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Über partielle Ausgleichung mittelst

Orthogonalfunktionen.

Yon Dr. J. P. Gram in Kopenhagen.

Der Zweck dieses kleinen Aufsatzes ist die

Darstellung eines neuen Ausgleichungsverfahrons, welches
ich mit dem Kamen partielle Ausgleichung bezeichne.
Das Prinzip derselben besteht darin, dass man
1. die Yorgelogte Beobachtungsreihe in kleinere Stücke

zerschneidet,
2. für jedes Stück eine besondere analytische

Ausgleichung vornimmt, und
3. nachher die ausgeglichenen Kurven wieder verknüpft.

Der Yorteil dieser Methode beruht darauf, dass

man bei der partiellen Ausgleichung auf die besonderen

Eigentümlichkeiten der einzelnen Teile der
Beobachtungsreihe in ebenso voller Weise wie bei der
graphischen Methode Bücksicht nehmen kann, dass

ferner — wie unten gezeigt werden soll — die
rechnerische Arbeit ebenso einfach ist wie bei der
mechanischen Ausgleichung, während jedoch die Kontinuität
gesichert wird, nur mit Ausnahme der Punkte, wo
die Verknüpfungen stattfinden müssen. In der
Reduktion der Diskontinuitäten in diesen Punkten liegt
die Hauptschwierigkeit der Methode.
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I.

Es wird vorausgesetzt, dass für eine Reihe von

äquidistanten Argumenten (x) entsprechende
Beobachtungswerte ox vorliegen, welche durch eine

kontinuierliche Punktion ausgeglichen werden sollen. Ferner
wird angenommen, dass diese Reihe in solche Stücke

(z.B. in Teile von 10 bis 20) zerlegt worden ist, dass

die betreffende Punktion in jedem Intervalle sich durch
eine parabolische Formel

von wenigen Gliedern mit hinreichender Annäherung
darstellen lässt. Und endlich nehmen wir an, um die
Sache zu vereinfachen, dass in jedem Stück, für sich

genommen, allen Beobachtungen dasselbe Gewicht
beigelegt worden darf. Unter diesen Voraussetzungen
wird die Ausgleichung jedes Partialteiles sich sehr leicht
vornehmen lassen mittelst der Methode der kleinsten
Quadrate, wenn diese in eine besondere Form gebracht
wird.

Um gemäss dieser Methode die Beobachtungen (o

durch die Formel (1) darzustellen, muss man die
Koeffizienten (a) so bestimmen, dass die Quadratsumme

ein Minimum wird. Dies gibt eine Anzahl von
Gleichungen

ux a a x -\- a x~ -f- a -|- (1)

Q v(ox-Vif

^ (°* — 11J °> - X (°x — ux) °>

^ x iox — ux) 0,
(2)

oder auch

2 X 0x Vlxl Ux, (i 0, 1, 2, v), (2')
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cl. h. die Momentensummen der ausgeglichenen Werte
sollen denen der beobachteten Worte gleich sein für
alle Potenzen von x, welche in der Ausgleichungsformel
u mitgenommen werden. Olfenbar kann man diese

Bedingungen, welche zur linearen Bestimmung der
Koeffizienten (a) hinreichen, auch durch die folgenden
ersetzen:

3 q\ OK 2 q\ O) «x, (i 0, 1, 2 r), (3)

wenn man für eine Reihe von ganzen algebraischen
Punktionen nimmt, deren Grad in x je durch ihren
beigefügten Index angegeben wird, die übrigens ganz
willkürlich gewählt werden können.

lPQ(x) ist eine Konstante, welcher wir den Wort 1

beilegen können; die ferneren (x) worden wir solcherweise

bestimmen, dass ganz allgemein die Momentensumme

A x <b.(.x) 0, für X — 0, 1, 2, i — 1, (4)

die Summe erstreckt über die Argumente der Beob-

achtungsreihen in (2).

