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Hallers Gletscher heute 209

Heinz WANNER*

Zum Klimagedachtnis der Gletscher — ein Blick
in die Kleine Eiszeit

1. Holozane Klimaschwankungen

Seit zirka 2,7 Millionen Jahren durchlebt unsere Erde wiederum eine Periode mit
quasiperiodischen Wechseln zwischen Glazialen und Interglazialen. Die Dauer der
einzelnen Perioden ist massgeblich bestimmt durch Energiebilanzschwankungen,
welche durch die Schwankungen der drei Orbitalparameter Exzentrizitdt der Erd-
bahn, Schiefe der Erdachse und Prazession erzeugt werden (sogenanntes Milan-
kovitch-Forcing; Jansen et al. 2007). Die Periodenlange betrug wahrend der letzten
Glazial-Interglazial-Perioden immer ungefahr 100000 Jahre. Der Beginn der ge-
genwartigen Interglazial- oder Warmzeit, Holozan genannt, begann vor zirka
11700 Jahren. Obschon das Klima des Holozans im Vergleich zu den vorherge-
henden Glazialzeiten bisher als erstaunlich stabil bezeichnet werden kann, wurden
auch in seinem Verlauf sowohl auf der tausendjdhrigen als auch auf der dekadi-
schen bis mehrhundertjahrigen Skala markante Klimaschwankungen beobachtet.
Auf der tausendjéhrigen Zeitskala wurde die Klimavariabilitat ganz entscheidend
durch die oben genannten erdbahnbedingten und rdumlich differenzierten
Schwankungen der Sonneneinstrahlung beeinflusst. Weil sich wegen der deutlich
héheren Einstrahlungsbetrage vor allem die Schwankungen wéhrend des Som-
merhalbjahres entscheidend auswirken, sind in Abbildung 1 die Insolationswerte
des borealen (Nordhalbkugel) und des australen (Stidhalbkugel) Sommers fur je
zwei Breiten dargestellt. Wir erkennen, dass das Strahlungsangebot im friihen
Holozan vor 10000 Jahren auf der Nordhalbkugel deutlich grésser war. Dies fuhr-
te zum endgultigen Abschmelzen der grossen Eisschilder der Nordkontinente. Im
darauf folgenden Zeitraum des holozanen Klimaoptimums zwischen zirka 8500
und 4500 Jahren vor heute war das Klima vor allem auf der Nordhalbkugel durch
hohere Temperaturen und einen markanten Riickzug des arktischen Meereises
sowie des Gletschereises der Gebirgsgletscher gekennzeichnet. In den Alpen
schmolzen die Gletscher in diesem Zeitraum teilweise sogar hinter die heutigen
Gletscherstande zurtck (Jorn et al. 2006). Nach 5000 Jahren vor heute kreuzen
sich die beiden Doppelkurven der Insolation in Abbildung 1, d.h., auf der Nord-
halbkugel setzte vor allem im Sommerhalbjahr eine zunehmende Abkiihlung ein,

welche in der Literatur auch als Neoglazial bezeichnet wird (Denton & KarLen
1974).

* P‘rof. Heinz Wanner, Geographisches Institut und Oeschger-Zentrum fur Klimaforschung, Univer-
sitat Bern, Hallerstrasse 12, 3012 Bern
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Abbildung 1: Erdbahnbedingte Veranderung der Einstrahlung (sog. Milankovitch-Forcing) wahrend
der letzten 10000 Jahre. Dargestellt sind die fir die globale Klimaentwicklung wichtigen Kurven
fur 65° und 15° Nord und Sid, jeweils fir die zentralen Sommermaonate der entsprechenden Halb-
kugel.

