Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft in Bern

Herausgeber: Naturforschende Gesellschaft in Bern

Band: 13 (1956)

Artikel: Geologie der östlichen Stockhorn-Kette (Berner Oberland)

Autor: Nicol, Germain Kapitel: I: Stratigraphie

DOI: https://doi.org/10.5169/seals-319468

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

In der topographischen Namengebung haben wir ausschließlich dieselben Namen, wie sie aus der geologischen Karte «Thun-Stockhorn» von P. Beck und Ed. Gerber (1911—1922) ersichtlich sind, übernommen. Die Ortsbezeichnungen der Neuen Landeskarte 1:50000, Blatt Gantrisch Nr. 253, waren für unsere Zwecke zu wenig genau.

Höhenkoten sind ausnahmslos nach den neuen Vermessungsergebnissen der Eidgenössischen Landestopographie (pierre du Niton 373,60 m neuer Horizont) angegeben.

Unser Untersuchungsgebiet befindet sich am östlichen Ende der Préalpes médianes. Es liegt genau im Scharungspunkt der noch die vollständigen Gesteinsserien umfassenden tektonischen Zonen der Klippendecke. Im Norden wurden Langeneckgrat-Schuppenzone, Gantrisch-Gewölbeschenkel und teilweise auch die Kessel-Mulde nicht in unsere Untersuchung einbezogen. Ebenso muß das Klippengebiet östlich der Linie Pohlern-Niederstocken-Reutigen-Wimmis (das Gebiet der sogenannten Spiezer Klippen) einer späteren eingehenderen Untersuchung vorbehalten bleiben.

I. Stratigraphie

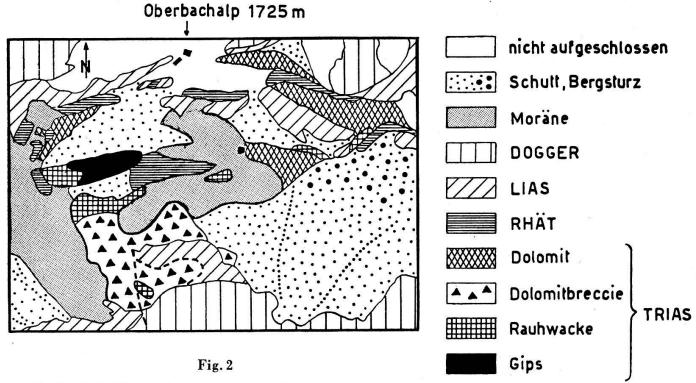
Die Schichtfolge in der östlichen Klippendecke umfaßt alle Schichtglieder von der Trias bis ins Paleozän (paleozäner Flysch). Wie in den westlichen Préalpes médianes zeigt sich auch hier, daß die Isopen (Linien gleicher Facies) dem Streichen der tektonischen Einheiten annähernd parallel laufen. Groß sind jedoch die Faziesunterschiede quer zum Streichen der tektonischen Zonen.

In neueren und neuesten Arbeiten wurden einzelne Schichtglieder stratigraphisch neu bearbeitet. Für die Mytilusschichten besorgte dies H. H. Renz (1935), und was deren obere Grenze gegen den Malm hin und den Malm selbst betrifft, so wurden beide Probleme Gegenstand einer Arbeit über den Klippenmalm von H. Weiss (1949). Die Kreide wurde von R. Umiker (1952) untersucht, ebenso der paleozäne Flysch, wo er als Muldenfüllung der Hinterstockensee- oder Flyschmulde vorliegt. Der Dogger der verschiedenen tektonischen Zonen wurde von M. Nil behandelt, wobei die Ergebnisse, soweit sie aus dem Nachlaß Nils ersichtlich sind, hier berücksichtigt werden sollen. Lias, Infralias (Rhaet-Hettangien) und Trias fallen in den Bereich unserer Untersuchungen, allerdings nur soweit sie in unserem Gebiet liegen.

Trias

In unserem ganzen Gebiete gehört die Trias der Nordfazies der Klippendecke an. Sie gliedert sich von unten nach oben:

- 4. Bunte Mergel mit hellen dolomitisch-kalkigen Bänken wechsellagernd;
- 3. helle Dolomite und dolomitische Kalke (dolomie blonde et calcaire dolomitique);
- 2. Rauhwacke;
- 1. Gips.


Über die Gesamtmächtigkeit lassen sich keine sicheren Angaben machen; jedenfalls ist sie außerordentlich schwankend. Die Gründe für diese Mächtigkeitsunterschiede können in der Bildung riesiger Anhydrit-Gips-Linsen liegen, so daß eine primär-stratigraphische Mächtigkeitsdifferenz vorliegt. Dazu kommen noch tektonische Beanspruchungen wie Diapirismus, Ausquetschung, Schleppung, Stauchung dieser Gesteine.

Vergleichen wir die Ergebnisse mit den Untersuchungen, die in den neuen Arbeiten über die Freiburger Präalpen von Ch. Schwartz-Chenevart (1945), M. Chatton (1947), L. Pugin (1951) und J. Spoorenberg (1952) durchgeführt wurden, so ergibt sich gesamthaft betrachtet eine klare Übereinstimmung der Schichtfolge.

Tektonisch ist die Trias an die Antiklinalkerne der Faltenzüge gebunden. Gute Aufschlüsse, die eine durchgehende Profilaufnahme ermöglichen, sind selten, meist jedoch verrät sich der Verlauf der triasischen Schichten unter Schutt- und Vegetationsbedeckung durch typische, morphologische Erscheinungen, wie Weichheit der Geländeformen und -linien und Bildung von Versickerungstrichtern.

1. Gips

Nur im Gebiete der Oberbachalp, 250 m südwestlich der Hütten auf etwa 1700 m Höhe, steht Gips an (Fig. 2). Nil beschreibt den Aufschluß als eine Wechsellagerung von Gips mit Tonschiefern. Teilweise liegen diese schön lagigen Gips-Tonschiefergesteine neben unsicher anstehendem Rhät (Rhätschuppe). Andere Aufschlußpartien zeigen den Gips mit Dolomit durchsetzt. Die Dolomitbrocken sind als Knauer im Gips eingelagert. Der Gips wurde diapirisch zwischen die Dolomitlagen hineingedrückt. Dabei wurden die dolomitischen Bänke zerrissen und die einzelnen Dolomittrümmer (Knauer) von Gipsmasse umflossen.

Geologische Kartenskizze 1:10000 südlich Oberbachalp

Im Hahni, 1 km nordnordöstlich von Reutigen, finden wir einen weiteren Gipsaufschluß, der allerdings schon außerhalb unseres Gebietes liegt. Der Aufschluß wird im Geologischen Führer der Schweiz (1934, fasc. VIII, S. 581/82) von P. Beck erwähnt. Es handelt sich um eine Abfolge von Gips und Rauhwacke in Wechsellagerung.

2. Rauhwacke

Sie ist das eigentliche aufgeschlossene Kerngestein der Antiklinalen des Stockhorngebietes. Wir finden sie in guten Aufschlüssen im Hahni (Fig. 3), am Weglein von Reutigen nach der Alp Längenberg auf 900 m Höhe und südwestlich der Oberbachalp (Fig. 2).

Die Rauhwackezone im Hahni gibt uns interessante Einblicke in die Lösungs- und Trichterbildungsverhältnisse dieses Gesteins. Der Glütschbach verliert seit langer Zeit schon Wasser in den Rauhwackeuntergrund beim Hahni. Mechanische Auswaschung und Korrosion der pulverig zerfallenden Dolomitkomponenten der Rauhwacke bewirken eine ziemlich rasche Zunahme des Porenvolumens des Gesteins, die schließlich so groß wird, daß es durch sein Eigengewicht und oberflächliche Belastungen (Humus, Häuser, Mauern, Bäume usw.) «zusammensintert». Es bilden

sich Versickerungstrichter. Der Glütschbach überfließt am Ostende des Bürgli harte Sandkalke des Lias. Diese Gesteine bilden infolge ihrer geringen Verwitterung gegenüber dem langsam einsinkenden Rauhwackegelände eine Schwelle, südlich welcher die Rauhwackezone als Depression liegt. Heute ist die Lage derartig, daß der Glütschbach bis etwa 1,5 m und mehr aufgedämmt werden mußte, damit seine Wasser über die Liasschwelle geführt werden können und sich nicht in das trichterdurchsetzte Depressionsgebiet ergießen. Bei plötzlichem Hochwasser infolge Gewitter läßt sich häufig ein Überborden des Baches nicht vermeiden. Dadurch wird dem Untergrund wieder vermehrt zerstörendes Sickerwasser zugeführt. Ein Einschalen des Baches mittels Betonschalen würde kaum durchschlagenden Erfolg haben, da zu befürchten ist, daß die Sinkbewegungen des Geländes die Schalen zum Zerreißen bringen. Jedenfalls wurde diese Erfahrung mit einer Betonrohrleitung gemacht, die im Bett des Baches eingelegt wurde.

Nebst der Lösungswasserzufuhr des Glütschbaches stellt das Depressionsgebiet ein ideales Sammelbecken für die Niederschlagswasser dar, welches zusätzlich in die Zone eindringt. Deformationen und Risse an Bauten sind heute gut sichtbar und stellen die Bewohner des Gebietes vor ernstliche Schwierigkeiten. Fig. 3 zeigt die topographisch-geologischen Verhältnisse im Hahni.

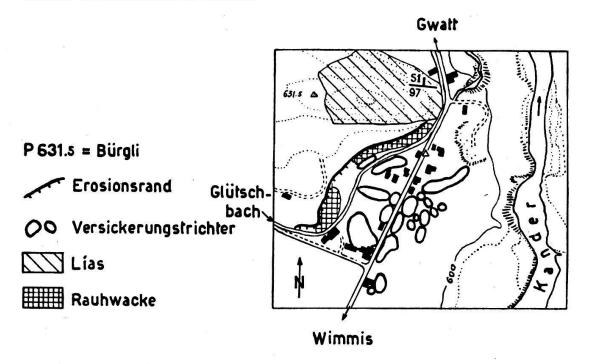


Fig. 3
Trias im Hahni, 1:10000

Für die Bildung der Rauhwacke in unserem Gebiete halten wir die Ansichten von W. Brückner (1941) für richtig. Jedenfalls sind die beiden gut aufgeschlossenen Rauhwackevorkommen vom Hahni und von der Oberbachalp beide an Gips gebunden. Es läßt sich daher annehmen, daß das Ausgangsmaterial ein Dolomit-Gipsgestein gewesen war. Die mächtigen Rauhwackemassen unterhalb der Alp Längenberg (Solegg-Graben-Kratzhaldengraben) dürften auf Grund der lithologischen Vergleiche dieselbe Genese erlitten haben, obschon hier nirgends Gips nachgewiesen werden konnte.

3. Dolomit und bunte Mergel

Über der Rauhwacke liegen im Südschenkel der Heitiantiklinale hellgelb anwitternde, helle Dolomite, die meist mit bunten, grünen, blauen, grauen und rötlichen Mergeln wechsellagern. Die Bankmächtigkeit des Dolomites ist sehr ungleich. Sie schwankt zwischen 20 und 5 cm im Durchschnitt. Dünne Dolomitbänke sind oft zerrissen und in den Mergeln als Knollen eingebettet. Im Profil des Solegg-Grabens (Fig. 5) sind diese Verhältnisse sehr schön aufgeschlossen. Es liegt hier eine etwa 60 m mächtige Serie von hellen gelblichen Dolomitbänken, mit bunten Mergeln wechsellagernd, auf der Rauhwacke. Gegen oben nimmt der Mergelanteil auf Kosten des Dolomites zu, so daß das Dach der triasischen Schichten vorwiegend aus diesen bunten Mergeln besteht. Der unmittelbare Kontakt zum Rhät ist durch Schutt und Vegetation verdeckt.

Im Nordschenkel des Heitigewölbes finden wir nur sehr wenig Aufschlüsse, die uns einen Einblick in die stratigraphischen Verhältnisse der oberen Trias gestatten. Auf dem Weglein nach dem Längenberg betritt man, unmittelbar nachdem der Pfad aus dem Kratzhaldengraben nordwärts ansteigt, eine kleine Hangwiese «Kratzhalden», wo aus der Grasnarbe Dolomitbänke von gelblicher Anwitterungsfarbe herausragen. Es handelt sich um tiefere Horizonte der oberen Trias. Im Wald oberhalb der Wiese verdecken Schutt und Humus den Zugang der oberen Schichten. Es ist anzunehmen, daß auch hier — entsprechend dem Solegg-Graben-Profil — eine Wechsellagerung von Dolomit mit vorwiegend bunten Mergeln vorhanden ist.

Als weitere Dolomitvorkommen sind die verschuppten, bankigen Dolomite bis Dolomitkalke der Bärenfalle (südlich Moosfluh) und die zum reduzierten Kern der Stockhornantiklinale gehörenden Dolomite südlich des Rosenbergwaldes zu erwähnen. Sie folgen im Westhang, im Auf-

stieg in die Längelauenen, in scharfer Grenze über colithischen Kalken des Doggers, wo sie morphologisch als mit Vegetation und Schutt verkleidetes Band in Erscheinung treten. Mit einem lokal auftretenden dolomitischen Breccienhorizont grenzen die Dolomite an den «Liasquarzit» des Sinémurien des Stockhorngewölbe-Südschenkels.

Weiter im Westen des Stockhornantiklinalkernes, im Gebiete südwestlich der Oberbachalp gegen die Bachegg hin, erwähnt NIL eine von Triasdolomit begrenzte Rhätschuppe. In schlecht aufgeschlossenem Terrain findet man:

x m gelbliche, gebankte Dolomite mit tonig-mergeligen, grünlichgrauen Lagen,

0.20 m Dolomitoolith,

0,05 m Dolomitbreccie.

Es folgt das Rhät mit grauen Kalken, schwarzen Tonschiefern, Lumachellenbänken, Kalken mit Brachiopoden.

Der Abschluß der Rhätschuppe wird von einer dolomitischen, hellgrauen Breccie gebildet, die wohl das Übergangsgestein in die Trias bildet. Über das Vorkommen dieser kleinen, von Triasdolomit umrahmten Rhätschuppe vergleiche auch Fig. 2.

Zusammenfassend können wir die Trias wie folgt einstufen: Der Buntsandstein (Werfénien) fehlt. Er ist bis heute in der Klippendecke nur in den weißen Quarziten bei Chalex südlich Aigle und in den Sandsteinen von Chalavornaire bei Vouvry repräsentiert.

Den Gips stellen wir, entsprechend der stratigraphischen Tabelle der Trias in Alb. Heim (1922, Bd. II/2, p. 504), in den alpinen Muschelkalk (Anisien/Ladinien). Er ist in zwei Aufschlüssen, am Stockhorn-Nordfuß westlich und im Hahni an der Kander östlich unseres Untersuchungsgebietes anstehend.

Darüber folgt die in ihrer Mächtigkeit überaus verschiedene Rauhwacke, die das Äquivalent des unteren Keupers (Carnien-Ladinien) repräsentieren dürfte.

Als oberste Trias (Norien/Keuper) finden wir gelbe Dolomite und dolomitische Kalke, nach oben deutlich in bunte Mergel übergehend. Fossilien konnten im ganzen Schichtkomplex keine gefunden werden.

Infralias

Rhät

Das Rhät ist in unserem Terrain nur in der Heiti-Antiklinale aufgeschlossen. Durch ihren axialen Ostanstieg wurden die den Antiklinalkern bildenden Gesteine der Trias und die Hüllgesteine des Rhät und des Hettangien in den Ostabhängen des Längenberges und der Günzenen freigelegt.

Den einzigen guten Aufschluß finden wir in der Bachrunse des Solegg-Grabens. Man erreicht diesen Bacheinschnitt, indem man vom Dorfe Reutigen dem Kratzhaldengraben entlang gegen die Alp Längenberg ansteigt. Auf 900 m stößt man am Wege auf Rauhwacke der Trias. Im Anstieg linkerhand führt das Weglein an ein mit Schutt erfülltes Bachbett mit normalerweise wenig Wasserführung. Dieser Bachrunse entlang ansteigend, stößt man bald auf triasische Dolomite und bunte Mergel. Der Bacheinschnitt biegt hier gegen Süden um, in Richtung Alp Günzenen. In diesem südgerichteten Teil — dem eigentlichen Solegg-Graben — sind in prächtiger Weise die quer dazu (Ost-West) streichenden Rhätschichten freigelegt.

In diesem Profil finden wir über den bunten Mergeln der Trias schwarze Tonschiefer. Sie zerfallen sehr leicht in Blättchen und zeigen auf den Schichtflächen vereinzelt Bactryllien. Die Zugehörigkeit dieser glänzenden, gerillten Stäbchen ist noch unklar. Viele Autoren halten sie für große Diatomaceen, andere für Rückenplatten von Raubwürmern (Alb. Heim 1922, p. 602). Unsere Exemplare sind in den Einzelstrukturen schlecht erhalten und lassen genauere Untersuchungen zur Abklärung ihrer Zugehörigkeit nicht zu.

Der ganze Tonschieferkomplex ist in Wechsellagerung von Mergel-, Kalk- und Lumachellenbänken durchsetzt. An der Basis sind die Bänke mergelig, während sie darüber kalkig und häufiger werden. Ebenfalls in den unteren Horizonten führen die schwarzen Tonschiefer vereinzelt dunkle Flintknollen.

Mit dem Zunehmen der Kalkbänke stellen sich hie und da Lumachellenbänke ein. Teilweise besteht das Einbettungsmaterial der Schalentrümmer aus dichten, sandigen Kalken mit detritisch eckigem Quarzkorn, teilweise aus ooidischem und ovoidischem Kalk mit geringer Quarzkornführung. An einer ooidischen Lumachellenbank im Rhät des Nordschenkels der Heiti-Antiklinale (Sonnigwald) konnten im Dünn-

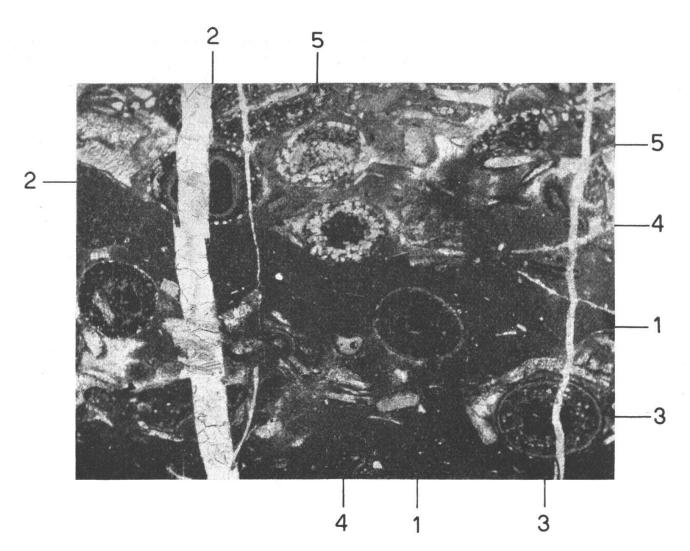


Fig. 4 (Vergrößerung etwa 40mal)

Verschiedene Stadien der Verquarzung an Ooiden. Oolithische Lumachelle aus dem Rhät der Heiti-Antiklinale.