Dadurch erhält man augenscheinlich hinreichende
Gleichungen, um alle Koeffizienten in dem Ausdruck

qJi 0) % + x + + • • aix' (5)

linear bis auf einen gemeinschaftlichen Faktor zu
bestimmen. So erhält man z. B. für lP (mit Gaussischer

Summenbezeichnungj

für i}\2

"oH °1 [x2] + ö2 [o]
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Die beigefügte Tafel I enthält die Worte von und
3P einer ungeraden Anzahl n von Beobachtungen (von

7—19) entsprechend, indem die Argumente x so

gewählt sind, dass der Nullpunkt in die Mitte fällt.
Der arbiträre Paktor ist so gewählt, dass die Tafelwcrtc
als kleinste mögliche ganze Zahlen ausgedrückt worden.

y;0 ist überall 1, Is
t

(pc) x.

Aus (4) ergibt sich, dass auch

oder, was dasselbe ist, für 1 von i verschieden. Diese

Eigenschaft charakterisiert die Funktionen *P.(x) als

sogenannte „Orthogonalfunktionen".

Man ersieht unmittelbar, dass, wie linear
durch Potenzen von x darstellbar ist, sich auch jede
Potenz von x linear durch Funktionen 'lh(x) ausdrücken

lässt, woraus folgt, dass man auch uß folgendermassen
darstellen kann:

ux A
Q + At ^ (x) + A, T (x) + (7)

wo jetzt die Koeffizienten konstant sind. Und diese

Darstellung ergibt sehr beträchtliche Yorteile.

Da nämlich aus (2') folgt, dass

so lassen sich die Koeffizienten (M) unmittelbar
bestimmen. Denn ersetzt man in der rechten Seite dieser

Gleichung u durch die Ausdrücke (7) und beachtet die

Formel (6), so ergibt sich sofort die allgemeine Formel:

<Ih (x) (x) 0, für alle l <A i, (6)

(8)



so dass für jeden Wert von i

2 w. (x) o
A. (9)

ZW-Ax)

Da die im Nenner auftretende Summe ein für allemal

berechnet worden kann, reduziert sich die nötige
Rechnungsarbeit hauptsächlich auf die Berechnung der

Zähler, d. h. die Summe der Produkte von den

Beobachtungswerten und den fabulierten ganzzahligen Werten
der Punktionen JIJ\(x). Das Resultat der Ausgleichung
wird sodann durch die Formel: "

/ \ 0 ^ z x i ?t:/\ 3 v ' x
M,. <]S0(X) WWW7W + 11 (®)

2 V0(x) 2 ^(x)
(10)

V

W-
' 2

M WAx)

dargestellt.

Dieselbe kann mit einem beliebigen Gliede
abgebrochen werden.

Ist das letzte mitgenommene Glied dasjenige, iveiches

ip.(x) enthält, so gibt der alsdann hervorgehende

Ausdruck, welchen wir durch u(^ bezeichnen, das Resultat
einer Ausgleichung nach einer algebraischen Formel
des iten Grades gemäss der Methode der kleinsten
Quadrate. Jedes neue Glied kann daher als eine
Korrektur der schon vorgenommenen Ausgleichung betrachtet
werden.

Es ist keine schwierige Sache, u^ auf die Form (1)
zu bringen. Dies wäre aber ganz ohne Interesse; wir
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brauchen nur die numerischen Resultate, und diese

ergeben sich am leichtesten unmittelbar aus der Formel (7)
durch Benützung der Tafelwortc von 'h-Qf).

Noch muss bemerkt werden, dass man schon nach
der Bestimmung der Koeffizienten (M) und yor der

Ausrechnung der die Quadratsumme der

Abweichungen (ox — u^) sehr leicht berechnen kann.

Denn man findet

Q{i) 2 (ox — 2 ox(ox — u®) — 2 uf (ox— u®).

Das letzte Glied verschwindet wegen (3), und man
erhält demnach

Q® (A0 w0 (x) + A1 + (x)

+ A2 -<P2 (a?) + A. ip. («))

oder

Q<0 i] o2 - A0 y v0 (X) - Äl 2 0X ^ (X)...

