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SITZUNGSBERICHTE

der Mathematischen Vereinigung in Bern

158. Sitzung, Freitag, den 21. Januar 1949 (Mitteilungsabend)

1. Herr Dr. Arnold Streit (Bern) spricht über die «Auflösung der vollständigen

kubischen Gleichung ohne Wegschaffen des quadratischen Gliedes».

Ausgehend von der leicht zu verifizierenden Identität
(U+V)6 — 6uv(u+v)4 + 9u2V2(u+v)2 — (u3 + V3)2 0

erhält man die für z (u+v)2 richtige Gleichung
(1) z3 — 6uv z2 + 9u2v2 z — (u3+v3)2 =0
oder abgekürzt
(2) z3 + az2+bz+c 0

mit der Nebenbedingung a2 4 b.

Zur Auflösung der allgemeinen kubischen Gleichung
(3) x3 + Ax2+Bx + C 0

ergibt sich danach folgendes Verfahren:

Vermöge der Transformation

— A4-2 VA2—3B
x z+k mit k

3

wird (3) in (2) übergeführt. Die Nebenbedingung ist dann erfüllt und es folgt aus
dem Vergleich mit (1)

a
uv — ; u3+v3 y — c

also

u3

V3

/ a3

y — c + v — c 4- —
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und schließlich
Z (u+v)2.
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2

Anmerkung :

Wendet man obiges Auflösungsverfahren auf die übliche Normalform der
kubischen Gleichung (A=0;B 3p;C 2q) an, so folgt die Cardaresche Formel.



2. Herr Dr. Hans Bieri (Bern) berichtet über «Gelöste und ungelöste Probleme
der konvexen Körper».

Einem konvexen Körper mit dem Volumen V, der Oberfläche F und dem Integral

der mittleren Krümmung M wird vermöge der Abbildung

4 n F 48 n*V
y

M2 M8

eindeutig ein Punkt der (x ; y)-Ebene zugeordnet. Die Menge B dieser Bildpunkte
ist zusammenhängend und abgeschlossen. Für die Theorie der konvexen Körper ist
nun die Kenntnis der Ränder von B und der zugehörigen Relationen zwischen den
Maßzahlen V, F und M, ferner der entsprechenden Grenzkörper von fundamentaler
Bedeutung. Hier besteht eine empfindliche Lücke:

Dem einen Randstück y 0 (AC, siehe Abb.) entspricht die Relation V 0,

dem andern x2 — y 0 (AB) ist die Relation F2 — 3 MV 0 zugeordnet;
Grenzkörper sind im einen Fall die ebenen konvexen Bereiche, im zweiten FaU die
Kappenkörper der Kugel. Das Randstück BC aber, die zugehörige Maßzahlrelation
sowie die Grenzkörper sind bis heute nicht aufgefunden worden. Dieser Umstand
verhinderte eine erschöpfende Charakterisierung der Klasse fi der konvexen Körper
durch scharfe Ungleichungen.

B

Es war nun naheliegend, durch eine Beschränkung des Problems auf eine
Teilklasse von fi die Schwierigkeiten zu verringern und vorläufig Teilresultate
sicherzustellen. Die natürlichste, vom elementaren Standpunkt aus einleuchtendste TeiL
klasse ist wohl die Klasse fir der Rotationskörper. Zur Aufgabe, die Berandung des

reduzierten Bildbereiches Br aufzufinden, kann folgendes mitgeteilt werden:
Der obere Rand von A nach B ist derselbe wie beim Bereich B, da die Relation

F2 — 3 MV 0 durch die Maßzahlen der rotationssymmetrischen Kugelkappenkörper

erfüllt wird. Weiter weiß man nun, daß die Punkte der Randkurve von B
nach C Bilder der symmetrischen Kugelzonen sind, indem H. Hadwiger be-
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wiesen hat, daß diese Körper bei vorgegebenen M und F kleinstes V besitzen1).
Dagegen ist die Sachlage noch nicht abgeklärt für die Randkurve von A nach C.
Diese scheint aus mehreren glatten Bogen zusammengesetzt zu sein, wie wenn ver-
schiedengestaltige Körperscharen wie Einfach- und Doppelkegel und Zylinder
beteiligt wären.

