Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft in Bern

Herausgeber: Naturforschende Gesellschaft in Bern

Band: 35 (1978)

Vereinsnachrichten: Bernische Botanische Gesellschaft : Sitzungsberichte aus dem Jahr

1977

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bernische Botanische Gesellschaft

Sitzungsberichte aus dem Jahr 1977

436. Sitzung vom 17. Januar 1977

a. Geschäftlicher Teil

Der Vorstand für 1977 setzt sich wie folgt zusammen: Präsident: Dr. O. Hegg; Kassierin: Frl. Th. Berger; Sekretärin: Frau Dr. B. Amann; Redaktor: PD Dr. S. Wegmüller; Beisitzer: Dr. R. Brändle, Dr. H. Frey, H. Gerber, Prof. Dr. G. Lang und Dr. A. Saxer. Rechnungsrevisoren: Herr R. Fischer und Frl. G. Gebhart. Die Versammlung beschliesst, die Jahresbeiträge auf der gleichen Höhe zu belassen. Sie belaufen sich für Mitglieder des Ortskreises Bern auf Fr. 12.-, für Auswärtige auf Fr. 10.-, für Studenten und Schüler auf Fr. 7.-. Die Mitgliedschaft auf Lebenszeit kann durch einen einmaligen Beitrag in der Höhe des dreissigfachen jeweils gültigen Jahresbeitrages erworben wer-

b. Wissenschaftlicher Teil

Mitteilungsabend

Vortrag von Herrn Dr. H. FREY, Bern: Begegnung mit fremdländischen Pflanzen inner- und ausserhalb der Heimat

"Kennt man den Namen nicht, so ist die Kenntnis vom Ding wertlos" (Isidor von Sevilla). In öffentlichen Gärten und Parkanlagen begegnen wir immer wieder exotischen Pflanzen, die oft schwierig zu bestimmen sind. Für freundliche Hilfe danke ich den Herren Willy Liechti, Henri Mathez, Heini Mathys und Dr. Rourke vom Botanischen Garten Kirstenbosch in Südafrika. Es wurden 50 Arten im Farblichtbild gezeigt, wovon die folgenden erwähnt seien:

Bern: Thunbergia alata (Kleine Schanze); Cassia corymbosa (Parkterrasse); Lobelia fulgens, Hydrangea sargentiana, Hibiscus rosa sinensis (vor dem Hauptgebäude der Universität).

Aeschi b. Spiez: Orchideenprimel (Primula littoniana) als Topfpflanze in einem Blumenladen.

Interlaken: *Clerodendron trichotomum*, eine strauchige Verbenacee aus Japan, beim kleinen Weiher in der Mitte des Höheweges.

Locarno-Monti: Akebia quinata, eine ostasiatische Lardizabalacee, verwildert oberhalb der Madonna del Sasso.

Friedrichshafen: Salvia involucrata in den Anlagen am See.

Meersburg: Browallia speciosa und Abutilon megapotamicum im Blumenschmuck unter den Lauben der Fachwerkhäuser an der Steigstrasse.

Granada (SP): Fabiana imbricata, eine erikoide Solanacee aus Südamerika, in den Gärten der Alhambra. Cestrum elegans im Generalife.

Almunécar (SP): Melonenbaum (Carica papaya) mit Früchten in einem Garten. Catharanthus roseus var. alba, "la pervenche de Madagascar", als Kübelpflanze.

Algeciras (SP): Lampranthus conspicuus, Cassia didymobotrya, Greyia sutherlandii im Park des Hotels Reina Cristina.

Funchal (Madeira): Nur eine kleine Auslese aus dem Blütenzauber dieser Atlantikinsel: Aus dem Botanischen Garten der australische Baumfarn Alsophila Cooperi mit grossen Blattnarben, die mexikanische Agavacee Nolina recurvata mit flaschenartig verdicktem Stamm. Aus dem Jardîm Sao Francisco die baumförmige Hydrophyllacee Wigandia caracasana und der südamerikanische Korallenbaum Erythrina speciosa. Aus verschiedenen Gärten: Tecoma ricasoliana, Pyrostegia venusta, Agave attenuata mit 2 m langem, schwanenhalsartig zur Erde gekrümmtem Blütenstand.

Vortrag von Frl. A. TRÖHLER, Bern: Zytotaxonomische Untersuchungen an Ranunculus ficaria in der weitern Umgebung von Bern

Es sei auf die in den Mitteilungen der Natf. Ges. in Bern, NF, 33. Bd., S. 21-28, erschienene Arbeit verwiesen.

Vortrag von Herrn PD Dr. S. WEGMÜLLER, Bern: Pollenanalytische Untersuchungen über die Siedlungsverhältnisse der frühneolithischen Station Egolzwil 5

Prof. Dr. E. Vogt und Dr. R. Wyss vom Schweizerischen Landesmuseum in Zürich führten im Jahre 1966 in der am Rande des Wauwilermooses (LU) gelegenen frühneolithischen Station Egolzwil 5 eine Grabung durch. Dabei entnahmen sie einer Stichwand drei überlappende Kastenprofile, die sie mir zur pollenanalytischen Untersuchung überliessen. Mit der Analyse des in den Sedimenten eingelagerten fossilen Pollens suchten wir einerseits ein Bild der Vegetationsdecke zu erhalten, die zur Zeit der Besiedlung durch die jungsteinzeitlichen Jäger-Bauern in der Gegend des Wauwilermooses vorgeherrscht hatte, andererseits interessierte uns die Frage, welche Rückschlüsse die Pollenspektren auf die Anfänge des Ackerbaus im Mittelland erlaubten? Die frühern pollenanalytischen Arbeiten von H. Härri (1940) über das Wauwilermoos und insbesondere jene von J. Troels-Smith (1955) über die Station Egolzwil 3 ermöglichten dabei wertvolle Vergleiche und boten auch Anhaltspunkte zur zeitlichen Einstufung der Kulturschicht der Siedlung Egolzwil 5.

Das bei der Untersuchung erarbeitete Diagramm zeigt, dass die kleinflächige Siedlung Egolzwil 5 zu einer Zeit entstanden ist, in der Buche und Weisstanne den Eichenmischwald auch im Mittelland schon weitgehend verdrängt hatten. Eine Radiokarbondatierung des ¹⁴ C-Labors in Bern (Prof. Dr. H. Oeschger) ergab für die Siedlung eine Zeitstellung von 3070 ± 100 v. Chr. (nicht korrigierter Wert). Den Pollenspektren zufolge ist sie jünger als Egolzwil 3, für deren Umgebung J. Troels-Smith (1955) ein stärkeres Hervortreten des Eichen-

mischwaldes und der Buche hatte nachweisen können. Nach einer weitern ¹⁴C-Datierung betrug der Unterschied jedoch nur rund 250 Jahre. Beide Siedlungen liegen also zeitlich im Bereich des Übergangs vom Atlantikum zum Subboreal.

Innerhalb der Kulturschicht von Egolzwil 5 konnten zahlreiche Getreidepollen nachgewiesen werden. Die Siedler dürften auf kleinflächigen Brandrodungsplätzen Weizen und auch etwas Gerste angebaut haben. Es fanden sich ebenfalls Pollen von Segetalpflanzen, wie Centaurea Cyanus, Polygonum aviculare sowie Convolvulus arvensis und auch von weitern Kulturzeigern wie Artemisia, Plantago lanceolata, Plantago major/media und Arten der Chenopodiaceae. Die verhältnismässig hohen Anteile von Allium ursinum-Pollen innerhalb der Kulturschicht liessen vermuten, dass die Bewohner die Pflanze in grössern Mengen in die Siedlung eingetragen haben. Wahrscheinlich wurden auch Zweige von Linde, Esche und Ahorn (Viehfutter?) sowie blühende Triebe des Efeus eingebracht. Nach dem Auflassen der Rodungsflächen erfolgte die Wiederbewaldung durch Haselsträucher und Birken, auf feuchtern Plätzen durch Erlen und Weiden.

Ob die Siedlung am oder im Wasser gestanden hatte, war aufgrund der Pollenspektren nicht zu entscheiden. Nach Ansicht der Archaeologen stand die Station auf dem Land, in der Nähe des Seeufers. Bei der Analyse der Kulturschicht waren nun aber recht hohe Anteile des Seerosen-Pollens festzustellen. Ausserdem fanden sich viele Kolonien der Grünalge Pediastrum. Der Schluss liegt daher nahe, der Siedlungsplatz sei zumindest zeitweise überschwemmt worden. Wie bei vielen andern neolithischen Stationen an den Ufern der Mittellandseen dürfte auch hier eine dauernde Überflutung, die entweder durch Absinken des unverfestigten Uferstreifens oder durch einen starken Anstieg des Seespiegels bedingt war, die Bewohner zur Aufgabe der Siedlung gezwungen haben.

