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H. HADWIGER

Der Inhaltsbegriff,
seine Begründung und Wandlung

in älterer und neuerer Zeit ')

I. Zum allgemeinen Inhaltsproblem

An die Spitze der in diesem ersten Teil vorgebrachten kritischen
Erwägungen zum allgemeinen Inhaltsproblem stellen wir die Frage: Was

ist der Inhalt eines Körpers? Unter Würdigung der wichtigsten Aspekte,
welche die Entwicklungsgeschichte der Inhaltslehre bietet, lassen sich bei
der Beantwortung dieser prinzipiellen Frage zwei verschiedene
Grundhaltungen unterscheiden. Es handelt sich um den natürlichen und den

formalen Standpunkt. Der natürliche Inhalt ist vorwiegend der klassische

Inhalt, aber auch der Inhalt der Elementar- und Mittelschule; der
formale Inhalt gehört der Neuzeit an und wird konsequent wohl erst an der
Hochschule gelehrt. Der erste Inhaltsbegriff ist naiv-anschaulich, der
zweite kritisch-streng und eher abstrakt.

Es sei versucht, die beiden einander gegenübergestellten Begriffe näher

zu charakterisieren.

a) Der natürliche Inhalt eines Körpers ist Inhalt an sich, ist im direktesten

Sinne die Raumbeanspruchung der Gesamtheit seiner Punkte, die
nicht notwendigerweise durch eine reelle Zahl gemessen werden muß.
Wenn Zahlen vorkommen, so drücken diese nur das Verhältnis aus, in
welchem der Inhalt eines Körpers zu demjenigen eines andern steht. Der
Rauminhalt ist hier eine geometrische Größe, eine unmittelbar unserer

1 Vortrag, gehalten am Fortbildungskurs des \ ereins Schweizerischer Gymnasiallehrer

in Luzern (6.Oktober 1952).
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Anschauung zugängliche und den physischen Wahrnehmungen und
Erfahrungen vertraute, selbständige Quantität. Eine Definition ist in dieser
grundsätzlichen Weise nicht möglich und überflüssig. Entsprechend sind
die Haupteigenschaften des natürlichen Inhalts unmittelbar einleuchtende

Wahrheiten und keines Beweises bedürftig.
Neben dem zu allen Zeiten wirkenden natürlichen Empfinden ist in

erster Linie die gewaltige dogmatische Kraft der Werke Euklids dafür
verantwortlich, daß der natürliche Inhalt innerhalb der folgenden
zweitausend Jahre vorherrschte.

Die im elften und zwölften Buch beständig verwendeten Grundeigen-
schaften des räumlichen Inhalts hat Euklid bereits im ersten Buch als

Größenaxiome niedergelegt. Sie lauten (nach Heiberg) :

1. Dinge, die demselben Ding gleich sind, sind unter sich gleich.
2. Wenn man zu gleichen Dingen gleiche Dinge hinzufügt, so erhält

man gleiche Dinge.
3. Wenn man von gleichen Dingen gleiche Dinge wegnimmt, so blei¬

ben gleiche Dinge.
4. Dinge, die zur Deckung gebracht werden können, sind gleich.
5. Das Ganze ist größer als einer seiner Teile und ihm nicht gleich.

Es kommt Euklid bekanntlich vor allem darauf an, ausgehend vom
System der einmal gefaßten und als gültig hingenommenen Postulate
wissenschaftlich unanfechtbare Schlüsse zu ziehen. Auf die Frage, ob und
warum die Anwendung seiner Größenaxiome auf den räumlichen Inhalt
statthaft oder sinnvoll ist, geht er selbst nicht ein.

In diesem Sinn begründet Euklid im elften Buch die Inhaltslehre der

Parallelotope. Im zwölften Buch folgt die wunderbare Beweisführung
für den Satz des Eudoxos, nach welchem die Inhalte zweier Pyramiden
mit gleicher Grundfläche und gleicher Höhe gleich sind. Allerdings
kommt man hier nicht mit endlich vielen Schlüssen aus, und Euklid
muß ein Eudoxos zugeschriebenes Beweisverfahren anwenden, welches

darin besteht, daß man die gegenteilige Annahme, die Inhalte seien

verschieden, auf einen Widerspruch führt. Der betreffende Schluß kann
jedoch nur unter Berufung auf ein weiteres Größenaxiom (Axiom des

Eudoxos) streng geführt werden. Dieses besagt etwa folgendes: Wenn man
von einer Größe die Hälfte oder mehr wegnimmt, vom Rest wieder die
Hälfte oder mehr, und so fortfährt, so ist der Rest nach einer hinreichend
großen Anzahl Wiederholungen kleiner als eine beliebig vorgegebene
Größe derselben Art. (In dieser Form handelt es sich um einen Satz im
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zehnten Buch, hergeleitet aus einer im fünften Buch formulierten
Voraussetzung.)

Auf den nämlichen Grundannahmen über den natürlichen Inhalt
beruhen auch die späteren Inhaltsbestimmungen von Archimedes und
Heron, wobei der letztere erstmals auch zahlenmäßige Inhaltsberechnungen

in die Wissenschaft einführte, während seine großen Lehrmeister
die Inhalte als von der Zahl unabhängige, selbständige geometrische Größen

nur verglichen.
Nach dem Neuerwachen der Mathematik in Europa ist den unklaren

und verworrenen Anfängen wissenschaftlichen Denkens des Mittelalters
entsprechend auch der natürliche Inhaltsbegriff zunächst primitiver. In
feinerer Form lebt er wieder auf bei Cavalieri. Nach dessen viel umstrittenen

Thesen ist zum Beispiel der Rauminhalt eines Körpers bestimmt
durch die Gesamtheit seiner Schnittflächen parallel zu einer Stützebene

(Regula), d.h. durch die Summe seiner Indivisibilien. Die vielen
umständlichen und zum größten Teil unklaren Versuche, diese Thesen zu

verteidigen, sind in ihrem Untergrund getragen von der tief verwurzelten
Idee, daß der Inhalt eines Körpers identisch mit der Raumbeanspruchung
seiner Punkte ist.

Wesentlich bedeutsamer als die Thesen, die Cavalieri seiner Theorie
zugrunde legte und mit deren Hilfe er — allerdings vergeblich — einen

strengen Nachweis seines nützlichen Vergleichsprinzips (Prinzip von
Cavalieri) anstrebte, ist das Prinzip selbst. Dieses leistete durch die
folgenden Jahrhunderte der Inhaltslehre hervorragende Dienste, und auch
heute wird es da und dort in den Schulen als nützliches Arbeitsprinzip
herangezogen. Allerdings wird es kaum in axiomatischer Form zum Aufbau

der Inhaltstheorie gebraucht werden, wie dies zum Beispiel von
Hilbert 2 andeutungsweise in Erwägung gezogen worden ist, sondern
innerhalb einer bereits streng begründeten Inhaltslehre wird es als Satz

von Cavalieri mit geeigneter Einschränkung bewiesen. Als beweisbarer
Satz tritt es uns auch in den modernen Maßtheorien als sogenanntes
Fubini-Theorem entgegen.

b) Der formale Inhalt eines Körpers ist eine reelle, nicht negative Zahl,
die dem Körper formal zugeordnet wird. Sie heißt auch deutlicher
Inhaltsmaßzahl. Die Zuordnung ist in gewissem Rahmen willkürlich, und
sie ist auch in verschiedenen neuzeitlichen Inhaltssystemen individuell

2 D. Hilbert, Grundlagen der Geometrie, 4. Auflage, Leipzig 1913, S. 63.
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völlig verschieden. Die genaue Festsetzung der Vorschrift, durch welche
einem Körper seine Inhaltsmaßzahl zugeordnet wird, ist die Definition
des betreffenden Inhalts.

Die Zuordnung muß indessen sinnvoll sein, so daß die Inhaltsmaßzahl
geeignet ist, ein Maß für die Raumerfüllung des Körpers darzustellen. So

wird eine Inhaltsdefinition nur dann als zulässig anerkannt, wenn sieh
die Eigenschaften nachweisen lassen, die in den klassischen Grundannahmen

—- den Größenaxiomen Euklids — zum Ausdruck kommen. Dies

entspricht einer stillschweigend und allgemein anerkannten Konvention.

