Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft in Bern
Herausgeber: Naturforschende Gesellschaft in Bern

Band: 11 (1954)

Artikel: Der Inhaltsbegriff, seine Begriindung und Wandlung in &lterer und
neuerer Zeit

Autor: Hadwiger, H.

DOl: https://doi.org/10.5169/seals-319463

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-319463
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

H. HADWIGER

Der Inhaltsbegriff,
seine Begriindung und Wandlung
in dlterer und neuerer Zeit ")

I. Zum allgemeinen Inhaltsproblem

An die Spitze der in diesem ersten Teil vorgebrachten kritischen Er-
wigungen zum algemeinen Inhaltsproblem stellen wir die Frage: Was
ist der Inhalt eines Korpers? Unter Wiirdigung der wichtigsten Aspekte,
welche die Entwicklungsgeschichte der Inhaltslehre bietet, lassen sich bei
der Beantwortung dieser prinzipiellen Frage zwei verschiedene Grund-
haltungen unterscheiden. Es handelt sich um den natiirlichen und den
formalen Standpunkt. Der natiirliche Inhalt ist vorwiegend der klassische
Inhalt, aber auch der Inhalt der Elementar- und Mittelschule; der for-
male Inhalt gehort der Neuzeit an und wird konsequent wohl erst an der
Hochschule gelehrt, Der erste Inhaltsbegriff ist naiv-anschaulich, der
zweite kritisch-streng und eher abstrakt.

Es sei versucht, die beiden einander gegeniibergestellten Begriffe naher
zu charakterisieren.

a) Der natiirliche Inhalt eines Korpers ist Inhalt an sich, ist im direkte-
sten Sinne die Raumbeanspruchung der Gesamtheit seiner Punkte, die
nicht notwendigerweise durch eine reelle Zahl gemessen werden muf.
Wenn Zahlen vorkommen, so driicken diese nur das Verhiltnis aus, in
welchem der Inhalt eines Korpers zu demjenigen eines andern steht. Der
Rauminhalt ist hier eine geometrische Grofle, eine unmittelbar unserer

! Vortrag, gehalten am Fortbildungskurs des Vereins Schweizerischer Gymnasial-
lehrer in Luzern (6. Oktober 1952).
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Anschauung zugingliche und den physischen Wahrnehmungen und Er-
fahrungen vertraute, selbstindige Quantitit. Eine Definition ist in dieser
grundsitzlichen Weise nicht moglich und iiberfliissig. Entsprechend sind
die Haupteigenschaften des natiirlichen Inhalts unmittelbar einleuch-
tende Wahrheiten und keines Beweises bediirftig.

Neben dem zu allen Zeiten wirkenden natiirlichen Empfinden ist in
erster Linie die gewaltige dogmatische Kraft der Werke EukLips dafiir
verantwortlich, dal der natiirliche Inhalt innerhalb der folgenden zwei-
tausend Jahre vorherrschte.

Die im elften und zwélften Buch bestindig verwendeten Grundeigen-
schaften des raumlichen Inhalts hat EUKLID bereits im ersten Buch als
GroBenaxiome niedergelegt. Sie lauten (nach HEIBERG) :

1. Dinge, die demselben Ding gleich sind, sind unter sich gleich.

2. Wenn man zu gleichen Dingen gleiche Dinge hinzufiigt, so erhilt
man gleiche Dinge.

3. Wenn man von gleichen Dingen gleiche Dinge wegnimmt, so blei-
ben gleiche Dinge.

4. Dinge, die zur Deckung gebracht werden konnen, sind gleich.
5. Das Ganze ist groBer als einer seiner Teile und ihm nicht gleich,

Es kommt EukLip bekanntlich vor allem darauf an, ausgehend vom
System der einmal gefaflten und als giiltig hingenommenen Postulate
wissenschaftlich unanfechtbare Schliisse zu ziehen. Auf die Frage, ob und
warum die Anwendung seiner Gréenaxiome auf den raumlichen Inhalt
statthaft oder sinnvoll ist, geht er selbst nicht ein.

In diesem Sinn begriindet EUKLID im elften Buch die Inhaltslehre der
Parallelotope. Im zwolften Buch folgt die wunderbare Beweisfiihrung
fiir den Satz des Eupoxos, nach welchem die Inhalte zweier Pyramiden
mit gleicher Grundfliche und gleicher Hohe gleich sind. Allerdings
kommt man hier nicht mit endlich vielen Schliissen aus, und EukLrip
muB} ein Eupoxos zugeschriebenes Beweisverfahren anwenden, welches
darin besteht, daB man die gegenteilige Annahme, die Inhalte seien ver-
schieden, auf einen Widerspruch fiihrt. Der betreffende Schluf3 kann je-
doch nur unter Berufung auf ein weiteres Gréflenaxiom (Axiom des Evu-
poxo0s) streng gefiithrt werden, Dieses besagt etwa folgendes: Wenn man
von einer GroBe die Hialfte oder mehr wegnimmt, vom Rest wieder die
Hilfte oder mehr, und so fortfihrt, so ist der Rest nach einer hinreichend
groBen Anzahl Wiederholungen kleiner als eine beliebig vorgegebene
GroBe derselben Art. (In dieser Form handelt es sich um einen Satz im
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zehnten Buch, hergeleitet aus einer im fiinften Buch formulierten Vor-
aussetzung.)

Auf den nimlichen Grundannahmen iiber den natiirlichen Inhalt be-
ruhen auch die spiteren Inhaltsbestimmungen von ARCHIMEDES und
HeroN, wobei der letztere erstmals auch zahlenmiflige Inhaltsberech-
nungen in die Wissenschaft einfiithrte, wihrend seine groBen Lehrmeister
die Inhalte als von der Zahl unabhingige, selbstindige geometrische Gro-
f3en nur verglichen.

Nach dem Neuerwachen der Mathematik in Europa ist den unklaren
und verworrenen Anfingen wissenschaftlichen Denkens des Mittelalters
entsprechend auch der natiirliche Inhaltsbegriff zunachst primitiver. In
feinerer Form lebt er wieder auf bei CAvALIERI. Nach dessen viel umstrit-
tenen Thesen ist zum Beispiel der Rauminhalt eines Korpers bestimmt
durch die Gesamtheit seiner Schnittflichen parallel zu einer Stiitzebene
(Regula), d. h. durch die Summe seiner Indivisibilien. Die vielen um-
stindlichen und zum groften Teil unklaren Versuche, diese Thesen zu
verteidigen, sind in ihrem Untergrund getragen von der tief verwurzelten
Idee, daB der Inhalt eines Korpers identisch mit der Raumbeanspruchung
seiner Punkte ist .

Wesentlich bedeutsamer als die Thesen, die CAVALIERI seiner Theorie
zugrunde legte und mit deren Hilfe er — allerdings vergeblich — einen
strengen Nachweis seines niitzlichen Vergleichsprinzips (Prinzip von
Cavalieri) anstrebte, ist das Prinzip selbst. Dieses leistete durch die fol-
genden Jahrhunderte der Inhaltslehre hervorragende Dienste, und auch
heute wird es da und dort in den Schulen als niitzliches Arbeitsprinzip
herangezogen. Allerdings wird es kaum in axiomatischer Form zum Auf-
bau der Inhaltstheorie gebraucht werden, wie dies zum Beispiel von
HiLBERT 2 andeutungsweise in Erwigung gezogen worden ist, sondern
innerhalb einer bereits streng begriindeten Inhaltslehre wird es als Satz
von Cavalieri mit geeigneter Einschriankung bewiesen. Als beweisbharer
Satz tritt es uns auch in den modernen Malltheorien als sogenanntes
Fubini-Theorem entgegen.

b) Der formale Inhalt eines Korpers ist eine reelle, nicht negative Zahl,
" die dem Kérper formal zugeordnet wird. Sie heiflt auch deutlicher In-
haltsmaBzahl. Die Zuordnung ist in gewissem Rahmen willkiirlich, und
gie ist auch in verschiedenen neuzeitlichen Inhaltssystemen individuell

2 D. HiLBERT, Grundlagen der Geometrie, 4. Auflage, Leipzig 1913, S. 63.
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vollig verschieden. Die genaue Festsetzung der Vorschrift, durch welche
einem Korper seine Inhaltsmafzahl zugeordnet wird, ist die Definition
des betreffenden Inhalts. '

Die Zuordnung muf} indessen sinnvoll sein, so daB die InhaltsmaBzahl
geeignet ist, ein Maf} fiir die Raumerfiillung des Korpers darzustellen. So
wird eine Inhaltsdefinition nur dann als zuléssig anerkannt, wenn sich
die Eigenschaften nachweisen lassen, die in den klassischen Grundannah-
men — den Grofenaxiomen EUKLIDS — zum Ausdruck kommen. Dies
entspricht einer stillschweigend und allgemein anerkannten Konvention.

