Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft in Bern

Herausgeber: Naturforschende Gesellschaft in Bern

Band: 72 (2015)

Artikel: Der Kohlenstoffhaushalt der Biosphäre in einer CO2-reichen Welt

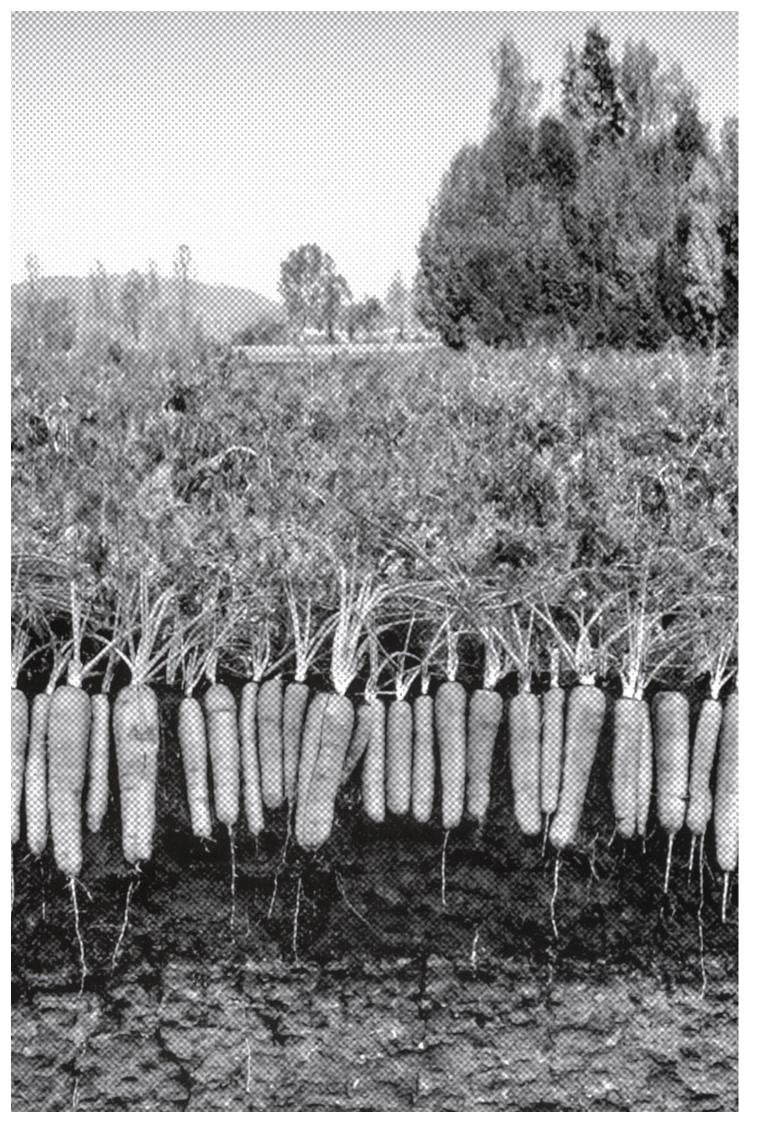
Autor: Körner, Christian

DOI: https://doi.org/10.5169/seals-658147

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CHRISTIAN KÖRNER¹

Der Kohlenstoffhaushalt der Biosphäre in einer CO₂-reichen Welt

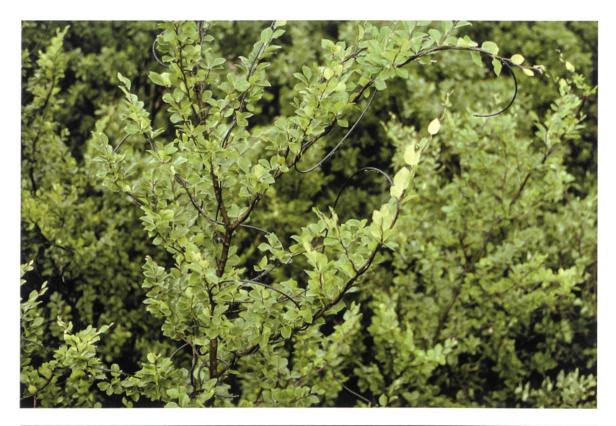
Zusammenfassung des Vortrages vom 25. November 2014

