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Heinz Wanner*

Zum Klimagedächtnis der Gletscher - ein Blick
in die Kleine Eiszeit

1. Holozäne Klimaschwankungen

Seit zirka 2,7 Millionen Jahren durchlebt unsere Erde wiederum eine Periode mit
quasiperiodischen Wechseln zwischen Glazialen und Interglazialen. Die Dauer der
einzelnen Perioden ist massgeblich bestimmt durch Energiebilanzschwankungen,
welche durch die Schwankungen der drei Orbitalparameter Exzentrizität der
Erdbahn, Schiefe der Erdachse und Präzession erzeugt werden (sogenanntes Milan-
kovitch-Forcing; Jansen et al. 2007). Die Periodenlänge betrug während der letzten
Glazial-Interglazial-Perioden immer ungefähr 100000 Jahre. Der Beginn der
gegenwärtigen Interglazial- oder Warmzeit, Holozän genannt, begann vor zirka
11 700 Jahren. Obschon das Klima des Holozäns im Vergleich zu den vorhergehenden

Glazialzeiten bisher als erstaunlich stabil bezeichnet werden kann, wurden
auch in seinem Verlauf sowohl auf der tausendjährigen als auch auf der dekadischen

bis mehrhundertjährigen Skala markante Klimaschwankungen beobachtet.
Auf der tausendjährigen Zeitskala wurde die Klimavariabilität ganz entscheidend
durch die oben genannten erdbahnbedingten und räumlich differenzierten
Schwankungen der Sonneneinstrahlung beeinflusst. Weil sich wegen der deutlich
höheren Einstrahlungsbeträge vor allem die Schwankungen während des

Sommerhalbjahres entscheidend auswirken, sind in Abbildung 1 die Insolationswerte
des borealen (Nordhalbkugel) und des australen (Südhalbkugel) Sommers für je
zwei Breiten dargestellt. Wir erkennen, dass das Strahlungsangebot im frühen
Holozän vor 10 000 Jahren auf der Nordhalbkugel deutlich grösser war. Dies führte

zum endgültigen Abschmelzen der grossen Eisschilder der Nordkontinente. Im
darauf folgenden Zeitraum des holozänen Klimaoptimums zwischen zirka 8500
und 4500 Jahren vor heute war das Klima vor allem auf der Nordhalbkugel durch
höhere Temperaturen und einen markanten Rückzug des arktischen Meereises
sowie des Gletschereises der Gebirgsgletscher gekennzeichnet. In den Alpen
schmolzen die Gletscher in diesem Zeitraum teilweise sogar hinter die heutigen
Gletscherstände zurück (Jörin et al. 2006). Nach 5000 Jahren vor heute kreuzen
sich die beiden Doppelkurven der Insolation in Abbildung 1, d.h., auf der
Nordhalbkugel setzte vor allem im Sommerhalbjahr eine zunehmende Abkühlung ein,
welche in der Literatur auch als Neoglazial bezeichnet wird (Denton & Karlen
1974).

Prof. Heinz Wanner, Geographisches Institut und Oeschger-Zentrum für Khmaforschung, Universität

Bern, Hallerstrasse 12, 3012 Bern
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Abbildung 1: Erdbahnbedingte Veränderung der Einstrahlung (sog. Milankovitch-Forcing) während
der letzten 10000 Jahre. Dargestellt sind die für die globale Klimaentwicklung wichtigen Kurven
für 65° und 15° Nord und Süd, jeweils für die zentralen Sommermonate der entsprechenden
Halbkugel.

Die durch die Erdbahnschwankungen bedingte sommerliche Abkühlung der
Nordhalbkugel bildete sozusagen die langfristige Kulisse für die hochfrequenteren
Schwankungen im holozänen Klimasystem (Wanner et al. 2008). Letztere sind

gekennzeichnet durch eine Serie von Kälterückfällen auf der Zeitskala von
Hunderten bis zirka 1500 Jahren, welche von gewissen Autoren generell als globales
Phänomen angesehen werden (Wanner & Bütikofer 2008). Im Vordergrund stehen
die Arbeiten von Bond et al. (1997 und 2001). Diese Autoren haben anhand von
petrologischen Tracern im Drifteis des Nordatlantiks postuliert, dass sich in diesem
Raum während des Holozäns wärmere und kühlere Phasen in einem etwa 1500-jährigen

