Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft in Bern

Herausgeber: Naturforschende Gesellschaft in Bern

Band: 51 (1994)

Artikel: Neue Ergebnisse zur Vorstossdynamik der Grindelwaldgletscher vom

14. bis zum 16. Jahrhundert

Autor: Pfister, Christian / Holzhauser, Hanspeter / Zumbühl, Heinz J.

DOI: https://doi.org/10.5169/seals-318581

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CHRISTIAN PFISTER*, HANSPETER HOLZHAUSER** und HEINZ J. ZUMBÜHL***

Neue Ergebnisse zur Vorstossdynamik der Grindelwaldgletscher vom 14. bis zum 16. Jahrhundert.

1. Einleitung

Am Ende des 16. Jahrhunderts weckte «eine ausserordentliche Revolution die in selbstgefälliger Unwissenheit schlummernden Talbewohner auf und lenkte ihre Aufmerksamkeit auf die schnellern Veränderungen, die [...] mit den Gletschern vorgingen. Damals schien die Natur aus ihrem gewohnten Geleise zu treten, und die Gletscher nahmen mit ungewöhnlichen Schritten zu. Im Jahr 1600 erreichten sie in der Schweiz, im Tyrol und wahrscheinlicher Weise auch in den Savoyschen Alpen den Meridian ihrer Grösse. Bei den meisten Gletschern entdecken wir noch unverkennbare Spuren dieser merkwürdigen Naturbegebenheit. Die Gandecken oder Sandwälle, die den damaligen Umkreis bezeichnen, sind noch vorhanden.» Mit diesen Worten hat der Berner Naturforscher und spätere Staatsmann Bernhard Friedrich Kuhn (1787: 135) in seinem «Versuch über den Mechanismus der Gletscher» als erster auf die Klimaveränderung des 16. Jahrhunderts und ihre gletschergeschichtlichen Konsequenzen hingewiesen. Die Forschung der letzten Jahrzehnte hat eine Fülle von dokumentarischen Nachrichten aus dem gesamten Alpenraum über weitreichende Vorstösse in den 1580er und 1590er Jahren und die Zerstörung bebauten Landes zusammengetragen, die Kuhns Aussagen bestätigen (u.a. Le Roy Ladurie 1967; Zumbühl 1980; Holzhauser 1982, 1984; BLESS, 1984).

Unsere Kenntnisse über die Ausdehnung der Gletscher in der ersten Hälfte des 16. Jahrhunderts haben sich bisher auf das Beispiel des Rhonegletschers und des Grossen Aletschgletschers gestützt. Holzhauser (1984: 277) kommt zum Schluss, dass der Grosse Aletschgletscher mit Sicherheit kleiner war als um 1920, aber mindestens so gross wie um 1935. 1546 beschrieb Sebastian Münster (1977/6: 446) bei seiner Reise über die Furka den in unmittelbarer Nähe des Weges liegenden Rhonegletscher. Wie weit genau die Gletscherzunge sich auf den Talboden geschoben hat, lässt sich nicht exakt eruieren. Le Roy Ladurie (1967: 103f) hat angenommen, dass der Gletscher grösser war als 1930, weil er zweifellos im Talboden stirnte.

Adresse der Verfasser:

- * Prof. Dr. Ch. Pfister, Historisches Institut der Universität, Unitobler, 3000 Bern 9
- ** Dr. H. Holzhauser, Geographisches Institut der Universität, Winterthurerstrasse 190, 8057 Zürich
- *** PD Dr. H.J. Zumbühl, Geographisches Institut der Universität, Hallerstrasse 12, 3012 Bern

Ungeklärt ist bis heute die Ausgangslage der beiden Grindelwaldgletscher vor dem Vorstoss des späten 16. Jahrhunderts und damit die klimageschichtlich entscheidende Frage nach dessen Weite und Dynamik geblieben. Die Entdeckung neuer und die Reinterpretation bekannter Schriftquellen hat es nun ermöglicht, die Zungenbewegungen der Grindelwaldgletscher, namentlich des Unteren, für die Zeit von 1530 an in ihrem Ausmass und in ihrem zeitlichen Verlauf genauer abzuschätzen. Im weiteren konnten anhand der Datierung fossiler Böden und von Holzresten aus einem Aufschluss im Vorfeld des Unteren Gletschers schlüssige Ergebnisse zur Geschichte dieses Eisstroms im späten 14. und 15. Jahrhundert erbracht werden.

2. Dimension und Dynamik der Vorstösse am Ende des 16. Jahrhunderts

2.1 Die historischen Quellen

Bei der Rekonstruktion wird auf drei Gruppen von Dokumenten zurückgegriffen, die sich in ihrer Aussage ergänzen: auf Urbarien, die Vorläufer der Grundbücher, auf die Grindelwaldner-Chroniken und auf die früheste topografische Beschreibung des bernischen Staatsgebiets.

Die Eintragungen in Urbarien dürfen als besonders glaubwürdig eingestuft werden, da sie Beweismittel für Besitzrechte und Abgaben darstellten. Ergaben sich Veränderungen in der Zinsbelastung oder im Besitzstand, wurde dies üblicherweise unter dem betreffenden Abschnitt nachgetragen. Wenn die Übersicht infolge einer grossen Zahl von Hand- und Zinsänderungen verlorengegangen war, mussten die Urbarien erneuert werden. Den Anstoss für die 1611 erfolgte Renovation des Interlaken-Urbars gab, wie wir in der einleitenden Begründung lesen, nicht zuletzt die am Ende des 16. Jahrhunderts eingetretene Klimaverschlechterung. Die Neuaufnahme sei unter anderem nötig geworden, weil in etlichen Tälern die Ertragskraft von Lehengütern durch vorstossende Gletscher oder durch Lawinen geschmälert worden sei (StAB 1611).

Bei den Grindelwald-Chroniken handelt es sich um einfache Hefte älteren und neueren Datums, die, wie Strasser (1890: 165) vermerkt hat, in ihren Berichten über die früheren Jahrhunderte alle von der gleichen Urschrift abstammen. Wer die Chronik ursprünglich verfasst habe, sei nicht bekannt. Zumbühl (1980: 17) stuft sie als Hauschroniken ein, während sie Richter (1891: 19) als Pfarrchronik bezeichnet. Aus Äusserungen des Gletscherforschers Hugi (1842: 85) und aus dem Titel der erhaltenen Versionen selbst geht hervor, dass es sich bei der Urfassung tatsächlich um eine Pfarrchronik gehandelt haben muss, in welcher jeder Geistliche, angefangen mit dem ersten reformierten Pfarrer, die wichtigsten Begebenheiten seines Pfarramtes aufzeichnete. Nicht zuletzt sprechen für diese Ansicht die darin gelegentlich enthaltenen Angaben über die jährliche Summe der Hochzeiten oder der Todesfälle, Informationen, über welche nur der Pfarrer verfügte, ganz abgesehen davon, dass er wohl bis weit ins 18. Jahrhundert hinein als einer der wenigen Bewohner des Tales des Schreibens kundig gewesen sein dürfte. Erhalten sind auszugsweise Abschriften von Talleuten, die

als Heimchroniken mit eigenen, meist stark mundartlich gefärbten Eintragungen über Naturereignisse, Unglücksfälle, fruchtbare und unfruchtbare Jahre weitergeführt worden sind. Bei der Abschrift sind Übertragungsfehler, vor allem fehlerhafte Datierungen, nicht auszuschliessen. Die beiden bisher veröffentlichten Fassungen (Strasser 1890; Kaufmann 1950) sind inhaltlich nicht ganz identisch. Was die Gletschergeschichte betrifft, ergänzen sie sich teilweise. Weitere Elemente sind in der Darstellung von Hugi (1842: 85f) enthalten, der bei seinem Besuch in Grindelwald 1830 mit dem damaligen Pfarrer Rudolf Müller ausgedehnte Wanderungen unternahm (Hugi 1830: 100). Dies lässt vermuten, dass er in eine dritte Abschrift Einsicht nehmen konnte.

Schlüssig ist schliesslich die Darstellung des Raumes Grindelwald im unpublizierten zweibändigen Kommentar zur ersten Karte der Republik Bern von 1577/78 aus der Feder des damaligen Stadtarztes Thomas Schoepf. Der Kommentar war als Nachschlagewerk für die Staatsdiener konzipiert und nicht zur Publikation vorgesehen. Schoepfs Biographie ist nur rudimentär bekannt. Er war 1542/43 in Basel immatrikuliert und als Student der Künste im Kreise der Basler Humanisten ein Schüler des berühmten Cosmographen Sebastian Münster. 1565 wurde er als Stadtarzt nach Bern berufen und starb hier zwölf Jahre später an der Pest. Im September 1576 nahm der Grosse Rat in befürwortender Weise Stellung zu einem Gesuch Schoepfs, die Information in Form einer «beschribenen landtaffeln irer landen und gepieten» drucken zu dürfen. Der Kommentar muss also in der ersten Hälfte der siebziger Jahre zusammengetragen worden sein. Schoepf durfte als Stadtarzt die Hauptstadt ohne Bewilligung des Rates, später des Schultheissen, nicht verlassen. Von da her ist anzunehmen, dass er die Materialien zum Kommentar wie sein Vorbild Sebastian Münster von überall her brieflich anforderte (Herzig 1992: 164). Als Ansprechpartner der Verwaltung auf lokaler Ebene boten sich die Pfarrherren an. So ist zu vermuten, dass die Notizen über Grindelwald aus der Feder von Gabriel Trog stammen, der von 1565 bis 1577 als Pfarrer im Gletscherdorf amtete (LOHNER 1862: 216).