Alles Leben hängt vom Element Kohlenstoff ab. Es ist, nach Wasserabzug, mit grob 50% Anteil an der organischen Substanz das mengenmässig wichtigste chemische Element der Biomasse. Im Wege der pflanzlichen Photosynthese wird seine höchst oxidierte Form, das CO₂, aus der Luft aufgenommen und in chemisch reduzierter Form, zunächst als Zucker, zum Baustein und Ausgangsprodukt aller weiterer organischer Verbindungen. Zum Ort der photosynthetischen Reduktion von CO2 in der Matrix der Chlorophyllkörner, diffundiert CO2 durch die Stomataporen der Blatthaut, entlang der Zellzwischenräume im Blatt, dann durch die Zellwand, die Zellmembran, das Cytoplasma, bis in das Chlorophyllkorn. Diese Behinderung der CO2-Aufnahme führt dazu, dass am Ort der Synthese immer mehr CO2 verarbeitet werden könnte als nachdiffundiert. Das ist der Grund, warum Blätter in einer Umgebung mit künstlich erhöhter CO2 Konzentration ihre Photosynthese steigern können – zunächst unabhängig davon, ob die Produkte auch gebraucht werden können. Die Photosynthese ist beim heutigen CO2-Pegel in der Atmosphäre von etwa 400 ppm rein biochemisch noch nicht CO2-gesättigt. An diese seit langem bekannte Tatsache knüpft sich die verbreitete Vorstellung, dass ein steigender CO2-Gehalt der Luft, neben dem unerwünschten Treibhauseffekt, einen stimulierenden Effekt auf die Photosynthese, auf das Wachstum und schliesslich auf die Kohlenstoffspeicherung der Biosphäre haben sollte. Diese vermeintlich logische Ereigniskette unterliegt allerdings zwei Trugschlüssen: Erstens, dass das Wachstum grundsätzlich von der photosynthetischen Leistung, also von der Kohlenstoffaufnahme begrenzt werde, und zweitens, dass ein vermehrtes Wachstum gleichbedeutend mit grösserer Kohlenstoffspeicherung in Form von Pflanzenmasse sei.

Die erste Annahme ist leicht zu widerlegen. Kein Organismus besteht nur aus dem Element C (das wäre Diamant, Russ oder Graphit), sondern besteht aus grob 25 essentiellen chemischen Elementen. Ausser C, O und H stammen alle anderen aus dem Boden, auch der Stickstoff (N₂), welcher zwar ursprünglich aus der Luft kommt, aber nur als Nitrat (NO₃-), Amoniumstickstoff (NH₄+), oder als gelöster, organisch gebundener Stickstoff von Pflanzen aufgenommen werden kann. Diese Bodennähr-