Diese verbindlichen Forderungen sind — in neuzeitlicher Form
ausgedrückt —¦ die folgenden : Der Inhalt muß

1. bewegungsinvariant,
2. additiv,
3. normiert,
4. définit

sein. Bezeichnet X (A) den Inhalt einer Punktmenge A, so lassen sich die
vier Inhaltspostulate wie folgt genauer formulieren :

1. X (A) X (B), falls A es B ist;
2. X (A + B) X (A) + X (B), falls AB 0ist;
3. X (E) 1, falls E den Einheitswürfel bezeichnet;
4. X (A) > 0.

Ae^B bedeutet, daß A und B kongruent sind. A + B ist die

Vereinigungsmenge von A und B, und weiter bezeichnet 0 die leere Menge. Die

Bedingung AB 0 sagt also, daß der Durchschnitt AB leer ist, und dies

ist gleichbedeutend damit, daß A und B disjunkt sind, d. h. keine
gemeinsamen Punkte aufweisen.

Innerhalb der formalen Inhaltstheorie lassen sich zwei Entwicklungsarten

unterscheiden, nämlich einmal eine konstruktive, wobei besondere

Inhaltssysteme durch individuelle Inhaltsdefinitionen konstruiert werden,

und dann eine axiomatische, wobei die vier oben genannten Postulate

und eventuell noch weitere an die Spitze der Theorie gestellt werden
und wobei sich die Untersuchungen auf die Gesamtheit aller
Inhaltssysteme erstrecken, die den gestellten Forderungen genügen. Die
individuellen Systeme der konstruktiven Theorie sind dann partikuläre Lösungen

des Hauptproblems der axiomatischen Theorie.
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Ein weiteres Eindringen in das allgemeine Inhaltsproblem wird-uns
ermöglicht, indem wir zur Frage Stellung nehmen: Was ist ein Körper?
Es ist für die Mathematik der vorkritischen Zeit geradezu charakteristisch,

daß der genaueren Abgrenzung der Gültigkeit einer Theorie zu

wenig Beachtung geschenkt wurde. So wird in älteren Abhandlungen
häufig vom Inhalt eines Körpers gesprochen, es werden Lehrsätze und
Formeln abgeleitet, ohne daß irgendwo gesagt ist, was denn ein Körper
überhaupt ist.

Um einen an sich lehrreichen Gedankengang verfolgen zu können, wollen

wir hier einige Körpertypen erwähnen, die in ganz ungefährer Weise

für den Stand der Inhaltslehre größerer Epochen der Mathematik
charakteristisch sind (Abb. 1) :

A. ebenflächig begrenzte Körper, d. h. Polyeder (Euklid) ;

B. krummflächig begrenzte Körper, elementares Baugesetz (Archi¬
medes, Heron);

C. krummflächig begrenzte Körper, nicht elementares Baugesetz, aber
hohe Symmetrie, zum Beispiel Rotationskörper (Kepler, Cavalieri)

;

B

..iV;£vvV > :.';¦>-

•'•>'•**£

Abb.l
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D. krummflächig begrenzte Körper, nicht elementar und ohne
Symmetrie (Leibniz, Bernoulli) ;

E. nicht flächig begrenzte Körper, Punktmengen (Cantor, Jordan,
Lebesgue).

Von A bis E zeigt sich eine fortschreitende Lockerung des mathematischen
Gesetzes, das Bau und Form des Körpers beherrscht. Im letzten Stadium
hat sich die Oberfläche im klassischen Sinn überhaupt aufgelöst, und ein
Bau- oder Formgesetz im herkömmlichen Sinn braucht nicht mehr
vorzuliegen. Die völlig beliebige Punktmenge — eine gewisse Paradoxic liegt
in dieser Feststellung — ist der einfachste Körper, einfach deshalb, weil
keine bindenden Formgesetze genannt werden müssen. Abgesehen von
der Beschränktheit, die wir fordern wollen, braucht der Körper keine
Eigenschaften zu haben.

Es ist klar, daß eine Inhaltslehre, welche diese allgemeinsten Körper,
also beliebig beschränkte Punktmengen, erfaßt und sie alle auszumessen
erlaubt, die einfachste und durchschlagendste Lösung des Inhaltsproblems

darstellen würde.

Mit der Bemerkung am Schluß des vorstehenden Abschnittes werden
wir von selbst zu einer entscheidenden Fragestellung des allgemeinen
Inhaltsproblems geführt, nämlich zur Frage: Hat jeder Körper einen
Inhalt? Im Rahmen der formalen Inhaltstheorie müßte man sachgemäßer
und genauer fragen: Kann man jeder beliebigen beschränkten Punktmenge

des Raumes eine Inhaltsmaßzahl so zuordnen, daß die vier
üblichen Inhaltspostulate erfüllt sind?

Zunächst wird man geneigt sein, eine bejahende Antwort auf diese

Frage zu erwarten; dies ganz besonders dann, wenn unsere Einstellung
hierzu noch stark von der Idee des natürlichen Inhalts beherrscht wird.
Wer aber schon Gelegenheit hatte, sich vom Vorhandensein sehr
merkwürdiger Punktmengen zu überzeugen, wird eher eine skeptische
Haltung zu unserer Frage einnehmen.

Eine Punktmenge zum Beispiel, die gleichzeitig mit ihrer Komplementärmenge

in einem gewissen Raumteil überall dicht liegt, wie etwa die im
Einheitswürfel liegende Punktmenge P (0 2S x, y, z ^= 1; x, y, z rational),

ist, vom Standpunkt der neuzeitlichen Inhaltslehre aus betrachtet,
noch völlig harmlos. Das Raum- oder Zahlkontinuum, das der heutigen
Mathematik zugrunde liegt, zeigt in seiner Unendlichkeit nach innen hin
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noch ganz andere Möglichkeiten. Die geübte Hand des Mathematikers
der heutigen mengentheoretischen Epoche kann aus dieser Unendlichkeit

im Kleinen in wieder unendlicher Vielfalt Punkte und Zahlen
herausgreifen und damit Gebilde erstehen lassen, wo unsere natürliche
Anschauung nicht nur nicht mehr zu folgen vermag, sondern verspottet zu
werden scheint.

Über Ergebnisse dieser Art sei im nächsten Abschnitt ausführlich
berichtet.

4.

Zwei Punktmengen P und Q des Raumes heißen multikongruent
(endlich-gleich), wenn sie in paarweise kongruente disjunkte Teilmengen
zerlegt werden können. Ausführlicher: P und Q sind multikongruent vom
Grade n, geschrieben P ~ Q, wenn es zwei Zerlegungen

n n

P £ Pu Q £ Qi
i i

von P und Q in Teilmengen Pi und Qi so gibt, daß Pi Pj QiQj 0 für
für i =f= j und Pj esQi(i l,2,..., n) gilt. Die Kongruenz P{SsQi ist in
dem Sinn scharf zu verstehen, daß die beiden Punktmengen Punkt für
Punkt zur Deckung gebracht werden müssen. So sind beispielsweise die
beiden Strecken P — {O^S x — 1) und Q (02: # < 1) nicht kongruent.

Wir illustrieren eine bestehende Multikongruenz für die beiden ebenen

Punktmengen P (0 < x < a, 0< y < b) und Q (0 2 x, y < c), wobei

c2 ab ist (Abb. 2). Die Multikongruenz wird hier durch Teilmengen

*

Abb. 2



20 Mitteilungen der Naturforschenden Gesellschaft in Bern

realisiert, die selbst wieder polygonal sind. Unter Wahrung dieser
Nebenbedingung sind zum Beispiel die entsprechenden abgeschlossenen bzw.
auch die beiden offenen Rechtecke sicher nicht mehr multikongruent.3

Man verwechsle aber diese eingeschränkte Multikongruenz nicht mit
der Zerlegungsgleichheit im Sinne der Elementargeometrie, wo bekanntlich

auf die Zugehörigkeit der Randpunkte nicht geachtet werden muß.
Nun haben Banach und Tarski 4 einen Multikongruenzsatz bewiesen,

der einen überraschenden Sachverhalt enthüllt. Es gilt nämlich : Zwei
beliebige beschränkte Punktmengen A und B des Raumes, welche innere
Punkte aufweisen, sind multikongruent, d. h. es gilt die Relation A ^ B.

Also läßt sich beispielsweise ein kleiner Körper von Erbsengröße in
eine gewisse Anzahl disjunkter Teile zerlegen, mit denen man dann eine

Kugel von der Größe der Erde wieder lückenlos zusammensetzen kann;
die Teilmengen müssen hierbei nur geeignet gedreht und passend
zusammengefügt werden! Allerdings hat man sich dabei nicht vorzustellen, daß
sich die Teile mit dem Messer aus der Erbse herausschneiden ließen,
sondern man denke sich diese etwa als kleine, nebelhafte Punktwölkchen
mit einer außerordentlich komplizierten Feinstruktur.