2.2 Die Lage der Gletscherzungen im zweiten Drittel des 16. Jahrhunderts

Schlüsseldokument für die Position der Zunge des Unteren Gletschers im frühen 16. Jahrhundert ist das Interlaken Urbar von 1535. Beim «Ellouwinen gutt» lesen wir das folgende: «Das guotz ist drisig und ein kuo winterung (ca. 31 ha), stost obsich an Eiger, ussen an eigenbach, Jnnen an gletscher by Sant Peter Nellen, unden an die lütschinen.» (StAB 1535). Mit «Sant Peter Nellen» ist die Petronella Kapelle gemeint, die auf der Schoepf-Karte als Häuschen in unmittelbarer Nähe der Lütschinenquelle bzw. der Gletscherschlucht eingezeichnet ist (vgl. Abb. 2). Heute bezeichnet der Ortsname «Nellenbalm» eine ehemals offene, heute mit Moränenschutt «verklebte» Höhle am linksseitigen, bewachsenen Talbord des Unteren Gletschers (Strasser 1889: 108) (vgl. Karte 1), in der sich die Kapelle dereinst befunden haben mag. Weniger wahrscheinlich ist die von Coolidge (1911) übernommene Lesart des lateinischen Kommentars zur Schoepf-Karte, der sie am «linken Ufer der Litschenen unmittelbar am Fusse des hohen Mettelberg genannten Gebirgsmassivs» vermutet.

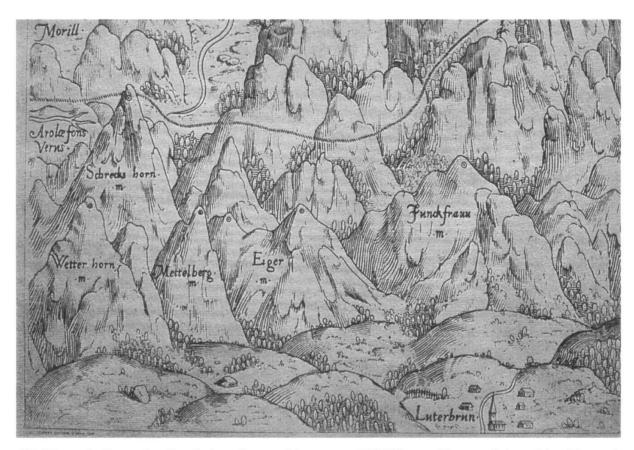
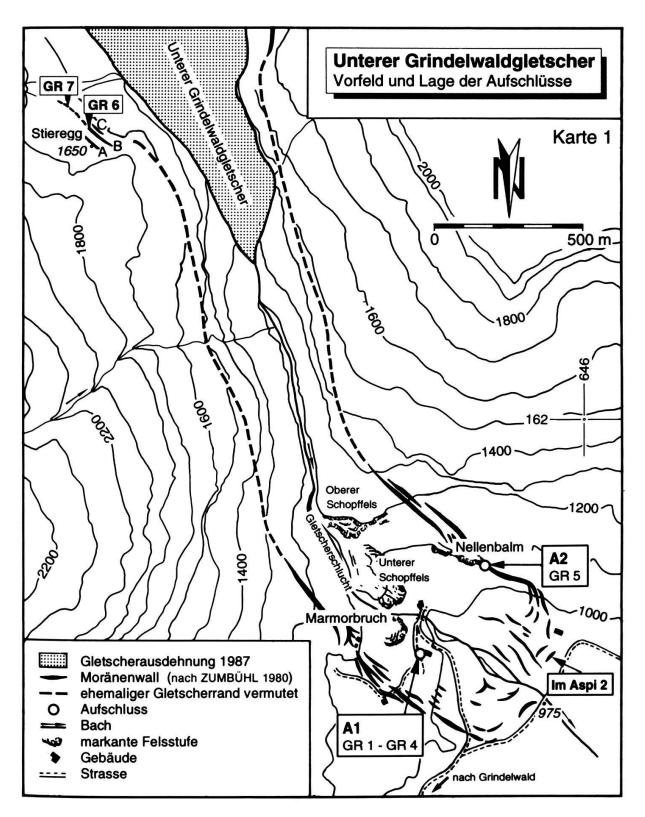



Abbildung 1: Karte des Bernischen Staatsgebietes von 1577/78 von Thomas Schoepf im Massstab 1:85 000 bis 1:115 000, Ausschnitt mit Berggipfeln im Raum Grindelwald. Auffallend ist das Fehlen der beiden Grindelwaldgletscher am Fuss von «Wetterhorn. Mettelberg. Eiger». An ihrer Stelle sind schematisierte Baumsignaturen eingetragen (Vgl. Schoepf/Grosjean 1970/72: Blatt 2 Naters, untere Ecke links).

Wenn wir den Text wörtlich interpretieren, das heisst eine Position des Gletscherendes in unmittelbarer Nähe der Petronella Kapelle annehmen, so würde dies bedeuten, dass der Eisstrom damals teilweise den Schweif bildete, also die Schopffelsen ganz bedeckte und teilweise darüber hinaus vorgestossen war. Dies aber wäre sicher als Bedrohung des Wallfahrtsortes aufgefasst und entsprechend thematisiert worden. Es ist wahrscheinlicher, dass die Kapelle lediglich zur Kennzeichnung des Unteren Gletschers – im Unterschied zum Oberen – erwähnt worden ist. Als sicher dürfen wir annehmen, dass der Eisstrom vom Talgrund aus gut sichtbar irgendwo im Bereich der Unteren Schopffelsen endete (zu der Lage des Zungenendes vgl. *Karte 1*). Wir dürfen annehmen, dass die Gletscherfront um 1535 etwa 300–400 m weiter vorgeschoben war als um 1920 (vgl. die Kurve in Zumbühll 1980 und 1983 sowie *Abb.* 7).

Möglicherweise war die Zunge in diesem Zeitpunkt leicht im Vorrücken begriffen. Schiner (1812: 106) erwähnt, allerdings ohne Berufung auf zeitgenössische Quellen, dass um 1529 die Gletscher im Saastal merklich zunahmen.

Im Verlaufe des Dürresommers 1540 mit seiner von April bis September anhaltenden Hitze und Trockenheit aperten Altschnee und Firnflächen in den Alpen ausser-

Karte 1: Unterer Grindelwaldgletscher. Vorfeld und Lage der Aufschlüsse.

ordentlich stark aus. «Bei etlichen heissen Summers Zyten als im Jahr Christi 1540 gewesen», lesen wir in der Chronik von STUMPF (1547/48), «gadt auch etwan der alt Schnee ab, doch niemermeer also gar dann das die obristen Spitzen statigs Schnee behaltend». Obschon dieser Sommer als der weitaus wärmste der letzten 500 Jahre

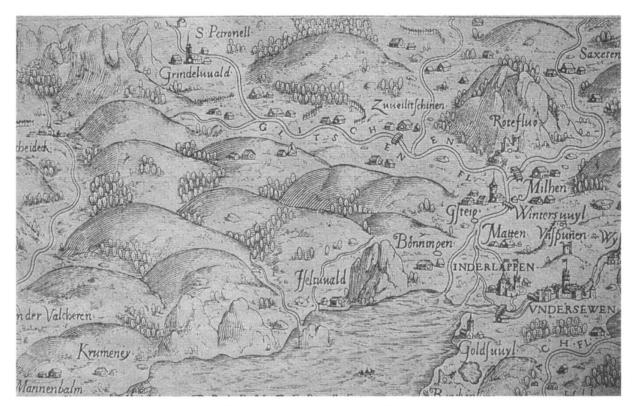


Abbildung 2: Schoepf-Karte von 1577/78, Ausschnitt mit dem «Glitschenen» Tal, «Grindeluuald» und der «S. Petronell» Kapelle. Auch hier fehlt jeglicher Hinweis auf die beiden Gletscher (Vgl. Schoepf/Grosjean 1970/72: Blatt 8 Langnau, obere Ecke links).

gelten muss (Pfister 1984: 138), ist ein weites Zurückschmelzen der Zunge, wie es die Darstellungen bei Altmann (1751: 23), Gruner (1760/3: 150) und Kasthofer (1822: 296/297) als Folge dieses Extremereignisses postulieren, angesichts des relativ hohen Gletscherstandes um 1535 doch eher unwahrscheinlich. Basierend auf dem Text von Gruner (1760/3: 150), dass man nach dem Wegschmelzen der Gletscher um 1540 «bis in den Herbst den nackten Felsen gesehen» habe, lässt sich daraus am ehesten ein Eisfreiwerden des Unteren Schopffelsbandes herauslesen (vgl. Diskussion Zumbühl 1980: 16). Da die Erinnerung an den «heissen» Sommer im Bewusstsein der Bevölkerung über Jahrhunderte hinweg lebendig blieb, verwundert es nicht, dass der weitreichende Rückschmelzprozess im dritten Viertel des Jahrhunderts in der historischen Rückschau ursächlich mit diesem denkwürdigen Ereignis in Zusammenhang gebracht wurde.

Es ist nicht auszuschliessen, dass der Gletscher am Ende der 1540er Jahre vorübergehend sogar wieder leicht vorrückte. In einer bisher der Gletscherforschung nicht bekannten Version der Grindelwald-Chronik von Kaufmann (1950: 3) steht der folgende Passus: «1547 wuchs der Untere Gletscher an und bedrohte den Wallfahrtsort» (womit die Petronella Kapelle gemeint sein dürfte). Möglicherweise hatte sich der Eisstrom in diesem Zeitpunkt etwas über den Stand von 1535 hinaus vorgeschoben, doch ist die entsprechende Originalquelle nicht mehr vorhanden, und die Episode wird weder von Hugi noch von Strasser erwähnt, so dass sie nicht als tragendes Element einer Interpretation verwendet werden darf. Keineswegs erreichte ein möglicher

Vorstoss in diesem Zeitraum einen mit 1600 oder 1855/56 vergleichbaren Umfang, wie es Schneebell (1976: 23f) für den Giétrogletscher annimmt (Holzhauser 1982: 118).