- 1—1: In der äußersten, hellen Schale des Korns sind vereinzelt Quarzkörner gebildet worden (siehe linker Schalenrand). Weiterhin sind einzelne Körner im Innern entstanden, besonders an der Grenze Ooidkern (bituminöses Sediment) und erster oolithisch struierter Schale. Die Verquarzung ist äußerst schwach.
- 2—2: Vorwiegende Verquarzung in der äußersten Ooidschale. Zum Teil halten sich die gebildeten Quarzkörner streng an die Grenzen der Ooidschale, teils wachsen sie in die nächstfolgende Schale hinein. Ferner sind einzelne wenige Körner im Ooidkern verstreut. Unter der äußersten Schale der linken Peripherie findet sich Quarz in einem größeren Aggregat angereichert. Der Kern des Ooidkorns besteht aus bituminösem Material und scheint quarzfrei zu sein. Das Korn wird von einer Calcitader durchsetzt.
- 3—3: Willkürlich findet sich die Quarzkornbildung zwischen Ooidkern und äußerster Ooidschale verteilt. Selten sind jedoch auch in der äußersten Schale Quarzkörner vorhanden. Der Gegensatz der Verteilung zu 2—2 ist augenfällig.
- 4—4: Die innere Struktur des Ooidkorns ist kaum mehr deutlich erhalten. Hingegen sind die Begrenzungsflächen gegen das umgebende Sediment noch gut zu erkennen. In willkürlicher, unregelmäßiger Begrenzung hat eine Verquarzung des Korns um seinen Kern stattgefunden. Die Verquarzung ist gegenüber 1—1 bis 3—3 schon viel stärker.
- 5-5: Die Verquarzung hat das ganze Ooidkorn erfaßt. Die Ooidstruktur ist vollkommen verwischt, nur die Korngrenze blieb erhalten.

schliff verschiedene Stadien der Verquarzung von Ooiden festgestellt werden (Fig. 4). Über die Genese dieser Verquarzungsphänomene wird mein Studienkamerad Dr. Rudolf Gees in einer umfassenderen Arbeit berichten.

Über das Gesamtprofil des Rhät im Solegg-Graben gibt Fig. 5 Auskunft.

Die untere Grenze darf, obschon der unmittelbare Kontakt zur Trias nicht aufgeschlossen ist, als deutlich erkennbar angenommen werden durch Vergleichen der Kontaktregion in benachbarten Gebieten. Sie wird durch die bunten Mergel der Trias einerseits und die dem Rhät zugehörigen schwarzen Bactryllienschiefer anderseits gebildet. Ob eventuell die Rhätbasis durch ein Bonebed vertreten ist, läßt sich nicht feststellen. An sich wäre jedoch die Möglichkeit nicht auszuschließen.

Die obere Grenze als Übergang ins Hettangien vollzieht sich fließend. M. NIL erwähnt in seinen Feldbüchern zwei Rhätaufschlüsse in der westlichen Fortsetzung des Heiti-Gewölbes. In der Schopfallmend, nördlich Balzenberg, finden sich über einer dünnen Bank Rauhwacke und hellem Dolomit der Trias:

- 2 m dunkelgrauer Kalk mit eisenhaltigen Konkretionen,
- 3 m feinkörnige Rauhwacke,
- 4 m graugelbe Schiefer mit Knollenkalkbänken wechsellagernd,
- 3 m dunkelgraue gebankte Knollenkalke,
- 5 m Vegetationsbedeckung,
- 2 m hellgraue, dünnbankige Lumachelle mit ?Fischzähnen.

Hier wird das Profil unterbrochen und tritt erst wieder in einem topographisch tieferen (stratigraphisch jüngeren) Aufschluß mit dunkelgrauen, rostigfleckigen Kalkbänken in Wechsellagerung mit graubraunen Schiefern zutage.

Ferner wird ein Aufschluß in der Hausallmend, welche unmittelbar östlich an die Schopfallmend anschließt, mit bankigen, rostigfleckigen Kalken und braunen Schiefern erwähnt. Gegen das Hettangien zu werden die Kalke auf Kosten ihrer Bankigkeit massig. Das Rhätalter konnte hier zudem mit *Pteria contorta* bestätigt werden.

Zu erwähnen sind noch die Rhätaufschlüsse der Stockhorn-Antiklinale, die ausschließlich im Gebiete M. NILS liegen. Auf Oberbachalp findet sich das Rhät als Schuppe zwischen Trias-Dolomit (vgl. p. 161 und Fig. 2). Über einer Dolomitbreccie folgt:

- 0,60 m schmutziggrauer, knolliger Kalk mit Brachiopodenresten,
- 0,05 m schwarze Tonschieferlage,

- 0,35 m splittriger, ockergelber, dolomitischer Kalk,
- 0,20 m Dolomit mit Tonschieferlagen,
- 0,50 m knollige, rostbraun verwitternde Kalke mit schwarzen Tonschiefern. Kalke zum Teil als Lumachelle ausgebildet,
- 0,80 m kalkige Brachiopodenbank,
- 0,70 m stahlgrauer, rostig und grünlich verwitternder, rauher Echinodermenkalk,
- 0,30 m rauh verwitternder Echinodermenkalk mit eingeschlossenen Dolomitkomponenten (Breccie!),
- 0,50 m schwarzer, morscher, sandiger Kalk mit kohligen Häutchen, Echinodermenreste,
- 2,00 m grauer, rostigbraun verwitternder Kalk mit Brachiopodenbänken.

Es folgt Trias als hellgraue, dolomitische Breccie.

Die Ausbildung des Rhät der Heiti-Antiklinale zeigt mit ihren dunklen Bactryllien-Schiefern und Lumachellenbänken typische schwäbische
Fazies. Im Gegensatz dazu erweist sich das Rhät der Stockhorn-Antiklinale eher zur karpathischen Fazies gehörig, die sich durch Korallenund Brachiopodenbänke auszeichnet. Allerdings können sich schwäbische und karpathische Faziesbezirke wiederholt überlagern. Ein solcher Fazies-Mischtypus ist am ehesten für das Rhät des Stockhorn-Gewölbes charakteristisch, wobei jedoch die karpathische Fazies mit Korallen- und Brachiopodenbänken leicht überwiegt.

Das Rhät-Profil im Solegg-Graben (südwestlich Reutigen), siehe Fig. 5. Unterer Heiti-Lias und Hettangien.

Hdst. Nr.

1 Bankige, dichte gelblichbraun anwitternde, blaugraue Kalke mit Flintkonkretionen.

Dünnschliff: An Spongiennadeln reicher, kieseliger Kalk, von bituminösen Suturen lagig durchzogen und von Calcitschnüren durchsetzt. Schwarzes Pigment, teils aus kohligem Material, teils aus Pyritkörnern bestehend. Besonders deutlich sind die Pyrite in den Silexkonkretionen sichtbar. Die Grenze Kalk-Silex ist scharf. Die Flintknollen (Silex) bestehen aus einer feinkristallinen Quarzgrundmasse. Darin findet sich ein nicht unwesentlicher Anteil von neugebildetem Dolomit (Rhomboeder). Ferner ist die Konkretion von dispers verteilter, organischer Substanz durchsetzt, die dem Schliff eine schmutzig braungelbe Farbe verleiht. Neben bituminösem Pigment sind schöne, idiomorphe Pyritkörner eingestreut. Diese Kalke gehören in den unteren Heiti-Lias. Sie entsprechen in Struktur und lithologischer Ausbildung dem mächtigen liasischen Schichtstoß des Heitiberges.

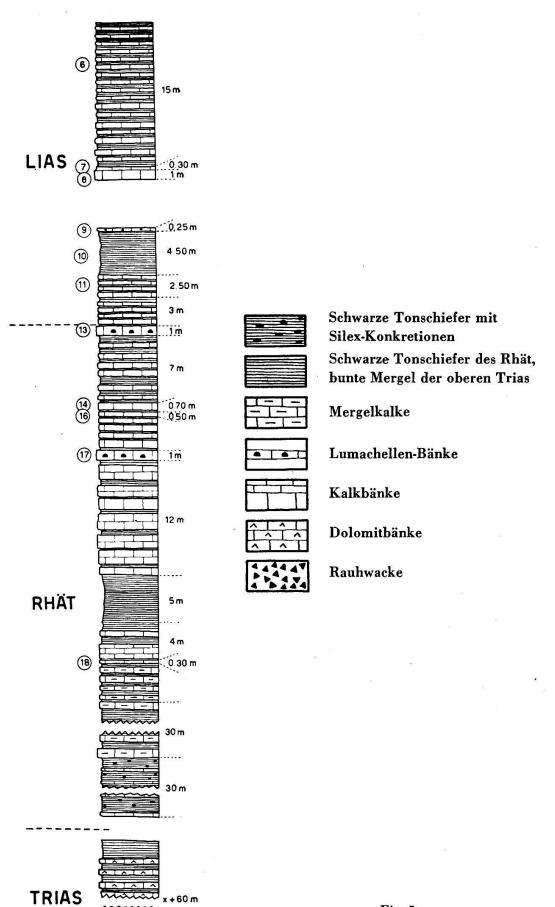


Fig. 5
Stratigraphisches Profil des Solegg-Grabens.

Hdst. Nr.

- 60-70 m grau bis gelblich anwitternde, gebankte, dichte Kalke. Mit einem Netzwerk von calcitischen Haarrissen und Calcitschnüren durchsetzt.
- 2 Dünnschliff: Von Calcitrissen durchsetzter, von Spongiennadeltrümmern erfüllter, bituminöser Kalk mit kohlig-bituminösen Suturen.
- 3 Dünnschliff: Schlierig und lagig bituminöser Kalk mit vereinzeltem detritischem, eckigem Quarzkorn. Eingeregelte schlecht erhaltene Spongientrümmer. Das Gestein ist von Calcitschnüren in verschiedener Dicke kreuz und quer durchsetzt.
- 4 Dünnschliff: Dichter, mikrokristallin-körniger, von kohlig-bituminösen und einem Netzwerk von Calcitschnüren durchsetzter Kalk. Schlecht erhaltene organische Reste.
- 5 Wie Nr. 4.
- 6 Graublaue Kalkbänke (Bankmächtigkeit etwa 5 cm) mit dunkelgrauen Tonschiefern wechsellagernd.
 - Dünnschliff: (Kalkbank). Organogener, von lagig-schlierigen bituminösen Suturen durchsetzter Kalk. Schwarzes kohliges Pigment eingestreut, teilweise aggregatartig angereichert. Schalentrümmer, Echinodermenreste, Spongiennadeln.
- Gelbliche, rostig anwitternde, graublaue Kalkbank mit starker Calcitäderung. Dünnschliff: Mikrokristalliner, sandiger Kalk. Vereinzelt Querschnitte durch Seeigelstacheln. Quarzkorn eckig, teilweise idiomorph rekristallisiert. Schwarzes Pigment.
- 8 Dichter, rostig fleckiger Kalk. Dünnschliff: Organogen detritischer, mikrokristalliner, schwach sandiger Kalk. Schalenreste, Seeigelquerschnitte. Quarzkorn eckig und rund. Vereinzelt Glaukonit (Fig. 6).
- 9 Kompakte, rostigfleckige, graue, kieselige Kalkbank. Auf der Anwitterungsfläche Muschelschalen.
 - Dünnschliff: Mikrokristalliner, kalkiger Quarzsandstein. Teils unmittelbare Quarzbindung, teils Calcitzement (Fig. 7).
- 10 Ockergelbe Schiefer mit knolliger Schichtfläche.
 - Dünnschliff: Feinkörniger Kalksandstein mit schwarzer Pigmentanreicherung.
- 11 Massige Kalkbänke mit Tonschiefer-Zwischenlagen.
- 12 Dünnschliff: Sandiger Kalk mit detritischem eckigem Quarzkorn. Vereinzelt bituminöse Suturen, kohliges Pigment, Calcitaderung (Fig. 8).

Rhät

13 Lumachellenbank.

Dünnschliff: Sandkalk mit feinem, eckigem Quarzkorn. Die Körner sind dichter gepackt als bei Nr. 12 und durchschnittlich kleiner. Kohlig-bituminöse Suturen durchziehen das Gestein. Vereinzelt vollständig calcitisierte Schalenreste.

14 Gelblich anwitternde, dunkelblaue, harte dichte Kalkbank mit rostig braunen Flecken.

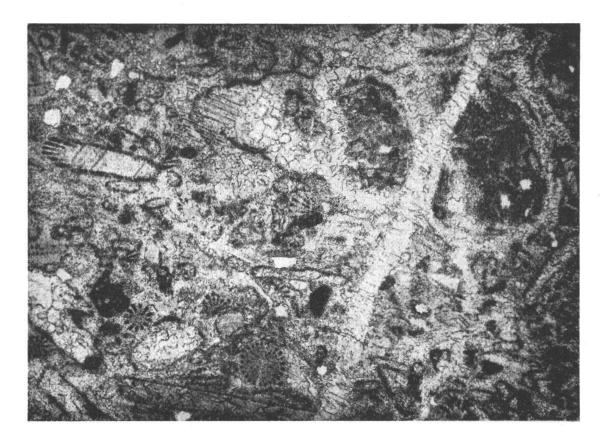


Fig. 6 (Vergrößerung 27mal)

Hettangien, Solegg-Graben. Detritisches Quarzkorn führender, organogener Kalk. Obere Bildhälfte rechts: Gastropoden-Axialschnitt, von Calcitlamelle durchsetzt. Links oberhalb Bildmitte: Schrägschnitt durch Seeigelstachel. Links unten: Seeigelstachel-Querschnitte.

Hstd. Nr.

Dünnschliff: Mikrokristalliner, organogener Kalk mit organogenen Strukturen (? Bryozoen, ? Algen).

- Dichter, grauer Kalk. Dünnschliff: Mikrokristalliner, feinsandiger Kalk. Eckig detritisches Quarzkorn, schwarzes Pigment, bituminöse Suturen.
- Dichter, körniger, grauer Kalk. Dünnschliff: Bituminöser, kohlig pigmentierter, von kohligen Suturen durchsetzter Sandkalk. Eckig detritisches Quarzkorn.
- 17 Lumachelle: spätiger, graublauer, dichter Kalk.

 **Dünnschliff: Oolithischer bis ovoidischer dichter Kalk mit Schalentrümmern.

 In einer mikrokristallinen Grundmasse sind Ooide und Ovoide nebst den organogenen Trümmern gleichmäßig verteilt. Vereinzelt finden sich eckige Quarzkörner in der Grundmasse. Calcitäderung.
- 18 Graue, ockergelb anwitternde Kalke.

 Dünnschliff: Dichter Kalk von calciterfüllten Haarrissen wirr durchzogen.

 In der dichten Grundmasse ist fein dispers schwarzes organisches Pigment verteilt.

Hettangien

Auf der geologischen Karte Thun-Stockhorn (1911—1922) wird von P. Beck in der östlichen Heiti-Antiklinale ein unteres und ein oberes Hettangien ausgeschieden. Er gibt vom Solegg-Graben folgendes, gemeinsam mit A. Jeannet aufgenommenes Profil:

- 30 m Oberes Hettangien: helle, grobe Kalkbänke,
- 35 m Unteres Hettangien: bräunliche Kalkbänke mit hellen, bräunlichen Mergeln wechsellagernd. Darunter glimmerige, sandige, dünne Bänke, Wildflysch ähnlich, nach unten übergehend in
- 5 m hellgelbe, dolomitische Mergel.

Es folgen 40 m dickbankige Kalkschichten, mit dunklen Schiefern wechselnd. Letztere nehmen nach unten zu und führen in den unteren Schichten Bactryllien. Es handelt sich um das Rhät.

Das Hettangien zeichnet sich durch eine überaus auffällige Fossilarmut aus. Die Leitfossilien für unteres (*Psiloceras planorbis*) und oberes (*Schlotheimia angulata*) Hettangien konnten nicht gefunden werden. So konnten wir Trennungen nur auf Grund der lithologischen Ausbildung vornehmen. Erschwerend tritt aber hier hinzu, daß diese lithologischen Ausbildung vornehmen.

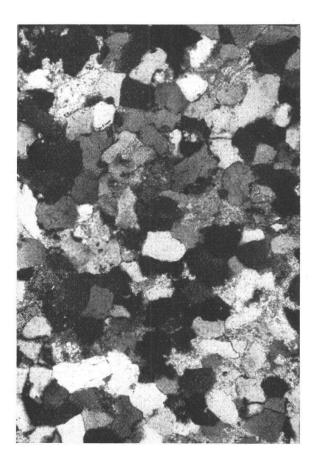


Fig. 7 (Vergr. 66mal, xx Nicols)

Hettangien, Solegg-Graben. Kalkiger Quarzsandstein. Teils unmittelbare Quarzbindung, teils Kalkzementbindung (zwickelfüllend).

Quarz: scharf umgrenzte, weißgraue bis schwarze Körner; Calcit:amöboid gesprenkeltes Korn. Auszählung der Körner im Bild gibt folgende Verteilung: 21% Karbonat (CaCO₃), 79% Quarz (SiO₂).

gischen Grenzen fließende Übergänge darstellen, so daß eine einwandfreie Grenzziehung überhaupt in Frage gestellt ist.

Wir haben die untere Grenze dort gezogen, wo die typischen, dunklen Bactryllien-Schiefer und Lumachellen aufhören und von bankigen, teilweise sandigen und schwach sandigen und organogenen Kalken, mit bräunlichen Mergelschiefern wechsellagernd, abgelöst werden.

Fig. 7 und Fig. 8 zeigen zwei Schliffbilder von Quarz führenden Hettangien-Gesteinen. Wir erkennen in Fig. 7 einen kalkigen Quarzsandstein mit teils unmittelbarer Quarzkornbindung, teils mit Kalkzementbindung (zickelfüllend). Das Verhältnis Quarz zu Karbonat beträgt ungefähr 80 % zu 20 %. Neben diesen quarzreichen Lagen finden wir auch Bänke, in denen das Quarz-Karbonat-Verhältnis gerade umgekehrt ist, so daß wir einen sandigen Kalk vor uns haben (Fig. 8). In anderen Schichten geht der Quarzgehalt so weit zurück, daß wir nur von einem quarzdetritischen Kalk sprechen können. Fig. 6 zeigt ein solches Beispiel. Es handelt sich um einen organogenen Kalk mit detritischem Quarzkorn. Neben diesen sandigen Gesteinen findet sich aber vorwiegend eine gebankte, massige Kalkserie, unregelmäßig von mergeligen Schieferlagen unterbrochen. Diese Mergel nehmen gegen oben auf Kosten der Kalkbänke

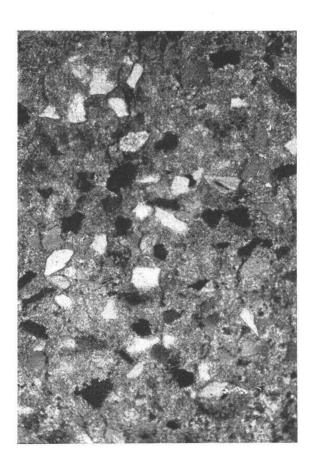


Fig. 8 (Vergr. 66mal, xx Nicols)

Hettangien, Solegg-Graben. Sandiger Kalk. Detritisches Quarzkorn: 22 %, karbonatisches Grundgewebe: 78 %. ab. So dürfte das obere Hettangien BECKS mit dieser vorwiegend kalkigen Bankserie identisch sein, während das untere Hettangien der mehr mergelig und kalkig bis sandig-kalkigen Abfolge entsprechen dürfte. Uns scheint auf Grund dieser lithologischen Verschiedenheiten eine Unterteilung des Hettangien zu gewagt zu sein. Wir verzichten daher, wie das auch M. NIL in seiner Kartierung getan hat, auf eine Zweiteilung.

