und für welches Alter stets $\Delta_z = 0$ wäre. Hingegen ergibt Gleichung 52) für alle Alter y einen Wert P_y^* , der für die Nettoprämien P_y der wirklich vorkommenden Versicherungen einen guten Mittelwert darstellt. Deshalb ergibt doch

54)
$$V_{y\pm 1}^* = 2,035 \ V_y - 1,035 \ V_{y-1}$$

einen guten Näherungswert für V_{y+1} , und also auch

55)
$$V_{m+1}^* = 2{,}035 V_m - 1{,}035 V_{m-1}$$

einen brauchbaren Mittelwert für V_{m+1} , nur muss der Zinsfuss $i=3^{1/2}$ % betragen.

Die bisherigen Ableitungen beruhen auf der Annahme, dass in Gleichung 16) wenigstens näherungsweise

$$P_{y-1} = P_y$$

und

$$S_{y-1} = S_y = K_y$$

gesetzt werden kann. Trifft die erste dieser Gleichungen, also 56) nicht zu, d. h. enthält der Versicherungsbestand Versicherungen mit während des laufenden Kalenderjahres steigender oder fallender Prämie, die man nicht durch Umwandlung richtigstellen will (durch Wegfall der Versicherung mit der alten und Zugang derselben mit der neuen Prämie), so setze man

$$P_{y-1} = P_y - \tau.$$

Trifft die zweite der obigen Gleichungen, also 57) nicht zu, d. h. enthält der Versicherungsbestand Versicherungen auf bestimmten Termin (andere Versicherungen, bei denen das im Todesfalle fällige Kapital nicht gleich der Versicherungssumme ist, kommen nicht in Betracht), so setze man

$$S_y = K_y - \begin{bmatrix} 1 - \sigma_y \end{bmatrix} C_y.$$

Hierbei bedeutet C_y das gesamte, in der Versicherungssumme K_y enthaltene Kapital auf festen Termin und $\sigma_y \cdot C_y$ den Barwert dieses Kapitals am Ende des laufenden Versicherungsjahres (d. h. Mitte des folgenden Kalenderjahres). Das in Gleichung 16 auftretende S_{y-1} ist dann bestimmt durch

$$S_{y-1} = K_y - \begin{bmatrix} 1 - v \cdot \sigma_y \end{bmatrix} C_y.$$

Setzt man die Werte 58), 59) und 60) in Gleichung 16) ein, so ist auf der rechten Seite von 17) ein Zusatzglied G_y zu addieren, das gegeben ist durch

61)
$$G_y = -\lambda u_{y-1} \cdot \tau - \left[(1 - \sigma_y) + \lambda (1 - v \cdot \sigma_y) - v \left\{ u_y (1 - \sigma_y) + \lambda u_{y-1} (1 - v \cdot \sigma_y) \right\} \right] C_y$$

und in Gleichung 18) ist das entsprechende Zusatzglied G_m gegeben durch

62)
$$G_{m} = c \cdot b \cdot \tau + \left[v \left(a - c \cdot b \right) + c - 1 - \sigma \cdot \left\{ \left(a + c \right) \cdot v - 1 - c \cdot b \cdot v^{2} \right\} \right] C,$$

wo C das in der Versicherungssumme K enthaltene Kapital auf festen Termin und $\sigma \cdot C$ dessen Barwert Mitte des auf die Stellung der Reserve V_m folgenden Kalenderjahres bedeutet.

Wird noch zur Abkürzung gesetzt:

63)
$$(a+c) \cdot v - 1 - c \cdot b \cdot v^2 = q,$$

so erhält man, wenn weiter die Abkürzungen 19) gelten, für V_{m+1} an Stelle von 6)

64)
$$V_{m+1} = g \cdot V_m - h \cdot (V_{m-1} - \tau) + j \cdot P - s \cdot (K - C) - q \cdot \sigma C.$$

Hierin ist für σ ebenfalls ein fester Wert zu wählen, falls nicht c so bestimmt ist, dass gemäss 63) q = 0 wird und damit das Glied $q \cdot \sigma C$ in Gleichung 64) wegfällt.

Setzt man wieder, um auf die der Gleichung 5) entsprechende Beziehung zu gelangen, $a=b=1{,}035$ und c=1, so ist nach Gleichung 63) die Beziehung q=0 erfüllt, und Gleichung 64) geht über in

65)
$$V_{m+1} = 2,035 \ V_m - 1,035 \ (V_{m-1} - \tau),$$

d. h. die Gleichung 5) erleidet bei Anwendung auf Versicherungen auf festen Termin keinerlei Korrektur. Wird sie hingegen auf Versicherungen mit veränderlicher Prämie angewandt, muss auch bei ihr, wie bei jeder andern Näherungsformel von der Form 6), die Reserve V_{m-1} vor dem Einsetzen in 5) um die Prämienzunahme des Versicherungsjahres, das der Stellung der Reserve V_m vorangeht, vermindert werden.