In bezug auf das allgemeinere Problem der Berandung von B können weitere
Mitteilungen gemacht werden. Zunächst ergab die Analyse von Kurvensteigungen
in den Endpunkten B und C, daß die Kugelzonen in der Klasse fi nicht extremal
sind. Dies bedeutet, daß die gesuchten Grenzkörper im Gegensatz zu denjenigen für
die Berandung AB nicht rotationssymmetrisch sind. Von P. Glur und dem
Referenten wurden deshalb die Maßzahlen zweier Kalottenkörper (ein solcher entsteht

aus einer Kugel durch Abschneiden von sich nicht überschneidenden Kalotten) be-

ìechnet, der günstigere unterbot bei gleichen M und F das V der Kugelzone
um 2V« »/o.

Mit Hilfe der Variationsrechnung kommt der Referent zum Schluß, daß die
gesuchten Grenzkörper zur Klasse der Kreispolyeder (Kalottenkörper mit unendlich
vielen Abschnitten derart, daß kein Kugelflächenstück übrigbleibt) gehören müssen.
Dieses Resultat wird erreicht durch Analyse der Bedingungen, welche notwendig
und hinreichend sind für das Verschwinden der ersten Variation bei bestimmten
Deformationen des existierenden Grenzkörpers. Die gefundene Bedingung ist zwar
nicht hinreichend für die Bestimmung dieses Grenzkörpers, hat aber doch große
einschränkende Kraft. Die endgültige Ermittlung desselben scheint sich auf ein
gewöhnliches Extremalproblem, allerdings mit lästigen Nebenbedingungen und
unendlich vielen Variablen, zu reduzieren.

159. Sitzung, Freitag, den 11. Februar 1949.

Vortrag von Herrn Rolf Nüscheler (Bern) über «Mathematische Probleme
der äußeren Ballistik».

Die Untersuchung der Geschoßflugbahnen liefert eine große Zahl interessanter
mathematischer Probleme und Lösungsmöglichkeiten. Neben Anfangsgeschwindigkeit

und Abgangswinkel beeinflussen Schwere, Luftwiderstand, Drall, Erdrotation
die Geschoßbahn. So liefert die Flugparabel des luftleeren Raumes für den
wirklichen Fall nur eine ganz grobe Näherung, da bei größern Geschwindigkeiten der
Luftwiderstand ein Mehrfaches des Geschoßgewichtes beträgt.

Unter den Näherungen erster Ordnung unterscheidet man geometrische und
physikalische Verfahren. Bei den erstem wird der Flugbahn eine einfache
geometrische Kurve unterschoben, wie eine schiefliegende Parabel, eine Parabel dritten

Grades oder eine Flugparabel wie beim luftleeren Raum aber mit variablem
Abgangswinkel. Bei den physikalischen Näherungen wird zum Beispiel eine schief
gerichtete Erdbeschleunigung eingesetzt, oder man stellt eine Parabel dritten
Grades auf, indem man neben Anfangsgeschwindigkeit und Abgangsrichtung die

4 H. Hadwiger: Beweis einer Extremaleigenschaft der symmetrischen Kugelzone.

Portugaliae Mathematica 7, 1948, 73—85.
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Schußweite berücksichtigt. Dieses letzte Verfahren von Piton-Bressant liefert
für Ueberschlagsrechnungen rasch Näherungen mit meist weniger als 10 °/o

Abweichungen.