Die obere Grenze haben wir dort gelegt, wo im Dünnschliff zum ersten Mal die typische Fazies des Heiti-Lias auftritt. Mikroskopisch ist diese Grenze ziemlich eindeutig zu legen. Im Gelände jedoch ist der Unterschied schwer zu erkennen. Nur die gröberen Bankmächtigkeiten des Hettangien (Dachpartie) gegenüber den feinbankigen Heitilias-Gesteinen geben uns ein einigermaßen sicheres Unterscheidungsmerkmal.

Die weißlich hellen, oolithischen Kalke, wie sie im Hettangien der Stockhornzone typisch sind — wir konnten sie am Lungerneggli und als Schuppe östlich davon (südwestlich der Unterlindentalhütte) nachweisen — fehlen in der Heitizone unseres Gebietes. Ebenso konnte sie M. NIL nicht anstehend nachweisen. Er erwähnt aber von der Hausallmend Blöcke von oolithischen Kalken, die den Hettangien-Oolithen der Stockhornzone sehr ähnlich sehen.

Heiti-Lias

Zwischen den Mytilus-Schichten und dem Infralias schaltet sich im Gebiete der Heiti-Antiklinale eine mächtige, monotone Gesteinsserie ein, der unseres Wissens P. Beck erstmals den Namen Heiti-Lias beilegte (nach dem Heitiberg südwestlich Reutigen). Da dieser sogenannte Heiti-Lias in unserem Gebiete sehr gut aufgeschlossen ist und in großer Mächtigkeit vorliegt, wurde er Gegenstand eingehender Untersuchung. In der Literatur finden sich genauere Ausführungen nur sehr spärlich und teilweise widersprechend.

B. Studer (1853) charakterisiert die liasischen Gesteine am Kapf bei Reutigen als dunklen, mit schwarzen Schiefern wechselnden Kalk, in wellenförmigen nordfallenden Schichten. Belemnites acutus Mill., Ammonites Conybeari Sow. = Arietites (Vermiceras) Conybeari Sow., Ammonites Kridion Hehl = Arietites (Arnioceras) cf. kridion Quenst. non Hehl, Avicula sinémuriensis d'Orb., Spirifer rostratus v. Buch wurden angeführt.

C. Brunner v. Wattenwyl (1857) bezeichnet eine mächtige Folge von grauen «Kalksteinlagern», die längs der Straße von Reutigen bis zum Brodhüsi aufgeschlossen sind, als unteren Lias (= Heiti-Lias). Vom Kapf bei Reutigen erwähnt er dunkelgraue Kalksteine mit Ammonites Kridion Hehl und Avicula inaequivalvis Sow.

V. GILLIERON (1885) gibt auf p. 148 eine ausführliche Beschreibung. Wir zitieren in der Übersetzung: «Die Mächtigkeit des Komplexes ist nicht mit Sicherheit anzugeben. Jedenfalls überschreitet sie 200 m. Der Kalk dieser Gesteinsfolge ist schwarz bis schwärzlich, manchmal graublau, meist kompakt mit flachem oder muscheligem Bruch, manchmal auch sandig mit körnigrauhem Bruch; die Bänke sind 10—30 cm mächtig, selten mehr. Sie sind meist durch eine Kalkton-Schieferlage getrennt. Diese ist schieferig und von schwarzer Farbe, gewöhnlich weniger mächtig als die Kalkbänke, ausgenommen im Dach des Komplexes. Gute Aufschlüsse finden sich längs der Straße am Fuß der Simmenfluh.»

GILLIÉRON erwähnt ferner die Fossilfunde von B. STUDER und C. BRUN-NER v. WATTENWYL am Kapf und fügt als neuen Fund von derselben Örtlichkeit Arietites Hartmanni Oppel bei. Im Heiti und im Nacki soll liasisches Alter durch schlecht erhaltene Belemniten (? B. paxillosus SCHL, und ? B. acutus MILLER) erwiesen sein.

- P. Beck (1919) teilt den Heiti-Lias in unteren und mittleren Lias auf, ohne eine Begründung dieser Zweiteilung zu geben.
- F. RABOWSKI (1920) trennt die Schichtfolge ebenfalls in zwei Serien, wovon sich die untere durch dichte Bryozoenkalke, die obere durch Fleckenkalke, mit Mergelschiefern wechselnd und eine Domérien-Fauna enthaltend (Heitiberg), auszeichnet.

In Alb. Heims «Geologie der Schweiz» (1922) werden die Heiti-Gesteine als Sinémurien s. l. und Mittellias zusammengefaßt. Lithologisch handelt es sich vorherrschend um eine mächtige bathyale Abfolge von Mergelschiefern.

ED. GERBER (1926) erwähnt vom Kapf einen kieselig-schieferigen Lias mit verzogenen Exemplaren von Arietites Kridion Hehl und kleineren, glatten Spiriferinen. Im Gegensatz dazu bezeichnet P. Bieri (1925) den Heiti-Lias als 200—400 m mächtige Abfolge von grauen und braunen Mergelschiefern mit Einlagerung härterer Bänke und seltenen Lumachellen.

Nach H. H. RENZ (1935) gehört der obere Heiti-Lias unzweifelhaft zum Sinémurien und ist allgemein mergelig ausgebildet.

Wir ersehen aus vorstehender Übersicht, daß sich die Autoren in der Zuweisung des Schichtkomplexes zum Lias alle einig waren. Obschon Leitfossilien sehr selten zu finden sind — uns gelang nur ein Fund eines schlecht erhaltenen Arietiten im Nordschenkel der Antiklinale — so genügten doch die Funde am Kapf (es handelt sich bei dieser Örtlichkeit um die Aufschlüsse am Ostausläufer der Sattelegg, an der Straße Kapf-Brodhüsi), sowie die lithologisch vollkommen verschiedene Ausbildung zum Liegenden (Hettangien) und Hangenden (Mytilus-Schichten) seine Zuweisung zum Lias als gesichert zu betrachten. Sobald dann aber versucht wurde, den Komplex in sich zu gliedern, tauchten Schwierigkeiten auf, besonders was den oberen Teil betraf. So betrachtet H. H. Renz (1935) die Unterlage der Mytilus-Schichten als Sinémurien, während F. Rabowski (1920) sie auf Grund einer spezifischen Fauna am Heitiberg ins Domérien stellt. Im Geologischen Führer der Schweiz (1934) wird das Alter Sinémurien-Domérien angegeben. In der lithologischen Charakterisierung sind die Abweichungen besonders augenfällig.

Wir versuchten, uns an Hand von Dünnschliffprofilen Klarheit über den Heiti-Lias-Komplex zu verschaffen. So wurde ein möglichst durchgehendes Profil von der Wimmisbrücke, längs der Straße über Brodhüsi bis zum Untertauchen des Sattelegg-Grates unter dieselbe aufgenommen. Hier werden die Schichten von Vegetation, Schutt und Moränematerial überdeckt, und erst der Solegg-Graben gibt uns Einblick in die tiefsten Horizonte der Schichtserie. Wo jüngere Überdeckung das Anstehende dem Blick entzog, wurde versucht, in Ergänzungsprofilen das Nichtaufgeschlossene zu ersetzen.

Bei der Auswertung der Profile zeigte sich bald, daß der Heiti-Lias eine als Ganzes charakteristische Serie darstellt, in sich jedoch durch eine kaum zu überbietende Monotonie der Gesteinsabfolge auffällt.

Die Serie besteht makroskopisch aus bankigen (im Durchschnitt 10 bis 30 cm Bankmächtigkeit), dunkelblauen bis schwarzgrauen, bituminöskieseligen Kalken, in Wechsellagerung mit geringermächtigen bituminös-mergeligen, stengelig bis splitterig zerfallenden, schwarzen Schiefern. Die Kalkbänke fallen unter dem Hammer meist in rhomboedrische bis rhombische Stücke mit glatten bis flachmuscheligen Bruchflächen auseinander. Beim Sägen des Gesteins stellt man verschiedene Härten fest, die — wie sich durch Vergleichen mit dem Dünnschliffbefund ergab — dem Verkieselungsgrad proportional sind. Ebenfalls beim Sägen verbreitet das Gestein einen unangenehmen Geruch, von bituminöser Substanz herrührend. Man wäre oft versucht von «Stinkkalken» zu sprechen.

Wie verschieden der Kieselsäuregehalt einzelner Bänke sein kann, mögen die chemischen Bestimmungen dartun, die wir Dr. W. HUBER verdanken.

Hdst. Nr.	ungefähre Lage im Gesamtkomplex	mikroskopischer Befund	⁰ / ₀ SiO ₂
25	Dachpartie, etwa 30 m von der Grenze Mytilus-Schicht- Heiti-Lias	kieselsäurereicher Kalk mit sperrigem Implika- tionsgefüge. Opalartiges, kieseliges und aus Cal- citkristalloiden bestehendes Grundgewebe, er- füllt von Spongiennadelresten. Ferner bituminös- kohlige Pigmentierung.	70.35
27	Dachpartie, etwas tiefer als Nr. 25	harter, schwarzer, kieselsäurereicher, bituminöser Kalk. Mikrokristalline Quarzkörner lappig bis scharfkantig ineinander verzahnt. Spongiennadeln meist chalcedonisiert, im Querschnitt sphärolithische Struktur. Bituminöse Schlieren, kohliges Pigment.	71.86
28	unmittelbar auf Nr. 27 folgende Bank	Kalk. Calcit in Mosaikstruktur. Ganz vereinzelt detritisches Quarzkorn. Mergelig-kohlige Schlie- ren und Häute durchsetzen das Gestein. Spon- gientrümmer selten.	17.28
87	Mitte des Komplexes	Mergelig-bituminöser Kalk mit geflammten, bi- tuminösen Schlieren. Wenig detritisches Quarz- korn. Vereinzelt schlecht erhaltene Organismen- reste.	18.54

Wir haben die Gesteine zur Analyse so gewählt, daß wir schon aus dem mikroskopischen Befund auf Extremwerte der Kieselsäureführung schließen durften. Aus den Analysen und Vergleichen dieser genauen Befunde mit den übrigen Dünnschliffen konnten wir mit ziemlicher Sicherheit auf die Kieselsäureverteilung im Gesamtkomplex schließen. So stellten wir fest, daß im Dachteil des Heiti-Lias die Bänke allgemein am kieselsäurereichsten sind.

Es stellt sich hier eine nomenklatorische Frage der Gesteinsbezeichnung. Wie soll ein Gestein bezeichnet werden von beispielsweise 70 % SiO2 und 30 % Karbonat mit bituminös-toniger Beimischung und mit vorwiegend Spongiennadeln als organischer Komponente? Strukturell wie genetisch handelt es sich keineswegs um einen Quarzit. Für Kieselkalk wäre der SiO2-Gehalt zu hoch; abgesehen davon spricht auch die strukturelle Verschiedenheit gegen eine solche Bezeichnung. Ebenso würde die Benennung Silexlage oder -bank dem Gestein in keiner Weise gerecht, da wir es mit einer Verkieselung einer karbonatisch-bituminösen, sedimentären Bank zu tun haben, die absolut keine Ähnlichkeit mit

unseren bekannten Silexlagen, -knollen und -konkretionen (engl. Chert beds, chert nodules) hat. Wir haben auf eine eigene Namengebung verzichtet und wählten den Weg der Beschreibung. So benennen wir ein Gestein mit oben erwähnten Eigenschaften etwa als «kieselsäurereichen Kalk mit sperrigem Implikationsgefüge von SiO2 und Karbonat; eine amorph erscheinende Kieselgrundmasse ist von Spongiennadelresten und Calcitkristalloiden sperrig, lappig und verzahnt durchsetzt».

Nach unten nimmt der SiO₂-Gehalt rasch ab und bewegt sich im Durchschnitt in Werten von 5 bis 20 %. Verkieselungsphänomene werden relativ selten, und den Hauptanteil an Kieselsäure machen detritische Quarzkörner aus.

Nebst der Hauptkomponente Karbonat (Kalk) und, in nicht zu unterschätzenden Maße, Quarz als Detritus und amorph-chalcedonartige Beimengung, stellen wir als weiteren merklichen Bestandteil tonig-bituminöses Material fest. Angereichert in kohlig-bituminösen Häuten, in lagig angeordneten Schlieren und Flatschen und in schwarzem Pigment, durchsetzt die organische Komponente das Gestein. Ihr ist im wesentlichen die dunkle Farbe zuzuschreiben.

An organogenen Gefügebestandteilen finden sich durchgehend Spongiennadeln in wechselnd guten Erhaltungszuständen. Monoaxiale Individuen sind überwiegend, nebst selteneren biaxialen Formen. Die Nadeltrümmer können wirr im Gefüge angeordnet sein und lassen eine sperrige Struktur des Gefügebildes (Fig. 9) erkennen. In andern Fällen zeigen die Nadeln eine schlechte bis deutliche Einregelung nach den s-Flächen. In Wechsellage mit bituminösen Flatschen und Häuten ergibt sich eine schichtig-lagige Textur.

Fädig-längliche Gebilde, die sich häufig mit den Spongiennadeln vergesellschaftet finden, deuten wir in Anlehnung an andere Autoren (CUVILLIER 1951, WEISS, 1949) als fragliche Algenfäden.

Als mehr akzessorische Beimengungen finden sich Textularien, Nodosarien, ? Ostrakodenschalen und Echinodermentrümmer (Crinoidenstiel- und Seeigelstachelquerschnitte) als organogene Reste, dazu Pyrit und in einem Schliff Turmalin als anorganische Komponenten.

Leitende Makro- oder Mikrofossilien konnten nirgends beigebracht werden. Für das Alter müssen wir uns auf die Funde von früheren Autoren stützen, die auf Grund von Ammonitenfunden (siehe p. 170, 171) dem Heiti-Lias Sinémurien- bis Domérienalter zuschreiben. Wir können ferner lithofazielle Vergleiche aus Zonen gleicher Fazies beiziehen. Zu diesem Zwecke halten wir uns an die Ausführungen von E. Peterhans

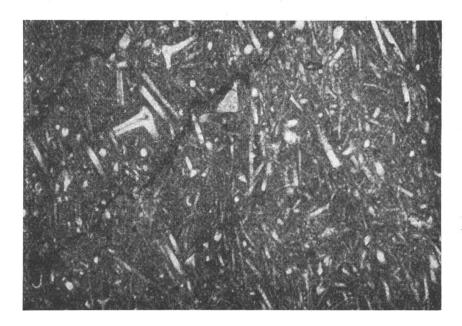


Fig. 9 (Vergrößerung 27mal)

Heiti-Lias. Typisches Schliffbild. Der lagig bituminöse, schwach quarzkornführende Kalk ist von Spongiennadel-Resten und? Algenfäden erfüllt.

(1926), der in vergleichenden Untersuchungen den Lias der Préalpes médianes zwischen Rhonetal und dem Lac d'Annecy behandelt hat. Drei Antiklinalzonen, abgelöst von drei Synklinalzonen werden in der Klippendecke festgestellt. Die südlichste Synklinale S1, zwischen den Antiklinalen A1 (Gummfluh-Spillgerten) und A2 (Tours d'Ai-Stockhorn) liegend, zieht über Vernaz und Aigle nach dem Heitiberg. Sie entspricht also unserer Heitizone. Grob charakterisiert wird sie durch Kalke und kieselig-mergelige Schiefer des Sinémurien bis mittleren Lias. Oberer Lias scheint zu fehlen. Als oberer Abschluß wird die von F. Rabowski gefundene Domérien-Fauna (mittlerer Lias) vom Heitiberg erwähnt. In der sogenannten Internzone (Vernaz-Grammont) finden sich nach Peterhans Kieselkalke, die unter dem Mikroskop zahlreiche Reste von Spongiennadeln zeigen. Diese kieseligen Kalke des Sinémurien lassen sich ohne weiteres mit unseren, Spongiennadeln führenden, kieseligen, tonigbituminösen Kalken der Heitizone gleichsetzen.

Zusammenfassend können wir festhalten, daß die monotone Gesteinsfolge und die Armut an Leitfossilien eine Feingliederung der Heiti-Lias-Serie nicht zulassen. Man wird wie bisher diesen teilweise kieselsäurereichen, bituminös-tonigen, gebankten Kalken Sinémurien- bis Domérien-Alter zuerkennen müssen.

P. Beck (1919) erklärt die große Mächtigkeit des Heiti-Lias von etwa 1000 m im Südschenkel der Antiklinale, gegenüber einer solchen von etwa 200-300 m im Nordschenkel, durch eine tektonische Verdoppelung des Heitigewölbes. Es schaltet sich zwischen dem Trias-Rhät-Kern der Antiklinale im Süden die sogenannte Plachtigraben-Mulde ein. Südlich der Mulde schließt das Simmenfluhgewölbe, nördlich von ihr das Mattengewölbe an. Den Nachweis dieser Tektonik versucht BECK durch Vorhandensein zweier Antiklinalkerne in der Klusialp zu erbringen. Ferner soll im Lias des Plachtigrabens durch Streich- und Fallmessungen eine Mulde (Plachtigraben-Mulde) nachzuweisen sein (siehe Karte Beck/Gerber, 1922). Aus persönlichen Diskussionen mit M. Nil, ebenso aus seiner Kartierung, ist ersichtlich, daß eine Kernverdoppelung im Klusialpgebiet nicht nachgewiesen werden konnte. Die Antiklinale zeigt in dieser Gegend im Streichen eine flexurartige Verbiegung nach Nordosten, mit späterem (östlicherem) Ost-Süd-Ost-Umbiegen, so daß sehr leicht die Möglichkeit gegeben war, infolge der schlechten Aufschlußverhältnisse auf eine Verdoppelung der Kerne zu schließen, je nachdem wo die kleinen, verstreuten Aufschlüsse in der Flexurzone gefunden wurden. Was die Messungen im Plachtigraben betrifft, so sind diese sehr vorsichtig zu interpretieren, da wegen schlechter und oberflächennaher Aufschlüsse sehr leicht Fehlmessungen infolge Hakenwurfes der Schichten möglich sind.

Im Solegg-Graben reichen beispielsweise Hakenwurfeinflüsse bis gegen 5 m unter die Oberfläche.

Unsere Dünnschliffuntersuchungen geben keine Auskunft über eine eventuelle Verdoppelung der Schichten, was leicht erklärlich ist, da stratigraphische oder lithologische Leithorizonte fehlen. An sich wären Verschuppungen innerhalb der südlichen Heiti-Lias-Serie wohl denkbar. Ihr Vorhandensein ist jedoch nicht zu beweisen. Wir neigen eher zur Ansicht eines einfachen Gewölbebaues der Heitizone mit normalstratigraphischer Abfolge der Liasschichten.

Heiti-Liasprofil Wimmisbrücke-Sattelegg (Ostsporn) (stratigraphisch von oben nach unten)

Es werden nur die Dünnschliffbefunde aufgeführt.

Nr. Dünnschliff-Beschreibung

19 Mittel- bis feinkörniger Kalk mit Mosaikstruktur und kohlig-bituminösen Häuten. Durch das Auftreten von Spongiennadeln erhält das Gefüge sperrigen Aspekt. Schwarzes kohliges Pigment (Fig. 23).

