Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft in Bern

Herausgeber: Naturforschende Gesellschaft in Bern

Band: 46 (1989)

Artikel: Die geologisch-geotechnischen Verhältnisse der Stadt Bern und

Umgebung (Erläuterungen zur Baugrundkarte)

Autor: Staeger, Dieter

Kapitel: 3: Die geologische Gliederung

DOI: https://doi.org/10.5169/seals-318537

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

3. Die geologische Gliederung

Die Geologie als Wissenschaft von der Geschichte der Erde befasst sich hauptsächlich mit Alter und Entstehungsweise der irdischen Gesteinshülle. Sie bedient sich dabei des Prinzips des Aktualismus, d. h. sie behauptet, dass die geologischen Vorgänge sich in früheren Erdperioden in ähnlicher Weise abgespielt haben wie heute.

Es gibt einzelne Aspekte der Geologie, die für den Ingenieurgeologen nicht unmittelbar von Interesse sind. Während sich z. B. der Geologe dafür interessiert, ob an einer bestimmten Stelle der Rhone- oder der Aaregletscher Moränenmaterial abgelagert hat, ist die Antwort auf diese Frage dem Ingenieurgeologen ziemlich gleichgültig.

Ohne geologische Erkenntnisse wären aber Beobachtungen wie die Vorbelastung und Verdichtung von Lockergesteinen unter Gletschereis in der Ingenieurgeologie schwer zu deuten.

In den nachfolgenden Kapiteln werden die Fels- und Lockergesteinsschichten, ausgehend vom ältern zum jüngern Gestein, stratigraphisch gegliedert. Wir beginnen mit der Felsunterlage und enden mit den künstlichen Auffüllungen. Die Beschreibung umfasst in erster Linie Eigenschaften der Schichten, die nicht aus der Baugrundkarte oder aus der ingenieurgeologischen Klassifizierung ersichtlich sind, und einer Erläuterung bedürfen oder eine spezielle Erwähnung verdienen.

Textfigur 3:

Isohypsenkarte der Molasseoberfläche von Bern

Zum Teil nach einer nicht publizierten Karte von M. E. GERBER (1980), ergänzt mit neueren Daten und mit einem Längsprofil Neubrück-Murifeld, das den ungleichen Verlauf von Terrainoberfläche und Felsuntergrund zeigt.

Äquidistanz der Isohypsen 10 Meter

voll: beobachtet-sicher

punktiert: vermutet-fraglich

Kleine Zahlen: Höhenkote der Molasseoberfläche über Meer

Grosse Zahlen in Klammern: Molasse auf dieser Tiefe durch Bohrung nicht erreicht

Vertikalschraffur: Obere Meeresmolasse (OMM) aufgeschlossen

Horizontalschraffur: Untere Süsswassermolasse (USM) aufgeschlossen (im Bahnhofareal Fundament der Anlagen)

Stern: Bedeutender Steinbruch, zum Teil aufgelassen und/oder verfüllt.

Die Grenze OMM-USM wurde nie genau festgelegt. Die dargestellte Schichtneigung stammt aus einer Archiv-Messung vom 16. Oktober 1925 im Sulgenbachstollen: Streichen N 43°-48° E Fallen 7°48-9°22'.

Massstab horizontal und vertikal 1:25 000. Der Verlauf der Profillinie zwischen A und B ist aus der Kartenskizze ersichtlich.

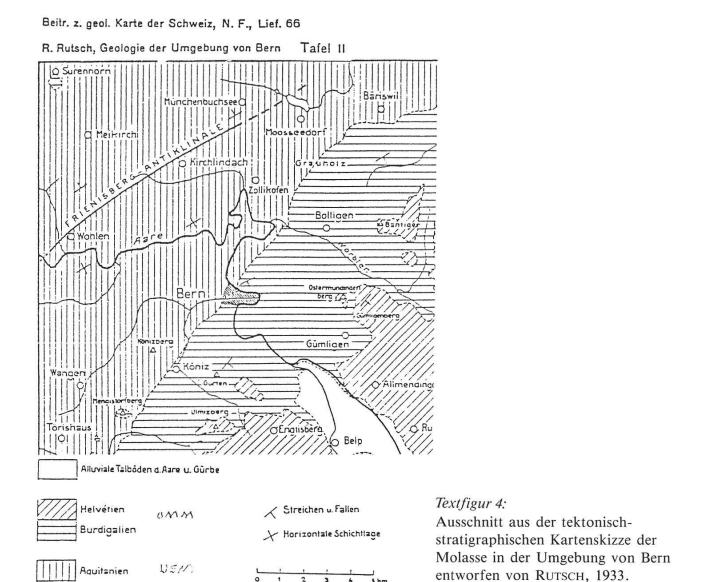
3.1 Die Molasse-Schichtfolge

Im allgemeinen weist die Molasse einen regelmässigen, über grössere Distanzen erkennbaren Schichtaufbau auf, was dem Geologen die Korrelation typischer Horizonte von Aufschluss zu Aufschluss erleichtert und die Ausarbeitung geologischer und geotechnischer Prognosen begünstigt. Die in Bern und Umgebung aufgeschlossene Molasse entstand vor etwa 15–20 Mio. Jahren im sogenannten Miozän oder älteren Jungtertiär. Es handelt sich dabei um Abtragungs- oder Erosionsprodukte aus den Alpen, welche gegen Ende der alpinen Gebirgsbildung als Kies, Sand, Silt und Ton in einen teils marinen, teils brackischen und teils limnischen Vorlandtrog – unser heutiges Mittelland – eingeschwemmt und durch Verkittung der einzelnen Körner mit Bindemittel zu festem Gestein wurden.

In der Gegend von Bern kennen wir nach Entstehung und Zusammensetzung zwei sehr unterschiedliche Molasse-Typen:

- 2. Unterer Teil der Oberen Meeresmolasse OMM, Burdigalien
- 1. Oberer Teil der Unteren Süsswassermolasse, USM, Aquitanien

Die Molasseschichten fallen im Raume Bern allgemein mit 5–10° in südöstlicher Richtung ein. Die USM tritt daher vorwiegend westlich und nördlich von Bern zu Tage, während die OMM östlich und südlich der Stadt an der Oberfläche zu finden ist (siehe Textfigur 4, Seite 66).


Da die Schichtgrenze USM/OMM vorwiegend unter der Lockergesteinsüberdeckung versteckt ist, wurde auf der Baugrundkarte auf die Grenzziehung verzichtet. Wir beschränken uns auf die kartographischen Hinweise 0_{3-4} für die USM und m_1 für die OMM-Aufschlüsse.

3.11 Die Untere Süsswassermolasse

In Bern und Umgebung besteht die USM aus mürben, massigen bis dickbankigen, grauen Fein- bis Grobsandsteinen in Wechsellagerung mit buntgefleckten bis roten Mergeln. Der Sandstein weist vielfach Kreuzschichtung auf und zeigt oft knauerige Verwitterung.

Fossilien sind selten, was die chronostratigraphische Gliederung und Zuordnung erschwert. Einzig die obersten Schichten der USM können dank Säugetierfunden (u. a. an der Engehalde) altersmässig dem Aquitan zugerechnet werden. Mollusken anderer Fundorte (Tiefenau, Hauptbahnhof) genügen nicht für eine eindeutige Altersbestimmung.

Die gesamte Mächtigkeit der USM beträgt vermutlich gegen 1000 m. Im Raume Bern ist ihre Untergrenze nicht bekannt. Sie wurde unseres Wissens auch nicht erbohrt.



3.12 Die Grenze USM/OMM

Verschiedene Autoren (Rutsch 1933, Gerber 1982) haben darauf aufmerksam gemacht, dass sich in der Geländemorphologie die relativ weichen, leicht verwitternden Schichten der Untern Süsswassermolasse deutlich von den festern und widerstandsfähigeren Sandsteinen der obern Meeresmolasse unterscheiden lassen. Diese Geländestufe im Landschaftsbild des Berner Mittellandes ist dem Geologen Bernhard Studer schon 1825 aufgefallen, ohne dass er sie erklären konnte.

Im Detail ist die Grenze zwischen den zwei Einheiten aber keineswegs deutlich und weder in einem einzelnen Aufschluss noch in einem Bohrkern als solche erkennbar.

Neuere Untersuchungen mit Hilfe detaillierter Geröllstudien haben nach Gerber (1982, Seite 32) zu einer brauchbaren lithologischen Gliederung geführt. Nagelfluhbänke und geröllreiche Muschelsandsteine an der Untergrenze der OMM

dienen dabei als Leithorizonte, mit deren Hilfe sich die Grenze USM/OMM definieren lässt. Im Westen (Sensegebiet) ist es die Scherlinagelfluh (Rutsch, 1933), von Bern ostwärts in Anlehnung an Gerber (1950) der sogenannte Leithorizont 1, auch Muschelsandstein I. Unter dieser Leitschicht liegen die mürben Sandsteine und bunten Mergel der USM, über der Leitschicht liegt die OMM mit dem Berner Sandstein.

3.13 Die Obere Meeresmolasse

Die vorwiegend durch den Berner Bausandstein und seine Steinbrüche bekannt gewordene obere Meeresmolasse kann wie folgt gegliedert werden:

Tabelle 3:

Helvetien	Obere	etwa 220 m Belpbergschichten
Burdigalien	Meeres-	etwa 65 m Plattensandsteine
	molasse	etwa 375 m Bausandsteine

Wir beschränken uns in der Beschreibung auf die auf dem Kartenblatt vorkommenden, altersmässig dem Burdigalien zugewiesenen untern 375 m, in denen graue, massige Bausandsteine vorherrschen.

Die Gesteinsabfolge wird eingeleitet durch den basalen Leithorizont Scherlinagelfluh/Muschelsandstein I. Im Stadtgebiet besteht der Leithorizont meist aus einer Häufung von Geröllschnüren, ohne eine eigentliche Nagelfluh zu bilden. Darüber folgen nach Rutsch (1933) die einförmig psammitischen Berner Sandsteine. Ihre äussern Zeugen sind die grossen Bausandsteinbrüche der Gurtenbrauerei, von Ostermundigen, Hättenberg. Im Klösterli am rechten Aareufer bei der Untertorbrücke war der älteste, heute aufgefüllte Steinbruch von Berner Sandstein (siehe Fig. 2). In seiner Nachbarschaft wurde kürzlich zur Abwasserentsorgung ein Stollen in der Molasse erstellt. Im gefrästen Tunnelprofil liessen sich sehr schön die lithologischen Verhältnisse des Berner Sandsteins studieren. Insbesondere die Schräg- oder Diagonalschichtung mit zahlreichen Diskordanzen, aber auch tonigmergelige Schichten sowie Einlagerungen von Tonfragmenten und Quarzitgeröllen wurden beobachtet. Alles in allem Anzeichen einer unruhigen Sedimentation (siehe Textfigur 5, Seite 68).

Nach oben treten bankige Sandsteine und Mergelsandsteine, glaukonitreich und daher von typischer graugrüner Farbe (Salt and Pepper), auf. Vereinzelt finden sich weitere Geröllschnüre, dazu verkohlter Pflanzenhäksel, seltener verkohlte Hölzer mit Pyrit/Markasitnestern.

Die meisten Molassebohrungen haben die Lage der Felsoberfläche erkundet und wurden höchstens einige Meter in die Molasse abgeteuft. Die geologische Auf-

Textfigur 5: Der Berner Sandstein (Burdigalien) in einem 1987 gefrästen Stollen, nur etwa 150 m vom aufgelassenen Steinbruch Klösterli entfernt und stratigraphisch dem mittleren Niveau des Steinbruches entsprechend. Hell: Geröllschnüre / Dunkel: Mergellagen.

nahme kontinuierlicher Stollenprofile ist leider durch die modernen Baumethoden weitgehend verunmöglicht worden.

3.2 Die Molasse-Oberfläche

Im bernischen Mittelland ist die Molasseoberfläche eine Abtragungs- oder Erosionsfläche mit einer Schichtlücke von Millionen von Jahren zwischen Fels und Lockergestein.

