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Uber partielle Ausgleichung mittelst

Orthogonaifunktionen.
Von Dr. J. P. Gram in Kopenhagen.

Der Zweck dieses kleinen Aufsatzes ist die Dar-
stellung eines neuen Ausgleichungsverfahrens, welches
ich mit dem Namen partielle Ausgleichung bezeichne.
Das Prinzip derselben bestcht darin, dass man
1. die vorgelegte Beobachtungsreihe in kleinere Stiicke

zerschneidet,

2. fiur jedes Stiick eine besondere analytische Aus-
gleichung vornimmt, und
3. nachher die ausgeglichenen Kurven wieder verkniipft.

Der Vorteil dieser Methode beruht darauf, dass
man bei der partiellen Ausgleichung auf die besonderen
Higentiimlichkeiten der cinzelnen Teile der Beob-
achtungsreihe in ebenso voller Weise wie bei der
graphischen Methode Riicksicht nehmen kann, dass
ferner — wie unten gezeigt werden soll — die rech-
nerische Arbeit ebenso einfach ist wie bei der mecha-
nischen Ausgleichung, withrend jedoch die Kontinuitit
gesichert wird, nur mit Ausnahme der Punkte, wo
dic Verkniipfungen stattfinden miissen. In der Re-
duktion der Diskontinuititen in diesen Punkten liegt
die Hauptschwierigkeit der Methode.
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Es wird vorausgesetzt, dass fiir cine Reihe von
dquidistanten Argumenten (x) entsprechende Beob-
achtungswerte o vorliegen, welche durch eine konti-
nuierliche Funktion ausgeglichen werden sollen. Ferner
wird angenommen, dass diese Reihe in solche Stiicke
(z. B. in Teile von 10 bis 20) zerlegt worden ist, dass
die betreffende Funktion in jedem Intervalle sich durch
eine parabolische Formel

2 3
u =da,+ao, x40,z +ax ... (1)

von wenigen Gliedern mit hinreichender Annéherung
darstellen ldsst. Und endlich nehmen wir an, um die
Sache zu vereinfachen, dass in jedem Stiick, fiir sich
genommen, allen Beobachtungen dasselbe Gewicht bei-
gelegt werden  darf. Unter diesen Voraussetzungen
wird die Ausgleichung jedes Partialteiles sich sehr leicht
vornehmen lassen mittelst der Methode der kleinsten
Quadrate, wenn diese in eine besondere Form gebracht
wird.

Um gemiiss dieser Methode die Beobachtungen (o)
durch die Formel (1) darzustellen, muss man die Koéffi-
zienten (@) so bestimmen, dass die Quadratsumme

Q=% (,—1u)

o

ein Minimum wird. Dies gibt eine Anzahl von
Gleichungen

X (og/_ S '“.l;) ==, X (09; —1,) =1,
¥ (o, — ) =10; ;..
oder auch

Yoo, =X2u, (=01,2...2), (2)
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d. h. die Momentensummen der ausgeglichecnen Werte
sollen denen der beobachteten Werte gleich sein fiir
alle Potenzen von z, welche in der Ausgleichungsformel
w, mitgenommen werden. Offenbar kann man diese
Bedingungen, welche zur linearen Bestimmung der
Koéftizienten (a) hinreichen, auch durch die folgenden
ersetzen :

NP (x)o, =2 (x)u, ¢=0,1,2...7), (3)

wenn man fiir & () eine Reihe von ganzen algebraischen
Funktionen nimmt, deren Grad in z je durch ihren
beigefiigten Index angegeben wird, die iibrigens ganz
willkiirlich gewéhlt werden kénnen.

P (x) 1t eine Konstante, welcher wir den Wert 1
beilegen kinnen; die ferneren & (x) werden wir solcher-
weise bestimmen, dass ganz allgemein die Momenten-
summe

N W () =0, fir 1=0,1,2 ...i—1, (4
die Summe crstreckt {iber die Argumente der Beob-
achtungsreihen in (2).

