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E. Hintzsche

Ueber Normalkurven der Kerngrössenverteilung

Bei Untersuchungen über die Aenderung der Kerngrösse durch
Wachstumsvorgänge, funktionelle Beanspruchung und ähnliche
Faktoren stellt sich stets die Frage nach einer geeigneten
Vergleichsbasis. Dass die Angabe von Mittelwerten auf Grund weniger

Kernmessungen für derartige Untersuchungen nicht ausreicht
ist heute wohl allgemein anerkannt. Aber selbst wenn zur genauen
Grössenbestimmung die Berechnung des Inhaltes einer genügend
grossen Zahl regelmässig geformter Kerne vorgenommen wird,
ergeben sich bei der Auswertung der Reihe noch mancherlei
Schwierigkeiten. Das gilt insbesondere von der Bestimmung der
„Regelklasse", d. h. des für die betreffende Zellart charakteristischen
Wertes der Kerngrösse. Die Bedeutung einer möglichst genauen
Erfassung der Regelklasse liegt in ihrer Wichtigkeit für die
Gliederung der primären Zahlenreihe, denn bei der erheblichen
Variationsbreite der Kernvolumina wird man niemals in die Lage kommen,

diese Reihe direkt statistisch auszuwerten; man wird vielmehr
Zusammenfassungen zu Klassen bestimmter Grösse vornehmen
müssen.

Wenn, .wie es nicht selten der Fall ist, eine Variationsreihe der
Kernvolumina mehrere Orte besonderer Häufung aufweist, so

stehen diese nach Jacobj unter einander im Verhältnis einer
geometrischen Reihe, d.h. die Orte der Maxima liegen in Klassen,
deren Grösse sich wie 1:2:4:8 usw. verhält. Will man die
primäre Zahlenreihe so gliedern, dass alle Orte grösserer Häufung
möglichst genau in der Mitte von Klassen liegen, die unter
einander im Verhältnis einer geometrischen Reihe stehen, so kann

man durch die übliche empirische Methode bei einigem Geschick

zwar meist eine leidlich befriedigende Klasseneinteilung finden,
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doch liegt in dem Probieren stets ein Unsicherheitsfaktor. Um diesen

auszuschalten bedient man sich mit Vorteil der logarithmischen
Einteilung der Kerngrössenklassen, wie ich (Experientia Bd. 1

1945) nachgewiesen habe. Die Ueberlegungen, die mich zu diesem

Vorschlag führten, waren ursprünglich nicht rechnerischer, sondern
biologischer Art. Angenommen die Kerngrösse eines Gewebes
schwanke etwa zwischen 65 und 31 Och« und der Ort der grössten
Häufung liege bei lSOcb^, so würde sich bei der früher üblichen
Einteilung ein Klassenumfang von 25 Einheiten empfehlen, um die
Werte 75, 150 und 300 cb,« mitten in einer Klasse liegen zu haben.
Dabei würden im ganzen 10 Klassen entstehen, von denen aber
zwischen den Klassen mit der Mitte 75 und 150cb// nur zwei weitere

Klassen (bei 100 und 125 cbp) liegen, während zwischen den
Klassenmitten 150 und 300 cb,u fünf Klassen (bei den Werten 175,

200, 225, 250 und 275 cb,«) gebildet werden. Die Wachstumsschritte

von 75 auf 150 und von 150 auf 300 cbp sind aber biologisch
als gleichwertig anzusehen, denn es erfolgt ja jedesmal eine
Verdoppelung des Kernmateriales, insbesondere eine Verdoppelung
der Masse des Chromatins. Biologisch gleichwertige Abstände wurden

also bisher bei Gliederung in Klassen gleicher absoluter
Grösse in durchaus willkürlicher Weise verschieden unterteilt.
Wählt man dagegen den logarithmischen Masstab, so hat man von
75 bis 150 cb^ genau gleich viele Zwischenklassen wie von 150

bis 300 cb^ usw., weil dabei der absolute Umfang der einzelnen
Klassen in ganz konstanten Proportionen allmählich grösser wird.
Biologisch gleichwertige Abstände werden dadurch also in eine

gleich grosse Zahl von Klassen aufgeteilt, ausserdem verhalten sich
die Umfange der Klassen, in deren Mitte die Werte 75, 150 und
300 cbp liegen, wie 1 : 2 : 4, d. h. sie nehmen in gleichem Masse