-A.2oxW.(X). (11)

Das Mitnehmen eines neuen Gliedes (%)

vermindert die schon erhaltene Quadratsumme Qw um

^•+1 A+1 ^ ^+1 (®) 4+i 2 ^+1 (a). (12)

Nicht allein erhält man durch Yergleich der
vorausberechneten Quadratsummo mit der nach vollendeter
xiusgleichung gefundenen eine Kontrolle der ganzen
Rechnung, sondern man bekommt auch durch Yer-

gleichung der allmählich gefundenen Q(2) ein Mittel,
um zu entscheiden, wie viele Glieder man in der

Entwicklung (10) mitnehmen darf. Nichts hindert, dass
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man fortsetze, bis die Anzahl der Glieder derjenigen
der Beobachtungen gleich werde. Dann wird aber

ar genau ox darstellen, und die Quadratsumme wird

gleich Null. Auf diese Weise kann man z. B. durch

die „Ausgleichung" von o — x ein Mittel erhalten,

um 5h (a) mittelst x und den 5>(.x) von niedrigerem
Index auszudrücken. Um eine wirkliche Ausgleichung
zu haben, muss jedoch die Anzahl der Beobachtungen
grösser als die der Formelglieder sein; meistens kann

man sich damit begnügen, für letztere höchstens 3 bis 4

zu nehmen.

Um ein Maximum oder Minimum von u zu go-X ^
statten, muss man notwendig 5J, (x) mitnehmen; um
einen Wendepunkt in der ausgeglichenen Kurve zu

ermöglichen, muss ferner 5s (a?) mitgenommen worden.—
Wir begnügen uns vorläufig hier mit diesen

Andeutungen; weiteres ergibt sich aus dem folgenden
Rechnungsbeispiel, wodurch das ganze Yerfahren in
deutlicheres Licht gestellt wird.
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Taf. i. Numerische Werte der

n — 7 9 11 13

X qs qs1
2 3

qs qs
2 3

qs qs
2 8

qs qs
2 3

—10

— 9
Q— 0

— 7

— 6 —22 11

— 5 —15 30 —11 0

— 4 —28 14 — 6 — 6 — 2 — 6

— 3 —5 1 — 7 — 7 1 —22 5—8
— 2 0 —1 8 —13 6 —23 10—7
— 1 3 —1 17—9 9 —14 13—4

0 4 0 20 0 10 0 14 0

1 3 1 17 9 9 14 13 4

2 0 1 8 13 6 23 10 7

3 —5 —1 — 7 7 1 22 5 8

4 —28 —14 — 6 6 — 2 6

5 —15 —30 —11 0

6 —22 —11
7

Q
O

9

10

7 9 11

2«^ 28 60 110 182

2^1 84 2772 858 2002

2^3 6 990 4290 572

Entwicklungsfunktionen,

15 17 19 21

<PS *3 qs qs
2 " 3 v* "3 qs

8 X

—190 570 —10
—51 204 —133 228 — 9

—40 28 —34 68 — 82 — 24 — 8

—91 91 —25 7 — 19 — 28 — 37 —196 — 7

—52 13 —12 — 7 — 6 — 89 2 —298 — 6

—19 —35 — 1 —-15 5 —120 35 —340 — 5

8 —58 8 — 18 14 —126 62 —332 — 4

29 —61 15 —-17 21 —112 83 —284 — 3

44 —49 20 —-13 26 — 83 98 — 206 — 2

53 —27 23 — 7 29 — 44 107 —108 — 1

56 0 24 0 30 0 110 0 0

53 27 23 7 29 44 107 108 1

44 49 20 13 26 83 98 206 2

29 61 15 17 21 112 83 284 3

8 58 8 18 14 126 62 332 4
—19 35 — 1 15 5 120 35 340 5

— 52 —13 —12 7 — 6 89 2 298 6

—91 —91 -25 — 7 —19 28 - 37 196 7

—40 —-28 —34 — 68 — 82 24 8

—51 —204 —133 —228 9

—190 —570 10

15 17 19 21

280 408 570 770

37,128 7752 13,566 201,894

39,780 3876 213,180 1,730,520



Taf. II.

