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Max Schürer

Die Dynamik der Sternsysteme*)
Inhaltsangabe

Nach einem kurzen geschichtlichen Rückblick in der Einleitung
und der Aufzählung der Beobachtungsergebnisse, die durch die
Theorien dargestellt werden müssen, erfolgt die Ableitung der
Grundgleichungen der Dynamik eines Sternsystems. In der Folge
werden als Hauptziel dieser Arbeit die Grundgleichungen nach

vier Methoden unter der Annahme eines dynamisch bekannten
stationären Zustandes zu lösen und einer vergleichenden Betrachtung

zu unterwerfen versucht.

Einleitung
Die Dynamik der Sternsysteme ist eines der jüngsten

Forschungsgebiete der Astronomie. Wohl hat schon H. LAMBERT
in seinen kosmologischen Briefen über die Einrichtung des Weltbaues

im Jahre 1761 die Sterne in ein dem Planetensystem
übergeordnetes System zusammengefasst, aber seine Theorie war von
rein spekulativem Charakter. Erst am Anfang des 20. Jahrhunderts
war die Beobachtungsgenauigkeit so weit fortgeschritten, dass

systematische Bewegungen der Sterne festgestellt und zu einer
Theorie der Sternbewegungen verwendet werden konnten. Bei
der Bestimmung der Apexbewegung der Sonne zeigten sich

Unstimmigkeiten in den aus verschiedenen Sterngruppen hergeleiteten

Resultaten. Sie Hessen sich unter der Annahme zweier
Sternströme beseitigen. Es schien, als ob jeder Stern ein Vertreter
des einen oder andern Stromes sei, die einander in gegensätzlichen

Richtungen durchdringen. Diese Zweistromtheorie wurde
hauptsächlich von KAPTEYN gefördert und war zu Anfang des

Jahrhunderts die einzig herrschende. Einige Jahre später stellte
SCHWARZSCHILD dar, dass man die Sterngeschwindigkeitsver-

*) Die vorliegende Abhandlung ist ein Auszug einer von der philosophischen
Fakultät II der Universität Bern mit dem ersten Preis ausgezeichneten Arbeit.



Max Schürer, Die Dynamik der Sternsysteme 57

teilung ausser durch die Zweistromtheorie auch durch eine Ellip-
soidtheorie erklären könne. Nach ihr ist die Wahrscheinlichkeit
des Auftretens einer Sterngeschwindigkeit mit den rechtwinkligen
Komponenten u, v, w gleich

ce - (h2 u2 + k2 v2 + l2 w2^

c, h, k, 1 sind nur mit dem Ort, aber nicht mit der Geschwindigkeit
veränderliche Grössen.

Obgleich beide Theorien die Beobachtungstatsachen mit ungefähr
derselben Güte darstellten, schien doch die SCHWARZSCHILD-
sche Hypothese physikalisch weniger sinnvoll zu sein. EDDINGTON

und JEANS haben im Jahre 1915 die letzte Theorie auch

dynamisch begründet und ihr so zum Siege verholfen.
Beobachtungsfehler, Unkenntnis der Entfernungen, interstellare
Absorption, Abweichungen vom stationären Zustand u. a. erschweren

immer noch die Lösung des Problems, so dass von einem
Abschluss der Theorie keine Rede sein kann. Trotzdem lässt
uns das Erreichte schon einen Einblick in die dynamischen
Verhältnisse des Sternsystems tun.

Von der Dynamik der Sternsysteme verlangt man die
Darstellung:

a) der differentiellen Rotationseffekte, hervorgerufen durch die
von Ort zu Ort veränderliche Massenströmung,

b) der Geschwindigkeitsverteilung in Form eines dreiachsigen
Ellipsoides, dessen grösste Achse in der Symmetrieebene
des Systems liegt und um wenig von der Richtung nach dem

Systemzentrum abweicht,
c) der Asymmetrie der Geschwindigkeitsverteilungen (die

Schwerpunkte der Geschwindigkeitskörper der Sterngruppen
mit grosser Geschwindigkeitsstreuung bleiben im Masse dieser