Die durch die Erdbahnschwankungen bedingte sommerliche Abkiihlung der Nord-
halbkugel bildete sozusagen die langfristige Kulisse fir die hochfrequenteren
Schwankungen im holozanen Klimasystem (Wanner et al. 2008). Letztere sind
gekennzeichnet durch eine Serie von Kalterlckfallen auf der Zeitskala von Hun-
derten bis zirka 1500 Jahren, welche von gewissen Autoren generell als globales
Phanomen angesehen werden (Wanner & BoTikorer 2008). Im Vordergrund stehen
die Arbeiten von Bonp et al. (1997 und 2001). Diese Autoren haben anhand von
petrologischen Tracern im Drifteis des Nordatlantiks postuliert, dass sich in diesem
Raumwahrend des Holozédns warmere undkihlere Phasen in einem etwa 1500-jah-
rigen Zyklus abgel6st haben. Abbildung 2 zeigt die neun Bondzyklen des Holozans
(normalerweise nummeriert von 0 bis 8), dargestellt anhand der Haufigkeit von
Hamatitkérnern in vier Ozean-Bohrkernen aus dem Nordatlantik. Einzelne Ereig-
nisse weisen eine zweigipflige Struktur auf. Bond-Event mit der Nummer O ent-
spricht dem jlingsten Ereignis und somit der Kleinen Eiszeit. Event 1 bezeichnet
den Kaltertckfall zur Volkerwanderungszeit zwischen zirka AD 400 und 800. Bonb
et al. (1997 und 2001) sowie andere Autoren (vgl. Wanner et al. 2008) haben
gehofft, dass sich fur die beobachteten Zyklen — ahnlich der Dansgaard-Oeschger-
Zyklen wahrend der Glazialzeiten (Aey 1998) — eine einzige, erklirende Theorie
fur deren Entstehung finden lasst. Im Vordergrund standen dabei Uberlegungen
im Zusammenhang mit zyklischen Schwankungen der Solaraktivitat, d.h. der
Strahlungsstarke der Sonne oder der thermohalinen Zirkulation des Nordatlantiks.
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Abbildung 2: Prozentuale Konzentration von Hamatitkérnern in vier Bohrkernen des Nordatlantiks.
Zunehmende Haufigkeiten werden als Tracer fir ein vermehrtes Vordringen von Eisbergen nach
SGden und somit fiir k&ltere Phasen betrachtet (nach Bono 2001; aus Butikorer 2007). Die Nummern
0 bis 8 bezeichnen die neun holozidnen Bond-Zyklen. Die Kleine Eiszeit wird mit der Nummer 0
bezeichnet. Nummer 1 bezeichnet den Kaltertckfall zur Zeit der Volkerwanderung.

Aufgrund der heutigen Fakten ist anzunehmen, dass nicht ein einziger Prozess
fir die holozanen Kaltertickfalle verantwortlich gemacht werden kann. Da sich
die Randbedingungen im Verlauf dieser Zeitperiode stark verandert haben, ist
eher davon auszugehen, dass verschiedene Mechanismen fir diese Kaltephasen
verantwortlich waren. So werden die frihen Kalterlckfalle um zirka 11700 bis
8700 Jahre vor heute oder der starke Kaltertickfall um 8200 Jahre vor heute von
einer grosseren Zahl von Autoren mit einer Abschwichung der thermohalinen
Zirkulation des Atlantiks infolge von Schmelzwasserausbriichen aus Seen am Rand
des Eisschildes von Nordamerika in Verbindung gebracht (z.B. Brotcker 2006,
Essesen et al. 2007). Demgegentiber liegen fiir die vier markanten Kalteriickfalle
der letzten 4500 Jahre noch keine tiberzeugenden Prozessstudien vor. Neben der
Frage nach dem Einfluss der naturlichen Klimavariabilitat ist auch eine grosse
Unsicherheit beztiglich der raumlichen Ausdehnung dieser vier Ereignisse vorhan-
den. Immerhin kann davon ausgegangen werden, dass die Kalteriickfalle umso
starker ausgefallen sind, je naher sie bei der Gegenwart liegen. Die Kleine Eiszeit
darf somit als die kalteste Periode seit dem Kaltertickfall um 8200 Jahre vor heu-
te (Bond-Ereignis Nr. 5 in Abb. 2) betrachtet werden.
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2. Die Kleine Eiszeit