Literatur:

Härri, H., 1940. Stratigraphie und Waldgeschichte des Wauwilermooses. Veröffentl. d. Geobot. Forschungsinst. Rübel 17, 104 S.

Troels-Smith, J., 1955. Pollenanalytische Untersuchungen zu einigen schweizerischen Pfahlbauproblemen. In: Das Pfahlbauproblem, Monographien zur Ur- und Frühgeschichte der Schweiz 11, 9-58.

Wyss, R., 1976. Archäologische Forschungen. Das jungsteinzeitliche Jäger-Bauerndorf von Egolzwil 5 im Wauwilermoos. Naturwissenschaftliche Beiträge: Hans R. Stampfli, Samuel Wegmüller, Fritz H. Schweingruber. Schweiz. Landesmuseum Zürich, 162 S.

Autorreferat

Vortrag von Herrn Dr. K. LAUBER, Bern: Schönheit im Kleinen; Pflanzensamen vor der Makrolinse

437. Sitzung vom 31. Januar 1977

Vortrag von Herrn Prof. Dr. O. LANGE, Würzburg: *Photosynthese auf Standorten von Wüstenpflanzen*

438. Sitzung vom 14. Februar 1977

Vortrag von Herrn Prof. Dr. G. LANG, Bern: Die Pflanzendecke der Australischen Alpen

Der Vortragende verbrachte 1965 einen achtmonatigen Forschungaufenthalt in Südostaustralien. Dieser bot Gelegenheit, neben eigenen Studien über die Gebirgsvegetation auch andere Vegetationsgebiete des subtropischen und gemässigten Australiens kennenzulernen. Der Vortrag ging dementsprechend von einer geographisch-geologischen Übersicht über den ganzen Kontinent aus (1), skizzierte anschliessend die Grundzüge der australischen Flora (2) sowie der australischen Vegetation (3) insgesamt und behandelte dann die Pflanzendecke des südostaustralischen Gebirgsraumes (4).

(1) Australien besitzt eine Flächenausdehnung von 7,7 Mio km² und ist damit etwa so gross wie die USA und rund 180 mal so gross wie die Schweiz. Die Einwohnerzahl beträgt aber nur rund 13 Mio., von denen zwei Drittel in den küstennahen Städten im Südwesten und

Südosten leben. Geographisch-geologisch lassen sich drei Grossräume erkennen: Der westaustralische Schild, ein aus einem präkambrischen Festlandskern bestehendes Plateau,
ferner die mittelaustralische Tiefebene, eine
Geosynklinale mit mesozoischen und tertiären
Ablagerungen, schliesslich das ostaustralische
Hochland, ein paläozoisches Faltengebirge mit
Erhebungen bis über 2200 m ü. M. in den
australischen und viktorianischen Alpen.

(2) Die australische Gefässpflanzen-Flora umfasst etwa 12 000 Arten, von denen mehr als 90 Prozent endemisch sind; von den rund 1700 Gattungen kommen etwa 30 Prozent nur in Australien vor. Das beleuchtet die ausgeprägte Eigenständigkeit des australischen Florenreiches. Charakteristische und vegetationskundlich wichtige Sippen sind die Gehölzgattungen Eucalyptus (mit rund 600 Arten) aus der Familie der Myrtaceen und Acacia (mit rund 600 Arten) aus der Familie der Mimosaceen. Bezeichnend sind ferner, neben vielen anderen, die Gattungen Banksia und Grevillea (Proteaceen), Casuarina (Casuarinaceen), die Grasbäume der Gattungen Xanthorrhoea und Kingia (Xanthorrhoeaceen), die Känguruhpfote Anigosanthos (Haemodoraceen) und Vertreter endemischen Familien Brunoniaceen, Tremandraceen u. a.

(3) In der Vegetationsverteilung auf dem Kontinent tritt die Abhängigkeit von den Standortsbedingungen modellartig klar hervor, der grossräumigen und einfachen Landschaftsund Klimagliederung entsprechend. Im immerfeuchten Äquatorialklima entlang der Nordostküste finden sich tropisch-subtropische Regenwälder in aufgesplitterter Verteilung. tropische Norden mit Sommerregen und Wintertrockenheit ist durch Eucalyptus-Savannen gekennzeichnet, während der Hauptteil Australiens mit aridem Klima im Landesinnern von Chenopodiaceen-Halbwüste und Casuarina- und Acacia-Trockenbusch eingenommen wird. Der äusserste Südwesten und Südosten mit sommer-trockenem Mediterranklima weist Eucalyptus-Busch (Mallee) und Eucalyptus-Hartlaubwald auf, während das gemässigte südost-australische Hochland mit ausgeglichenerem Niederschlagsklima in Küstennähe von Eucalyptus-Hartlaubwald und Eucalyptus-Lorbeerwald beherrscht wird.

(4) Im südostaustralischen Gebirge, das aus diesem Waldland aufragt, lassen sich im einzelnen südlich Canberra folgende Vegetationsstufen erkennen: Die Plateaulagen der kollinen Stufe bis 700/800 m ü. M. weisen baumfreies Grasland, offene Eucalyptus-Savanne und Eucalyptus-Hartlaubwald auf, die Flüsse sind häufig Casuarina-Auwäldern von gesäumt. montane Stufe zwischen 700/800 m und etwa 1500 m wird auf trockenen Standorten von Eucalyptus-Hartlaubwald, auf feuchten Standorten von Eucalyptus-Lorbeerwald mit Baumfarnen bedeckt. In der darüber anschliessensubalpinen Stufe stockt immergrüne Eucalyptus-Krummholzvegetation, daneben gibt es Versumpfungsmoore mit Sphagnum und Epacridaceen. Über die alpine Waldgrenze, die

zwischen 1700 und 1900 m ü. M. liegt, ragen nur die höchsten Lagen hinaus. Hier kommen neben Zwergstrauch- und Steinschuttgesellschaften auch alpine Rasen mit auffällig vielen Compositen vor, sowie Schneetälchengesellschaften.

Literatur:

Costin, A. B., 1954. A Study of the Ecosystems of the Monaro Region of New South Wales. Sydney. 860 S.

Lang, G., 1970. Die Vegetation der Brindabella Range bei Canberra. Eine pflanzensoziologische Studie aus dem südostaustralischen Hartlaubgebiet. Akad. Wiss. Lit. Mainz, Abh. Math.-Naturwiss. Kl. Jahrg. 1970. Nr. 1. 98 S. McVean, D. N., 1969. Alpine Vegetation of the Central Snowy Mountains of New South Wales. J. Ecol. 57, 67–86. Autorreferat

Subalpine Stufe in den Australischen Alpen (Snowy Flats in der Brindabella Range, 1600 bis 1700 m ü. M.). Im Vordergrund und auf den Granitkuppen im Hintergrund Eucalyptus niphophila-Wald (Krummholz), in der Mulde im Mittelgrund ein Epacris-Sphagnum-Versumpfungsmoor. Foto: G. LANG.

439. Sitzung vom 21. Februar 1977

Vortrag von Herrn Dr. K. AMMANN, Bern: Pflanze und Gletscher. (Gemeinsam mit der Naturforschenden Gesellschaft Bern im Rahmen der Vortragsreihe "Gletscher")

440. Sitzung vom 28. Februar 1977

Vortrag von Herrn Dr. K. AMMANN, Bern: Streiflichter auf die Vielfalt nordamerikanischer Vegetation

Während eines Studienaufenthaltes im Südosten der Vereinigten Staaten unternahm der Verfasser 1976, zusammen mit seiner Frau, ausgedehnte Exkursionen, die einen ersten Einblick in die vielfältigen Vegetationstypen dieses riesigen Landes boten. Von den Subtropen Floridas über die südlichen Appalachen ging es hinauf bis zu den subarktischen Berghöhen der White Mountains im Nordosten. Aber auch der Westen lockte unwiderstehlich: Eindrücklich waren neben den weiten Flächen der Prärie vor allem die gigantischen Redwoods nördlich von San Francisco und die alpine Vegetation der Sierra Nevada (Yosemite National Park) und der Front Range der südlichen Rocky Mountains bei Boulder, Colorado.

Der Kürze halber seien hier nur die Vegetationsbeschreibungen des südöstlichen Nordamerikas mit Ausschluss der Gebirgswälder der südlichen Appalachen wiedergegeben.