In der nachfolgend gegebenen Tabelle werden einige Zahlenwerte der Kontrollreserve V_{m+1}^* nach drei verschiedenen Kontrollformeln mit der genauen Reserve V_{m+1} verglichen.

Nebeneinandergestellt, sind die aufeinanderfolgenden Reserven V_{m-1} , V_m und V_{m+1} , sowie die Näherungswerte $V_{m+1}^*(X)$, $V_{m+1}^*(Y)$ und $V_{m+1}^*(Z)$. Hierbei ist

$$66) \begin{cases} V_{m+1}^{*}(X) = 2,035 \ V_{m} - 1,035 \ (V_{m-1} - \tau) \\ V_{m+1}^{*}(Y) = 2,08 \ V_{m} - 1,0814 \ (V_{m-1} - \tau) \\ - 0,0365 \ P_{m} + 0,00013 \ (K - C) \\ - 0,00012 \ C \\ V_{m+1}^{*}(Z) = 2,1 \ V_{m} - 1,1023 \ (V_{m-1} - \tau) \\ - 0,0573 \ P_{m} + 0,00032 \ (K - C) \end{cases}$$

An Stelle der Reserven von ganzen Versicherungsbeständen werden herausgegriffene Reserven einzelner Versicherungskombinationen betrachtet. Genügt eine Kontrollformel für alle Einzelreserven, so wird sie auch für die aus denselben zusammengesetzten Versicherungsbeständen genügen, besonders wenn die Differenzen für die Einzelreserven verschiedene Vorzeichen haben, sich also teilweise aufheben.

Angeführt sind Todesfallversicherungen mit lebenslänglicher Prämienzahlung (Tod), alternative Versicherungen auf verschiedene Dauern n (Alt. n) und Versicherungen auf bestimmten Termin auf verschiedene Dauern n (Fix n). Die Versicherungssumme ist K=100 gewählt, und für die Versicherungen auf festen Termin sei ferner C=100. Bedeutet t die bisherige Dauer der Versicherung, so setzen wir statt V_{x+t} die Bezeichnung $_tV$. Die Prämienzahlung sei jährlich und für die ganze Dauer der Versicherung gleichbleibend, so dass $_0V=0$ und $\tau=0$ wird.

Als Rechnungsgrundlage ist die Tafel der 17 englischen Gesellschaften und der Zinsfuss 3¹/₂ ⁰/₀ gewählt.

Die erste der Gleichungen 66) wird nun

67)
$$V^*(X) = 2,035 {}_{t}V - 1,035 {}_{(t-1)}V.$$

Wie man sieht, stimmt diese Gleichung mit Gleichung 5) überein.

Die beiden andern Gleichungen werden für Todesfall und alternative Versicherung zu

68)
$$_{(t+1)}V^*(Y) = 2,08 _{t}V - 1,0814 _{(t-1)}V - 0,0365 P + 0,013$$

und

69)
$$V^*(Z) = 2.1 V - 1.1023 (t-1) V - 0.0573 P + 0.032.$$

Für Versicherungen auf bestimmten Termin werden hingegen die beiden letzten Gleichungen 66) zu

70)
$$_{(t+1)}V^*(Y) = 2,08 _{t}V - 1,0814 _{(t-1)}V - 0,0365 P - 0,012$$

71)
$$_{(t+1)}V^*(Z) = 2.1 _{t}V - 1.1023 _{(t-1)}V - 0.0573 P.$$

Für Gleichungen 68) und 70), d. h. die zweite der Gleichungen 66) ist

72)
$$a = u_{36}$$
, $b = u_{35}$ und $c = 1,03509$ gesetzt;

für die Gleichungen 69) und 71), d. h. die dritte der Gleichungen 66) ist ebenfalls

73) $a = u_{36}$, $b = u_{35}$, hingegen c = 1,05509 gesetzt.