Bis gegen Ende Miozän erfolgte eine Sedimentation im Mittelland, dann setzte eine durch Ruhepausen unterbrochene fortschreitende Aufwölbung des Alpenvorlandes, verbunden mit der Erosion und dem Wegtransport der Molasseschichten ein. Mit dem Einsetzen des Eiszeitalters im Quartär begann die Akkumulationsund Erosionstätigkeit der Gletscher und Schmelzwasser. Sowohl der Rhonegletscher wie der Aaregletscher und ihre Schmelzwasserströme haben an der Reliefbildung der Molasseoberfläche mitgewirkt.

Allgemein wird angenommen, dass die Hauptdurchtalung des Mittellandes, d. h. die Bildung der tiefsten Talrinnen und -tröge in der grossen Zwischeneiszeit Mindel-Riss (siehe Tab. 4, Seite 71) stattfand. Nicht alle Fachleute sind sich in dieser Frage einig. Dabei geht es weniger darum, in welcher Zwischeneiszeit die grosse Durchtalung stattfand, als um die grundsätzliche Frage, wo die Reliefbildung vorwiegend durch die Erosionstätigkeit der grossen Schmelzwasserströme der Zwischeneiszeiten verursacht wurde und wo es sich um Übertiefung durch die abschleifende Wirkung der Eiszeitgletscher handelt.

Die wohl bedeutungsvollste Bohrung in bezug auf die Durchtalung der Region Bern ist bis heute diejenige im Marzili beim Jugendzentrum Gaskessel. Hier wurde die Molasse erst in einer Bohrtiefe von 266 m angefahren, was einer Kote von 237 m ü. M. entspricht. Nur 700 m von dieser Stelle entfernt ist die Molasse bei der Dalmazibrücke am rechten Aareufer aufgeschlossen (Kote etwa 505 m ü. M.).

Wann und wie an jeder einzelnen Stelle die Reliefform der Molasseoberfläche entstand, ist meist nicht bestimmbar, da auch die darüberliegenden Lockergesteine nicht genau datiert werden können.

In seltenen Fällen lässt sich mehr aussagen. So wurden z. B. beim Abtrag eines Teils der grossen Schanze (Universität) für die Bahnhoferweiterung 1889–1891 zahlreiche Gletschertöpfe gefunden. Ihre Untersuchung hat eindeutig ergeben, dass diese zur Zeit des Berner Stadiums des Aaregletschers entstanden sind.

Die Isohypsenkarte (Textfigur 3) der Molasseoberfläche vermittelt nach dem heutigen Stand unserer Kenntnisse einen Eindruck über die Vielfältigkeit dessen, was wir kennen und der Spekulationsmöglichkeiten über das, was uns (noch) verborgen ist.

Anhand der Isohypsenkarte wäre man versucht, die Fortsetzung eines Ur-Aaretales von der Tiefbohrung im Marzili nordwestwärts Richtung Bümpliz-Bremgartenwald-Eymatt zu sehen. Bevor Tiefbohrungen diesen Sachverhalt klären, bleibt die Idee rein spekulativ. Gerber (1954) hat in einer nicht publizierten Kartenskizze einen alten Aarelauf postuliert, der vom Marzili über den Waisenhausplatz in den Breitenrain zog. Obwohl nicht völlig auszuschliessen, muss diese Variante heute als eher unwahrscheinlich betrachtet werden. Die Rinne zwischen Waldhöheweg und Galgenfeld, die auf unserer Isohypsenkarte deutlich erkennbar ist, erscheint zu schmal für ein Flusstal der Aare.

Nicht viel mehr wissen wir über die alten Talrinnen kleineren Ausmasses, die meist durch Zufall bei Bauvorhaben entdeckt werden. Siehe z.B. Wiesmann (1926): Der Bau des Sulgenbachstollens in Bern. Selbst dort, wo eine Rinne gezielt mit Sondierungen erforscht wird, geht es nur um ihr Querprofil auf einer bestimmten Projekttiefe. Ihre wahre Tiefe, die Fliessrichtung des Wassers in der Rinne und die Zusammenhänge zwischen den verschiedenen beobachteten Rinnen bleiben aber unbekannt.

Das in Textfigur 3 eingefügte Profil veranschaulicht die Existenz mehrerer alter Erosionsrinnen. Gut sichtbar sind auch die unterschiedlichen Mächtigkeiten der Lockergesteine sowie die Differenzen im Verlauf von Terrainoberfläche und Felsuntergrund.

Die bedeutenden Reliefunterschiede zwischen Terrain- und Molasseoberfläche sind charakteristisch für den Grossteil des bebauten Stadtgebietes. Vom Hauptbahnhof, der auf Molassefels fundiert ist, taucht die Felsoberfläche z. B. ostwärts stetig ab. An der Ecke Spitalgasse-Waisenhausplatz wurde sie auf Kote 513,50 m ü. M. erbohrt. Weiter stadtabwärts haben selbst unter Aareniveau abgeteufte Bohrungen den Molassefels nicht erreicht. Erst bei der Untertorbrücke taucht er wieder an der Oberfläche auf.

Von den beschriebenen Verhältnissen abweichend ist nach unserem heutigen Stand der Erkenntnisse der Baugrund ganz im Westen der Stadt. In der Region Oberbottigen-Matzenried, ausserhalb der Grenzen der Baugrundkarte, aber auf dem Gebiet der Gemeinde Bern, steht die Molasse allgemein in geringer Tiefe unter der heutigen Terrainoberfläche an. Wir gehen auf eine Diskussion dieser aussergewöhnlichen Verhältnisse im Abschnitt 3.32 unter dem Titel «Der Würm-I-Vorstoss bei Bern» näher ein.

3.3 Die Lockergesteine

Die Erkenntnis, dass es sich bei den schweizerischen Lockergesteinsablagerungen vorwiegend um eiszeitliche Bildungen handelt, ist knapp 200 Jahre alt, und wurde erst mit der Publikation der «Etudes sur les glaciers» von Louis Agassiz (1840) Allgemeingut unseres Wissens.

Die im alpinen Vereisungsbereich heute allgemein gültige Quartärgliederung ist in Tabelle 4 dargestellt.

Wie bereits in Tabelle 5 angedeutet, sind Lockergesteinsablagerungen, die älter als die Risseiszeit sind, im Raume des Kartenblattes Bern und Umgebung bisher nicht nachgewiesen. So fehlen z. B. Hinweise auf ein Prä-Riss-Alter der Lockergesteinsauflage auf der Molasse in der Tiefbohrung Marzili (Kellerhals und Isler, 1983, S. 428–430).

Die nächstliegenden Lokalitäten mit (möglicherweise) vorrisseiszeitlichen Ablagerungen sind:

- a) Auf den Höhen nordöstlich von Bern auftretende Glazialschotter, die durch Gerber (1927) zu den prä-risseiszeitlichen «Jüngern Deckenschottern» gerechnet werden. Radiometrische oder palynologisch/palaeontologische Einstufungen fehlen.
- b) In einem Bohrprofil bei Meikirch NW von Bern fand M. Welten 1972 (in Frenzel et al 1976) eine vermutlich bis in die Mindel/Riss-Interglazialzeit zurückreichende Vegetationsabfolge.

Zeitalter Periode	Allg. Gliede- rung Epoche	Alter in Jahren vor heute	Zeitliche Gliederung der Quartärablagerungen im alpinen Vereisungsgebiet	Zeittafel menschlicher Kulturen für die Schweiz Jahre v. Chr.	
är	Alluvium oder hente		künstliche Auffüllungen Postglaziale oder nacheiszeitliche Bildungen	- 0 - 800 - 1800 Jungsteinzeit - 4000	Eisen- zeit Bronze- Zeit Mittel- steinzeit
Eiszeitalter oder Quartär	ozän	10 300	Würm-Eiszeit Riss/Würm-Interglazial Riss-Eiszeit	- 8000 Altsteinzeit - 50 000	
Eiszeita	Diluvium oder Pleistozän	150 000- 200 000 0,4 Mio. 0,7 Mio.	Mindel/Riss-Interglazial Mindel-Eiszeit Günz/Mindel-Interglazial Günz-Eiszeit Frühe Alpine Vereisungen Abkühlung	Ablagerungen in Bern und Umgebung nicht nachgewiesen	
Tertiär		2,5 ± 0,8 Mio.	Klima-Umschwung Warm-gemässigt	A Ü.ii	

Tabelle 4: Gliederung des Eiszeitalters. Nach Brinkmann 1977: Übersicht 20; Hantke 1978: S. 259.

Wir gehen daher im folgenden davon aus, dass der Lockergesteinsboden von Bern aus Ablagerungen besteht, die nicht älter als risseiszeitlich sind.

Ausführlich beschrieb schon Baltzer 1896 die Zeugen der Vergletscherung und ihrer Schmelzwasserströme in und um Bern in einem monumentalen Werk mit vielen Skizzen und Ansichten sowie einer geologischen Karte im Massstab 1:25 000. Er unterschied bereits zwischen älterer und jüngerer Gletscherzeit sowie zwischen Ablagerungen des Rhone- und des Aaregletschers. Viele Detailbeobachtungen sind noch heute gültig.

In neuester Zeit haben Schlüchter (1976) und andere viel grundsätzliches über Entstehung, Gliederung und Alter der mittel- und jungpleistozänen Ablagerungen im Aaretal, allerdings südlich unseres Kartenblattes, veröffentlicht.

Die nachfolgende Tabelle 5 vermittelt mit Hilfe der chronostratigraphischen Einteilung von Schlüchter (1976, Tafel 1) eine übersichtliche Gliederung der eiszeitlichen Ablagerungen von Bern und Umgebung.

Tabelle 5: Übersicht über die eiszeitlichen Ablagerungen von Bern und Umgebung. Wichtige Ablagerungen ausserhalb des Kartierungsgebietes in Klam-

Jahre vor heute	Chron C. Sch	ostrati _i LÜCHT	Chronostratigraphie C. Schlüchter (1976)	Eiszeitliche Ablagerungen von Bern – D. Staeger Rh = Rhonegletscher	Bern - D. ST≏ 	ABGER Aaregletscher
	Holozän	йп				Relderschotter od K
10 000			Spätglazial	Rh Felderschotter q4K		Rückstaused. 94R
20 000			II. Vorstoss	Vorstoss Rhonegletscher bis Solothurn		Jungmoränen q4 M+O Vorstoss Aaregletscher bis Urtenental
30 000 40 000 50 000	u	n-Eiszeit	Interstadial Spiezer- Schwankung	(Ältere Seelandschotter) Rh Rückzug bis Biel/Murten?		Aa (Münsingenschotter) Spiezer Schwankung
000 09	gzojs	ıüW	I. Vorstoss	Rückstaused. q4R	7	Aa Rückstaused. q4R
70 000 80 000 90 000	Oberes Plei	Letzte oder	Frühglazial	Rh Grundmoräne q4M Vorstoss Rhonegletscher bis Wangen a. A.	Situation s. Tèxtfigur 1	Moränen q4M+0
100 000			2012	Rückzug der Gletscher vermutlich bis in die Alpen	lich bis in die	Alpen
			Interglazial	(Plateauschotter?, Rinnenschotter) Rh Ältere Aaretal – oder Karlsruheschotter q3K Situation siehe Textfigur 11	tter) ruheschotter o	13K
123 000	u		II. Vorstoss	Ältere Rückstausedimente q3R Rh Ältere Moränen q3M		
150 000	tleres stozä	ətztəl zsi3-a	Interstadial			
175 000 200 000			I. Vorstoss			

3.31 Mittel-Pleistozän: Die risseiszeitlichen Ablagerungen

Das Gebiet von Bern und Umgebung war im Riss-Maximum gänzlich vom ostwärts vorstossenden Rhonegletscher überdeckt. Der Aaregletscher wurde nördlich von Thun vom Rhonegletscher gestaut und ostwärts Richtung Emmental abgedrängt. Zeugen der Ausdehnung dieser Eisströme sind in erster Linie erratische Blöcke.