1 Einige Vegetationstypen des südlichen Floridas

Über die Pflanzen- und Tierwelt der Everglades im südlichen Teile Floridas berichtete der Verfasser, zusammen mit Prof. F. Steck, am 13. Dezember 1976 in dieser Gesellschaft. Eine kurze Zusammenfassung des botanischen Teils dieses Vortrags sei hier nachgeholt.

Die Südspitze Floridas, bereits in subtropischer, fast völlig frostfreier Klimazone, erhält mittlere Niederschlagsmengen von 900 bis 1600 mm, die vorwiegend im Sommer fallen. Winters herrscht, bis in den April hinziehend, eine Trockenperiode, deren Wirkung auf die

Vegetation noch durch die erfolgten künstlichen Grundwasserabsenkungen in grossen Teilen Südfloridas erhöht wurde: Hunderte von Kanälen entwässern heute grosse Kulturflächen nördlich des etwa 600 000 ha umfassenden Everglades-Nationalparkes nach E in Richtung Miami. Leider erkannte man zu spät, dass dadurch den Sumpfgebieten des Südens immer mehr Wasser entzogen wurde: Sie beziehen einen Teil des Wassers aus den Quellgebieten um den Lake Okeechobee weit nördlich der heutigen Park-Nordgrenze. In einem an die 100 km breiten Band durchzieht der von den Einheimischen River of the Grass genannte "Fluss" in fast unmerklichem Tempo die topfebenen Everglades bis zur Südspitze Floridas, nun leider vielfach durchschnitten durch die Entwässerungskanäle.

So ist es nicht verwunderlich, dass die früher durchaus natürlich vorkommenden und zum Teil sogar biotoperhaltenden Busch- und Steppenfeuer heute für die Parkverwaltung zunehmend problematischer werden (vgl. auch Kap. 1.3). Je stärker die obersten Bodenschichten austrocknen, desto zerstörerischer wirken die Feuer. Neben Mensch, Wasser und Feuer dürfen wir eine dritte Kraft nicht vergessen, die tiefgreifende Veränderungen in der Landschaft der Everglades mit sich bringt: Die Südspitze Floridas wurde in der Zeit von 1901 bis 1955 von über 20 tropischen Wirbelstürmen heimgesucht, die schweren Schaden anrichteten. Vor allem die Hurrikane von 1935, "Donna" 1960 und "Betsy" 1965 vernichteten z. B. beinahe alle alten Mangrovenbestände Südfloridas. Für einige weitere Jahrzehnte also gehören die bis zu 30 m hohen reifen Mangrovenbestände Floridas der Vergangenheit an. Heute findet man überall wieder kräftigen Jungwuchs. Es war nicht so sehr die vollständige Entlaubung der Strandgehölze durch die Orkanwinde, sondern das Zudecken meilenweiter Flächen mit einer undurchlässigen, bis zu 15 cm dicken Schlammschicht, die die Hurrikane-Springflut von etwa 3 m Höhe brachte. Die Mangrovengehölze konnten in den ersten sechs Wochen gerade noch neues Laub treiben, dann aber ersticken sie offenbar: Bald einmal war das ganze Wurzelwerk erstickt und verfault.

Im folgenden seien ganz summarisch einige der wichtigsten Vegetationstypen beschrieben.

1.1 Die Everglades

Es sind gehölzfreie, von Cyperaceen und Gramineen beherrschte Sumpfgesellschaften, die nur am Ende der Trockenzeit kein anstehendes Wasser zeigen. Sie beherrschen den grossen Teil des Inneren Südfloridas. Im Vegetationsbild überwiegt bei weitem die Schneidebinse, Cladium jamaicense; sie kann über 3 m hoch werden, doch ist sie nahe mit unserem einheimischen Cladium mariscus verwandt, eventuell sogar identisch mit diesem. Panicum-, Paspalum-, daneben auch Spartinaarten spielen unter den Gräsern eine wichtige Rolle. Eher erstaunt ist man ob dem Vorkommen von Schoenus nigricans. Die fremdartigen Eriocaulaceae mit ihren weissen kleinen Blütenköpfchen, aber auch etwa die prächtige Liliacee Crinum americanum können das monotone Bild etwas auflockern. Moose und Flechten fehlen wohl vollständig, ebenso in den nächstfolgenden Beständen.

1.2 Mangroven-Sümpfe und Salzmarschen

Diese sonst streng tropischen Pflanzen flacher Meeresstrände bilden einen recht breiten Saum an der Südspitze der Halbinsel Florida.

Es dominiert die in der Kampfzone der Meeresbrandung eigenartig stelzwurzelige Rhizophora mangle, die aber auch weit landeinwärts in reinen Süsswassersituationen gefunden wurde. Wie es der Pflanze gelingt, mit dem normalerweise tödlich wirkenden hohen Salzgehalt des sauerstoffarmen Schlammbodens in Küstennähe fertigzuwerden, ist noch heute ungeklärt. Fast ebenso weit wie die rote Mangrove schieben sich an der Küste die weissen und die schwarzen Mangroven vor (Laguncularia Combretaceae Avicennia racemosa, und geminans, Verbenaceae). Sie kämpfen gegen die vor allem hinderliche Sauerstoffarmut des Bodens durch die Bildung von Luftwurzeln (Pneumatophoren), die als dezimeterlange "Finger" zahlreich aus dem Schlamm ragen. An noch weniger vom Meer beeinflussten Standorten (z. B. Randzone des Mahogany Hammocks im Everglades National Park) findet sich oft bestandesbildend eine weitere Cormbretacee: *Conocarpus erecta*, Buttonwood. Dieser oft über mannshohe Strauch mit den maulbeerähnlichen Früchten kann nur noch entfernt zu den Mangroven gerechnet werden.

Hinter diesen Mangrovengebüschen gibt es z. B. in der Flamingo Bay ganz an der Südspitze des Everglades-Parkes, auf schweren, tonigen Böden ausgedehnte Salzmarschen, die nur noch bei Hurrikanen von Meerwasser überspült werden. Darin machen sich mit langen Ausläufern Herden der tropischen Chenopodiacee Batis maritima breit, aus derselben Familie sind auch Suaeda linearis. S. fruticosa und verschiedene Salicornia-Arten zu nennen. Sesuvium portulacastrum (Aizoaceae), Alternanthera maritima und A. ramosissima (Amaranthaceae), Heliotropium curassavicum und H. angiospermum (Boraginaceae) gehören ebenfalls zu den auffallenden Arten.

1.3 Föhrenwälder

Neben den hier nicht besprochenen flechtenreichen Föhrenwaldtypen trockener Standorte (z. B. mit Pinus clausa, Sand Pine, Lyonia ferruginea, Ericaceae, der kriechenden Palme Serenoa repens und der Flechte Cladonia evansii) faszinieren in den Everglades vor allem die feuchteren Kiefernwälder, in denen der Grundwasserstand wenigstens in der feuchteren Jahreszeit so hoch steht, dass man versucht ist, von eigentlichen Moor-Kiefernwäldern zu sprechen. In Florida dominiert an solchen Standorten die auch forstlich geförderte Pinus caribaea sensu Small, die mit der Slash Pine, Pinus elliotii nahe verwandt ist. In den nördlich anschliessenden Staaten der USA wird sie abgelöst durch die Pond Pine, Pinus serotina. Dank ihrer viele Zentimeter dicken Borken sind diese Kiefernarten imstande, rasch fortschreitende, oberflächlich wirkende Buschfeuer zu überstehen. Ja, man kann sogar sagen, dass diese Bestände den regelmässigen Feuern recht eigentlich ihre Existenz verdanken: Nur so werden die lichtliebenden Kiefern von den feuerempfindlichen immergrünen Laubhölzern nicht auskonkurrenziert. In diesen auch etwa "Savannah" genannten Moorkieferwäldern ist der

feuchte Grund bedeckt durch Gräser und Seggen, darin gedeihen etwa auch *Pinguicula lutea*, eine prächtig gelb blühende Fettkrautart und *Calopogon pulchellus*, eine Orchidee mit lila gefärbten, nicht resupinierten Täuschblumen, die an der fahnenartig aufgerichteten Lippe lange, gelbliche Borstenbüschel als scheinbare Blütenstaubquelle darbietet, worauf pollenfressende Hummeln oder schwere Holzbienen auch prompt hereinfallen.