Zyklus abgelöst haben. Abbildung2 zeigt die neun Bondzyklen des Holozäns
(normalerweise nummeriert von 0 bis 8), dargestellt anhand der Häufigkeit von
Hämatitkörnern in vier Ozean-Bohrkernen aus dem Nordatlantik. Einzelne Ereignisse

weisen eine zweigipflige Struktur auf. Bond-Event mit der Nummer 0
entspricht dem jüngsten Ereignis und somit der Kleinen Eiszeit. Event 1 bezeichnet
den Kälterückfall zur Völkerwanderungszeit zwischen zirka AD 400 und 800. Bond

et al. (1997 und 2001) sowie andere Autoren (vgl. Wanner et al. 2008) haben
gehofft, dass sich für die beobachteten Zyklen - ähnlich der Dansgaard-Oeschger-
Zyklen während der Glazialzeiten (Alley 1998) - eine einzige, erklärende Theorie
für deren Entstehung finden lässt. Im Vordergrund standen dabei Überlegungen
im Zusammenhang mit zyklischen Schwankungen der Solaraktivität, d.h. der

Strahlungsstärke der Sonne oder der thermohalinen Zirkulation des Nordatlantiks.
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Abbildung 2: Prozentuale Konzentration von Hämatitkörnern in vier Bohrkernen des Nordatlantiks.
Zunehmende Häufigkeiten werden als Tracer für ein vermehrtes Vordringen von Eisbergen nach
Süden und somit für kältere Phasen betrachtet (nach Bond 2001 ; aus Bütikofer 2007). Die Nummern
0 bis 8 bezeichnen die neun holozänen Bond-Zyklen. Die Kleine Eiszeit wird mit der Nummer 0
bezeichnet. Nummer 1 bezeichnet den Kälterückfall zur Zeit der Völkerwanderung.

Aufgrund der heutigen Fakten ist anzunehmen, dass nicht ein einziger Prozess
für die holozänen Kälterückfälle verantwortlich gemacht werden kann. Da sich
die Randbedingungen im Verlauf dieser Zeitperiode stark verändert haben, ist
eher davon auszugehen, dass verschiedene Mechanismen für diese Kältephasen
verantwortlich waren. So werden die frühen Kälterückfälle um zirka 11 700 bis
8700 Jahre vor heute oder der starke Kälterückfall um 8200 Jahre vor heute von
einer grösseren Zahl von Autoren mit einer Abschwächung der thermohalinen
Zirkulation des Atlantiks infolge von Schmelzwasserausbrüchen aus Seen am Rand
des Eisschildes von Nordamerika in Verbindung gebracht (z.B. Broecker 2006,
Ebbesen et al. 2007). Demgegenüber liegen für die vier markanten Kälterückfälle
der letzten 4500 Jahre noch keine überzeugenden Prozessstudien vor. Neben der
Frage nach dem Einfluss der natürlichen Klimavariabilität ist auch eine grosse
Unsicherheit bezüglich der räumlichen Ausdehnung dieser vier Ereignisse vorhanden.

Immerhin kann davon ausgegangen werden, dass die Kälterückfälle umso
stärker ausgefallen sind, je näher sie bei der Gegenwart liegen. Die Kleine Eiszeit
darf somit als die kälteste Periode seit dem Kälterückfall um 8200 Jahre vor heute

(Bond-Ereignis Nr. 5 in Abb. 2) betrachtet werden.
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2. Die Kleine Eiszeit

Der Begriff Kleine Eiszeit wurde erstmals von Matthes (1939) benützt, um die
erneuten und moderaten Gletscherbewegungen in der kalifornischen Sierra Nevada

nach der warmen Phase des sogenannten mittelalterlichen Optimums zwischen
zirka AD 800 und 1300 zu umschreiben. Obschon der Begriff ein glaziales Regime
suggeriert und nicht kürzere Gletschervorstösse auf der Zeitskala von mehreren
Dekaden oder einigen Jahrhunderten, hat er später Eingang in die Literatur
gefunden und wurde schliesslich zum Sammelbegriff für die Fluktuationen der letzten

Kaltphase des Neoglazials von zirka AD 1300 bis 1860. Grove (1988 und 2004)
hat mit ihren Publikationen den Grundstein zum Verständnis der Strukturen und
Prozesse rund um die Kleine Eiszeit im weitesten Sinn gelegt. Nicht nur in

Nordamerika, sondern auch in Europa haben die Kälterückfälle während der Kleinen
Eiszeit sowohl Natur als auch Gesellschaft ganz massgeblich beeinflusst (Pfister

2006). Infolge der Verkürzung der Vegetationsperiode und der zum Teil nasskalten
Sommer entstanden massive Engpässe in der Nahrungsmittelversorgung. Wie
Pfister (1975) festgestellt hat, führte dies zu starken Preisschwankungen sowie zu
einem Einbruch der Bevölkerungszahlen. Nicht nur in den Gebirgsräumen,
sondern auch im ebenen Vorland der Kontinente traten längere Kältephasen auf,
welche sich in Form von Gletscher- und Seespiegelschwankungen, schwankenden
Strukturen in Baumringen und in laminierten Schichtungen von Stalagmiten sowie
in Form von Änderungen biologischer, sedimentologischer, mineralogischer und

geochemischer Eigenschaften von Seesedimenten abbildeten.