Im Raume Bern und Umgebung lässt sich über die risseiszeitlichen Ablagerungen des Rhonegletschers wenig Konkretes aussagen, da jüngere, würmeiszeitliche Lockergesteine des Rhone- und des Aaregletschers diese überdecken.

Da sowohl im Riss wie später im Würm die Gletscher Schwankungen, d. h. Vorstössen und Rückzügen unterworfen waren, ist es schwierig, einzelne Gletscherstände, respektive deren Ablagerungen voneinander zu unterscheiden und zuverlässig zu datieren. In der Literatur werden daher oft die Günz-, Mindel- und Riss-Moränen zusammenfassend als Altmoränen bezeichnet. Die Würm-Moräne, in besondern Fällen sogar nur deren letzter grosser Vorstoss (Hochwürm) wird dann als Jungmoräne bezeichnet. Wir halten uns an diesen Usus, und sprechen von Riss- und Würm-Moräne nur dort, wo das Alter nachgewiesen ist.

Auf Grund der bisherigen Untersuchungen, zu denen auch Daten aus zwei temporären Aufschlüssen bei der Neubrügg (Lüthy, Matter und Nabholz 1963) und unter der Monbijoubrücke (Gasser, Matter und Nabholz 1964) gehören, lassen sich die Altmoränen und die Ablagerungen in ihrem Vorfeld von oben nach unten in die folgenden Einheiten gliedern:

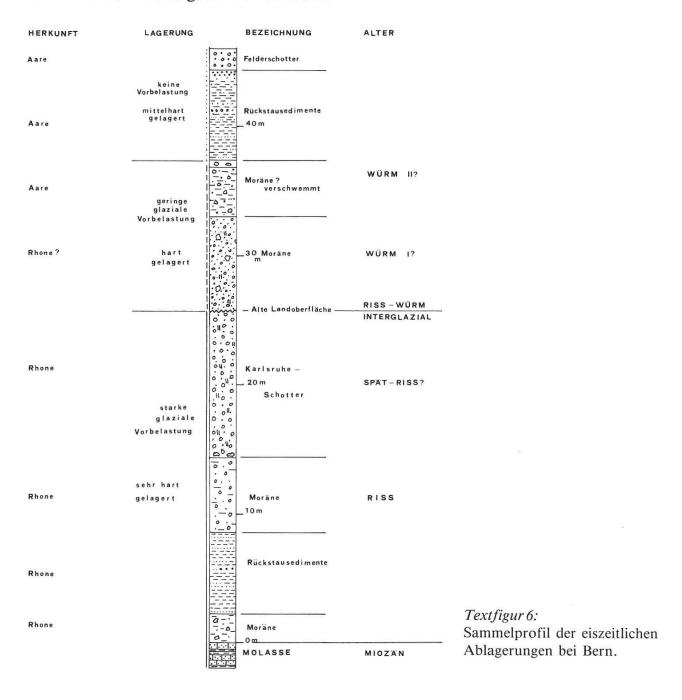
Bezeichnung

3. Karlsruhe-Schotter (q3K)

2. Rückstausedimente (q3R)

Entstehung
fluviatil-fluvioglazial

1. Moräne (q3M) glazial


Gesamthaft deutet dieser Sedimentationszyklus einen sich aus dem Ablagerungsgebiet zurückziehenden Gletscher an:

- Die Moräne entstand unter dem Gletschereis (Grundmoräne) oder an seinem Rande (Wallmoräne).
- Rückstausedimente bildeten sich im direkten Vorfeld des sich zurückziehenden Gletschers.
- Im fluvioglazialen Bereich schütteten Schmelzwasserströme, oft unter torrentiellen Bedingungen, die Karlsruheschotter.

Von diesen drei Einheiten ist der Karlsruheschotter von grösster Bedeutung. Er ist nicht nur weit verbreitet und wegen seiner Mächtigkeit und Resistenz (lokale Verkittung) morphologisch leicht erkennbar; seine zahlreichen Kiesgruben haben auch Fossilien geliefert, die eine ungefähre Altersbestimmung erlauben: Funde

von Säugetieren (Gerber 1953) und Pollen (Welten in: Lüthy, Matter, Nabholz 1963) weisen auf ein Spät-Riss bis Riss-Würm interglaziales Alter der Karlsruheschotter hin.

Darunter folgen Rückstausedimente und Moränen. Solche Lockergesteine sind auch am Aufbau des Könizbergwald-Hügels und des Dählhölzli beteiligt. Ebenso besteht die Halbinsel der Berner Altstadt unter einer Würm-Deckschicht aus alten Moränen und Rückstausedimenten, vermutlich Riss. Das nachfolgende Sammelprofil (Testfigur 6) ist aus Bohrdaten im Autobahnabschnitt Wilerholz der N1 zusammengestellt. Es umfasst Lockergesteine der Riss- und der Würmeiszeit vom Molasseuntergrund bis an die heutige Terrainoberfläche. Weil das Profil durch Korelation der Ergebnisse verschiedener Bohrungen entstand, entspricht es nicht den tatsächlichen Verhältnissen an einer bestimmten Stelle, vermittelt aber ein Gesamtbild der Lockergesteine von Bern.

- Die Riss- oder Altmoräne (Kartierung: q3M)

An den Aaretalhängen nördlich der Stadt liegt unter den Karlsruheschottern stellenweise eindeutig Moräne. Sie besteht aus einer siltigen («lehmigen») Grundmasse mit gekritzten Geschieben, lokal mit Blöcken. Ihrer Lage entsprechend handelt es sich um Rissmoräne. Die Grobanteile der Ablagerungen stammen vorwiegend aus dem Verbreitungsgebiet des Rhonegletschers (Freiburg, Wallis). Dagegen zeigt die Mineralzusammensetzung der Feinanteile starke Beeinflussung durch den vom Gletscher überfahrenen und erodierten Molasseuntergrund (Lüthy, Matter, Nabholz 1963).

Die Grundmoräne ist kaum je geschichtet, durch die überlagernden Eismassen stark vorbelastet und daher dicht bis sehr dicht (hart) gelagert, lokal aber auch verschwemmt und durch spätere Verwitterung aufgelockert. Im Baugrund unterscheidet sich die Riss- von der (jüngern) Würm-Grundmoräne nur wenig. Die Riss-Grundmoräne hat nach ihrer Ablagerung noch mehrmals Kaltzeiten mit Eisbewegungen über sich ergehen lassen, man beobachtet daher nicht selten glazialtektonische Störungen, Stauchungen und Strukturformen von Dauerfrostböden in den Baugruben.

– Die Riss- oder alteiszeitlichen Rückstausedimente (Kartierung: q3R)

Über der oben beschriebenen Rissmoräne, aber unter dem Karlsruheschotter, liegen an den Aaretalhängen nördlich von Bern stellenweise gut sichtbare, warvenartig dünngeschichtete Sedimente aus Silt und Feinsand mit gelegentlichen Einlagerungen von Kieslagen. Die Abfolge ist in unverwittertem Zustand dicht bis sehr dicht gelagert. Erratische Blöcke sind eher selten. Es wird allgemein angenommen, dass solche Lockergesteine unter fluvioglazialen bis lakustren Bedingungen im direkten Vorfeld (Zungenbecken) des sich in Oszillationen zurückziehenden Gletschers entstanden sind. Man bezeichnet sie als Rückstausedimente, auch etwa als glaciolakustre Ablagerungen oder als «glacial outwash». Ihrer Lage unter dem Karlsruheschotter entsprechend handelt es sich um risseiszeitliche Rückstausedimente.

Die grösste Mächtigkeit erreichen sie im Stadtgebiet zwischen Kirchenfeld und Altenberg, doch fehlen hier die Karlsruheschotter. Stattdessen sind sie überlagert von Bildungen der Würmeiszeit. Fossilfunde und Pollenanalysen sind ebensowenig vorhanden wie radiometrische Altersbestimmungen. Man ist daher für die Alterszuordnung auf Indizien angewiesen: Harte bis sehr harte Lagerung, d. h. starke glaziale Vorbelastung, glazialtektonische Störungen, Stauchungen, Kryoturbationsspuren (unregelmässige Verfaltung durch Dauerfrost-Einwirkung), steilstehende Schichten, Winkeldiskordanzen zu überlagernden Würmschottern. Sie alle deuten auf eine ältere, intensive eiszeitliche Geschichte, wie wir sie aus den als Riss datierten Ablagerungen unter dem Karlsruheschotter kennen.

Verwerfungen und steilstehende Schichten in eiszeitlichen Lockergesteinen

Berns sind allerdings keine Entdeckungen unserer Tage. Schon vor über 100 Jahren, beim Bau der Kirchenfeldbrücke, schrieb der damalige Professor für Geologie in Bern (ISIDOR BACHMANN, 1882, S. 61–70):

Die interessantesten Verhältnisse zeigten bis jetzt die Fundierungen für das Widerlager auf der Kirchenfeldseite ... als nämlich 1878 ... Hr. Ingenieur Fr Thormann ... Sondierungseinschnitte herstellen liess, zeigte sich das erratische Material in bergwärts mit 80° steil einfallenden Schichten angeordnet.

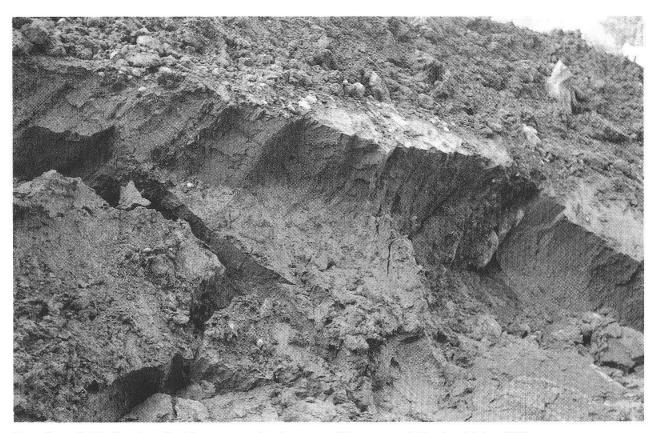
... Die neulich in der mittlern Höhe des Abhanges für das Brückenwiderlager gemachten Einschnitte gewährten noch weitere Einblicke in die interessante Struktur. Erstlich gingen die vorerwähnten steilen Schichten nach unten ganz allmählich und verschwommen in gemeinen, vollkommen ungeschichteten erratischen Schutt über . . . Unter der oberflächlichen Kruste von Dammerde und offenbarem Haldenschutt zeigten sich die wunderbarsten Faltungen und Schichtenwindungen in dem abwechselnd sand- und lehmartigen Material. Ganze Pakete von feinerem Material bewegten sich, ohne Zweifel nach dem Auftauen des lange gefrorenen Bodens, der Richtung der Schwere folgend, gegen die Mitte des Aaretales.

Ausführlich berichtet auch A. BALTZER (1896) über «Erscheinungen» an glazialen Kiesen und Moränen.

Baugruben in der Berner Innenstadt zeigen trotz Behinderung geologischer Beobachtungen durch mechanisierten Abbau und moderne Methoden der Baugrubenumfassung, dass Glazialtektonik, Kryoturbation und Stauchungen geradezu typische und weit verbreitete Merkmale der altglazialen Rückstausedimente sind.

Leider können Bohrungen Verhältnisse wie die oben beschriebenen meist nicht erfassen. Besonders schwierig ist eine hydrogeologische Interpretation von Böden, deren struktureller Aufbau durch Glazialtektonik usw. geprägt wurde. Hier hilft erst ein Blick in die Baugrube, um den wahren Sachverhalt zu erkennen.

Die Textfiguren 7 bis 10 illustrieren typische Beispiele aus Baugruben in altglazialen Sedimenten.