1.4 Hammock – Wälder im südlichen Florida

Meist als kleine Inseln brandgeschützter immergrüner Laubwälder in die Everglades-Sümpfe eingestreut, bieten diese artenreichen und pflanzensoziologisch noch nicht ausreichend studierten Bestände ein üppiges, tropisches Bild mit ihrem oft massenhaften Epiphytenwuchs. Dazu können auch die knotigen Florida-Lianen, Hippocratea volubilis beitragen: Bis zu 20 m lang werden ihre schlanken Stränge. Überwältigend ist der Reichtum an neotropischen Elementen, vielfach sind es Arten der Karibik: Die Königspalme Roystonea elata z. B. ist an ihren eleganten, im oberen Drittel leicht gebauchten Stämmen leicht zu kennen. Heute ist sie durch Anpflanzung in ganz Süd-Florida weit verbreitet, am natürlichen Standort jedoch selten geworden. Typisch sind in den Hammocks echte westindische der Mahagony, Swietenia mahagoni, Meliaceae, einige Eugenia-Arten, Myrtaceae und der durch seine glatten, braunen Stämme unverkennbare Gumbo Limbo, Bursera simaruba, Burseraceae. Ungewöhnliche Farne wie der Urfarn Psilotum triquetrum, Psilotaceae und der "Shoestring Fern" Vittaria lineata, Vittariaceae wachsen am Fuss von Palmen oder auch auf umgestürzten Bäumen. Regelmässig findet man auch die "Cabbage Palm" Sabal palmetto, seltener die dünnerstämmigen, immer in kleinen Gruppen stehenden "Paurotis Palms", Acoelorrhaphe wrightii. Berühmt ist der Reichtum an Bromeliaceen und Orchideen, es seien nur einige wenige genannt: Tillandsia usneoides, auch Spanish Moss genannt, reicht nach Norden bis in den Staat Virgina hinauf und kann in sogar an Telefondrähten wachsen. Florida Weitere Epiphyten: Tillandsia fasciculata,

T. circinata unter den Bromeliaceen, und Encyclia tampensis, E. cochleata, Habenaria quinqueseta, Longhorned Orchid und die blattund stengellose Ghost Orchid Polyrrhiza lindenii, bei der man sich wirklich frägt, wovon die Pflanze eigentlich lebt: Spinnenartig breitet sie ihre nur an der Spitze leicht grünen Luftwurzeln an der Rinde lebender Bäume aus, sendet einen blattlosen Stengel zur Blütezeit vom Stamm weg, an der sich eine weisse, langspornige Blüte mit zwei eigenartig, schwach spiralig gewundenen Lippenanhängseln entwickelt.

1.5 Sumpfzypressen – Tupelo – Wälder

Taxodium, ein bis zu 40 m hoch und 1000 bis 3000 Jahre alt werdendes, winters kahl stehendes Nadelholz bildet im ganzen Südosten Amerikas charakteristische Sumpfwälder, häufig begleitet durch Nyssa, Tupelo. Die Stammbasis beider Bäume zeichnet sich oft durch sehr starke Verdickung aus (vgl. Abbildung), es bilden sich auch Wurzelknie aus, die um mehr als 1 m aus dem Wasser als spitze Kegel hochragen können. Ob sie nur der Verankerung der Bäume im weichen Sumpfboden dienen und/oder ob ihnen auch Atemfunktion zukommt, ist noch nicht genau geklärt. Die Bäume stehen meist ganzjährig unter Wasser, nur bei extremer Dürre fallen die Sümpfe trocken, was für die Keimung von Jungpflanzen sehr wichtig ist. Während junge Bestände oft recht artenarm erscheinen, gibt es z. B. im Gebiet des Big Cypress Swamp NW des Everglades National Parks noch einige wenige, von den Holzfirmen verschonte Bestände (etwa NW der Strassenkreuzung US Federal Highway 41 und State Highway 29), die an üppigem Epiphytenwuchs wünschen übrig lassen: Z. B. nichts zu Campyloneurum phyllitidis (Strap Tillandsia utriculata, T. fasciculata, T. usneoides, T. fasciculata, Polypodium polypodioides (Resurrection Fern), Encyclia tampensis, Epidendrum difforme. Auch eine schöne Süsswasserflora kann das Bild neben Sträuchern wie Itea virginica bereichern: Pontederia lanceolata. Pickerelweed und ganz eindrücklich die Riesenblüten von Hymenocallis laciniata, Spider Lily, Fransenlilie; nicht zu übersehen sind die

bis zu drei Meter hohen Kolonien der Marantacee *Thalia geniculata*, Arrowroot, deren Blätter an die nahe verwandten *Canna*-Arten erinnern. Ihre Blüten lassen kleine zerknitterte, violette Lippen an langen, vielfach knotig verzweigten Ästen hängen. Etwa gleich hoch kann das mächtige Pfeilkraut *Sagittaria kurziana* werden. Die Wasserflächen sind oft ganz bedeckt durch die aus Südamerika eingeschleppte *Eichhornia crassipes*, der Wasserhyazinthe oder auch dem kleinen Schwimmfarn *Salvinia rotundifolia*.

2 Die Zone der sommergrünen Laubwälder Südostamerikas

Von den Grossen Seen hinunter bis ins mittlere Florida erstrecken sich die riesigen Gebiete der sommergrünen Laubwälder. Greifen wir einige wenige Vegetationstypen des Gesamtgebietes heraus, wie sie der Verfasser auf Exkursionen von der Küste North Carolinas bis an den Fuss der südlichen Appalachen angetroffen hat.

2.1 Vegetationstypen der Küstenebene

Neben einer reich entwickelten Strandvegetation entlang den "Outer Banks" sind vor allem die beiden folgenden Einheiten erwähnenswert.

Die Küstenebene erfasst etwa 45 Prozent der Gesamtfläche North Carolinas und hat eine Breite von etwa 200 km; sie steigt von W nach E von 0 m ganz allmählich auf 150 m an. Auch hier finden wir noch Sumpfzypressen- und vor allem Tupelowälder, allerdings im Vergleich zum subtropischen Florida in veränderter und verarmter Artengarnitur.

2.1.1 Pocosins

Grosse flussnahe Flächen der Küstenebene sind von immergrünen Moor-Gebüschen, Pocosins, bedeckt. Es dominieren schwer durchdringbare Buschgehölze mit Cyrilla racemiflora-Leatherwood, Titi; Stechpalmen wie Ilex glabra – Inkberry und Ilex lucida – Shining Gallberry; Ericaceen wie die grossblütige Kalmia angustifolia – Sheep Laurel, Cassandra calyculata – Leatherleaf, Leucothoe racemosa, Leucothoe axillaris, Lyonia ligustrina – Male Berry, Lyonia lucida – Fetter-bush, und Lyonia

mariana - Stagger-bush. Dazwischen ranken scharf-stachelige Smilax-Arten, die oft das weglose Eindringen in solche Buschsümpfe schier verunmöglichen. An weiteren Gehölzen wären zu nennen: Persea borbonia - Red Bay; Magnolia virginiana - Sweet Bay; die Theacee Gordonia lasianthus - Loblolly Bay; Pinus serotina - Pond Pine und die auch anderwärts häufige Myrica cerasifera – Wax Myrtle. Der jahreszeitlich stark schwankende Wasserstand ist es vielleicht, der keine massenhafte Entwicklung von Seggen und Sumpfgräsern zulässt: sicher aber spielen Brände dabei eine Rolle. Sie treten zwar regelmässig auf, können aber den (höchstens in den Trockenzeiten oberflächlich austrocknenden) Torf nicht zerstören, dadurch bleiben die Moorgebüsche erhalten.

2.1.2 Krautreiche Moorrasen

Dort, wo regelmässig Feuer, oft unter Mitwirkung des Menschen, auch die Pocosin-Torfschichten und sogar die resistenten Föhren wie Pinus serotina, Pond Pine und Pinus palustris = australis, Long-leaf Pine, zerstören, breitet sich eine seggen- und grasdominierte Vegetation aus, die sich im Juni zu einem wahren Blumenteppich entwickelt. Die seggenartigen Dichromena-Arten mit ihren weissen Brakteen und das stark duftende Ctenium (= Campulosus)aromaticum - Orange-grass - Toothache-grass, stechen als rasenbildende Arten aus dem grünen Teppich hervor. Eine ganze Reihe insectivoren Pflanzen vervollständigt prächtige Bild: Von den Kannenpflanzen Sarracenia flava, S. purpurea, S. minor und S. rubra, dazu mehrere Hybriden. Viele Utricularia-Arten, z. B. U. inflata mit etwas geschwollenen, rosettig um den Blütenstand angeordneten Blattstielen, eine gute Schwimmerin, dazu farbenprächtige Pinquicula-Arten, P. coerculea und P. lutea. Wer Glück hat, findet auch North Carolinas Nationalblume, längst auch eine Attraktion vieler Botanischer Gärten in aller Welt: Die Venus-Fliegenfalle, Dionaea muscipula. Sie wächst etwa auf den leuchtend roten Polstern von Sphagnum bartlettianum. Es wurde nachgewiesen, dass sie durch Feuer gefördert wird und bei Ausbleiben derselben von höherwüchsigen Arten verdrängt wird. Leider wird sie wegen der grossflächigen Biotopzerstörungen, die noch heute im Gange sind, immer seltener, obschon sie unter strengem Schutz steht.