zu wie die Klassengrösse selbst.
Um zu zeigen, wie einfach die notwendigen Rechenmanipulationen

sind, sei an dem genannten Beispiel die logarithmische
Bestimmung der Klassengrenzen durchgeführt. Die Aufgabe lautet,
den Abstand zwischen den Klassen 75 und 150 cb.« in eine
bestimmte Zahl von Teilstücken zu zerlegen — ich empfehle vier,
damit drei Zwischenklassen entstehen —, deren Grösse in
konstanter Proportion derart steigt, dass der Umfang der Klasse um
150cb,u herum doppelt so gross ist wie der der Klasse um 75 cbp.
Die Differenz der Logarithmen zweier Zahlen, die sich wie 2 : 1
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verhalten, ist immer 0,30103 log 2. Im hier gewählten Beispiel
— wie übrigens auch in jedem anderen Fall mit drei Zwischenklassen

— differieren also die logarithmischen Werte benachbarter
Klassen um 1/4 log 2. Zunächst werden die Klassenmitten berechnet,

z. B.
log 75 1,87506 z 75

4- V* log 2 0,0752575

log z 1,9503175 z 89,19

Durch fortgesetzte Addition von 1/4 log 2 zum log z ergeben
sich ferner die Werte 106,06, 126,13 und 150,0. Mit dieser
Berechnung sind die Klassenmitten bestimmt. Die noch fehlenden
niedrigeren Werte der Reihe ergeben sich durch Halbierung, die
höheren durch Verdoppelung dieser Zahlen.

Die Klassengrenzen werden berechnet aus dem arithmetischen
Durchschnitt der Logarithmen benachbarter Ki'assenmitten, z. B.

log 75 1,87506

+ log 89.19 1,9503175

log s 3,8253775

i/, log s 1,9126887 s 81,79

Auch hier ergeben sich durch weitere Addition von 1/4 lbg 2

zum Wert von 1/2 log s die übrigen Klassengrenzen, man erhält die
Zahlen 97,26, 115,66, 137,58, 163,58. Durch Halbierung findet
man die Grenzen der niedrigeren, durch Verdoppelung die der
höheren Klassen. (Die Stellen nach dem Komma sind nur beigefügt

für die genaue Berechnung der Hallbierungs- und der Verdop-
pel'ungszahlen, im praktischen Gebrauch können sie zum mindesten
bei den höheren Werten durch Abrundung eliminiert werden.)

Die hier gegebene logarithmische Berechnungsweise ist mit
der von mir in der „Experientia" (1945) beschriebenen Methode
im Ergebnis identisch, sie ist ihr jedoch durch ihre Einfachheit
überlegen, zumal sie auf jede beliebige geometrisch ansteigende
Reihe direkt anwendbar ist.

Der Vorschlag, Variationsreihen biologischen Materiales
logarithmisch zu gliedern ist nicht neu. Dem liebenswürdigen Interesse,
das mein Freund Dr. A. Schwarz vom Eidgenössischen Statistischen
Amt an den Ergebnissen meiner Untersuchungen genommen hat,
verdanke ich den Hinweis auf das Werk „La statistique", das als
zusammenfassender Bericht über eine im Jahre 1935 abgehaltene
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Studienwoche des Centre international de synthèse erst 1944
erschienen ist. In einem Referat des Subdirektors der Biologischen
Station Roseoff G. Teissier über die Anwendung statistischer
Methoden in der Biologie steht dort auf S. 199/200 geschrieben:
„que dans beaucoup de circonstances la valeur de l'accroissement
relatif est beaucoup plus importante du point de vue biologique
que ia valeur de l'accroissement absolu. Des accroissements relatifs

égaux auraient alors la signification que nous avons donnée
aux accroissements absolus égaux, et ce ne serait pas la grandeur
que l'on mesure qui aurait une répartition gaussienne, mais le

logarithme de cette grandeur." Als Beispiel für einen derartigen
Typus wird die Verteilung der Facettenzahl in den Augen der als
bar bezeichneten Mutante von Drosophila angeführt. Teissier
fährt dann fort: „on ne doit pas s'étonner que certaines distributions,

qui trahissent manifestement lie mélange de deux catégories
d'individus, ne soient pas susceptibles d'être analysées par les
méthodes de dissection des courbes de fréquence." Aus genau der
gleichen Ueberlegung habe ich am Schluss meiner schon zitierten
Mitteilung in der „Experientia" für überflüssig erklärt, die auf
logarithmischer Basis gewonnenen Häufigkeitskurven der
Kerngrösse weiter zu analysieren; das nicht seltene Vorkommen mehrerer