In 68) und 69), d. h. für alle Versicherungen, ausgenommen die auf bestimmten Termin, stimmt für das Alter zur Zeit der Reservestellung z + 1 = 37 die Kontrollreserve $V_{37}^*(Y)$, resp. $V_{37}^*(Z)$ mit der genauen V_{37} überein (kleine Abweichungen infolge der Abrundung abgesehen). Durch die angegebene Wahl von c erreicht man, dass für g sich die runden Werte 2,08, resp. 2,1 ergeben. Die Werte von h, j und s sind (wie sie aus obigen Gleichungen ersichtlich sind) hiermit bestimmt und der Wert $q \sigma$ der Gleichung 64) ist in der zweiten der Gleichungen 66) so gewählt, dass auch für Versicherungen auf bestimmten Termin $V_{37}^*(Y)$ $=V_{_{37}}$ ist, sobald das Kapital auf festen Termin mit dem Alter 45, also nach 8 Jahren, fällig wird. In der dritten der Gleichungen 66) ist gemäss 63) fast genau q=0, so dass also auch $q \cdot \sigma = 0$ gesetzt werden kann. Also gilt die Beziehung $V_{37}^*(Z) = V_{37}$ auch für alle Versicherungen auf festen Termin fast genau.

Weiter berechnen wir noch für die drei Kontrollreserven $V_{y+1}^*(X)$, $V_{y+1}^*(Y)$ und $V_{y+1}^*(Z)$ die Werte
von Δy gemäss den Gleichungen 23), 24), 25), und
26). Im Gegensatze zu den Gleichungen 36) und 45)
gelten diese Gleichungen auch, wenn die Werte h, jund s nicht genau aus den Gleichungen 19) gebildet
sind, was bei den Koeffizienten der Kontrollformeln $V_{y+1}^*(Y)$ und $V_{y+1}^*(Z)$ infolge ihrer Abrundung in Betracht kommt. Wir nehmen nicht nur an, dass $\tau = 0$ ist, sondern auch, dass C = 0 ist, d. h. Versicherungen
auf bestimmten Termin sollen hier nicht in Frage
kommen. Für das Alter (y-1) nehmen wir der Reihe

nach die Werte 35, 45 und 55. Den Koëffizienten von P [den Wert χ in 23)] nehmen wir in den einzelnen Ausdrücken für Δy vor Klammer, um aus denselben auch unmittelbar die Werte von $P = P^*$ ablesen zu können, für welche $\Delta y = 0$ wird.

Bezeichnet man noch 74) $V_{y+1}^*(X) - V_{y+1} = \Delta_y(X)$ etc., so ist

$$75)\begin{cases} \Delta_{26}(X) = -0.00870 (P + 0.055 V_{25} - 0.0210 K) \\ \Delta_{26}(Y) = 0.00174 (P + 0.04 V_{25} - 0.023 K) \\ \Delta_{26}(Z) = 0.00180 (P + 0.01 V_{25} - 0.003 K) \end{cases}$$

ferner

$$76)\begin{cases} \Delta_{36}(X) = -0.01056 \ (P + 0.062 \ V_{35} - 0.0279 \ K) \\ \Delta_{36}(Y) = -0.00005 \ (P + 0.8 \quad V_{35} - 0.05 \ K) \\ \Delta_{36}(Z) = -0.00004 \ (P + 1.3 \quad V_{35} + 0.1 \ K) \end{cases}$$

ferner -

$$77) \begin{cases} \Delta_{46}(X) = -0.01477 \ (P + 0.089 \ V_{45} - 0.0547 \ K) \\ \Delta_{46}(Y) = -0.00412 \ (P + 0.136 \ V_{45} - 0.0927 \ K) \\ \Delta_{46}(Z) = -0.00396 \ (P + 0.126 \ V_{45} - 0.0821 \ K) \end{cases}$$

und endlich ist

$$78) \begin{cases} \Delta_{56}(X) = -0.02750 (P + 0.109 V_{55} - 0.0753 K) \\ \Delta_{56}(Y) = -0.01640 (P + 0.110 V_{55} - 0.0735 K) \\ \Delta_{56}(Z) = -0.01604 (P + 0.096 V_{55} - 0.0594 K) \end{cases}$$

Infolge der schon erwähnten Abrundungen verschwinden die Ausdrücke $\Delta_{36}(Y)$ und $\Delta_{36}(Z)$ nicht ganz, doch sind die beiden, aus den beiden letzten Gleichungen 76) sich ergebenden Werte hierfür so klein, dass sie nicht in Frage kommen.