Bei den exakten Untersuchungen spielt die Kenntnis des Luftwiderstandes die
Hauptrolle. Dieser ist in komplizierter Art von der Geschwindigkeit abhängig
(Gesetz von Eberhard) nach neuern Erkenntnissen aber auch vom Verhältnis
zwischen Geschoß- und Schallgeschwindigkeit (Dupuis 1928). Außerdem hängt der
Luftwiderstand vom Luftgewicht und von der Geschoßform ab, wobei letztere
Abhängigkeit wieder eine Funktion der Geschwindigkeit ist. Grundlegend für alle
Berechnungen ist die Hodographengleichung, eine Differentialgleichung
zwischen der Geschoßgeschwindigkeit v und dem Flugbahnneigungswinkel {}, in
der das Luftwiderstandsgesetz f (v), die Erdbeschleunigung g und ein Formfaktor

c* auftreten:

d (v cos &) c*
v f(v).

d# g

Die Lösung dieser Gleichung kann mechanisch gefunden werden, wenn man ein
Gesetz für f (v) annimmt (C ur t i - Flugbahnintegraph der ETH). Zur rechnerischen
Lösung muß man Vereinfachungen vornehmen, indem man zum Beispiel dem
Luftwiderstandsgesetz die Form vn gibt mit für gewisse Geschwindigkeitsbereiche
konstantem Exponenten. — Bei der Teilbogenberechnung wird die Flugbahn in
Teilstücke von wenigen hundert Meter Länge eingeteilt. Jeder Bogen wird aus den am
Anfang herrschenden Bedingungen berechnet. Aus den am Ende vorhandenen
Größen von Geschwindigkeit, Richtung, Luftgewicht und den Anfangswerten wird
der Bogen mit gemittelten Werten nochmals durchgerechnet. Dieses Verfahren
bedingt einen riesigen Rechenapparat. — S i a c c i sucht durch Einführen der Pseudo-

geschwindigkeit, der auf die Anfangstangente projizierten Geschwindigkeit, und
zweier durch Schießversuche zu bestimmenden Ausgleichsfaktoren die Gleichung
integrabel zu machen. Er erhält verschiedene Hilfsfunktionen, deren Tabellen
erlauben, die Flugbahngrößen (Schußweite, Flugbahnhöhe, Flugdauer, Bahnneigung,
Fluggeschwindigkeit) zu ermitteln.

160. Sitzung, Freitag, den 25. Februar 1949.

Herr Prof. Dr. Hugo Hadwiger (Bern) spricht über das Thema: «Elementarer
Nachweis der Isoperimetrie der Kugel».

Zwischen dem Volumen V und der Oberfläche F eines konvexen Körpers gilt
die bekannte klassische isoperimetrische Ungleichung

(1) Vf3~ — 6 Vn\>0.
Für konvexe Rotationskörper mit dem Aequatorradius a läßt sie sich verschärfen

zu (Bonnesen)

(2) ViF - 6 V^v > (VF+ V^a) (VF-— 2 V^a)2.
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Im ersten Teil des Vortrages 2) zeigt nun der Referent, daß sich eine noch
weitergehende Verschärfung der Form

VF—6 VnV > (VF+ V^a) (VF—2 Vrca)2

(3) ,,_ 0f(l— sinop)2 (1 — sinip)2!
+ V 41 +

siny sin tp J
auf rein elementarem Wege für konvexe polygonale Rotationskörper gewinnen läßt.
Dabei bedeutet ein polygonaler Rotationskörper einen solchen, welcher sich aus

endlich vielen Kegelstumpfsegmenten zusammensetzt, Anfangs- und Schlußsegment
seien indessen als Kegel mit den halben Oeffnungswinkeln cp und yU vorausgesetzt.
Da ein beliebiger konvexer Rotationskörper K durch polygonale Rotationskörper
beliebig genau approximiert werden kann, läßt sich (3) auf jenen übertragen, m
und Th bedeuten dann die halben Oeffnungswinkel der in beiden Achsenendpunkten
an K gelegten Tangentialkegelflächen. Das Gleichheitszeichen gilt dann und nur
dann, wenn K ein Kappenkörper eines Kugelzylinders (Abb.) ist.