Dadurch erhilt man augenscheinlich hinreichende

Gleichungen, um alle Koéffizienten in dem Ausdruck

D, () =a,+ a,x+ a0’ 4. .. az (5)

linear bis auf einen gemeinschaftlichen Fakior zu be-
stimmen. So erhdlt man z. B. fiir @ (mit Gaussischer

Summenbezeichnung)

a()['lo] S a, [37] =0,

fir @,
[+ o o] 4 o]
ao[m] =+ o, ["52] + @, [“ﬁci]

I

0
0
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Die beigefiigte Tafel I enthiilt die Werte von &, und
@ _ einer ungeraden Anzahl » von Beobachtungen (von
7—19) entsprechend, indem die Argumente z so

gewihlt sind, dass der Nullpunkt in die Mitte fillt.
Der arbitrire Faktor ist so gewihlt, dass die Tafelwerte
als kleinste mogliche ganze Zahlen ausgedriickt werden.
@ st tberall =1, ¥ (x) = .
Aus (4) ergibt sich, dass auch
W, (x) B(x) =0, fir alle 14, (6)

oder, was dasselbe ist, fiir 2 von ¢ verschieden. Diese
Higenschaft charakterisiert die Funktionen @ (x) als
sogenannte ., Orthogonalfunktionen®. |

Man crsicht unmittelbar, dass, wie @ (z) linear
durch Potenzen von z darstellbar ist, sich auch jede
Potenz von x lincar durch Funktionen ¥4 (x) ausdriicken
lisst, woraus folgt, dass man auch u  folgendermassen
darstellen kann:

u,=d A, B @+ 4,80+, )
wo jetzt dic Koéffizienten konstant sind. Und diese
Darstellung ergibt sehr betriichtliche Vorteile,

Da niimlich aus (27) folgt, dass
NP (x)o, =2 F,(x)u, (8)

so lassen sich die Koéffizienten (4) unmittelbar be-
stimmen. Denn ersetzt man in der rechten Seite dieser
Gleichung #  durch die Ausdriicke (7) und beachtet die
Formel (6), so ergibt sich sofort die allgemeine Formel:

YW (x)o,=A4. 3 315? ()



so dass fir jeden Wert von ¢

2Pz a,

TN (9)

Da die im Nenner auftretende Summe ein fiir alle-
mal berechnet werden kann, reduziert sich die nétige
Rechnungsarbeit hauptsichlich auf die Berechnung der
Zahler, d. h. die Summe der Produkte von den Beob-
achtungswerten und den tabulierten ganzzahligen Werten
der Funktionen @ (r). Das Resultat der Ausgleichung
wird sodann durch die Formel: -

XD (x)o, W (x)o,
,= L @) —— + P, ——
) ZPo(x) 2 (x)
(10)
2 qj2(’ ) a
+ qja( ) P

dargestellt.

Dieselbe kann mit einem belichigen Gliede ab-
gebrochen werden.

Ist das letzte mitgenommene Glied dasjenige, weiches
Cw,(x) enthdlt, so gibt der alsdann hervorgehende Aus-
druck, welchen wir durch u(;) bezeichnen, das Resultat
ecner Ausgleichung nach einer algebraischen Formel
des " Grades gemiss der Methode der kleinsten
Quadrate. Jedes newe Glied kann daher als eine Kor-
relitur der schon vorgenommenen Ausgleichung betrachtet
werden.

Es ist keine schwicrige Sache, »'" auf die Form (1)
zu bringen. Dies wire aber ganz ohne Interesse; wir
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brauchen nur die numerischen Resultate, und diese
ergeben sich am leichtesten unmittelbar aus der Formel (7)
durch Beniitzung der Tafclwerte von @, (x).

Noch muss bemerkt werden, dass man schon nach
der Bestimmung der Koéffizienten (4) und vor der
Ausrechnung der ug) die Quadratsumme Qm der Ab-

weichungen (ow—ug)) sehr leicht berechnen kann.

Denn man findet

=30, —uPP =30 (o, —u?)—3u® (o, —u?).