Alter

(0

x
(2)

0
X

(3) (4)

«P, 0
1 X

(5)

iP2

(6)

'p., 0
3 x

(7)

,(«) <2)
?r ' *PU u"0.t J X

(8) (0) (10)

0 11
x

(ii)

(S) (o —w^ a; i

(12)

(2)\2
r

20

21

22

23

24

25

26

27

28

29

30

0.00
33.87

0.00
5.95

25.40
0.00

60.84
1.54

4.49

3.20
3.76

0.00
5.82

0.00
2.44

5.04

0.00
7.80
1.24

2.12
1.79

1.91

0.00

23.28
0.00

- 4.88

- 5.04

0.00
7.80
2.48
6 36

7.16

9.70

0.00

-34.92
0 00

14.64

45.36
0.00

70.20

7.44
2.12

-10.74
-29.10

0.00

- 34.92

0.00

- 56.12

- 70.56

0.00
109.20

28.52

46.64
10.74

- 58.20

2.56

2.56

2.56

2.56

2.56

2.56
2 56

2.56
2.56

2.56

2.56

-1.14
-0.46
0.08
0.46
0.68
0.76
0.68
0.46
0.08

-0.46
-1.1-1

1.42

2.10
2.64

3.02
3.24

3.32
3.24

3.02

2.64

2.10
1.42

-1.42
3.72

-2.64
-0.58
1.80

-3.32
4.56

-1.78
-0.52
-0.31
0.52

2.02

13.84

6.97

0.34

3.24
11.02

20.79
3.17

0.27
0.10
0.27

Summe

Divisor
139.05 28.19

11

0.30
110

65.00
858

24.70

4290
28.16 0.00 28.16 0.03 62.03

A
A
Q 139.05

2.56
72.17
66.88

0.003
0.00

66.88

0.076
4.94

61.94

-0.0057
0.14

61.80 62.03
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IL
Als Beispiel nehme ich eine Beiho von 11 Werten

von log entsprechend den Altersjahren 20 bis 30,
P X

beide inklusive, den Anfang eines Beobachtungsmaterials,
aus -welchem Dr. Stoffensen eine Tafel £>m(o) für
dänische Männer abgeleitet hat, die in den Verhandlungen
des im Jahre 1912 in Cambridge abgehaltenen Mathe

matiker-Kongresses veröffentlicht worden ist.
Die hier angeführten Beobachtungen bilden, weil

auf nur 37 Todesfälle gegründet, natürlich den schlechtesten

Teil dos ganzen Materials, und der Einfluss
desselben auf die von Dr. Steffensen mit grosser Sorgfalt
vorgenommene und im ganzen sehr befriedigende
Ausgleichung nach der Makeham'schen Formel ist daher
auch sehr gering. Eben deshalb lohnt es sich, das Ergebnis

dieser Beobachtungen besonders zu untersuchen.
Die ganze Berechnung findet sich in der

beigefügten Tafel II. Die erste Kolonne gibt das Alter
an, die zweite die Argumente x, so dass x 0 dem

Alter 25 entspricht. Dann folgen sub (3) die Quadrate
der Beobachtungen, sub (4) die Beobachtungsgrössen in
Promille ausgedrückt. Diese Kolonne ergibt dann ebenfalls

die Grösse lP0 oy Ferner folgen bzw. ox,
• ox und <1^ • or, berechnet durch direkte

Multiplikation der Kolonne (4) mit den entsprechenden
Werten von (x) x nebst und entnommen
aus der Tafel I für n 11. JNach Ausrechnung jeder
dieser Kolonnen bildet man sofort ihre Summe. Unter
derselben trägt man den entsprechenden Divisor v qs2

aus der Tafel I ein und bildet teils den Koeffizienten A
teils das Dekrement zh der Quadratsumme und dann
endlich die Quadratsummc Q^, welche in der letzten
Zeile angeführt wird.



— 14 —

Man ersieht hieraus, dass für u<0), d. h. u An,
> > x 0"

die Quadratsumme der resultierenden Abweichungen
bis auf 139.05 — 72.17 66.88 herabgeht. Diese ändert
sich aber nicht durch Mitnahme dos Gliedes Al «P (x).
Dagegen sinkt sie für herab bis 61,94, welche für
n(:i) nur wenig reduziert wird. Hieraus ersieht man,
dass die Glieder A ?P (x) und Ag (x) schlechthin

weggelassen werden können, so dass wir das Resultat
der Ausgleichung in der folgenden Gestalt

ux 2.56 + 0.076 (13)

darstellen können.