- Der Karlsruhe- oder ältere Aaretal-Schotter (Kartierung: q3K)

Der Karlsruhe- oder ältere Aaretal-Schotter (Gerber, 1927) wird heute allgemein dem mittelländischen Plateauschotter zugeordnet.

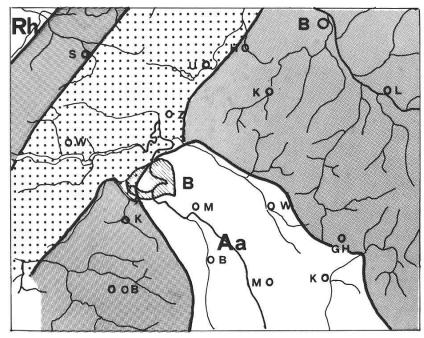
Anhand von Beobachtungen zwischen Forst, Hindelbank und Burgdorf nimmt Gerber (1950) an, dass sich bereits im Spätriss Rhone- und Aaregletscher getrennt haben. Im Raume zwischen den beiden Gletscherzungen lagerten sich nach seiner Auffassung die Plateauschotter – inbegriffen die Karlsruheschotter – ab (siehe Textfig. 11).

Hantke stellt den Karlsruheschotter dem Älteren Seelandschotter gleich.

An der Typlokalität Karlsruhe, am Rande des Kleinen Bremgartenwaldes, im Steilabsturz zur Aare, ist der Schotter bis zu 60 m mächtig. Seine Basis ist dort

Textfigur 7: Steilstehende Altmoräne direkt unter Humus und Deckschicht; Elfenau.

Textfigur 8: Mit 45° geneigter, sehr hart gelagerter Sand/Silt-Komplex. Vermutlich risseiszeitliche Rückstausedimente. Deutlich sichtbare Verwerfung. Bubenbergplatz, in etwa 4 m Tiefe.



Textfigur 9: Berner Innenstadt/Polizeikaserne Etwa 70° steilstehende Silt/Sandschichten mit Feinkieslage. Hart gelagerte Rückstausedimente (Riss?).

Textfigur 10: Wysslochrinne (Schosshalde) 60 m unter OK Terrain Schrägschichtung in sehr hart gelagerten Rückstausedimenten (Riss?). Die Kieslagen sind sauber ausgewaschen und führen gespanntes Grundwasser. Schrägstellung der Schichten (22°) vermutlich durch Schüttung, nicht durch glaziale Einwirkung verursacht.

durch metergrosse Blöcke charakterisiert. Der Schotter selbst besteht aus Geröllen bis zu 20 cm Durchmesser, mit viel Sand und dicken Kalzitnesten, die einzelne Bänke stark verfestigen und zum Namen «Löcherige Nagelfluh» geführt haben. Da bei der Bildung des Schotters oft torrentielle Strömungsverhältnisse im Wasser geherrscht haben müssen (Schrägschichtung bis zu 30° über der Molassesohle), wird der Schotter durch einzelne Autoren nicht als Rückzugsschotter, sondern als fluvioglaziale oder randglaziäre Bildung betrachtet, während andere Autoren von einem Vorstossschotter schreiben.

Textfigur 11: Nach Ed. Gerber (1950) Ausschnitt aus dem Kärtchen Tafel II.

Figur 1: Ablagerung der Plateau-Schotter im Gebiet zwischen Forst und Wangen a.A. während der Spätriss-Eiszeit

Plateau-, Karlsruhe- und Forstschotter

Molasse

Aa – Aaregletscher Rh – Rhonegletscher

Nach Gerber (1953, S. 298), stammen die Gerölle «aus dem Anstehenden und aus dem Erratikum des Kantons Freiburg: Es dominieren Flyschsandsteine, Kieselkalk und alle Steinsorten aus der bunten Nagelfluh; Beiträge aus dem Aaremassiv sind sehr fraglich, aus dem Wallis häufig.»

Aus Kiesgruben bei der Neubrück (= Neubrügg) sowie bei Bremgarten und Reichenbach am gegenüberliegenden rechten Aareufer wurden um 1952 Funde von Säugetierresten (Mammut, Wildpferd, Wollhaarnashorn) bekannt. Sie veranlassten Gerber (1953), die auf der geologischen Karte von Bern und Umgebung (Gerber, 1927) gegebene Einstufung der Karlsruheschotter ins Riss zu bestätigen. Völlig eindeutige Leitfossilien fehlen allerdings (Lüthy et al 1963).

Die heute allgemein gültige Einstufung geht vom Spätriss bis Frühwürm. Wir betrachten die Karlsruheschotter als spätrisseiszeitliche Ablagerungen.

3.32 Oberes Pleistozän: Das letzte Interglazial und die Würm-Eiszeit

Die Gliederung des obern Pleistozän ist im helvetischen Mittelland schwierig. Sowohl der Eisaufbau wie das Abschmelzen der alpinen Gletscher vollzog sich in Staffeln, zum Teil mit kurzfristigen Halten und geringem Vorstoss oder Rückzug.

Es wird allgemein angenommen, dass sich am Ende der Riss-Eiszeit die alpinen Gletscher aus dem Mittelland zurückzogen und das eisfreie Gebiet mit einer warmzeitlichen Vegetationsdecke überwachsen war. Diese Zeitspanne wird als Riss/Würm-Interglazial bezeichnet. Mit dem Einsetzen einer neuen Kaltzeit stiessen im Würm die Gletscher wieder in das helvetische Mittelland vor, wenn auch in geringerem Ausmass, als in der Riss-Eiszeit.

Mehr und mehr weisen jedoch neuere palynologische Untersuchungen und C^{14} – Datierungen auf einen viel komplexeren Ablauf der Ereignisse im oberen Pleistozän hin, als bisher angenommen wurde.

- Das letzte oder Riss/Würm-Interglazial

Das Normalbild einer Zwischeneiszeit oder eines Interglazials ist eine Warmzeit-Periode mit charakteristischem Vegetationsbild, das sich aus fossilen Pollen ablesen lässt. Neuere Untersuchungen in Profilen, die auf Grund ihrer geologischen Lage dem Riss/Würm-Interglazial zugewiesen werden, haben Florenentwicklungen aufgezeigt, welche nach Hantke (1978) auf kaltzeitliche Vorstösse innerhalb des Interglazials hinweisen.

In der Umgebung Berns sind keine sicher interglazialen Lockergesteine bekannt. Man darf aber füglich einen im Profil von Textfigur 6 als alte Landoberfläche bezeichneten limonitischen Lehmhorizont als interglazial einstufen.

Über Erosion und Aufarbeitung im Interglazial fehlen bisher für die Gegend von Bern konkrete Hinweise. Das allgemeine Relief scheint bereits weitgehend bestanden zu haben. Einzige Ausnahme von Bedeutung ist das Aaretal zwischen Belpmoos und Wohlensee. Erst im Spätwürm beginnt sich der heutige Aarelauf abzuzeichnen, während seine Lage im Riss/Würm-Interglazial ungewiss und umstritten ist.

- Die Würm-Eiszeit und ihre Lockergesteinsablagerungen (Kartierung q4)

Die Würmeiszeit lässt sich in 2 Vorstoss-Stadien (Kaltzeiten), bezeichnet als Würm I und Würm II und ein dazwischenliegendes Interstadial (Warmzeit) gliedern (W. Staub, 1950, Seite 110). Vergleiche Tabelle 5 und 6. Sowohl die Vorstossstadien wie das Interstadial folgten in ihrer Anlage den bestehenden Talformen. Würm I und II unterscheiden sich aber durch eine völlig ungleiche Ausdehnung der Vergletscherung:

Im Würm I überlagerte der Rhonegletscher das gesamte Mittelland vom Jura bis Bern und erreichte in seinem Höchststand die Gegend von Wangen a. A. Seine rechte Flanke staute bei Bern den Aaregletscher und lenkte ihn ostwärts ab.

Das Interstadial soll nach Staub (1950) gekennzeichnet sein durch einen (fraglichen) Rückzugsstand des Rhonegletschers auf der Linie Biel (Seebecken?) – Murten (Seebecken?). Der Aaregletscher zog sich bis in die Gegend von Spiez zurück (Spiezer Schwankung nach Beck 1932, Seite 192).

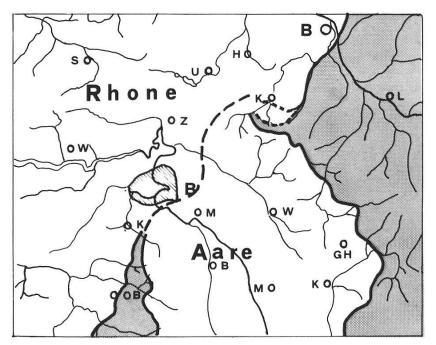
Im Würm II stiessen beide Gletscher wieder vor. Der Rhonegletscher erreichte die Gegend von Bern nicht mehr, sondern rückte durch das Seeland bis Solothurn vor. Der Aaregletscher dagegen stiess nördlich Bern in unvergletscherte Gebiete vor.

Untersuchungen für die Baugrundkarte Bern ergaben keine Resultate, welche für diese Hypothese wesentlich wären oder eine altersmässige Gliederung erlaubt hätten.

Die Lockergesteine des Würm sind daher auf der Karte mit den folgenden Würm-Symbolen gekennzeichnet:

q4M für Grundmoräne q4R für Rückstausedimente q40 für Moränenwälle q4Ks für Stauschotter q4K für Felderschotter

ohne Alter (Würm I/II) oder Herkunft (Rhone/Aare) genauer zu bezeichnen. Die nähere Betrachtung von Aufbau und Zerfall der zwei beteiligten Gletscher erfolgt in den folgenden Abschnitten der Erläuterungen.


- Der Würm-I-Vorstoss bei Bern (Kartierung q4M, O, R, Ks)

In seinen Erläuterungen zum Atlasblatt 22 (Fraubrunnen-Wynigen-Hindelbank-Burgdorf) des Geologischen Atlas der Schweiz postulierte Gerber (1950), dass der Aaregletscher im Früh-Würm bei Zollikofen die Plateauschotter aufpflügte und zu Schottermoränen staute. Dies würde bedeuten, dass der Aaregletscher früher ins Mittelland vorstiess als der Rhonegletscher.

Erst später hätte der Rhonegletscher somit das Aaregletscherende erreicht und überfahren. Es stellt sich die grundsätzliche Frage: Sind in den Eiszeiten die Vorstösse der Alpengletscher überall gleichzeitig erfolgt oder lässt sich wie bei den heutigen Gletscherständen ein von Gletscher zu Gletscher unabhängiges, zeitlich verschobenes Vorstossen und Zurückschmelzen beobachten?

Was die lokalen Verhältnisse nördlich Bern betrifft, kam es jedenfalls mit dem weiteren Vorstoss der ungleichen Gletscher zum Stau des Aare-Eises und zu seiner Ablenkung, ja Verschmelzung mit dem Rhonegletscher in seiner Fliessrichtung nordostwärts in Richtung Burgdorf. Siehe Situationsskizze Textfigur 12.

Im Bereich der Baugrundkarte dokumentiert der Rhonegletscher seine Anwesenheit durch weit verbreitete Ablagerungen von Grundmoräne (q4M) und Rückstausedimenten (q4R). An der Oberfläche erkennbar sind sie z. B. in der Äusseren Länggasse, im Könizbergwald und im Schärmewald. Andernorts, z. B. im Westteil der Stadt, wurden unter jüngern Ablagerungen Rückstausedimente und Grundmoräne von oft beträchtlicher Mächtigkeit (Areal Inselspital, über 30 m) erbohrt, die wir dem Würm I des Rhonegletschers zuordnen.

Textfigur 12:
Die Grenzen von Rhone- und Aaregletscher im Würm-I-Maximum nach Gerber (1950), Beck und Rutsch (1958), Rutsch (1967), und eigenen Aufnahmen.