Die Beweise sind im übrigen reine Existenzbeweise und liefern absolut
keine Richtlinien, die zu einer effektiven Berechnung der einzelnen

Teilmengen zur Realisierung der «paradoxen» Multikongruenz in einem
individuellen Fall dienen könnten. Die Beweiskonstruktion setzt auch die

Wohlordnung des Kontinuums voraus, welche sich nur unter Berufung
auf das Auswahlaxiom der Mengenlehre exakt begründen läßt.

Man beachte, daß ausdrücklich das Vorhandensein innerer Punkte
verlangt werden muß. Dies hängt damit zusammen, daß diese unglaubwürdigen

Möglichkeiten nur aus der unendlichen Tiefe des Kontinuums
herausgeholt werden können. Für nur abzählbare oder gar endliche
Punktmengen ist der Satz natürlich falsch.

Der Grad n der Multikongruenz A ~ B kann sogar — allerdings grob
—• abgeschätzt werden. Bringt man A und B in eine solche Lage, daß die
beiden Mengen einen inneren Punkt P gemeinsam haben, so gibt es zwei

o konzentrische Kugeln K und Ko mit den Radien R und Ro und dem Mit¬

telpunkt P, so daß einerseits Ko IZ AB und andererseits A + B [Z K gilt.

3 H. Hadwiger, Multikongruenz ebener Mengen und pythagoreischer Lehrsatz, Bull.
Politechn. Gh. Asachi 2, 98—105, 1947.

4 St. Banach, A. Tarski, Sur la décomposition des ensembles de points en parties
respectivement congruentes, Fund. math. 6, 244—277, 1924.



H. Hadwiger, Der Inhaltsbegriff seine Begründung und Wandlung 21

Zur Realisierung einer Multikongruenz von A und B reicht dann ein n

aus, für das 5

n < 3212 (R/Ro) 12

Betrachten wir beispielsweise den Fall: A Einheitskugel, B konzentrischer

Einheitswürfel; R 1, Ro 1/2, so ergibt sich die Schätzung

ra<4,23-108.
In besonderen Fällen, wobei eine dem Fragenkreis speziell angepaßte
hohe Symmetrie vorliegt, reduziert sich der Multikongruenzgrad n ganz
erheblich.

Ein derartiger ausgezeichneter Fall ist durch die Kugelverdoppelung
gegeben, wo A eine Kugel und B die Vereinigung zweier mit A kongruenter

Kugeln ist.
Nach einer berühmten, von Hausdorff 6 angegebenen Kugelzerlegung

läßt «ich folgern, daß n 10 bereits ausreicht, v. Neumann 7 hat weiter
bemerkt, daß dies schon für n 9 der Fall ist. Endlich konnte
Sierpinski 8 die ausreichende Anzahl auf n 8 bringen. Den Schlußstrich

zog Robinson 9, indem er nachwies, daß n 5 ausreicht und daß ein
noch kleinerer Multikongruenzgrad nicht mehr in Betracht fällt. Dieses

letzte und endgültige Ergebnis wollen wir symbolisch durch eine schematische

Darstellung (Abb. 3) ergänzen, in der zum Ausdruck kommt, wie
sich die fünf Teile der einen Kugel auf die beiden andern verteilen.

cx>

Abb. 3

5 H. Hadwiger, Die Multikongruenz und der Satz von Banach und Tarski, Abh. Math.
Seminar Hamburg 16, 48—53, 1949.

6 F. Hausdorff, Bemerkung über den Inhalt von Punktmengen, Math. Ann. 75, 428—
433,1914.

7 J.V.Neumann, Zur allgemeinen Theorie des Maßes, Fund.math. 13, 73—116, 1929.
8 W. Sierpinski, Sur le paradoxe de MM. Banach et Tarski, Fund. math. 33, 229—234,

1945; Sur le paradoxe de la sphère, ibid. 33, 235—244, 1945. Derselbe Autor gibt
weitere Hinweise und Literaturangaben zu diesen und verwandten Fragen in:
Elemente der Math. 5, 1—4, 1950.

9 B. M. Bobinson, On the decomposition of spheres, Fund. math. 34, 246—260, 1947.
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Abschließend soll noch erwähnt werden, daß paradoxe Multikongru-
enzen dieser Art im ein- und zweidimensionalen Raum nicht möglich
sind. Verantwortlich hierfür ist die Struktur der Bewegungsgruppe, wie
man nach den Resultaten sehr allgemeiner Untersuchungen von v.
Neumann 10 weiß. Paradoxien sind dann unmöglich, wenn die wirkende
Gruppe abelsch ist oder einen abelschen Normalteiler mit abelscher

Faktorgruppe aufweist. Das erste trifft für die lineare, das zweite für die
ebene Bewegungsgruppe zu.

Wir ziehen nun aus den Feststellungen des vorigen Abschnitts einige
wichtige Folgerungen.

Zunächst wird die Frage, ob jedem Körper ein Inhalt zukommen kann,
unbedingt verneint werden müssen. In der Tat: Es sei A E und B
E + E', wobei E und E' disjunkte Einheitswürfel sind. Nach dem Multi-
kongruenzsatz von Banach und Tarski gilt aber A<^j B. Wäre nun X ein
universeller Inhalt, so daß jeder beschränkten Punktmenge P ein Inhalt
X (P) zukäme und daß die vier Inhaltspostulate erfüllt wären, so würde
sich zunächst im Hinblick auf die Definition der Multikongruenz und
mit Beanspruchung der eben erwähnten Postulate X (A) X (B) und
weiter also X (E) 2 X (E) oder X (E) 0 ergeben. Andererseits aber
müßte X (E) 1 sein. Der Widerspruch löst sich nur so, daß die für die
Realisierung der Multikongruenz erforderlichen Teilmengen nicht alle
einen Inhalt haben können.

Ausgestattet mit dieser neuen Sachkenntnis, kehren wir zur Lehre vom
natürlichen Inhalt zurück und ziehen einige Konsequenzen.

Sollte der natürliche Inhalt mehr sein als nur eine historisch-vorwissenschaftliche

oder heuristisch-didaktische und zweckmäßige Begriffsbildung,

sollte er also einer absoluten mathematischen Wahrheit entsprechen,

so müßten wohl alle Körper einen natürlichen Inhalt aufweisen.
Eine künstliche Grenze zwischen solchen, die ihn haben, und solchen, die
ihn nicht haben, verträgt sich kaum mit der Absolutheit des Begriffes.
Der natürliche Inhalt müßte also universell sein. Nun haben wir aber
soeben gesehen, daß es einen solchen nicht geben kann.

Der natürliche Inhalt hat sich demnach bei strenger und konsequenter
Kritik als widerspruchsvoll erwiesen, und er kann nicht zusammen mit

loc. cit. Anm. 7.
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den axiomatisch als gültig erklärten Grundeigenschaften zum Aufbau
einer exakten wissenschaftlichen Inhaltslehre dienen.

Endlich ziehen wir noch Konsequenzen für die formale Inhaltslehre.
In einem bewegungsinvariant aufgebauten Inhaltssystem können nie

alle beschränkten Punktmengen meßbar sein, d. h. die feste Zuordnung
einer den Inhaltspostulaten genügenden Inhaltsmaßzahl X (A) ist
immer nur für die Mengen A einer gewissen Mengenklasse möglich. Diese

Mengenklasse (Inhaltsfeld) umfaßt die im betreffenden Inhaltssystem
meßbaren Punktmengen. Die schwächsten Forderungen (Feldpostulate),
die man üblicherweise in jedem Inhaltssystem als erfüllt betrachtet, sind
die folgenden : Das Inhaltsfeld soll

1. bewegungsfrei,
2. additiv,
3. normal

sein. Bezeichnet £Ç das Inhaltsfeld, so gilt also:

1. Aus A G g und A eä B folgt ß£g;
2. Aus A,B £ 5 und AB 0 folgt A+B eg;
3. Es gilt ££<?•

Inhaltsfeld g und Inhaltsmaßzahl X bilden zusammen das Inhaltssystem

(&x;.
6.

Bevor wir nun im Rahmen der formalen Inhaltstheorie näher auf
besondere Inhaltssysteme eintreten, also den natürlichen Inhalt zugunsten
des formalen Inhalts endgültig verabschieden, sei noch eine
Zwischenbemerkung pädagogischer Art eingeflochten.