2.2 Vegetationstypen des Piedmont

In North Carolina ist dieses etwa 150 m hoch gelegene, Piedmont genannte Hügelland maximal 250 km breit und im Osten begrenzt durch die "fall line", wo nach Westen zu härtere kristalline die weicheren sedimentären Gesteine ablösen. Im Westen grenzt die sanft wellige Hügellandschaft an die Blue Ridge Mountains. Die grossflächige Waldzerstörung setzte mit der Besiedlung North Carolinas durch die Europäer schon Mitte des 18. Jahrhunderts ein, so dass es heute schwierig ist, noch naturnahe Waldgesellschaften zu finden.

2.2.1 Initiale Föhrenwälder

Vielerorts trifft man anstelle der ursprünglichen Eichen-Hickory-Wälder föhrendominierte Sukzessionsstadien verschiedenen Alters. Pinus taeda, Loblolly Pine und Pinus echinata, Shortleaf Pine sind darin besonders häufig. Hier wäre auch die folgende Liste vom 21. April 1976 zu stellen, die der Verfasser zusammen mit N. Christensen und einigen Studenten auf einer Fläche von etwa 1 a, etwa 300 m NW des Biologie-Institutes der Duke University aufgenommen hat (Schätzungsskala nach Braun-Blanquet): Baumschicht Deckung 50-60 Prozent. 2 Pinus echinata, 2 Pinus taeda, 1 Acer rubrum, + Oxydendron arboreum, 1 Liquidambar styraciflua, + Nyssa silvatica,+ Liriodendron tulipifera. Strauchschicht 75 Prozent. 2 Cornus florida, 1 Liquidambar styraciflua, 2 Oxydendron arboreum, 1 Carya sp., 1 Viburnum rafinesquianum, 1 Viburnum acerifolium, 1 Liriodendron tulipifera, r Chionanthus virginicus, + Quercus alba, r Campsis radicans, r Prunus serotina, + Quercus phellos, + Juniperus virginiana,+ Fraxinus americana. Krautschicht etwa 20 Prozent. Mit Polystichum acrostichoides, Quercus rubra, Cornus florida, Evonymus Viburnum acerifolium, Smilax americanus, rotundifolia, Polygonatum cf. biflorum u. v. a.

2.2.2 Eichen-Hickory-Wälder

Nach etwa 100 Jahren etabliert sich auf

trockeneren Standorten u. a. ein Eichen-Hickory-Wald, vor allem, wenn Waldbrände ausbleiben. Kornas, J. (1965) beschrieb für die Gegend von Durham erstmals nach der Methode von Braun-Blanquet ein Caryo-Quercetum falcatae, in dem in der 20 bis 30 m hohen Baumschicht Quercus alba-White Oak neben Quercus falcata - Southern Red Oak, Quercus stellata -Post Oak und Carya tomentosa - Mockernut dominieren. Weniger wichtig sind Quercus velutina - Black Oak, Carya glabra - Pignut Hikkory, Pinus taeda - Loblolly Pine und Pinus echinata - Short Leaf Pine. In der 5 bis 15 m hohen Strauchschicht wären Acer rubrum – Red Maple, Cornus florida - Dogwood, Oxydendron arboreum - Sourwood, daneben auch Juniperus virginiana - Red Cedar, Nyssa silvatica - Black Gum zu nennen. Unter den niedrigeren Sträuchern dominiert Viburnum rafinesquianum. In der Krautschicht nennt Kornas (op. cit.): Viburum stamineum s. 1. - Gooseberry, manchmal auch in die Strauchschicht hinaufreichend, Vaccinium tenellum, V. vaccillans, Chimaphila maculata - Pipsissewa, Carex nigromarginata, Scleria oligantha, Danthonia spicata, Panicum Boscii, die Frühlingspflanzen Houstonia coerulea, Hieracium venosum und Potentilla canadensis, Sommerpflanzen wie Gerardia virginica, Desmodiumarten nur wenige Geophyten: Polygonatum biflorum, Uvularia perfoliata, Hypoxys hirsuta.

2.2.3 Buchenwald

Aus jungen Loblolly-Föhrenwäldern mit mehr Liquidambar styraciflua - Bornkamm, R. (1975) nennt solche Bestände Pinetum taedae liquidambaretosum - kann sich u. a. nach demselben Autor an feuchten, etwas nordexponierten Stellen ein Aceri-Fagetum (Kornas, op. cit.) mit Trillium catesbaei (Acer rubri-Fagetum carolinianae trillietosum) entwickeln. Baumschicht 85 bis 95 Prozent Deckung: Fagus grandiflora var. caroliniana, diese etwa auch ersetzt durch Quercus rubra. Fraxinus americana, Acer rubrum, niedrige Bäume: Cornus florida, Oxydendron arboreum, Ostrya virginica, Acer saccharum ssp. floridanum. Strauchschicht 20 bis 70 Prozent Deckung: Viburnum acerifolium und Hamamelis virginiana, mit etwas Evonymus americanus, Aesculus sylvatica, Styrax grandifolia usw. Krautschicht 40 bis 50 Prozent Deckung: Polystichum acrostichoides, Adianthum pedatum, Poa cuspidata, Carex willdenowii, C. cf. blanda, C. digitalis, C. artitecta, Luzula acuminata, L. echinata, Hexastylis arifolia, Tiarella cordiofolia, Hepatica americana und besonders charakteristisch die vielen Geophyten Smilacine racemosa, Dioscorea villosa var. villosa, Thalictrum thalictroides, Iris cristata, Cardamine angustata var. angustata, C. concatenata, Erythronium americanum, Dicentra canadensis, Sanguinaria canadensis, Isopyrum biternatum, Trillium catesbaei, u. v. a. Die auffallende Häufigkeit von Halb- und Vollsaprophyten wie Epifagus virginiana, Orobanche uniflora, beide ohne Blattgrün und Tipularia discolor, Goodyera pubescens, Liparis lilifolia und Obolaria virginica, alle mit Blattgrün lässt sich erklären mit dem schattigen Standort und den humosen Böden des Aceri-Fagetum.

Während es im Caryo-Quercetum schwierig ist, floristische Analogien zu entsprechenden europäischen Eichenwäldern zu finden, fällt dies nach Kornas, J. op. cit. und vielen anderen dort zitierten Autoren im Aceri-Fagetum viel leichter. Beispiele aus der Baum- und Strauchschicht: Fagus grandifolia / silvatica, Carpinus caroliniana / betulus, Ostrya virginiana / carpinifolia, Evonymus americanus / europaeus. Beispiele aus der Krautschicht: Hepatica americana / nobilis, Luzula acumitata / pilosa, Cardamine concatenata / pentaphyllos. Alle diese morphologisch mehr oder weniger verwandten Artenpaare finden sich auch in den analogen Pflanzengesellschaften, sie sind demnach auch ökologisch gesehen Artenpaare. Viele der schon oben erwähnten Geophyten sind Frühjahrsblüher. Sie streben, genau wie ihre europäischen Schwesternarten danach, möglichst vor dem Laubaustrieb und damit gleichzeitig stark zunehmender Beschattung wichtige Teile ihres Lebenszyklus hinter sich zu bringen.

Kornas ist es aufgefallen, dass die Minimalareale bei seinen pflanzensoziologischen Bestandesaufnahmen in SE-Amerika grösser waren als in vergleichbaren Waldtypen in Europa. D. h. er musste im gehölzartenreichen Amerika grössere Flächen absuchen, um in homogenen Beständen zu einigermassen vollständigen Artenlisten zu gelangen, als dies in Europa nötig gewesen wäre. Schon die wenigen hier gegebenen Listen zeigen, dass das südöstliche Nordamerika eine wesentlich artenreichere Gehölzflora aufweist als Europa. Wie kann man sich dies erklären?