- Kieseliger Kalk. Wirr angeordnete Spongiennadeln erzeugen sperriges Gefüge. Die Nadeln liegen in einer dichten kalkig-kieseligen Grundmasse. Im Schliff verteilt finden sich teils runde, teils eckige, teils «amöbenartige» (ausgezahnte und ausgebuchtete) schwarze Pigmente. Ferner sind gelbliche Schlieren mit wenig Spongiennadeln, jedoch sehr dichter amorph-kieseliger Grundmasse zu erkennen. Als Komponenten liegen darin verteilt Kristalloide von Calcit.
- 21 Mosaikartig struierter, schwach toniger Kalk, vereinzelt mit Spongiennadeln durchsetzt. Flaserig unregelmäßig durchziehen kohlig-bituminöse Häutchen das Gestein. Teilweise verbreitern sie sich zu viel organische Substanz führenden Flatschen und Schmitzen. In diesen eingebettet sind Spongiennadeln.
- 22 Kieselsäurereicher Kalk mit kieselsäurereicheren Flatschen und von Spongiennadeln erfüllt. Nadeln calcitisch. Vereinzelt detritisches Quarzkorn eingestreut. Schwarzes Pigment wie Nr. 20.
- 23 Mosaikartige bis sperrige Struktur aufweisender Kalk mit tonig-kalkigen Flatschen. Grundgewebe erfüllt von Spongiennadeln. Kohlige Häutchen.
- 24 Gelblichgrauer, kieselsäurereicher Kalk mit mosaikartigem bis sperrigem Gefüge. Schlecht erhaltene Spongiennadeltrümmer, durchwegs calcitisch. Ganz vereinzelt detritisches Quarzkorn.
- 25 Kieselsäurereicher Kalk (SiO₂-Gehalt 70,35 %) mit sperrigem Quarz-Kalk-Implikationsgefüge. Amorphe Kieselgrundmasse von Spongiennadelresten und Calcitkristalloiden erfüllt. Feine schwarze Pigmentierung.
- Kieselsäurereicher Kalk. Ondulös auslöschende, mosaikverzahnte (Implikationsgefüge ähnlich), mikrokristalline Quarzaggregate, von Calcitkristalloiden und Dolomitneubildungen (Rhomboeder) in wechselnder Intensität durchsetzt. Teilweise ist SiO₂ auch amorph ausgeschieden. Schlecht erhaltene Spongiennadeltrümmer.
- 27 Kieselsäurereicher (SiO₂-Gehalt 71,86 %), organogener Kalk. Spongiennadeln sind teilweise dolomitisiert, teilweise vollständig verkieselt. Es finden sich auch Zwischenstadien im gleichen Individuum, wo abwechselnd Verkieselung und Dolomitisierung statthatte. Tonig-bituminöse Schlieren sind eingeregelt angeordnet. Kohliges Pigment.
- 28 Kalk. Calcit in Mosaikstruktur. Ganz vereinzelt detritisches Quarzkorn (SiO₂-Gehalt 17,28 %). Bituminöse Häutchen und Schlieren durchsetzen, manchmal in viele Fasern auffingernd, das Gestein. Vereinzelt treten schwarze Pigmente auf. Spongiennadelreste nur ganz selten.
- 29 Kalk mit Mosaikstruktur, teilweise überprägt von bituminös-kohliger Substanz. Kohlige Häutchen in Schlieren sich auflösend. Vereinzelt Quarzkörner und calcitische, organogene Trümmer (Spongiennadeln). Pigment selten. Gesamtaspekt ähnlich Nr. 28.
- 30 Bituminös-toniger Kalk, erfüllt von calcitierten Spongiennadelresten. Teilweise ist eine Einregelung der Nadeln festzustellen. Der gleichen Einregelungsrichtung folgen kohlig-bituminös ausgekleidete Suturen. Nebst Nadeltrümmern längliche, fädige Gebilde (? Algenfäden). Fig. 10.

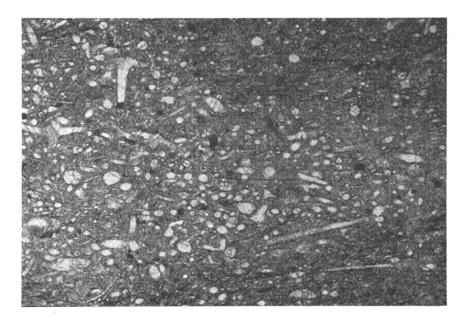


Fig. 10 (Vergrößerung 27mal)

Oberer Heiti-Lias, Wimmisbrücke. In einer kohlig-bituminösen, kieseligen Grundmasse liegen calcitisierte Spongiennadeln, eventuell? feine Algenfäden mit einer erkennbaren Einregelung eingebettet.

- 31 Kalk mit Mosaikstruktur. Einige schlecht erhaltene Spongiennadeln. Gestein schlierig von bituminöser Substanz durchsetzt. Vereinzelt körniges, schwarzes Pigment und detritisches Quarzkorn.
- 32 Bituminös-toniger Kalk mit feinkörnigem sperrig-mosaikartigem Gefüge. Spongiennadelreste. Calcitadern durch grobkörnige Calcitkristalle ausgeheilt.
- 33 Bituminös-toniger Kalk mit deutlich gerichteter Textur. In einigen Partien findet sich ein kieselig-kalkiges Implikationsgefüge.
- 34 Bituminös-toniger Kalk mit sperrig angeordneten Spongienskelettresten und ? Algenfäden. Dunkelbraune, kohlig-bituminöse Schlieren mit schwarzem Pigment.
- 35 Tonig-bituminöser, kieseliger Kalk. In einem implikationsartigen Gefüge von mikrokristallin-körnigem Quarz und bituminösem Karbonat erzeugen schlecht erhaltene Spongiennadelreste zusätzlich eine sperrige Struktur.
- 36 Dichter, bituminös-kieseliger Kalk, von Calcitadern durchsetzt. Vereinzelt Nadelreste von Spongien.
- Wie Nr. 30. Nebst der deutlichen Einreglung ist ferner eine Sonderung senkrecht zur Einregelungsrichtung festzustellen, indem in den bituminösen Schlieren Zonen feinerer organogener Detritus (? Algenfäden) als in den zwischenliegenden Lagen angereichert ist. In letzteren findet man vorwiegend grobe Spongiennadellängs- und Querschnitte.
- 38 Bituminös-toniger, kohligschwarz pigmentierter Kalk mit vereinzelten eingestreuten Quarzkörnern. Spongiennadeln.
- 39 Kieseliger, tonig-bituminöser Kalk. Kohlige Häute durchsetzen die mehr tonigen Schlieren des Gesteins. Schlecht erhaltene Spongiennadelreste, vereinzelt detritisches Quarzkorn. Als Pigment Pyritkörner.

- 40 Dichter, mosaikartig struierter, mehr oder weniger gleichkörniger, kieseliger Kalk. Vereinzelte, zum Teil zwickelfüllende, ondulös auslöschende Quarzaggregate; ferner verkieselte Spongiennadeltrümmer. Vereinzelt bituminöse, kalkige Flatschen mit organogenen Strukturen.
- 41 Feinkörniger, organogener, schwach kieseliger Kalk mit schlierigen, bituminösen Zonen und Suturen. Vereinzelt eingestreute Quarzkörner. Nebst Spongienresten Schalen von Foraminiferen. Spongiennadeln zeigen eine gewisse Einregelung. Querschnitte durch Schwammnadeln teils sphärolithisch verkieselt, teils dolomitisiert (eventuell auch calcitisiert).
- 42 Toniger Kalk. Sperrig nadeliges Gefüge in feinkörniger Grundmasse. In Zonen bituminöser Schlieren schwarzes, kohliges Pigment angereichert. Echinodermenreste, ? Ostrakoden-Längsschnitt.
- 43 Stark bituminös-toniger, als Pigment Pyritkörner führender schwach sandiger Kalk. In kalkig-toniger Grundmasse liegen über den ganzen Schliff zerstreut eckige Quarzkörner, teilweise unscharfe Resorptionsränder zeigend. Vereinzelt organogene Trümmer.
- 44 Stark kieseliger Kalk. Implikationsgefüge von Karbonat und Kieselsäure. In feinkristalliner, quarzitischer, teilweise chalcedon-sphärolithischer und calcitischer Grundmasse sind neugebildete, rhomboedrische Dolomitkristalle eingesprengt. Die organogenen Bestandteile (Spongiennadeln, ? Algenfäden) sind vorwiegend verkieselt, in bituminösen Zonen meist calcitisch. Vereinzelt treten in bituminösen Schlieren kohlige Pigmentkörner auf.
- Mosaik- bis implikationsartig verzahnter, kieseliger Kalk, vereinzelt mit eckigem, detritischem Quarzkorn und Pyritpigment. Gestein schichtig von stärker bituminösen Schlieren durchzogen. Vereinzelt Nodosarien- und Textularienähnliche Foraminiferenschalen. Spongiennadelreste meist verkieselt.
- Mikrokristalline, vorwiegend kieselige, bituminöse, schlierig gefleckte Grundmasse, erfüllt von Organismenresten (Echinodermentrümmer, Spongiennadeln). Teilweise sind die Nadeln schichtig eingeregelt, teilweise geben sie dem Gestein ein sperriges Gefüge. In kieseligen Partien sehr schöne Dolomitrhomboeder eingesprengt. Spongiennadeln im Querschnitt sphärolithisch verkieselt, im Längsschnitt faserige bis körnige Verkieselungsstruktur. Nadeln teilweise auch dolomitisiert. Pyritpigment.
- 47 Kieselig-bituminöser Kalk mit eingeregelten Spongiennadeln, teils verkieselt, teils calcitisiert. Turmalinkorn. Quer zur Schichtung mit Calcit ausgeheilte Risse. Vereinzelt kohliges Pigment und detritisches Quarzkorn.
- 48 Mikrokristalliner, organogener, kieselig-bituminöser Kalk. In der Grundmasse sperrig eingesprengt Spongiennadeln, ferner ? Algenreste, Schalentrümmer, Crinoidenreste, Textularia sp., ? Bryozoen. Verstreut detritisches Quarzkorn. Die flächigen Crinoidenreste sind teilweise vollständig rekristallisiert, teilweise zeigen sie typische Gitterstruktur, und in vereinzelten Fällen fand eine Anreicherung kohlig-bituminöser Substanz statt, die den Calcit verdrängte und am gitterigen Aufbau der Reste teilnimmt.
 - Bei größeren Trümmern zeigt sich sehr schön ein Umfließen durch das Einbettungsmaterial. Stengelig bis fädig geformte organogene Strukturen sind eingeregelt.

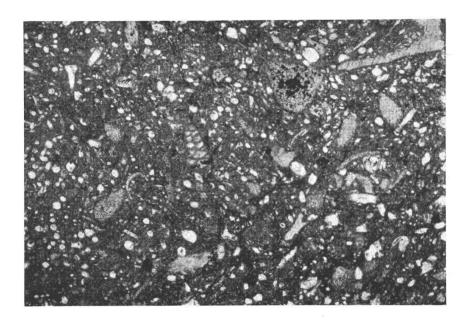


Fig. 11 (Vergrößerung 27mal)

Oberer Heiti-Lias, etwa 20 m unterhalb der Wimmisbrücke (bei Niederwasser der Simme 1 m breite Engpaßstelle bildend). Organogen-detritischer, kieselig-sandiger Kalk mit eckigem Quarzkorn. Schalentrümmer, Spongiennadelreste, Echinodermen-Bruchstücke. T/T: textularienähnliche Foraminifere.

- Organogen detritischer, kieselig-bituminöser, schwach sandiger Kalk. In eine bitumenreiche, kalkige, von kohligen Suturen durchzogene Grundmasse sind regelmäßig eckige Quarzkörner eingestreut. Hie und da ersetzt Kieselsäure calcitische Organismenreste (Echinodermentrümmer).

 Fossilinhalt: Schalentrümmer von Muscheln, Crinoidenstielglieder, Querschnitte von Seeigelstacheln, Spongiennadeln, ? Radiolarien, Textularien, nicht
- 50 Wie Nr. 49.
- Schichtiger, organogener, schwach sandiger, bituminöser Kalk. Längliche, fädige organogene Reste sind ungefähr parallel den den ganzen Schliff durchsetzenden kohligen Häutchen eingeregelt. Quarzkörner gleichmäßig über den ganzen Schliff eingestreut. Spongiennadeln, ? Algenfäden, Echinodermenreste, ? Textularien (teilweise mit bituminöser Schale), unbestimmbare Reste.
- Organogener, schichtig eingeregelter, kieseliger, detritisches Quarzkorn führender Kalk. Crinoidenreste und ?Algenreste; vereinzelt unbestimmbare Foraminiferenschalen. Hie und da, besonders in rekristallisierten Echinodermentrümmern, kohliges Pigment. Fig. 12.
- 53 Wie Nr. 52. Einregelung weniger deutlich.

bestimmbare Foraminiferen. Fig. 11.

- Tonig-bituminöser Kalk mit detritischem Quarzkorn. Keine Verkieselungsphänomene. ? Lagenidenquerschnitt (Cristellaria), Spongiennadelreste wiegen vor.
- 55 Schichtiger, schlierig durchzogener, feinkörniger Kalk, von eingeregelten Spongiennadeln und ?Algenresten durchsetzt. Sehr wenig Quarz. ? Lagenidenquerschnitt.

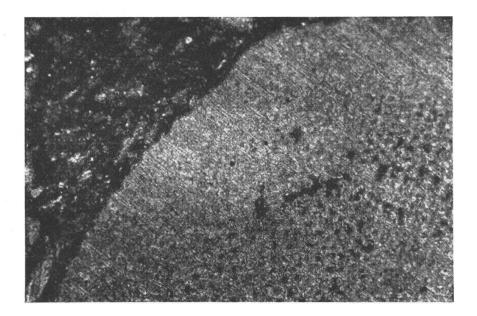


Fig. 12 (Vergrößerung 120mal, xx Nicols)

Oberer Heiti-Lias. Ausschnitt aus einem Echinodermenbruchstück. In der rechten unteren Bildhälfte die typische Gitterstruktur von Echinodermen erkennbar. Die schwarzen, pigmentartigen Punkte sind Zentren beginnender Verquarzung. Am linken Rand des Stückes fortgeschrittene Calcitisierung. Man erkennt deutlich die nach rechts unten verlaufenden Calcit-Spaltrisse. Undeutlich fortsetzend, durchsetzen sie auch die Gitterstrukturzone.

- Tonig-bituminöser, organogener Kalk mit detritischen Quarzkörnern von eckiger bis idiomorpher Gestalt.
 - Echinodermentrümmer: Crinoidenreste und Seeigelstacheln meist rekristallisiert. Daneben Spongiennadeln, ? Algenreste, unbestimmbare Schalenreste von Foraminiferen.
 - Teilweise ist eine Einregelungstendenz der Komponenten gut erkennbar.
- 57 Organogener, spätiger, dichter Kalk mit detritisch eckigem Quarzkorn. Schnitte von Textularien. Spongiennadelreste.
- Wie 57. Das Gestein zeigt lagige Textur. Dunkle, kohlige Knollen sind vermutlich Algenknollen. Die organogenen und mineralischen Komponenten sind regellos in die tonig-bituminöse Karbonat-Grundmasse eingebettet.
- 59 Wie 57. Jedoch bituminöser. Größeres Quarzkorn zeigt Fließstruktur der umgebenden Grundmasse. Ähnliches Umfließen von größeren Komponenten ist im ganzen Schliff mehr oder weniger deutlich erkennbar.
- Kieselkalk mit bituminisierten Foraminiferenschalen (? Textularien). Die Karbonatkörner sind mosaikartig, ungleichkörnig ineinander verzahnt. Ferner findet sich schlierig aufgearbeitetes Material in Form eines kieselig-bituminösen, von Spongiennadeln sperrig durchsetzten Kalkes.
- Von bituminösen, lagig angeordneten Schlieren durchzogener Kalk mit Spongiennadelresten und vereinzelten Echinodermentrümmern. Schwarzes Pigment. Detritisches Quarzkorn.

- 62 Lagig, tonig-bituminöser Kalk mit vereinzeltem detritischem Quarzkorn. Das Gestein ist erfüllt von eingeregelten Spongiennadel- und ? Algenresten. Ferner vereinzelt Echinodermentrümmer.
- 63 Schwach sandig-bituminöser Kalk, erfüllt von Spongiennadeltrümmern und Echinodermenresten (Crinoiden- und Seeigelstachelreste), vereinzelt, unbestimmbare Foraminiferenschalen.
- 64 Kohlig-bituminöser Kalk mit Quarzkörnern. Feine, fädige Organismenreste schichtig eingeregelt (? Algenreste). Quer zur Einregelung ist das Gestein von kohlig-bituminösen Suturen und Haarrissen durchsetzt. Schwarzes Pigment.
- Organogener, bituminöser, vereinzelt detritisches, subanguläres Quarzkorn führender Kalk. Spongiennadeln (sperriges Gefüge erzeugend), Echinodermenreste, Foraminiferenschalen (? Nodosarien).
- Mikrokristallin körniger Kalk mit vereinzelten Quarzkörnern. Über den Schliff verteilt, feine, stäbchenförmige und rundliche, organogene Trümmer. Vereinzelt rundes, schwarzes Pigment, teilweise zu nestartigen Aggregaten zusammentretend.
- 67 Feinkörniger, schwach kieseliger, bituminöser Kalk. Eingeregelte, fädige? Algenreste; schwarzes kohliges, körniges Pigment.
- Organogener, körniger, detritischer Kalk, bituminös. Schalentrümmer, Echinodermentrümmer, Spongien- und Algenreste, unbestimmbare Foraminiferen.
- 69 Wie Nr. 67.
- 70 Stark bituminöser Kalk mit sperrig verstreuten Spongiennadeln. Quarzkörner selten. Idiomorphe Pyritkörner und schwarzes, kohliges Pigment.
- Von bituminösen Schlieren und Flatschen eingeregelt durchzogener Kalk. Wenig Quarz, ? Algenbruchstücke und Schälchentrümmer.
- 72 Feinkörniger Kalk, von bituminösen, braunen Schlieren und Calcitadern durchsetzt. Schlecht erhaltene organogene Reste. Detritisches Quarzkorn selten.
- 73 Stark tonig-bituminöser, kohliger, schwarz pigmentierter Kalk mit Quarzkorn. Schlecht erhaltene organogene Reste.
- 74 Organogen detritischer, bituminös-toniger Kalk, von schlierigen, bituminösen Flatschen durchzogen. Schwarzes kohliges Pigment. Quarzkorn selten.
- 75 Wie Nr. 74. Etwas feiner im Korn.
- 76 Tonig-bituminöser, schwarz pigmentierter Kalk. Vorwiegend eckiges Quarzkorn. Spongien- und? Algenreste, Schälchentrümmer.
- 77 Detritisches Quarzkorn führender, feinkörniger, tonig-bituminöser Kalk mit schlecht erhaltenen Organismenresten.
- 78 Wie Nr. 77.
- 79 Wie Nr. 78. Jedoch mehr durch tektonisch-diagenetische Vorgänge überprägt.
- 80 Feinkörniger, bituminöser, schwarz pigmentierter Kalk mit calzitisierten, schlecht erhaltenen Organismenresten. Pigment zum Teil Pyrit.
- 81 Organogener, Quarzkorn-detritischer, bituminöser Kalk. Schwarzes Pigment zum Teil idiomorphe Pyritkörner. Calcitnest mit Chalcedonausscheidungen.
- Organogener, Quarzkorn-detritischer, bituminöser, kohlig pigmentierter, feinkörniger, schichtiger Kalk, von stark bituminösen Flatschen durchsetzt. Kohliges Pigment in kugeligen Körnern zu Nestern angeordnet, teils als Pyrit ausgebildet.