Schlüsseldokument für die Gletschergeschichte im dritten Viertel des 16. Jahrhunderts ist die Karte des Bernischen Staatsgebietes von Thomas Schoepf aus den Jahren 1577/78 (vgl. Schoepf/Grosjean 1970/72: Faksimiledruck Blatt 2 und 8). Im Raume Grindelwald sind Wetterhorn, Mettenberg, Eiger, Jungfrau und im Hintergrund alles überragend das Schreckhorn eingetragen, der Mönch und das Finsteraarhorn fehlen (vgl. Abb. 1 und 2). Die individualistische Wiedergabe der Gipfel (mit Ausnahme des Wetterhornes) und die Darstellung der imposanten Felsfassade Wetterhorn-Mettenberg-Eiger lassen darauf schliessen, dass dieser Teil der Karte aus der Perspektive von Grindelwald und nicht aus jener von Bern entworfen worden ist. Ganz offensichtlich ist etwa der Mettenberg als nordwestlichster Ausläufer der Schreckhornkette so übermächtig gross dargestellt, wie er von Grindelwald aus in Erscheinung tritt, und Mönch und Finsteraarhorn, die beide vom Gletscherdorf aus nicht direkt sichtbar sind, werden aus dieser Perspektive konsequent weggelassen. Dies spricht für unsere Vermutung, dass Schoepf die Informationen über Grindelwald von Gabriel Trog angefordert hatte, der das Gletscherdorf aus seiner zwölfjährigen Tätigkeit als Pfarrer gut kannte.

Dieses Argument ist für unsere Problemstellung von zentraler Bedeutung. Denn die beiden Gletscher, die in den folgenden Jahrhunderten zu den Wahrzeichen des Tales werden sollten, sind auf dieser ältesten Karte des Berner Staatsgebiets überhaupt nicht dargestellt. In den tiefen Tälern und Schluchten zwischen Wetterhorn und Mettenberg sowie zwischen Mettenberg und Eiger, wo auf der ersten bildlichen Darstellung des Tales von PLEPP (1642) die beiden Eisströme mit ihren schollenartigen Türmen erscheinen (vgl. Abb. 3), hat Schoepf lediglich Baumsignaturen eingezeichnet.

Auch im lateinischen Kommentar zur Karte, der die Schönheit der Pfarrei von Grindelwald «zwischen himmelhohen Bergen, die von ewigem Schnee starren, in einem sehr lieblichen und fruchtbaren Tal, am rechten Ufer der Lütschine» hervorstreicht, fehlt jeglicher Hinweis auf die Existenz der beiden Gletscher. Nicht einmal als Ursprung der Lütschine finden sie Erwähnung, lesen wir doch das folgende: «Die Quellen der Lütschinen sprudeln überall, vornehmlich im Süden und Osten, durch verschiedene Steine und Felsspalten als Bäche hervor, die endlich zusammenfliessen und die Lütschine bilden» (Schoepf 1577, übersetzt durch C. Pfister). Dabei war das Naturphänomen Gletscher dem Schöpfer der Karte durchaus bekannt: Bei der Diskussion um die vermeintliche (Arolae fons existimatus) und die wirkliche (Arolae fons verus) Aarequelle erwähnt der Berner Stadtarzt indirekt den Unteraargletscher, wenn er sagt, am Ostfuss des Schreckhornes beginne ein Tal, das sich bis zur Grimsel erstrecke und von sehr rauhem und ewigem Eis (perpetua glacie) verschüttet sei, so sehr, dass es nicht genutzt werde, ausser durch die Jäger und die, welche Kristalle graben (Schoepf Kommentar fol 74r, übersetzt von Grosjean 1970/72: Blatt 1).

Das Fehlen jeglichen Hinweises auf die Existenz der beiden Gletscher kann nur damit erklärt werden, dass die beiden Eisströme im Zeitpunkt der Entstehung der Karte so weit zurückgeschmolzen waren, dass sie vom Tal aus nicht mehr wie um 1535 als

Abbildung 3: Die älteste bisher bekannte Bildquelle des Unteren Grindelwaldgletschers, eine Radierung von Joseph Plepp, 1642 publiziert in Matthäus Merians Topographia Helvetiae, zeigt einen bis in den Talboden hinunter vorgestossenen und damit den Schweif bildenden Eisstrom (Schweizerische Landesbibliothek; vgl. Zumbühl 1980: K. 1.11).

eigenständige Landschaftselemente, sondern nur noch als Teil des Eismeers wahrgenommen wurden. Dazu würde die Beobachtung passen, wonach die Lütschine im Osten (auf der Karte im Gebiet der Grossen Scheidegg) und im Süden (wo der Untere Gletscher enden müsste) in der Perspektive des Kommentators offenbar aus verschiedenen Steinen und «Felsspalten» (vielleicht ist damit beim Unteren Gletscher die Gletscherschlucht im Bereich der Schopffelsen gemeint) hervorsprudelte. Dem könnte eine Gletscherausdehnung im Ausmasse von 1875–1880 entsprechen, bei dem der Untere Gletscher stark abgeschmolzen im Bereich der Oberen Schopffelsen endete. Diese Interpretation wird durch eine von Hugi (1842: 86) leider nicht im ursprünglichen Wortlaut zitierte Lesart der Grindelwald-Chronik gestützt: «1580 drängte sich das Eismeer schon über die oberen Felsen und der Untere Gletscher wurde geboren.» Dieser Satz legt die Vermutung nahe, dass der Eisstrom vor 1580 offenbar hinter «die oberen Felsen» zurückgeschmolzen war (womit das Felsband des Oberen Schopfs gemeint ist) und nun nach diesem Zeitpunkt für die Talleute wieder sichtbar als Gletscher(-zunge) in Erscheinung trat.

Der rasche Gletscherschwund zwischen 1550 und 1565/70 lässt sich klimageschichtlich mit überwiegend warmen und trockenen Frühjahrs- und Sommerperioden erklären, die mit jenen der 1860er Jahre vergleichbar sind, als der Untere Gletscher in einem einzigen Jahrzehnt um etwa 600 m und der Obere um etwa 300 m zurückschmolz (ZUMBÜHL 1980: Fig. 1 und 2).

2.3 Der Vorstoss von 1580–1602

In den zwei letzten Jahrzehnten des 16. Jahrhunderts rückten die beiden Gletscherzungen ausserordentlich rasch vor.

Zwischen 1580 und 1584 zwängten sich die Eismassen durch die Gletscherschlucht und begruben anschliessend die Petronella Kapelle unter sich. Daran schliesst die bekannte, von Hugi (1842: 86f) in Grindelwaldner Mundart zitierte und deshalb nie richtig verstandene Passage aus der Chronik an: «1588 streckt der Gletscher Dnäsa i Bodä und drückt ä Hübel mitäma Ghalt weg.» Das heisst, der Gletscher rückte vor – nach alter Grindelwaldner Mundart drückte ein vorstossender Gletscher seine Nase (d.h. seine Zunge) in den Boden, ein zurückschmelzender trug sie in der Luft (Wyss 1817/2: 649) –, überfuhr eine ältere Endmoräne (Hübel) und anschliessend einen Heustall (FRIEDLI 1908: 51).

1593 (wohl 1599), lesen wir bei Hugi (1842: 87), ist «der ufer (= user) Gletsch bis unterä Schopf und ein Hantwurfweit bei dem Schissellauigraben», das heisst, die Stirn des Unteren Gletschers lag im Talboden unterhalb des Unteren Schopfes, einen Handwurf weit vom Schüssellauinengraben entfernt, im Bereich des bei diesem Vorstoss erreichten Maximums (Abb. 5). Ein rechter Zufluss der Lütschine sei durch das Vordringen des Gletschers im Talboden gestaut worden, heisst es weiter, auf dem Aellouwinen Boden seien vier Häuser und viele Scheunen trotz des Einsatzes der ganzen Gemeinde beim Schwellenbau weggeschwemmt worden. An diesem Beispiel zeigt sich erneut, wie BLESS (1984: 11) für die Gletscher des Mont Blanc-Gebietes nachweist, dass Gletscherbäche und Schmelzwasserausbrüche ebenso verheerend wirkten wie das Eis selbst. In der Version von Strasser (1890: 167) wird diese Episode auf das Jahr 1600 datiert. Das Aellouwinen Gut ist aber unzweifelhaft schon vor der Jahrhundertwende teilweise durch die Eismassen überführt und durch Ausbrüche von Schmelzwasser verheert worden. Im August 1597 kam die Obrigkeit, wie aus einem Nachtrag im Urbar hervorgeht, nämlich einem entsprechend begründeten Gesuch Hans Bächlers um einen Zinserlass für 12 Kuhwinterungen (ca. 12 ha) nach, allerdings mit dem Vorbehalt, dass der ganze Zins wieder entrichtet werden müsse, sollte die volle Ertragsfähigkeit wieder hergestellt sein (StAB 1535). Offensichtlich rechnete man zu diesem Zeitpunkt nur mit einer vorübergehenden Ertragsminderung. 1603 gelangte derselbe Hans Bächler mit einem Gesuch um definitiven Zinserlass für 12 Kuhwinterungen, Melchior Heintz mit einem solchen für 5 Kuhwinterungen an den Rat (ZUMBÜHL 1980: 18). Diese Zinsnachlässe sind zusammen mit solchen für die Güter «Im Boden» und «Burgbühl» im neuen Urbar festgeschrieben (StAB 1611). Daraus