Diese verbindlichen Forderungen sind — in neuzeitlicher Form aus-
gedriickt — die folgenden: Der Inhalt muf3

1. bewegungsinvariant,
2. additiv,

3. normiert,

4. definit

sein. Bezeichnet X (4) den Inhalt einer Punktmenge A, so lassen sich die
vier Inhaltspostulate wie folgt genauer formulieren:

1. X(4A) = X (B), falls A > B ist; ,
2. X(A+B)=X(A) + X(B), falls AB = 0Qist;
3. X(E) =1, falls E den Einheitswiirfel bezeichnet;
4, X (A) = 0.

A == B hedeutet, da} 4 und B kongruent sind. 4 + B ist die Vereini-
sungsmenge von A und B, und weiter bezeichnet 0 die leere Menge. Die
Bedingung AB = 0 sagt also, daf3 der Durchschnitt AB leer ist, und dies
ist gleichbedeutend damit, daB 4 und B disjunkt sind, d. h. keine ge-

meinsamen Punkte aufweisen.

Innerhalb der formalen Inhaltstheorie lassen sich zwei Entwicklungs-
arten unterscheiden, namlich einmal eine konstruktive, wobei besondere
Inhaltssysteme durch individuelle Inhaltsdefinitionen konstruiert wer-
den, und dann eine axiomatische, wobei die vier oben genannten Postu-
late und eventuell noch weitere an die Spitze der Theorie gestellt werden
und wobei sich die Untersuchungen auf die Gesamtheit aller Inhalts-
systeme erstrecken, die den gestellten Forderungen geniigen. Die indivi-
duellen Systeme der konstruktiven Theorie sind dann partikulire Losun-
gen des Hauptproblems der axiomatischen Theorie.
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2

Ein weiteres Eindringen in das allgemeine Inhaltsproblem wird-uns
ermoglicht, indem wir zur Frage Stellung nehmen: Was ist ein Kéorper?
Es ist fiir die Mathematik der vorkritischen Zeit geradezu charakteri-
stisch, daB3 der genaueren Abgrenzung der Giiltigkeit einer Theorie zu
wenig Beachtung geschenkt wurde. So wird in dlteren Abhandlungen
hiufig vom Inhalt eines Korpers gesprochen, es werden Lehrsitze und
Formeln abgeleitet, ohne daB3 irgendwo gesagt ist, was denn ein Korper
iiberhaupt 1st.

Um einen an sich lehrreichen Gedankengang verfolgen zu kénnen, wol-
len wir hier einige Kérpertypen erwihnen, die in ganz ungefihrer Weise
fiir den Stand der Inhaltslehre groBerer Epochen der Mathematik charak-
teristisch sind (Abb.1):

A. ebenflachig begrenzte Korper, d. h. Polyeder (EukLip) ;

B. krummflichig begrenzte Korper, elementares Baugesetz (ArcHI-
MEDES, HERON) ;

C. krummflichig begrenzte Korper, nicht elementares Baugesetz, aber
hohe Symmetrie, zum Beispiel Rotationskorper (KEPLER, CAva-
LIERI) ;

Abb. 1
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D. krummflichig begrenzte Korper, nicht elementar und ohne Sym-
metrie (LEIBNIZ, BERNOULLI) ;

E. nicht flichig begrenzte Kérper, Punktmengen (CANTOR, JORDAN,
LEBESGUE).

Von A bis E zeigt sich eine fortschreitende Lockerung des mathematischen
Gesetzes, das Bau und Form des Kérpers beherrscht. Im letzten Stadium
hat sich die Oberfliche im klassischen Sinn iiberhaupt aufgelost, und ein
Bau- oder Formgesetz im herkommlichen Sinn braucht nicht mehr vor-
zuliegen. Die vollig beliebige Punktmenge — eine gewisse Paradoxie liegt
in dieser Feststellung — ist der einfachste Korper, einfach deshalb, weil
keine bindenden Formgesetze genannt werden miissen. Abgesehen von
der Beschrinktheit, die wir fordern wollen, braucht der Korper keine
Eigenschaften zu haben. '

Es ist klar, daB} eine Inhaltslehre, welche diese allgemeinsten Korper,
also beliebig beschrinkte Punktmengen, erfallt und sie alle auszumessen
erlaubt, die einfachste und durchschlagendste Losung des Inhaltspro-
blems darstellen wiirde.

3.

Mit der Bemerkung am SchluB8 des vorstehenden Abschnittes werden
wir von selbst zu einer entscheidenden Fragestellung des allgemeinen In-
haltsproblems gefiihrt, nimlich zur Frage: Hat jeder Korper einen In-
halt? Im Rahmen der formalen Inhaltstheorie miifite man sachgeméBer
und genauer fragen: Kann man jeder beliebigen beschrinkten Punkt-
menge des Raumes eine InhaltsmaB3zahl so zuordnen, daf3 die vier iibli-
chen Inhaltspostulate erfiillt sind?

Zunichst wird man geneigt sein, eine bejahende Antwort auf diese
Frage zu erwarten; dies ganz besonders dann, wenn unsere Einstellung
hierzu noch stark von der Idee des natiirlichen Inhalts beherrscht wird.
Wer aber schon Gelegenheit hatte, sich vom Vorhandensein sehr merk-
wiirdiger Punktmengen zu iiberzeugen, wird eher eine skeptische Hal-
tung zu unserer Frage einnehmen.

Eine Punktmenge zum Beispiel, die gleichzeitig mit ihrer Komplemen-
tirmenge in einem gewissen Raumteil iiberall dicht liegt, wie etwa die im
Einheitswiirfel liegende Punktmenge P = (0 < x, y, z = 1; x, y, z ratio-
nal), ist, vom Standpunkt der neuzeitlichen Inhaltslehre aus betrachtet,
noch vollig harmlos. Das Raum- oder Zahlkontinuum, das der heutigen
Mathematik zugrunde liegt, zeigt in seiner Unendlichkeit nach innen hin
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noch ganz andere Moglichkeiten. Die geiibte Hand des Mathematikers
der heutigen mengentheoretischen Epoche kann aus dieser Unendlich-
keit im Kleinen in wieder unendlicher Vielfalt Punkte und Zahlen her-
ausgreifen und damit Gebilde erstehen lassen, wo unsere natiirliche An-
schauung nicht nur nicht mehr zu folgen vermag, sondern verspottet zu
werden scheint.

Uber Ergebnisse dieser Art sei im nichsten Abschnitt ausfiithrlich be-
richtet.

4.

Zwei Punktmengen P und Q des Raumes heillen multikongruent (end-
lich-gleich), wenn sie in paarweise kongruente disjunkte Teilmengen zer-
legt werden konnen. Ausfiihrlicher: P und Q sind multikongruent vom
Grade n, geschrieben P ~ Q, wenn es zwei Zerlegungen

P:Z::Pi, Q:ioi

von P und Q in Teilmengen P; und Q; so gibt, daBB P; P; = Q; Q; = 0 fiir
firifjund P;~Q; (i =1,2,...,n) gilt. Die Kongruenz P;= Q; ist in
dem Sinn scharf zu verstehen, daB3 die beiden Punktmengen Punkt fir

Punkt zur Deckung gebracht werden miissen. So sind beispielsweise die
beiden Strecken P = (0 = x = 1) und Q = (0 = x <1) nicht kongruent.

Wir illustrieren eine bestehende Multikongruenz fiir die beiden ebenen
Punktmengen P = (0 =x<a, 0=y <b) und Q = (0 ==z, y <¢), wo-

bei ¢? = ab ist (Abb. 2). Die Multikongruenz wird hier durch Teilmengen
; > ,

¢ Abb.2
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realisiert, die selbst wieder polygonal sind. Unter Wahrung dieser Neben-
bedingung sind zum Beispiel die entsprechenden abgeschlossenen bzw.
auch die beiden offenen Rechtecke sicher nicht mehr multikongruent.3
Man verwechsle aber diese eingeschrankte Multikongruenz nicht mit
der Zerlegungsgleichheit im Sinne der Elementargeometrie, wo bekannt-
lich auf die Zugehorigkeit der Randpunkte nicht geachtet werden mufl.
Nun haben BanacH und TARrskI 4 einen Multikongruenzsatz bewiesen,
der einen iiberraschenden Sachverhalt enthiillt. Es gilt nimlich: Zwei be-
liebige beschrinkte Punktmengen 4 und B des Raumes, welche innere
Punkte aufweisen, sind multikongruent, d. h. es gilt die Relation 4 ~ B.

Also 148t sich beispielsweise ein kleiner Korper von ErbsengroBe in
eine gewisse Anzahl disjunkter Teile zerlegen, mit denen man dann eine
Kugel von der Griéle der Erde wieder liickenlos zusammensetzen kann;
die Teilmengen miissen hierbei nur geeignet gedreht und passend zusam-
mengefiigt werden! Allerdings hat man sich dabei nicht vorzustellen, daf3
sich die Teile mit dem Messer aus der Erbse herausschneiden lieBen, son-
dern man denke sich diese etwa als kleine, nebelhafte Punktwolkchen
mit einer auflerordentlich komplizierten Feinstruktur.