Wie bereits im ersten Abschnitt erwähnt wurde, basiert die Inhaltslehre

des Mittelschulunterrichts vornehmlich auf dem Begriff des
natürlichen Inhalts. Obgleich nun die konsequente Weiterverfolgung dieses

Begriffs im Sinne unserer früheren Ausführungen zu Widersprüchen
führt, wäre es kaum angezeigt, die Ausmerzung des natürlichen Inhalts
aus dem Elementar- und Mittelschulunterricht anstreben zu wollen.

Einmal ist diese Begriffsbildung eine historische Tatsache; eine in
Stringenz und Form vollkommene Maßtheorie der Neuzeit hätte niemals
am Anfang der historischen Entwicklung der Inhaltslehre stehen können.
Sie kann aber auch nicht am Anfang der Lehrjahre eines jungen
Mathematikers stehen, in dessen geistiger Entwicklung sich bekanntlich
ähnliche Wandlungen vollziehen wie innerhalb der Genesis der Wissenschaft.
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Weiter darf und muß sich der Mathematikunterricht mittlerer Stufe
auf die natürliche Anschauung und auf die Anwendung des gesunden
Menschenverstandes berufen. Es wäre verfehlt, dem Lernenden zu
demonstrieren, daß in der Mathematik kein sicherer Verlaß auf den gesunden
Menschenverstand ist, daß man seiner natürlichen Anschauung der Dinge
mißtrauen soll, daß man alles und jedes mit umständlichen Schlüssen
beweisen muß, auch dann, wenn wir unbedingt klar und unmittelbar zu
sehen glauben.11

Was nun aber den Lehrer betrifft, so ist es klar, daß dieser aus
didaktischen Gründen wohl gewisse Schwierigkeiten übergehen kann, sie selbst

jedoch genau kennen sollte. Auch muß er in der Lage sein, nötigenfalls
die vorkritische und heuristische Lehrform durch eine wissenschaftlich

strenge Begründung zu ersetzen.

II. Der elementare Inhalt

1.

Ein abgeschlossener Körper, der sich im Sinne der Elementargeometrie
in endlich viele abgeschlossene und eigentliche Tetraeder zerlegen läßt,
heißt Polyeder. In gewissem Sinne sind die Polyeder die elementaren
Punktmengen, und ihr Inhalt — der elementare Inhalt ¦— ist für den
konstruktiven weitern Aufbau der höheren Inhaltssysteme grundlegend.
Die elementare Inhaltstheorie sollte aber entsprechend dem
elementargeometrischen Charakter der Körper, von welchen sie handelt, mit
möglichst einfachen Schlüssen durchführbar sein; insbesondere sind unendliche

Zerlegungsprozesse nach Möglichkeit zu vermeiden.
In diesem ersten Abschnitt-nehmen wir zu verschiedenen Versuchen,

die Theorie des Polyederinhalts streng und doch möglichst elementar zu
begründen, knapp skizzierend Stellung.

Viele indirekte Ansätze haben das Ziel, hierbei lediglich mit dem
Begriff der Zerlegungs- oder Ergänzungsgleichheit im Sinne der Elementargeometrie

auszukommen. Vorbild ist hier die von Hilbert 12 mit axioma-
tischer Schärfe begründete Theorie des Polygoninhalts in der Ebene.

11 Vgl. F. Enriques, Fragen der Elementargeometrie, deutsch von Thieme, I. Teil,
Leipzig 1911, S. 200.

12 loc. cit. Anm. 2, Kap. IV.
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Zwei Polyeder P und Q heißen zerlegungsgleich, geschrieben P °° Q,

wenn sie sich in gleich viele Teilpolyeder Pj und Q{ zerlegen lassen, sym-
n n

bolisch durch P > Pj und Q \ Qi ausgedrückt, so daß diese paar-
l i

weise kongruent sind, geschrieben Pj as Qi (i 1,..., n). Die Teilpolyeder

dürfen Randpunkte, aber keine inneren Punkte gemeinsam haben ;

dies deckt sich mit dem Begriff der Zerlegung, wie er in der Elementargeometrie

angewendet wird.
Zwei Polyeder P und Q heißen ergänzungsgleich, wenn sie sich durch

Hinzufügen von geeigneten zerlegungsgleichen Polyedern U und V in
zerlegungsgleiche Polyeder überführen lassen, so daß also U ~ V und
P + U °° Q + V gilt. Erst vor wenigen Jahren ist der Beweis gelungen13,
daß ergänzungsgleiche Polyeder stets auch zerlegungsgleich sind. Diese

Unterscheidung, die seit Euklid stets beachtet werden mußte, fällt also

heute weg.
Der erste und nächstliegende indirekte Ansatz zum Aufbau einer Theorie

des Polyederinhalts besteht nun darin, die Inhaltsgleichheit zweier
Polyeder P und Q durch die Zerlegungsgleichheit P <^> Q zu definieren.

Nun hat aber bereits Gauss 14 in Erwägung gezogen, Hilbert 15

bestimmt vermutet und schließlich Dehn le nachgewiesen, daß beispielsweise

Tetraeder mit übereinstimmender Grundfläche und gleicher Höhe
existieren, welche nicht zerlegungsgleich sind. Hieraus folgt, daß es auf
der oben erwähnten Grundlage nicht möglich ist, die Inhaltsgleichheit
zweier Tetraeder dieser Art nachzuweisen. Ein Vergleich der beiden
Polyeder durch Zerlegen in kongruente Teilpolyeder fordert eine
Zerschneidung in abzählbar unendlich viele Teile. Das Verfahren entspricht
dann dem EuKLiüischen Beweis und ist als infinit aus methodischen
Gründen abzulehnen.

Dehn 17 und Enriques 18 haben vorgeschlagen, zwei Polyeder dann
inhaltsgleich zu nennen, wenn keines von beiden mit einem echten Teil-

13 J.P. Sydler, Sur la décomposition des polyèdres, Comment. Math. Helv. J6, 266—
273, 1943/1944.

14 Werke VIII, S. 241, 244.
15 D. Hilbert, Mathematische Probleme, Gott. Nachr. 1900, 253—297, speziell S. 266.
10 M. Dehn, Über den Bauminhalt, Math. Ann. 55, 465^78, 1901. Vgl. auch H.

Hadwiger, Zum Problem der Zerlegungsgleichheit der Polyeder, Archiv der Math. 2,
441—444, 1949/1950.

17 Vgl. den Artikel Elementargeometrie von M. Zacharias, Enzykl. III AB 9, S. 946.
18 loc. cit. Anm. 11, S. 202.
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polyeder des andern zerlegungsgleich ist. Aber auch jetzt läßt sich nicht
beweisen, daß die beim vorstehenden Versuch erwähnten Polyeder
inhaltsgleich sind ; es könnte doch das eine mit einem echten Teil des

andern zerlegungsgleich sein. Wie soll man überhaupt auf dieser Grundlage

schon nachweisen, daß nicht etwa jedes Polyeder mit einem echten

Teil seiner selbst oder eines beliebigen andern zerlegungsgleich ist? Mit
dem gesunden Menschenverstand will sich dies nicht so recht vertragen;
aber wie das Gegenteil nachweisen? Der Unmöglichkeitsbeweis ist natürlich

trivial mit Hilfe des Inhalts; aber über den verfügen wir hier gerade

nicht; er soll ja auf diese Weise begründet werden.

Diese Schwierigkeit hat vor der Jahrhundertwende auch im ebenen

Falle viel zu denken und zu disputieren gegeben. Man suchte vergeblich
einen rein geometrischen Nachweis, daß eine solche paradoxe Zerlegungsgleichheit

unmöglich ist, kam aber auch nicht ins klare darüber, ob man
dies zu beweisen oder durch ein geeignetes Axiom — das DE-ZoLTsche

Postulat — auszuschließen habe.
Einen Vorstoß in anderer Richtung machte, einer Anregung von

Hilbert folgend, Süss 19. Es gelang ihm, zu zeigen, daß zwei im klassischen
Sinn inhaltsgleiche Polyeder stets Cavalieri-aequivalent sind, d. h. sich
durch Hinzufügen Cavalieri-gleicher Tetraeder in Polyeder verwandeln
lassen, die ihrerseits wieder in lauter Cavalieri-gleiche Tetraeder zerlegbar

sind. Dabei sind Cavalieri-gleiche Tetraeder solche mit übereinstimmender

Grundfläche und gleicher Höhe. Auf diese Weise ist gezeigt, daß
sich die Inhaltsgleichheit als Cavalieri-Aequivalenz definieren ließe.