¹ Prof. em. Dr. Christian Körner, Botanisches Institut, Universität Basel

stoffe sind erstens pro Landflächeneinheit endlich, zweitens herrscht um sie in freier Natur immer und seit je heftige Konkurrenz, und drittens genügt es, dass einer oder wenige nicht im Überschuss verfügbar sind, um das Wachstum zu begrenzen. Es wäre eine absurde Vorstellung anzunehmen, dass mit dem plötzlich vom Menschen in grossen Massen freigesetzten Kohlenstoff (als CO₂) auch die verfügbaren Mengen an Phosphor, Kalium, Magnesium, Mangan usw. sich in den Böden proportional vermehren würden. Es leuchtet also ein, dass Kohlenstoff nur in dem Masse in einen Pflanzenkörper eingebaut werden kann, indem dies die Verfügbarkeit anderer chemischer Elemente gestattet. Der Kohlenstoffkreislauf unterliegt also dem Diktat des Mineralstoffkreislaufs. Daher ist es unzulässig, aus einer biochemischen Limitierung der photosynthestischen CO₂-Aufnahme auf eine Wachstumslimitierung durch CO₂ zu schliessen. Nur wenn man künstlich (etwa durch Düngung) ein unbegrenztes Nährstoffangebot schafft, kann auch mehr CO₂ eingebunden werden. Das gelingt in Nährlösung oder in Gewächshauskulturen, aber funktioniert schon am Acker kaum, es sei denn unter unökonomischer Bewirtschaftung mit sehr hohem Düngeraufwand. In freier Natur, vor allem in Wäldern, gibt es aus Gründen der Element-«Stöichiometrie» des Lebens keinen Spielraum für einen CO₂-Düngeeffekt.


Der zweite Punkt, die fälschliche Annahme einer vermehrten Kohlenstoffspeicherung, ist ebenso einsichtig, da er viel mit unserem Alltag zu tun hat. Es geht um die Verwechslung von Wachstum und Kohlenstoffvorrat. Wachstum ist ein Teil des Kohlenstoffumsatzes, vergleichbar dem Umsatz von Geld in der Wirtschaft; der Kohlenstoffvorrat ist hingegen vergleichbar mit dem Kapital in der Wirtschaft. Die Verwechslung von Umsatz mit Kapital führt bekanntlich zum Bankrott. Wenn also eine Pflanze wächst oder eben schneller wächst (warum auch immer), sagt uns das nichts darüber, wie gross im Durchschnitt aller Pflanzen (z.B. aller Bäume, die in der Landschaft stehen) der Vorrat an Biomasse-Kohlenstoff ist. Das ist mit dem Umsatz einer Firma vergleichbar, welcher nichts über ihre Kapitalisierung aussagt. Besonders rasch wüchsige Bäume, wie zum Beispiel in einer Pappel-Plantage, werden auch rasch geerntet oder erreichen die maximale Grösse und ihr Lebensende früher als langsamwüchsige Bäume. Für das Ausmass der Kohlenstoffspeicherung in der Landschaft ist somit nicht massgebend wie rasch der Kohlenstoff eingebaut wird, sondern wie lange er gebunden bleibt (Verweildauer). Alte, weniger rasch wachsende Wälder speichern viel Kohlenstoff, junge rasch wachsende enthalten wenig Kohlenstoff pro Landflächeneinheit. Als Faustregel gilt, je schneller die Wachstumsrate, desto geringer ist in der Regel der Vorrat. Die Annahme, eine Wachstumssteigerung durch CO2-Düngung würde den Vorrat an Kohlenstoff im Wald erhöhen, ist also nicht nur von der Rate her falsch, sondern sogar von der Richtung. Der Holzvorrat in einem Wald wird von der Altersverteilung der Bäume bestimmt, also vom Anteil der unterschiedlichen Altersklassen (Demographie). Das hat nichts mit der biochemischen Leistung der Blattphotosynthese zu tun, sondern mit Lebenserwartung (Mortalität) oder Forstmanagement.

Möchte man herausfinden, ob CO₂ nun tatsächlich (k)eine Wirkung auf das Baumwachstum (oder ganz allgemein das Pflanzenwachstum) in freier Natur hat,

muss man Pflanzen künstlich mit mehr CO₂ versorgen, ohne jedoch in den Boden einzugreifen, also ohne ihn umzugraben, Pflanzen zu versetzen oder gar zu düngen. Jeder dieser Eingriffe würde ja, zumindest kurzfristig, Bodennährstoffe mobilisieren oder bereitstellen und damit den Test auf C-Limitierung unmöglich machen. In Hofstetten bei Basel wurden mit Hilfe eines 50 m hohen Baukranes erstmalig erwachsene Waldbäume in freier Natur in eine CO₂-reiche Zukunft versetzt. (Abb. 1 und 2)