Maxima im gleichen Untersuchungsmaterial führte mich zu der
Annahme, dass es nicht leicht möglich sei, die Zahlenreihe nach
den Regeln der Wahrscheinlichkeitsrechnung genauer zu studieren.

Wiederholte Hinweise von Dr. Schwarz, Bern und des in
der statistischen Auswertung biologischen Materiales besonders
erfahrenen Prof. A. Linder, Genf, veranlassten mich zu einer
nochmaligen Ueberprüfung des Problems, wozu mir neue Befunde
über die Kerngrösse der Osteoklasten (aus einer demnächst als
Diss. med. Bern erscheinenden Untersuchung von Wolfgang
Glatt li) ein besonders geeignetes Material boten. Zur Anleitung

sei die Bearbeitung dieser Reihe im einzelnen dargelegt. Die
Inhaltswerte von 405 Kernen (berechnet als Rotationsellipsoide
aus gemessener Länge und Breite) werden zunächst provisorisch
in Gruppen von 20 cbp zusammengefasst (z. B. 40—59, 60—79 cbp
usw.). Man gewinnt so eine Frequenzreihe, deren grösste Häufung
bei 130cb/z liegt, ein zweiter Ort besonderer Häufung kommt nicht
vor. Die unsymmetrische Ausdehnung der Reihe ist hier ohne
Belang, sie ist, wie oben dargelegt wurde, eine Folge der schemati-



Klassenmitte

50 70 90 HO 130 150 170

Frequenz io 32 39 69 74 56 38

E. Hintzsche, Ueber Normalkurven der Kerngrössenverteilung 23

sehen Klassenaufteilung. Schätzungsweise wird der Wert 65 (als
Hälfte der Regelklasse) nur um etwa, gleichviel Messungen
unterschritten wie 260 (a'üs Verdoppelungswert der Regelklasse)
überschritten wird.

190 210 230 250 270 290 310 cbp
31 28 13 5 6 2 2

Mit dieser ersten vorläufigen Ordnung schafft man sich bei
einer in logarithmischer Gliederung einigermassen symmetrischen
Reihe eine wichtige Rechenerleichterung zur Bestimmung der wahren

Regelklasse. Sie wird a,ls geometrisches Mittel berechnet, weil
ja die Kerngrösse nach Art einer geometrischen Reihe variiert.
Dazu muss der Logarithmus jeder Klassenmitte multipliziert werden

mit der Frequenz der betreffenden Klasse; die gewonnenen
14 Zahlen werden addiert und durch die Gesamtfrequenz geteilt.
Der Numerus dieser Zahl ergibt die Mitte der Regelklasse, sie
beträgt im angeführten Beispiel 131,9 — praktisch also 132 eb/*.
Nun erst wird nach der oben gegebenen Anleitung die logarithmische

Gliederung der Reihe um 132 cbp als Regelklasse berechnet

und das primäre Zahlenmaterial in diese Klassen aufgeteilt.
Man erhält:

Klassen- Klassen- Frequenz Stufe
mitte grenzen f X x.f x2.f x3.f x4.f
46,7 42,9-50,9 4 -6 -24 144 -864 5184

55,5 51,0-60,5 6 —5 —30 150 -750 3750

C6,0 60,6-72,0 19 -4 -76 304 --1216 4864

78,5 72,1-85.6 19 -3 —57 171 -513 1539

93,3 85,7-102 41 -2 —82 164 -328 656
110 103-121 71 —1 —71 --340 71 —71 —3742 71

132 122—144 80 0 0 0 0 0
157 145—171 64 1 64 64 64 64

187 172—204 52 2 104 208 416 832
222 205-242 35 3 105 315 945 2835
264 243—288 12 4 48 192 768 3072
314 289—342 2 5 10 4-331 50 250 4-2443 1250