Direkte Ansätze verfolgen das Ziel, die einem Polyeder zugeordnete
Inhaltsmaßzahl direkt zu definieren. Das nächstliegende Vorgehen
besteht hier wohl darin, daß man als Inhaltsmaßzahl des Tetraeders den
dritten Teil des Produktes aus Grundfläche und Höhe vorschreibt,
zunächst zeigt, daß dieser Wert von der Wahl der Grundfläche unabhängig
ist, und den Nachweis führt, daß bei einer Tetrangulierung eines Polyeders

in Tetraeder die algebraische Summe der Inhaltsmaßzahlen der
Teiltetraeder von der individuellen Zerlegung des Polyeders unabhängig
wird. Diese Summe heißt dann Inhaltsmaßzahl des Polyeders. Dieses

Programm wurde erstmals von Schatunowski 20 und Süss 21 bewältigt.

W. Süss, Begründung der Lehre vom Polyederinhalt, Math. Ann. 82, 297—305, 1920.
S. O. Schatunowski, Über den Bauminhalt der Polyeder, Math. Ann. 57, 496—508,
1903.

W. Süss, Begründung der Inhaltslehre im Baum ohne Benutzung von Stetigkeitsaxiomen,

Diss., Frankfurt a. M. 1920.
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Vor allem der elementargeometrische Nachweis der Invarianz der Summe

gestaltet sich recht mühsam. Nach Zacharias — befriedigt das Vorgehen,
obgleich es ganz ohne infinite Betrachtungen auskommt, abgesehen von
den beträchtlichen Schwierigkeiten der Durchführung, doch nicht ganz,
weil beim Ansatz eine unbegründete Willkür vorliegt.

'
2.

In diesem Abschnitt wollen wir nun einen Weg der Begründung des

Polyederinhaltes kennen lernen, der wohl in der besonderen Durchführung

neu ist, wobei aber die Konstruktion und damit der Existenznachweis

des elementaren Inhalts an verschiedene ältere Ideen eng anschließt,
die beispielsweise von Schur, Rausenberger, Lazarri, Gerard, Hilbert
und andern 23 hauptsächlich im Falle der ebenen elementaren Inhaltslehre

verwertet worden sind.
Zunächst wollen wir den axiomatischen Standpunkt noch etwas

präzisieren :

Die Mannigfaltigkeit der beschränkten abgeschlossenen Polyeder bildet

einen sogenannten Mengenring, d. h. mit zwei Polyedern A und B ist
auch der Durchschnitt AB und die Vereinigung A + B ein Polyeder.
Diese Mannigfaltigkeit ist das Inhaltsfeld ß des elementaren Inhalts. Wie
man ohne weiteres erkennen kann, sind die drei Feldpostulate erfüllt:
das Feld ist bewegungsfrei, additiv und normal.

Unter einer elementaren Inhaltsmaßzahl X (A) verstehen wir ein über
dem Feld (£ erklärtes reellwertiges Funktional X (A), das jedem Polyeder

A eine reelle Zahl X (A) eindeutig zuordnet, so daß die vier folgenden

Inhaltspostulate erfüllt sind :

1. X(A) =X (B), falls A es B ist;
2.X(A+B)=X(A)+X (B), falls das Polyeder A + B im Sinne

der Elementargeometrie in die Teilpolyeder A und B zerlegt ist ;

3. X (E) 1, wobei E den abgeschlossenen Einheitswürfel bezeichnet ;

4. X (A) > 0.

Ein elementarer Inhalt ist also ein bewegungsinvariantes, additives,
normiertes und définîtes Polyederfunktional. Die Formulierung der
Inhaltspostulate zeigt bei der Additivität eine kleine Abweichung gegenüber
derjenigen im allgemeinen Inhaltsproblem, die dem in der Polyedergeome-

22 loc. cit. Anm. 17, S. 950.
23 Vgl. F. Enriques, loc. cit. Anm. 11, S. 161/162.
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trie wichtigen Begriff der Zerlegungsgleichheit im Sinne der Elementargeometrie

angepaßt ist. Wir bemerken noch, daß aus den vier Inhalts-

postulaten die Monotonie folgt, daß also

X(A)rSX (B), falls A\ZB ist,
gilt.

Nach dieser Festlegung muß man zunächst damit rechnen, daß eventuell

verschiedene Funktionale X (A) dieser Art als Lösungen des

Problems existieren; es wird eine charakteristische und wichtige Besonderheit

des von uns eingeschlagenen Weges sein, daß wir nicht nur zeigen,
daß eine Lösung vorhanden ist, sondern daß auch nachgewiesen wird,
daß nur eine Lösung in Betracht kommt, so daß der klassische elementare

Inhalt X (A) I (A) der einzige elementare Inhalt im oben axioma-
tisch festgelegten Sinn ist.

Durch einen direkten Ansatz zeigen wir nachfolgend die Existenz einer
Lösung. Wir setzen

X(A)=I(A)=^YÀ Fv (»v, Vv),

wobei Fv den Flächeninhalt der v-ten Seitenfläche des Polyeders A, Xlv

den nach außen weisenden und auf der betreffenden Seitenfläche orthogonal

stehenden Einheitsvektor (Normalenvektor) und schließlich pv
den Ortsvektor eines beliebigen Punktes der nämlichen Seitenfläche
bezüglich eines festen Ursprungs Z und die runde Klammer das Skalar-

produkt bezeichnen (Abb. 4). Die Summation soll sich über alle
Seitenflächen des Polyeders A erstrecken. Man bemerkt, daß die elementare
Inhaltslehre in der Ebene hier vorausgesetzt ist. Damit ist auch angedeutet,

daß sich die entsprechende Begründung des elementaren Inhalts im
fc-dimensionalen Raum auf rekursive Weise auf denjenigen im (k — 1)-
dimensionalen Raum stützt.24

Zunächst ergibt sich ohne weiteres, daß der Wert des Skalarproduktes
(tVjr. Pv)von der speziellen Wahl des Punktes innerhalb der gleichen Seitenfläche

unabhängig ist. Der Wert der Summe ist also eine dem Polyeder A
eindeutig zugeordnete reelle Zahl / (A).

Mühelos läßt sich nun erkennen, daß / (A) additiv ist; die Beiträge an
die Summen / (A) und / (B), die von inneren Zerlegungsflächen
herrühren, löschen sich in A + B gegenseitig aus, da die dort wirkenden
Normalenvektoren entgegengesetzt gleich sind.

-* H. Hadwiger, Zur Inhaltstheorie der Polyeder, Collectanea Math. 3 (1), 137—158,
1950.
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/

A

Abb. 4

Wegen der soeben verifizierten Additivität genügt es, das Funktional
/ (A) und seine Eigenschaften weiterhin spezieller für Tetraeder A T
zu verfolgen. So weisen wir zunächst nach, daß / (T) translationsinvariant
ist. Bezeichnet t den Verschiebungsvektor einer Translation, durch
welche T in T' übergeführt wird, so ergibt sich

X (T')-X (T) -j- £ Fv (Xlv, t).

Nun läßt sich aber leicht auf elementare Weise zeigen, daß

I Fv nv — 0

ist, d. h. die Summe der vier auf den Seitenflächen des Tetraeders orthogonal

stehenden Vektoren, deren Längen gleich dem Flächeninhalt der
betreffenden Seitenflächen sind, verschwindet. Den vektorgeometrischen
Nachweis hierfür überlassen wir dem Leser, doch soll auf eine hübsche
physikalische Plausibilitätsbetrachtung hingewiesen werden. Die Summe
der vier Vektoren kann als entgegengesetzte Resultierende der vier Druckkräfte

interpretiert werden, welche auf das Tetraeder einwirken, wenn
sich dieses in einem Medium (Luft oder Wasser) befindet, das überall
denselben Druck aufweist, den wir hier gleich der Einheit setzen. Wäre
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nun der geometrische Satz falsch, so würde das Tetraeder in einer körperfesten

Richtung einen ständigen Antrieb erfahren, was zu einem Widerstreit

mit physikalischen Grundsätzen führen müßte.
Mit Anwendung dieses Satzes ergibt sich nun I (T) I (T'J, was zu

beweisen war.
Zur Berechnung von / (T) dürfen wir nach dieser Feststellung annehmen,

daß eine Tetraederecke mit dem Ursprung Z zusammenfällt. In
diesem Falle wird aber

I(T) — Fh,
3

wobei nun F den Flächeninhalt derjenigen Seitenfläche von T bedeutet,
die der Ecke Z gegenüberliegt, und h die entsprechende Höhe ist. Damit
hat sich die klassische Formel für den Tetraederinhalt ergeben, welche
der Lehre vom Polyederinhalt von alters her zugrunde liegt.