Dicke Linien: Grenzen der Vergletscherung Gestrichelte Linien: Grenze Aare/Rhone-Gletscher

Raster: Eisfreie Gebiete Schraffiert: Stadt Bern

Grundmoräne und Rückstausedimente sind hart gelagert, was auf glaziale Vorbelastung hinweist. Der Rhonegletscher dürfte im Würm I bei Bern eine Eisdicke von 400–500 m erreicht haben (Jäckli, 1970). Die Rückstausedimente bestehen aus deutlich geschichteten Silten und Sanden mit gelegentlichen Kieseinlagerungen. Eiszeitliche Stauchungen und Verschwemmungen, selten Glazialtektonik und Kryoturbationen, sind aus Baugruben-Aufschlüssen bekannt.

Die Grundmoräne (q4M) enthält in einer siltig-sandigen Grundmasse relativ wenig eckiges, oft gekritztes Geschiebe und gelegentlich grössere erratische Blöcke. Die Grobanteile, insbesondere Flyschbreccien aus dem Einzugsgebiet des Saanegletschers und Leitgesteine aus dem Rhonetal (Vallorcine-Konglomerat, Eklogit, Smaragdit-Saussurit-Gabbro, Mt. Pelerin-Konglomerat) zeugen von der Ablagerung durch den Rhonegletscher.

Innerhalb unseres Kartenblattes lassen sich keine zusammenhängenden Würm-I-Moränenzüge des Rhonegletschers erkennen. Wir sehen daher von der Beschreibung seiner Rückzugsstadien ab.

In der Gegend von Matzenried/Oberbottigen (auf Berner Gemeindegebiet ausserhalb des Kartenblattes), im Bereich der Würm-I-Vereisung des Rhonegletschers, steht die Molasse in geringer Tiefe an und prägt das Landschaftsbild. Hier floss das Eis über eine Molasseschwelle. Dabei schliff es den Felsboden, lagerte aber nur geringe Mengen feinkörniger Grundmoräne ab. Da der Untergrund wenig durchlässig wirkt, ist die Gegend vielerorts sehr sumpfig, der Grundwasserspiegel reicht oft bis in die humosen Deckschichten.

Über Aufbau und Abschmelzen des Aaregletschers in der Würmeiszeit haben Autoren von Bachmann (1870) bis Wagner (1986) Karten und Texte veröffentlicht. Gerber (1927, 1955), Beck (1932, 1938), Rutsch (1947) und Beck und Rutsch (1949) haben die Würm-zeitlichen Rückzugsstände systematisch geordnet und bezeichnet. Während Gerber vorwiegend von Beobachtungen bei Bern ausging (Geologische Karte von Bern und Umgebung, aufgenommen 1915–1925), beziehen sich die Bezeichnungen von Rutsch auf Kartierungsarbeiten südlich von Bern (Längenberg, Belpberg, Münsingen-Konolfingen).

Die nachfolgende Tabelle gibt darüber Auskunft.

Tabelle 6: Die Rückzugsstadien des würmeiszeitlichen Aaregletschers bei Bern. (Innerhalb unseres Kartenblattes vorkommende Moränenstände sind kursiv.)

Alter	Ed. Gerber 1927, 1955	P. Beck 1932, 1938	R. RUTSCH 1947, 1949	D. STAEGER Diese Arbeit
Maximal- stand	Bantiger Nordflanke		Ulmizberg	5
Würm I	Bantiger			I
Rückzugs-			Seftigschwand	
stadien	Weisshaus, Birchi			II
	1		Gurten	nicht kartiert
	2		Bern I	ohne Be- zeichnung
Inter- stadial		Spiezer Schwankung		
Maximal- stand				
Würm II	3		Bern II	Bern
Rückzugs- stadien	a 4 5		Schosshalde	Schosshalde Wittigkofen Muri 1
	6		Muri	Muri 2

Im Würm-I-Stadium breitete sich der Aaregletscher infolge der Stauwirkung des Rhonegletschereises im Aaretal stark aus. Im Maximalstand reichte er vom Ulmizberg im Westen bis zum Bantiger im Osten (beide Lokalitäten liegen ausserhalb der Grenzen unserer Karte). Die Eisdicke betrug im Taltrog mindestens 3–400 m. An den Talflanken (Gurten, Ostermundigenberg, Bantiger) bildeten sich beim Rückzug des Gletschers Staffeln von Wallmoränen auf dünner Grundmoräne (siehe Tab. 6).

Innerhalb unserer Kartierung ist nur an zwei Stellen deutlich einstufbare Würm-I-Wallmoräne (q40) erkennbar:

An der Nordostflanke des Gurten, in einer Höhe von rund 690 m zieht ein seit Baltzer (1896, Geologische Karte) bekannter Moränenwall entlang dem Grüenenboden, wenig westlich der Gurtenbahn-Mittelstation. Eine heute aufgelassene, mit einem Reservoir bebaute Kiesgrube erlaubte damals einen guten Einblick in das blockige Moränenmaterial. Der Ort der Kiesgrube markiert zugleich das Ende der Moräne, d. h. er markiert die Stelle, wo die linke Seite des Aaregletschers gegen das Rhoneeis stiess. Der Stand entspricht dem Stadium 2 von Gerber (1927) und ist auf unserer Karte als Moränenwall mit der Bezeichnung q40 eingetragen. Moränen des nächsthöheren Stadiums 1 von Gerber (1927) finden sich auf offenem Gelände östlich Gurten-Kulm. Sie sind wegen ihrer marginalen Lage nicht auf der Karte eingetragen. Auf der Ostseite des Aaregletschers liegt Moränenmaterial des gleichen Stadiums 2 (Gerber, 1927) zuoberst auf dem Ostermundigenberg (q40). Das Gebiet gehört zu einem unter Naturschutz gestellten Eiszeit-Reservat, und wurde durch seinen Förderer K.L. Schmalz (1980) ausführlich beschrieben. Die Moräne liegt auf 700-720 m, also etwas höher als das Vorkommen am Gurten. Auffallend ist die vom Aaretal abweichende Richtung der Moräne. Dies ist nicht nur eine Folge der Topographie, sondern wohl auch der Ablenkung des Aaregletschereises in das Worblental durch die Stauwirkung des Rhonegletschers. Eine ausführliche Beschreibung der Anomalien der Moränen von Aare- und Rhonegletscher im Gebiet des Worblentales, also an der rechten Flanke des Würm-I-Aaregletschers, wurde durch G. Wagner (1986) veröffentlicht.

Unterhalb der oben erwähnten Moränen des Stadiums 2 von Gerber finden wir an den Talhängen und im Aaretrog keine Würm-I-Ablagerungen mehr an der Oberfläche. Sie wurden vom Aaregletschervorstoss des Würm II überfahren und nachfolgend durch Wallmoränen der Rückzugsstadien 3–6 (Gerber, 1927) überdeckt.

In tiefern Beckenteilen und in Rinnen haben sich ohne Zweifel Grundmoräne und Rückstausedimente des Würm I abgelagert und erhalten. Sie sind aber in Bohrungen kaum jemals als solche erkennbar. So lassen sich z. B. 80 m vorwiegend siltig-sandige Lockergesteine, die im Kirchenfeld kürzlich erbohrt wurden, nicht einstufen. Aus der Lagerungsdichte des Bohrgutes und dem Auftreten verwitterter erratischer Blöcke in der Baugrube ist man geneigt, die Sedimente einer Altmoräne – also mindestens Würm I oder älter – zuzuordnen.

Die Vereinigung von Rhone- und Aaregletscher im Würm I bei Bern lässt erwarten, dass aus den zwei verschmelzenden Seitenmoränen von der Nordflanke des Gurten bis an das untere Ende des Aaregletschers eine Mittelmoräne entstand.

WAGNER (1986) hat Teile einer solchen Mittelmoräne aus der Umgebung des Worblentales beschrieben. Mit Ausnahme des Schärmewald-Hügels liegt das beschriebene Gebiet allerdings ausserhalb unseres Kartenblattes.

Wo aber verläuft die Mittelmoräne zwischen Gurtenhang und Schärmewald? WAGNER (1986) glaubt, im Neufeldhügel der Länggasse einen letzten Kontakt Rhone-Aaregletscher und damit ein Stück Mittelmoräne gefunden zu haben.

Ich sehe die Dinge in einem etwas anderen Zusammenhang. Zwar charakterisieren ähnliche topographische und geologische Verhältnisse den Schärmewaldhubel und den Neufeldhubel. Zu ihnen gehört auch der Bawartehubel im Bremgartenwald. Ich betrachte alle drei als durch den Würm-II-Vorstoss des Aaregletschers überfahrene, gehobelte und verschwemmte drumlinartige Relikte der Rhonegletscher-Moränenlandschaft des Würm I. Das zwischen Nordabhang des Gurten und Schärmewald fehlende Stück der Mittelmoräne ist wahrscheinlich in gleicher Weise dem Aaregletschervorstoss im Würm II zum Opfer gefallen. Die Stossrichtung fast quer zur postulierten Mittelmoräne führte offenbar zur totalen Ausräumung des Hindernisses. Der Kern des Schärmewald-Hügels wäre damit der einzige erhaltene Teil der Mittelmoräne im Talboden.

Als letztes Ablagerungsprodukt des Würm-I-Glazials sei der Stauschotter von Oberfeld (q4Ks) zwischen Aaregletscher und Ostermundigenberg erwähnt. WAGNER (1986) weist die Bildung dieser gletschernahen Schotterterrasse seinem Worblentalstudium 8 (Schärmenstadium) zu. Nach Gerber (1955) handelt es sich aber sowohl um Abschmelzprodukte des Aare- und des danebenliegenden Rhonegletschers, als auch um vom Ostermundigenberg abgeschwemmtes Lockermaterial, das sich in einem «Südeltrog» (Gerber, 1955) zwischen Rhonegletscher, Aareeis und Ostermundigenberg sammelte. Zeitweise war der Trog zu voll und sein Inhalt ergoss sich über den Trogrand von Steingrüebli Richtung Stützli in das Worblental.

Über Zusammensetzung und Schichtung der Stauschotter des Oberfeldes schreibt Gerber (1955, Seite 19):

In den letzten 50 Jahren ist das Material der Oberfeldterrasse in acht grösseren Gruben ausgebeutet worden. Überall konnte man gleiche und ähnliche Beobachtungen anstellen: Viel Sand, oft in Deltaschichtung; unvermittelter Übergang von Sand und Kies; häufig grössere Molassegerölle; Fetzen und Nester von Blockmoräne; Mischung von Rhone- und Aaregesteinen; gelbliche Lehmschichten; kleine Verwerfungen, vielleicht entstanden durch nachträgliche Sackungen.

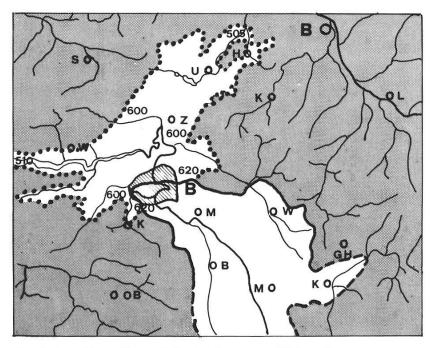
- Das Würm-I/Würm-II-Interstadial (Spiezer Schwankung)

Im Laufe von Untersuchungen über die Gliederung der eiszeitlichen Ablagerungen des Aaretales erkannte Beck (1932), dass die letzteiszeitlichen Moränen zwischen Spiez und Bern durch einen eng mit Schieferkohlen verbundenen Schotterkomplex zweigeteilt sind. Er nannte die Schotter Münsingenschotter und die mit ihrer Ablagerung verbundene Rückzugsphase des Aaregletschers bezeichnete er als Spiezer Schwankung. Schlüchter (1976) glaubt, dass die Gletscher bedeutend weiter in die Alpentäler zurückgeschmolzen sind. Für die Region Bern bedeutete dies, dass das Gebiet vorübergehend eisfrei war, denn auch der Rhonegletscher zog sich zurück. Staub (1950, Karte Gletscherstadien) vermutet, dass sich der Rhonegletscher auf eine Linie Biel/Murten zurückzog. Die den Münsingenschottern entsprechenden Bildungen sieht er in den ältern Seelandschottern.