@ n

Das letzate Glied verschwindet wegen (3), und man
erhilt demnach

2

Q=30 —Xo, (4, P, (x)+ 4 & (z)
+ 4,8, (@) 4 ... 4,8, (2))

oder

(0) - 9 .«
Q' =30, —A4 %0, P, ()

A A Xo P (x)...
— A. Yo, T (). (11)

Das Mitnehmen eines neuen Gliedes AH_I Q5i+1 ]

vermindert die schon erhaltene Quadratsumme Q@ um

A=Ay, 2o, Py (1) = Aj+1 Z ipfﬂ (@). (12)

Nicht allein erhilt man durch Vergleich der voraus-
berechneten Quadratsumme mit der nach vollendeter
Ausgleichung gefundenen eine Kontrolle der ganzen
Rechnung, sondern man bekommt auch durch Ver-
gleichung der allmihlich gefundenen @ ein Mittel,
um zu entscheiden, wie viele Glieder man in der Ent-
wicklung (10) mitnehmen darf. Nichts hindert, dass



man fortsetze, bis die Anzahl der Glieder derjenigen
der Beobachtungen gleich werde. Dann wird aber
i, genau o darstellen, und die Quadratsumme wird
gleich Null. Auf diese Weise kann man z. B. durch
die ., Ausgleichung® von o, — ' cin Mittel erhalten,
um @ (z) mittelst #' und den @ (z) von niedrigerem
Index auszudriicken. Um ecine wirkliche Ausgleichung
zu haben, muss jedoch die Anzahl der Beobachtungen
grosser als die der Formelglieder sein; meistens kann
man sich damit begniigen, fiir letztere hochstens 3 bis 4
z11 nehmen.

Um ein Maximum oder Minimum von u, zu goe-
statten, muss man notwendig @,(») mitnchmen; um
einen Wendepunkt in der ausgeglichenen Kurve zu
ermdglichen, muss ferner &, () mitgenommen werden. —
Wir begniigen uns vorldufig hier mit diesen Andeu-
tungen; weiteres crgibt sich aus dem folgenden Rech-
nungsbeispiel, wodurch das ganze Verfahren in deut-
licheres Licht gestellt wird.



Taf. 1 Numerische Werte der
ne= 7 9 11 13
e o, @ | @, w | ® w | @B @
—10
— 9
— 8
— 1
== § —22 11
— 5 —15  30|—11 0
— 4 —28 14/ —6 —6/—2 — 6
—8 |- 1|—7 —7 1 —22| 5 —8
— 2 0 —1 8§ —13| 6 —23| 10 — 7
— 1 3 —1| 17 —9| 9 —14| 13 — 4
0 4 0| 20 0 10 0 14 0
1 3 1| 17 9| 9 14| 138 4
2 0 1 8 13| 6 23| 10 7
3|—5 —1|—17 7, 1 22 5 8
4 —28 —14/—6 6/—2 6
5 —15 —30|—11 0
6 —22 —11
7
8
9
10
Ik 7 9 11 13
» o’ 28 60 110 182
LN 84 2172 858 2002
LN 6 990 4290 572

11 —
Entwicklungsfunktionen.
15 17 19 21
v, w | v, v | v @ s, @ |z
—190 570{—10
—51 204 | —133 2281— 9
—40 28| —34 68| — 82 — 24— 8
—91 91|—25 7\ —19 — 28— 37 —196|— 7
—52 13|—12 — T7|— 6 — 89 2 —298|— 6
—19 —35|— 1 —15 5 —120 30 —340|— 5
8 —5b8 8 —18 14 —126 62 —332|— 4
29 —61 15 —17| - 21 —112 83 —284|— 3
44 —49) 20 —13| 26 — 83 98 —206|— 2
53 —27| 283 — 7| 29 — 44 107 —1081— 1
56 0] 24 0/ 30 0 110 0 0
53 27| 23 729 44 107 108 1
44 49| 20 13| 26 83 98 206 2
29 61 15 17 21 112| 83 284 3
8 58 8 18 14 126 62 332 4
—19 35— 1 15 5 120 35 340 5
—52 —13|—12 71— 6 89 2 298 6
—91 —91|—-25 — 7|—19 28 | — 37 196 7
—40 —28|—34 — 68 |— 82 24 8
—51 —204|—133 —228 9
—190 —570 10
15 17 19 21
280 408 570 770
37,128 1752 13,566 201,894
39,780 3876 213,180 1,730,520




Taf. II.