Dieser letzte Schritt erlaubt im Rahmen unserer Entwicklung zwei
wichtige Schlüsse. Es ergeben sich nämlich gleichzeitig die Einsichten,
daß / (T) bewegungsinvariant und définit ist. Wegen der bereits
nachgewiesenen Additivität übertragen sich diese Eigenschaften auf / (A) für
beliebige Polyeder A.

Indem man den Einheitswürfel E in eine solche Lage bringt, daß der
Ursprung Z mit einer Ecke zusammenfällt, bestätigt man schließlich
leicht, daß I (E) 1 ist.

So haben wir für das mit unserm Ansatz eingeführte Polyederfunktional

1(A) die Gültigkeit der vier zuständigen Inhaltspostulate nachgewiesen

und damit den Existenzbeweis für den elementaren Inhalt I (A)
vollendet.

Wir zeigen jetzt, daß die soeben konstruierte spezielle Lösung die
einzige ist, genauer: Wenn X (A) ein bewegungsinvariantes, additives,
normiertes und definites Funktional über Cc ist, so folgt X (A) I (A).
Damit ist die Einzigkeit des elementaren Inhalts / (A) sichergestellt.

In der Tat: Zunächst erzielt man das Ergebnis X (W) I (W) für
einen beliebigen Würfel, indem man dies zuerst für Würfel mit
ganzzahliger, dann für solche mit rationaler und schließlich beliebiger
Kantenlänge folgert. Ist nun P ein Polyeder, das mit einem Würfel W
zerlegungsgleich ist, also P c\d W, so schließt man mit der Bemerkung X (P)

X (W) und I(P) =7 (W) auf X (P) I (P). Setzen wir jetzt

Y(A)=X(A)-I(A),
so haben wir ein neues Polyederfunktional erklärt, das noch bewegungs-
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invariant und additiv, dagegen nicht mehr notwendig définit und
normiert ist und das die weitere Eigenschaft aufweist, daß

Y (P) 0 ist, falls P ~ W gilt.

Abb. 5

Betrachten wir nun ein Tetraeder T, das wir in der euklidischen Weise

(Abb. 5) in zwei halb so große ähnliche Tetraeder — T und zwei Prismen

zerlegen, so ergibt sich die Beziehung

2Y(^-T) Y(T),
da ja bekanntlich jedes Prisma mit einem Würfel zerlegungsgleich ist.25

Durch Iteration dieses Halbierungsprozesses erreicht man

2" Y — T) Y (T)
2"

Beachtet man, daß dagegen
1

8" I T) =1 (T)
2"

gilt, so erzielt man mit einiger Umrechnung aus dem obenstehenden
Ansatz

25 A. Emch, Endlichgleiche Zerschneidung von Parallelotopen in gewöhnlichen und
höhern Euklidischen Bäumen, Comment. Math. Helv. 78, 224—231, 1946.
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2" X — T) Y (T) + — I (T).
2" 4«

Da die linke Seite nichtnegativ ist, der letzte Term aber bei geeigneter
Wahl von n beliebig klein gemacht werden kann, folgert man — der Leser
beachte den Grenzprozeß —, daß Y (T) 2r 0 sein muß. Zieht man nun
noch die schon erwähnte Additivität bei, so folgt für beliebige Polyeder A,
daß Y (A) définit und auch monoton ist. Dies erlaubt im Zusammenwirken

mit dem Verschwinden des Funktionalwertes für Würfel die
entscheidende Einsicht. Für jeden A umschließenden Würfel W gilt

0 < Y (A) < Y (W) 0,

also ist Y (A) 0, d. h. X (A) I (A). Damit ist der Einzigkeitsbeweis
erbracht.

Rückblickend bemerken wir, daß eine vollständige Begründung des

Polyederinhalts gegeben werden kann, ohne daß eine Grenzbetrachtung
geometrischer Art, die nach dem Hilbert-Dehnschen Dilemma unvermeidlich

ist, deutlich und unangenehm in Erscheinung tritt; die
Grenzbetrachtung scheint vom geometrischen mehr in den arithmetischen
Machtbereich verschoben und wird einzig an der Stelle, auf die wir den
Leser hinwiesen, beansprucht.

III. Der Jordansche Inhalt

1.

Peano 2a und Jordan 27 haben auf verschiedene Weise ein und dasselbe

Inhaltssystem begründet, welches als einfachstes nichtelementares System
grundlegende Bedeutung erreicht hat.

Hinreichend vernünftig gebaute Körper — jedenfalls solche, welche
stückweise von glatten Flächenstücken berandet sind — können innerhalb

dieser Inhaltstheorie immer ausgemessen werden. Ohne auf die
allgemeinen Zusammenhänge zwischen Inhalt und Integral einzugehen, sei

hier nur angemerkt, daß die im Jordanschen Sinn meßbaren
Punktmengen genau diejenigen sind, deren Inhalt sich auch mit Hilfe eines
Riemannschen eigentlichen Integrals ermitteln lassen.

Hingegen ist bereits die früher als Beispiel zitierte Punktmenge P
{0 Tr x, y, z Tr 1, x, y, z rational) nicht mehr meßbar.

G. Peano, Applicazioni geometriche del calcolo infinitesimale, Torino 1887.

C.Jordan, Bemarques sur les intégrales définies, J. de Math. (4) 8, 69—99, 1892.
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Die klassische Inhaltskonstruktion von Jordan basiert auf recht geläufigen

Betrachtungen mit Würfelgittern. Wenn man sich auf den Standpunkt

stellt, daß für die Begründung eines höheren Inhalts die Theorie
des elementaren Inhalts der Polyeder bereits zur Verfügung steht — eine

Aufassung, die wir uns zu eigen machen wollen —, so kann die Einführung

des Jordanschen Inhalts auf eine einfachere Weise erfolgen. Der
nächste Abschnitt bringt eine solche Definition des Jordanschen Inhalts.

Auch die auf der neuen Definition basierende Herleitung der
Haupteigenschaften, die wir hier ohne Beweise kurz zusammenstellen, zeigt
gegenüber derjenigen der klassischen Theorie einige Vorteile. So folgt
zum Beispiel die Bewegungsinvarianz unmittelbar aus der Definition,
während die Sicherstellung dieser Tatsache auf Grund der klassischen
Definition einige Umstände bereitet.

2.

Es sei A eine beliebige beschränkte Punktmenge. Wir definieren :

7(A) inî I(P) [ALZP]
1(A) sup/ (Q)[Q\ZA],

wobei sich die vorgeschriebene Bildung der unteren Grenze «inf» bzw.
der oberen Grenze «sup» über alle elementaren Inhaltsmaßzahlen / (P)
bzw. / (Q) von Polyedern bezieht, welche A überdecken (A [Z P) bzw.

von A überdeckt werden (Q C A).
Die Existenz der beiden der Punktmenge A zugeordneten Zahlwerte

und das Bestehen der Ungleichung

I (A) < 7(A)
lassen sich leicht nachweisen. J (A) und J (A) nennt man äußeren und
inneren Jordanschen Inhalt von A.

Sind nun die beiden einseitigen Inhalte einander gleich, so heißt A im
Jordanschen Sinn meßbar, und den gemeinsamen Wert

1(A) =7'(A) =J(A)
nennt man den Jordanschen Inhalt von A.

Es läßt sich zeigen, daß das Jordansche Inhaltsfeld 2», also das System
der im angegebenen Sinn meßbaren Mengen, den Feldpostulaten genügt.
Weiter ist ^ ein sogenannter Mengenkörper, d. h. sind zwei Punktmengen
A und B im Jordanschen Sinn meßbar, so sind es auch die Vereinigung
A + B, der Durchschnitt AB und die Differenz A — AB.
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Der Jordansche Inhalt J (A) genügt auch den Inhaltspostulaten,
insbesondere ist er endlich-additiv, so daß

n n

1 1

wobei die meßbaren Punktmengen Av paarweise disjunkt vorausgesetzt
sind.

IV. Das Lebesguesche Maß

Eine auch höheren Ansprüchen genügende Lösung des Inhaltsproblems
ist durch das von Lebesgue 28 eingeführte Maß gegeben, das auf viele
Gebiete der höheren Mathematik einen entscheidenden fördernden Einfluß
ausübte. So hat erst die auf diesem Maßbegriff aufgebaute Theorie des

Lebesgueschen Integrals, das eine weitreichende Verfeinerung des

gewöhnlichen Riemannschen Integrals darstellt, verschiedenen Disziplinen
der höheren Analysis einen theoretisch vollendeten Abschluß gebracht.