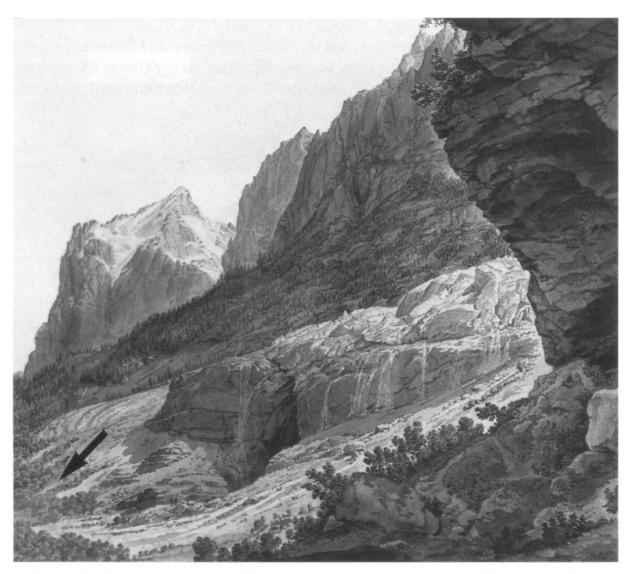


Abbildung 4: Die Zunge des Unteren Grindelwaldgletschers auf dem Unteren Schopffels von der Nellenbalm aus gesehen. Aquarellierte Bleistiftzeichnung von G.L. Lory Vater, um/vor 1814 (?). Der Pfeil bezeichnet die Stelle mit dem Aufschluss GU A1. (Foto aus Zumbühl 1980: 222* K.49.1).

kann der Schluss gezogen werden, dass der Untere Gletscher im Jahre 1597 schon eine beträchtliche Ausdehnung erreicht hatte, aber danach, wie die definitiven Zinserlasse für die beiden letztgenannten Güter belegen, noch etwas weiter vorstiess. Wenn Hugi das Vorstossmaximum auf 1593 datiert, handelt es sich mit grosser Wahrscheinlichkeit um einen Lesefehler, indem eine 9 für eine 3 gelesen wurde (so wie Hugi auch das «s» in «user» offensichtlich mit einem «f» verwechselt). Wyss (1817/2: 661) erwähnt, dass vier Wohnhäuser und mehrere Scheunen vor den vorrückenden Eismassen weggeräumt (und offenbar in sicherer Entfernung wieder aufgebaut) wurden und dass die Lütschine ihren Lauf veränderte.

Witterungsgeschichtlich zeichnet sich das Jahr 1599 durch ein vorzeitiges Frühjahr, einen warmen Sommer und einen sehr langen strahlungsreichen Herbst aus (PFISTER 1984a: 142, 1984b: Jahr 1599), was den Vorstoss sehr wohl abgeblockt haben könnte.

Nach der von Strasser (1890: 41) überlieferten Version der Chronik fing der Untere Gletscher 1602 an zu «schweinen» (d.h. zu schwinden) und «hinder sich zu rucken».

Der Obere Gletscher war nach der Version von Hugi (1842: 87) 1593 (wohl 1599) bis zum Bärgelbach vorgerückt, der heute etwa 925 m südwestlich des Hotels Wetterhorn in die Lütschine fliesst. Neben Heuställen wurden mehrere Wohnhäuser unter dem Eis begraben. In der Version von Strasser (1890: 167) ist dieses Ereignis ebenfalls auf das Jahr 1600 datiert. Kinzl (1932: 336) hat aufgrund der Form der Moränen bezweifelt, dass der Obere Gletscher so weit vorrückte, dass es zu einer Stauung des Bärgelbaches kommen konnte. Zumbühl (1980: 58) vermutet, gestützt auf die Chroniken, dass einzelne Moränenblöcke, vielleicht auch Eisstücke, in den Bach kollerten. Bei dem am Bärgelbach gelegenen Lehen «Auf der Egg» findet sich im Urbar der aufschlussreiche Zusatz: «1 centner Ziger nachgelassen wegen Wasserzug» (StAB 1535). Der letztgenannte Begriff kann sehr wohl im Sinne einer Versumpfung gedeutet werden, was bedeuten würde, dass der Bach tatsächlich durch den Gletscher gestaut worden ist. Zinsnachlässe wegen Verwüstung durch den Gletscher mussten den beiden Gütern «Im Brand» und «Zum Stein» im Inneren Mühlebach gewährt werden. (StAB 2/1611).

Klimageschichtlich erklärt Hugi (1842: 86) das rasche Vordringen der Eisströme nach 1580 mit den in den Chroniken erwähnten äusserst schneereichen Wintern und Frühjahrsperioden zwischen 1565 und 1576. Gesamthaft gesehen dürfen die meisten Jahre zwischen 1568 und 1579 als gletschergünstig bezeichnet werden: gewaltige Schneemengen in den Wintern, Kälterückfälle im Frühjahr, kühle und nasse Sommer. Der langandauernde Vorstoss wurde durch die sehr nassen und kühlen Sommer 1584-89, 1593-94 und 1597-98 begleitet und begünstigt (PFISTER 1984a: 119f). Wenn wir den Raum des Oberen Schopffelsens als Ausgangspunkt und den von diesem Vorstoss abgelagerten Moränenkranz als Endpunkt annehmen (vgl. Plan 1: 2000 in ZUMBÜHL, 1980), dann ist die Stirne des Unteren Gletschers zwischen 1580 und 1599/ 1602 ingesamt um 800 bis 1000 m oder jährlich im Durchschnitt um 36 bis 46 m vorgerückt, ein Betrag, der auch bei späteren Vorstössen nachgewiesen ist. Die 1602 einsetzende Rückschmelzphase fällt mit einer mehrjährigen Abfolge von warmen Frühjahrs- und Sommerperioden zusammen (PFISTER 1984a: 121f), die nach Beobachtungen des Luzerner Naturforschers Renward Cysat (1969: 904) im Sommer 1604 zu einer starken Ausaperung der Firnfelder führten. Zusammenfassend kann folgendes festgehalten werden:

- 1535 stirnte der Untere Gletscher auf dem Felsband des Unteren Schopfes nahe beim Talgrund. In den folgenden vier Jahrzehnten, vorwiegend nach 1550, schmolz er um einen Betrag von 520 bis 600 m zurück, möglicherweise bis hinter das Felsband des Oberen Schopfes. Zur Zeit der Entstehung der ältesten Berner Karte von Thomas Schoepf (um 1577/78) wurde er jedenfalls von den Talleuten nur noch als Teil des Eismeers, jedoch nicht mehr als eigenständiges Landschaftselement wahrgenommen. Dies gilt auch für den Oberen Gletscher. Aus diesem Grunde fehlt jeder Hinweis auf die Existenz der beiden Gletscher auf der Karte und im dazugehörenden lateinischen Kommentar.

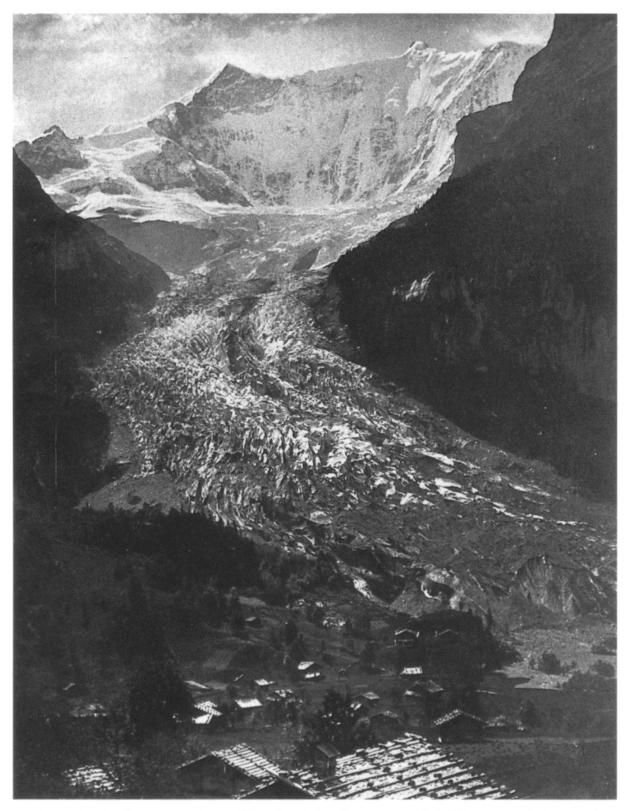


Abbildung 5: Der imposante Untere Grindelwaldgletscher vermutlich 1858, kurz nach dem zweiten Hochstand im 19. Jahrhundert, auf einer der ältesten Fotografien dieses Gletschers, vermutlich (?) von Frédéric Martens (etwa 1809–1875). Ähnlich, vielleicht sogar noch etwas grösser, mag der Untere Gletscher um 1600 ausgesehen haben (Alpine Club Library London).

Der weitreichende Vorstoss am Ende des 16. Jahrhunderts wurde in Grindelwald von 1580 an wahrgenommen. Um 1585 überfuhr die Stirne des Unteren Gletschers die Petronella Kapelle und erreichte bis um 1597 – wie aus einem Nachtrag im Interlaken Urbar geschlossen werden kann – nahezu seine maximale Ausdehnung. Dies entspricht einem Vorstossbetrag von 800 bis 1000 m. Der Obere Gletscher rückte in dieser Zeit bis zum Bärgelbach vor, staute diesen und begrub mehrere Wohnhäuser und Scheunen unter sich.

3. Datierung von fossilen Böden und Hölzern aus dem Vorfeld des Unteren Grindelwaldgletschers

Der Untere Grindelwaldgletscher hat während seinen zahlreichen Vorstossphasen im Talboden von Grindelwald stark akkumuliert, wobei jeweils fruchtbarer Boden samt Vegetationsdecke stellenweise meterhoch mit Moränenschutt überdeckt wurde. Die

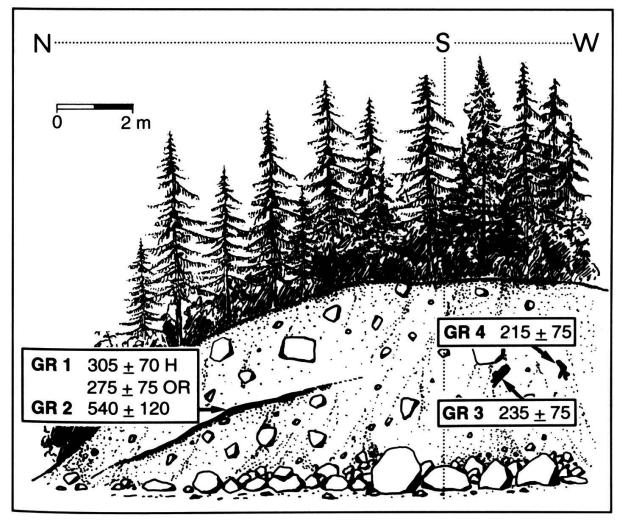


Abbildung 6: Aufschluss Gletscherschlucht A1 (Koord. 646.540/162.770; 1010 m ü.M.).