Summe : 405 -9 1833 —1299 24117

Mi
-9
405 " 0,022 ,U2

1833

405 - 4,52 ps —
-1299

405
—3,21

/h
24117

405
=59'5 ßi

^32
0,112 Ä Pi

2,91



24 Mitteilungen der Naturforschenden Gesellschaft Bern

Ob diese Frequenzreihe einer Normalverteilung entspricht oder
wenigstens ihr sehr nahe kommt, lässt sich durch die Berechnung
einiger Charaktere bestimmen; zur Vereinfachung kann man dabei
an Stelle der absoluten Werte der Klassenmitten eine Stufeneinteilung

(ausgehend von der Regelkla,sse) vornehmen. ß2 ist der
Wölbungskoeffizient; im idealen Fall völliger Uebereinstimmung
der Zahlenreihe mit einer Normalverteilung beträgt sein Wert
3,0; Zahlen von 2,7 ab können als weitgehend der Norm genähert
gelten, Zahlen über 3,0 erweisen eine grössere Häufung der
Einzelfälle um den Mittelwert als bei einer Normalverteilung. Mit
einem Wölbungskoeffizienten von 2,91 darf die Kerngrössenreihe
der Osteoklasten a,ls einer Normalverteilung entsprechend
bezeichnet werden. ßl gilt als Ma(ss der Asymmetrie. Dieser Wert ist
notwendig zur Berechnung der Schiefe der Verteilung (a), die sich
nach folgender Formel bestimmen lässt:

a _ Jfl_ ß* + 3

p.2

'
10 & — 12 Â - 18

Im vorliegenden Fall erhält man als Wert der Schiefe der
Verteilung 0,43; er wird am besten in Relation gesetzt zur mittleren
quadratischen Abweichung. Diese ist ein wertvolles Mass für die

Kennzeichnung der Streuung der Einzelwerte, sie lässt sich be-
a

stimmen als Vu,, im speziellen Fall ist ihr Wert 2,13. 77= er-
YP-2

gibt 0,202 ; dieser niedrige Wert erweist, dass die Verteilung der
Volumina der Osteokla,stenkerne der Symmetrie recht nahe kommt,
denn vollständiger Symmetrie entspräche der Wert 0.

Die mittlere quadratische Abweichung ermöglicht ferner die
Konstruktion der zugehörigen Normalkurve. Ihr Mass entspricht
nämlich dem Abstand des Wendepunktes der Kurve von der
mittleren Ordinate (Linie a in der Abb. 1), d.h. sie kennzeichnet die

Stelle, wo der konvexe Teil der Kurve in den konkaven übergeht.
Die Lage der beobachteten Werte im Verhältnis zur Normalkurve
gibt eine für biologisches Material recht gute Uebereinstimmung,
die Kerngrösse der Osteoklasten folgt also im ganzen annähernd
der Gauss'schen Verteilung.

Was ergibt sich aus dieser Feststellung? Zunächst die bisher
unbekannte Tatsache, dass die Kerngrösse den Regeln des
„Zufalles" entsprechend variieren kann. Der „Zufall" ist indessen hier
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— wie auch sonst in der Statistik — bedingt durch das Zusammentreffen

einer grossen Zahl kleiner, im einzelnen oft gar nicht

genau bekannter Ursachen. Bei weitem nicht alle Frequenzreihen
von Kernvolumina werden deshalb der Normalkurve soweit gleichen

wie das oben angeführte Beispiel. Offenbar ergeben sich der
Normalkurve entsprechende Verteilungen nur bei besonders
ausgeglichenem Zustand der Gewebe, d. h. wenn Verbrauch und Nachschub

der Zellen sich die Waage halten, ohne dass durch Wachstum,

besondere funktionelle Inanspruchnahme und ähnliche
Vorgänge Faktoren wirksam werden, die eine Aenderung der
Kerngrösse nach sich ziehen.

Abb. 1. Verteilung der Grösse von 405 Osteoklastenkernen, verglichen mit
der Normalkurve gleicher Streuungsbreite.