Innerhalb des Lebesgueschen Maßsystems können nun bereits recht

komplizierte Punktmengen ausgemessen werden. Beispielsweise ist die

im vorigen Teil erwähnte Punktmenge P (0<x,y,z<l,x,y,z rational)

nun meßbar und hat wie jede abzählbare Punktmenge das Maß

Null. Bemerkenswert ist, daß alle abgeschlossenen und auch aUe offenen

Punktmengen meßbar werden, während dies beim Jordanschen System
nicht der Fall ist.

Auch hier wollen wir nicht die klassische Definition des Lebesgueschen

Maßes wiedergeben, sondern eine mit ihr gleichwertige, welche
kürzer und einprägsamer ist, wobei indessen die Theorie des Jordanschen

Inhaltes bereits als bekannt angenommen wird, eine Voraussetzung
also, die als natürlich bezeichnet werden darf.

Im folgenden Abschnitt geben wir diese Definition des Lebesgueschen
Maßes; sie ist verwandt mit einer von Young 29 vorgeschlagenen Einführung.

Die Haupteigenschaften werden ohne Beweis nur kurz gestreift.

28 H. Lebesgue, Intégrale, longueur, aire, Annali di Mat. (3) 7, 231—359, 1902; Leçons
sur l'intégration et la recherche des fonctions primitives, Paris 1904.

29 W. H. Young, Open sets and the theory of content, Proc. London Math. Soc. (2) 2,
16—51, 1904.
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2.

Es sei A eine beschränkte Punktmenge. Wir definieren :

L (A) inf JJU) [A\ZU,U offen]
L (A) sup J (V) [VU.A,V abgeschlossen],

wobei sich die Bildung der unteren Grenze «inf» bzw. der oberen Grenze

«sup» über alle inneren Jordanschen Inhalte J (U) bzw. alle äußeren

Jordanschen Inhalte / (V) von offenen A überdeckenden Punktmengen

17 bzw. abgeschlossenen, von A überdeckten Punktmengen V
erstrecken soll.

Die Existenz der beiden der Punktmenge A zugeordneten Zahlwerte
und auch das Bestehen der Ungleichung

L(A)<L(A)__
lassen sich leicht nachweisen. Wir nennen L (A) das äußere, L (A) das
innere Lebesguesche Maß von A.

Sind diese beiden einseitigen Maße einander gleich, so heißt A im
Lebesgueschen Sinn meßbar, und den gemeinsamen Wert

L(A) L (A) L (A)
nennt man das Lebesguesche Maß von A. Es läßt sich auch hier leicht
zeigen, daß das Lebesguesche Maßfeld ß den Feldpostulaten genügt. Weiter

ist £ ein sogenannter Sigma-Mengenkörper, d. h. ein Mengenkörper
mit der zusätzlichen Eigenschaft, daß auch die Vereinigung von abzählbar

unendlich vielen meßbaren Punktmengen wieder meßbar ist, falls
diese beschränkt ausfällt. Auch der Durchschnitt von abzählbar unendlich

vielen meßbaren Punktmengen ist dann stets meßbar.

Das eben eingeführte Lebesguesche Maß L (A) genügt den Inhalts-
postulaten; insbesondere ist es total-additiv, so daß

L £ Av) £ L (Av)

gilt, wobei die abzählbar unendlich vielen Punktmengen Av paarweise
disjunkt und die Vereinigungsmenge beschränkt vorausgesetzt ist. Diese
totale Additivität ist die für das Maß charakteristische höhere Qualität,
auf welche die durch die Maßtheorie erzielten wesentlichen Fortschritte
gegenüber der gewöhnlichen Inhaltstheorie mit ihrer endlichen
Additivität zurückzuführen sind.
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V. Der Tarskische Inhalt

1.

Die drei vorstehend kurz skizzierten Inhaltssysteme sind die wichtigsten

der heutigen Mathematik. Daneben sind im Laufe der letzten Dezennien

noch zahlreiche spezielle Inhalts- und Maßsysteme entwickelt worden.

Abschließend wollen wir noch eine solche neue Inhaltskonstruktion
erwähnen, welche auf eine Idee von Tarski so zurückgeht, der bei
Beschränkung auf lineare Punktmengen den Begriff des absoluten Inhalts
aufgestellt und die sich ergebende Theorie entwickelt hat.

Es zeigt sich, daß entgegen der ausdrücklichen gegenteiligen Bemerkung

des Autors die Theorie des absoluten Inhalts auch auf räumliche
Punktmengen ausgedehnt werden kann, falls man in der Konstruktion
eine geringfügige, aber doch entscheidende Modifikation vornimmt,
welche darin besteht, daß man die bei der Inhaltsdefinition beanspruchte
gewöhnliche Multikongruenz durch die translative Multikongruenz
ersetzt. Es stellt sich heraus, daß trotz dem Eingriff der absolute Tarskische
Inhalt • bewegungsinvariant ausfällt und im übrigen alle wesentlichen
Eigenschaften, die von Tarski im linearen Fall gefunden worden sind,
beibehält.31

Von diesem Inhalt und seinen Haupteigenschaften sei im folgenden
Abschnitt kurz zusammengefaßt die Rede.

Zunächst definieren wir: Zwei Punktmengen P und Q des Raumes
heißen translativ multikongruent (translativ endlich-gleich), wenn sie in
paarweise translationsgleiche disjunkte Teilmengen zerlegt werden können.

Ausführlicher : P und Q sind translativ multikongruent vom Grade n,
geschrieben P ^ Q, wenn es Zerlegungen

p YiPi> <? £<?«

von P und Q in die Teilmengen Pj und Qi so gibt, daß P; Pj QiQj 0

für i 4= j und Pj ^_Qt (i 1, 2,.., n).

30 A. Tarski, Über das absolute Maß linearer Punktmengen, Fund. math. 30, 218—234,
1938.

31 H. Hadwiger, Absolut meßbare Punktmengen im euklidischen Baum, erscheint
demnächst in Comment. Math. Helv.
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Die translative Kongruenz oder Translationsgleichheit P f^ Q ist so zu
verstehen, daß' die beiden Mengen Punkt für Punkt durch eine Translation

zur Deckung gebracht werden können.

Es sei A eine beschränkte Punktmenge. Wir definieren :

T (A) inf I (W) [A ~A' C W]
T(A)=supI(W) iW^WCA],

wobei sich die vorgeschriebene Bildung der unteren Grenze «inf» über
alle elementaren Inhalte / (W) von Würfeln W erstreckt, für welche es

noch Teilmengen Ä gibt, die mit A translativ multikongruent sind. Die

Bildung der oberen Grenze «sup» erstreckt sich über die elementaren
Inhalte l(W) von Würfeln, für welche es noch Teilmengen W von A gibt,
die mit W translativ multikongruent sind.

Die Existenz der beiden der Punktmenge A zugeordneten Zahlwerte

ergibt sich hier allerdings nicht so einfach wie bei den beiden

vorhergehenden klassischen Inhaltskonstruktionen. Die Existenz von T (A) ist
an sich zwar trivial, der Wert könnte aber für alle Punktmengen A gleich
Null sein. Dagegen ist nicht ohne weiteres klar, daß T (A) existiert. Um
dies tatsächlich zu beweisen und weitergehend auch zu zeigen, daß sogar
stets

T (A) < f (A)

gilt, ist es erforderlich, die Nichtexistenz paradoxer Verhältnisse im
Sinne des Satzes von Banach und Tarski im Bereiche der translativen
Multikongruenz sicherzustellen. Der Unmöglichkeitsbeweis kann
tatsächlich erbracht werden, auf ähnliche Weise, wie ihn Sierpinski 32 im
Falle linearer Punktmengen führte. Wesentlich ist hier, daß die
Translationsgruppe im Raum im Gegensatz zur Bewegungsgruppe abelsch ist.