Wahrscheinlichkeit, in diesem Vorfeldabschnitt ohne künstliche Aufschlüsse organisches, das heisst datierbares Material zu finden, ist deshalb als äusserst gering einzustufen. Das nach dem ausgeprägten Gletscherschwund seit dem letzten Hochstand entstandene Neuland ist von der Vegetation wieder stark in Besitz genommen worden. Eventuell vorhandenes fossiles Holz ist schwer auffindbar und zudem nicht einwandfrei von abgestorbenen Baumteilen aus der jüngsten Vergangenheit zu unterscheiden.

3.1 Der Nachweis der neuzeitlichen Vorstösse im unteren Vorfeldabschnitt

Im Verlaufe verschiedener Begehungen des unteren Vorfeldabschnittes gelang es an zwei Stellen datierbares Material zu bergen, das in Zusammenhang mit den neuzeitlichen Vorstossphasen gebracht werden kann. Mit der Datierung von zwei fossilen Böden in der anerodierten Ufermoräne Stieregg lässt sich auch der Hochstand um 1600 nachweisen (Karte 1).

Nördlich der Brücke über die Weisse Lütschine beim Restaurant Gletscherschlucht gabelt sich die Strasse: Eine Strasse führt nach Grindelwald, eine andere hinauf zum Marmorbruch. Nahe dieser Verzweigung befindet sich hinter einem Werkgebäude ein künstlicher Aufschluss (Abb. 6). Die Lokalität inmitten des Gletschervorfeldes ist von den Stirnmoränen des Hochstandes von 1855/56 rund 350 m, von denjenigen des Hochstandes 1599/1602 rund 400 m entfernt und dürfte um 1865 eisfrei geworden sein (nach dem topographischen Plan 1: 2000 in ZUMBÜHL 1980). Das geböschte Gelände ist hier sichelförmig angegraben worden; die maximale Höhe des Aufschlusses beträgt im mittleren Abschnitt 4–5 m.

Im nördlichen Bereich des Aufschlusses, ungefähr 1,5 m ab Oberkante, ist ein gut ausgebildeter, schwarzgrauer Bodenhorizont auf einer Länge von etwa vier Metern aufgeschlossen (GR 1). Der humose, stark zusammengepresste fAh-Horizont weist eine Mächtigkeit zwischen 2 und 10 cm auf und ist stellenweise mit ineinander verflochtenen, bis zu fingerdicken Wurzeln durchsetzt. Die rötlich-braune, zum Teil rostige Verfärbung des nach unten anschliessenden B-Horizontes ist auf die fortgeschrittene Verwitterung der grösseren Gesteinskomponenten, die zur Hauptsache aus ortsfremdem kristallinem Material bestehen, das der Gletscher von Süden aus dem Aarmassiv herantransportiert hat, zurückzuführen. Das anstehende Gestein besteht hier aus mesozoischen Kalken.

Im östlichen Bereich des Aufschlusses ragen etwa 2 bis 2,5 m ab Boden in kurzen, mehr oder weniger horizontalen Abständen verschiedene Holzstücke aus dem Moränenschutt heraus. In diesem Profilabschnitt sind keinerlei sichtbare Anzeichen eines fossilen Bodens vorhanden. An zwei Hölzern sind Proben entnommen worden (GR 3 und GR 4).

Die Datierung des Bodens und der Holzstücke ergab folgende Radiokarbonalter (in Jahre vor heute = yBP):

Fossiler Boden:

GR 1	Huminsäure	$305 \pm 70 \text{ yBP}$	(UZ-1055)
	Organ. Restsubstanz	$275 \pm 75 \text{ yBP}$	(UZ-1054)
GR 2	div.Makroreste	$540 \pm 120 \text{ yBP}$	(UZ-1058)
	(u.a. Alnus spec.)		

Holzproben:

GR 3	Fichte (Picea abies)	$235 \pm 75 \text{ yBP}$	(UZ-1081)
GR 4	Laubholz	$215 \pm 75 \text{ yBP}$	(UZ-1083)
	(verm. Alnus spec.)		

Statistisch gesehen sind die Daten von GR 1, GR 3 und GR 4 gleich alt (Überschneidung im 1 σ -Bereich). Die Makroreste (GR 2) aus dem fossilen Boden GR 1 hingegen fielen etwas älter aus als die übrigen Proben.

Die ähnlichen Alter von Huminsäure und organischer Restsubstanz weisen auf eine Überschüttung des Bodens innerhalb der Neuzeit zwischen 200 und 375 yBP hin. Das bedeutend höhere Alter der Makroreste könnte auf den Beginn der Wiederbesiedlung und damit auf die einsetzende Bodenbildung innerhalb des Vorfeldes während des Rückschmelzprozesses im Anschluss an einen weitreichenden Vorstoss des Unteren Grindelwaldgletschers im 14. Jahrhundert hinweisen (s. unten). Der recht grosse Fehler von ± 120 Jahren(!) relativiert allerdings das ¹⁴C-Datum erheblich (1σ -Bereich: 420-660 yBP). Die Tatsache, dass ¹⁴C-Daten zu ungenau sind, um neuzeitliche Gletscherbewegungen zeitlich genauer aufzulösen, ist hinlänglich bekannt (vgl. PORTER 1979: 162, F. RÖTHLISBERGER 1980: 25). Oftmals können ¹⁴C-Daten organischer Reste aus dem 17. und 19. Jahrhundert nicht eindeutig auseinander gehalten werden (Holzhauser 1984; Holzhauser in Zumbühl & Holzhauser 1988). Solche Radiokarbondaten müssen mit äusserster Vorsicht interpretiert und ihre Aussagen nach Möglichkeit mit historischem Quellenmaterial abgestützt werden. Der Untere Grindelwaldgletscher stellt in dieser Hinsicht einen besonderen Glücksfall dar. Aufgrund der Datenlage sind zwei mögliche Interpretationen in Betracht zu ziehen:

A: Der Boden wurde zu Beginn der Hochstandsphase 1820/22–1855/56 vom Gletscher zugedeckt.

Dagegen spricht eindeutig der Umstand, dass der Untere Grindelwaldgletscher zwischen 1602 und 1855/56 die Fundstelle nur über kurze Zeiträume hinweg während des 18. Jahrhunderts freigegeben hat (Abb. 7). Aus diesem Grunde wäre die Entstehung eines so gut entwickelten Bodens, wie wir ihn im Profil vorfinden, nicht möglich gewesen. Die Bilddokumente aus dem 18. und dem beginnenden 19. Jahrhundert zeigen den Vorfeldabschnitt im Umkreis des Aufschlusses während minimaler Gletscherausdehnungen durchwegs als wenig bewachsenes Gelände mit vermutlich keiner oder nur geringer Bodenbildung (vgl. Zumbühl 1983: 40, 42, 43).

Auf der aquarellierten Bleistiftzeichnung von G.L. Lory Vater aus der Zeit um 1814 (Zumbühl 1980: 40, K49.1*S.222) beispielsweise ist die Buschvegetation im Bereich des heutigen Aufschlusses erst im Begriff, einzuwandern (*Abb. 4*). Grosse Teile des mittleren Vorfeldabschnittes sind nur spärlich bis nicht bewachsen. Bei den dargestellten Büschen handelt es sich vermutlich um Grauerlenbestände, die auch im heutigen Vorfeld heimisch sind. Von Bedeutung sind die kleinen, noch nicht bewachsenen Moränenwälle rechts der Schopffelsen (linke Bildhälfte), die deutlich über der Fundstelle durchziehen und nach Zumbühl (1980: 40) teilweise während der Vorstossphase von 1768–1778/79 entstanden sind. Die Fundstelle war während dieser Zeit von den Eismassen bedeckt. Anschliessend bildete sich der Gletscher wiederum etwas zurück, und seine Zunge lag bis zu Beginn des kräftigen Vorstosses von 1820/22 auf dem Unteren Schopffelsband. Der Standort des Aufschlusses war demnach nicht länger als 35–40 Jahre eisfrei. Dieser kurze Zeitraum dürfte für eine ausgeprägte Bodenbildung wohl kaum ausreichend gewesen sein.

B: Der Boden wurde im 16. Jahrhundert vom Gletscher überschüttet. Diese Hypothese trifft wohl am ehesten zu. In Frage kommt mit grosser Wahrscheinlichkeit nur der weitreichende Vorstoss gegen Ende des 16. Jahrhunderts. Die Ausmasse eines mutmasslich kleineren Vorstosses in den 1540er Jahren sind weitgehend unklar, jedenfalls dürfte der Untere Grindelwaldgletscher die Aufschlussstelle damals noch nicht erreicht haben (s. Seiten 60/61).

Wenn man die Maximalwerte der Kurve der Zungenlängenänderungen des Unteren Grindelwaldgletschers berücksichtigt, ergibt sich folgendes Bild (Abb. 7): Der Gletscher erreichte um 1585 die Fundstelle und überschüttete den fossilen Boden, also zu Beginn der ausgeprägtesten Vorstossphase innerhalb der Neuzeit von 1580 bis 1602 (s. Seiten 63–66). Gelten hingegen die Minimalwerte der Kurve, so verschiebt sich der Überschüttungszeitpunkt gegen 1588.