- 83 Feinkörniger, schlierig bituminöser, kohlig pigmentierter Kalk. Schlecht erhaltene, unbestimmbare Fossilientrümmer, vorwiegend Spongiennadeln.
- 84 Bituminöser Kalk mit detritischem Quarzkorn. Schwarzes, kohliges Pigment. Spongiennadeln, regellos angeordnet, erzeugen sperriges Gefüge.
- 85 Wie Nr. 39.
- Bituminöser, feinkörniger Kalk, schichtig mit geflammten, bituminösen Schlieren. Sehr wenig Quarzkorn. Vereinzelt schlecht erhaltene Organismenreste (? Ostrakoden-Längsschnitt, ? Nodosarien).
- 87 Wie Nr. 86. SiO₂-Gehalt 18,54 %.
- 88 Feinkörniger, bituminöser, schichtiger Kalk mit schlecht erhaltenen Fossiltrümmern. Schwarze, kohlige Pigmentnester.
- 89 Bituminös schlieriger, körnig-mosaikartig struierter Kalk. Vereinzelt Quarzkörner und kohliges Pigment. Unbestimmbare, organogene Trümmer eingestreut.
- 90 Flatschig bituminöser, Quarzdetritus führender Kalk mit Spongiennadelnund ?Algenresten.
- 91 Lagig bituminös-toniger Kalk. Organismentrümmer länglicher Gestalt, wie Spongiennadeln und ? Algenfäden, eingeregelt. Schwarzes kohliges Pigment.
- 92 Bituminös-toniger Kalk. Längliche, fädige? Algenreste und Spongiennadeln geben dem Gestein ein sperriges Gefüge. Eckiges und rundes kohliges Pigment. Detritisches, eckiges Quarzkorn.
- 93 Wie Nr. 91.
- 94 Flatschig, bituminös-toniger, organogener, schwach kieseliger Kalk. Spongiennadeln, ? Algenfäden, Foraminiferen, ? Ostrakoden-Längsschnitt.

Lias der Stockhornzone

Der Lias der Stockhorn-Antiklinale ist in unserem Gebiete nur in der Nordflanke der Nüschleten zwischen Bärlauenen und Längelauenen aufgeschlossen. Er bildet hier mit Triasdolomit als Gewölbekern die Fortsetzung der Lias-Vorkommen des Lungerneggli und des Strüßli (südlich Oberwalalp). Während auf der Karte Thun-Stockhorn (Beck/Gerber 1922) noch ein symmetrisches Gewölbe kartiert wurde, mit Trias-Kern und nach beiden Seiten folgenden Lias-Dogger-Malm-Kreide-Serien, mußten wir feststellen, daß im Nordschenkel der Lias überhaupt fehlt. Infralias ist weder im Nord- noch im Südschenkel vorhanden, mit Ausnahme einer kleinen Schuppe von Hettangien in den untersten Wandaufschwüngen der Nüschleten, unterhalb der Unterlindental-Hütte.

Im Südschenkel folgt über steilstehenden, gelblich anwitternden, dichten, gebankten Dolomiten eine feinbankige, bis 200 m mächtige Serie von hellgrauem, spätigem, rekristallisiertem Dolomit mit geringer Quarzkornführung. Es handelt sich um dasselbe Gestein, das auf der geologischen Karte Thun-Stockhorn als Lias-Quarzit des Sinémurien angegeben

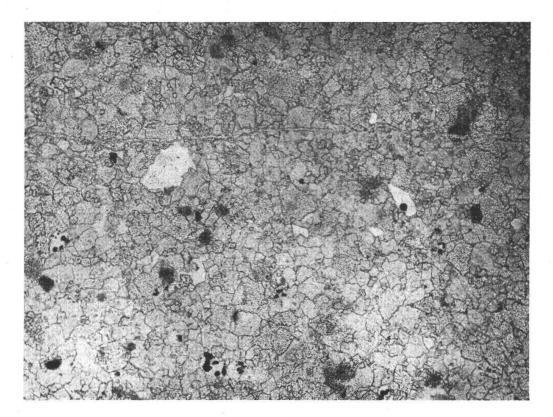


Fig. 13 (Vergrößerung 27mal) Mosaikstruktur von Dolomit, Sinémurien-Dolomit, Bärlauenen.

wurde. Im Dünnschliff zeigte sich jedoch eindeutig, daß es sich um einen mosaikstruierten, teilweise heteroklastischen, rekristallisierten Dolomit handelt, der hie und da detritisches Quarzkorn führt (Fig. 13 und Fig. 14). In ihrer westlichen Fortsetzung findet sich die gleiche Serie wieder als Unterlage des Strüßli-Leuenfluh-Doggerriffes.

Wenn auch in einzelnen Bänken die detritische Quarzkomponente etwas häufiger auftritt als im Durchschnitt, so kann trotzdem keinesfalls der Name «Quarzit» zur Bezeichnung dieses Gesteins in Frage kommen. Quarz ist akzessorische Komponente zur weitaus vorwiegenden Komponente Dolomit.

Weder Makro- noch Mikrofossilien konnten in diesem Sinémurien repräsentierenden Komplex gefunden werden. Es ist bei der höheren Kristallinität des Gesteins durchaus verständlich, daß Fossilien kaum erhalten bleiben konnten. Abgesehen davon sind überhaupt die tieferen Serien des Stockhorngewölbes durch starke Fossilarmut ausgezeichnet.

Sowohl für das Gebiet M. Nils wie für das unsrige gilt, daß im Südschenkel des Stockhorngewölbes als Lias nur Sinémurien, und zwar als rekristalliner Dolomit mit etwas detritischem Quarzkorn auftritt.

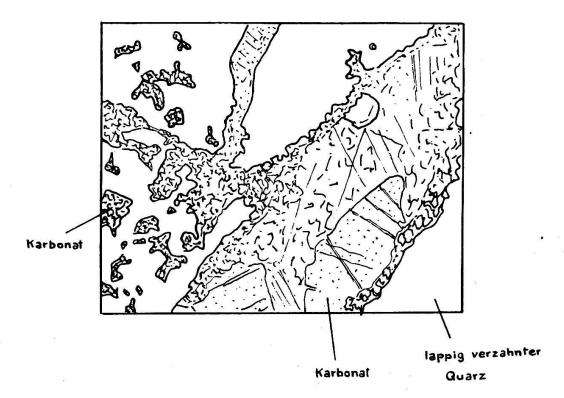


Fig. 14 (Vergrößerung etwa 40mal)

Strüßli. Grenzhorizont Strüßli-Riff und liegender «Liasquarzit» (Sinémurien). Brecciös-konglomeratisch chertähnlicher, dolomitischer Kalk.

Aus Arbeiten älterer Autoren (Jeannet/Gerber 1919 und Peterhans 1926), welche den Lias der westlichen Préalpes bearbeiteten, wissen wir, daß er sich gesamthaft als sehr variable Gesteinsfolge auszeichnet. So sind Schichtlücken auf kurze Horizontaldistanz häufig anzutreffen, ebenso lithofazielle Verschiedenheiten. Peterhans (1926) hat diese Erscheinungen wohl zu Recht mit Schwellen- und Trogbildungen lokalen Ausmaßes während der Liaszeit erklärt. In den östlichen Préalpes médianes haben A. Jeannet und Ed. Gerber (1919), nordwestlich der Schwiedenegg (2009 m), das Fehlen von unterem und teilweise mittlerem Lias festgestellt. Mittlerer Lias (Domérien) ist quasi als Kondensationsoder Aufbereitungshorizont in einer 0,08 m mächtigen Schicht mit Domérien-Fossilien noch erhalten. Dieser Horizont überlagert eine unvollständige Trias-Serie und ist von dieser durch eine Basisbreccie und eisenschüssige Lagen getrennt. In dieser Breccie wurden triasische, rhätische und Hettangienkomponenten vermutet.

Es handelt sich bei diesen Schichtlücken um sehr lokale Erscheinungen. So findet man etwa 100 m östlich des obigen Profiles eine komplette Trias-Serie, etwas Breccie (0,30 m), Hettangien mit dolomitischen

Feinbreccien und Spatkalken im Dach. Nach der Dogger-Untervorschiebung unter Triasdolomit an der Schwiedenegg setzen die rekristallinen Sinémuriendolomite ein, die sich über Haggen, Unterwalalp, Strüßli, Lungerneggli bis in unser Gebiet verfolgen lassen. Das östliche Ende dieses dolomitischen Sinémurien finden wir am Westhang der Längelauenen. Es ist dies eine mit Bach- und Gehängeschutt erfüllte Runse, deren Schuttmassen sich zwischen Jodersberg und Moosfluh in die Ebene Moos, nordwestlich Reutigen, ergießen. In dieser Runse ansteigend, stößt man rechts in etwa 900-1000 m Höhe auf eine felsige, nach Westen sich aufschwingende, waldbesetzte Rippe des Doggers. Man wendet sich nach Westen und steigt längs der Rippe in einem mit Schutt und Wald bedeckten Hang in ein auf 1050 m liegendes Sättelchen, welches den höchsten Felskopf (1072 m) der Rippe von den steil sich auftürmenden Wänden des Weißenflühbodens trennt. In diesem Sättelchen findet man senkrecht stehende, hellgelbe, bankige, dichte Triasdolomite, die gegen oben in eine auf etwa 50 m verfolgbare Breccie übergehen. Der Breccienzement wird durch dunklen, amorph-dichten Dolomit gebildet. Die Komponenten sind zum Teil eckige, hellgelbliche, triasische Dolomite, zum Teil finden sich Komponenten mit höherem Rundungsgrad des mosaikstruierten Sinémuriendolomites. Über dieser Breccie setzen die dünnbankigen, detritisches Quarzkorn führenden, feinspätigen Dolomite des Sinémurien ein. Sie werden im Dach wieder abgeschlossen durch eine Feinbreccie, die teilweise durch siderolithische Bildungen rot verfärbt ist. Darüber folgt massiger, riffkalkartiger Dogger. Wir stellen fest, daß oberste Trias (bunte Mergel) und Infralias als Liegendes und der ganze mittlere und obere Lias als Hangendes des unteren Lias fehlen. Wenn auch das lokale Auffinden von Breccien in obigem Sinne stratigraphischen Nichtabsatz oder nachträgliche Erosion als sicher erscheinen lassen und auch die Hauptursachen für das Fehlen ganzer Stufen sind, so dürfen doch tektonische Einflüsse, wie Ausquetschungen, Verschuppungen und Zurücklassung von Schichtkomplexen in der Tiefe nicht außer acht gelassen werden. Dies um so mehr, als wir uns am Ostrand der Préalpes in einem Scharungsgebiet der Falten befinden.

Wie schon eingangs dieses Kapitels erwähnt, fehlt in unserem Gebiete der Lias des Stockhorn-Gewölbenordschenkels vollständig. Hingegen sind liasische Gesteine mit Infralias, Rhät und Trias verschuppt im Gebiete der Oberbachalp (Terrain M. NIL) aufgeschlossen. Auch hier zeigt sich, daß der Lias nur in reduzierter Mächtigkeit vorhanden ist. Schichtlücken nebst tektonischen Reduktionen machen sich bemerkbar.

In einem kleinen Wäldchen, am Weglein von Oberbachalp nach dem Nasenritz, findet sich folgendes Profil:

- x + 3,00 m hellgrauer, spätiger bis oolithischer, massiger Kalk mit ockergelben, dolomitischen Komponenten von psammitischer Korngröße.
 - 2,00 m dito, jedoch bankiger (0,25 cm Bankmächtigkeit) und mit reicherer Komponentenführung.
 - Dünnschliff: spätiger, pseudoolithischer bis onkoidischer Kalk mit vereinzeltem detritischem Quarzkorn und vereinzelten dolomitischen Komponenten psammitischer Größe. Selten Glaukonit.
 - 1,00 m dito, stark rekristallisiert. Wenig Glaukonit.
 - 1,00 m hellgrauer, sandiger, gutgebankter Kalk mit kleinen Glaukonit-Schüppchen und einzelnen, verstreuten? Chloritkörnern. Dünnschliff: sandiger Kalk mit onkoidischen Komponenten und mosaik
 - artig struiertem Grundgewebe. Quarzkorn: 10—20 %, Karbonat: 80—90 %.
 - 1,30 m Sandkalk mit Silexknauern und wenig Glaukonit. Gelbe, weiße und graue Komponenten.
 - 1,30 m heller, sandiger Kalk mit Glaukonit.
 - 1,20 m gelborange gefleckter, massiger, sandiger Kalk.
 - 1,00 m spätiger, sandiger Kalk mit kleinen, gelblichen Dolomittrümmern. Glaukonit.
 - 2,00 m feinbrecciöser Kalksandstein mit subangulärem bis gerundetem Quarzkorn, Dolomitgeröllen psammitischer Größe und wenig Glaukonit. Dünnschliff: Heteroklastischer Sandkalk mit onkoidischen Komponenten (1-1,5 mm) und mosaikartig struiertem Grundgewebe.
 - 2,00 m grobspätiger Kalk, auf Anwitterungsfläche Lumachelle, mit quarzitischsandigen Zwischenlagen.
 - 1,00 m grobkristalliner Kalk mit dolomitischen, ockergelben Komponenten und Glaukonit.
 - 1,50 m dito, mit Echinodermentrümmern.
 - 1,00 m nicht aufgeschlossen.
 - x m bläulichgrauer Kieselkalk mit sandigen Knollen, Glaukonit führend. Nach etwa 6 m findet sich in diesem Horizont der erste Belemnit, höher im Profil häufen sich die Belemnitenfunde. Dachpartie des Profils wird durch Vegetation überdeckt.

Ebenfalls aus dem Gebiet nördlich Oberbachalp — die genaue Ortsbezeichnung ist nicht ersichtlich — erwähnt M. NIL über oolithischen Hettangien-Kalken sandige, Riffe bildende Kalke, mit sandigen, braunen Konkretionen. Eingelagert wurde ein Breccienhorizont sowie eine charakteristische Lage mit Glaukonit und Phosphatknollen gefunden. Gegen oben werden diese dem Sinémurien zugehörigen Sandkalke kieselig. Sie enthalten massenhaft Belemniten und gehen ohne scharfe Grenze in die Kieselkalke des Domérien über. An ihrer Basis sind diese Kieselkalke fast schwarz. Sie verwittern zu sandigen Schiefern. Gegen

oben werden sie blaugrau, bankiger und sind auf frischer Bruchfläche leuchtend gelb. Sie führen unbestimmbare Ammoniten- und Muschelbruchstücke. Als Hangendes folgen etwa 10 m mächtige, mehr oder weniger sandige, bankige Kalke mit Mergelschiefer-Zwischenlagen. Lithologisch könnten dieselben Bajocien repräsentieren, da sie unter den Tripartitus-Schichten mit reicher Fauna liegen und faziell dem unteren Bajocien entsprechen.

Wir erkennen aus den beiden Profilen, daß der Lias über dem oolithisch bankigen Hettangien mit sandigen bis freinbrecciösen, spätigen, teilweise Glaukonit und Dolomit führenden Kalken des Sinémurien einsetzt und ohne scharfe Grenze in die Domérien repräsentierenden Kieselkalke übergeht. Lokal sind jedoch die verschiedensten Mächtigkeiten und Vorkommen möglich, teils durch stratigraphische Schichtlücken, teils durch tektonische Verschuppung (besonders im Gebiete der Oberbachalp).

Zusammenfassung

Wir können drei liasische Fazieszonen unterscheiden, welche im wesentlichen tektonischen Zonen parallel laufen. Von Norden nach Süden handelt es sich um folgende Streifen:

tektonische Zone	Fazies
Stockhorn-Antiklinale Nordschenkel	Sandige, Glaukonit führende, zum Teil feinbrecciöse Kalke des Sinémurien, nach oben übergehend in dunkle Kieselkalke (Domérien). Entspricht der Geantiklinal- zone (Schwellenzone) A ₂ (Grammont — Sarse — Tours d'Ai — Stockhorn) nach E. Peterhans (1926).
Stockhorn-Antiklinale Südschenkel	Detritisches Quarzkorn führende, mosaikartig struierte Dolomite des Sinémurien («Liasquarzit» nach P. Beck). Im Westen (Schwiedenegg) Vorkommen von Domérien. Schichtlücken. Transgressionsbreccien-Horizonte. Ebenfalls zur Schwellenzone A ₂ gehörend.
Heiti-Antiklinale	Mächtige Serie gebankter, dunkler, kieseliger, bituminöser Kalke mit durchgehender Spongiennadelnführung, wechsellagernd mit dünnen, schwarzen Mergelschieferlagen. Alter: Sinémurien bis Domérien. Die Zone fällt in das Synklinalgebiet S ₁ (Vernaz — Aigle — Heitiberg) nach E. Peterhans (1926).

Im Raume der Heiti-Antiklinale befinden wir uns zur Liaszeit in einem Synklinalgebiet, in welchem eine ruhige, gleichförmige Sedimentation stattfinden konnte, die sich in einer frappanten Monotonie äußert. Der Beginn der liasischen Sedimentation ist auf Grund der Ammonitenfunde am Kapf durch Sinémurien festgelegt, der Abschluß wird durch Domérien gebildet, welches F. Rabowski durch eine Ammonitenfauna am Heitiberg belegte. Lotharingien und Pliensbachien konnten nirgends nachgewiesen werden. Es ist aber anzunehmen, daß sie wie Sinémurien und Domérien in Heitilias-Fazies repräsentiert sind. Die Gründe zu dieser Annahme beruhen in der großen Mächtigkeit der Serie und im Fehlen auch des geringsten Anzeichens von Schichtlücken und Faziesänderungen. Die Sedimentation im Heitilias-Trog war stetig.

Es ist allerdings erstaunlich, daß wir zwischen Ende Domérien und der Transgression des Niveau III der Mytilus-Schichten wohl eine scharfe fazielle Grenze (siehe Mytilus-Schichten p. 193 ff.), jedoch keine Reste von den fehlenden Schichtgliedern Toarcien und Niveau I und II der Mytilus-Schichten, noch eine Transgressionszone finden, wie sie als Niveau I für die Renz'schen Faziesstreifen 2 bis 4 typisch ist. H. H. Renz (1935) spricht von einem anormalen, tektonischen Kontakt; nach unserer Auffassung handelt es sich nur um eine Sedimentationslücke.