Der Begriff Kleine Eiszeit wurde erstmals von MatTres (1939) bendtzt, um die er-
neuten und moderaten Gletscherbewegungen in der kalifornischen Sierra Neva-
da nach der warmen Phase des sogenannten mittelalterlichen Optimums zwischen
zirka AD 800 und 1300 zu umschreiben. Obschon der Begriff ein glaziales Regime
suggeriert und nicht kirzere Gletschervorstdsse auf der Zeitskala von mehreren
Dekaden oder einigen Jahrhunderten, hat er spater Eingang in die Literatur ge-
funden und wurde schliesslich zum Sammelbegriff fur die Fluktuationen der letz-
ten Kaltphase des Neoglazials von zirka AD 1300 bis 1860. Grove (1988 und 2004)
hat mit ihren Publikationen den Grundstein zum Verstéandnis der Strukturen und
Prozesse rund um die Kleine Eiszeit im weitesten Sinn gelegt. Nicht nur in Nord-
amerika, sondern auch in Europa haben die Kalteriickfalle wahrend der Kleinen
Eiszeit sowohl Natur als auch Gesellschaft ganz massgeblich beeinflusst (PrisTer
2006). Infolge der Verktirzung der Vegetationsperiode und der zum Teil nasskalten
Sommer entstanden massive Engpasse in der Nahrungsmittelversorgung. Wie
PrisTer (1975) festgestellt hat, fihrte dies zu starken Preisschwankungen sowie zu
einem Einbruch der Bevélkerungszahlen. Nicht nur in den Gebirgsraumen, son-
dern auch im ebenen Vorland der Kontinente traten langere Kaltephasen auf,
welche sich in Form von Gletscher- und Seespiegelschwankungen, schwankenden
Strukturen in Baumringen und in laminierten Schichtungen von Stalagmiten sowie
in Form von Anderungen biologischer, sedimentologischer, mineralogischer und
geochemischer Eigenschaften von Seesedimenten abbildeten.

Sowohl bezlglich Beginn und Ende als auch der rdumlichen Ausdehnung der
Kleinen Eiszeit gibt es bis heute keinen klaren Konsens. Abbildung 3 stellt anhand
einer breiten Literaturrecherche die Anomalien von Temperatur und Niederschlag
fur verschiedene Regionen der Erde dar (Wiomer 2008). Obschon der Eindruck
entsteht, dass die Kleine Eiszeit (als einziger neoglazialer Kaltertckfall?) von glo-
balem Ausmass war, muss das Gesamtbild als komplex bezeichnet werden. Trotz
der geringeren Zahl der Quellen deutet sich auf der Sidhemisphére an, dass dort
eine langere Kaltephase erst nach zirka AD 1400 bis 1500 eintrat. Hier stellt sich
die Frage, ob der Kéltertckfall tatsachlich zuerst auf der Nordhemisphére erfolgte
und erst dann auf die Stdhemisphare tbergriff. Die nérdlichen Tropen wiesen in
der Mitte der Kleinen Eiszeit ein trockenes, die stidlichen jedoch ein feuchtes
Klima auf. Dies steht im Einklang mit Beobachtungen und Modellen, welche im
Ubergang vom Mittel- zum Spatholozdn auf eine Abschwéchung der afroasiati-
schen Sommermonsune auf der Nordhemisphéare hindeuten (Wanner et al. 2008).
In der Nordhemisphare wurde generell ein Wechsel zwischen milden und kalten
Phasen beobachtet. Drei allgemein kiihlere Perioden wurden von zwei warmeren
Phasen vor oder nach 1500 und vor 1800 unterbrochen. Die Zeit des Maunder-
Minimums von AD 1645 bis 1715 fiel anhand der vorhandenen Quellen vor allem
in Asien sehr kalt aus (Wiomer 2008). Im Alpenraum traten die zwei warmeren
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Kleine Eiszeit: Globale Ubersicht
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Abbildung 3: Anomalien von Temperatur und Niederschlag in verschiedenen Regionen der Erde,
dargestellt anhand einer Literaturrecherche (Widmer 2008). Punktierte Linien entsprechen in etwa
dem langjahrigen Mittel.