Man muss sich hier noch die Frage stellen, ob die
Mitnahme des letzten Gliedes in der Tat das zunächst

gefundene Resultat u 2.56 verbessert oder nicht.
Um diese Frage zu entscheiden, dividieren wir erstens
Q(0) durch die Anzahl der Beobachtungen vormindert

um die Anzahl der Formelkonstanten für u!°\ also

durch 11 — 1 =10. Der Quotient 6.69 wird
annäherungsweise das Quadrat to2 des mittleren Fehlers

(nach der Ausgleichung) darstellen, unter der Annahme,
dass wir bei u u<0> stehen bleiben. Nehmen wir

X

zunächst ux u(2) als durch obige Formel (13)
dargestellt, so enthält diese Formel wenigstens zwei
Konstanten A und A9 (sogar drei, wenn man sie als

Spezialfall von (1) betrachtet). Der hieraus sich ergebende
mittlere Fehler m., hat daher das Quadrat 61.94 :9 6.88.
Da folglich m9 jedenfalls grösser ist als m wird
keine theoretisch bessere Darstellung als m(0> gewähren,
insofern man nur den hier betrachteten Teil der

Beobachtungsreihe vor Augen hält. Anders verhält sich die

Sache, wenn man auch auf die folgenden Beobachtungen
Rücksicht nimmt. Dann zeigt sich nämlich unzweifelhaft,
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dass nach Alter 30 o kleinere Werte annehmen kann
X

und muss als 2.56; u inuss daher ein Minimum un-' X

gefähr beim Alter 30 haben können, und folglich muss
vorher ein Maximum vorkommen, so dass ein Ausdruck
wie u® für unsere Beobachtungsreihe notwendig wird.

Wir müssen deshalb die obige Formel (13) akzeptieren.

Und schon die Natur der Beobachtungen macht
eine Fortsetzung durch Hinzufügen mehrerer Glieder
zwecklos.

Noch steht nur zurück, die numerischen Werte
von u zu berechnen, wie in den letzten Kolonnen der

X '

Tafel II gezeigt ist. In die Kolonne (8) ist hier
eingetragen, — falls nicht A 0 ist, kann man hier

sogleich einführen—, dann folgt sub (9) der Wert
von A2 W (x), und durch Addition von (8) und (9) ergibt
sich Durch Fortsetzung erhält man auf ähnliche

Weise u~x usw. Als Kontrolle bildet man die Summe

von ux\ welche mit der entsprechenden Summe >] ox
übereinstimmen soll (hier 28.16 statt 28.19). Endlich
bildet man sub (10) o — deren Summe theoretisch
Null, hier 0.03 wird, und sub (11) die Quadrate der
Abweichungen. Die Summe derselben, 62.03, stimmt
hinreichend gut mit dem vorausberechneten Werte
Q(2)= 61.94, um die Richtigkeit der ganzen Berechnung
zu konstatieren.

Wie man sieht, ist dieselbe sehr einfach und lässt
sich durch Anwendung geeigneter Ilülfsmittel (Produkttafeln

oder Rechenmaschine) erleichtern. Trotzdem die
Beobachtungen sehr unregelmässig ausfallen, ist doch
das Resultat der Ausgleichung recht plausibel, wovon
man sich durch eine sorgfältige graphische Ausgleichung
leicht überzeugen kann. Sogar die in der Tat
unzulässige Annahme der gleichen Gewichte verursacht
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nur geringen Nachteil, wenn nur nicht einzelne
Beobachtungen mit bedeutend grösseren Gewichten als ihre
benachbarten auftreten.