Betrachten wir nun die Liaszonen des Stockhorngewölbes, so tritt uns hier ein durchaus anderes Sedimentationsbild entgegen. Wir befinden uns in einer Schwellenzone (zone géanticlinale n. Peterhans). Die Ablagerung war unruhig, detritische Schüttung und Breccienbildung ist charakteristisch, Sedimentationsunterbrüche durch Nichtabsatz oder nachträgliche Erosion häufig. Sowohl in der horizontalen, wie in der vertikalen Ausbildung ergibt sich ein unruhiges, gestörtes und wechselvolles Sedimentationsbild des Lias:

Dogger

Schon seit einiger Zeit werden in den Préalpes zwei Hauptfazies-Zonen im Dogger unterschieden. Die eine, nördliche, wird Zoophycosdogger-Zone (Zoophycos = Cancellophycus = Taonurus: Wedelalgen; nach C. Lucas Korallen der Gattung Alcyonaria), die andere, südliche, Mytilusdogger-Zone genannt. Dazwischen treffen wir als Übergangsfazies die Zwischendogger-Bildungen (Dogger intermédiaire). H. Weiss (1949) spricht von einer Zwischenzone.

Der Faziesbereich der nördlichen Zoophycoszone reicht nur im Gebiete der Stockhorn-Antiklinale in unser Gebiet. Die südlich anschließende Zwischenzone umfaßt die tektonischen Glieder des Schneeloch-Sollhorn-Gewölbes und der Walpersschuppen-Zone. Letzterer schließt sich im Süden der Mytilus-Faziesbereich der Heiti-Antiklinale an.

Zoophycos-Dogger

A. Jeannet (in Alb. Heim, 1922, p. 611 ff.) gibt unter Berücksichtigung von Arbeiten Ed. Gerbers eine zusammenfassende Übersicht der Stratigraphie des Zoophycos-Doggers. In neuerer Zeit hat Ch. Schwartz-Chenevart (1945, p. 74—90) im Gebiete der Hochmatt eine stratigraphische Gliederung vorgenommen, die sich im wesentlichen mit M. Nils und unseren Ergebnissen deckt, so daß sich eine Neubeschreibung erübrigt.

P. Beck (1919) erwähnt in seiner unveröffentlichten Tektonik der östlichen Préalpes eine Faziesänderung im Stockhorn-Gewölbezug von Westen nach Osten. Finden wir im Gebiete M. Nils, sowohl im Nordschenkel (Walalpgrat) wie im Südschenkel (Strüßli) den Dogger mit Mergelkalken, Schiefern und eingelagerten Riffkalken mächtig entwikkelt, so ist er in unserem Gebiet (Tannegg, Bärlauenen und Rosenbergwald) nur noch als massig-dichte, oolithische bis schwach sandige, riffähnliche Kalke verhanden. Sie zeigen größte Ähnlichkeit mit einigen Riffkalken an der Leuenfluh; ebenso ist ihnen eine gewisse Affinität zu den Doggerschichten der Zwischenzone nicht abzusprechen. Es wäre rein lithologisch ein Übergreifen der Zwischenzonen-Fazies im östlichen Ende der Stockhorn-Antiklinale nicht unmöglich. Uns scheint aber die Faziesänderung im Streichen der Ketten plausibler zu sein, indem im Osten die Bedingungen zur Riffkalkbildung in überwiegender Weise gegeben waren. Auch könnten eventuell vorhandene plastischere Gesteine ausgequetscht oder in der Tiefe zurückgeblieben sein, so daß deren Vorhandensein sich nicht nachweisen ließe.

Besonderes Interesse dürfte das mächtige Kalkriff der Leuenfluh beanspruchen (Fig. 16). M. NIL hat ein genaues Profil aufgenommen, das wir hier in bereinigter Form wiedergeben (Fig. 15):

Nr.

- 1 Heller, weißer, massiger, dolomitischer, teilweise etwas spätiger, sandiger Kalk; bis zu Nr. 2 gleich ausgebildet. Splittriger Bruch.
- 2 Schmutzig brauner, rostig fleckiger Sandkalk.
- 3 Bräunlicher, dolomitischer, sandiger Kalk.

- 4 Hellbrauner, spätiger, oft zellig auswitternder, dolomitischer Sandkalk mit kleinen Quarzgeröllen.
- 5 Brauner, bituminöser Sandkalk.
- 6 Stark bituminöser, brauner, oolithischer Kalk.
- 7 Stark bituminöse, braunschwarze, oolithische Schieferlage mit psammitischen, gelbrötlichen Komponenten.
- 8 Bräunlicher, bituminöser, spätiger Kalk mit kleinen Quarzgeröllen.
- 9 Bituminöses, dunkelbraunes Trümmergestein. Rote und gelbe Komponenten und Korallentrümmer. Gegen Nr. 10 zu Abnahme des Konglomeratcharakters. Splittrig zerfallend, mit mehr oder weniger schieferigen Zwischenlagen.
- 10 Graubrauner, splittrig brechender Kalk mit bituminösen Lagen.
- 11 Graubraune Mergelkalkschiefer. Im frischen Aufschluß dachschieferähnlich.
- 12 Hellbrauner, massiger, spätiger Sandkalk mit Silexknollen. Gegen Nr. 13 zu bituminöser Einschlag.
- 13 Helle und dunkle, bräunliche, stark bituminöse Kalkmergelschiefer mit kohligen Häutchen.
- 14 Brauner, bituminöser, oolithischer Kalk.
- 15 Dunkelbraune, bituminöse Kalkmergelschiefer.
- 16 Brauner, feinkörniger, oolithischer Sandkalk.
- 17 Dunkelbraune, matte Kalkmergelschiefer mit massigen Kalkeinlagerungen.
- 18 Brauner, sandiger, oolithischer Kalk mit psammitischem Quarzkorn in Wechsellagerung mit Kalkmergelschiefern.
- 19 Oolithischer Riffkalk mit Korallen.
- 20 Braunschwarze Mergelkalkschiefer mit massigen Kalkeinlagerungen.
- 21 Sandkalk mit Belemnitenfragmenten.
- 22 Bituminöse, braune, bis 50 cm mächtige Kalkbänke mit Mergelschiefer-Zwischenlagen.
- 23 Bituminöse, braune Mergelkalke.

Der mächtige Hauptriffklotz der Leuenfluh liegt in direktem Kontakt mit den Quarzkorn führenden Sinémurien-Dolomiten. Er umfaßt etwa die Nr. 1—6 des Profils. Er bildet die von ferne sichtbare, auffällige, weißgraue Wand der Leuenfluh (Fig. 16). Darüber folgen, durch bituminöse Mergelkalke und -schiefer getrennt, weitere, jedoch kleinere Riffkalkstöcke, die als massige Gesteine aus der Profillinie herausragen (Fig. 15). Die zwischen den eigentlichen Riffkalken eingeschalteten Gesteinslagen bestehen aus bituminösen Schiefern, teils mit kohligen Häuten und Mergelkalken. Häufig führen sie zusammengeschwemmtes, detritisches Material wie Quarzgerölle, Korallenreste und karbonatische Komponenten. Auch Oolithbildung findet sich gelegentlich. In andern Riffen, beispielsweise am Walalpgrat, stellen Kalkoolithe die überwiegenden Gesteine dar. Ebenso ist diese Beobachtung in den südlich des Leuenfluhriff-Komplexes sich einschaltenden Riffkalken zu machen. Die Oolithe haben hier aber einen merklichen Anteil an detritischem

Quarzkorn und sind spätig, so daß sie eher als oolithische Sandkalke zu bezeichnen sind.

Seitlich keilen die massigen, riffkalkähnlichen Gesteine aus und werden von bankigen, Zoophycos und Pflanzenreste führenden, dunkelbraunen Mergelkalken abgelöst.

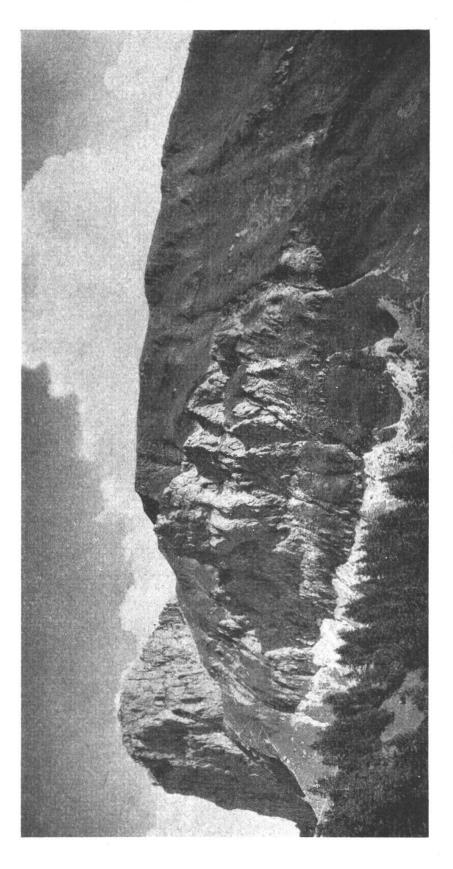
Diese ganze, mächtige Mergelkalkserie mit ihren eingeschalteten Riffkalklinsen dürfte dem mittleren Dogger angehören.

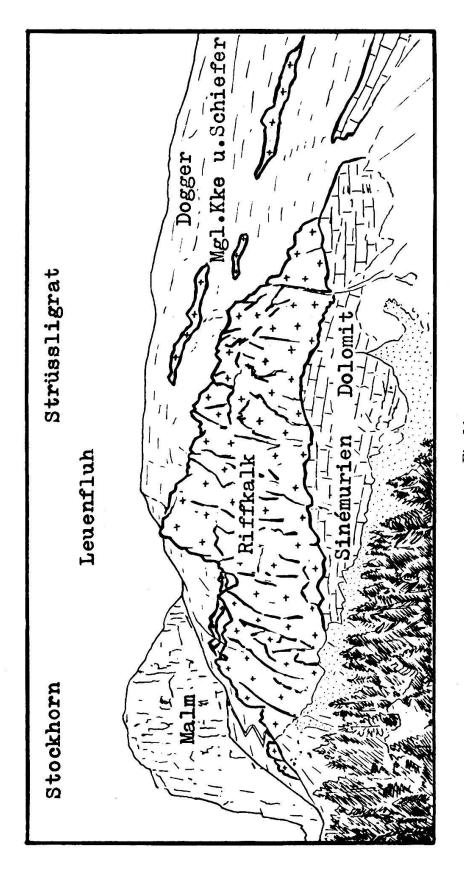
Mytilus-Schichten

H. H. Renz (1935) hat in seiner Monographie über diesen Schichtkomplex die Mytilus-Schichten in vier stratigraphische Niveaus unterteilt. Von oben nach unten folgen:

Niveau IV: Mächtigkeit 80—150 m. Wechsellagerung von gut gebankten, bituminösen, blaugrauen Kalken, knolligen Mergelkalken und feingeschichteten Mergeln. Wichtigste Fossilien: Mytilus (Modiola) castor d'Orb., Pseudocyclammina sequana. Alter: größtenteils Sequan.

Das Niveau IV umfaßt alle Gesteine zwischen typischem Niveau III und dem hellen, oolithischen bis korallogenen Malmkalk.


Niveau III: Mächtigkeit 25—30 m. Wechsellagerung von dunkelblauen, bituminösen Kalken und Mergelkalken mit geringfügigen bläulichen, feinblättrigen Mergel-Zwischenlagen, teilweise mit Kohlenschmitzen. Ungefähr in der Mitte des Niveaus schaltet sich der bekannte, von Rabowski (1918) gefundene Ammonitenhorizont vom Wildenberg ein, welcher oberes Oxfordien bis Argovien belegt. Das Ammoniten führende Gestein ist ein hellgrauer, feinsandiger, echinodermenspätiger, dolomitischer Kalk mit dunklerem kristallspätigem Kalk wechsellagernd.


Das Niveau III ist das typischste und fossilreichste der Mytilus-Schichten.

Alter: Oxfordien-Argovien.

Niveau II: Mächtigkeit 20—25 m. Dunkle blaue Kalke, Mergelkalke und feinblättrige, braune Mergel mit Kohlenschmitzen und -linsen in Wechsellagerung. Wichtigste Fossilien: Astarte rayensis, Mytilus (Modiola) castor, Plesiocidaris alpina. Alter: fraglich Callovien, eventuell noch tiefer. Niveau II fehlt in unserem Gebiet.

Niveau I: Mächtigkeit 10—100 m, stark schwankend. Hauptsächlich repräsentiert durch eine dolomitische Breccie und einen brecciösen Sandstein mit allen Übergängen in einen quarzitischen Sandstein bis zu einer feinen dolomitischen Breccie. Das Niveau ist sehr fossilarm. Es zeigt Ein-

Das Doggerriff der Leuenfluh vom Walalpgrat aus gesehen nach Südosten.

schläge von Festlandbildung (Auslaugungserscheinungen, siderolithische Bildungen). Alter: Lias bis ? unterer Dogger. Es fehlt in unserem Gebiet.

Nebst dieser vertikalen Einteilung in vier Niveaus teilt RENZ die Mytilus-Schichten noch in vier fazielle Bezirke auf. Quer zum Streichen der Gebirgsketten handelt es sich, von Nord nach Süd fortschreitend, um folgende Zonen:

Zone 1: Gebiet des Heiti-Antiklinalzuges,

Zone 2: Gebiet der Gastlosen-Schuppe,

Zone 3: Gebiet der Gummfluh,

Zone 4: Gebiet von Rübli-Seehorn (Rötihorn).

Für unser Gebiet bleibt uns nur die Betrachtung der Verhältnisse in Zone 1 (Heiti-Antiklinale). Das Niveau I mit seinen dolomitischen Breccien und Sandsteinen fehlt durchgehend, eine Tatsache, die wir ebenfalls bestätigen können. Renz (1935) schreibt dazu auf p. 159: «In der Heitizone folgt über sicher nachweisbarem unterem Lias (Sinémurien) direkt transgressiv das Niveau II der Mytilus-Schichten.» Nach dieser eindeutigen Feststellung folgt ein Widerspruch, indem es RENZ geglückt ist, im Lias des Heitiberges, westlich des Wildenbaches (unterhalb der Alp Unter-Klusi) eine brecciöse, dunkelblaue Kalkbank, erfüllt von Dolomit und dolomitischen Fragmenten zu finden. Auf Grund dieses Fundes zieht er den Schluß, daß diese Breccie dem Niveau I entspreche und ihm liasisches Alter zukomme. Somit wäre also Niveau I in der Zone 1 doch vorhanden. Renz fährt dann fort (p. 159): « ..., daß überall dort, wo der Lias das Substrat der Mytilus-Schichten bildet, dieses Niveau in seiner brecciösen Ausbildung fehlt (Heitizone). Warum sollte also unser Niveau I nicht im Heiti-Lias selbst enthalten sein?» Wir können hier mit der Gegenfrage antworten: Warum könnte das Niveau I in der Zone 1 nicht überhaupt fehlen? Daß dieses Niveau, wenigstens in unserem Untersuchungsgebiet, fehlt, können wir mit folgenden Ergebnissen begründen:

- 1. Weder M. NIL noch mir gelang es, den von RENZ erwähnten Dolomitbreccien-Horizont westlich des Wildenbaches aufzufinden. Es war somit nicht möglich, die stratigraphische Stellung dieses Horizontes nachzukontrollieren.
- 2. Es stellt sich die Frage nach der Herkunft der dolomitischen Breccienkomponenten. Interessant ist, daß überall dort, wo das Niveau I sicher erkannt werden konnte, seine Unterlage aus Dolomiten, dolomitischen Kalken und Rauhwacke der Trias besteht. Also ist das Niveau I

dort gut entwickelt, wo der Lias fehlt. Da es ferner Festlandbildungen aufweist, lassen sich die dolomitischen Komponenten der Breccien sehr gut als triasische Aufarbeitungsprodukte erklären.

Der Lias im Heiti-Gebiet zeigt nun in seiner ganzen Mächtigkeit nirgends dolomitische Bildungen. Wohl sind im Dünnschliff Dolomit-Rhomboeder als diagenetische Ausscheidungen zu erkennen, doch ist ihr Vorkommen, auf den ganzen liasischen Schichtkomplex betrachtet, unwesentlich. Der von Renz am Wildenbach erwähnten Dolomitbreccie im Dach des Lias kommt nach unserer Ansicht nur lokale Bedeutung zu; besonders auch, weil sie bis heute das einzige Vorkommen dieser Art im Heiti-Lias darstellt.

3. Durch den 1938/1939 erfolgten Bau der neuen Wimmisbrücke wurde die Grenze von den Mytilus-Schichten (Niveau III) zum Heiti-Lias einwandfrei bloßgelegt. Tafel II gibt eine Ansichtsskizze der Verhältnisse, wie sie sich dem Beobachter heute am linken Simmeufer unter der alten und neuen Brücke darstellen. Man erkennt deutlich die Unterschiede in der Bankigkeit der Gesteine. Das Niveau III der Mytilus-Schichten ist grobbankig. Die groben Bänke sind durch feine Kalkmergel-Schichtung in sich unterteilt. Der Gesamtaspekt bleibt jedoch der der Grobbankigkeit. Scharf heben sich von diesem Komplex die dünnbankigen, harten, kieseligen Kalke des Heiti-Lias ab.

RENZ erkannte richtig, daß hier sowohl Niveau I als auch Niveau II fehlen. Niveau III liegt unmittelbar auf dem Heiti-Lias. Allerdings verlegt er die Grenze in «4—6 m unaufgeschlossenes Gebiet (vermutlich Quetschzone, den anormalen Kontakt zu den Mytilus-Schichten bildend)», p. 172. Nach dem Brückenbau zeigt das lückenlose, mit Dünnschliffen belegte Profil folgende Verhältnisse:

Beschreibung zu Tafel II

Hdst. Nr. Beginn des Profiles im Niveau III der Mytilus-Schichten am Stauwehr

1 x+0,45 m Hellgrau anwitternde, tektonisierte blaue, mergelige Kalkbank, mit typischen, jedoch schlecht erhaltenen Fossilien der Mytilus-Schichten.

Dünnschliff: Mikrokristalline, kompakte, bräunlichgraue Mergel-Kalkgrundmasse von feinen Calcithaarrissen durchsetzt. Eckige, längliche und runde Calcitkristalle sind ihrer Form nach als rekristallisierte Fossiltrümmer zu deuten. Suturen durchsetzen das Gestein. Die Suturrisse sind mit braunschwarzen, organischen (kohligen) Schlieren und Schmitzen ausgekleidet.

2 1,05 m Clivagezone. Zerbröckelnder, dunkelgraublauer mergeliger Kalk. Dünnschliff: Mikrokristalliner, dichter, mergeliger Kalk. Dunkelbraune Mergel-Kalkgrundmasse von Calcitbändchen bis Calcithaarrissen durchsetzt. Vor-

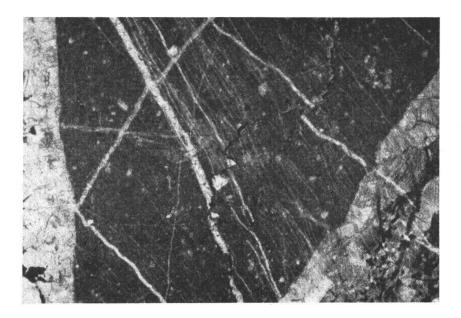


Fig. 17 (Vergrößerung 27mal)

Mytilusschichten (Niveau III) Wimmisbrücke. Clivagezone. Der dichte Kalk ist von Calcitadern und Haarrissen durchsetzt. Von schwarzer kohlig-bituminöser Substanz erfüllt, durchsetzen unregelmäßige Suturen den Schliff. Sie sind jünger als die Calcitadern (deutliche Verwerfung an der Sutur in der rechten oberen Bildfläche).

wiegend sind zwei Calcitriß-Systeme zu unterscheiden, die sich in einem rechten Winkel durchkreuzen. Suturen wie Nr. 1. An den Suturen sind die Calcitrisse abgesetzt. Fossilinhalt: unbestimmbare Schalenreste. Fig. 17.