Schreibt man für die Gleichungen 75) bis 78) allgemein

79)
$$\Delta y = \chi (P - P^*),$$

so sieht man, dass [auch abgesehen von y = 36] für $V_{y+1}^*(Y)$ nnd $V_{y+1}^*(Z)$ der Wert von χ bedeutend kleiner ist als der Wert von χ , der sich für $V_{y+1}^*(X)$ ergibt. Für y = 56 wird der Unterschied geringer als für die jüngern Alter. Aus der beigegebenen Tabelle sieht man auch, dass im allgemeinen die Werte $_{t+1}V^*(Y)$ und $_{t+1}V^*(Z)$ dem genauen Wert $_{t+1}V$ viel näher kommen als der Wert $_{t+1}V^{*}(X)$ es tut. Allerdings zeigt die Tabelle auch Ausnahmen, wo der Wert $_{t+1}V^*(X)$ ebenso nah oder noch näher an den Wert $\sum_{t+1}^{t+1} V$ heranrückt als die Werte $\sum_{t+1}^{t+1} V^*(Y)$ und $\sum_{t+1}^{t+1} V^*(Z)$. Dieses Verhalten erklärt sich aus dem Werte für P^* in Gleichung 79), wie er sich aus den Gleichungen 75) bis 78) ergibt. Dieses P^* ist für den Ausdruck $\Delta y(X)$ für alle Alter y (die höhern vielleicht abgesehen) ein mittlerer Wert gegenüber den in Betracht kommenden P (vergleiche die Werte von P der beigegebenen Tafel), wie schon bei der Erläuterung der Gleichungen 44) und 45) erwähnt wurde. Für die Ausdrücke $\Delta y(Y)$ und $\Delta y(Z)$ hingegen nimmt beim Alter y = 46 der Wert P^* einen relativ hohen Wert an, ohne dass sich dieses durch eine andere Wahl der Konstanten c verhindern liesse, ohne für die andern Alter zu zu niedern Werten für P* zu gelangen. Wie man aus 75) sieht, ist schon in $V_{y+1}^*(Z)$ bei der getroffenen Wahl von c = 1,05509 der Wert von P^* für das Alter y = 26 gegenüber P stets klein.

Da die Kontrollformel $V_{m+1}(X)$ vor den Kontrollformeln $V_{m+1}(Y)$ und $V_{m+1}(Z)$ den Vorteil der grossen Einfachheit hat und ohne Komplikation für Versicherungen auf bestimmten Termin anzuwenden ist, wird

man ihr also vor den andern Kontrollformeln den Vorzug geben.

Um auf die von uns gestellte Aufgabe zurückzukommen, wird man zur Prüfung der neuen Reserve des alten Bestandes die Kontrollformel $V_{m+1}(X)$ anwenden. Wir setzen voraus, dass die Reserveberechnung nach den zur Vergleichung unserer Kontrollformeln benützten Grundlagen, nämlich nach der Tafel der 17 englischen Gesellschaften und zum Zinsfuss von $3^{1}/2^{0}/0$, durchgeführt wird.

Zur Erlangung einer etwas sicherern Kontrolle können die Formeln $V_{m+1}^*(Y)$ und $V_{m+1}^*(Z)$ in Frage kommen. Bei kleinem Bestande an Versicherungen auf bestimmten Termin kann man dabei C=0 setzen. Nach der durch diesen Aufsatz gegebenen Anleitung kann eine unbegrenzte Anzahl von andern Kontrollformeln hergestellt werden, die ebenfalls zur Anwendung brauchbar sind.

In allen diesen Fällen wird aus den Reserven V_m und V_{m-1} (eventuell unter Mitbenützung der Nettoprämie P und der Versicherungssumme K) ein Näherungswert V_{m+1}^* für die Reserve V_{m+1} hergestellt, der bis auf einen kleinen Bruchteil der Nettoprämie dem genauen Wert der Reserve nahekommt. Aus der guten Übereinstimmung der neuen Reserve V_{m+1} des alten Bestandes mit der nach einem der angegebenen Verfahren ermittelten Kontrollreserve V_{m+1}^* kann man auf die Richtigkeit der Reserve V_{m+1} schliessen.

Sind, wie schon klargelegt, auch die übrigen Teile der neuen Reserve V'_{m+1} des neuen Bestandes geprüft und ebenso die Grössen, die gemäss 2) die Bilanzreserve im übrigen zusammensetzen, so ist die gestellte Aufgabe, die Bilanzsumme des neuen Abschlusses auf ihre Richtigkeit zu prüfen, hiermit gelöst.

Vergleichung der Kontrollreserven $_{t+1}V^*(X)$, $_{t+1}V^*(Y)$ und $_{t+1}V^*(Z)$ mit der genauen Reserve $_{t+1}V$ für verschiedene einzelne Kombinationen.