Sowohl bezüglich Beginn und Ende als auch der räumlichen Ausdehnung der
Kleinen Eiszeit gibt es bis heute keinen klaren Konsens. Abbildung 3 stellt anhand
einer breiten Literaturrecherche die Anomalien von Temperatur und Niederschlag
für verschiedene Regionen der Erde dar (Widmer 2008). Obschon der Eindruck

entsteht, dass die Kleine Eiszeit (als einziger neoglazialer Kälterückfall?) von
globalem Ausmass war, muss das Gesamtbild als komplex bezeichnet werden. Trotz
der geringeren Zahl der Quellen deutet sich auf der Südhemisphäre an, dass dort
eine längere Kältephase erst nach zirka AD 1400 bis 1500 eintrat. Hier stellt sich

die Frage, ob der Kälterückfall tatsächlich zuerst auf der Nordhemisphäre erfolgte
und erst dann auf die Südhemisphäre übergriff. Die nördlichen Tropen wiesen in

der Mitte der Kleinen Eiszeit ein trockenes, die südlichen jedoch ein feuchtes
Klima auf. Dies steht im Einklang mit Beobachtungen und Modellen, welche im

Übergang vom Mittel- zum Spätholozän auf eine Abschwächung der afroasiatischen

Sommermonsune auf der Nordhemisphäre hindeuten (Wanner et al. 2008).
In der Nordhemisphäre wurde generell ein Wechsel zwischen milden und kalten
Phasen beobachtet. Drei allgemein kühlere Perioden wurden von zwei wärmeren
Phasen vor oder nach 1500 und vor 1800 unterbrochen. Die Zeit des Maunder-
Minimums von AD 1645 bis 1715 fiel anhand der vorhandenen Quellen vor allem
in Asien sehr kalt aus (Widmfr 2008). Im Alpenraum traten die zwei wärmeren
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Abbildung 3: Anomalien von Temperatur und Niederschlag in verschiedenen Regionen der Erde,

dargestellt anhand einer Literaturrecherche (Widmer 2008). Punktierte Linien entsprechen in etwa
dem langjährigen Mittel.

Zwischenphasen im 16. und im 18. Jahrhundert in Erscheinung. Allerdings waren
diese beiden Zeitabschnitte auch hier durch eine hohe Variabilität des Klimas
gekennzeichnet.

3. Zur Klimasensitivität von Gletschern

Die Massenbilanz b eines Gletschers wird bekanntlich durch die Differenz zwischen
der Akkumulation (vor allem im Winter) und der Ablation (vor allem im Sommer)
bestimmt. Beide Grössen sind von verschiedenen meteorologischen Elementen
wie Strahlungsbilanz, Temperatur, Niederschlag und Wind abhängig. Jeder
Gletscher reagiert je nach Grösse, Exposition, Beschaffenheit der Topographie und des

Untergrundes verschieden. Oerlemans und Reichert (2000) haben mit einem Sen-
sitivitätsmodell gezeigt, in welchem Mass die Massenakkumulation im Winter und
der Massenverlust im Sommer durch die beiden Parameter Winterniederschlag
und Sommertemperatur beeinflusst werden. Abbildung 4 zeigt eine entsprechende

Darstellung für den Nigardsbreen in Norwegen und den Rhonegletscher in den
Schweizer Alpen. Dabei wird sichtbar, dass im Falle des nördlicher gelegenen
Nigardsbreen eine deutlichere Trennung der Einflüsse von Niederschlag (Winter)
und Temperatur (Sommer) sichtbar wird. Die in Abbildung 4 gezeigten Sensitivi-
täten lassen sich durch die folgende einfache Massenbilanzformel ausdrücken
(Schoner 2009):
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Seasonal Sensitivity Characteristic
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Abbildung 4: Grafische Darstellung der mit einem Massenbilanzmodell berechneten Sensitivität des

Nigardsbreen und des Rhonegletschers bezüglich der lokalen Monatsmittel von Temperatur und

Niederschlag (aus Reichert et al. 2001)
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In der Folge wird auf die möglichen Einflüsse des Klimas auf die Gletscherschwankungen

während der Kleinen Eiszeit eingegangen. Der Fokus ist dabei bewusst
auf den zentraleuropäischen Alpenraum gerichtet.