Achse

Im zweiten Teil des Vortrages3) gibt der Referent eine Beweisskizze zu (1) für
beliebige beschränkte und abgeschlossene Punktmengen. An die Stelle von V und F
treten hier das Lebesgue sehe Maß und die untere Minkowski sehe

Oberfläche.

161. Sitzung, Dienstag, den 24. Mai 1949.

Vortrag von Herrn Prof. Dr. R. Risser (Paris) über «Les courbes de distribution

et les surfaces de probabilités».

Die Theorie der Häufigkeitsverteilungen spielt in der mathematischen Statistik
eine fundamentale Rolle. Einmal hat der Statistiker das Bedürfnis, empirisch
vorgegebene Verteilungen mittels bekannter Häufigkeitsfunktionen zu approximieren.
Sodann können aus den Gesetzmäßigkeiten theoretischer Verteilungen neue Erkenntnisse

gefolgert werden. In diesem Zusammenhang sei an die modernen Prüfverfahren
erinnert, die uns beim Auswerten von Versuchsergebnissen zu entscheiden gestatten,
ob zwei Durchschnitte, zwei Häufigkeiten oder zwei Streuungen wesentlich oder

2)H. Hadwiger: Verschärfte isoperimetrische Ungleichung für konvexe
Rotationskörper mit Spitzen. Erscheint voraussichtlich in Math. Phys. Semesterberichte

(Münster i.W.) 1950.

3) H. Hadwiger: Beweis der isoperimetrischen Ungleichung für abgeschlossene

Punktmengen. Erscheint voraussichtlich in den Portugaliae Math. (Lisboa) 1950.
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nur zufällig voneinander abweichen. Vielfach hat man auch den Unterschied
zwischen der aus einer Stichprobe berechneten Maßzahl und dem entsprechenden Wert
der Grundgesamtheit zu prüfen.

Häufigkeitsfunktionen können auf verschiedene Arten gewonnen werden. Die
einen beruhen auf wahrscheinlichkeitstheoretischen Ueber-
legungen und finden im Urnenschema ihre Veranschaulichung. So liegt der
binomischen oder Bernouilli sehen Verteilung eine solche Versuchsanordnung
zugrunde ; als Grenzfälle ergeben sich hieraus die Verteilungen von Poisson
sowie die Normalverteilung von Gauss-Laplace. Auch die hypergeometrische

Verteilung und die von Pólya-Eggenberger als «Wahrscheinlichkeitsansteckung»

definierte Verteilung lassen sich wahrscheinlichkeitstheoretisch
begründen.

Als weiterer Ausgangspunkt zur Herleitung von Häufigkeitsfunktionen können

Differentialgleichungen dienen. Grundlagen sind in dieser Hinsicht die
Arbeiten von K. Pearson und seiner Schule; der Referent hat nun diese Studien
vertieft. Durch systematische Auswertung einer linearen Differentialgleichung erster
Ordnung wird man auf die verschiedensten Kurventypen geführt. Soll jedoch die
Lösung der Differentialgleichung eine Häufigkeitsfunktion im mathematisch-statistischen

Sinne darstellen, so hat sie gewissen Bedingungen zu genügen, Forderungen,
die für die Abgrenzung des Definitionsintervalles, für die Beurteilung der
Parameter sowie für die Normierung der Integrationskonstanten bestimmend sind.

Vorerwähnte Betrachtungen lassen sich verallgemeinern und führen naturgemäß
auf die Häufigkeitsflächen. Die gesuchte Funktionalrelation ist jetzt die partielle
Differentialgleichung zweiter Ordnung von Moutard, welche einen Spezialfall
der bekannten Differentialgleichung von Laplace darstellt. Hieraus können die
Häufigkeitsflächen vom Typus Laplace, Gauss, Pearson, ferner elliptische
und hyperbolische Paraboloide u. a. m. gewonnen werden.