 $\begin{array}{l} {}_{t+1}V^*(X) = 2{,}035 \,\,{}_{t}V - 1{,}035 \,\,{}_{t-1}V \\ {}_{t+1}V^*(Y) = 2{,}08 \,\,{}_{t}V - 1{,}0814 \,\,{}_{t-1}V - 0{,}0365 \,P + 0{,}00013 \,(K - C) - 0{,}00012 \,C \\ {}_{t+1}V^*(Z) = 2{,}1 \,\,{}_{t}V - 1{,}1023 \,\,{}_{t-1}V - 0{,}0573 \,P + 0{,}00032 \,(K - C) \end{array}$

Für Todesfall- und alternative Versicherungen ist . . . K=100 und C=0 für Versicherungen auf bestimmten Termin (Fix) hingegen K=100 und C=100

	x	t	P	t-1	t^V	$\left \begin{array}{c} t+1 \end{array} \right $	$ _{t+1}V^*(X)$	$t+1$ $V^*(Y)$	$\left _{t+1}V^*(Z)\right $
Tod	25	1	1.563	and the same of th	848	1.720	1.726	1.720	1.723
		11	1.563	9.679	10.808	11.969	11.977	11.970	11.970
		21	1.563	22.569	24.049	25.553	25.581	25.572	25.568
	35	1	2.093		1.249	2.535	2.542	2.535	2.535
= 9		11	2.093	14.271	15.910	17.575	17.606	17.597	17.592
		21	2.093	31.675	33.510	35.354	35.409	35.384	35.368
	45	1	3.005		1.912	3.854	3.891	3.880	3.875
,		11	3.005	20.302	22.442	24.593	24.657	24.628	24.609
		21	3.005	41.879	43.985	46.067	46.165	46.104	46.065

35	
i	

	Alt. 10			25	1	8.638		8.228	16.800	16.744	16.812	16.816
I				35	1	8.725		8.177	16.705	16.640	16.703	16.704
I				45	1	8.941	_	8.132	16.600	16.549	16.601	16.597
I	Alt. 15	•		25	1	5.460		4.912	10.026	9.996	10.031	10.034
					11	5.460	59.431	66.855	74.606	74.539	74.603	74.604
				35	1	5.569		4.880	9.961	9.931	9.960	9.961
					11	5.569	59.200	66.628	74.395	74.316	74.377	74.376
I				45	1	5.863		4.907	9.992	9.986	10.006	10.001
					. 11	5.863	58.685	66.073	73.849	73.720	73.769	73.761
	Alt. 20			25	1	3.916		3.302	6.736	6.720	6.738	6.742
Second Second					11	3.916	39.720	44.649	49.789	49.751	49.787	49.787
THE REAL PROPERTY.				35	1	4.056		3.300	6.729	6.716	6.729	6.730
A STATE OF THE PERSON NAMED IN					11	4.056	39.642	44.550	49.662	49.630	49.660	49.657
				45	1	4.439		3.415	6.935	6.950	6.954	6.949
					11	4.439	39.566	44.340	49.314	49.281	49.292	49.278
	Alt. 25			25	1	3.028		2.376	4.843	4.835	4.845	4.848
Name and Address of the Owner, where					11	3.028	28.383	31.879	35.517	35.497	35.517	35.518
				3 5	1	3.210		2.416	4.921	4.917	4.921	4.922
					11	3.210	28.699	32.200	35.827	35.824	35.837	35.833
ı				29	U : 1	1		ı	1	l.	L	1

6		x	t	P	$_{t-1}V$	t^{V}	$_{t+1}V$	$\Big _{t+1}V^*(X)$	$ _{t+1}V^*(Y)$	$t+1V^*(Z)$
	Alt. 45	45	1	3.695		2.635	5.336	5.362	5.359	5.354
		÷	11	3.695	29.569	32.976	36.485	36.502	36.492	36.476
-	Fix 20	25	1	3.668		3.418	6.965	9.956	6.964	6.968
			11	3.668	40.598	45.556	50.708	50.688	50.708	50.706
		35	1	3.738		3.417	6.961	6.954	6.959	6.962
		25 300	11	3.738	40.558	45.506	50.643	50.627	50.645	50.641
		45	. 1	3.931		3.475	7.065	7.072	7.073	7.072
	T' 0*		11	3.931	40.520	45.400	50.468	50.451	50.458	50.450
á	Fix 25	25	1	2.712		2.486	5.063	5.059	5.060	5.065
e			11	2.712	29.385	32.953	36.655	36.646	36.654	36.655
		35	1	2.789		2.503	5.096	5.094	5.092	5.096
		15	11	2.789	29.520	33.090	36.786	36.785	36.777	36.789
		45	1	2.994		2.596	5.272	5.283	5.278	5.280
, =			11	2.994	29.886	33.417	37.064	37.072	37.067	37.061
				*1				is in		88