Zwischenphasen im 16. und im 18. Jahrhundert in Erscheinung. Allerdings waren
diese beiden Zeitabschnitte auch hier durch eine hohe Variabilitdt des Klimas
gekennzeichnet.

3. Zur Klimasensitivitiat von Gletschern

Die Massenbilanz b eines Gletschers wird bekanntlich durch die Differenz zwischen
der Akkumulation (vor allem im Winter) und der Ablation (vor allem im Sommer)
bestimmt. Beide Gréssen sind von verschiedenen meteorologischen Elementen
wie Strahlungsbilanz, Temperatur, Niederschlag und Wind abhéngig. Jeder Glet-
scher reagiert je nach Grosse, Exposition, Beschaffenheit der Topographie und des
Untergrundes verschieden. Oertemans und Reichert (2000) haben mit einem Sen-
sitivitdtsmodell gezeigt, in welchem Mass die Massenakkumulation im Winter und
der Massenverlust im Sommer durch die beiden Parameter Winterniederschlag
und Sommertemperatur beeinflusst werden. Abbildung 4 zeigt eine entsprechen-
de Darstellung fiir den Nigardsbreen in Norwegen und den Rhonegletscher in den
Schweizer Alpen. Dabei wird sichtbar, dass im Falle des nérdlicher gelegenen
Nigardsbreen eine deutlichere Trennung der Einfliisse von Niederschlag (Winter)
und Temperatur (Sommer) sichtbar wird. Die in Abbildung 4 gezeigten Sensitivi-
taten lassen sich durch die folgende einfache Massenbilanzformel ausdriicken
(ScHoner 2009):
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Abbildung 4: Grafische Darstellung der mit einem Massenbilanzmodell berechneten Sensitivitat des
Nigardsbreen und des Rhonegletschers beziiglich der lokalen Monatsmittel von Temperatur und
Niederschlag (aus ReicHerT et al. 2001).

b=1P_+gT +h

b Massenbilanz

f, g Proportionalitédtsfaktoren

P, Winterniederschlag

T Sommertemperatur

h Gletscherspezifische Konstante

In der Folge wird auf die moglichen Einflusse des Klimas auf die Gletscherschwan-
kungen wahrend der Kleinen Eiszeit eingegangen. Der Fokus ist dabei bewusst
auf den zentraleuropaischen Alpenraum gerichtet.

4. Zum Einfluss des Klimas auf die Gletscherschwankungen
wahrend der Kleinen Eiszeit

Wie oben erwahnt, reagieren die Gletscher sensitiv auf das lokale bis regionale
Klima, welches das Integral aus einer breiten Palette von saisonalen Wetterereig-
nissen darstellt. Dieses Klima wird einerseits durch die dusseren Antriebsfaktoren
und andererseits durch die interne Variabilitat im Klimasystem bestimmt. Letztere
ist vor allem das Resultat von Wechselwirkungen in den Teilsystemen Ozean,
Atmosphdre, Meereis und Vegetation. Fir die Kleine Eiszeit liegen bisher nur
Modellrechnungen zum Einfluss der wichtigen Antriebe auf die nordhemisphari-
sche Temperatur vor. Sie sind in Abbildung 5 zusammen mit diesen Antriebsfak-
toren fur den Zeitraum der letzten 1100 Jahre dargestellt. Betrachten wir zundchst
die unterste Kurvenschar (5d), so erkennen wir, dass die Kleine Eiszeit ab zirka
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Abbildung 5: Schwankung der drei wichtigsten Strahlungsantriebe (a - ¢) und simulierte bodennahe
Mitteltemperaturen der Nordhemisphare wahrend der letzten 1100 Jahre. Die Haufigkeit der Uber-
lappung von rekonstruierten Temperaturkurven ist in Abb. 5d in grauen Farbstufen dargestellt. Alle
Strahlungsantriebsschwankungen und Temperaturen wurden als Abweichungen vom Mittel der
Periode 1500 bis 1899 gerechnet und tiefpassgefiltert (Jansen et al. 2007).