Abbildung 1: Ob unser Wald in CO₂-reicher Luft mehr Kohlenstoff zu binden vermag, wird hier in Hofstetten bei Basel experimentell untersucht. Ein 50 m hoher Kran bietet Zugang zu den Baumkronen, die mit CO₂ aus gereinigten Industrieabgasen über 8 Jahre quasi in die Zukunft versetzt wurden. Die Resultate zeigen keinen Wachstumseffekt, weil Pflanzen zum Wachsen eben nicht nur CO₂ sondern auch Bodennährstoffe brauchen, die sich (ausser bezüglich Stickstoff) nicht vermehrt haben. Solange ein Wald steht ist dort Kohlenstoff gebunden der sonst in der Atmosphäre wäre. Einmal abgeholzt, braucht es mehr als hundert Jahre bis der Vorrat wieder aufgebaut ist. Bei nachhaltiger Holznutzung können CO₂-neutral Erdöl- oder Zement-basierte Bau- und Werkstoffe ersetzt oder fossiles Brennmaterial gespart werden. Das Substitutionspotential wird aber mengenmässig stark überschätzt. Es gibt keine «grüne» Lösungen des CO₂-Problems.

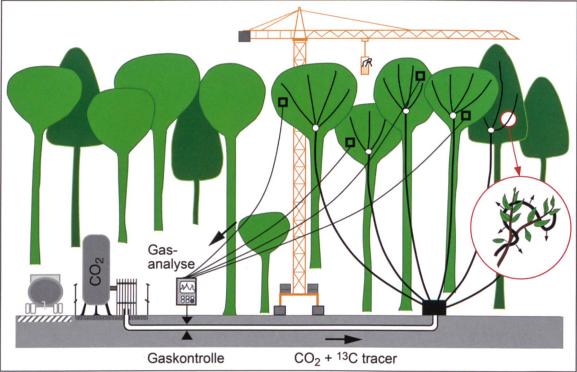


Abbildung 2: Erwachsene Bäume experimentell in eine CO₂-reiche Zukunft zu versetzen ohne dabei das Klima in den Baumkronen zu beeinflussen ist eine grosse Herausforderung. Mit dem hier schematisch dargestellten, Computer-gesteuerten CO₂-Anreicherungssystem und dem Kran gelang dies. Über kilometerlange poröse, in das Kronendach gewobene Schläuche wird in den Baumkronen CO₂-reiche Luft erzeugt. Zahlreiche Messgasleitungen überwachen die Konzentration und helfen die CO₂-Zufuhr zu dosieren.

Das Resultat: Weder Laub- noch Nadelbäume zeigten eine Wachstumssteigerung. Auch wenn das nach obigen Überlegungen plausibel ist, musste doch der empirische Beweis erbracht werden, da das Thema auch in der Wissenschaftsszene oft einseitig dargestellt wurde und damit politisch Hoffnungen geschürt wurden, es gäbe einen CO₂-Düngereffekt. Und selbst wenn es den gäbe, sagt so ein Effekt nichts über die Vorratsbildung im Wald aus. Leser die mehr zu diesem Thema erfahren möchten verweise ich auf die Literaturangaben.