Alter 7 0’ 0 o Woo @ oo u,@ A @ uw? o uu,m (0 —14(2))2
@ x 1w 27w 37w & 2 2 2 @ b X @x
(1) (2) (3) (1) () (6) (M) (8) C) ) (11) (12)
20 —5 0.00 | 0.00 0.00 0.00 0.00] 2.56 —1.14 1.42 —1.42 2.02
21 —eq 33.87 582 2398 —3492 — 3492 256 —0.46 2.10 3.72 13.84
22 —3 0.00 | 0.00 0.00 000 0.00] 2.56 0.08 2.64 —2.64 6.97
23 —2 5.95 244 -— 4.88 14.64 — 56.12| 2.56 0.46 3.02 —0.58 0.34
24 —1 25.40 | 5.04 — 5.04 45.86 — 70.56| 2.56 068 3.24 1.80 3.94
25 0 0.00 0.00 0.00 0.00 .00 2.56 0.76 3.32 —3.52 11.02
26 1 60.84 7.80 7.80 70.20 109.20| 256 0.68 3.24 4.56 20.79
27 2 1.54 1.24 2.48 7.44 28.52 | 2.56 0.46 3.02 —1.78 3.17
28 3 4.49 212 6.36 2.12 46.64 | 2.56 0.08 2.64 —0.52 0.27
29 4 3.20 1.79 7.16 —10.74 10.74 25856 —046- 210 —0.31 0.10
30 b 3.76 1.914 9.70  —29.10 — 5820 2,566 -—1.14 1.42 0.52 0.27
Summe | 139.05 | 28.19 0.30 65.00 — 24.70 | 28.16 0.00 28.16 0.03 62.03
Divisor 11 110 858 4290
A 2.56 0.003 0.076 —0.00b7
A . 72.17 0.00 4.94 0.14
4 139.05 | 66.88 66.88 61.94 61.80 62.03

Gl



11.
Als Beispiel nehme ich eine Reihe von 11 Werten

von log —j}w entsprechend den Altersjahren 20 bis 30,
beideinklusive, den Anfang eines Beobachtungsmaterials,

aus welchem Dr. Steffensen eine Tafel D™ fiir dii-
nische Ménner abgeleitet hat, die in den Verhandlungen
des im Jahre 1912 in Cambridge abgehaltenen Mathe-
matiker-Kongresses vertffentlicht worden ist.

Die hier angefiihrten Beobachtungen bilden, weil
auf nur 37 Todesfille gegriindet, natiirlich den schlech-
testen Teil des ganzen Materials, und der Einfluss des-
selben auf die von Dr. Steffensen mit grosser Sorgfalt
vorgenommene und im ganzen sehr befriedigende Aus-
gleichung nach der Makeham’schen Formel ist daher
auch schr gering. Eben deshalb lohnt es sich, das Ergeb-
nis dieser Beobachtungen besonders zu untersuchen.

Die ganze Berechnung findet sich in der bei-
gefiigten Tafel IL. Die erste Kolonne gibt das Alter
an, die zweite dic Argumente x, so dass z = 0 dem
Alter 25 entspricht. Dann folgen sub (3) die Quadrate
der Beobachtungen, sub (4) die Beobachtungsgrissen in
Promille ausgedriickt. Diese Kolonne ergibt dann eben-
falls die Grosse @ - o . Ferner folgen bzw. & - o
¥, 0, und W, . o, berechnet durch direkte Multi-
plikation der Kolonne (4) mit den entsprechenden
Werten von #_ (2) = 2 nebst & und ., entnommen
aus der Tafel I fir n = 11. Nach Ausrechnung jeder
dieser Kolonnen bildet man sofort ihre Summe. Unter
derselben triigt man den entsprechenden Divisor 3 @
aus der Tafel I ein und bildet teils den Koéffizienten 4.,
teils das Dekrement A, der Quadratsumme und dann
endlich die Quadratsumme QY welche in der letzten
Zeile angefiihrt wird,



Man crsieht hieraus, dass fir «“, d. h. u, = 4,
die Quadratsumme der resultierenden Abweichungen
bis auf 139.050 — 72.17 = 66.88 herabgeht. Diese &ndert
sich aber nicht durch Mitnahme des Gliedes 4, @ (z).
Dagegen sinkt sie fir «® herab bis 61,94, welche fiir
#® nur wenig reduziert wird. Hieraus ersicht man,
dass die Glieder 4 & (x) und A, @, (x) schlechthin
weggelassen werden konnen, so dass wir das Resultat
der Ausgleichung in der folgenden Gestalt

u, = 2.56 4 0.076 @ (x) (13)

darstellen konnen.