Als zweites noch wichtigeres Ergebnis ist hervorzuheben, dass

nun endlich eine objektive Vergleichsbasis für experimentelle
Untersuchungen über die Kerngrösse und alle weiteren, damit
zusammenhängenden Fragen z.B. der Teiltingsbereitschaft, der
Teilungshäufigkeit usw. gefunden ist. Um die Wirkung eines
experimentellen Eingriffes auf die Zellteilung z. B. durch Bestrahlung

oder Giftwirkung sicher ermitteln zu können, sollte jeweils
zuvor der Ausgangszustand des Gewebes hinsichtlich der
Kerngrössenverteilung bekannt sein. Einwandfreie experimentelle
Ergebnisse werden sich nur gewinnen lassen, wenn die Versuche an
Geweben von möglichst „ausgeglichenem" Zustand ausgeführt werden,

d. h. an Geweben, deren Kerngrössenverteilung möglichst einer
Normalkurve entspricht. Nur so ist zu erreichen, dass bei Experimenten

verschiedener Art mit einem stets gleichen Ausgangszu-
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stand bezüglich der prozentualen Menge teilungsbereiter Zellen
gerechnet werden kann.

Dass es sich bei der oben beschriebenen Reihe der Grössenver-

teilung von Osteoklastenkernen nicht etwa um einen Sonderfall
normaller Verteilung handelt, sei durch die in gleicher Weise
überprüften Volumina von 200 Kernen aus dem Epithel eines menschlichen

Eierstockfolilikels von 4,2 mm Durchmesser erwiesen. Nach
S tie ve sollen sich Follikel dieser Grösse in einer Ruhephase
befinden; es wäre also anzunehmen, dass sich die Kerngrösse wie
die in einem Gewebe weitgehend ausgeglichenen Zustandes ver-

Abb. 2. Verteilung der Grösse von 200 Epithelkernen aus einem menschlichen

Eierstocksfollikel von 4,2 mm Durchmesser, verglichen mit der Nor¬
malkurve gleicher Streuungsbreite.

hält. Gewisse Hinweise darauf gab die Gliederung dieser Reihe

um 75 cb« als Regelklasse, die ich früher u.a. zur Propagierung
der logarithmischen Berechnungsweise benutzte. Mit einem ßt von
2,582 erweist sich allerdings diese um die empirisch ermittelte
Regelklasse 75 cbu geordnete Reihe als nicht einer Normalkurve
entsprechend. Da aber dem geometrischen Mittel der Wert 80cbp
besser entspricht als der früher nur geschätzte Wert 75 cb,«, sind
die primären Zahlen noch einmal neu um die Regelklasse 80cb,«
geordnet worden. Es ergibt sich die Reihe:

mitte 28,3 33,6 40.0 47.6 56,6 67,3 80,0 95,1 113 134 160 190 226 cb,u

Frequenz 1 0 2 12 24 31 39 34 33 14 5 1 1

Sie hat als Wölbungskoeffizienten ß2 2,835 bei einer mittleren

quadratischen Abweichung a 1,916. Das Mass der Asym-
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metrie beträgt a 0,364; das Verhältnis a/<r ist mit 0,189 klein. Es

handelt sich also wieder um eine der Normalkurve recht nahe
kommende Verteilung, wie auch die Lage der beobachteten Werte zur
Normalkurve in Abb. 2 erkennen lässt. Auffällig ist immerhin die
deutlich übernormal grosse Frequenz in der Klasse 113 ch«. Die
mitten zwischen zwei Regelklassen gelegene Kerngruppe verdankt
ihre auch sonst nicht selten beobachtete Häufung anscheinend
einem besonderen, in seiner biologischen Bedeutung noch nicht
analysierten Zustand. Es muss sich um eine vorübergehende Sistierung

oder wenigstens eine hochgradige Venlangsamung des Wachstums

handeln; ungeklärt ist vorerst, ob dieser Phase ein
charakteristisches Bild der Kernstruktur entspricht, worüber weitere
Untersuchungen folgen sollen.

(Die Grundlagen der vorstehend angewandten statistischen
Methodik sind von Pearson ausgearbeitet worden ; in der hier
benutzten Form, die ausser der Logarithmentafel keinerlei "Hilfswerke

benötigt, ist sie dargelegt von Charles Willigens in
der Zschr. für schweizerische Statistik und Volkswirtschaft 68. Jg.
1932, S. 445 und 69. Jg. 1933, S. 125. In leicht fasslicher Form
gab sie auch Arnold Schwarz, Ueber den Umgang mit Zahlen.

R. Oldenbourg, München und Berlin, 1943.)
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