162. Sitzung, Freitag, den 18. November 1949.

Vortrag von Herrn Prof. Dr. André Mercier (Bern) «Ueber den kanonischen
Formalismus».

Der Vortrag war ein Auszug aus einer umfangreichen Arbeit, die unter dem
Titel « Sur le formalisme canonique, la condition accessoire H+pf j 0 et la
réversibilité de la mécanique classique et de la théorie des quanta » in den « Archives
des Sciences » erscheint. Als eines der Hauptergebnisse sei erwähnt, daß sich die
Schrödinger-Gleichung als eine neuartige, besonders zu definierende korrespondenzmäßige

Uebersetzung der erwähnten Nebenbedingung (condition accessoire) und
zugleich als erstes Integral zur Quantenmechanik erweist. Die Ueberlegungen fußen
alle auf der typischen Eigenschaft, die unter Kanonizität bekannt ist, sie heben u. a.
deren Gegensatz zur L o r e n t z sehen Relativität hervor.
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163. Sitzung, Freitag, den 9. Dezember 1949.

Vortrag von Herrn Prof. Dr. Willy Scherrer (Bern) : «Betrachtungen zur
Erkenntnistheorie der exakten Wissenschaften».

Um das Wesen wissenschaftlicher Erkenntnis zu charakterisieren, muß man drei
Stufen des Erkennens auseinanderhalten.

In einer ersten Stufe werden ausgehend von den uns angeborenen Vermögen
Wahrnehmungen durch primitives (unbewußtes) Denken zu Wahrnehmungsbündeln
(Dingen) verschmolzen. Sofern diese Wahrnehmungsbündel ohne oder gegen
unseren WiUen bewirkt werden, muß man den Dingen objektive Realität zuschreiben.

In einer zweiten Stufe werden die Dinge in der Vorstellung verglichen, in
Elemente zerlegt und zu Begriffen geordnet. Sofern auf dieser Stufe Wahrnehmungen
an Vorstellungen gemacht werden müssen, kann man hier von bewußtem Denken
sprechen. Der ganze Prozeß wird durch die Sprache symbolisiert und formal objektiviert.
Die dabei verfolgten Verfahrensweisen entsprechen in großen Zügen der klassischen
formalen Logik.

In einer dritten Stufe werden Begriffe in Systeme geordnet. Entscheidend für
die formale Objektivierbarkeit eines Systems ist die Frage nach demjenigen
Begriff, der exakt und vollständig durch ein Symbol ersetzt werden kann. Als solcher
erweist sich der Begriff der Zahl. Hier liegt der logische Grund für die Tatsache,
daß die Formelsprache der Mathematik in den exakten Wissenschaften eine
grundlegende Rolle spielt.

Das wesentliche Kennzeichen der von der Mathematik entwofenen Systeme
besteht darin, daß sie, nach Vorgabe der einschlägigen Grundbegriffe, aus wenigen
Grundsätzen (Axiomen) deduziert werden können. Bei dieser Deduktion spielt,
wie die logische Analyse zeigt, der Begriff der natürlichen Zahl eine tragende Rolle.
Die Problematik der Mathematik kann auf die Frage reduziert werden, ob es
tatsächlich nötig und möglich ist, Begriffe einzuführen, die wesentlich über den
Begriff der natürlichen Zahl hinausgehen, zum Beispiel den Begriff des Kontinuums.

Das Ideal der exakten Naturwissenschaft besteht in der Forderung, die Fülle
der empirischen Beziehungen mit Hilfe eines axiomatischen Systems logisch zu
ordnen. Ein Kernproblem bildet dann die Frage, ob und wie die Grundgebilde des

in Aussicht genommenen axiomatischen Systems in der Empirie aufgewiesen werden
können.

Zum Schluß erläutert der Referent gestützt auf die «Lehre vom Raumsinn des

Auges» (F.B.Hofmann) daß, von der Empirie aus gesehen, keine Notwendigkeit
besteht, den Begriff des Kontinuums einzuführen.
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