3 a 0,40 m 0,50 m 0,35 m Massige, mergelige, graubläuliche, hellgrau bis bräunlichgelb anwitternde Kalkbänke, durch dünne Clivagezonen voneinander getrennt.

Dünnschliff: Dichter, organogener Mergelkalk (Lumachelle) von dunkelbrauner Grundmassenfarbe. Im ganzen Schliffbild verteilt liegen, vollständig calcitisiert, Schalenreste von Muscheln, Gastropoden und Echinodermen. Ferner finden sich Trümmer und Schalenschnitte von Foraminiferen, ? Ostrakoden und ein Charastengel-Querschnitt.

Hie und da Quarzneubildungen in eckigen Individuen. Fig. 18.

- 3b 1,55 m Graue, braunstichige, mergelige Kalkbank. Dünnschliff: Quarzführender, dichter, mergeliger Kalk. In einem dunkelbraunen Grundgefüge sind eckige Quarz- und Calcitkörner eingesprengt. Vereinzelt findet sich Feldspat. Fossilinhalt: textularienähnliche Schalenschnitte und unbestimmbare Organismenreste.
- 4 0,90 m Fleckig grau anwitternder, oolithischer, körnigspätiger Kalk. Dünnschliff: Struktur pseudoolithisch-spätig. Fossilinhalt: Trocholina-Arten in Coscinoconus-Erhaltungszustand. Vereinzelt treten Quarzneubildungen auf, besonders in den pseudoolithischen Komponenten. Fig. 19.

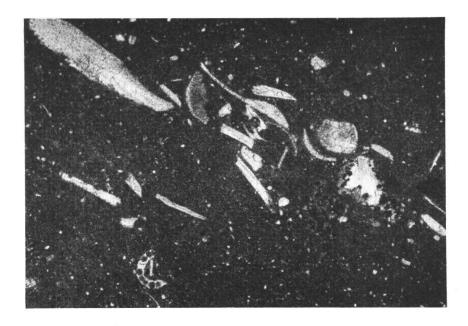


Fig. 18 (Vergrößerung 27mal)

Mytilusschichten (Niveau III), Wimmisbrücke. Dichter, organogener Kalk. Vollständig calcitisierte Fossiltrümmer. Unten links Stück eines Charastengel-Querschnittes.

Fig. 19 (Vergrößerung 27mal)

Mytilusschichten (Niveau III), Wimmisbrücke. Pseudoolithischer, spätiger Kalk mit Trocholina sp. in Coscinoconus-Erhaltungszustand.

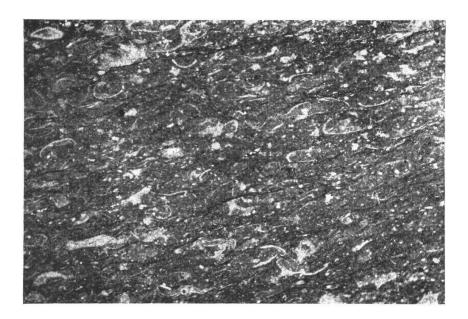


Fig. 20 (Vergrößerung 27mal)

Mytilusschichten (Niveau III), Wimmisbrücke. Eingeregelte feine Schalentrümmer in einem kohligen (schwarze parallele Suturen) Schiefer.

- 5 0,05 m Körniges, polygenes, schwarzblaues, mergeliges Kalkbänklein mit kohligen Schmitzen.
 - Dünnschliff: Quarzkornführender, pseudoolithischer, teilweise bis vollständig calcitisierte Echinodermentrümmer führender, mergeliger Kalk mit kohligen Suturen.
- 6 0,15 m Metallisch glänzende, kohlige, von Clivage durchsetzte Schiefer. Dünnschliff: Organogener, verschieferter Kalk mit eingeregelten feinen Schalentrümmern (? Algenreste). Schieferungsrisse mit kohliger Substanz ausgekleidet. Vereinzelte Quarzkörnchen. Fig. 20.
- 7 0,65 m Mergelige, schieferige, schwarzgraue Kalke mit Silexeinlagerungen (selten).
 - Dünnschliff: Dichte, mikrokristalline Grundmasse von feinen, zum Teil auskeilenden Calcitäderchen durchzogen. An Suturflächen sind die Calcitschnüre häufig abgeschert und versetzt. Die Grundmasse ist von kleinen Calciteinsprenglingen durchsetzt.
- 8 0,70 m Schieferige, clivageartige, kohlig-mergelige Kalkbank mit Zonen stärkerer Verstellungen im Clivage.
 - Dünnschliff: Brauner, schwarzpigmentierter, kohliger, dichter, mergeliger Kalk. Bituminös und calcitisch ausgefüllte Suturen.
- 9 0,45 m Grobe Lumachelle. Mergelige Kalke mit Fossilien.

 Dünnschliff: Dichter, mergelig-bituminöser Kalk mit schwarzen Pigmenten.

 Vollständig calcitisierte Schalenreste.

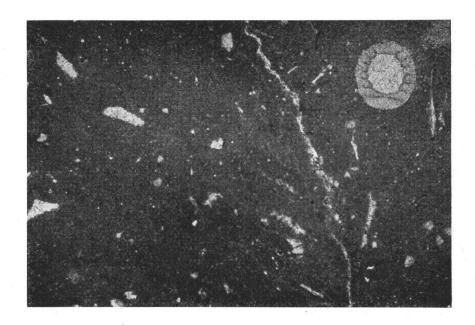


Fig. 21 (Vergrößerung 27mal)

Mytilusschichten (Niveau III), Wimmisbrücke. Dichter tonig-bituminöser Kalk. Oben rechts Chara-Rest (Gyrogonit eines Oogoniums).

Es folgt eine wenige Zentimeter mächtige Clivagezone.

10 0,15 m Wie Nr. 9.

Wenige Zentimeter mächtige Clivagezone.

11 0,30 Wie Nr. 9.

Dünnschliff: Dichter, mergelig-bituminöser Kalk mit Chara-Resten (Fig. 21).

10,00 m Bröckelig brechende, von Clivage und Rutschharnischen durchsetzte, grau anwitternde, blaugraue mergelige Kalke, gebankt, mit dichteren eingelagerten Bänken (Nr. 13), kohligen Schmitzen (Nr. 12) und einer fossilreichen Bank (Nr. 14).

Beginn dieses 10-m-Komplexes am Ende des schrägen Blockmauerbodens beim Stauwehr. Das Ende der Zone zieht sich von der linken Schwellenecke hinauf bis zum eingemauerten Betonrohr im linken Pfeiler der neuen Brücke.

- 12 Dünnschliff: Dichter, dunkelbrauner, fein parallel geäderter, etwas Quarzkorn führender, schwarz pigmentierter, mergeliger Kalk. Vereinzelt Schalentrümmer.
- 13 Dünnschliff: Wie Nr. 12, jedoch homogenerer Aspekt, ähnlich Nr. 1.
- 14 Fossilreiche Mergelkalk-Bank: Rhynchonella schardti, Mytilus.
- 15 0,30—0,60 m mächtige Clivagezone.

 Dünnschliff: Brauner, dichter, mergelig-bituminöser Kalk, vereinzelt mit Foraminiferen (Robulus, Textularia).
 - 5,00 m Mergelige Kalkbänke von 70—100 cm Bankmächtigkeit. Grau anwitternde, mergelige, bröckelig brechende Kalke, teilweise schieferig.

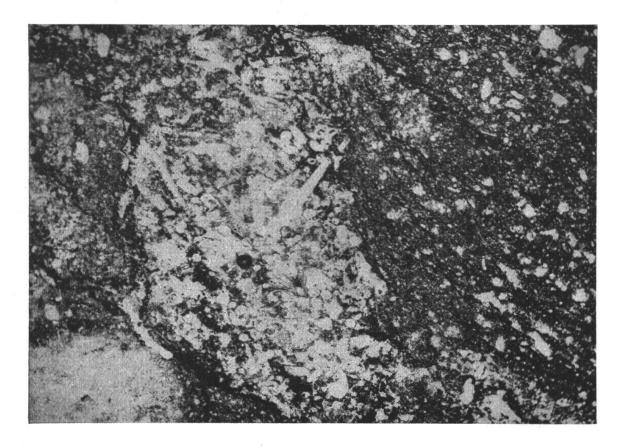


Fig. 22 (Vergrößerung 27mal)

Basis-Grenzschicht Niveau III der Mytilusschichten, Wimmisbrücke. Toniger Kalk mit detritischem Quarzkorn und kohlig-bituminösen Häutchen umschließt fließend eine aufgearbeitete Komponente von Heiti-Lias-Kalk mit Spongiennadeltrümmern.

- 16 Dünnschliff: Quarzkorn führender, calcitschnurdurchsetzter, mergelig-bituminöser Kalk. Algenknollen, Ostrakoden-Längsschnitt.
- 17 Dünnschliff: Wie Nr. 16.
- Dünnschliff: Mytilus-Grenzschicht (Basis Niveau III) gegen Heiti-Lias.

 Quarzkorn führender, brauner, mergelig-bituminöser Kalk mit Algenknollen und Bryozoenresten. Ferner finden sich gerundete Komponenten mit Spongiennadel-Trümmern; sie sind Aufarbeitungsprodukte aus der nächstfolgenden, obersten Heiti-Lias-Bank. Fig. 22.

Transgressionsgrenze

19 0,30 m Grau und bräunlichschwarz anwitternde, dichte graublaue Kalkbank (größte Schichtfläche unter dem neuen Brückenbogen bildend).

Dünnschliff: Feinkörniger, mosaikartig struierter Kalk. Durch das Auftreten zahlreicher Spongiennadeln erhält das Gefüge sperrigen Aspekt. Suturen zeigen kohlig-bituminöse Auskleidung, sich teilweise in einzelne schwarze Pigmente auflösend. Fig. 23.

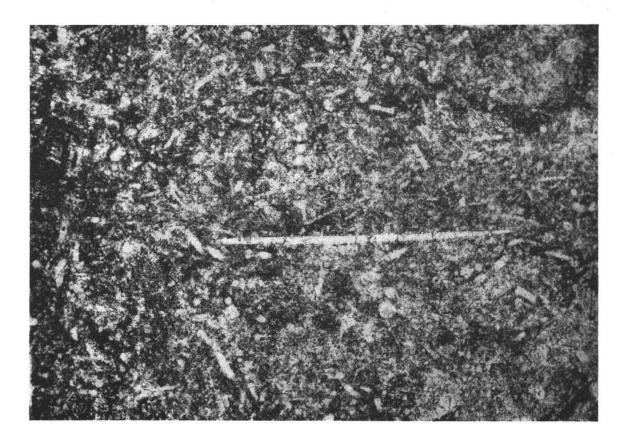


Fig. 23 (Vergrößerung 27mal)

Dach-Grenzschicht des Heiti-Lias, Wimmisbrücke. Kieseliger, schwach tonig-bituminöser Kalk mit, von Spongiennadeln erzeugtem, sperrigem Gefüge. Spongiennadeln schlecht erhalten infolge starker Rekristallisation.

Es folgt die mächtige, dünngebankte, kieselige, bituminöse, detritisches Quarzkorn führende, mit Spongiennadeln und Algenfäden erfüllte Serie des Heiti-Lias.

Malm und untere Kreide

Als kompetentes Schichtglied bildet der Malm im Stockhorn-Simmenfluhgebiet das morphologische Gerippe der Landschaft. Als südlichster, markanter Aufbau erhebt sich am rechten Simmeufer bei Wimmis die Burgfluh. Ihr ganzer oberer Aufbau besteht aus massigem, kluft- und bruchdurchsetztem, hellem, dichtem Malmkalk. Links der Simme erhebt sich bei der Talenge von Wimmis der mächtig aufstrebende Malmklotz der Simmenfluh (früher auch Bortfluh oder Wimmiserfluh genannt). Er setzt nach Westen über den Lüpersberg-Wildenberg bis in die Gegend der Schopfallmend fort.

Mieschfluh, Krinnli, Walpersbergfluh, Walpersbergli (von den Sennen auch Furggenhörnli genannt) und Brämenfluh bilden die nördlich folgende, markant aus dem Gelände ragende Zone. Sie ist mit der Walperschuppen-Zone identisch. Es folgt dann weiter im Norden, der von Thun aus in prächtiger Schau sich bietende Gebirgskranz des Stockhorn, Sollhorn, des Nüschletenmassivs mit seiner mächtigen Nordflanke und der Moosfluh. Weniger in die Augen springend, schließen sich als nördlichste Zone die beiden Malmschenkel der Kesselmulde an, deren nördlicher die Ostabstürze der Niederstockenfluh imit der Falschen Fluh und der Falschen Tiefe bildet.

H. Weiss (1949) bearbeitete den Klippenmalm eingehend in seiner Dissertation. Er teilt den ganzen Faziesbereich in einen West-, Mittelund Ostabschnitt ein. Im Ostabschnitt, in welchen unser Gebiet fällt, werden von Norden nach Süden drei Faziesstreifen ausgeschieden:

Norden

- 1. Außenzone: identisch mit dem Faziesgebiet des Zoophycus-Doggers und Knollen-Argovien (umfaßt die Stockhornrippe und die Malmschenkel der Kesselmulde).
- 2. Zwischenzone: identisch mit den Zwischendogger-Bildungen = Dogger intermédiaire = Korallencallovien P. Beck's (umfaßt Walpersschuppenzone und Doggervorkommen am Schneeloch und Nüschleten-Nordflanke).

Süden

3. Innenzone: identisch mit dem Faziesbereich der Mytilus-Schichten (umfaßt Burgfluh und Simmenfluh und deren westliche Fortsetzung).

Die Innenzone wird zusätzlich unterteilt, und zwar in einen nördlichen, mittleren und südlichen Faziesstreifen. Nur der nördliche Streifen, als «Riffkalke der Simmenfluh» näher umschrieben, ist in unserem Gebiete vorhanden. Der mittlere Streifen tritt erst weiter westlich, in den Malmkalken der Gastlosenschuppe in Erscheinung, während das südliche Faziesband tektonisch mit den Préalpes rigides übereinstimmt.

H. Weiss hat die günstigsten Malmprofile aufgenommen, beschrieben und eingehend diskutiert. Für unser Gebiet und dasjenige von M. Nil

¹ Auf der Karte Stockenfluh genannt, doch zur Unterscheidung der Simmentaler Stockenfluh als Niederstockenfluh nach dem nahe gelegenen Dorf Niederstocken bezeichnet (n. P. Beck).

verweisen wir für die Außenzone auf die Profile Nr. 9 (Strüßli) und Nr. 10 (Schneeloch). Das Profil des Schneelochs stellt insofern einen Fazies-Grenzbereich dar, als man es auf Grund seiner Doggerausbildung noch zur Zwischenzone (Bereich des Korallen-Callovien) rechnen müßte. Da aber die über dieser Stufe sich einstellenden Argovien-Knollenkalke und der darüber folgende Malm faziell in die Außenzone zu stellen sind, ist es Ermessensfrage, welcher der beiden möglichen Einordnungen man den Vorzug geben will.

Für die Zwischenzone verweisen wir auf das Profil Nr. 34 (Krinnli) und für den nördlichen Faziesstreifen der Innenzone auf die Profile Nr. 19 (Simmenfluh) und Nr. 20 (Wildenberg).

Im weiteren sei auf die Diskussion der Ergebnisse in der Arbeit von H. Weiss hingewiesen. Wir können uns seinen Aussagen über die vieldiskutierte Malmuntergrenze der Innenzone voll und ganz anschließen. Den dolomitischen Grenzhorizont (Callovien) der Mytilus-Schichten, der als Grenzschicht zur Abtrennung von Mytilus-Schichten und Malm empfohlen wird, konnten wir, ebenfalls mit 5 m Mächtigkeit, am Westende der Simmenfluh nachweisen. Man findet ihn im Aufstieg von Altisacker nach dem Chrindi auf 1300 m, unmittelbar am Westende der zusammenhängenden Simmenfluhmasse.

Die Calpionellenkalke des unteren Berrasien (vgl. Fig. 24-28)

Ein besonderes Problem der Malmstratigraphie soll hier noch speziell gestreift werden. Es gelang uns, am Krinnli im obersten Tithon eine Calpionellenfauna zu finden, die als Faunengemeinschaft ungewohnt ist und wohl auch einige neue Formen enthält. Die Fundstelle befindet sich zwischen den Profilnummern 105 (mittelbankiger, dichter, etwas fleckiger Kalk mit Belemniten) und 98 (roter, dichter Kalk) der Profilskizze Fig. 11, p. 202 von H. Weiss (1949).

Ich möchte an dieser Stelle meinem Studienfreund FR. ALLEMANN besonders danken für seine Einführung und seine Hilfe bei der Auswertung der Calpionellen-Dünnschliffe. Mit seiner großen Erfahrung und Kenntnis der Calpionellen stand er mir stets mit Ratschlägen zur Seite.

Untersuchungsmethode

Es hat sich gezeigt, daß man die besten Faunenbilder erhält, wenn die Gesteinsschliffe ganz zuletzt noch poliert werden. Wir verwendeten dazu «Aceryl» als Poliermittel auf einer, mit einem nassen, filzigen Putztuch überzogenen Schleifscheibe. Die feinen Schalenstrukturen der Fossilien kontrastieren dann unter dem Mikroskop,



Fig. 24

auch bei stärkeren Vergrößerungen, schärfer mit dem umgebenden, dichten Gesteinszement.

Bei der Auswertung wurden nur solche Formen berücksichtigt, die sich in idealer Schnittlage präsentierten, d. h. die Schliffebene mußte in der Schalenachse des Individuums liegen. Dadurch wurde erreicht, daß wir bei der Ausmessung für jedes Individuum die wirklichen (maximalen) Maße erzielten, während nicht achsenparallele Schnitte zu kleine, verfälschte Größen und Formen ergeben.

In die Messung wurde der Kragen nirgends einbezogen, da er durch seine, im Detail große Formenvariabilität zu ungenaue Gesamtwerte ergäbe. Als Kragenweite (Krw) bezeichnen wir den äußeren Durchmesser der Kragenansatzstelle an der Schale. Die Länge messen wir längs der Schalenachse, von der Kragenweite nach der aboralen Spitze der Schalenaußenseite (Fig. 24).

Beim Meßwertvergleich mit Autoren, die andere Meßpunkte verwendeten (z.B. Länge inkl. Kragen, größte Schalenweite oder auch ungünstige Schnittlagen), wurde diesem Umstande Rechnung getragen.