Die Beweise sind im iibrigen reine Existenzbeweise und liefern absolut
keine Richtlinien, die zu einer effektiven Berechnung der einzelnen Teil-
mengen zur Realisierung der «paradoxen» Multikongruenz in einem indi-
viduellen Fall dienen kénnten. Die Beweiskonstruktion setzt auch die
Wohlordnung des Kontinuums voraus, welche sich nur unter Berufung
auf das Auswahlaxiom der Mengenlehre exakt begriinden 1af3t.

Man beachte, da3 ausdriicklich das Vorhandensein innerer Punkte ver-
langt werden muf}. Dies hingt damit zusammen, daB3 diese unglaubwiir-
digen Moglichkeiten nur aus der unendlichen Tiefe des Kontinuums her-
ausgeholt werden konnen. Fiir nur abzihlbare oder gar endliche Punkt-
mengen ist der Satz natiirlich falsch.

Der Grad n der Multikongruenz 4 ~ B kann sogar — allerdings grob
— abgeschatzt werden. Bringt man 4 und B in eine solche Lage, daf} die
beiden Mengen einen inneren Punkt P gemeinsam haben, so gibt es zwei
konzentrische Kugeln K und Ko mit den Radien R und Ro und dem Mit-
telpunkt P, so daB einerseits Ko [ 4B und andererseits 4 + B [ K gilt.

3 H. Hapwicer, Multikongruenz ebener Mengen und pythagoreischer Lehrsatz, Bull.
Politechn. Gh. Asachi 2, 98—105, 1947.

2 St. BANAcH, A.TaRrski1, Sur la décomposition des ensembles de points en parties
respectivement congruentes, Fund. math. 6, 244—277, 1924.
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Zur Realisierung einer Multikongruenz von 4 und B reicht dann ein n

aus, fir das 5

n < 3212 (R/Ro) 12

Betrachten wir beispielsweise den Fall: 4 = Einheitskugel, B = konzen-

trischer Einheitswiirfel; R = 1, Ro = 1/2, so ergibt sich die Schitzung
n<4,23-10¢,

In besonderen Fallen, wobei eine dem Fragenkreis speziell angepaBte

hohe Symmetrie vorliegt, reduziert sich der Multikongruenzgrad n ganz

erheblich.

Ein derartiger ausgezeichneter Fall ist durch die Kugelverdoppelung
gegeben, wo 4 eine Kugel und B die Vereinigung zweier mit 4 kongruen-
ter Kugeln ist.

Nach einer beriihmten, von HAUSDORFF ¢ angegebenen Kugelzerlegung
l1aBt sich folgern, dal n = 10 bereits ausreicht. v. NEUMANN 7 hat weiter
bemerkt, da8 dies schon fiir n = 9 der Fall ist. Endlich konnte SIEr-
PINSKI & die ausreichende Anzahl auf n = 8 bringen. Den Schluflstrich
zog RoBINsON ?, indem er nachwies, dall n = 5 ausreicht und daf} ein
noch kleinerer Multikongruenzgrad nicht mehr in Betracht fillt. Dieses
letzte und endgiiltige Ergebnis wollen wir symbolisch durch eine schema-
tische Darstellung (Abb. 3) erginzen, in der zum Ausdruck kommt, wie
sich die fiinf Teile der einen Kugel auf die heiden andern verteilen.

.N<2 +

Abb. 3

5 H. Hapwicer, Die Multikongruenz und der Satz von Banach und Tarski, Abh. Math.
Seminar Hamburg 16, 48-—53, 1949,

¢ F. Hausporrr, Bemerkung iiber den Inhalt von Punkitmengen, Math. Ann. 75, 428—
433, 1914.

7 J.v. NeuMANN, Zur allgemeinen Theorie des MaBes, Fund. math. 13, 73—116, 1929.

8 W. S1ERPINSKI, Sur le paradoxe de MM. Banach et Tarski, Fund. math. 33, 229—234,
1945; Sur le paradoxe de la sphére, ibid. 33, 235—244, 1945. Derselbe Autor gibt

weitere Hinweise und Literaturangaben zu diesen und verwandten Fragen in: Ele-
mente der Math. 5, 1—4, 1950.

? R. M. RoBiNsoN, On the decomposition of spheres, Fund. math. 34, 246—260, 1947.
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Abschlieend soll noch erwihnt werden, daf3 paradoxe Multikongru-
enzen dieser Art im ein- und zweidimensionalen Raum nicht méglich
sind. Verantwortlich hierfiir ist die Struktur der Bewegungsgruppe, wie
man nach den Resultaten sehr allgemeiner Untersuchungen von v. NEU-
MANN 1 weil}. Paradoxien sind dann unméglich, wenn die wirkende
Gruppe abelsch ist oder einen abelschen Normalteiler mit abelscher Fak-
torgruppe aufweist. Das erste trifft fiir die lineare, das zweite fiir die
ebene Bewegungsgruppe zu. |

3.

Wir ziehen nun aus den Feststellungen des vorigen Abschnitts einige
wichtige Folgerungen.

Zunichst wird die Frage, ob jedem Korper ein Inhalt zukommen kann,
unbedingt verneint werden miissen. In der Tat: Es sei A = E und B =
E + E’, wobei E und E’ disjunkte Einheitswiirfel sind. Nach dem Multi-
kongruenzsatz von BANAcCH und TAarski1 gilt aber 4 ~ B. Wire nun X ein
universeller Inhalt, so daB jeder beschrankten Punktmenge P ein Inhalt
X (P) zukdme und daB die vier Inhaltspostulate erfiillt wiren, so wiirde
sich zundchst im Hinblick auf die Definition der Multikongruenz und
mit Beanspruchung der eben erwiahnten Postulate X (4) = X (B) und
weiter also X (E) = 2 X (E) oder X (E) = 0 ergeben. Andererseits aber
miifite X (E) = 1 sein. Der Widerspruch l6st sich nur so, da} die fiir die
Realisierung der Multikongruenz erforderlichen Teilmengen nicht alle
einen Inhalt haben kénnen.

Ausgestattet mit dieser neuen Sachkenntnis, kehren wir zur Lehre vom
natiirlichen Inhalt zuriick und ziehen einige Konsequenzen.

Sollte der natiirliche Inhalt mehr sein als nur eine historisch-vorwissen-
schaftliche oder heuristisch-didaktische und zweckmifige Begriffsbil-
dung, sollte er also einer ahsoluten mathematischen Wahrheit entspre-
chen, so miiten wohl alle Kérper einen natiirlichen Inhalt aufweisen.
Eine kiinstliche Grenze zwischen solchen, die ihn haben, und solchen, die
ihn nicht haben, vertrigt sich kaum mit der Absolutheit des Begriffes.
Der natiirliche Inhalt miif3te also universell sein. Nun haben wir aber so-
eben gesehen, daB} es einen solchen nicht geben kann.

Der natiirliche Inhalt hat sich demnach bei strenger und konsequenter
Kritik als widerspruchsvoll erwiesen, und er kann nicht zusammen mit

10 Jge. cit. Anm. 7.
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den axiomatisch als giiltig erklirten Grundeigenschaften zum Aufbaun
einer exakten wissenschaftlichen Inhaltslehre dienen.
Endlich ziehen wir noch Konsequenzen fiir die formale Inhaltslehre.
In einem bewegungsinvariant aufgebauten Inhaltssystem kénnen nie
alle beschrinkten Punktmengen meBbar sein, d. h. die feste Zuordnung
einer den Inhaltspostulaten geniigenden Inhaltsmaf3zahl X (4) ist im-
mer nur fiir die Mengen A einer gewissen Mengenklasse méglich. Diese
Mengenklasse (Inhaltsfeld) umfaBt die im betreffenden Inhaltssystem
mefbaren Punktmengen. Die schwichsten Forderungen (Feldpostulate),
die man iiblicherweise in jedem Inhaltssystem als erfiillt betrachtet, sind
die folgenden: Das Inhaltsfeld soll
1. bewegungsfrei,
2. additiv,
3. normal
sein. Bezeichnet § das Inhaltsfeld, so gilt also:
1. Aus4A € Fund 4 = BfolgtB € {;
2. Aus A,B ¢ und AB =0folgt A+ B € F;
3. Esgit E € §.
Inhaltsfeld § und InhaltsmaB3zahl X bilden zusammen das Inhaltssystem
(&, X).

6.

Bevor wir nun im Rahmen der formalen Inhaltstheorie niher auf be-
sondere Inhaltssysteme eintreten, also den natiirlichen Inhalt zugunsten
des formalen Inhalts endgiiltig verabschieden, sei noch eine Zwischen-
bemerkung padagogischer Art eingeflochten.