Zum Schluss ein paar Überlegungen zur Frage, ob und in welchem Ausmass biologische Massnahmen wie Aufforstung oder Biomassenutzung helfen können, die CO₂-Anreicherung in der Atmosphäre zu bremsen. Die Resultate sind sehr ernüchternd. Die derzeitige Freisetzung von CO₂, auch in der Schweiz, übersteigt den Effekt jeglicher solcher Massnahmen derart, dass er zwar nicht null ist, aber nahe an der Grenze zur «Kosmetik» steht. Wald kann man bekanntlich auf einer gegebenen Fläche nur einmal aufforsten. Das geht in der heutigen Kulturlandschaft nur auf Kosten von Agrarflächen. Man kann zudem die Dichte (Bestockung) erhöhen, was darauf hinausläuft die Ernte zu verzögern, was auch Grenzen hat. Zudem sind ältere Wälder sturmanfälliger. Der Sturm Lothar legte etwa 3 Jahresernten der schweizerischen Forstwirtschaft in einer Stunde flach, gefolgt von weiteren Verlusten durch Borkenkäfer.

Auch bei der Biomassenutzung als Ersatz für fossile Quellen ist der Spielraum minimal. Es verbietet eigentlich der Anstand von einem Acker Diesel statt Nahrung zu holen. «Biofuels» von Schweizer Äckern würden mehr Nahrungsimporte aus dem Ausland bedeuten. Ohne Einbezug solcher Externalitäten sind solche Massnahmen unseriös, denn es gibt ja bekanntlich global gesehen keinen Nahrungsmittelüberschuss. Somit bleibt einzig die energetische Bewirtschaftung von Abfällen aus der Forst- und Holzwirtschaft und aus dem Agrar- und Lebensmittelbereich übrig. Sofern die in dieser Biomasse gebundenen Mineralstoffe wieder rezykliert werden (z.B. als Asche, was pikanterweise im Wald verboten ist), könnten damit wenige Prozent an fossilen Energieträgern ersetzt werden (realistisch sind 1–3 %). Solche Einsparungen sind aber anderen Wirkungen, wie jene bei der Wahl und Nutzung von Fahrzeugen, der Raumtemperatureinstellung, der Gebäudesanierung und letztlich unserem Verhalten gegenüberzustellen. Es wird rasch klar, dass Bioenergie keine über lokale Ressourcen (z.B. diverse Formen der Holzheizung) hinausgehende Stellung im globalen Energiebedarf einnehmen kann, soll die Nutzung anerkannten Nachhaltigkeitskriterien entsprechen. Die wirksamste biologische Massnahme wäre die Verhinderung der Abholzung von natürlichen Wäldern. Selbst eine Wiederaufforstung hinterlässt bis zum Erreichen des ursprünglichen Vorrates in 100-200 Jahren eine CO₂-Schuld. Der Bedarf am Rohstoff Holz sollte grundsätzlich und überall aus nachhaltiger Forstwirtschaft bezogen werden. Dabei wird jährlich nur so viel entnommen wie nachwächst.

Literatur

- BADER M.K.-F., LEUZINGER S., KEEL S.G., SIEGWOLF R.T.W., HAGEDORN F., SCHLEPPI P., KÖRNER C., (2013): Central European hardwood trees in a high-CO₂ future: synthesis of an 8-year forest canopy CO₂ enrichment project. J Ecol 101:1509–1519
- FATICHI S., LEUZINGER S., KÖRNER C., (2014): Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–1095
- KÖRNER C., (2006): Plant CO₂ responses: an issue of definition, time and resource supply. New Phytol 172:393–411
- KÖRNER C., (2009): Biologische Kohlenstoffsenken: Umsatz und Kapital nicht verwechseln! GAIA 4:288–293
- KÖRNER C., (2012): Angebot oder Nachfrage: Was steuert das Pflanzenwachstum? Biologie in unserer Zeit 42:239–243
- KÖRNER C., (2013): Growth controls photosynthesis mostly. Nova Acta Leopoldina 391:273–283
- KÖRNER C., BADER M., (2010): Der Wald in einer CO₂-reichen Welt. Lehrmittelverlag Kanton Solothurn, Solothurn
- Schulze E.D., Körner C., (2012): Nettoprimärproduktion und Bioenergie. In: German National Academy of Sciences Leopoldina: Bioenergy Chances and limits. Leopoldina, Halle (Saale) p. 90–101