AD 1300 eine etwas warmere Phase abgeldst hat, welche in der Literatur als

Mittelalterliche Warmeperiode oder Warmeanomalie bezeichnet wird (Braptey et
al. 2003).

Welches sind nun die Charakteristiken des Klimas der Kleinen Eiszeit? Insgesamt
lassen sich anhand der Kurven sowie der grauen Schattierung in Abbildung 5d
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vier Kaltertckfalle unterscheiden, welche durch einen hellblauen Rahmen hervor-
gehoben wurden. Bei Betrachtung jener Kurven, welche zeigen, wie stark die
natrlichen Antriebsfaktoren in Form der Vulkaneruptionen (Abb. 5a) und der
Schwankungen der Solaraktivitat (Abb. 5b) die Strahlungsbilanz beeinflusst ha-
ben, fallt deutlich auf, dass wahrend der vier hervorgehobenen Kaltephasen in
der Regel eine Gruppe von mehreren grossen Vulkanereignissen (sichtbar in Form
der nach unten weisenden Spitzen in Abb. 5a) durch eher tiefe Werte der Son-
nenaktivitat (Abb. 5b) Uberlagert wird. Zudem zeigt das Studium verschiedener
Vorstoss- oder Massenbilanzkurven des Schweizer Alpenraumes (Haegeru & Holz-
Hauser 2003, HotzHauser et al. 2005; siehe auch die Beitrage in diesem Band), dass
positive Werte der Massenbilanz- oder Zungenldngenanderungen recht hoch mit
diesen Einbriichen in der Strahlungsbilanz korreliert sind. Solche Ereignisse wurden
von Wanner et al. (2000) als Liates (Little Ice Age Type Events) bezeichnet. Zusatz-
lich kann festgestellt werden, dass die in Abbildung 3 gezeigten milderen Zwi-
schenphasen in Europa im 16. und 18. Jahrhundert in Abbildung 5a als Phasen
ohne namhafte Vulkanereignisse in Erscheinung treten.

Wie oben gezeigt wurde, sind Gletscherschwankungen nicht nur vom thermi-
schen, sondern auch vom hygrischen Regime (Niederschlag, Verdunstung) abhan-
gig. Diese Tatsache stellt im Hinblick auf die Diagnose von Gletscherschwankun-
gen vor allem auch deshalb ein Problem dar, weil die Niederschldge sehr stark
durch die interne Variabilitdt des Klimasystems beeinflusst werden, welche sich in
Form starker Zirkulationsschwankungen auf kontinentaler bis lokaler Ebene dus-
sert. Die Daumenregel, wonach Gletscher bei tieferen Mitteltemperaturen wach-
sen und bei hohen schwinden, ist deshalb nur sehr bedingt richtig. Selbst die in
der oben genannten Formel gemachte Aussage, wonach Winterniederschlage
und Sommertemperatur die Massenbilanzen wesentlich bestimmen, muss in Ein-
zelféllen stark relativiert werden. Stemer et al. (2008) haben im Rahmen einer
Anwendung neuronaler Netze zeigen kénnen, dass das klare Bild, wie es in Ab-
bildung 4 suggeriert wird, beim Studium von Einzelvorstdssen oder -riickzigen
von Gletschern wesentlich differenzierter ausfallt.