Anhand von Pollen- und Makrofossilanalysen lässt sich verfolgen, dass während der grossen Kaltzeiten des Quartärs zwar die Flora Mittelund Nordeuropas schwer litt und viele Gattungen und Arten ausstarben, dass dies jedoch in SE-Asien und im südöstlichen Nordamerika (und auch anderwärts in Nordamerika) nicht geschah: Die grossen Vereisungsgebiete Nordeuropas und der Alpen liessen im Quartär nur eine baumlose Tundra in Mitteleuropa übrig, in der wärmeliebenden Tertiärpflanzen keine Überlebenschancen hatten, es sei denn, sie hätten sich in kleinen südeuropäischen Refugien halten können (im östlichen Mittelmeerraum z. B. Pinus peuce und Liquidambar orientalis). Ganz anders in SE-Asien und im südöstlichen Nordamerika: z. B. sind bis heute aus den südlichen Appalachen auch im Bereich der höch-Berge der Great Smoky Mountains (2000 m ü. M.) keine quartären Vereisungsspuren festgestellt worden. Neuere Pollenanalysen in North Carolina haben zwar demonstriert, dass in den Kaltzeiten eine boreale Vegetation bis über 1000 km weit nach Süden vordrang (Whitehead, D. R. 1973), dass es ihr aber andererseits nicht gelungen ist, das teritäre Florenelement ganz zu verdrängen (Anderson, L. E. u. Zander, R. H. 1973). Was davon aber doch durch die Klimaverschlechterung nach Süden verdrängt wurde, konnte leicht nach Florida und ins Gebiet des Golfes von Mexiko ausweichen und im Postglazial wieder einwandern. Nirgendwo stellte sich solchen Ausweichbewegungen ein Gebirge wie die Alpen als Barriere entgegen. So erklärt sich das grossdisjunkte Vorkommen im südöstlichen Nordamerika und in Südostasien einer ganzen Reihe von Gehölzarten: z. B. Liriodendron, Hamamelis, Liquidambar, Catalpa, Magnolia, Persea, Platanus, Physocarpus, Nyssa, Chionanthus, dazu die krautartigen Phlox, Penstemon, Brasenia, Trillium u. a. Carya (Hickory) kommt wie Ptelea und Azolla filiculoides nur in Nordamerika vor, ist aber wie die vorher genannten Arten durch Fossilfunde aus der ganzen Nordhemisphäre belegt. Für den mitteleuropäischen Pflanzenkenner ist es ein eigenartiges Erlebnis, in diesen von Tertiärarten durchsetzten Laubwäldern des südöstlichen Nordamerikas zu botanisieren; er trifft hier Arten, die in Europa seit mindestens Jahrzehntausenden ausgestorben sind. Als Grundlage für die Nomenklatur der Blütenpflanzen wurden Long, R. et al. 1976 und Radford, A. et al. 1968 gewählt. Die meisten hier genannten Arten sind im Herbar des Verfassers hinterlegt.

Zypressensumpf. Zwischen den charakteristisch verbreiterten Stammfüssen von *Taxodium distichum* ist eine Massenvegetation von Süsswasser-Schwimmpflanzen erkennbar mit *Eichhornia crassipes* – Wasserhyazinthe und *Salvinia rotundifolia*-Schwimmfarn. Highlands Hammock, Florida, 12. März 1976. Foto: K. AMMANN.

Literatur

Anderson, L. E. + Zander, R. H. 1973: The Mosses of the Southern Blue Ridge Province and their Phytogeographic Relationship J. of the Elisha Mitchell Scientific Company, 89, 1 + 2, p. 15-60

Blomquist, H. + Oosting, H. 1959: A Guide of the Spring and Early Summer Flora of the Piedmont, North Carolina, Durham, 1–181 Bornkamm, R. 1975: A Vegetation Map of the Henry A. Oosting Natural Area, Orange County, North Carolina. School of Forestry and Environmental Studies, Technical Paper No. 3, Summer, 1–19

Breen, R. S. 1963: Mosses of Florida, an illustrated Manual, Gainesville, 1-273

Breil, D. A. 1970: Liverworts of the Mid-Gulf Coastal Plain. Bryologist 73, p. 409–491

Clay, J. + Orr, D. + Stuart, A. 1975: North Carolina Atlas, Chapel Hill, 1–331

Craighead, F. sen. 1971: The Trees of South Florida. Vol. I. The Natural Environment and their Succession. Coral Gables, 1–212

Fernald, M. L. 1970: Gray's Manual of Botany, 8th Edition, New York, 1–1632

George, J. C. 1972: Everglades Wildguide, U. S. Government Printing Office, 1–106

Hale, M. 1969: How to know the Lichens. Dubuque, 1-226

Hoffmeister, J. E. 1974: Land from the Sea. The Geologic Story of South Florida. Coral Gables, 1-143

Knapp, R. 1965: Die Vegetation von Nord- und Mittelamerika. Stuttgart, 1–373

Kornas, J. 1965: Phytosociological Observations on Plant Communities of the Duke Forest near Durham, North Carolina, USA. Fragmenta Floristica et Geobotanica *Ann. XI*, Pars 2, p. 307-338

Kornas, J. 1965: Corresponding Taxa and their Ecological Background in the Forests of Temperate Eurasia and North America. Ex Valentine, D. 1972: Taxonomy Phytogeography and Evolution, London, p. 37–59

Lakela, O. + Long, R. 1976: Ferns of Florida. Miami, 1–178. 2. Aufl.

Long, R. + Lakela, O. 1976: A Flora of Tropical Florida. Miami, 1–962

Moore, B. 1968: The Macrolichen Flora of Florida. Bryologist 71, p. 161–266

Radford, A. + Ahles, H. + Bell, R. 1968: Manual of the Vascular Flora of the Carolinas. Chapel Hill, 1–1183

Robertson, W. 1959: Everglades – The Park Story. Miami, 1–95

Small, J. K. 1933, 1972: Manual of the Southeastern Flora, New York, 2 vol., 1–1554

Small, J. K. 1938: Ferns of the Southeastern States, New York, 1-515

Stevenson, G. B. 1969: Trees of Everglades National Park and the Florida Keys, Verlag des Autors

Stevenson, G. B. 1974: Palms of South Florida, Verlag des Autors

Tebeau, C. W. 1968: Man in the Everglades. Miami, 1–192

Waggoner, G. S. 1975: Eastern Deciduous Forest. Vol. 1 + 2. National Park Service, 1–756

Whitehead, D. R. 1973: Late-Wisconsin Vegetational Changes in Unglaciated Eastern North America. Quaternary Research, 3, p. 621–631.

441. Sitzung vom 14. März 1977

Vortrag von Herrn Dr. h. c. R. SUTTER, Bern: Flora und Vegetation des Languedoc. Bericht über die Exkursion der Bernischen Botanischen Gesellschaft im Sommer 1975.

Wir verweisen auf den von Herrn Dr. H. Frey in den Sitzungsberichten des Jahres 1976, S. 128– 133, veröffentlichten Exkursionsbericht.

442. Sitzung vom 28. November 1977

Vortrag von Herrn Prof. Dr. A. KOHLER, Stuttgart/Hohenheim: Wasserpflanzen als Bioindikatoren in Fliessgewässern

In dem Vortrag wurde ein Überblick gegeben über den derzeitigen Forschungsstand zu der Frage ob und inwieweit Wasserpflanzen als Zeiger für natürliche und belastete Fliessgewässer verwendet werden können. Anhand von mehreren Beispielen wurde gezeigt, dass sich natürliche, weiche und harte Fliessgewässer in ihrer Flora und Vegetation grundlegend unterscheiden. Ein weiterer Hinweis für die Brauchbarkeit der Wasserpflanzen als Bioindikatoren ist die Tatsache, dass sich bei Belastung dieser Ökosysteme grundlegende qualitative und quantitative Florenveränderungen abspielen. Für die Erforschung der Zusammenhänge zwischen der Verbreitung von Wasserpflanzen und dem Chemismus eines Gewässers, besonders dessen Belastungsgrad, wurde ein Arbeitsprogramm entwickelt, das in Süddeutschland mit Erfolg angewandt werden konnte. Folgende Ergebnisse wurden besonders herausgestellt:

1. Die Kartierung von Wasserpflanzen in mehreren Modellfliessgewässern ergab, dass zwischen den Verbreitungsmustern der einzelnen Arten und der Gewässergüte klare Beziehungen bestehen. Das gilt ebenso für weiche Fliessge-

wässer des Oberpfälzer Waldes, wie für harte hydrogencarbonatreiche Flussläufe.