Ein Blick auf die Tafel I zeigt, dass die äussersten
Werte der <P(x) durchgängig verhältnismässig gross
ausfallen. Daraus folgt, dass die Schwankungen, welche
n durch Hinzufügen von neuen Gliedern erleidet, am

grössten sind für die äussersten Argumente {x). Daraus
schliesst man, dass man für diese die ausgeglichenen
Werte etwas unsicherer ansehen muss als diejenigen,
welche dem mittleren Teile der Beobachtungsreihe
entsprechen.

III.
Unmittelbar lässt sich das oben entwickelte

Verfahren anwenden, um zu untersuchen, wieweit eine

vorgelegte, durch Beobachtungen bestimmte Funktion
an irgend einer Stelle ein Maximum, Minimum oder
einen Wendepunkt besitzt, und dient auf diese Weise

zum genaueren Studium über den Verlauf der Funktion.
Will man es aber auf die stückweise Ausgleichung
einer ausgedehnten Reihe von Beobachtungen anwenden,
dann kommt in Betracht, wie man diese Reihe am

zweckmässigstcn zerschneidet und wie man die Stücke
wieder vereinigt.

Über den ersten Punkt ist nur wenig Allgemeines
zu sagen. Man darf die Stücke nicht gar zu klein
machon, jedoch auch nicht grösser, als dass eine kurze
Formol zutreffen werde. Da unsere Tafel I nur für
ungerades n bestimmt ist, muss man sich auf solches

beschränken, falls man nicht die entsprechenden Tafeln
für gerade Werte von n (dann am besten mit Argumenten
± 1, + 3 usw.) berechnen will. Von einiger Bedeutung
ist es, dass man am besten die Teilpunkte so legt,
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dass sie wo möglich nicht in die unmittelbare Nähe

solcher Punkte fallen, wo die Beobachtungen grosse
Schwankungen aufweisen.

Die nachherige Yerknüpfung kann auf verschieden o

Weise vorgenommen werden. Am einfachsten geht es,

wenn man die Teile übereinander hinausgreifen lässt,

so dass man z. B. für die Altersjahre z — r bis z-\-r
zwei verschiedene ausgeglichene Wertereihen bzw. uz
und u]" erhält. Aus diesen bildet man zunächst eine

lineare Kombination

+ (!-*,)«" (14)

indem man für die Koeffizienten 2 passend gewählte
echte Brüche nimmt.

Diese werden so bestimmt, dass sie allein von der

Grösse r abhängen, für r 0 den Wert annehmen
A

und für grössere positive oder negative Werte von r
sich allmählich den Grenzwerten bzw. 1 oder 0

annähern. Am einfachsten bildet man solche, indem
man in der Entwicklung von (1 -(- l)m die Glieder
allmählich addiert und durch 2m dividiert. Z. B. aus
(1 -f- l)rf ergibt sich die Reihe

8 2 0, 1, 4, 7, 8

8(1-2)= 8,
_

7, 4, 1, 0.
"V erwendet man diese Koeffizienten bei der Yerknüpfung
der beiden Reihen, so ergibt sich aus

(UD •• 'V-ul "A
n\ I II II II IIrJ- uz-n «*> uZ-t 5 z+l ' Z-j-2

•

~l uz~\ "t" %-l 4 Ml + 4 Uf

Vi + 7 Uz+1 II
8 ' "~+-
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Hier sind nur 3 überscliiebende Punktionswerte;

es hat aber keine Schwierigkeit, das nämliche Yerfahren
zu verallgemeinern, und je mehr überschiebende Werte
man benutzt, um so glatter wird der Übergang
verlaufen. Vollständige Kontinuität erhält man jedoch in
der Tat nicht, und falls u1 und ulf beide zu gross oder

zu klein sind, wird ein solcher Fehler auch in U' Z

verbleiben. Dazu kommt, dass, während für jedes Stück
iil und u11 für sich genommen die Summen der ersten
Momente für die beobachteten und die ausgeglichenen
Funktionswerte einander gleich sind, diese

Übereinstimmung nicht mehr notwendig auch für die kombinierte
Reihe TJx bestehen bleibt, so dass möglicherweise eine

Verschlechterung der Ausgleichung stattfinden kann.