Da in einer späteren Arbeit das Calpionellenproblem durch FR. AlleMANN und uns umfassender behandelt werden soll, möchten wir uns hier
nur auf die Beschreibung und Diskussion unserer Fauna beschränken.
Fig. 25 zeigt uns das typische Faunenbild der Calpionellenfundstelle vom
Krinnli. Nach der grundlegenden Arbeit von G. Colom (1948) müssen
wir die Formen Nr. 1—13 und Nr. 18—21 der Art Tintinnopsella carpathica Murgeanu und Filipescu zuordnen. Wir sehen aber sofort, daß die
Individuen sich in bezug auf Form und Größe sehr wesentlich vonein-

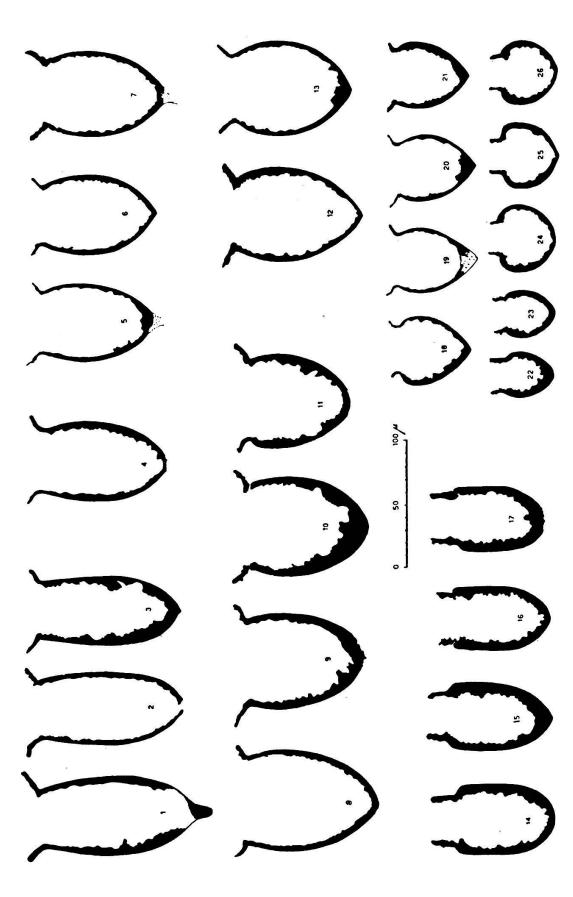


Fig. 25 Faunenbild des Calpionellen-Kalkes am Krindi (Hinterstockensee).

- Tintinnopsella cf. longu Colom. Anklänge an Tintinnopsella carpathica Murceanu und Filipescu.
 - Tintinnopsella carpathica Murgeanu und Filipescu. 12-13: größere und bauchigere Form; 8-11: Formen mit sehr weiter Kragenöffnung. 4 - 13
 - Tintinnopsella carpathica Murgeanu und Filipescu,
- kleine Varietät. Zeichnet sich durch Größen- und Formkonstanz aus.
 - Calpionellites? neocomiensis Colom?. Fällt im Schliff durch kräftigere Schalendicke sofort auf. Calpionella cf. alpina Lorenz, kleine Varietät. 14 - 17

 - Calpionella alpina Lorenz, kleine Varietät. 22-23 24-26

ander unterscheiden (vgl. Nr. 1—3 mit Nr. 4—7, 12—13 mit Nr. 8—11 und Nr. 18—21). Anderseits zeigen sich aber auch Anklänge an Übergänge (Nr. 3 zu Nr. 4), so daß es weiterer, besonders statistischer Untersuchungen auf breiterer Basis bedarf, um abzuklären, inwieweit arttypische Merkmale oder nur phylogenetische Übergänge in einer Art vorliegen.

Wir haben vorläufig in der Art *Tintinnopsella carpathica* vier Formengruppen unterschieden, die wir wie folgt bezeichnen:

Nr.	FG	Formengruppe = FG			
13	1	T. carpathica mit Anklängen zu T. longa: longa-Formen.			
4-7 12-13	2	T. carpathica: typische Formen, Nr. 4 Zwischenform von longa-carpathica, Nr. 12, 13 Zwischenformen zu Nr. 8—11.			
8—11	3	T. carpathica: bauchige Formen mit großer Kragenweite.			
18—21	4	T. carpathica: kleine Varietät.			

Die Messung für die vier Formengruppen ergibt:

FG	Anzahl	Durchschnitt in μ		Extremwerte in μ	
10	Idealschnitte -	Länge	Krw	Länge	Krw
1	6	113	50	130/98	56/46
2	24	88	46	99/70	57/40
3	6	96	66	106/76	71/55
4	27	63	42	75/50	52/36

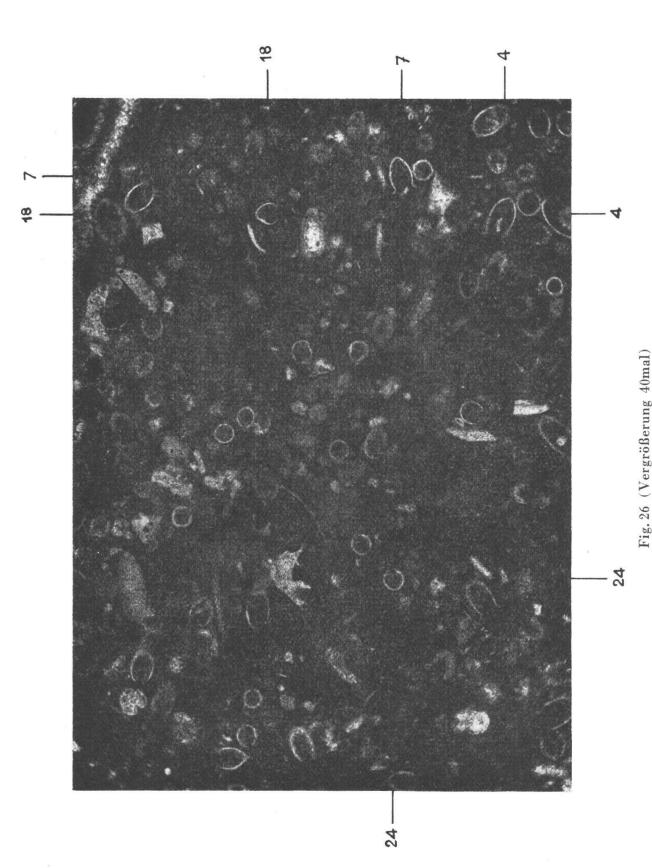
Die Individuen der FG 4 fallen durch eine überaus große Form- und Größenkonstanz auf. Sie weichen in ihrer Größe deutlich von den FG 1—3 ab, und wir werden kaum fehlgehen, sie als neue Art zu betrachten.

In den Nr. 14—17 haben wir einige typische Formen dargestellt, die starke Anklänge an Calpionella elliptica Cadisch (vgl. J. Cadisch, 1932) zeigen, in mancher Hinsicht jedoch mit Calpionellites neocomiensis Colom übereinstimmen.

Die Maßzahlen stimmen sehr gut mit denjenigen von J. Cadisch überein. So ergaben sich als Durchschnitte:

	Breite	Länge mit Kragen	Öffnung
C. elliptica CADISCH Unsere Form Nr. 14—17	⁵⁴ µ	90 μ	³⁰ μ
	54 µ	96 μ	³² μ

Betrachten wir die Durchschnittswerte für Länge und Kragenweite nach unserem Meßverfahren und an einer größeren Anzahl idealgeschnittener Schalen, so erhalten wir folgende Werte:


Länge:

82 u

Kragenweite: 41 µ

Diese Zahlen sind für die Länge (da ohne Kragen gemessen) um etwa 10—15 μ zu klein und für die Kragenweite um etwa 10 μ (doppelte Schalendicke wegen Messung außen) zu groß. Stellt man die Unterschiede in Rechnung, so erhalten wir wieder frappante Übereinstimmung mit den Werten J. CADISCH's.

Deutlich unterscheidet sich unsere Form von C. elliptica durch ihre Kragen- und Schalenform. Der Kragen ist wie bei Calpionella alpina LORENZ ein zylindrischer Ring. Eine leichte Ausbauchung, wie sie bei den Formen von J. CADISCH und bei der stilisierten Figur H. J. FICH-TER's (1934) vorkommt, findet sich nirgends. Die Schale ist ferner nicht elliptisch, sondern sie läuft vom Kragenansatz über eine kleine, deutliche Schulter in einen Zylinder (Parallel-Laufen der Schale) über und geht unten in eine stumpfe Spitze zusammen. Die Form fällt im Schliff sofort durch ihre augenfällige Schalendicke auf. Ihre Ähnlichkeit mit Calpionellites neocomiensis Colom beruht weniger auf den Meßzahlen als auf ihrer scheinbaren Formenübereinstimmung. Colom stellt als typisches Kennzeichen die Gabelung der Schale an der Kragenansatzstelle, ferner einen Unterbruch nach dieser Gabelung in den Vordergrund. Der Kragen wäre demnach nicht mit der Schale verbunden. Fr. ALLEMANN hat diese Erscheinungen vor einiger Zeit näher untersucht und kam zum Ergebnis, daß die Unterbrüche in den weitaus meisten Fällen nur scheinbar sind. Meist läßt sich bei genauer mikroskopischer Untersuchung die

Faunenbild des Calpionellen-Kalkes am Krindi (Hinterstockensee). Die Nummern entsprechen den Individuen-Nummern von Fig. 25. Tintinnopsella carpathica Murgeanu und Filipescu.

-7 Tintinnopsella carpathica Murceanu und Filipescu, typische Form.

Tintinnopsella carpathica Murgeanu und Filipescu, kleine Varietät, abstehender Kragen fehlt! 18 - 18

24-24 Calpionella alpina Lorenz, kleine Varietät.

Verbindung von Schale zu Kragen nachweisen, besonders beim Drehen des Mikroskop-Drehtisches. Es scheint sich um einen kristalloptischen Lichtbrechungseffekt zu handeln, der häufig eine Lücke vortäuscht. Es kann wohl auch vorkommen, daß bei Diagenese und Rekristallisation der Kragen ein wenig von der Schale wegrückt oder abbricht, denn die Übergangsstelle ist naturgemäß eine schwache Zone. Doch bildet ein solcher Unterbruch die Ausnahme. Die Schalengabelung läßt sich ebenfalls als Täuschung erklären. Bei der mikroskopischen Untersuchung haben wir die Schliffdicke zu berücksichtigen. Sie beträgt etwa 10—15 μ. Es kann nun eintreten, daß wir im optischen Schnitt bei entsprechender Einstellung noch ein Stück der Rundung der Schalenöffnungszone treffen. Dies kann sehr gut geschehen, weil wir in der Öffnung die engste Stelle der Schale haben. Sie ist dann bei einer gewissen minimalen Schliffdicke immer noch räumlich erkennbar. Auf diese Weise wird leicht eine Gabelung vorgetäuscht.

Wir konnten alle diese Erscheinungen auch an unseren Formen beobachten. Es zeigte sich aber, daß die meisten Individuen eine zusammenhängende Schale aufweisen. Gabelung und Unterbruch erwiesen sich
als Täuschung. Wir könnten uns vorstellen, daß auch Colom diesen
Täuschungen zum Opfer fiel, sie aber verwendete zur Aufstellung der
Art Calpionellites neocomiensis. In diesem Sinne können wir unsere Formen dieser Art zuweisen, wobei jedoch die Möglichkeit, daß es sich um
eine neue Spezies handelt, immer noch offen bleibt.

Neben diesen, oben beschriebenen Formen findet sich relativ häufig Calpionella alpina Lorenz (Nr. 22—26), kleine Varietät. Ihre Maße betragen im Durchschnitt 43 μ in der Länge und 28 μ in der Kragenweite. Neben der typischen, bauchigen, krugförmigen Form (Nr. 24—26) tritt relativ selten eine schmale, weniger weite Form auf (Nr. 22—23), die in bezug auf Länge und Kragenweite dieselben Maße aufweist wie die buchtige Form.

Tintinnopsella cadischiana Colom konnte in einem Exemplar sicher erkannt werden. Es handelt sich um eine kleine Form mit 90 μ Länge und 70 μ Kragenweite. Andere Individuen sind, wenn auch selten, vorhanden, doch sind Schnittlage und Erhaltungszustand für eine statistische Auswertung ungeeignet.

Stratigraphisch läßt sich, in Übereinstimmung mit der Verbreitungstabelle von Colom, unsere Fauna am ehesten ins untere Berriasien einstufen. *Tintinnopsella cadischiana* würde den Beginn des mittleren Berriasien anzeigen.

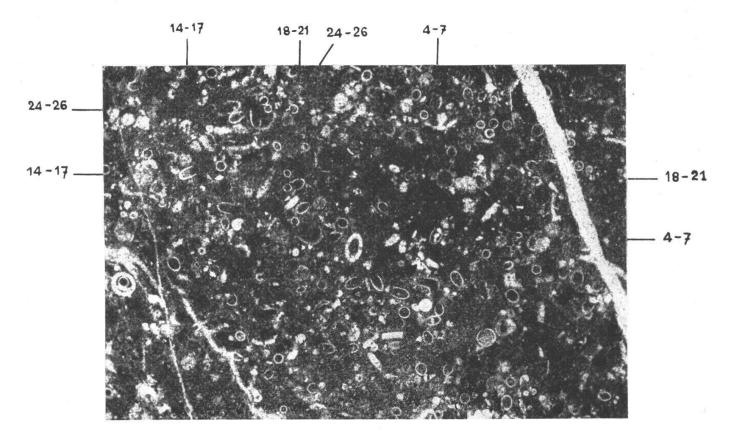


Fig. 27 (Vergrößerung 27mal)

Faunenbild des Calpionellen-Kalkes am Krindi (Hinterstockensee). Die Nummern entsprechen den Individuen-Nummern von Fig. 25.

- 4—7 Tintinnopsella carpathica Murgeanu und Filipescu.
- 14—17 Calpionellites? neocomiensis Colom?
- 18-21 Tintinnopsella carpathica Murgeanu und Filipescu, kleine Varietät.
- 24-26 Calpionella alpina Lorenz, kleine Varietät.

In einer anderen Beziehung mögen unsere Ergebnisse eine Frage, die H. Weiss (1949) wie R. Umiker (1952) beschäftigte, der Lösung näher bringen. Es handelt sich um das Problem des Alters der sogenannten Zwischenschichten im Südschenkel der «Flyschmulde» R. Umiker's. Obschon H. Weiss die Möglichkeit diskutiert, daß ihnen neokomes Alter zukomme, ist er doch eher geneigt, sie als Schichtfolge zu deuten, die sich zwischen Neokom und Couches rouges der Außenzone noch einschiebt. Sie würden somit mit den Couches rouges an der übergreifenden Lagerung im Süden auf den Malm teilnehmen. R. Umiker betrachtet im Gegensatz zu Weiss die Zwischenschichten als Neokom in veränderter Lithofazies. Soweit wir aus dem Alter und der topographischen Schichthöhe unserer Fauna erkennen können, geht die Calpionellenfauna noch in die Zwischenschichten hinein und hat Berriasien-Alter. R. Umiker

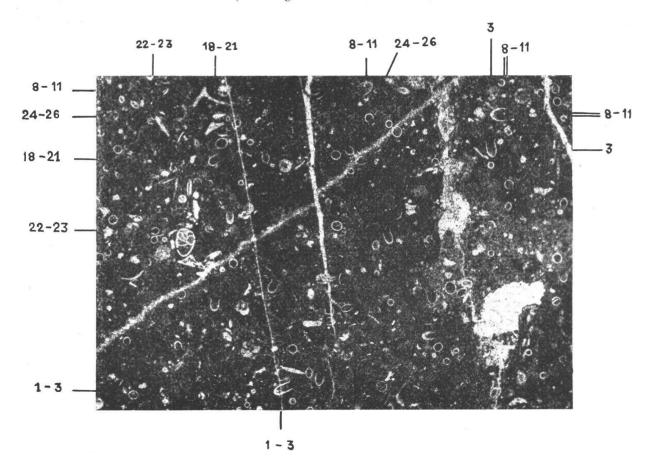


Fig. 28 (Vergrößerung 27mal) Wie Fig. 27

- 1—3 Tintinnopsella of longa Colom.
 - 3 Tintinnopsella cf. longa Colom, Anklang zu carpathica-Form.
- 8—11 Tintinnopsella carpathica Murgeanu und Filipescu, sehr weite Kragenöffnung.
- 22-23 Calpionella cf. alpina LORENZ, Form mit «abfallenden Schultern», kleine Varietät.
- 24-26 Calpionella alpina Lorenz, kleine Varietät.

(1952. p. 52) stellt durchgehend Calpionellen fest, wobei sie in den unteren Horizonten «autochthon» eingebettet liegen, in den oberen möglicherweise aufgearbeitet sein könnten. Diese Ergebnisse lassen die Annahme R. UMIKER's, die Zwischenschichten als Neokom zu betrachten, an Wahrscheinlichkeit gewinnen.

Es scheint uns, daß sich die Calpionellen zur stratigraphischen Feingliederung sehr gut eignen. Die umfassenden und vergleichenden Arbeiten von G. Colom scheinen in verschiedenen Belangen noch modifiziert und erweitert werden zu können.

Obere Kreide und Flysch

Die Kreide, welche — wie im Gebiete von R. UMIKER (1952) — Neokom, mittlere Kreide und als obere Kreide die Couches rouges umfaßt und in den tektonischen Zonen als Muldenfüllung auftritt, wurde vom genannten Autor erschöpfend behandelt, so daß sich eine Beschreibung für unser Gebiet bis auf einige ergänzende Bemerkungen erübrigt.

In der östlichen Fortsetzung der Spätberglisee-Mulde konnten wir in den enggequetschten und stark tektonisierten Kreidegesteinen des Höllgrabens an Hand einer nicht näher bestimmbaren Anomaliden-Fauna oberstes Albien nachweisen. Die Fauna dürfte nach FR. ALLEMANN etwas tiefer als das *Thalmanninella ticinensis*-Niveau liegen.

An der oberen Norflanke der Moosfluh, deren Kreidevorkommen die östlichsten der Spätberglisee-Mulde darstellen, konnte über dem Neokom die mittlere Kreide mit *Planomalina postulosa* UMIKER ebenfalls nachgewiesen werden. Als höchste Fauna wurden westlich des Jägerhüttli an der Moosfluh? *Ticinella roberti, Thalmanninella ticinensis, Planomalina* sp. und kleine Globigerinen gefunden. Die Faunengemeinschaft läßt auf unterstes Cenomanien bis oberstes Albien schließen. Im Gebiete UMIKERS beherbergt die Spätberglisee-Mulde einen mächtigen Oberkreide-Schichtkomplex vom Cenoman bis ins obere Senon, allerdings durch nachgewiesene Schichtlücken teilweise reduziert. Im Osten (Moosfluh) umfassen die Couches rouges nur noch das Cenoman. Jüngeres fehlt. Das Fehlen ist unserer Meinung nach in erster Linie durch tektonisches Ausquetschen und nachträglichen Abtrag bedingt.

Flysch treffen wir in unserem Gebiet als östlichstes Vorkommen der als einzige Synklinale Flysch führenden Hinterstockensee- oder Flysch-Mulde an der Furgge, dem Übergang vom Hinterstockensee nach dem Steinig Nacki. R. UMIKER wies im Westen einen kontinuierlichen Übergang von Danien-Paleozän in die Flyschfazies nach. Nach einer mündlichen Mitteilung M. NIL's liegt Flysch bei Vorder Stocken auf Maestricht. Im Flyschaufschluß an der Furgge ist der Übergang aus den tieferen Horizonten nicht aufgeschlossen. Der Aufschluß selbst enthält Breccienbänke, glaukonitische, Glimmer führende, kohlig-bituminöse Sandsteine und feinschichtige bituminöse Mergelkalke.