Man muss sich hier noch die I'rage stellen, ob die
Mitnahme des letzten Gliedes in der Tat das zunéchst
gefundene Resultat zci: 2.06 verbessert oder nicht.
Um diese I'rage zu entscheiden, dividieren wir erstens
Q" durch die Anzahl der Beobachtungen vermindert
um die Anzahl der Formelkonstanten fiir «”, also
durch 11 — 1 = 10. Der Quoticnt 6.69 wird an-
niherungsweise das Quadrat mi des mittleren Fehlers
(nach der Ausgleichung) darstellen, unter der Annahme,

(0)

dass wir bel w, =1 stehen bleiben. Nehmen wir

zunéchst %w:%@) als durch obige Formel (13) dar-
gestellt, so enthilt diese Formel wenigstens zwei Kon-
stanten A, und A, (sogar drei, wenn man sie als
Spezialfall von (1) betrachtet). Der hieraussich ergebende
mittlere Fehler m, hat daher das Quadrat 61.94:9 — 6.88.
Da folglich m, jedenfalls grosser ist als m, wird u'?
keine theoretisch bessere Darstellung als u'® gewithren,
insofern man nur den hier betrachteten Teil der Be-
obachtungsreihe vor Augen hélt. Anders verhilt sich die
Sache, wenn man auch auf die folgenden Beobachtungen
Riicksicht nimmt. Dann zeigt sich ndmlich unzweifelhaft,
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dass nach Alter 30 o_ kleinere Werte annehmen kann
und muss als 2.56; »_muss daher ein Minimum un-
gefiihr beim Alter 30 haben kénnen, und folglich muss
vorher ein Maximum vorkommen, so dass ein Ausdruck
wie «® fiir unsere Beobachtungsreihe notwendig wird.

Wir miissen deshalb die obige Formel (13) akzep-
tieren. Und schon die Natur der Beobachtungen macht
eine Fortsetzung durch Hinzufiigen mehrerer Glieder
zwecklos.

Noch steht nur zuriick, die numerischen Werte
von u_ zu berechnen, wie in den letzten Kolonnen der
Tafel IT gezeigt ist. In die Kolonne (8) ist hier !’ = A
eingetragen, — falls nicht 4, = 0 ist, kann man hier
sogleich u;l) cinfithren —, dann folgt sub (9) der Wert
von 4, &, (x), und durch Addition von (8) und (9) ergibt
(2)

sich .

Durch Fortsetzung erhélt man auf &hnliche

Weise u
von uf), welche mit der entsprechenden Summe o
iibereinstimmen soll (hier 28.16 statt 28.19). Kndlich
bildet man sub (10) o, — u , deren Summe theoretisch
Nuil, hier 0.03 wird, und sub (11) die Quadrate der
Abweichungen. Die Summe derselben, 62.03, stimmt
hinreichend gut mit dem vorausberechneten Werte
Q' = 61.94, um die Richtigkeit der ganzen Berechnung
zu konstatieren.

Wie man sicht, ist dieselbe schr einfach und lésst
sich durch Anwendung geeigneter Hiilfsmittel (Produkt-
tafeln oder Rechenmaschine) erleichtern. Trotzdem die
Beobachtungen sehr unregelmissig ausfallen, ist doch
das Resultat der Ausgleichung recht plausibel, wovon
man sich durch eine sorgfiltige graphische Ausgleichung
leicht iiberzeugen kann. Sogar die in der Tat unzu-
lissige Annahme der gleichen Gewichte verursacht

S) usw. Als Kontrolle bildet man die Summe



nur geringen Nachteil, wenn nur nicht einzelne Beob-
achtungen mit bedeutend grosseren Gewichten als ihre
benachbarten auftreten.

iin Blick auf die Tafel I zeigt, dass die dussersten
Werte der @(x) durchgiingig verhéltnisméssig gross aus-
fallen. Daraus folgt, dass die Schwankungen, welche
_ durch Hinzufiigen von neuen Gliedern erleidet, am
grossten sind fiir die dussersten Argumente (x). Daraus
schiiesst man, dass man fiir diese die ausgeglichenen
Werte etwas unsicherer ansehen muss als diejenigen,
welche dem mittleren Teile der Beobachtungsreihe ent-
sprechen.