- 2. Um die Pflanzenverbreitung kontrollierende chemische Gewässerparameter festzustellen, wurde an der Moosach ein zweijähriges Messprogramm durchgeführt. Setzt man die Verbreitung von Makrophyten in Beziehung zu einzelnen chemischen Belastungsfaktoren, etwa in Form einer ökologischen Reihe, so können sich Hinweise auf die Standortsansprüche und "Belastbarkeit" der einzelnen Sippen ergeben. So ergab beispielsweise die ökologische Ammonium-Reihe in Hydrogencarbonat-Gewässern eine für die einzelnen Arten recht unterschiedliche ökologische Amplitude.
- 3. Dass die Verbreitungsmuster der einzelnen Arten im Fluss nicht zufallsbedingt sind, sondern ökologischen Gesetzmässigkeiten folgen, konnte durch mehrjährige Transplantationsversuche in einem Fliessgewässer nachgewiesen werden. Hierbei zeigt es sich, dass Pflanzen, die in reinen, oligotrophen Fliessgewässer-Abschnitten vorkommen, dass diese an solchen Standorten auch tatsächlich am besten gedeihen. Auf der anderen Seite können sogenannte eutraphente Arten in nährstoffarmen Fliessgewässer-Abschnitten nicht gedeihen.
- 4. Zur Ermittlung des physiologischen Verhaltens und der Belastbarkeit von Makrophyten gegenüber einzelner chemischer Gewässerparameter wurde eine Aquarien-Versuchsanlage entwickelt, in welcher im Labor eine Reihe von Umwelteinflüssen kontrolliert, beziehungsweise variiert werden kann und mit deren Hilfe es möglich war, einigermassen befriedigende Fliessgewässer-Bedingungen zu simulieren.

Um die Einflüsse der einzelnen Schadstoffe in verschiedenen Konzentrationen auf die Wasserpflanzen abschätzen zu können, wurde deren Photosyntheseleistung gemessen, wofür eigens eine O₂-Messküvette konstruiert wurde.

Aus dem mehrjährigen experimentellen Untersuchungsprogramm wurden einige Beispiele für die Wirkungen verschiedener im Gewässer vorkommender Schadstoffe gezeigt. Über die Schadwirkungen von Ammoniak, von Tensiden und Schwermetallen, aber auch der

Versalzung von Gewässern liegen umfangreiche Ergebnisse vor.

5. Aus den Untersuchungsergebnissen, die an süddeutschen Fliessgewässer-Systemen gewonnen wurden, wird abschliessend eine Synthese versucht. Mit Hilfe der bei der Makrophytenaufnahme und -kartierung gewonnenen Artengruppen, die auf bestimmte chemische Parameter geeicht werden konnten, kann man eine Klassifizierung und Kartierung von Fliessgewässern vornehmen. Es lassen sich somit sogenannte floristisch-ökologische Flusszonen ausscheiden, die oftmals eine feine Abstufung des Gewässerzustandes erkennen lassen und eine Ergänzung der üblichen Gewässergütekarten sein können.

Den Wasserpflanzen als Bioindikatoren kommt nach unserer Auffassung deswegen Bedeutung zu, weil sie schon relativ geringe Veränderungen eines Gewässerökosystems anzuzeigen in der Lage sind, die mit chemisch-physikalischen Methoden allein nur mit einem nicht mehr vertretbaren Aufwand zu erfassen sind.

Autorreferat

443. Sitzung vom 12. Dezember 1977

Vortrag von Herrn Dr. C. BOCQUET, Zürich: Bilder aus der Flora von Korsika. Chorologische Studien an korsischen Pflanzen

Exkursionen

Samstag, 23. April 1977: Frühjahrsexkursion zur Ravellenfluh bei Oensingen. Leitung: Dr., Dr. h. c. M. MOOR, Basel

Der imposante Felsgrat der Ravellenfluh ist ein Teil des Südschenkels der ersten Jurafalte auf der Höhe von Oensingen (Kt. Solothurn). Er gewährt Einblick in die Klus von Balsthal, einem Juraquertal, durch welches die Dünnern aus dem Längstal von Welschenrohr/Balsthal das Mittelland erreicht. Der Felsgrat verläuft genau in der Streichrichtung des Juras, also südwestnordost, so dass die eine Gratflanke zur ausgesprochen kühlen Schattenseite, die andere zur ebenso ausgeprägt warmen Sonnseite wird.

In den schattseitigen Felsabstürzen gedeiht die Bergföhre, vergesellschaftet mit *Polygala Chamaebuxus* und *Primula Auricula*, und auf dem Hangschutt der Schattenseite hat sich ein prächtiger Seggen-Buchenwald entfaltet. Auf der trocken-warmen Südflanke stockt Flaumeichenbuschwald, am auslaufenden Hangfuss dagegen sind Fragmente des Eichen-Hagebuchenwaldes erhalten geblieben. Den Felsgrat selbst zieren Felsenmispelgebüsch und Laserkraut-Blaugras-Treppenrasen.

Das Ziel der Exkursion war, die Abhängigkeit der Pflanzendecke von Exposition und Lokalklima und von Untergrund und Boden aufzuzeigen, aber auch einigen floristischen Gelüsten zu genügen. Bedienen durfte man sich allerdings nur mit Auge und Photoapparat, steht doch das gesamte Gelände der Ravellenfluh unter Naturschutz.

Den Floristen lockte vor allem das Ravellenblümchen *Iberis saxatilis*, dessen einziger schweizerischer Fundort die Ravellenfluh und wenige benachbarte Felsgräte darstellen. Wir trafen diese reizende Crucifere in voller Blüte und in erstaunlich grosser Menge.

Der Eichenbuschwald stockt auf dem klüftigen anstehenden Malmkalkfels. Er beherbergt u. a. Campanula persicifolia, Chrysanthemum corymbosum, Lithospermum purpuro-coeruleum, Coronilla coronata, Primula veris ssp. canescens und Asplenium Adiantum-nigrum und stellt damit eine ganz besondere Sehenswürdigkeit dar. Es sind reine Niederwaldbestände. Sämtliche Baumarten erscheinen in Form extremer Stockausschläge und ragen meist nicht höher als 5 m. So zeigen Flaumeiche, Traubeneiche und ihr Bastard dieselbe Sprossform wie Mehlbeere, Elsbeere, Feldahorn und Hagebuche (letztere beiden allerdings nur in deutlich mesophilerer Situation), vermutlich des sommerlich extrem austrocknenden Standortes wegen sich selbst auf den Stock setzend.

Der Gegensatz sowohl zum Buchenwald der Nordflanke als auch zum Eichen-Hagebuchenwald auf dem auslaufenden Hangfuss an der Südseite ist gross. Er drückt sich nicht nur in der Verschiedenheit der Artenzusammensetzung aus, sondern wird auch im Bestandesbild, also in Schichtung und Bestandeshöhe deutlich. Hochwaldartig, einer Säulenhalle gleich, bietet sich der Buchenwald dar; in der Form eines plenterartig genutzten Mittelwaldes präsentiert sich der Eichen-Hagebuchenwald; die Bestände des Flaumeichenbuschwaldes aber zeigen Niederwaldcharakter und sind reiner Schutzwald.

Im Seggen-Buchenwald erblühten bereits Carex alba und C. digitata, Asarum europaeum, Lathyrus vernus und Euphorbia amygdaloides, während Nestwurz, breitblättrige Sumpfwurz und die beiden Waldvögelein Cephalanthera Damasonium und C. rubra wie auch Lilium Martagon und Prenanthes purpurea sich der wenig weit fortgeschrittenen Jahreszeit wegen diskret verbargen.

Im Eichen-Hagebuchenwald am Hangfuss der Südseite erblühten Potentilla sterilis, Pulmonaria obscura und Ranunculus auricomus (in Form der Kleinarten R. biformis und R. puberulus). Als weitere kennzeichnende Arten des Laubmischwaldes konnten neben Carpinus Betulus, Prunus avium, Rosa arvensis auch Galium silvaticum, und für den kalkigen Untergrund bezeichnend Euphorbia amygdaloides und E. dulcis, Asarum europaeum, Lathyrus vernus, Carex digitata und herdenweise ferner Mercurialis perennis festgestellt werden. Gegen die angrenzenden Halbtrockenrasen hat sich der Laubmischwald in Form eines dichten, struppigen Liguster-Schlehengebüsches abgeschlossen.

Eine besondere Zierde des Ravellen-Felsgrates stellt das Felsenmispelgebüsch dar, in extremer Situation eigentlicher Pionier, in etwas feinerdereicherer Lage aber Mantelgebüsch des Flaumeichenbuschwaldes. Die Strauchartenkombination zeigt Amelanchier ovalis, die beiden Cotoneaster-Arten C. tomentosa und C. integerrima samt ihrem Bastard, diverse Rosen-Arten, Sorbus Mougeotii, Rhamnus alpina Rh. cathartica, Prunus Mahaleb. Coronilla Emerus und Berberis vulgaris neben mesophileren Arten wie Liguster, Schlehe und Weissdorn, Hartriegel, Woll, Schneeball, Hasel und Holzapfel.

Und wenn in Felsspalten neben Asplenium Ruta-muraria und Aspl. Trichomanes auch Asplenium fontanum festzustellen war, und in den Sesleria-Felstreppenrasen u. a. Rosa spino-

sissima, Laserpitium Siler, Seseli Libanotis und Dianthus Caryophyllus silvester, dann schlug manch eines Floristen Herz hörbar höher.