4. Zum Einfluss des Klimas auf die Gletscherschwankungen
während der Kleinen Eiszeit

Wie oben erwähnt, reagieren die Gletscher sensitiv auf das lokale bis regionale
Klima, welches das Integral aus einer breiten Palette von saisonalen Wetterereignissen

darstellt. Dieses Klima wird einerseits durch die äusseren Antriebsfaktoren
und andererseits durch die interne Variabilität im Klimasystem bestimmt. Letztere
ist vor allem das Resultat von Wechselwirkungen in den Teilsystemen Ozean,

Atmosphäre, Meereis und Vegetation. Für die Kleine Eiszeit liegen bisher nur

Modellrechnungen zum Einfluss der wichtigen Antriebe auf die nordhemisphäri-
sche Temperatur vor. Sie sind in Abbildung 5 zusammen mit diesen Antriebsfaktoren

für den Zeitraum der letzten 1100 Jahre dargestellt. Betrachten wir zunächst
die unterste Kurvenschar (5d), so erkennen wir, dass die Kleine Eiszeit ab zirka
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Abbildung 5: Schwankung der drei wichtigsten Strahlungsantriebe (a - c) und simulierte bodennahe
Mitteltemperaturen der Nordhemisphäre während der letzten 1100 Jahre. Die Häufigkeit der
Überlappung von rekonstruierten Temperaturkurven ist in Abb. 5d in grauen Farbstufen dargestellt. Alle
Strahlungsantriebsschwankungen und Temperaturen wurden als Abweichungen vom Mittel der
Penode 1 500 bis 1899 gerechnet und tiefpassgefiltert (Jansen et al. 2007)

AD 1300 eine etwas wärmere Phase abgelöst hat, welche in der Literatur als

Mittelalterliche Wärmeperiode oder Wärmeanomalie bezeichnet wird (Bradley et
al. 2003).

Welches sind nun die Charakteristiken des Klimas der Kleinen Eiszeit? Insgesamt
'assen sich anhand der Kurven sowie der grauen Schattierung in Abbildung 5d
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vier Kälterückfälle unterscheiden, welche durch einen hellblauen Rahmen
hervorgehoben wurden. Bei Betrachtung jener Kurven, welche zeigen, wie stark die

natürlichen Antriebsfaktoren in Form der Vulkaneruptionen (Abb. 5a) und der

Schwankungen der Solaraktivität (Abb. 5b) die Strahlungsbilanz beeinflusst
haben, fällt deutlich auf, dass während der vier hervorgehobenen Kältephasen in

der Regel eine Gruppe von mehreren grossen Vulkanereignissen (sichtbar in Form

der nach unten weisenden Spitzen in Abb. 5a) durch eher tiefe Werte der
Sonnenaktivität (Abb. 5b) überlagert wird. Zudem zeigt das Studium verschiedener
Vorstoss- oder Massenbilanzkurven des Schweizer Alpenraumes (Haeberli &
Holzhauser 2003, Holzhauser et al. 2005; siehe auch die Beiträge in diesem Band), dass

positive Werte der Massenbilanz- oder Zungenlängenänderungen recht hoch mit
diesen Einbrüchen in derStrahlungsbilanzkorreliertsind. Solche Ereignisse wurden
von Wanner et al. (2000) als Liâtes (Little Ice Age Type Events) bezeichnet. Zusätzlich

kann festgestellt werden, dass die in Abbildung 3 gezeigten milderen
Zwischenphasen in Europa im 16. und 18. Jahrhundert in Abbildung 5a als Phasen

ohne namhafte Vulkanereignisse in Erscheinung treten.

Wie oben gezeigt wurde, sind Gletscherschwankungen nicht nur vom thermischen,

sondern auch vom hygrischen Regime (Niederschlag, Verdunstung) abhängig.

Diese Tatsache stellt im Hinblick auf die Diagnose von Gletscherschwankungen

vor allem auch deshalb ein Problem dar, weil die Niederschläge sehr stark
durch die interne Variabilität des Klimasystems beeinflusst werden, welche sich in

Form starker Zirkulationsschwankungen auf kontinentaler bis lokaler Ebene
äussert. Die Daumenregel, wonach Gletscher bei tieferen Mitteltemperaturen wachsen

und bei hohen schwinden, ist deshalb nur sehr bedingt richtig. Selbst die in

der oben genannten Formel gemachte Aussage, wonach Winterniederschläge
und Sommertemperatur die Massenbilanzen wesentlich bestimmen, muss in

Einzelfällen stark relativiert werden. Steiner et al. (2008) haben im Rahmen einer

Anwendung neuronaler Netze zeigen können, dass das klare Bild, wie es in
Abbildung 4 suggeriert wird, beim Studium von Einzelvorstössen oder -rückzügen
von Gletschern wesentlich differenzierter ausfällt.