1.

Unmittelbar ldsst sich das oben entwickelte Ver-
fahren anwenden, um zu untersuchen, wieweit eine
vorgelegte, durch Beobachtungen bestimmte Funktion
an irgend einer Stelle ein Maximum, Minimum oder
cinen Wendepunkt besitzt, und dient auf diese Weise
zum genaueren Studium iitber den Verlauf der Funktion.
Will man es aber auf die stiickweise Ausgleichung
einer ausgedehnten Reihe von Beobachtungen anwenden,
dann kommt in Betracht, wie man diese Reihe am
zweckmissigsten zerschneidet und wie man die Stiicke
wieder vereinigt.

Uber den ersten Punkt ist nur wenig Allgemeines
zu sagen. Man darf die Stiicke nicht gar zu klein
machen, jedoch auch nicht grésser, als dass eine kurze
Formel zutreffen werde. Da unsere Tafel T nur fiir
ungerades » bestimmt ist, muss man sich auf solches
beschriinken, falls man nicht die entsprechenden Tafeln
fiir gerade Werte von # (dann ain besten mit Argumenten
+ 1, & 3 usw.) berechnen will. Von einiger Bedeutung
ist es, dass man am besten die Teilpunkte so legt,
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dass sie wo moglich nicht in die unmittelbare Néhe
solcher Punkte fallen, wo die Beobachtungen grosse
Schwankungen aufweisen.

Die nachherige Verkniipfung kann auf verschiedenc
Weise vorgenommen werden. Am einfachsten geht es,
wenn man die Teile @ibereinander hinausgreifen lésst,
so dass man z. B. fiir die Altersjahre 2 —7 bis 2 47
zwei verschiedene ausgeglichene Wertereihen bzw. ui
und uij erhilt. Aus diesen bildet man zunéchst eine
lineare Kombination

U,=iu,+1—4)u, (14)
indem man fiir die Koéffizienten 4 passend gewihlte

echte Briiche nimmt.
Diecse werden so bestimmt, dass sie allein von der

Grosse r abhéngen, fiir » = 0 den Wert — annehmen

und fir grossere positive oder negative Werte von #»
sich allméhlich den Grenzwerten bzw. 1 oder 0 an-
néhern. Am einfachsten bildet man solche, indem
man in der Entwicklung von (1 4 1)™ die Glieder
allmihlich addiert und durch 2™ dividiert. Z. B. aus
(L 4+ 1)° ergibt sich die Reihe
84=0, 1, 4, 7, 8

8(1—4)=28, 7, 4, 1, 0.
Verwendet man diese Koéffizienten bei der Verkniipfung
der beiden Reihen, so ergibt sich aus

I 1 I I I
l S s U
(Z E ) z[z -2 ”’z——l’ uz7 uz+1
11 1I 1I 11 11
" ) = ] ,
( 4 ‘ Upgy Uy Uypyy Uppy - o

) R T R
~ — ... U = 2 -

z—27 8 ’ 8 )
TR R
s o 241 i1

[
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Hier sind nur 3 iiberschiebende Funktionswerte ;
es hat aber keine Schwierigkeit, das ndmliche Verfahren
zu verallgemeinern, und je mehr iiberschiebende Werte
man benutzt, um so glatter wird der Ubergang ver-
laufen. Vollstindige Kontinuitdt erhdlt man jedoch in
der Tat nicht, und falls ui und uil beide zu gross oder
zu klein sind, wird ecin solcher Fehler auch in U,
verbleiben. Dazu kommt, dass, wihrend fiir jedes Stiick
u#' und ! fiir sich genommen die Summen der ersten
Momente fiir die beobachteten und die ausgeglichenen
Funktionswerte einander gleich sind, diese Uberein-
stimmung nicht mehr notwendig auch fiir die kombinierte
Reihe U bestehen bleibt, so dass moglicherweise eine
Verschlechterung der Ausgleichung stattfinden kann.