Wie bereits im ersten Abschnitt erwihnt wurde, basiert die Inhalts-
lehre des Mittelschulunterrichts vornehmlich auf dem Begriff des natiir-
lichen' Inhalts. Obgleich nun die konsequente Weiterverfolgung dieses
Begriffs im Sinne unserer fritheren Ausfithrungen zu Widerspriichen
fiihrt, wiire es kaum angezeigt, die Ausmerzung des natiirlichen Inhalts
aus dem Elementar- und Mittelschulunterricht anstreben zu wollen.

Einmal ist diese Begriffsbildung eine historische Tatsache; eine in
Stringenz und Form vollkommene MaBltheorie der Neuzeit hitte niemals
am Anfang der historischen Entwicklung der Inhaltslehre stehen kénnen.
Sie kann aber auch nicht am Anfang der Lehrjahre eines jungen Mathe-
matikers stehen, in dessen geistiger Entwicklung sich bekanntlich dhn-
liche Wandlungen vollziehen wie innerhalb der Genesis der Wissenschaft.
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Weiter darf und muB3 sich der Mathematikunterricht mittlerer Stufe
auf die natiirliche Anschauung und auf die Anwendung des gesunden
Menschenverstandes berufen. Es wire verfehlt, dem Lernenden zu demon-
strieren, dafl in der Mathematik kein sicherer Verla3 auf den gesunden
Menschenverstand ist, dafl man seiner natiirlichen Anschauung der Dinge
mifitrauen soll, dal man alles und jedes mit umstindlichen Schliissen
beweisen muf}, auch dann, wenn wir unbedingt klar und unmittelbar zu
sehen glauben.!

Was nun aber den Lehrer betrifft, so ist es klar, daB dieser aus didak-
tischen Griinden wohl gewisse Schwierigkeiten iibergehen kann, sie selbst
jedoch genau kennen sollte. Auch muB3 er in der Lage sein, notigenfalls
die vorkritische und heuristische Lehrform durch eine wissenschaftlich
strenge Begriindung zu ersetzen.

II. Der elementare Ihhalt

Ein abgeschlossener Kérper, der sich im Sinne der Elementargeometrie
in endlich viele abgeschlossene und eigentliche Tetraeder zerlegen laf3t,
heillt Polyeder. In gewissem Sinne sind die Polyeder die elementaren
Punktmengen, und ihr Inhalt — der elementare Inhalt — ist fur den
konstruktiven weitern Aufbau der hoheren Inhaltssysteme grundlegend.
Die elementare Inhaltstheorie sollte aber entsprechend dem elementar-
geometrischen Charakter der Korper, von welchen sie handelt, mit mog-
lichst einfachen Schliissen durchfiihrbar sein; insbesondere sind unend-
liche Zerlegungsprozesse nach Moglichkeit zu vermeiden.

In diesem ersten Abschnitt-nehmen wir zu verschiedenen Versuchen,
die Theorie des Polyederinhalts streng und doch méglichst elementar zu
begriinden, knapp skizzierend Stellung.

Viele indirekte Ansidtze haben das Ziel, hierbei lediglich mit dem Be-
eriff der Zerlegungs- oder Erginzungsgleichheit im Sinne der Elementar-
geometrie auszukommen. Vorbild ist hier die von HILBERT 12 mit axioma-
tischer Schirfe begriindete Theorie des Polygoninhalts in der Ebene.

11 Vgl. F.EnriQues, Fragen der Elementargeometrie, deutsch von Thieme, I. Teil,
Leipzig 1911, S. 200.
12 ]Jgc. cit. Anm. 2, Kap. 1V,
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Zwei Polyeder P und Q heiflen zerlegungsgleich, geschrieben P ~ Q,
wenn sie sich in gleich viele Teilpolyeder P; und Q; zerlegen lassen, sym-

bolisch durch P =Z P;und Q = Z Q; ausgedriickt, so daB diese paar-
1 1 : :

weise kongruent sind, geschrieben P; =~ Q; (i = 1,...,n). Die Teilpoly-
eder diirfen Randpunkte, aber keine inneren Punkte gemeinsam haben;
dies deckt sich mit dem Begriff der Zerlegung, wie er in der Elementar-
geometrie angewendet wird.

Zwei Polyeder P und Q heien erginzungsgleich, wenn sie sich durch
Hinzufiigen von geeigneten zerlegungsgleichen Polyedern U und V in
zerlegungsgleiche Polyeder uiberfithren lassen, so daB also U ~ V und
P+ U~ Q + V gilt. Erst vor wenigen Jahren ist der Beweis gelungen 3,
dal} erginzungsgleiche Polyeder stets auch zerlegungsgleich sind. Diese
Unterscheidung, die seit EUKLID stets beachtet werden muBte, fillt also
heute weg.

Der erste und nichstliegende indirekte Ansatz zum Aufbau einer Theo-
rie des Polyederinhalts besteht nun darin, die Inhaltsgleichheit zweier
Polyeder P und Q durch die Zerlegungsgleichheit P ~ Q zu definieren.

Nun hat aber bereits GAuss 1* in Erwigung gezogen, HILBERT 1% be-
stimmt vermutet und schlieBlich DEHN 18 nachgewiesen, daf} beispiels-
weise Tetraeder mit iibereinstimmender Grundfliche und gleicher Hohe
existieren, welche nicht zerlegungsgleich sind. Hieraus folgt, daB es auf
der oben erwahnten Grundlage nicht maoglich ist, die Inhaltsgleichheit
zweier Tetraeder dieser Art nachzuweisen. Ein Vergleich der beiden
Polyeder durch Zerlegen in kongruente Teilpolyeder fordert eine Zer-
schneidung in abzihlbar unendlich viele Teile. Das Verfahren entspricht
dann dem EukvLipischen Beweis und ist als infinit aus methodischen
Griinden abzulehnen.

DEHN 17 und ENRIQUES '® haben vorgeschlagen, zwei Polyeder dann in-
haltsgleich zu nennen, wenn keines von beiden mit einem echten Teil-

13 J,P.SYDLER, Sur la décomposition des polyédres, Comment. Math. Helv. 16, 266—
273, 1943/1944,

12 Werke VIII, S. 241, 244,
15 D. HiLBert, Mathematische Probleme, Gott. Nachr. 1900, 253—297, speziell S. 266.
16 M. DEun, Uber den Rauminhalt, Math. Ann. 55, 465—478, 1901. Vgl. auch H. Hap-

WIGER, Zum Problem der Zerlegungsgleichheit der Polyeder, Archiv der Math. 2,
441—444, 1949/1950.

17 Vgl. den Artikel Elementargeometrie von M. ZacHar1as, Enzykl. III AB 9, S. 946,
18 ]loe. cit. Anm. 11, S, 202, .
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polyeder des andern zerlegungsgleich ist. Aber auch jetzt li3t sich nicht
beweisen, daB die beim vorstehenden Versuch erwahnten Polyeder in-
haltsgleich sind; es kénnte doch das eine mit einem echten Teil des an-
dern zerlegungsgleich sein. Wie soll man iiberhaupt auf dieser Grund-
lage schon nachweisen, da8 nicht etwa jedes Polyeder mit einem echten
Teil seiner selbst oder eines beliebigen andern zerlegungsgleich ist? Mit
dem gesunden Menschenverstand will sich dies nicht so recht vertragen;
aber wie das Gegenteil nachweisen? Der Unméglichkeitsheweis ist natiir-
lich trivial mit Hilfe des Inhalts; aber iiber den verfiigen wir hier gerade
nicht; er soll ja auf diese Weise begriindet werden.

Diese Schwierigkeit hat vor der Jahrhundertwende auch im ebenen
Falle viel zu denken und zu disputieren gegeben. Man suchte vergeblich
einen rein geometrischen Nachweis, daB3 eine solche paradoxe Zerlegungs-
gleichheit unméglich ist, kam aber auch nicht ins klare dariiber, ob man
dies zu beweisen oder durch ein geeignetes Axiom — das DE-ZoLTsche
Postulat — auszuschlieBen habe.

Einen Vorsto in anderer Richtung machte, einer Anregung von HiL-
BERT folgend, SUss 1%. Es gelang ihm, zu zeigen, daB3 zwei im klassischen
Sinn inhaltsgleiche Polyeder stets Cavalieri-aequivalent sind, d. h. sich
durch Hinzufiigen Cavalieri-gleicher Tetraeder in Polyeder verwandeln
lassen, die ihrerseits wieder in lauter Cavalieri-gleiche Tetraeder zerleg-
bar sind. Dabei sind Cavalieri-gleiche Tetraeder solche mit iibereinstim-
mender Grundfliche und gleicher Héhe. Auf diese Weise ist gezeigt, daf3
sich die Inhaltsgleichheit als Cavalieri-Aequivalenz definieren lieBe,

Direkte Ansitze verfolgen das Ziel, die einem Polyeder zugeordnete
~ InhaltsmaBzahl direkt zu definieren. Das nichstliegende Vorgehen be-
steht hier wohl darin, dafl man als InhaltsmaBzahl des Tetraeders den
dritten Teil des Produktes aus Grundfliche und Héhe vorschreibt, zu-
nichst zeigt, daf} dieser Wert von der Wahl der Grundfldche unabhingig
ist, und den Nachweis fiihrt, daf} bei einer Tetrangulierung eines Poly-
eders in Tetraeder die algebraische Summe der Inhaltsmaf3zahlen der
Teiltetraeder von der individuellen Zerlegung des Polyeders unabhingig
wird. Diese Summe heifit dann InhaltsmaBzahl des Polyeders. Dieses
Programm wurde erstmals von SCHATUNOWSKI 2 und Siiss 2t bewiltigt.