Betrachten wir die raumzeitliche Struktur der alpinen Winterniederschldge, so
stellen wir fest, dass auch diese stark durch die kontinentale Zirkulationsdynamik
bestimmt wird (Wanner et al. 2003). Im Winter erklart das Druckmuster der Nord-
atlantischen Oszillation, welches statistisch der ersten Hauptkomponente des
Bodendruckes Uber Europa entspricht, den grossten Anteil der Variabilitat des
Niederschlags- und Temperaturfeldes dieser Region. Mit andern Worten: das Ge-
schehen wird stark bestimmt durch eine zonale Zirkulation mit entweder warm-
feuchten Westwinden oder einer blockierten Weststrémung mit sehr kalten und
trockenen Ostwinden (bei uns als Bise bezeichnet). Wie Tabelle 7 demonstriert,
konnen diese beiden zonalen Modi, welche der Nordatlantischen Qszillation ent-
sprechen, kaum zu einem starken Massenzuwachs unserer Gletscher beitragen.
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Wetterlage Temperatur Niederschlagsmenge Massenbilanz
Westlage (NAQI positiv) warm mittel bis hoch negativ
Ostlage (NAOI negativ) sehr kalt sehr tief ausgeglichen
Nord-/Nordwestlage kdhl sehr hoch positiv

Tabelle 1: Auswirkung von wichtigen Winterwetterlagen auf die Massenbilanz von Gletschern des
zentralen Alpenraumes (NAOI: Nordatlantischer Oszillationsindex).

Als viel effizienter erweist sich der meridionale Zirkulationstyp mit nord- bis nord-
westlicher Hohenstromung und kihlem Wetter mit starken Niederschldgen (sta-
tistisch entspricht dies dem einen der beiden Modi der zweiten oder dritten Haupt-
komponente des europaischen Bodendruckes im Winter; Casty et al. 2007). Dies
wiederum bedeutet, dass die alpinen Gletscher einem sehr sensiblen Klimaregime
unterliegen, wobei kleinste Anderungen zu namhaften Massenbilanzverschiebun-
gen fuhren kénnen. Ein schones Beispiel liefern die Gletschervorstdsse der ersten
Hélfte des 19. Jahrhunderts, eines Zeitraums, dessen Zirkulationsgeschenen sehr
stark durch die Dominanz kihler Nordwest- bis Nordlagen bestimmt wurde (Ja-
coseT et al. 2003, Kurrew et al. 2009). Es bleibt die Frage, durch welche Mechanis-
men sowohl die Niederschlagsmenge als auch die Zirkulationsdynamik beeinflusst
wird. Im Fall der europdischen Alpen spielen die Wechselwirkungen zwischen
Ozean und Atmosphare des Nordatlantiks eine entscheidende Rolle. Die Struktur
der Ozeanoberflachentemperaturen wird vor allem auf der kurzfristigen Zeitska-
la massgeblich durch die atmosphaérische Zirkulation beeinflusst, kann jedoch ihre
thermischen Gedéachtniseigenschaften langerfristig wiederum der Atmosphare
«Mitteilen”. Dies wiederum wirkt sich auf die langfristige Entwicklung der konti-
nentalen Niederschldge aus. Auf der dekadischen Zeitskala spielt dabei die Dyna-
mik der sogenannten MOC (Meridional Overturning Circulation), d.h. die durch
Temperatur und Salzgehalt angetriebene meridionale Ozeanzirkulation im Nord-
atlantik, eine sehr wichtige Rolle (CunningHam et al. 2007). Ihre Rolle wahrend der
Kleinen Eiszeit ist deshalb Gegenstand intensiver Untersuchungen.

Abschliessend stellt sich die Frage, ob die Kleine Eiszeit am Ende des 19. Jahrhun-
derts auch dann abgeklungen wére, wenn die in Abbildung 5c¢ dargestellte Kurve
der anthropogenen Forcings flach, d.h. ohne progressiven Anstieg der Treibhaus-
gase weitergelaufen ware. Ist es denkbar, dass wir uns in diesem Fall nach wie
vor im Klimaregime der Kleinen Eiszeit mit sporadischen Gletschervorstdssen be-
finden wiirden? Modellrechnungen auf der Basis moderner Erdsystemmodelle
dirften darauf eine Antwort finden.
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