Dies kann vermieden werden, wenn man keine
überschiebenden Werte anwendet, sondern unmittelbar
die Stücke anpasst. Dann führt man aber meistens
eine sehr fühlbare Diskontinuität ein, und man muss
deshalb eine nachherige Verbesserung der dem

Diskontinuitätspunkte benachbarten Werte vornehmen, und
wir stellen an diese Verbesserung die Forderung, dass

sie nicht die totalen Momentensummen verändern darf.

Unter Beachtung einer wohlbekannten Eigenschaft
der Binomialkoeffizionten kann man durch ein besonderes

Korrektionsverfahren diese Forderung erfüllen. Da
nämlich (indem wir uns auf die einfachsten Fälle
beschränken)

x — 3 (x -f- l)'1 -f- 3 (x -{- 2);' — (x -(- 3)'" 0 für l <f 3

und

U- - 4 (x+ lf + 6 {x 4- 2f — 4 (x + 3/ + (x + if 0

für / < 4,

so ersieht man, dass für die Reihen
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1 WX •> |—3

und Ux + e Ux-\-i — 3 f ux-\-i -|- 3 e ux+3 — £

die drei ersten Momente übereinstimmen werden ohne
Rücksicht auf den Wert der Korrektur s. Und ebenfalls
werden die vier ersten Momente unverändert durch
Hinzufügen der bezüglichen Korrekturen e, — 4 e, 6 s,

— 4 s, e an den Reihenwerten ux bis ux+{.
Diese Bemerkung kann oft von Nutzen werden, um

eine unregelmässige Beobachtungsreihe in eine andere,
gleichwertige, aber regelmässigere zu verwandeln. So

lassen sich die im obigen Beispiel angeführten 0

durch allmähliche Korrekturen kx nach und nach in die

in der Tafel unten beigefügten (+, 0^ umändern,
ohne dass die drei ersten Momente irgend welche Ycr-
änderungen erleiden, und in der Tat ergibt daher auch
die letzte Reihe ganz dieselben ausgeglichenen u^ wie
die oben erhaltenen. Nur wird natürlich der mittlere
Fehler nach der Ausgleichung ein anderer.

Alter
(0

0 k
X X

(1) (2)

0 k
X X

(2) (3)

0 k
X X

(3)

°x

20 0.00 +0.50 0.50 _ 0.50
21 5.82 —2.00 3.82 — 3.82
22 0.00 +3.00 3.00 —0.50 2.50 2.50
23 2.44 —2.00 0.44 +2.00 2.44 2.44
24 5.04 -1-0.50 5.54 —3.00 2.54 —0.50 2.04
25 0.00 OO+OOO 2.00 +2.00 4.00
26 7.80 — —0.50 7.30 —3.00 4.30
27 1.24 — — +2.00 3.24
28 2.12 — — —0.50 1.62

29 1.79 — — 1.79

30 1.94 — — 1.94
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Dass wir durch grössere Sorgfalt in der Wahl der
Korrekturen ein noch besseres Resultat erhalten können,
ist leicht zu ersehen und ebenfalls, dass dieses Verfahren
ein vortreffliches Hülfsmittel darbietet, um die Unsicherheit

des graphischen Ausgleichungsverfahrens zu
vermindern.

Wendet man dasselbe Yerfahren bei der

Verknüpfung von ausgeglichenen Partialteilen ux an, so

wird man im allgemeinen nach einigen Versuchen
genügend glatten Verlauf des Uberganges erhalten; jedoch
gelingt dies leichter durch einen kleinen Kunstgriff,
welcher darin besteht, dass man bei der Ausgleichung
jedes Partialteiles unter den ox einige der anstossenden

Werte u aus dem schon ausgeglichenen Stück
mitnimmt. Dadurch wird gewöhnlich schon eine bessere

Anschliessung der einzelnen Stücke erzielt, so dass die

nachträgliche Verbesserung reduziert wird und die
Momentensummen nicht beeinträchtigt werden.