19 W, Suss, Begriindung der Lel‘lre vom Polyederinhalt, Math. Ann. 82, 297—305, 1920.

20 S, 0. ScHATUNOWSKI, Uber den Rauminhalt der Polyeder, Math. Ann. 57, 496—508,
1903.

21 W, Siiss, Begriindung der Inhaltslehre im Raum ohne Benutzung von Stetigkeits-
axiomen, Diss., Frankfurt a. M. 1920.
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Vor allem der elementargeometrische Nachweis der Invarianz der Summe
gestaltet sich recht miithsam. Nach ZacHAR1AS 22 befriedigt das Vorgehen,
obgleich es ganz ohne infinite Betrachtungen auskommt, abgesehen von
den betrichtlichen Schwierigkeiten der Durchfithrung, doch nicht ganz,
weil beim Ansatz eine unbegriindete Willkiir vorliegt.

2a

In diesem Abschnitt wollen wir nun einen Weg der Begriindung des
Polyederinhaltes kennen lernen, der wohl in der besonderen Durchfiih-
rung neu ist, wobei aber die Konstruktion und damit der Existenznach-
weis des elementaren Inhalts an verschiedene dltere Ideen eng anschlieBt,
die beispielsweise von SCHUR, RAUSENBERGER, L.AZARRI, GERARD, HILBERT
und andern 2 hauptsiachlich im Falle der ebenen elementaren Inhalts-
lehre verwertet worden sind.

Zunichst wollen wir den axiomatischen Standpunkt noch etwas prizi-
sieren: :

Die Mannigfaltigkeit der beschrinkten abgeschlossenen Polyeder bil-
det einen sogenannten Mengenring, d. h. mit zwei Polyedern 4 und B ist
auch der Durchschnitt AB und die Vereinigung 4 + B ein Polyeder.
Diese Mannigfaltigkeit ist das Inhaltsfeld ¢ des elementaren Inhalts. Wie
man ohne weiteres erkennen kann, sind die drei Feldpostulate erfiillt:
das Feld ist bewegungsfrei, additiv und normal.

Unter einer elementaren Inhaltsmaflzahl X (A4) verstehen wir ein liber
dem Feld § erklirtes reellwertiges Funktional X (4), das jedem Poly-
eder A eine reelle Zahl X (A) eindeutig zuordnet, so da3 die vier folgen-
den Inhaltspostulate erfiillt sind:

1. X (A) = X (B), falls A = B ist;

2. X(A+B)=X(A4) + X (B), falls das Polyeder A + B im Sinne

der Elementargeometrie in die Teilpolyeder A und B zerlegt ist;

3. X (E) = 1, wobei E den abgeschlossenen Einheitswiirfel bezeichnet;

4. X (4) =0.

Ein elementarer Inhalt ist also ein bewegungsinvariantes, additives, nor-
miertes und definites Polyederfunktional. Die Formulierung der Inhalts-
postulate zeigt bei der Additivitit eine kleine Abweichung gegeniiber der-
jenigen im allgemeinen Inhaltsproblem, die dem in der Polyedergeome-

22 ]Joe. cit. Anm. 17, S. 950.
23 Ygl. F. ENRIQUES, loc, cit, Anm. 11, S. 161/162.
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trie wichtigen Begriff der Zerlegungsgleichheit im Sinne der Elementar-
geometrie angepalB3t ist. Wir bemerken noch, dal aus den vier Inhalts-
postulaten die Monotonie folgt, daf3 also

X(4) =X (B), falls A C B 1st,
gilt.

Nach dieser Festlegung muf3 man zunéchst damit rechnen, dafl even-
tuell verschiedene Funktionale X (4) dieser Art als Losungen des Pro-
blems existieren; es wird eine charakteristische und wichtige Besonder-
heit des von uns eingeschlagenen Weges sein, dal3 wir nicht nur zeigen,
daB eine Losung vorhanden ist, sondern dafl auch nachgewiesen wird,
daB nur eine Losung in Betracht kommt, so da3 der klassische elemen-
tare Inhalt X (4) = I (A) der einzige elementare Inhalt im oben axioma-
tisch festgelegten Sinn ist.

Durch einen direkten Ansatz zeigen wir nachfolgend die Existenz einer
Losung. Wir setzen

X (4) =1(4) =~ Y Fy (ny, ),

wobei F) den Flicheninhalt der v-ten Seitenfliche des Polyeders 4, n,,
den nach auBen weisenden und auf der betreffenden Seitenflache ortho-
gonal stehenden Einheitsvektor (Normalenvektor) und schliefllich p,
den Ortsvektor eines beliebigen Punktes der ndmlichen Seitenfliche be-
ziiglich eines festen Ursprungs Z und die runde Klammer das Skalar-
- produkt bezeichnen (Abb. 4). Die Summation soll sich iiber alle Seiten-
flachen des Polyeders A erstrecken. Man bemerkt, daB die elementare
Inhaltslehre in der Ebene hier vorausgesetzt ist. Damit ist auch angedeu-
tet, daf} sich die entsprechende Begriindung des elementaren Inhalts im
k-dimensionalen Raum auf rekursive Weise auf denjenigen im (k—1)-
dimensionalen Raum stiitzt.**

Zunichst ergibt sich ohne weiteres, dafl der Wert des Skalarproduktes
My, Py)von der speziellen Wahl des Punktes innerhalb der gleichen Seiten-
fliche unabhingig ist. Der Wert der Summe ist also eine dem Polyeder 4
eindeutig zugeordnete reelle Zahl I (A4).

Miihelos 1aBt sich nun erkennen, da3 I (A4) additiv ist; die Beitrige an
die Summen I (4) und I (B), die von inneren Zerlegungsflichen her-
rithren, loschen sich in A + B gegenseitig aus, da die dort wirkenden
Normalenvektoren entgegengesetzt gleich sind.

2 H. Hapwicer, Zur Inhaltstheorie der Polyedef, Collectanea Math.3 (1), 137—158,
1950.
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Abb.4

Wegen der soeben verifizierten Additivitit geniigt es, das Funktional
I (4) und seine Eigenschaften weiterhin spezieller fiir Tetraeder 4 = T
zu verfolgen. So weisen wir zunichst nach, daB3 I (T) translationsinvariant
ist. Bezeichnet { den Verschiebungsvektor einer Translation, durch
welche T in T" tibergefuhrt wird, so ergibt sich

X(T)—X(T) — —;— Y Fy (ny, 1.

Nun 148t sich aber leicht auf elementare Weise zeigen, daf3

Y Fymy =0

ist, d. h. die Summe der vier auf den Seitenflichen des Tetraeders ortho-
gonal stehenden Vektoren, deren Lingen gleich dem Flicheninhalt der
betreffenden Seitenfliachen sind, verschwindet. Den vektorgeometrischen
Nachweis hierfiir iiberlassen wir dem Leser, doch soll auf eine hiibsche
physikalische Plausibilititsbetrachtung hingewiesen werden. Die Summe
der vier Vektoren kann als entgegengesetzte Resultierende der vier Druck-
krifte interpretiert werden, welche auf das Tetraeder einwirken, wenn
sich dieses in einem Medium (Luft oder Wasser) befindet, das iiberall
denselben Druck aufweist, den wir hier gleich der Einheit setzen. Wire

6



30 Mitteilungen der Naturforschenden Gesellschaft in Bern

nun der geometrische Satz falsch, so wiirde das Tetraeder in einer korper-
festen Richtung einen stindigen Antrieb erfahren, was zu einem Wider-
streit mit physikalischen Grundsatzen fiithren mii8te.

Mit Anwendung dieses Satzes ergibt sich nun I (T) =1 (T"), was zu
beweisen war.

Zur Berechnung von I (T) diirfen wir nach dieser Feststellung anneh-
men, daB eine Tetraederecke mit dem Ursprung Z zusammenfillt. In die-
sem Falle wird aber

I(T) = % Fh,

wobei nun F den Flicheninhalt derjenigen Seitenfliche von T bedeutet,
die der Ecke Z gegeniiberliegt, und h die entsprechende Hohe ist. Damit
hat sich die klassische Formel fiir den Tetraederinhalt ergeben, welche
der Lehre vom Polyederinhalt von alters her zugrunde liegt.

