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H. Hadwiger

Bemerkung über vierdimensionale reguläre
Polytope und Quaternionen

Bilden die n komplexen Zahlen
(1) Zi, Zs, Zn
als Punkte in der Gauss'schen Zahlenebene die Ecken eines regulären
Vielecks, dessen Mittelpunkt im Ursprung liegt, so gilt die elementar
verifizierbare Relation 1)

(2) Z,a + Zs2 + Zn2 0.

Wir betrachten nun einen vierdimensionalen regulären Körper im Quater-
nionenraum, dessen Mittelpunkt wir ebenfalls mit dem Ursprung
zusammenfallen lassen. Die n Eckpunkte des Körpers werden dann durch n
Quaternionen
(3) q», qs, •.., qn

gebildet. Wir zeigen in dieser Note, dass

qi2 + q
2 + + qn2 _ _±U M2 + Ma + + |qn|2

"
2

ist. Diese Relation stellt in dem Sinne eine Analogie zu der
in der Gaussschen Zahlenebene geltenden Relation (2) dar, als beide
Beziehungen sich aus ein und derselben allgemein für reguläre Körper gültigen

Gesetzmässigkeit ergeben. Diese Folgerung kann aber nur in Räumen
hyperkomplexer Zahlen auf diese Weise dargestellt werden.

Es sei
qv avi + iavs + ja« + kav4 (v 1, 2, n).

Aus der rechteckigen Matrix
A ||aik||

bilden wir die vierreihige bzw. die n-reihige Matrix
B A*A llbikll und C AA* llcikll

') Nach einem bekannten Satz der Axonometrie ist das Verschwinden der Quadratsumme für ein
beliebiges System von n komplexen Zahlen notwendig und hinreichend dalür, dass das durch die
Zahlenvektoren gebildete n-Bein in der Ebene die Orthogonalprojektion eines n-Beins orthogonaler und
gleichlanger Vektoren des n-dim. Raumes ist. — Etwas allgemeiner kann gezeigt werden, dass die
Quadratsumme stets verschwindet, wenn das n-Bein in der Gaußschen Zahlenebene die Orthogonalprojektion

eines regulären n-Beins des k-dim. Raumes auf die Ebene darstellt. Ein reguläres n-Bein
wird durch die vom Mittelpunkt nach den n Ecken eines regulären Körpers führenden Vektoren
gebildet. Die Relation (2) stellt in diesem Zusammenhang den einfachsten Spezialfall dieser Aussage
tk 2) dar.



— LIX —

Beide Matrizen haben den Rang 4 und die nämlichen 4 nicht verschwindenden

Eigenwerte,2) die wir mit
Ai, Aj, A3, A4

bezeichnen.
C und B sind die Gram'schen Matrizen der Zeilenvektoren bzw. der

Spaltenvektoren der Matrix A. Bezeichnet 6ik den Zwischenwinkel des i.ten
und des k.ten Zeilenvektors, und R den Radius der dem regulären Körper
umschriebenen Kugel, so gilt

22 Cik3 22 R*cos29ik.
i k i k

Wie an anderer Stelle gezeigt wurde,3) nimmt die Quadratsumme der
Kosinus der Zwischenwinkel der Eckpunktvektoren eines regulären Körpers
des k-dim. Raumes stets den Wert -r an. *) Wir erhalten so für die

Normalspur der Matrix C den Wert

V V n2 R4
Zj Zjcik'- —;—
i k 4

Ferner ist die Spur von C

Zjcü nR2.
i

Nun können diese beiden Invarianten in bekannter Weise durch die Eigenwerte

dargestellt werden. Es gilt

s, s _ n'R4
4

2j a x n R2.
i

Verwenden wir diese Resultate in der Identität

2j2j(Aì — Ak)2 8 Z-iÄi2 — 2 (y.

so folgt

oder

22 (Ai — Âk)2
k

Ai Ag As A4
nR2

4

Wie früher bereits erwähnt, besitzt auch die Matrix B diese vier Eigenwerte.

Ihr Grad fällt also mit der Zahl der zusammenfallenden Eigenwerte
zusammen und sie muss deshalb eine Diagonalmatrix sein. Es gilt

2) Vergi, den Beweis von E. Stiefel, Zum Satz von Pohlke, Comm. math. helv. 10 (1937/38),
S. 208—225, bes. S. 212—213.

3) H. Hadwiger, Ueber ausgezeichnete Vektorsterne und reguläre Polytope, Comm. math, helv-
13 (1940/41), S. 90-107. bes S. 101, 103.

*) Es handelt sich um den kleinsten Wert, den die Quadratsumme der Kosinus der Zwischenwinkel
von n Vektoren im k-dim, Räume überhaupt annehmen kann.



- LX —

0 (i.£ k)

bik | nR'

Nun lässt sich die Relation (4) mühelos verifizieren. Zunächst ist

2j qv* Ai (av, 4- iavs 4- jav» 4" kav4)2
V V

bn — b»2 — bs3 — bi4 -f- i (bu 4- bu) -f j (bn 4- b3i) 4- k (bn 4- bu)
so dass sich mit Rücksicht auf das weiter oben gewonnene Resultat über
die Matrix B

y n R2
z_j qi>2

2

ergibt. Da weiter

ist, folgt

2 |qif nR2
V

2 qt/2

2 M'
V

was zu beweisen war.
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