Betrachten wir die raumzeitliche Struktur der alpinen Winterniederschläge, so

stellen wir fest, dass auch diese stark durch die kontinentale Zirkulationsdynamik
bestimmt wird (Wanner et al. 2003). Im Winter erklärt das Druckmuster der
Nordatlantischen Oszillation, welches statistisch der ersten Hauptkomponente des

Bodendruckes über Europa entspricht, den grössten Anteil der Variabilität des

Niederschlags- und Temperaturfeldes dieser Region. Mit andern Worten: das
Geschehen wird stark bestimmt durch eine zonale Zirkulation mit entweder
warmfeuchten Westwinden oder einer blockierten Westströmung mit sehr kalten und

trockenen Ostwinden (bei uns als Bise bezeichnet). Wie 7äbe//e 7 demonstriert,
können diese beiden zonalen Modi, welche der Nordatlantischen Oszillation
entsprechen, kaum zu einem starken Massenzuwachs unserer Gletscher beitragen.
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Wetterlage Temperatur Niederschlagsmenge Massenbilanz

Westlage (NAOI positiv) warm mittel bis hoch negativ

Ostlage (NAOI negativ) sehr kalt sehr tief ausgeglichen
NordVNordwestlage kühl sehr hoch positiv

Tabelle 1: Auswirkung von wichtigen Winterwetterlagen auf die Massenbilanz von Gletschern des

zentralen Alpenraumes (NAOI: Nordatlantischer Oszillationsindex).

Als viel effizienter erweist sich der meridionale Zirkulationstyp mit nord- bis
nordwestlicher Höhenströmung und kühlem Wetter mit starken Niederschlägen
(statistisch entspricht dies dem einen der beiden Modi der zweiten oder dritten
Hauptkomponente des europäischen Bodendruckes im Winter; Casty et al. 2007). Dies

wiederum bedeutet, dass die alpinen Gletscher einem sehr sensiblen Klimaregime
unterliegen, wobei kleinste Änderungen zu namhaften Massenbilanzverschiebun-

gen führen können. Ein schönes Beispiel liefern die Gletschervorstösse der ersten
Hälfte des 19. Jahrhunderts, eines Zeitraums, dessen Zirkulationsgeschenen sehr
stark durch die Dominanz kühler Nordwest- bis Nordlagen bestimmt wurde (Ja-

cobeit et al. 2003, Kuttel et al. 2009). Es bleibt die Frage, durch welche Mechanismen

sowohl die Niederschlagsmenge als auch die Zirkulationsdynamik beeinflusst
wird. Im Fall der europäischen Alpen spielen die Wechselwirkungen zwischen
Ozean und Atmosphäre des Nordatlantiks eine entscheidende Rolle. Die Struktur
der Ozeanoberflächentemperaturen wird vor allem auf der kurzfristigen Zeitskala

massgeblich durch die atmosphärische Zirkulation beeinflusst, kann jedoch ihre
thermischen Gedächtniseigenschaften längerfristig wiederum der Atmosphäre
„mitteilen". Dies wiederum wirkt sich auf die langfristige Entwicklung der
kontinentalen Niederschläge aus. Auf der dekadischen Zeitskala spielt dabei die Dynamik

der sogenannten MOC (Meridional Overturning Circulation), d.h. die durch
Temperatur und Salzgehalt angetriebene meridionale Ozeanzirkulation im
Nordatlantik, eine sehr wichtige Rolle (Cunningham et al. 2007). Ihre Rolle während der
Kleinen Eiszeit ist deshalb Gegenstand intensiver Untersuchungen.

Abschliessend stellt sich die Frage, ob die Kleine Eiszeit am Ende des 19. Jahrhunderts

auch dann abgeklungen wäre, wenn die in Abbildung 5c dargestellte Kurve
der anthropogenen Forcings flach, d.h. ohne progressiven Anstieg der Treibhausgase

weitergelaufen wäre. Ist es denkbar, dass wir uns in diesem Fall nach wie
vor im Klimaregime der Kleinen Eiszeit mit sporadischen Gletschervorstössen
befinden würden? Modellrechnungen auf der Basis moderner Erdsystemmodelle
dürften darauf eine Antwort finden.
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