Dieser letzte Schritt erlaubt im Rahmen unserer Entwicklung zwei
wichtige Schliisse. Es ergeben sich namlich gleichzeitig die Einsichten,
daf} I (T) bewegungsinvariant und definit ist. Wegen der bereits nach-
gewiesenen Additivitit iibertragen sich diese Eigenschaften auf I (4) fiir
beliebige Polyeder A.

Indem man den Einheitswiirfel E in eine solche Lage bringt, daf3 der
Ursprung Z mit einer Ecke zusammenfillt, bestitigt man schlieBlich
leicht, daB I (E) = 1 ist.

So haben wir fiir das mit unserm Ansatz eingefiihrte Polyederfunktio-
nal I (4) die Giiltigkeit der vier zustandigen Inhaltspostulate nachgewie-
sen und damit den Existenzbeweis fiir den elementaren Inhalt I ( A) voll-
endet. .

Wir zeigen jetzt, da} die soeben konstruierte spezielle Losung die ein-
zige ist, genauer: Wenn X (A4) ein bewegungsinvariantes, additives, nor-
miertes und definites Funktional iiber € ist, so folgt X (4) = I (A). Da-
mit ist die Einzigkeit des elementaren Inhalts I (A4) sichergestellt.

In der Tat: Zunidchst erzielt man das Ergebnis X (W) =1 (W) fur
einen beliebigen Wiirfel, indem man dies zuerst fiir Wiirfel mit ganz-
zahliger, dann fiir solche mit rationaler und schlieBlich beliebiger Kan-
tenldnge folgert. Ist nun P ein Polyeder, das mit einem Wiirfel W zer-
legungsgleich ist, also P ~ W, so schlie8t man mit der Bemerkung X (P)
=X (W)undI(P)=1(W) auf X (P) =1 (P). Setzen wir jetzt

Y(4)=X(4)—1(4),

so haben wir ein neues Polyederfunktional erkliart, das noch bewegungs-
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invariant und additiv, dagegen nicht mehr notwendig definit und nor-
miert ist und das die weitere Eigenschaft aufweist, daB3

Y (P) = 0ist, falls P oo W gilt.

Abb. 5

Betrachten wir nun ein Tetraeder T, das wir in der euk]idischen Weise
(Abb. 5) in zwei halb so groBe dhnliche Tetraeder % T und zwei Pris-
men zerlegen, so ergibt sich die Beziehung ’

2Y (- T) =Y (T),

da ja bekanntlich jedes Prisma mit einem Wiirfel zerlegungsgleich ist.?
Durch Iteration dieses Halbierungsprozesses erreicht man

2"Y(—21n— T) =Y (T)
Beachtet man, dafl dagegen
81(——T) =I(T)
gilt, so erzielt man mit einiger Umrechnung aus dem obenstehenden An-

satz

2 A.EmcH, Endlichgleiche Zerschneidung von Parallelotopen in gewohnlichen und
héhern Euklidischen Riumen, Comment. Math. Helv. 18, 224—231, 1946.
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2nX(2—1n—T):Y(T) +-;1n—1(T).

Da die linke Seite nichtnegativ ist, der letzte Term aber bei geeigneter
Wahl von n beliebig klein gemacht werden kann, folgert man — der Leser
beachte den GrenzprozeB! —, dal Y (T) = 0 sein muf}. Zieht man nun
noch die schon erwahnte Additivitit bei, so folgt fiir beliebige Polyeder A4,
daB Y (A4) definit und auch monoton ist. Dies erlaubt im Zusammen-
wirken mit dem Verschwinden des Funktionalwertes fiir Wiirfel die ent-
scheidende Einsicht. Fiir jeden 4 umschlieBenden Wiirfel W gilt

' 0=Y(4)=Y (W) =0,
alsoist Y (4) = 0,d. h. X (4) = I (A). Damit ist der Einzigkeitsbeweis
erbracht.

Riickblickend hemerken wir, dafl eine vollstindige Begriindung des
Polyederinhalts gegeben werden kann, ohne da3 eine Grenzbetrachtung
geometrischer Art, die nach dem Hilbert-Dehnschen Dilemma unvermeid-
lich ist, deutlich und unangenehm in Erscheinung tritt; die Grenz-
betrachtung scheint vom geometrischen mehr in den arithmetischen
Machtbereich verschoben und wird einzig an der Stelle, auf die wir den
Leser hinwiesen, beansprucht.

II1. Der Jordansche Inhalt

PEANO 26 und JorDAN 27 haben auf verschiedene Weise ein und dasselbe
Inhaltssystem begriindet, welches als einfachstes nichtelementares System
grundlegende Bedeutung erreicht hat.

Hinreichend verniinftig gebaute Korper — jedenfalls solche, welche
stiickweise von glatten Flachenstiicken berandet sind — konnen inner-
halb dieser Inhaltstheorie immer ausgemessen werden. Ohne auf die all-
gemeinen Zusammenhinge zwischen Inhalt und Integral einzugehen, sei
hier nur angemerkt, da} die im Jordanschen Sinn meBbaren Punkt-
mengen genau diejenigen sind, deren Inhalt sich auch mit Hilfe eines
Riemannschen eigentlichen Integrals ermitteln lassen.

Hingegen ist bereits die friiher als Beispiel zitierte Punktmenge P =
(0 = x, v,z = 1, x, v, z rational ) nicht mehr meBbar.

26 G, PEANO, Applicazioni geometriche del calcolo infinitesimale, Torino 1887.
27 C. Jorpan, Remarques sur les intégrales définies, J. de Math, (4) 8, 69—99, 1892.
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Die klassische Inhaltskonstruktion von JORDAN basiert auf recht geldu-
figen Betrachtungen mit Wiirfelgittern. Wenn man sich auf den Stand-
punkt stellt, daf fiir die Begriindung eines hoheren Inhalts die Theorie
des elementaren Inhalts der Polyeder bereits zur Verfiigung steht — eine
Aufassung, die wir uns zu eigen machen wollen —, so kann die Einfiih-
rung des Jordanschen Inhalts auf eine einfachere Weise erfolgen. Der
nichste Abschnitt bringt eine solche Definition des Jordanschen Inhalts.

Auch die auf der neuen Definition basierende Herleitung der Haupt-
eigenschaften, die wir hier ohne Beweise kurz zusammenstellen, zeigt
gegeniiber derjenigen der klassischen Theorie einige Vorteile. So folgt
zum Beispiel die Bewegungsinvarianz unmittelbar aus der Definition,
wihrend die Sicherstellung dieser Tatsache auf Grund der klassischen
Definition einige Umstédnde bereitet.

2.

Es sei A eine beliebige beschriinkte Punktmenge. Wir definieren:

J(A) =inf I(P) [ACP]

J(4) = supl (Q) [Q CAJ,
wobei sich die vorgeschriebene Bildung der unteren Grenze <«inf» bzw.
der oberen Grenze «sup» iiber alle elementaren Inhaltsmaflzahlen I (P)
bzw. I (Q) von Polyedern bezieht, welche A4 iiberdecken (A [C P) bzw.
von A iiberdeckt werden (Q [ A4).

Die Existenz der beiden der Punktmenge 4 zugeordneten Zahlwerte
und das Bestehen der Ungleichung

| d(4)=7(4)
lassen sich leicht nachweisen. ] (A) and _._I (A) nennt man dufleren und
inneren Jordanschen Inhalt von A.

Sind nun die beiden einseitigen Inhalte einander gleich, so heilt 4 im
Jordanschen Sinn meBbar, und den gemeinsamen Wert

J(4)=T(4) =1(4)
nennt man den Jordanschen Inhalt von A.
Es laBt sich zeigen, daf} das Jordansche Inhaltsfeld , also das System
der im angegebenen Sinn meBbaren Mengen, den Feldpostulaten geniigt.
Weiter ist  ein sogenannter Mengenkérper, d. h. sind zwei Punktmengen

A und B im Jordanschen Sinn meBbar, so sind es auch die Vereinigung
A + B, der Durchschnitt AB und die Differenz 4 — AB.
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Der Jordansche Inhalt J (A4) geniigt auch den Inhaltspostulaten, ins-
besondere ist er endlich-additiv, so da3 -

7Y 4 = Y7 (),
1 1

wobei die meBbaren Punktmengen A, paarweise disjunkt vorausgesetzt
sind.

IV. Das Lebesguesche MaB3

1.

Eine auch héheren Anspriichen geniigende Losung des Inhaltsproblems
ist durch das von LEBESGUE 28 eingefiihrte Maf} gegeben, das auf viele Ge-
biete der hoheren Mathematik einen entscheidenden férdernden EinfluB8
ausiibte. So hat erst die auf diesem MaBbegriff aufgebaute Theorie des
Lebesgueschen Integrals, das eine weitreichende Verfeinerung des ge-
wohnlichen Riemannschen Integrals darstellt, verschiedenen Disziplinen
der hoheren Analysis einen theoretisch vollendeten Abschluf3 gebracht.