Die Spiezer Schwankung als interstadialer Zeitabschnitt zwischen den Vereisungen von Würm I und Würm II nach Beck (1938) ist heute allgemein anerkannt.

Mit ziemlicher Sicherheit darf angenommen werden, dass der Rhonegletscher sich am Ende der Würm-I-Vereisung aus der Gegend von Bern endgültig zurückzog. Der Aaregletscher hatte also freie Bahn, im nächsten Vorstoss, dem Würm II über Bern hinaus in das Mittelland vorzurücken.

Mit dem Abschmelzen des Rhonegletschers westlich hinter die Linie Saane-Seeland öffneten sich neue Wege für den Schmelzwasser-Abfluss des Aaregletschers, der im Würm I nach Osten in die Emme entwässert hatte. Jetzt stand der Weg nach Norden über Urtenen oder westwärts in den im Altglazial vorgezeichneten Senken Eymatt—Wohlen-Illiswil-Steinisweg offen. Jedenfalls bestand der heutige Aarelauf noch nicht, denn Querschnitte wie z. B. Karlsruhe-Stuckishaus waren bis ins Würm II eine durchgehende Landoberfläche, die erst nach dem Bern-Stadium und der Bildung seiner Schotterfelder durchtalt wurden.


Die Spiezer Schwankung hat rund um Bern kaum nennenswerte Spuren hinterlassen. Vermutlich reichte der Münsingenschotter knapp bis Bern, wo er laut Kellerhals und Isler (1983) im Dählhölzli nachgewiesen wurde. Sicher charakterisiert aber eher Abtragung als Aufschüttung diesen Zeitabschnitt. Erstaunlicherweise wenig wurde bisher bekannt über die Tier- und Pflanzenwelt dieser Warmzeit, wenn man von Pollenuntersuchungen (Welten), Molluskenfunden, Ostrakoden (Schluchter) und dem seit 1938 bekannten Fund eines Elefantenzahnes (Beck 1938, S. 189) in den Schottern bei Münsingen absieht.

Der Würm-II-Vorstoss des Aaregletschers bei Bern (Kartierung q4M, O, R, K)
 (25 000–15 000 Jahre vor heute)

Die Würm-II-Kaltzeit führte zu einem erneuten und (bis heute) letzten Vorstoss des Aaregletschers. Bisher wurde angenommen, dass die ausgezeichnet erhaltenen Endmoränen des Bern-Stadiums (siehe Baugrundkarte) zugleich den Maximal-

stand der Würm-II-Vereisung verkörpern. Neuere Untersuchungen nördlich von Bern lassen Zweifel an dieser Interpretation aufkommen.

In einem nicht publizierten Vortrag der SGG anlässlich der SNG-Jahrestagung in Bern vom Herbst 1986 hat der Schreiber dieser Zeilen darauf hingewiesen, dass Grund zur Annahme besteht, der Aaregletscher des Würm-II-Glazials sei weit nach Norden in das nun eisfreie Gebiet der Würm-I-Rhonevergletscherung vorgestossen, bevor es bei seinem Rückzug zur Bildung des Endmoränenkranzes von Bern kam. (Siehe Textfigur 13)

Textfigur 13: Die Grenzen des Aaregletschers im Würm-II-Maximum

Punktiert: Postulierter Maximalvorstoss Würm II

Linie: Berner Stadium

Unterbrochene Linie: Genauer Verlauf fraglich

Getönt: Eisfreies Gebiet

Der Rhonegletscher erreichte im Würm II das Gebiet des Kartenausschnittes nicht.

Das Areal der postulierten Maximalausdehnung liegt zwar grösstenteils ausserhalb unserer Kartierungsgrenzen. Aber auch die zwischen Berner Moränenkranz und nördlichem Rand unserer Kartierung liegende Würm-I-Moränenlandschaft gehört dazu. Sie wurde durch die Wirkung des vorstossenden Eises verändert.

Nördlich Bern dehnt sich eine seit Nussbaum (1922) und Gerber (1927) bekannte «Drumlin»-Landschaft im Würm-I-zeitlichen Moränengebiet des Rhonegletschers aus. Eine auf photogeologischer Grundlage basierende geomorphologische Studie durch den Schreiber dieser Zeilen ergab bereits 1982 überraschende Resultate: Das «Drumlin»-Gebiet lässt sich deutlich gegen «normale» Moränen der Würm-I-Rückzugsstände des Rhonegletschers abgrenzen. Form und Höhenverlauf dieser Grenze weisen darauf hin, dass der Grund der «Drumlin»-Bildung nicht beim Rhonegletscher gesucht werden muss, sondern bei einem Eisvorstoss

von Süden, aus der Gegend zwischen Gurten und Ostermundigenberg. Überdies muss der Eisvorstoss älter als das Berner Stadium des Aaregletschers, aber jünger als die Würm-I-Moränen des Rhonegletschers sein. Deshalb kann es sich nur um die Folgen eines Würm-II-Aaregletschervorstosses vor seinem Rückzug auf das Berner Stadium handeln.

Im gesamten Vereisungsgebiet bildete sich unter dem Gletschereis Grundmoräne (q4M). Im Gegensatz zu ältern Grundmoränen, die 10 und mehr Meter mächtig sein können, erreicht die Würm-II-Grundmoräne meist nur wenige Meter Mächtigkeit. Vielerorts enthält sie aufgeschürftes älteres Lockergestein. Ihre Zusammensetzung ist daher sehr wechselhaft. Charakteristische Kennzeichen wie gekritzte Geschiebe und regellose Lagerung identifizieren sie aber eindeutig.

Weitere deutliche Zeugen der Würm-II-Vereisung und der Eisstillstände zwischen den Rückzugsphasen sind die Wallmoränen (q40), die meist direkt auf Würm-II-Grundmoräne liegen. Die Rückzugsstaffeln des Aaregletschers im Würm II bilden zwischen dem Stadtgebiet und Muri mehrere deutliche Moränenzüge, die man teils als Endmoräne, teils als Seitenmoräne bezeichnen kann. Auf der Baugrundkarte sind folgende fünf Stadien unterschieden (von aussen nach innen, d. h. von alt zu jung):

Name

Kennzeichen

Bern Schosshalde rot schwarz

Wittigkofen

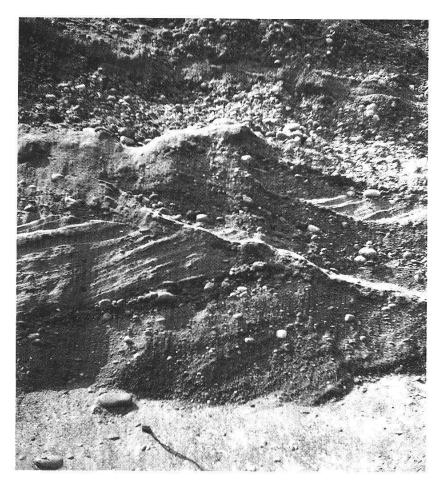
grün

Muri 1 Muri 2 blau gelb

Weil die Jungmoränen von Bern im allgemeinen deutlich erhalten sind, ist es nicht notwendig, sie im einzelnen zu beschreiben. Die Kartierung (q40) spricht für sich selbst. Hingegen sollen die Zusammenhänge zwischen den Moränenzügen und ihre Beziehungen zu den benachbarten Schmelzwasserablagerungen (q4K, Schotter) und fluvioglazialen Bildungen (q4R, Rückstausedimente) aufgezeigt werden.

Im Bern-Stadium entstanden ausgedehnte Schotterfelder (q4K). Vermutlich lagerten sie sich in einem Eisrandsee ausserhalb der Berner Endmoräne ab (siehe Textfiguren 15 und 16), dessen Auslauf auf einer Kote von 560 m bei Steinisweg (Wohlensee) nach Westen entwässerte.

Der Rhonegletscher stand zu dieser Zeit am rechten Talhang von Sense und Saane. Seine Schmelzwasserzufuhr in den grossen Sander (Sand- und Schotterfläche vor der Endmoräne eines Gletschers) von Bümpliz erfolgte durch das Wangental, teilweise auch durch das Gäbelbachtal. Beide Täler bestanden bereits damals, in Form und Niveau etwa dem heutigen Zustand entsprechend.



Textfigur 14: Einschnitt für die Kornhausstrasse bei der Haltestelle Kursaal. Bern-Stadium, Würm II (q40), Foto um 1894.

Schmelzwasser des Aaregletschers schüttete über Köniz die Schotter (q4K) im Liebefeld. Direkt aus dem Moränenkranz von Bern austretendes Schmelzwasser schüttete die Sander (q4K) im Breitenrain-Wankdorf und von Ostermundigen. Die Sander haben eine Terrainkote von um die 560 bis 550 Meter. Die Schottermächtigkeit ist unterschiedlich. Während sie in Bümpliz 30 m übersteigen kann, beträgt sie im Breitenrain nur wenige Meter. Allgemein werden diese Schotterbildungen als Felderschotter bezeichnet. Es handelt sich vorwiegend um saubere Kiese. Gegen unten werden sie vielerorts sandig, so dass es manchmal schwierig ist, sie von den liegenden, meist feinkörnigen Rückstausedimenten zu unterscheiden. Im Felderschotter sind gelegentlich auch Siltkomplexe eingelagert. Als typisches Beispiel sei die Gegend von Weyermannshaus mit dem Verlandungssee gleichen Namens erwähnt.

Je nach ihrer Mächtigkeit sind die Felderschotter ein mehr oder weniger wichtiger potentieller Grundwasserleiter.

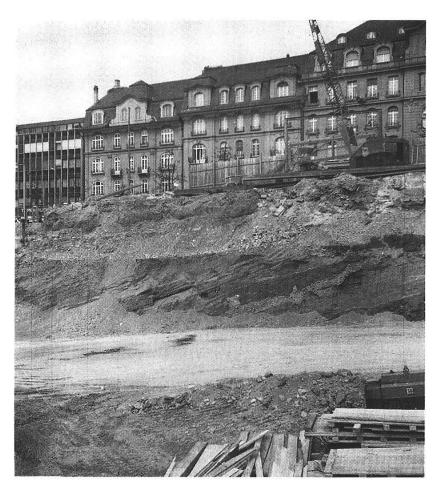
Im Zungenbecken innerhalb des Moränenkranzes von Bern lag zu dieser Zeit noch der Gletscher. Mit dem Einsetzen seines weitern Rückzugs entblösste sich der an die 30 m tiefer als die Felderschotter liegende Boden des Zungenbeckens. Wegen dieses Höhenunterschiedes kam es an zahlreichen Stellen zum Rückfluss von Was-

Textfigur 15:
Deltaschüttung von etwa 20° in Sand/Schotter-Komplex der Felderschotter. Würm II (q4K) Lokalität:
SN1 Anschluss Bethlehem

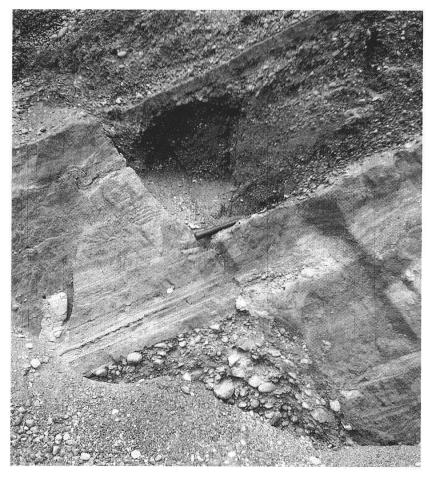
Textfigur 16: Basis der Felderschotter (Würm II, q4K) auf Erosionsoberfläche der Würm-I-Rückstausedimente (q4R). Lokalität: N1 Brünnen

ser und Geschiebe aus dem Sander in den freigewordenen Teil des tiefer liegenden Zungenbeckens. Auch bildete sich ein neuer Eisrandsee.