Dies kann vermieden werden, wenn man keine
iiberschicbenden Werte anwendet, sondern unmittelbar
die Stiicke anpasst. Dann fithrt man aber meistens
eine sehr fithlbare Diskontinuitdt ein, und man muss
deshalb eine nachherige Verbesserung der dem Dis-
kontinuitdtspunkte benachbarten Werte vornehmen, und
wir stellen an diese Verbesserung die Forderung, dass
sie nicht die totalen Momentensummen verdndern darf.

Unter Beachtung einer wohlbekannten Kigenschaft
der Binomialkoéflizienten kann man durch ein besonderes
Korrektionsverfahren diese Forderung erfiillen. Da
nimlich (indem wir uns auf die einfachsten Félle be-

schrinken)
2" — 3@+ 1) 4 3@+ 2 — (x4 3) =0 fiir 1 <3
und

2t — 4@+ 1)+ 6@+2) —4@+3)Y+@@+4'=0
fiir 1 <4,

so ersieht man, dass fiir die Reihen
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die drei ersten Momente iibereinstimmen werden ohne
Riicksicht auf den Wert der Korrektur . Und ebenfalls
werden die vier ersten Momente unverindert durch
Hinzufiigen der beziiglichen Korrckturen ¢, —4e, 6Ge,
— 4 ¢, ¢ an den Reihenwerten 1, bis w, .

Diese Bemerkung kann oft von Nutzen werden, um
eine unregelmissige Beobachtungsreihe in eine andere,
gleichwertige, aber regelmiissigere zu verwandeln. So
lassen sich die im obigen Beispiel angefithrten o
durch allmihliche Korrekturen %, nach und nach in die
g), ofBQ), 0;;'” uméndern,
ohne dass die drei ersten Momente irgend welche Ver-

inderungen erleiden, und in der Tat ergibt daher auch
2}
xX
diec oben erhaltenen. Nur wird natiirlich der mittlere

Fehler nach der Ausgleichung ein anderer.

in der Tafel unten beigefiigten o

die letzte Reihe ganz dieselben ausgeglichenen w7 wie

T A
20 {0.00 4050 0.50 | 0.50
21 |5.82 —2.00]3.82 = 3.82 |
22 10.00 —-3.00/8.00 —0.50 2.50 2.50
23 |2.44 —2.00|0.44 +2.00 2.44 2.44 |
24 |5.04 +0.50|5.54 —3.00|2.54 —0.50]2.04
25 10.00 0.00 —+2.002.00 —+2.00 4.00
26 ]7.80 —  —0.50 7.30 —3.00 4.30
27 [1.24 — | —  42.00|3.24
28 |2.12 — | — —0.50 1.62
29 |1.79 — | — 11.79 |
30 |1.94 — — 1.94
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Dass wir durch grossere Sorgfalt in der Wahl der
Korrekturen ein noch besseres Resultat erhalten konnen,
ist leicht zu ersehen und ebenfalls, dass dieses Verfahren
cin vortreffliches Hillfsmittel darbictet, um die Unsicher-
heit des graphischen Ausgleichungsverfahrens zu ver-
mindern.

Wendet man dasselbe Verfahren bei der Ver-
kniipfung von ausgeglichenen Partialteilen w an, so
wird man im allgemeinen nach einigen Versuchen ge-
niigend glatten Verlauf des Uberganges erhalten; jedoch
gelingt dies leichter durch einen kleinen Kunstgriff,
welcher darin besteht, dass man bei der Ausgleichung
jedes Partialteiles unter den o einige der anstossenden
Werte «_ aus dem schon ausgeglichenen Stiick mit-
nimmt. Dadurch wird gewOhnlich schon eine bessere
Anschliessung der einzelnen Sticke erzielt, so dass die
nachtridgliche Verbesserung reduziert wird und die
Momentensummen nicht beecintréchtigt werden.