Innerhalb des Lebesgueschen MafB3systems kénnen nun bereits recht
komplizierte Punktmengen ausgemessen werden. Beispielsweise ist die
im vorigen Teil erwihnte Punktmenge P = (0 =x, v, 2 == 1, x, y, z ratio-
nal) nun meBbar und hat wie jede abzihlbare Punktmenge das Mal}
Null. Bemerkenswert ist, daf} alle abgeschlossenen und auch alle offenen
Punktmengen meBbar werden, wihrend dies beim Jordanschen System
nicht der Fall ist.

Auch hier wollen wir nicht die klassische Definition des Lebesgue-
schen Malles wiedergeben, sondern eine mit ihr gleichwertige, welche
kiirzer und einprégsamer ist, wobei indessen die Theorie des Jordan-
schen Inhaltes bereits als bekannt angenommen wird, eine Voraussetzung
also, die als natiirlich bezeichnet werden darf.

Im folgenden Abschnitt geben wir diese Definition des Lebesgueschen
Mafles; sie ist verwandt mit einer von YOUNG * vorgeschlagenen Einfiih-
rung. Die Haupteigenschaften werden ohne Beweis nur kurz gestreift.

28 H. LEBESGUE, Intégrale, longueur, aire, Annali di Mat. (3) 7, 231-—359, 1902; Lecons
sur l'intégration et la recherche des fonctions primitives, Paris 1904.

20 W. H. Young, Open sets and the theory of content, Proc. London Math. So¢. (2) 2,
16—51, 1904.
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2

Es sei A eine beschrinkte Punktmenge. Wir definieren:

L(4)=inf J(U) [AC U, U offen]
L(A) =supl (V) [V C A4,V abgeschlossen],

wobei sich die Bildung der unteren Grenze «inf» bzw. der oberen Grenze
«sup» iiber alle inneren Jordanschen Inhalte ._I_ (U) bzw. alle auBleren
Jordanschen Inhalte J (V) von offenen A iiberdeckenden Punktmen-

gen U bzw. abgeschlossenen, von A iiberdeckten Punktmengen V' er-
strecken soll.

Die Existenz der beiden der Punktmenge A zugeordneten Zahlwerte
und auch das Bestehen der Ungleichung

L(4)=LA)

lassen sich leicht nachweisen. Wir nennen L (4 ) das duBBere, L (A) das
innere Lebesguesche Maf3 von A.

Sind diese beiden einseiticen Mafle einander gleich, so heif3it 4 im

Lebesgueschen Sinn meflbar, und den gemeinsamen Wert
L(4)=L(4)=L(4)

nennt man das Lebesguesche Mal3 von A. Es 1aBt sich auch hier leicht
zeigen, dal das Lebesguesche MaBfeld { den Feldpostulaten geniigt. Wei-
ter ist Q ein sogenannter Sigma-Mengenkorper, d. h. ein Mengenkdrper
mit der zusitzlichen Eigenschaft, dal auch die Vereinigung von abzihl-
bar unendlich vielen meBbaren Punktmengen wieder meBbar ist, falls

diese beschrankt ausfillt. Auch der Durchschnitt von abzahlbar unend-
lich vielen meBbaren Punktmengen ist dann stets meBbar.

~Das eben eingefiihrte Lebesguesche MaB3 L (A4) geniigt den Inhalts-
postulaten; insbhesondere ist es total-additiv, so daf

L (i Ay) = i L (A4y)
) 1

gilt, wobei die abzdhlbar unendlich vielen Punktmengen A, paarweise
disjunkt und die Vereinigungsmenge beschrinkt vorausgesetzt ist. Diese
totale Additivitit ist die fiir das Maf3 charakteristische hohere Qualitat,
auf welche die durch die MaB3theorie erzielten wesentlichen Fortschritte
gegeniiber der gewohnlichen Inhaltstheorie mit ihrer endlichen Addi-
tivitat zuriickzufiithren sind.
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V. Der Tarskische Inhalt

Die drei vorstehend kurz skizzierten Inhaltssysteme sind die wichtig-
sten der heutigen Mathematik. Daneben sind im Laufe der letzten Dezen-
nien noch zahlreiche spezielle Inhalts- und Maf3systeme entwickelt wor-
den. AbschlieBend wollen wir noch eine solche neue Inhaltskonstruktion
erwihnen, welche auf eine Idee von TARrski1?® zuriickgeht, der bei Be-
schrinkung auf lineare Punktmengen den Begriff des absoluten Inhalts
aufgestellt und die sich ergebende Theorie entwickelt hat.

Es zeigt sich, dal entgegen der ausdriicklichen gegenteiligcen Bemer-
kung des Autors die Theorie des absoluten Inhalts auch auf raumliche
Punktmengen ausgedehnt werden kann, falls man in der Konstruktion
eine geringfiigige, aber doch entscheidende Modifikation vornimmt,
welche darin besteht, dall man die bei der Inhaltsdefinition beanspruchte
gewohnliche Multikongruenz durch die translative Multikongruenz er-
setzt, Es stellt sich heraus, daB trotz dem Eingriff der absolute Tarskische
Inhalt -bewegungsinvariant ausfillt und im ibrigen alle wesentlichen
Eigenschaften, die von TARsKI im linearen Fall gefunden worden sind,

beibehilt.3t

Von diesem Inhalt und seinen Haupteigenschaften sei im folgenden
Abschnitt kurz zusammengefaBt die Rede.

Zunichst definieren wir: Zwei Punktmengen P und  des Raumes
heiflen translativ multikongruent (translativ endlich-gleich), wenn sie in
paarweise translationsgleiche disjunkte Teilmengen zerlegt werden kon-
nen. Ausfiihrlicher: P und Q sind translativ multikongruent vom Grade n,
geschrieben P ~ (), wenn es Zerlegungen

Pzipi, Q:io,
1

von P und Q in die Teilmengen P; und Q; so gibt, daBl P; P; = Q; Qj = 0
firt# jund P; ~Q; (i =1,2,..,n).

30 A, Tarsk1, Uber das absolute MaB} linearer Punktmengen, Fund. math. 30, 218234,
1938.

3t H. HapwiGER, Absolut meBbare Punktmengen im euklidischen Raum, erscheint
demniichst in Comment. Math. Helv.
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Die translative Kongruenz oder Translationsgleichheit P ~ Q ist so zu
verstehen, daf}’ die beiden Mengen Punkt fiir Punkt durch eine Trans-
lation zur Deckung gebracht werden kénnen.

2.

Es sei 4 eine beschrinkte Punktmenge. Wir definieren:

T(A) =inf I (W) [A~A4 CW]

T (A) =supl (W) - [(W~Ww'[ 4],
wobei sich die vorgeschriebene Bildung der unteren Grenze «inf» iiber
alle elementaren Inhalte I (W) von Wiirfeln W erstreckt, fiir welche es
noch Teilmengen A4’ gibt, die mit A translativ multikongruent sind. Die
Bildung der oberen Grenze «sup» erstreckt sich iiber die elementaren
Inhalte I{ W) von Wiirfeln, fiir welche es noch Teilmengen W’ von A gibt,
die mit W translativ multikongruent sind.

Die Existenz der beiden der Punktmenge A zugeordneten Zahlwerte
ergibt sich hier allerdings nicht so einfach wie bei den beiden vorher-

gehenden klassischen Inhaltskonstruktionen. Die Existenz von T (A4) ist
an sich zwar trivial, der Wert konnte aber fiir alle Punktmengen A4 gleich
Null sein. Dagegen ist nicht ohne weiteres klar, daB T (4) existiert. Um
dies tatsachlich zu beweisen und weitergehend auch zu zeigen, da} sogar
stets

T = T4

gilt, ist es erforderlich, die Nichtexistenz paradoxer Verhiltnisse im
Sinne des Satzes von BANACH und TArskI im Bereiche der translativen
Multikongruenz sicherzustellen. Der Unmaoglichkeitsbeweis kann tat-
sachlich erbracht werden, auf dhnliche Weise, wie ihn SIERPINSKI 32 im
Falle linearer Punktmengen fiihrte. Wesentlich ist hier, dafl die Trans-
lationsgruppe im Raum im Gegensatz zur Bewegungsgruppe abelsch ist.

Es ist angebracht, darauf hinzuweisen, dafl die obenstehenden Defini-
tionen trotz den verschiedenen hoheren Begriffen, auf die sie sich stiitzen,
einen anschaulichen Gehalt aufweisen; es sei erlaubt, dies durch eine
trivialisierende anschauliche Interpretation zu verdeutlichen. Der Wert

T (A) gibt zum Beispiel an, wie groB der Inhalt einer wiirfelf6rmigen

82 W.SIERPINSKI, Sur la non-existence des décompositions paradoxales d’ensembles
linéaires, Actas Acad. Ci. Lima 9, 113—117, 1946.
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«Kiste» mindestens sein muf3, damit es méglich wird, die Menge 4 darin
zu «verpacken», d. h. in Teile zu zerlegen, welche dann verschoben und
in der «Kiste» eingelagert werden sollen (Abb. 6).