Der Abtransport von Geschiebe aus dem Felderschotter in das tiefer liegende Zungenbecken des Bern-Stadiums hat mancherorts natürliche Vertiefungen oder Mulden im Felderschotter nahe seiner Grenze zum Moränenkranz verursacht, die sich auf andere Art kaum erklären lassen. Als Beispiele seien erwähnt die Gegend der H. Sahlistrasse (früher Muldenstrasse!) in der Länggasse und die Gegend zwischen Steinhölzliwald und Hessstrasse im Liebefeld.


Wo das Zungenbecken vor Einschwemmungen verschont blieb, haben sich mit dem Rückgang des Eises im Vorfeld des Gletschers die fluvioglazialen Rückstausedimente (q4R) abgelagert. Ihre vorwiegend feinkörnige Ausbildung verdanken sie der Ablagerung von Schwebstoffen.

Mit dem Rückzug des Aaregletschers vom Berner Stand und dem Ende der zugehörigen Sanderbildungen zog sich der Rhonegletscher offenbar ebenfalls von seinem bisherigen Stand (am rechten Sense–Saane-Talhang) zurück und gab die Mündung der Aare in das Saanetal frei.


Damit fand die Aare einen Abfluss nach Westen in das Seeland. Sie begann nun, sich in rückschreitender Erosion, die bis in die Nacheiszeit andauerte, in Fels und Lockergestein einzuschneiden. Siehe 3.33. Der nächste Rückzugsstand des Aaregletschers war das Schosshalde-Stadium. Seine Moränenwälle sind offenbar heute nur noch teilweise erhalten und formen keinen ununterbrochenen Kranz. Deutlich erkennbar ist nur die rechte Seitenmoräne, während der Verlauf der Stirnmoräne wohl zum Teil durch den späteren Einschnitt des Aaretales abgetragen wurde. Möglicherweise gehören die im Mattenhof auf Grund von Aufschlüssen und einem wenig auffälligen Hügelzug am Friedeckweg erkennbaren, verschwemmten und teilweise von Schotter überlagerten Moränenreste dem Schosshalde-Stadium an. Als linke Seitenmoräne zeichnet sich in Chly-Wabere ein der Lage nach eindeutig ins Schosshalde-Stadium gehörendes Wallmoränen-Fragment ab. Periglaziale Schotterfluren lassen sich dem Schosshalde-Stadium keine zuordnen. Auch die Zuordnung der Würm-II-Rückstausedimente im Gebiet Wyssloch-Egelsee-Muristalden (q4R?) ist fraglich. Es könnte sich um verwitterte Böden alter Rückstausedimente, ebensogut aber um fluvioglaziale Ablagerungen im Zungenbecken des Bern- und/oder des Schosshaldenstadiums handeln.

Auf die Schosshaldenmoräne folgte der Wittigkofenstand. Auch seine Stirnmoräne fiel offenbar der Bildung des Aaretales zum Opfer. Links der Aare wurde sie, wie neuere Baugruben zwischen Chly-Wabere und Kehrsatz (ausserhalb des Kartenblattes) deutlich gezeigt haben, bei der Bildung des Schotterfeldes von Wabern (siehe Muristadium) verschwemmt und durch Kies überdeckt. Die weit verstreuten erratischen Blöcke wurden in der Überbauung zur Bildung von begrünten Lärmschutzwällen verwendet.

Mit grosser Wahrscheinlichkeit kann die Schotterdecke im Kirchenfeld als Sander des Wittigkofen-Stadiums betrachtet werden. Seine Schüttung erfolgte aus der

Textfigur 17: Kiesschüttung in das Zungenbecken des Bern-Stadiums. Würm II. Lokalität: Ecke Monbijoustrasse-Bundesgasse.

Textfigur 18:
Detail von Textfigur 18:
Verwerfung, vermutlich Setzung nach
Abschmelzen von Toteis:
Schicht: Str. 112°/F18°S, Kluft:
Str. 8°/F65°N

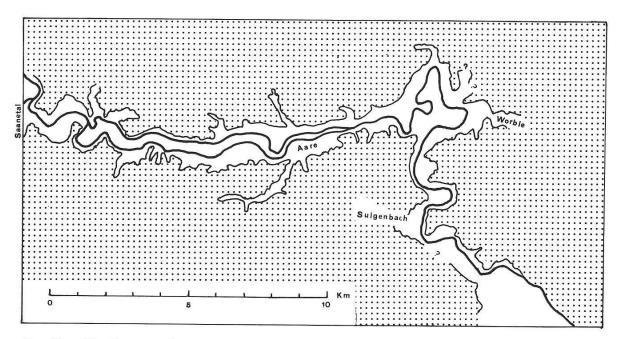
muldenartigen Rinne Wyssloch-Egelsee. Vermutlich war zu diesem Zeitpunkt der Moränenriegel Schosshalde-Tägetli des Bern-Stadiums noch nicht vom Schmelzwasser des Lötschenbaches durchbrochen.

Die im Zungenbecken des Standes von Wittigkofen liegenden Würm-II-Ablagerungen bestehen unten aus Grundmoräne, oben aus Rückstausedimenten. Sie sind aber grösstenteils durch jüngere Schotter (q4K, Muristadium) überlagert und daher nur aus Bohrresultaten und Baugrubenaufschlüssen bekannt.

Ein wichtiger Eisstand und zugleich das letzte Stadium des Aaregletschers im Kartengebiet ist derjenige von Muri. Die Unregelmässigkeit der Moränen (q40) von Muri weist darauf hin, dass es sich bei den Endmoränen um Stauchendmoränen handelt. Das will heissen, dass dieses Zungenende des Aaregletschers zeitweise wieder vorstiess. Auf unserer Karte ist das Muri-Stadium in die zwei Staffeln Muri 1 und Muri 2 gegliedert. Der Stand Muri 1 ist der bedeutendere. Er ist wie kein anderer Stand bei Bern geeignet als Modell für das Nebeneinander von Sander, Wall und Rückstausediment. Er gibt Anlass zu den folgenden Schlussbemerkungen über die eiszeitlichen Ablagerungen von Bern: Die Schmelzwasser des Aaregletschers haben im Muri-1-Staffel die periglazialen Schotterfelder Oberes und Unteres Murifeld auf dem rechten Aareufer und Morillon-Wabern-Kehrsatz links der heutigen Aare gebildet. Bis zum Eintiefen des Aaretales bildeten diese Sander vermutlich eine durchgehende gemeinsame Schotterflur. Hinter den Moränen des Muri-1-Staffels lagerten sich im Zungenbecken rechts der Aare (Mettlen) gut erhaltene, typische Rückstausedimente ab. Mit dem weitern Rückzug des Aaregletschers auf die Staffel Muri 2 entstanden in den Toteistümpeln und anderen abflusslosen Vertiefungen zahlreiche Seelein, die in dem lehmigen, schwer wasserdurchlässigen Boden ideale Vorbedingungen für organische Verlandung in der nachfolgenden Warmzeit des Holozäns schufen. Bis vor wenigen Jahren war diese Landschaft von Rieden und Moosen trotz Drainage noch eine anschauliche Naturlandschaft. Mit der weitern Überbauung verschwindet dieses Idyll bald ganz.

Der Eisrückgang aus dem Becken von Muri/Kehrsatz/Belp erfolgte relativ rasch (Schlüchter, 1976). Im eisfreien Zungenbecken entstand ein Stausee, der sich mit Seeton-Ablagerungen füllte. Zeitlich werden diese Ablagerungen dem Würm-Spätglazial, das Dach der Seetone bereits dem Holozän zugerechnet.

Über die Stadiale Jaberg und Thun verliess der Aaregletscher die Region Bern endgültig. Damit war für sie das Eiszeitalter abgeschlossen. Der Aaregletscher zog sich in die inneralpinen Bereiche und schliesslich auf die historischen Gletscherstände der Gegenwart zurück.


3.33 Das Holozän oder die Nacheiszeit

Strömendes Wasser ist einer der Hauptfaktoren der holozänen Landschaftsbildung. Darunter fallen auch Vorgänge wie z. B. die Talbildung durch Schmelzwässer des sich zurückziehenden eiszeitlichen Aaregletschers. Deshalb steht am Anfang unserer Betrachtungen über das Holozän die Entstehungsgeschichte des heutigen Aaretales zwischen Muri und Mühleberg.

- Die Entstehung des Aaretals zwischen Muri und Mühleberg

Der Lauf der Aare begann sich abzuzeichnen, als der Eisrandsee des Würm-IIzeitlichen Bern-Stadiums ausgelaufen war und sich die Schmelzwässer im periglazialen Schottergebiet nördlich Bern zu sammeln begannen. Der Verlauf der Sammelrinne begann eher zufällig und folgte lokalen Mulden und Vertiefungen der Landoberfläche. Weil die Saane als Vorfluter der jungen Aare gegen hundert Meter tiefer lag als die Schotterfelder von Bern, begann sich die Aare bald kräftig rückwärts in die Landschaft einzuschneiden. Sie hatte dabei ausserordentliche Hindernisse zu überwinden, wie etwa die Molasse auf weite Strecken zwischen Halenbrücke und Mühleberg zu erodieren, oder den Riegel aus Molasse und Lockergestein zwischen Kleinem Bremgartenwald und der Birchiwaldhöhe hinter Stuckishaus.

Das rund 60 m tief in die Landschaft eingeschnittene Aaretal zwischen Muri/Selhofen und Mühleberg ist durch mindestens drei bis vier Flussterrassen (Gerber unterscheidet auf seiner 1927 erschienenen Karte vier) gekennzeichnet, deren erhaltene Teilstücke den heutigen Aarelauf beidseitig begleiten. Sie sind auf der Baugrundkarte als postglaziale Flussterrassen mit I, IIa, IIb, III bezeichnet.

Textfigur 19: Grenzen des Aaretales und Verlauf der Aare heute.

Dazu kommen im Worblental, an der Grenze des Kartenblattes, die eigenständigen, aber mit den Aaretalterrassen vergleichbaren Flussterrassen I' und II'. Die Bildung der Flussterrassen hängt eng mit den Schwankungen des Würm-II-Aaregletschers zusammen:

- Ein Gletscherrückgang bedeutet viel Schmelzwasser, was zur Vertiefung des Tallaufes führt.
- Der Gletscherstillstand bildet Moränenwälle und Schotterfelder. Der Wasserabfluss stagniert, die Seitenerosion verdrängt die Tiefenerosion. Das Schotterfeld kann sich talabwärts ausdehnen und den Talboden aufschottern.

Die vermuteten Zusammenhänge lassen sich vereinfacht wie folgt darstellen:

Aare/Worble	Gletscher
Erste Eintiefung etwa 10 m	Rückzug vom Bern-Stadium
Flussterrasse I z. B. Rossfeld	Schosshalden- oder Wittigkofen-Stadium?
Zweite Eintiefung 25–30 m	Rückzug
Flussterrassen II (a + b)/I' z. B. Lorraine, Berner Altstadt/Ey	Muri-Stadium
Dritte Eintiefung etwa 40 m	Rückzug
Flussterrassen III/II' z. B. Rabbental, Eymatt/Schärme	Jaberg-Stadium?
Heutige Eintiefung etwa 60 m	Rückzug in die Alpen

Die Beobachtung, dass z.B. die Flussterrasse II der Altstadt an der Spitze der Halbinsel tiefer liegt als am obern Ende, lässt sich damit erklären, dass bei Mäandern der Sporn (die Halbinsel, der Gleithang) an der Spitze jünger ist als an der breiten Innenseite.

Heute beobachtet man Aufschotterungen im Aaretal vielfach als Folge künstlicher Eingriffe. Beispiel: Kiesablagerungen in der Matte unterhalb der Aareschwelle.

Das Eintiefen der Aare hat ihre Seitenbäche veranlasst, im Unterlauf ebenfalls kräftig einzuschneiden (Nussbaum 1916, S. 20). Eines der deutlichen Beispiele ist die Gäbelbachschlucht durch die Untere Süsswassermolasse zwischen Eichholz und Riedernwald im Westen der Stadt.