Nimmt man nämlich an, der erste ausgeglichene
Teil u beruhe auf den Werten o entsprechend den

X X' V

Argumenten x a bis x y, ferner dass ulx gegründet
wird auf ox von x y -f- 1 bis x—d und ausserdem

auf ux von x ß bis x y (a <j ß <ß y <Z S), und

dass endlich die Schlussreihe Ux aus u' für x — o. bis

x= ß—1, und aus uß für x — ß bis x~ö gebildet
wird, so berechnen sich die resultierenden Momentensummen

auf die folgende AVoise:

^ x 0x — 2 X u\ + 2 X u],
a a ß

2 x u1 -f 2 x o 2 x m11,
ß r+i *

ß
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woraus durch Addition

vi ''xi1 1
] vi II vi -r'" TT2 x ox= X + 2 £ ux 2 ^ %

« « /? «

'o dass die Gleichheit der Momentensummen bestehend
bleibt.

Um das oben Gesagte besser zu erläutern, haben
wir die Fortsetzung der in Tafel II angeführten
Beobachtungen behandelt in der Weise, dass wir im
zweiten Stück w11 die Altersklassen 28 bis 46 genommen
haben und für diese mittelst einer Formel zweiten
Grades eine sehr befriedigende Ausgleichung erhalten,
aus welcher sich für die angeführton Altersjahre folgende
Werte ergeben:

Alter: 27 28 29 30 31 32 33

uu [2.05 1.99 1.94 1.91 1.89 1.90 usw.
X I

Da wir oben fanden

u1 — 3.02 2.64 2.10 1.42 ',
X '

so haben die beiden Reihen die Alter 28, 29, 30

gemeinsam, und durch Benutzung der für die über-
schicbenden Werte angegebenen /-Werte finden wir
hieraus die resultierenden U an der Übergangsstelle:

ul 3.02, üiS 2.57, Um 2.05,

77„0 1.88, 2t" =1.91,

wobei wir jedoch auf die Gleichheit der Momente
verzichten.
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"Wenn wir dagegen die in Tafel II enthaltene

Rechnung wiederholen, indem wir anstatt der ursprünglichen

o2g, o29, o„0, bezw. ?e,8 2.05, u1^ 1.99,

u1^ =1.94 als beobachtete "Werte benützen, finden

wir durch Mitnahme von «P die unten für die Alter
26—30 angeführten u Iiier muss aber für Alter 30

korrigiert werden; wie dies gemacht wird, ist in der

folgenden kleinen Tafel gezeigt.

Alter TI
X

Korr. Ul
X Korr. Un

X

26 3.17 3.17 3.17

27 2.90 2.90 +2 2.92 1

:

28 2.55 + 6 2.61 —6 2.55
29 2.13 —18 1.95 +6 2.01

30 1.68 + 18 1.86 —2 1.84
31 1.91 — 6 1.85 1.85

32 1 89 1.89 1.89

33 1.90 1.90 1.90

34 1.92 1.92 1.92

Hierdurch gewinnen wir an der Übergangsstelle die

sub UlJ angeführten Zahlen, und wir führen schliesslich,
das Resultat der ganzen Ausgleichung für die
Altersklassen 20 bis 46 hier an.
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\ Alter uX
o —uX X Alter u

X

1

o — uX X

20 1.25 —1.25 33 1.90 —O.Ol
21 2.13 +3.69 34 1.92 +0.52
22 2.75 —2.75 35 1.97 —0.05
23 3.14 —0.70 36 2.04 —0.05
24 3.32 + 1.72 37 2.12 +0.46
25 3.32 —3.32 38 2.22 +0.53 ;

26 3.17 +4.63 39 2.34 —0.61
27 2.92 —1.68 40 2.48 —0.63
28 2.55 —0.43 41 2.64 —0.27
29 2.01 —0.22 42 2.82 +0.41
30 1.84 +0.10 43 3.01 —0.07
31 1.85 — 0.17 44 3.23 —0.32
32 1.89 +0.03 45 3.46 +0.15

46 3.71 +0.25

Die .Fehlersumme wird wegen der Abrundungen
—0.04 statt 0, und mit entsprechender Annäherung
worden jetzt auch die beiden Momentensummon

\x(o —u) und y,x'(o —u verschwinden.
^ X X' ^ V X X'
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