:

fl

Die Werte T (4) und T (A4) wollen wir den duBBern und den innern
Tarskischen Inhalt von A nennen. Sind die beiden einseitigen Inhalte ein-
ander gleich, so heilt die Punktmenge 4 im Tarskischen Sinn meBbar,
und den gemeinsamen Wert

T(4)=T(4)=T(4)

nennen wir den Tarskischen Inhalt von A. ,

Beim Nachweis der Tatsachen, daB das Tarskische Inhaltsfeld T den
Feldpostulaten und der Inhalt T (4) den Inhaltspostulaten geniigt, ins-
besondere der Aussagen, die sich auf die Bewegungsfreiheit und die Be-
wegungsinvarianz beziehen, stiitzt man sich mit Vorteil auf einen erst
kiirzlich bewiesenen Satz, wonach zwei kongruente Wiirfel in beliebiger
relativer Drehlage im Sinne der Elementargeometrie translativ zer-

\-t'lllllllll///A

Abb. 6

legungsgleich sind.

Genauer sagt dieser Satz Folgendes aus 33: Zwei kongruente Wiirfel ¥
und W’ gestatten immer Zerlegungen im Sinne der Elementargeometrie
n n

W= P, W=)P
1 1 -
in konvexe Teilpolyeder P; bzw. P}, so dal} P; ~ P/ ausfillt, d. h. daB die
sich entsprechenden Teilpolyeder translationsgleich sind.

33 H, HapwiGer, Translative Zerlegungsgleichheit k-dimensionaler Parallelotope, Col-
lectanea Math. 3 (2), 11—23, 1950.
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Abb. 7

Es 1dBt sich iibrigens zeigen, daB hierfiir stets ein n = 125 ausreicht.3

Den entsprechenden Sachverhalt in der Ebene illustriert Abb. 7.

Das Tarskische Feld T ist translativ zerlegungsfrei, d. h. T enthilt mit
jeder Punktmenge A auch jede mit A translativ multikongruente Punkt-
menge B, also alle B ~ A. Damit haben wir die Aufmerksamkeit auf eine
Eigenschaft gelenkt, welche die klassischen Inhaltssysteme nicht auf-
zuweisen haben, wohl aber gewisse neuzeitliche. Dagegen ist T kein Men-
genkorper, ja nicht einmal ein Mengenring. Der Tarskische Inhalt ist
(gleich wie der Jordansche) endlich-additiv, nicht aber total-additiv; es
handelt sich also nicht um ein MaR3.

Die besondere Bedeutung des Tarskischen Inhaltssystems innerhalb
der allgemeinen axiomatischen Inhaltstheorie diirfte aus folgenden Tat-
sachen hervorgehen:

Ist (¥, X) ein beliebiges Inhaltssystem, dessen Inhaltsfeld § ein Men-
genkorper ist, so gilt fiir jede beschriankte Punktmenge A €  die Un-
gleichung

T (4)=X(4) =T (4),
und umgekehrt gibt es zu jeder reellen Zahl o des durch den inneren und
den #uBeren Tarskischen Inhalt T (4) und T (A) bezeichneten Inter-

valls noch ein Inhaltssystem (&, X) der oben bezeichneten Art, so daf
X (A) = o ausfallt.

31 H.DEBRUNNER, Translative Zerlegungsgleichheit von Wiirfeln, Archiv der Math. 3,
479-480, 1952,
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Ist also 4 inshesondere im Tarskischen Sinn meBbar, so folgt
X(4)=T(A),
woraus erhellt, daB das Tarskische Feld T genau diejenigen Punkt-
mengen umfaBt, fiir welche eine, aber nur eine Inhaltsmaflzahl in Frage
kommt. Fiir eine im Tarskischen Sinn meBbare Menge ist der Inhalt
durch die Axiome der Inhaltstheorie eindeutig vorbestimmt. Es ist sinn-
voll, in diesem Zusammenhang von absolut mefSbaren Punktmengen und

vom absoluten Inhalt zu sprechen.

Wire nun jede Punktmenge absolut meBBbar — wie oben erwihnt, ist
dies nicht der Fall —, so konnte man den absoluten Inhalt auch mit dem
natiirlichen Inhalt identifizieren, und diese an sich hocherfreuliche Sach-
lage wiirde die Berechtigung der mehrtausendjahrigen Vorstellung vom
natiirlichen Inhalt belegen.

VI. SchluBBbemerkung

Am Ende des vorausgehenden Teils sind wir wieder zur Problematik
des natiirlichen Inhalts zuriickgekehrt. Wie ausfiihrlich dargelegt wor-
den ist, muBl die Idee des natiirlichen Inhalts als widerspruchsvoll zu-
riickgewiesen werden.

Und doch! In manchem von uns steckt ein leise sich regender Keim des
Mifitrauens gegeniiber den SchluBmethoden der heutigen mengentheore-
tischen Epoche, die mit paradox anmutenden Ergebnissen, welche in der
Tiefe des unendlichen Kontinuums jeder Anschauung und auch jeder
Kontrolle durch effektive Konstruktion entriickt sind, die in unserer na-
tirlichen Empfindung verwurzelte Idee des natiirlichen Inhalts zu Fall
brachten.

Diirfen wir in diesen Fragen iiber jeden Zweifel erhaben sein? Sollen
wir die Erkenntnisse, die heute gewonnen werden, als die letzten und un-
abdingbar richtigen preisen?

Bedenken wir doch eines! Unsere Schliisse basieren auf dem als giiltig
hingenommenen mathematischen Kontinuum. Seine Konstruktion, die
in wissenschaftlich einwandfreier Form erst einige Dezennien alt ist, ent-
hilt ohne Zweifel eine gewisse Willkiir, die etwa durch das Stichwort
«Cantor-Dedekindsches Axiom» angedeutet ist. Sind wir nun dessen ganz
gewill, daB} hier das letzte Wort gesprochen wurde? Dies ist wohl kaum

- der Fall.
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Liangst haben wir gelernt, daB zum Beispiel unsere euklidische Geo-
metrie nur noch eine Moglichkeit einer Raumstruktur darstellt und nicht
notwendig mit der wirklichen identisch ist. Besonders deutlich wurde dies
offenbar, als RIEMANN im Jahre 1854 in seiner berithmten Habilitations-
schrift «Uber die Hypothesen, welche der Geometrie zu Grunde liegen»
der euklidischen Geometrie, welche zum Beispiel von KANT sogar als a
priori gultig hingestellt worden ist, andere gekrimmte Geometrien als
gleichberechtigt zur Beschreibung der physikalischen Wirklichkeit kiihn
zur Seite stellte. Dies bedeutete bekanntlich eine groBe Erschiitterung fiir
das gesamte mathematisch-naturwissenschaftliche Weltbild, und Rig-
MANN wurde zum Wegbereiter der allgemeinen Relativititstheorie EiIN-
STEINS.

Men bedenke nun Folgendes: Alle die neuartigen Weltmodelle halten
in dieser oder jener Form noch am Raum-Zeit- oder Zahlénkontinuum
fest. Die Unendlichkeit oder Stetigkeit dieser Formen nach innen hin gibt
der Infinitesimalrechnung unserer Jahrhunderte die Existenz- und Wir-
kungsméglichkeit. Aber trotz der Verfeinerung und Ausgestaltung der
heutigen mathematischen Methoden will es hekanntlich nicht restlos ge-
lingen, die Erscheinungen der Natur, inshesondere aber im Mikrokosmos,
befriedigend zu beschreiben und zu erkliren.

Es konnte nun wohl sein — und dahin geht heute die Meinung vieler
Mathematiker und Physiker —, daB das unserer mathematischen Wis-
senschaft zugrunde gelegte Kontinuum wohl eine sinnreiche Konstruk-
tion des menschlichen Geistes ist, aber der realen, wirklichen Welt nicht
adidquat ist. Das Kontinuum konnte wohl eine Simplifikation, eine ver-
einfachende Interpolation eines in ihrem Urgrund versteckten Diskonti-
nuums sein. Die Diskrepanz miif3te dann um so deutlicher in Erscheinung
treten, je tiefer die Naturforschung in den Bereich des Mikrokosmos ein-
dringt. Eventuell ergeben sich auch wieder Abweichungen im Makro-
kosmos.

Vielleicht ist der natiirliche Inhalt eines Korpers der wirklichen (dis-
kontinuierlichen) Welt nur noch eine natiirliche Zahl!

Wie dem auch sei — jedenfalls warten heute viele Fachleute auf die
groBle, neue Erschiitterung.

Warten wir auf einen neuen Bernhard Riemann!
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