Nun zur Interpretation der beiden Hölzer GR 3 (235±75 yBP) und GR 4 (215±75 yBP). Diese Proben entstammen keinem fossilen Boden und sind höchstwahrscheinlich auch nicht in situ. Offenbar handelt es sich um umgelagertes Material. Beide Radiokarbondaten sind nicht mit letzter Sicherheit jeweils einer der bekannten neuzeitlichen Vorstossphasen zuzuordnen. Eines steht jedoch fest: Die Pflanzen starben innerhalb der Neuzeit.

Folgendes Indiz könnte darauf hindeuten, dass die Fichte GR 3 vermutlich nicht während des 19. Jahrhunderts, sondern bereits im Verlauf der Vorstossphase gegen Ende des 16. Jahrhunderts von den Eismassen umgedrückt wurde, vorausgesetzt, der ehemalige Wuchsort des Baumes befand sich in unmittelbarer Nähe des Aufschlusses. Das Aquarell von G.L. Lory Vater aus der Zeit um 1814 (Abb. 4) zeigt nämlich keinerlei Anzeichen für das Vorhandensein grösserer Fichten, der Holzart von Probe GR 3. Dem präzis zeichnenden Künstler wären die Buschvegetation überragende Nadelbäume sicher nicht entgangen. Dies führt zu der Annahme, dass damals keine grösseren Nadelbäume im Bereich des Aufschlusses wuchsen. Probe GR 4 kann zeitlich nicht näher eingeordnet werden, da es sich vermutlich um die Reste einer Erle handelt. Sowohl im 16. als auch im 18. Jahrhundert waren Teile des Vorfeldes mit Erlen

besiedelt, auch die nähere Umgebung des heutigen Aufschlusses (Abb. 4), und entsprechend kommen für das Absterben dieser Pflanze alle grösseren Vorstösse im Zeitraum vom 16. bis ins 19. Jahrhundert in Frage.

Zusammenfassend lässt sich folgendes festhalten: Weitaus am aussagekräftigsten sind Alter und Beschaffenheit des fossilen Bodens GR 1. Die Überschüttung dieser Vegetationsfläche erfolgte während der beginnenden, äusserst ausgeprägten Vorstossphase im ausklingenden 16. Jahrhundert um 1585 bzw. 1588. Der Untere Grindelwaldgletscher erreichte damals eine Ausdehnung wie um 1865. Diese Dimension hatte der Gletscher vorher während längerer Zeit nicht erreicht; für die Entwicklung des Bodens, der flächendeckend mindestens bis zur Gletscherschlucht reichte, stand offenbar genügend Zeit zur Verfügung. Das Alter der Makroreste aus dem Boden lässt eine

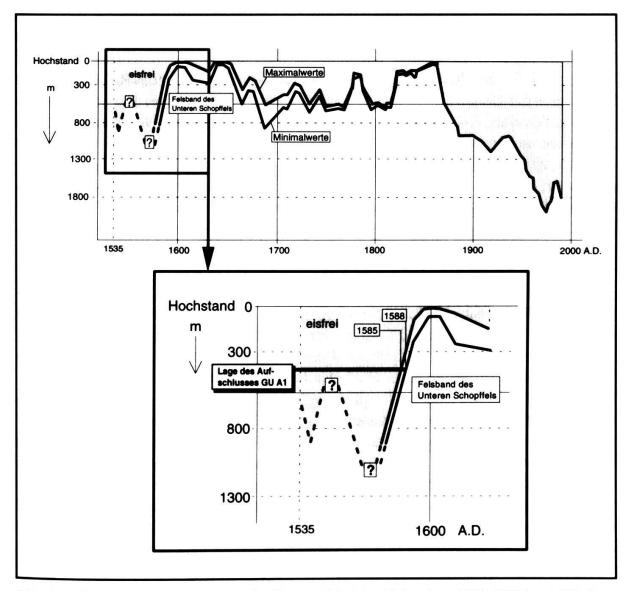


Abbildung 7: Zungenlängenänderungen des Unteren Grindelwaldgletschers 1535–1992 (nach H.J. ZUMBÜHL 1983; vereinfacht und ergänzt).

Dauer von 100 bis 300 Jahren als möglich erscheinen. Nach neuesten Untersuchungen am Gornergletscher ist gegen Ende des 14. Jahrhunderts, um 1385, dendrochronologisch ein Hochstand nachgewiesen (Holzhauser 1994). Falls auch der Untere Grindelwaldgletscher um diese Zeit im Hochstandsbereich stirnte, was sehr wahrscheinlich ist, dürfte der Zeitraum vom beginnenden Zurückschmelzen um 1390 bis 1585/1588 – das sind immerhin rund 200 Jahre – ausgereicht haben, um die Entstehung dieses Bodens ermöglicht zu haben.

Die pedologischen Untersuchungen von Kienholz in Messerli et al. (1975: 53–60) am fossilen Boden unter dem Hochstandswall «Im Aspi 2» (350 \pm 80 yBP) weisen ebenfalls auf eine längere Bodenbildungsdauer von mehr als 130 Jahren vor 1600 hin, was die Autoren zu der Annahme veranlasst, dass allfällige Vorstösse im 15. Jahrhundert die Ausmasse der neuzeitlichen nicht erreicht haben.

Ganz auszuschliessen ist nicht, dass der Untere Grindelwaldgletscher im 15. Jahrhundert leicht vorstiess. Möglicherweise steht der Bau der Petronella Kapelle mit diesem Vorrücken in ursächlichem Zusammenhang, denn dadurch sollte wahrscheinlich ein erneutes und für die Bevölkerung verheerendes Vordringen des Eises in das Kulturland abgewendet werden. Die in dieser Kapelle vorhandene Glocke trug nach Besson (17862:51) die Jahreszahl 1440. Wyss (1817, Bd. 2), der das Relikt auf seiner Reise durch das Berner Oberland mit eigenen Augen gesehen hatte, datiert die Glocke jedoch auf das Jahr 1044. Möglicherweise liegt hier ein Lesefehler vor, wurde doch die erste hölzerne Kirche in Grindelwald nach mündlicher Tradition erst um 1140 gebaut (Gerwer, zit. in Zumbühl 1980: 15). Das Jahr 1044 scheidet mit ziemlicher Sicherheit aus, da um diese Zeit die Alpengletscher eine relativ geringe Ausdehnung aufwiesen und folglich für die Alpenbewohner keine akute Bedrohung darstellten (Holzhauser 1994). Als gesichert ist jedenfalls anzunehmen, dass die Talleute die Glocke am Ende des 16. Jahrhunderts – möglicherweise bereits früher (14. Jahrhundert?) – vor dem vorrückenden Eis des Unteren Gletschers in Sicherheit brachten.

Die neuen Erkenntnisse erlauben ferner die Aussage, dass der Untere Grindelwaldgletscher während eines allfälligen Vorstosses im 15. Jahrhundert – falls die Glocke aus dem Jahre 1440 datiert – die Ausmasse von 1865 nicht erreicht haben kann.

Die Nellenbalm (früher auch Petronellenbalm genannt) befindet sich im südlichen Vorfeldabschnitt im Bereich der Hochstandsmoränen. Dort steht ein breites Malmkalkfelsband an, das in Bodennähe überhängend ist. Unter diesem natürlich entstandenen Felsdach soll die Petronella Kapelle gestanden haben, die beim Vorstoss um 1547 vom Gletscher bedroht und gegen Ende des 16. Jahrhunderts von den Eismassen begraben wurde (s. Seite 63). Während der nachfolgenden Hochstandsphasen im 17. und im 19. Jahrhundert türmte der Untere Grindelwaldgletscher Moränenschutt auf, der heute die Felshöhle abriegelt und sich zu einem steilen, vegetationslosen Wall verkittet hat (Abb. 8). Den historischen Bildquellen nach zu urteilen, wurde der Wall zur Hauptsache während der beiden Hochstände im 19. Jahrhundert (1820/22 und 1855/56) aufgebaut (Zumbühl 1980: 40). In der aquarellierten Bleistiftzeichnung von G.L. Lory Vater (Abb. 4) ist unter der offenen Höhle nur ein kleiner, stellenweise mit Buschvegetation bewachsener Wallansatz, vermutlich aus der Zeit um 1600 datierend

oder älter, erkennbar. Das Fehlen eines ausgeprägten Walles an dieser Stelle wird auch durch einen schriftlichen Hinweis von J.S. WYTTENBACH aus dem Jahr 1786 bestätigt (ZUMBÜHL 1980: 40).

Beim Absuchen des Wallkomplexes konnten einzelne kleinere, zum Teil stark zersetzte Holzstücke entdeckt werden, die in das Moränenmaterial eingearbeitet waren. Vereinzelt lagen Wurzelteile und Äste – offensichtlich aus dem Schutt herausgewittert – am Fusse des Walles. Auf eine Datierung dieser Fragmente wurde verzichtet. Zwischen Felswand und Moräne sind Proben an einem kleineren Wurzelstock (Salix spec.), vermutlich noch in situ, entnommen worden (GR 5). An der Fundstelle konnten keine deutlichen Anzeichen einer Bodenbildung festgestellt werden. Die Radiokarbonanalyse ergab folgendes Alter:

GR 5 Weide (Salix spec.)
$$170 \pm 70 \text{ yBP}$$
 (UZ-1080).

Dieses junge Datum steht nicht im Widerspruch mit den historischen Quellen, die auf ein geringes Alter des heutigen Walles hindeuten. Vermutlich handelt es sich bei dieser Weide sogar um ein Exemplar, das auf der Zeichnung von G.L. Lory dargestellt ist (Abb. 4).