Recht kompliziert und wenig übersichtlich sind die Verhältnisse am Unterlauf von Sulgenbach und Stadtbach. Die tiefe Lage des Vorfluters (Aare) hat dazu geführt, dass viel Lockergestein aus dem Mattenhofgebiet ausgeschwemmt und in der Aare weggeführt wurde. Dabei haben wir davon auszugehen, dass Sulgenbach

und Stadtbach bis zur künstlichen Ablenkung des letzteren in die Stadt – 1249 erstmals urkundlich erwähnt (Wyss, 1943) – gemeinsam oder sogar vereinigt durch das Mattenhof-Sulgenbachquartier der Aare zuflossen. Nach dem Durchbruch der beiden Bäche durch die Berner Wallmoräne beim heutigen Loryplatz hat die rückschreitende Erosion auch die periglazialen Schotterfelder zerschnitten. Der Stadtbach räumte das Gebiet von Holligen bis auf die feinkörnige Rückstausediment-Unterlage der hier etwa 10 m mächtigen Schotter aus. Er lagerte wahrscheinlich einen Teil davon auf seinem Weg zum Vorfluter im Mattenhofgebiet wieder ab. Der Sulgenbach schnitt sich entlang der heutigen Könizstrasse ebenfalls rund 10 m in die Liebefeldschotter ein.

Solches Material diente ohne Zweifel teilweise der Aufschotterung jüngerer Talböden im Aaretal bis ins Seeland.

- Verwitterung und Umlagerung eiszeitlicher Lockergesteine im Holozän

Im Kontakt mit Atmosphäre, Hydrosphäre und Biosphäre erfolgt Verwitterung, zudem Abtragung und Aufschüttung. So wurde z. B. durch Regenwasser Lockergestein von steilen Hängen abgeschwemmt und in flacheren Geländeabschnitten abgelagert. Unter Einwirkung der Schwerkraft gerieten andernorts Hangpartien in Bewegung und führten zu Rutschungen. Dieser Vorgang hält an. Allerdings ist er heute infolge der schützenden Vegetationsdecke, aber auch mit Hilfe menschlicher Massnahmen, weniger wirksam als zu Beginn des Holozäns.

Je nach ihrer Art der Entstehung unterscheiden wir folgende holozäne Ablagerungen auf der Baugrundkarte:

Gehängeschutt Bachschuttkegel Verlandungssedimente Alluvialböden

Der Gehängeschutt ist je nach seiner Herkunft unterschiedlich zusammengesetzt. Daher besteht z. B. die Halde eines Erosionsrandes von Schotterfeldern und Terrassen vorwiegend aus Kies. Gehängeschutt ist locker gelagert; die Transportdistanz ist kurz und die Korngrösse nimmt meist von oben nach unten zu. Ausnahme: Verschwemmung durch Wasser. An ihrer Sohle flachen Gehängeschutthalden meist aus.

Bachschuttkegel sind fächerförmige Hangfuss-Ablagerungen von Geschiebe durch Bäche und kleinere Rinnsale. Ihr Material kann je nach Herkunft grob bis feinkörnig sein. Im Gegensatz zum Gehängeschnitt nimmt hier die Korngrösse von oben nach unten ab, ist aber stark von der Wasserführung abhängig. Hochwasserstände können ganze Geländestufen und Talebenen mit Geröll überführen.

Verlandungssedimente sind meist feinkörnige Ablagerungen von und in stehenden Gewässern. Im weitesten Sinn gehören dazu die Auenlehme, die im randlichen Stillwasser der Aare entstehen. Verlandungssedimente sind meist deutlich geschichtet und stehen oft in enger Beziehung zu organischen Ablagerungen.

Alluvialböden unserer Kartierung sind im Gegensatz zu den Verlandungssedimenten von wechselhafter Zusammensetzung von Ton bis Kies mit Steinen. Wir bezeichnen damit subrezente, d. h. sehr junge Verschwemmungen, die nicht ohne weiteres einem der andern holozänen Ablagerungstypen zugewiesen werden können. Meist handelt es sich um humoses Material in Geländemulden, jungen Talböden und an Hangfüssen.

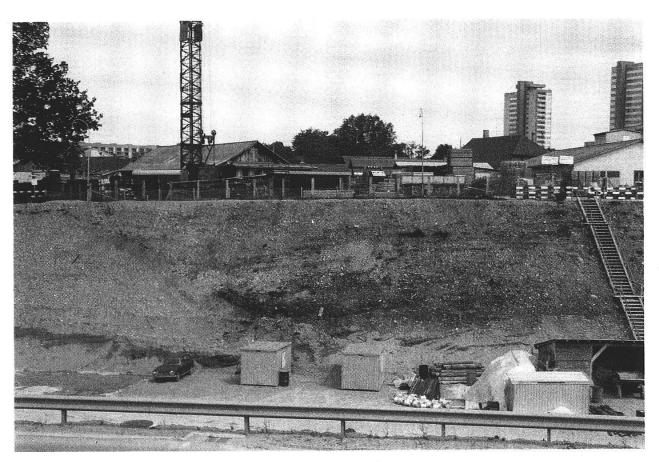
- Mineralische und organische Ablagerungen

Ausser der erwähnten Umlagerung bestehender Gesteine kam es im Holozän auch zur lokalen Neubildung von biogenen Sedimenten.

Der Quelltuff oder Kalksinter ist eine mineralische Kalkausscheidung aus karbonathaltigem Quellwasser. Obwohl Quelltuff im bernischen Mittelland keine Seltenheit ist, liegt in unserem Kartengebiet nur ein einziges nennenswertes Vorkommen, nämlich im Jordental nördleh von Bümpliz. Das Quellwasser, das diesen Kalktuff abgelagert hat, stammt aus den grossen Schotterfeldern von Bümpliz und gehört zu einer Gruppe von Quellen, die durch die Erosion des Aaretales angeschnitten wurden. Der Tuff oder Sinter ist ausserordentlich porös und kann einen hohen Wassergehalt (50.5–107.7% in % des Trockengewichtes) besitzen. Seine Tragfähigkeit ist dann sehr gering. Im Gegensatz zu andern Quelltuff-Vorkommen (Toffen), die verfestigt sind, kann er nicht als Baustein verwendet werden. Das Vorkommen liegt im Talboden des Jordentälchens, ist über 500 m lang und lokal bis 8 m mächtig.

Torfe sind Bildungen organischer Natur. Ihre Entstehung verdanken sie der Verrottung und Umwandlung von pflanzlichen Bestandteilen unter anaerobischen, d. h. Sauerstoff-armen Bedingungen. Alte Gletschergebiete, insbesondere mit feinkörnigen Böden, bieten dank ihren Tümpeln und Seelein ein geeignetes Milieu für die Entwicklung lokaler Torfmoore und Torflinsen. Seltener finden wir sie auch in Schotterfeldern und entlang Verlandungstümpeln von Bachläufen. Grundbedingung ist ein Untergrund aus feinkörnigen Sedimenten, also ein Wasserstauer.

Von den zahlreichen Torfvorkommen auf unserer Baugrundkarte verdienen einige besondere Erwähnung. Mit einer Torfmächtigkeit von bis zu 12 m ist die Torflinse am Freudenbergerplatz die dickste. Wegen seiner ungewöhnlichen Lage in einem Schotterfeld verdient das Torfvorkommen im Murifeld an der Weltpoststrasse mit einer Mächtigkeit von etwa 3 m besondere Erwähnung. Zwischen Holli-


gen und Mattenhof wurden in Bohrungen und Baugruben Torfvorkommen festgestellt, die den natürlichen postglazialen Lauf Stadtbach/Sulgenbach begleiten. Beide Bäche sind heute kanalisiert. Im Gebiet Bümpliz Nord sind torfige Verlandungssedimente nachgewiesen, die möglicherweise auf eine früh-holozäne Verbindung Stadtbach-Gäbelbach hinweisen. Torflinsen haben, besonders wenn sie verdeckt sind, die unangenehme Eigenschaft, sich bei Entwässerung durch Grundwasserabsenkung als Terrainsenkungen bemerkbar zu machen.

3.34 Die künstlichen Auffüllungen

Das auf der Baugrundkarte klar ersichtliche, weit verbreitete Auftreten von künstlicher Auffüllung in den obersten vier Metern der Sondierungen im Raume Bern zeigt, wie stark die von Menschenhand erzeugten Veränderungen fortgeschritten sind.

Auf der Baugrundkarte lassen sich drei Haupttypen von künstlichen Auffüllungen unterscheiden. Kartiert sind nur die verifizierten Vorkommen.

a) Lokale Vorkommen von geschüttetem Material, z.B. in alten Baugruben. Erkennbar an der auf den Aufschluss beschränkten Signatur, ohne grössere flächenhafte Ausdehnung.

Textfigur 20: Kehrichtdeponie in alter Kiesgrube; N1 bei Brünnen.

- b) Auffüllung von alten, aufgelassenen Kiesgruben. Fläche begrenzt auf die Umrisse der Kiesausbeutung. Meist aus Feldbegehung oder alter topographischer Karte abgeleitet. Sondierungen selten.
 Über den Inhalt der meisten Auffüllungen wird auf der Karte nichts ausgesagt. In besonderen Fällen wie z. B. in Brünnen, Bern-West, wo es sich um eine rund 8 m mächtige städtische Deponie von Industrieabfällen handelt, steht auf der Karte die Bezeichnung Ka Ke, gleichbedeutend mit Kiesgrube aufgelassen, Kehricht.
- c) Aufschüttung: z. B. für Bahnanlagen (Ostermundigen, Weyermannshaus (bis 6 m); Strassenanlagen (grosse Allmend); Wehrbauten (Bollwerk, grosse Schanze); Landgewinnung: Aarehang Schüttestrasse/Postgasshalde (Brandschutt vom 14. Mai 1405); Planierung: Verkehrsanlage Freudenbergerplatz bis 6 m Aufschüttung über Torflinse (als Torflinse kartiert). Oft an den Geländeformen erkennbar. Lokal durch Bohrresultate bestätigt.

4. Hydrogeologische Daten (Vergleiche Legende, 4. Teil)

Der Boden von Bern ist reich an unterirdischem Wasser. Seine Nutzung hat sich in neuerer Zeit von den Quellen auf das Grundwasser verlagert. Andererseits aber wird infolge dichter Überbauung dem Boden immer mehr Meteor-, Sicker- und Grundwasser entzogen. Als sogenanntes Sauber- oder Fremdwasser wird ein Teil davon über die öffentliche Kanalisation der ARA zugeführt.

Auch Quellwasser wird vielfach ungenutzt in die Kanalisation oder direkt in einen Vorfluter (Aare) geleitet. In seltenen Fällen wird unerwünschtes Bodenwasser in tief liegende Grundwasserträger versickert.

Um dem Boden und der Vegetation die Wasserreserven zu erhalten, werden heute durch Bund, Kantone und Gemeinden mehr und mehr gesetzliche und technische Massnahmen ergriffen mit dem Ziel, den natürlichen Wasserhaushalt im Boden wieder herzustellen oder zu erhalten. Gleichzeitig werden so die öffentlichen Kanäle und die ARA von der Zufuhr unerwünschten Fremdwassers entlastet.

4.1 Quellen

Im Gebiet der Gemeinde Bern sind über 200 Quellen registriert. Fast alle befinden sich in Privatbesitz. Die Mehrzahl der Quellen entspringt im Aarehang. Zwischen Nydegg- und Lorrainebrücke allein sind es über vierzig, meist grundbuchlich verbriefte Quellrechte, vorwiegend am rechten Talhang.

Zahlreiche Quellen sind aufgelassen, zum Teil weil sie versiegt sind, zum Teil weil sie ihre Bedeutung verloren haben und nicht mehr unterhalten werden (Altstadt, Altenberg, Monbijou).