Es ist angebracht, darauf hinzuweisen, daß die obenstehenden Definitionen

trotz den verschiedenen höheren Begriffen, auf die sie sich stützen,
einen anschaulichen Gehalt aufweisen; es sei erlaubt, dies durch eine
trivialisierende anschauliche Interpretation zu verdeutlichen. Der Wert

T (A) gibt zum Beispiel an, wie groß der Inhalt einer würfelförmigen

3- W. Sierpinski, Sur la non-existence des décompositions paradoxales d'ensembles
linéaires, Actas Acad. Ci. Lima 9, 113—117, 1946.
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«Kiste» mindestens sein muß, damit es möglich wird, die Menge A darin
zu «verpacken», d. h. in Teile zu zerlegen, welche dann verschoben und
in der «Kiste» eingelagert werden sollen (Abb. 6).

rrmH^

Abb. 6

Die Werte T (A) und T (A) wollen wir den äußern und den innern
Tarskischen Inhalt von A nennen. Sind die beiden einseitigen Inhalte
einander gleich, so heißt die Punktmenge A im Tarskischen Sinn meßbar,
und den gemeinsamen Wert

T (A) f (A) T (A)
nennen wir den Tarskischen Inhalt von A.

Beim Nachweis der Tatsachen, daß das Tarskische Inhaltsfeld % den

Feldpostulaten und der Inhalt T (A) den Inhaltspostulaten genügt,
insbesondere der Aussagen, die sich auf die Bewegungsfreiheit und die
Bewegungsinvarianz beziehen, stützt man sich mit Vorteil auf einen erst
kürzlich bewiesenen Satz, wonach zwei kongruente Würfel in beliebiger
relativer Drehlage im Sinne der Elementargeometrie translativ
zerlegungsgleich sind.

Genauer sagt dieser Satz Folgendes aus 33 : Zwei kongruente Würfel W
und W' gestatten immer Zerlegungen im Sinne der Elementargeometrie

n n

w — y, Pi w y Pi'
i i

in konvexe Teilpolyeder Pj bzw. P{, so daß P$ ^ P{ ausfällt, d. h. daß die
sich entsprechenden Teilpolyeder translationsgleich sind.

33 H. Hadwiger, Translative Zerlegungsgleichheit k-dimensionaler Parallelotope,
Collectanea Math. 3 (2), 11—23,1950.
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Abb. 7

Es läßt sich übrigens zeigen, daß hierfür stets ein n 2r 125 ausreicht.34

Den entsprechenden Sachverhalt in der Ebene illustriert Abb. 7.

Das Tarskische Feld % ist translativ zerlegungsfrei, d. h. X enthält mit
jeder Punktmenge A auch jede mit A translativ multikongruente Punktmenge

B, also alle B **> A. Damit haben wir die Aufmerksamkeit auf eine

Eigenschaft gelenkt, welche die klassischen Inhaltssysteme nicht
aufzuweisen haben, wohl aber gewisse neuzeitliche. Dagegen ist X kein
Mengenkörper, ja nicht einmal ein Mengenring. Der Tarskische Inhalt ist
(gleich wie der Jordansche) endlich-additiv, nicht aber total-additiv; es

handelt sich also nicht um ein Maß.
Die besondere Bedeutung des Tarskischen Inhaltssystems innerhalb

der allgemeinen axiomatischen Inhaltstheorie dürfte aus folgenden
Tatsachen hervorgehen:

Ist $, X) ein beliebiges Inhaltssystem, dessen Inhaltsfeld £$f em
Mengenkörper ist, so gilt für jede beschränkte Punktmenge A £ g die
Ungleichung

T(A)<X(A)<T(A),
und umgekehrt gibt es zu jeder reellen Zahl co des durch den inneren und

den äußeren Tarskischen Inhalt T (A) und T (A) bezeichneten Intervalls

noch ein Inhaltssystem Ç, X) der oben bezeichneten Art, so daß
X (A) co ausfällt.

34 H. Debrunner, Translative Zerlegungsgleichheit von Würfeln, Archiv der Math. 3,

479480,1952.
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Ist also A insbesondere im Tarskischen Sinn meßbar, so folgt
X(A) T (A),

woraus erhellt, daß das Tarskische Feld % genau diejenigen
Punktmengen umfaßt, für welche eine, aber nur eine Inhaltsmaßzahl in Frage
kommt. Für eine im Tarskischen Sinn meßbare Menge ist der Inhalt
durch die Axiome der Inhaltstheorie eindeutig vorbestimmt. Es ist sinnvoll,

in diesem Zusammenhang von absolut meßbaren Punktmengen und
vom absoluten Inhalt zu sprechen.

Wäre nun jede Punktmenge absolut meßbar — wie oben erwähnt, ist
dies nicht der Fall —, so könnte man den absoluten Inhalt auch mit dem
natürlichen Inhalt identifizieren, und diese an sich hocherfreuliche Sachlage

würde die Berechtigung der mehrtausendjährigen Vorstellung vom
natürlichen Inhalt belegen.

VI. Schlußbemerkung

Am Ende des vorausgehenden Teils sind wir wieder zur Problematik
des natürlichen Inhalts zurückgekehrt. Wie ausführlich dargelegt worden

ist, muß die Idee des natürlichen Inhalts als widerspruchsvoll
zurückgewiesen werden.

Und doch In manchem von uns steckt ein leise sich regender Keim des

Mißtrauens gegenüber den Schlußmethoden der heutigen mengentheore-
tischen Epoche, die mit paradox anmutenden Ergebnissen, welche in der
Tiefe des unendlichen Kontinuums jeder Anschauung und auch jeder
Kontrolle durch effektive Konstruktion entrückt sind, die in unserer
natürlichen Empfindung verwurzelte Idee des natürlichen Inhalts zu Fall
brachten.

Dürfen wir in diesen Fragen über jeden Zweifel erhaben sein? Sollen
wir die Erkenntnisse, die heute gewonnen werden, als die letzten und
unabdingbar richtigen preisen?

Bedenken wir doch eines! Unsere Schlüsse basieren auf dem als gültig
hingenommenen mathematischen Kontinuum. Seine Konstruktion, die
in wissenschaftlich einwandfreier Form erst einige Dezennien alt ist,
enthält ohne Zweifel eine gewisse Willkür, die etwa durch das Stichwort
«Cantor-Dedekindsches Axiom» angedeutet ist. Sind wir nun dessen ganz
gewiß, daß hier das letzte Wort gesprochen wurde? Dies ist wohl kaum
der Fall.
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Längst haben wir gelernt, daß zum Beispiel unsere euklidische
Geometrie nur noch eine Möglichkeit einer Raumstruktur darstellt und nicht
notwendig mit der wirklichen identisch ist. Besonders deutlich wurde dies

offenbar, als Riemann im Jahre 1854 in seiner berühmten Habilitationsschrift

«Über die Hypothesen, welche der Geometrie zu Grunde liegen»
der euklidischen Geometrie, welche zum Beispiel von Kant sogar als a

priori gültig hingestellt worden ist, andere gekrümmte Geometrien als

gleichberechtigt zur Beschreibung der physikalischen Wirklichkeit kühn
zur Seite stellte. Dies bedeutete bekanntlich eine große Erschütterung für
das gesamte mathematisch-naturwissenschaftliche Weltbild, und
Riemann wurde zum Wegbereiter der allgemeinen Relativitätstheorie
Einsteins.

Men bedenke nun Folgendes : Alle die neuartigen Weltmodelle halten
in dieser oder jener Form noch am Raum-Zeit- oder Zahlenkontinuum
fest. Die Unendlichkeit oder Stetigkeit dieser Formen nach innen hin gibt
der Infinitesimalrechnung unserer Jahrhunderte die Existenz- und
Wirkungsmöglichkeit. Aber trotz der Verfeinerung und Ausgestaltung der

heutigen mathematischen Methoden will es bekanntlich nicht restlos
gelingen, die Erscheinungen der Natur, insbesondere aber im Mikrokosmos,
befriedigend zu beschreiben und zu erklären.

Es könnte nun wohl sein — und dahin geht heute die Meinung vieler
Mathematiker und Physiker —, daß das unserer mathematischen
Wissenschaft zugrunde gelegte Kontinuum wohl eine sinnreiche Konstruktion

des menschlichen Geistes ist, aber der realen, wirklichen Welt nicht
adäquat ist. Das Kontinuum könnte wohl eine Simplifikation, eine
vereinfachende Interpolation eines in ihrem Urgrund versteckten Diskontinuüms

sein. Die Diskrepanz müßte dann um so deutlicher in Erscheinung
treten, je tiefer die Naturforschung in den Bereich des Mikrokosmos
eindringt. Eventuell ergeben sich auch wieder Abweichungen im
Makrokosmos.

Vielleicht ist der natürliche Inhalt eines Körpers der wirklichen
(diskontinuierlichen) Welt nur noch eine natürliche Zahl!

Wie dem auch sei — jedenfalls warten heute viele Fachleute auf die

große, neue Erschütterung.
Warten wir auf einen neuen Bernhard Riemann
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