Nimmt man ndmlich an, der erste ausgeglichene
o I -
Teil «_ beruhe auf den Werten o, entsprechend den
: 11 "
Argumenten x =« bis x =y, ferner dass u_ gegriindet
wird auf o, von =y 1 bis =20 und ausserdem
I , .
auf u, von z=/f bis x =y (a <<y <9), und
. . . - I p. .
dass endlich die Schlussreihe U aus u_ fiir = o bis
e : :
z=p—1, und aus u,, fir x =/ bis x=20 gebildet
wird, so berechnen sich die resultierenden Momenten-
summen auf die folgende Weise:
4 p=1 ) v .
S il i1 o AT
3 Y :
Xx o, = ¥ & u, + ;CL o,
2

o o

" 5 s
L g T S 11
ot u, 4 )41 @' =Y et
s 711 I



woraus durch Addition

é A—1 4 3 d 2

) w N T T
Xxto, = X X u, +Xx u; = 3L U,
[£3 oL ol

s0 dass die Gleichheit der Momentensummen bestehend
bleibt.

Um das oben Gesagte besser zu erliutern, haben
wir dic Fortsetzung der in Tafel IT angefithrten Be-
obachtungen behandelt in der Weise, dass wir im
aweiten Stiick «' die Altersklassen 28 bis 46 genommen
haben und fiir diese mittelst eciner Formel zweiten
Grades eine schr befriedigende Ausgleichung erhalten,
aus welcher sich fiir die angefiihrten Altersjahre folgende
Werte ergeben:

Alter: 27 28 29 30 31 32 33
ult = 2.05 199 1.94 1.91 1.89 1.90 usw.

Da wir oben fanden
w.=3.02 2.64 210 142 |,

s0 haben dic beiden Reihen die Alter 28, 29, 30
gemeinsam, und durch Benutzung der fiir die {iber-
schicbenden Werte angegebenen i-Werte finden wir
hieraus die resultierenden U an der Ubergangsstelle:

Wy, = 802, U, =257, U, =2.08

28

U,=1.88, u, =191,

wobei wir jedoch auf die Gleichheit der Momente
verzichten.
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Wenn wir dagegen die in Tafel II enthaltene
Rechnung wiederholen, indem wir anstatt der urspriing-

i . o
lichen o,, o,, o,, bezw. wu, = 2.05, w, = 1.99,
11 i

w,, = 1.94 als beobachtete Werte beniitzen, finden

wir durch Mitnahme von @, dic unten fir die Alter
26—30 angefithrten w . Hier muss aber fir Alter 30
korrigiert werden; wie dies gemacht wird, ist in der
folgenden kleinen Tafel gezeigt.

Alter Utb_ Korr. l Ui: Korr, U;J_I
26 3.17 3.17 .17
87 2.90 2.90 42 2.92
28 | 255 4+ 6 | 261 —6 2.55
29 213 —18 | 1.95 16 2.01
30 1.68 418 | 1.86 —2 1.84
31 191 — 1.85 1.85
32 1.89 1.89 1.89
33 1.90 | 1.90 1.90
| 34 1.92 1.92 1.92

Hierdurch gewinnen wir an der Ubergangsstelle die
sub Uil angefiithrten Zahlen, und wir fithren schliesslich
das Resultat der ganzen Ausgieichung fiir die Alters-
klassen 20 bis 46 hier an.
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b

Die Fehlersumme wird wegen der Abrundungen

o

Alter u, Q.. — U, Alter u,, G, —=U
20 195 | 128 33 1.90 | —0.01
21 2.13 | +3.69 34 1.92 | 40.52
B 275 | —2.75 35 1.97 | —0.05
23 3.14 | —0.70 36 2.04 | —0.05
24 332 | L1.72 37 212 | —+0.46
25 3.32 | —3.32 38 2.22 | -40.53
26 3.17 | }4.63 39 2.34 | —0.61
27 2.92 | —1.68 40 | 248 | —0.63
28 2.55 | —0.43 41 2.64 | —0.27
29 2.01 | —0.22 49 2.82 | 40.41
30 1.84 | 40.10 43 3.01 | —0.07
31 1.85 | —0.17 44 8.28 | —0.32
32 1.89 | -+0.03 45 | 8.46 | -+0.15
46 3.71 | -L0.25

—0.04 statt 0, und mit entsprechender Anniiherung

Momentensummen
9 .

AN . W . . o

Sxz(o,—uw ) und ¥z (o, — u ) verschwinden.

werden  jetzt

auch die

beiden
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