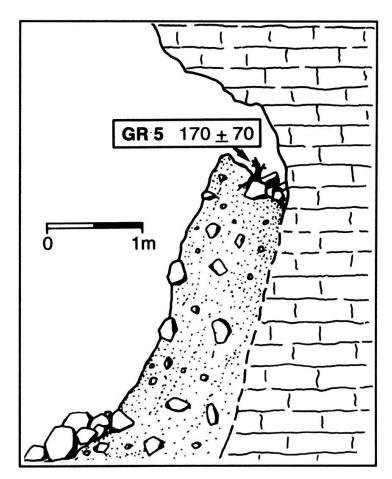


Abbildung 8: Aufschluss Nellenbalm A2 (Koord. 646.400/162.480; 1040 m ü.M.).

Die historischen Dokumente sind in diesem Falle eine wertvolle Interpretationshilfe. Ohne deren exakte Hinweise dürfte dieses 14 C-Datum nicht zwangsläufig einem Vorstoss im 19. Jahrhundert zugeordnet werden. Genausogut könnte für das Absterben der Erle ein Vorstoss im 16. Jahrhundert verantwortlich sein; das Radiokarbonalter von 170 ± 70 yBP unterscheidet sich nämlich von den Daten aus Aufschluss A1 (G1, G3) nicht signifikant. In diesem Zusammenhang sei ein Beispiel aus dem Aletschgebiet aufgeführt: Im Vorfeld des Grossen Aletschgletschers wurde ein Lärchenstrunk in situ auf ein Alter von 170 ± 40 yBP (UZ-412) datiert. Eine später erfolgte dendrochronologische Analyse zeigte aber, dass der Baum um 1600 A.D. von den Eismassen umgedrückt wurde (Holzhauser in Zumbühl & Holzhauser 1988: 164, 165).

3.2 Der Nachweis des Gletscherhochstandes um 1599/1602 in der Ufermoräne Stieregg (647.680 / 161.020; 1640–1650 m ü.M.)

Eingebettet in der seitlichen Taleinbuchtung zwischen Bäregg und Bänisegg erstreckt sich eine mächtige Ufermoräne über eine Distanz von ungefähr 900 m von NW nach SE, die gletscherwärts aufgeschlossen und streckenweise steil geböscht ist. Die rasch voranschreitende Erosion führt dazu, dass alljährlich Material aus der Ufermoräne ausbricht und zum Gletscher hinunter fällt. Blickt man vom Felsweg unterhalb der Bäregg aus Richtung Süden, so fällt die komplexe Struktur dieser Ufermoräne auf. Nicht nur der Untere Grindelwaldgletscher hat hier Moränenmaterial seitlich abgelagert, auch der vom Ankebälli (3164 m) zufliessende Bach akkumulierte seine Fracht in einem gewaltigen Schuttfächer, der die Form der Ufermoräne insbesondere im mittleren Teil massgebend bestimmt: Das Gelände steigt von der Stieregg bis zur Mitte des Schuttkegels sanft an und fällt anschliessend zur Bänisegg hin ab.

Auf dem mittleren Teil des Schuttkegels sind keine Moränenwälle auszumachen. Nur in den seitlich sich anschliessenden Verflachungen – beim Bergrestaurant Stieregg und unterhalb der Bänisegg – haben sich stellenweise gut ausgebildete Wälle erhalten als Zeugen ehemaliger Hochstände des Unteren Grindelwaldgletschers.

Im näheren Umkreis des Berggasthauses Stieregg (1650 m ü.M.) sind drei Hochstände des Unteren Grindelwaldgletschers anhand von Moränenwällen nachweisbar (Karte 1). Der äusserste Wall (A) unmittelbar neben dem Gasthaus begrenzt das Gletschervorfeld. Die einstige Mulde zwischen diesem Wall und dem steil ansteigenden Talhang ist heute weitgehend mit feineren Ablagerungen und Gehängeschutt hinterfüllt. Nach Süden hin ist die ursprüngliche Wallform vom Schuttfächer überprägt und nurmehr undeutlich erkennbar. Der zweitäusserste Wall (B) hingegen ist wesentlich formfrischer. Er setzt beim Felsweg an und zieht etwa 20 m neben Wall A Richtung SE bis zur steil abfallenden Moränenflanke. Unmittelbar bei der Erosionskante schmiegen sich Reste eines wesentlich kleineren Walles (C) an Wall B an. Sämtliche Wälle sind von einer geschlossenen alpinen Rasendecke überzogen.

Der dachförmig ausgebildete Wall B verläuft bis zur Erosionskante und ist dort von der Erosion quer durchschnitten worden. Im aufgeschlossenen Teil, etwa zwei Meter unterhalb des Moränenkammes, streicht gering geneigt zum Gletscher hin ein fossiler Bodenhorizont aus, der nach oben von einer tonigen, feinsandigen Lage überdeckt ist (GR 6, *Abb*. 9). Der fAh-Horizont ist etwa 1–2 cm mächtig, dunkelbraun gefärbt und enthält keine erkennbaren pflanzlichen Makroreste. Nach unten folgt der hellbraune, 10–20 cm breite B-Horizont, der sich vom hellen Moränenschutt sichtbar abhebt. Eine ¹⁴C-Datierung des fAh-Horizontes ergab folgende Alter:

GR 6 fAh	Huminsäure	$365 \pm 105 \text{ yBP}$	(UZ-1131)
	Organ, Restsubstanz	$245 \pm 75 \text{ vBP}$	(UZ-1130)

Ein relativ junges Alter dieses Bodens war zu erwarten, handelt es sich doch um einen der innersten noch gut erhaltenen Hochstandswälle. Aufgrund des Messtischblattes, aufgenommen von W. Jacky, lag dieser Wall 1860/61 in unmittelbarer Nähe des Gletscherrandes.

Das Huminsäurealter und das Alter der organischen Restsubstanz sind voneinander nicht signifikant verschieden. Die Daten sind denjenigen des Aufschlusses «Gletscherschlucht» (A1) ähnlich und können ebenfalls dem ersten neuzeitlichen Vorstoss zugeordnet werden. Auch hier handelt es sich um einen Boden, der kaum innerhalb der

Abbildung 9: Der Hochstandswall von 1599/1602 bei der Stieregg. Der fossile Bodenhorizont GR 6 (Pfeil) ist zum Gletscher hin leicht geneigt und widerspiegelt die Geländeoberfläche vor dem ersten neuzeitlichen Hochstand. (Foto 14. Juli 1992)

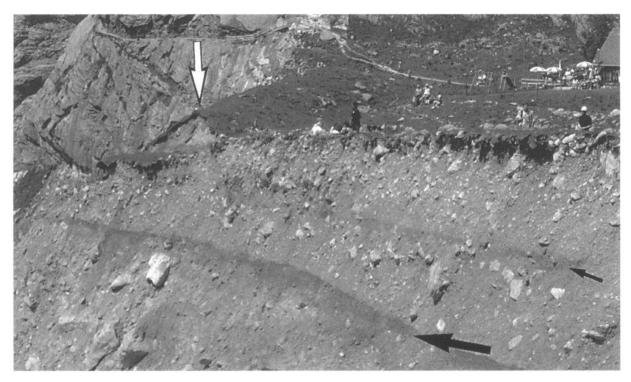


Abbildung 10: Ufermoräne Stieregg (1650 m ü.M.). Unterhalb der Erosionskante ist der fossile Boden GR 7 als dunkles Band deutlich sichtbar (schwarzer Pfeil). Der fossile Bodenhorizont lässt sich bis zum Hochstandswall von 1599/1602 (weisser Pfeil) verfolgen. Der kleine schwarze Pfeil weist auf einen durchnässten Horizont hin. (Foto 14. Juli 1992)

kurzen eisfreien Abschnitte zwischen den flankierenden Hochständen von 1599/1602 und 1820/1856 gebildet werden konnte.

Eine Mehrfachüberschüttung des Walles B nach dem Hochstand um 1600 ist nicht nachweisbar. Überreste der jüngeren Hochstände aus dem 19. Jahrhundert (1820/22 und 1855/56) dürften in Form des angelagerten Walles C noch reliktartig vorhanden sein.

Etwas weiter südlich, in einem trichterförmig aus der Ufermoräne herauserodierten Graben, ist ein weiterer fossiler Bodenhorizont, etwa 1–1,5 m unterhalb der Erosionskante, aufgeschlossen (GR 7, Abb. 10). Auf der nördlichen Seite des Einschnittes kann der Bodenhorizont mit einzelnen Unterbrüchen über eine weite horizontale Strecke entlang der Innenseite der Ufermoräne bis hin zum fossilen Boden GR 6 verfolgt werden. Auf der südlichen Seite keilt der Boden an der heutigen Geländeoberfläche aus. Der bis zu 2 cm mächtige, schwärzlich-braune fAh-Horizont bildet nach oben eine scharfe Grenze zum hangenden Moränenschutt. Nach unten folgt auf eine rund 15 cm mächtige rötlich-braune Zone eine rötlich-graue, die allmählich in das unverwitterte Moränenmaterial des C-Horizontes übergeht. Auch hier sind im fAh-Horizont keine grösseren Makroreste gefunden worden. Die ¹⁴C-Analyse ergab folgende Resultate:

GR 7 fAh Huminsäure modern (UZ-1057) Organ. Restsubstanz 295 ± 100yBP (UZ-1056) Den ¹⁴C-Daten zufolge wurde der Boden GR 7 während der Neuzeit überschüttet. Das «moderne» Alter der Huminsäurefraktion ist vermutlich auf Infiltration von jüngerem Material aus dem rezenten Boden zurückzuführen. Das Hangende setzt sich in diesem Profil aus grobblockigem Moränenschutt zusammen und ist dementsprechend für Verunreinigungen gut durchlässig. Die organische Restsubstanz ist altersmässig vergleichbar mit derjenigen von Boden GR 6. Für Gleichaltrigkeit der beiden fossilen Böden spricht aber vor allem der stratigraphische Zusammenhang.