Bedenkt man, dass dieser Reichtum sich auf wenigen Hektaren zusammenfindet, und dass sich am Felsgrat Bergföhre und Flaumeiche förmlich berühren, dann wird nicht nur das ausserordentlich bewegte Relief greifbar, sondern auch der ebenso verblüffende ökologische Zeigerwert der erwähnten Pflanzenarten.

M. Moor

Samstag/Sonntag, 21. und 22. Mai 1977: Exkursion ins westliche Bodenseegebiet. Leitung: Prof. Dr. G. LANG, Bern

Samstag, 21. Mai: Der erste Exkursionstag war dem Studium der Feuchtstandorte gewidmet. Am frühen Vormittag ging die Fahrt mit dem Car über Zürich, Kreuzlingen, Konstanz in das Naturschutzgebiet Wollmatinger Ried, ein weites, aus Schnegglisand aufgebautes Verlandungsgebiet im Mündungsbereich des Seerheins in den Untersee. Hier wurden die am Bodenseeufer besonders artenreichen Pfeifengraswiesen (Cirsio tuberosi-Molinietum) in verschiedenen Ausstudiert, inbesondere bildungsformen trockene Ausbildungsform auf den Kuppen der Strandwälle (C.-M. brometosum) mit zahlreichen, in diesem Feuchtgebiet bemerkenswerten Arten. Daneben fand auch das Schilfröhricht (Phragmitetum), das Steifseggenried (Caricetum elatae) und der Weiden-Schneeballbusch (Salici-Viburnetum) unsere Aufmerksamkeit. schliessend ging die Fahrt weiter über den Strassendamm zur Insel Reichenau, wo beim Bruckgraben westlich der Ruine Schopflen eine Restfläche der ehemals ausgedehnten offenen Kiesufer mit den für den Bodensee charakteristischen Strandrasen besucht wurde. Von diesen im Hochsommer längere Zeit überfluteten Gesellschaften oligotropher Standorte konnten wir Strandschmielengesellschaft vor allem die (Deschampsietum rhenanae) mit einer Reihe interessanter und zum Teil endemischer Arten sehen: Deschampsia rhenana, Myosotis Rehsteineri, Littorella uniflora, Ranunculus reptans, Allium Schoenoprasum u. a. Nach einer Mittagspause in Reichenau-Oberzell, bei der sich Gelegenheit zur Besichtigung der berühmten romanischen Kirche bot, machte die zweite Tageshälfte mit den kleineren Seen und den Mooren abseits des Bodensees bekannt. Der erste Halt wurde auf dem Bodanrück östlich Markelfingen am Winterried eingelegt, einem kleinen Verlandungsmoor mit Zwischenmoorcharakter, zwischen Drumlins eingebettet und durch schöne Seggengesellschaften (Caricetum appropinquatae, Caricetum lasiocarpae, Rhynchosporetum albae) ausgezeichnet. Am Spätnachmittag wurde noch der nicht weit entfernte Mindelsee aufgesucht, um einerseits die Verlandungsgürtel mit Teichrosengesellschaft (Myriophyllo-Nupharetum), Schneidgrasgesellschaft (Cladietum marisci) und Rohrkolbenröhricht (Typhetum angustifoliae) zu studieren, andererseits die Mehlprimel-Kopfbinsengesellschaft (Primulo-Schoenetum ferruginei) an den Kalk-Sickerquellen im nördlichen Uferbereich. Gegen Abend fuhren wir zur Übernachtung nach Singen.

Sonntag, 22. Mai: Der zweite Exkursionstag machte mit den wichtigeren Waldgesellschaften des Gebietes sowie mit der Trockenvegetation bekannt. Nach dem Frühstück brachte uns der Car zunächst wieder auf den Bodanrück zur Ruine Kargegg. Von hier aus ging es zu Fuss durch prächtigen Ahorn-Eschen-Schluchtwald (Aceri-Fraxinetum) mit Cardamine pentaphyllos und Seggen-Buchenwald (Carici-Fagetum) mit Taxus, Coronilla Emerus u. a. den nordexponierten Steilhang zum Ufer des Überlingersees hinunter, wo wir u. a. Tamus communis fanden, und entlang der (wegen Unwetterschäden gesperrten) Marienschlucht wieder hinauf. Als zweiten Exkursionspunkt wählten wir die gegenüberliegende Seite des Überlingersees mit den südexponierten Molassefelsen im Sipplinger Dreieck: Sie tragen den Geissklee-Föhrenwald (Cytiso-Pinetum) mit einigen für das Gebiet bemerkenswerten Arten wie Arctostaphylos Uvaursi, Anthyllis alpestris u. a. Im Naturschutzgebiet Hödinger Tobel sahen wir wieder Schluchtwald, diesmal mit Lunaria rediviva, durchsetzt von Quellfluren mit Aster Bellidiastrum auf den Molassewänden (Cratoneuretum). Zur Mittagsrast fuhren wir auf den Haldenhof über Sipplingen hinauf, von wo aus sich

ein schöner Überblick über den Überlingersee bot. Zum Schluss der Exkursion besuchten wir dann den Hohentwiel, einen tertiären Phonolith-Vulkankegel mit historisch interessanter Burgruine. Der Aufstieg auf der Südseite führte uns an Felsbirnengebüsch (Cotoneastro-Ame-Felsbandgesellschaften lanchieretum) und (Diantho-Festucetum) vorbei in die schon von BRAUN-BLANQUET beschriebenen Trockenrasen (Xerobrometum suevicum) u. a. mit Hyssopus und weiter zur Burg mit reich entwickelten Felsspaltengesellschaften (Drabo-Hieracietum humilis, Asplenio-Cystopteridetum fragilis) an den Ruinenmauern. Erst spät am Abend kehrten wir nach Bern zurück.

Literatur:

Braun-Blanquet, J., 1930. Die Trockenrasengesellschaften des Hegaus und ihre Genese. In: Der Hohentwiel. Veröff. Staatl. Stelle f. Naturschutz Stuttgart 7, 49–85.

Lang, G., 1973. Die Vegetations des westlichenBodenseegebietes. Pflanzensoziologie 17.Jena. 451 S.

Müller, Th., 1966. Vegetationskundliche Beobachtungen im Naturschutzgebiet Hohentwiel. Veröff. Landesst. Naturschutz u. Landschaftspfl. Baden-Württemberg 34, 14–64.

G. Lang

Sonntag, 14. August 1977: Exkursion der Naturforschenden Gesellschaft in Bern mit der Bernischen Botanischen Gesellschaft ins Grimselgebiet.

Thema: Naturgeschichte des Grimselgebietes

mit Einführung in die Geographie, Geschichte, Geologie, Glaziologie, Zoologie und Botanik des Grimsel- und speziell des Oberaargebietes.

Leitung: PD Dr. K. Aerni, Dr. K. Ammann, Dr. A. Bossert, Prof. Dr. H. Stalder, Dr. H. Zumbühl. Gesamtleitung: Prof. Dr. F. Steck. Es sei auf das Autorreferat von Dr. K. Ammann, Gletschernahe Vegetation in der Oberaar (Grimsel) einst und jetzt. Die historischen Schwankungen des Oberaargletschers, die heutige Vegetation der Oberaar und erste Ergebnisse der pollenanalytischen Untersuchungen gletschernaher Bodenprofile, das in den Sitzungsberichten 1974 der Bernischen Botanischen Gesellschaft (S. 122–129) veröffentlicht wurde, hingewiesen.

Aus dem Jahresbericht 1977

Ende 1977 zählte unsere Gesellschaft 234 Mitglieder. Fünf Austritten stehen dreizehn Eintritte gegenüber. Wir heissen die Damen P. Bachmann, Riggisberg, R. Frey, Spiegel, E. Merz, Bolligen, U. Portner, Schwarzenburg und die Herren Ch. Bühler, Gümligen, U. Feller, Bern, M. Henzi, Wabern, H. Hirt, Olten, H.-J. Lüthi, Kehrsatz, H. Pfister, Wohlen, M. Rösli, Bern und Ch. Scheidegger, Ortschwaben sowie Herrn und Frau J. Michael, Lengnau. willkommen. Drei Mitglieder wurden uns durch den Tod entrissen. Am 3. Januar 1977 verstarb Herr Rudolf Aeberhard, Bern, Mitglied seit 1974. Herr Hermann Bigler, Bern, Mitglied seit 1944, verschied am 25. Februar 1977. Herr Eduard Flück, Bern, Mitglied seit 1930, verstarb am 24. Mai 1977.