Über dem fossilen Boden GR 7 sind Anzeichen eines weiteren Horizontes vorhanden (Abb. 10). Wie eine genauere Untersuchung ergab, handelt es sich um durchnässtes, feinkörniges Material. Es ist nicht auszuschliessen, dass dieser Horizont Moränenschutt des Hochstandes um 1600 von Ablagerungen der Hochstände im 19. Jahrhundert trennt. Der Untere Grindelwaldgletscher wäre in diesem Falle im 19. Jahrhundert an dieser Stelle geringfügig mächtiger gewesen als zu Beginn des 17. Jahrhunderts.

Literatur

ALTMANN, J.G. (1751): Versuch einer historischen und physischen Beschreibung der Helvetischen Eisbergen. Zürich.

Besson, H. (1786): Manuel pour les savans et les curieux qui voyagent en Suisse, par M. Besson, avec des notes par Mr. W*** (J.S. Wyttenbach), 2 Bde. Berne.

Bless, R. (1984): Beiträge zur spät- und postglazialen Geschichte der Gletscher im nordöstlichen Mont-Blanc-Gebiet. Phys. Geogr. Vol. 15. Zürich.

Coaz, J. (1881): Die Lawinen der Schweizeralpen. Bern.

COOLIDGE, W.A.B. (1911): Die Petronella-Kapelle in Grindelwald. Grindelwald.

CYSAT, R. (1969–1972): Collectanea pro Chronica Lucernensi et Helvetiae. Bearb. v. Josef Schmid. Erste Abteilung: Stadt und Kanton Luzern. «Stationes annorum. Witterung, Missjahre, Teuerung». 2 Bde. Luzern.

FRIEDLI, E. (1908): Bärndütsch als Spiegel bernischen Volkstums. Bd. 2. Grindelwald. Bern.

Gruner, G.S. (1760): Die Eisgebirge des Schweitzerlandes. 3 Bde. Bern.

HERZIG, H.E. (1992): Thomas Schoepfs «tabula arctographia» als Beitrag zum bernischen Selbstverständnis. In: Berner Zeitschrift für Geschichte und Heimatkunde 54/4: 164–172.

HOLZHAUSER, H. (1982): Neuzeitliche Gletscherschwankungen. Geogr. Helv., Nr. 2, 37. Jg.: 115–126. Zürich. HOLZHAUSER, H. (1984): Zur Geschichte der Aletsch- und des Fieschergletschers. Phys. Geogr., Vol. 13. Zürich.

HOLZHAUSER, H. (1994): Gletscherschwankungen innerhalb der letzten 2700 Jahre am Beispiel des Grossen Aletsch- und des Gornergletschers. Neue Ergebnisse. Jahrbuch der SANW, Wissenschaftlicher Teil, (im Druck).

Hugi, F.J. (1830): Naturhistorische Alpenreisen. Solothurn/Leipzig.

Hugi, F.J. (1842): Über das Wesen der Gletscher und Winterreise in das Eismeer. Stuttgart.

Kasthofer, K. (1822): I. Bemerkungen auf einer Alpenreise über den Susten, Gotthard, Bernardin, und über die Oberalp, Furka und Grimsel. (: 13–218). II. Versuche von Alpenkulturen und Vergleichung des Ertrags der Bündenschen mit dem Ertrag der Bernischen Alpen. (: 221–270). III. Betrachtungen über die Veränderungen in dem Klima des Alpengebirgs. (: 271–349). Eine von der Schweizerischen Gesellschaft für die Naturkunde gekrönte Preisschrift. Aarau.

Kaufmann, G. (1950): Grindelwald-Chronik. Geschriebenes und Gesprochenes ausgewählt und zusammengestellt von G.S. In: «Hardermannli», 49./ 23. Interlaken 1950: 42–50.

KINZL, H. (1932): Die grössten nacheiszeitlichen Gletschervorstösse in den Schweizer Alpen und in der Mont-Blanc-Gruppe. In: Zeitschrift für Gletscherkunde. Bd. 20, H. 4-5: 269-397 (Finsterwalder Festschrift). Leipzig.

Кинп, B.F. (1787): Versuch einer Beschreibung des Grindelwaldtales. In: «Höpfners Magazin», 1787: 1–28. Кинп, B.F. (1787): Versuch über den Mechanismus der Gletscher. In: «Höpfners Magazin» 1787: 119–136. Le Roy Ladurie, E. (1972): Times of Feast, Times of Famine: A History of Climate since the Year 1000.

Translated by Barbara Bray. London.

LOHNER, C.F.L. (1862): Die reformierten Kirchen und ihre Vorsteher im eidgenössischen Freistaate Bern nebst den vormaligen Klöstern. 2 Bde. Thun.

MERIAN, M./ZEILLER, M. (1642): Topographia Helvetiae, Rhaetiae et Valesiae, Das ist Beschreibung und Eigentliche Abbildung der Vornembsten Stätte und Plätz in der Hochlöblichen Eydgnossschaft, Grawbündten, Walliss, und etlicher Zugewanten Orten. In Truck gegeben und Verlegt durch Matthaeum Merian. Franckfurt am Mayn.

MESSERLI, B./ZUMBÜHL, H.J./AMMANN, K./KIENHOLZ, H./PFISTER, C./OESCHGER, H./ZURBUCHEN, M. (1976): Die Schwankungen des Unteren Grindelwaldgletschers seit dem Mittelalter. Zeitschr. f. Gletscherkunde und Glazialgeologie, Bd. XI, H.1: 3–110. Innsbruck.

MÜNSTER, S. (1977): Cosmographia. Neudruck der Ausgabe von 1567.

PFISTER, C. (1984): Das Klima der Schweiz von 1525–1860 und seine Bedeutung in der Geschichte von Bevölkerung und Landwirtschaft. 2 Bde. Bern.

PLEPP, J. (1642): Radierung publiziert in: s. MERIAN/ZEILLER.

PORTER, S.C. (1979): Glaciological evidence of holocene climatic change. International Conference on Climate and History, 8–14 July, 1979. University of Anglia, Review Papers: 148–179.

RICHTER, E. (1891): Geschichte der Schwankungen der Alpengletscher. Wien.

RÖTHLISBERGER, F./HAAS, P./HOLZHAUSER, H./KELLER, W./BIRCHER, W. & RENNER, F. (1980): Holocene climatic fluctuations – Radiocarbon dating of fossil soils (fAh) and woods from moraines and glaciers in the Alps. In: Geography in Switzerland, Geographica Helvetica, Vol. 35, No 5: 21–52). Bern and Zurich.

Schner, R. (1812): Description du département du Simplon ou de la ci-devant République du Valais. Sion. Schneebell, W. (1976): Untersuchungen von Gletscherschwankungen im Val de Bagnes. In: 8000 Jahre Walliser Gletschergeschichte. Ein Beitrag zur Erforschung des Klimaverlaufs in der Nacheiszeit. Die Alpen, 52/3-4: 5-57.

Schoepf, T. & Grosjean, G. (Hg.) (1970/1972): Karte des Bernischen Staatsgebietes von 1577/78 von Thomas Schoepf, Stadtarzt von Bern. Faksimiledruck 1970–1972 nach zwei Originalen der Burgerbibliothek Bern und der Zentralbibliothek Zürich, nachgedruckt über die Kupferplatte. Bibliophile Drucke Joseph Stocker. Dietikon-Zürich.

Schoeff, T. (1577): Inclytae Bernatum urbis cum omni ditionis suae agro et provinciis delineatio chorographica, secundum cujusam loci justiorem et longitudinem et latitudinem coeli, libris duobus complexa [...] Authore Thoma Schöpfio (sic!) Brisacensi, Medicinae Doctore, et apud clarissimam Bernam faciense medicinam, Anno [...]. Manuskript BBB Mss. hist. helv. I 19.

Saatsarchiv Bern: Urbar Interlaken. (1535)

Staatsarchiv Bern: Urbare Interlaken. (1611)

Strasser, G. (1889): Grindelwald und Wallis. In: «Der Gletschermann». Familienblatt für die Gemeinde Grindelwald, N. 21: 40–64.

STRASSER, G. (1890): Grindelwaldner Chroniken. In: «Der Gletschermann». Familienblatt für die Gemeinde Grindelwald, N. 41–47: 165–190.

STUMPF, J. (1547/48): Gemeiner loblicher Eydgnoschaft Stetten / Landen und Völckeren Chronikwirdiger thaaten beschreybung. Hierin wirt auch die Gelegnheit der gantzen Europe / ... fürgestellt / darauff den obgedachte der Eydgnoschaft beschreybung volget. Welchs alles ... Durch Johann Stumpffen beschriben / und in XIII. bücher abgeteilt ist. Zürich. (Faksimile Winterhur 1975).

- Wyss, J.R.(1816/17): Reise in das Berner Oberland. 2 Bde. Bern.
- ZUMBÜHL, H.J.(1980): Die Schwankungen der Grindelwaldgletscher in den historischen Bild- und Schriftquellen des 12. bis 19. Jahrhunderts. Ein Beitrag zur Gletschergeschichte und Erforschung des Alpenraumes. Denkschriften der Schweizerischen Naturforschenden Gesellschaft, Band XCII. Birkhäuser Verlag, Basel/Boston/Stuttgart.
- Zumbühl, H.J./Messerli, B./Pfister, C. (1983): Die Kleine Eiszeit. Gletschergeschichte im Spiegel der Kunst. Katalog zur Sonderausstellung des Schweizerischen Alpinen Museums Bern und des Gletschergarten-Museums Luzern. 9.6.–14.8.1983 Luzern, 24.8.–16.10.1983 Bern.
- ZUMBÜHL, H.J./HOLZHAUSER, H. (1988): Alpengletscher in der Kleinen Eiszeit. Sonderheft zum 125jährigen Jubiläum des SAC. Herausgegeben vom Schweizer Alpen-Club. Die Alpen (3.Quartal, 67. Jg.). Bern.