Streuung hinter einer idealen Kreisbahnbewegung im
System zurück),

d) der Spiralstruktur der Sternsysteme.
Die ersten drei Forderungen ergeben sich aus Beobachtungen

in unserem Milchstrassensystem. Die Spiralstruktur ist in unserem
eigenen System noch nicht mit Sicherheit nachgewiesen. Es darf aber

angenommen werden, dass das Milchstrassensystem ein Mitglied
der Spiralnebelfamilie darstellt. Wir dehnen deshalb unsere vier
Forderungen auf die Sternsysteme im allgemeinen aus. In der
Folge wird gezeigt, wie diese teilweise erfüllt werden können.
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Die Grundgleichungen
Unser Sternsystem ist mit einem abgeschlossenen System

materieller Punkte zu vergleichen, die ein Gravitationsfeld erzeugen.
Dieses zerlegen wir in

a) das durch Mittelbildung geglättete Gravitationsfeld des

Gesamtsystems — gleich dem Gravitationsfeld einer
kontinuierlichen Massenverteilung, deren von Ort zu Ort stetig
veränderliche Dichte gleich der Dichte unseres Sternsystems
ist — und

b) die „Unebenheiten" des Gravitationsfeldes in der Nachbarschaft

der einzelnen Massenpunkte.

Wir wollen die Kräfte, die durch die beiden Teile des
Gravitationsfeldes hervorgerufen werden, regulär oder dynamisch, bzw.
irregulär oder statistisch nennen. Eine Untersuchung von JEANS
zeigt, dass die irregulären Kräfte in unserem Sternsystem eine

untergeordnete Rolle spielen. Eine nahe Sternbegegnung —
Ablenkung der Sternbahn um weniger als 90° — kommt bei der
in der Nähe der Sonne herrschenden Sterndichte in 3.10u Jahren,

ein Zusammenstoss nur in 6.1016 Jahren einmal vor. Diese
Tatsache unterscheidet unser Sternsystem von den Gasen, bei
welchen nicht das Gesamtgravitationsfeld, sondern die einzelnen
Zusammenstösse die Kinematik und Dynamik beherrschen.

Die Bewegungen und die Dichte unseres Sternsystems lässt
sich statistisch durch eine Verteilungsfunktion f der allgemeinen
Koordinaten qi; der Impulskoordinaten Pj und der Zeit t beschreiben,

so dass
dM f (qi, p;, t) dqi dq2 tlq3 dpi dp2 dp3 (1)

die Masse bedeutet, die sich zur Zeit t in dem 6-dimensiona-
len Phasenelement dqx dq2dq3 dp1dp2dp3 befindet, fist die
Massendichte am Orte qv q2, q3 mit den Impulsen p1; p2, p3 zur Zeit t.
Die Dichteänderung wird bestimmt durch die verallgemeinerte
6-dimensionale Kontinuitätsgleichung der Hydrodynamik

div (f3j) _ ?Ll
(2)

*33 ist ein 6-dimensionaler „Geschwindigkeitsvektor" mit den
Komponenten q4, q2', qs', pi', ps', p3(. Die q.' und p.' sind Ableitungen
nach der Zeit und genügen den HAMILTON'schen kanonischen
Gleichungen
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ô H d H
qi' T~; Pi' —4—; H T4-V (3)M d pi

F e qj ~ w
Da keine Bindungen vorhanden sind, ist die kinetische Energie

T 2i gik q,' qk '

i, k

eine homogene quadratische Form der Geschwindigkeiten und
V V(q,, t)

die potentielle Energie.
Gleichung (2) kann weiter umgeformt werden.

div (f 35) f div 25 + 25 grad f — —
ô t

Nun ist aber

div35 ?{c4(qi')+c4(pi,)}

^2 hm+±(-m\=o (4)

eine Beziehung, die als LIOUVILLE'scher Satz bekannt ist und

aussagt, dass allen Phasenraumelementen dieselbe a-priori-Wahr-
scheinlichkeit zukommt. Gleichung (2) reduziert sich damit auf

• 1
M

dqi ^ Pl dpi)

— y, j Êiï iL _ ^M il
1 1 oft <5qi ^qi api

(f, H) - 4 (5)
ot

(f, H) ist der POISSON'sche Klammerausdruck. Das Potential

V, welches nur den regulären Kräften entsprechen soll, muss
der POISSON'schen Gleichung

^ V 4itxp Aux I I J fdpi dp« dpa (6)

genügen, p ist im Gegensatz zu f die räumliche Massendichte, x ist
die Gravitationskonstante.

Stationarität
Den zwei Teilfeldern der Gravitation entsprechend, unterscheiden

wir auch zwei Arten von stationären Zuständen, das dyna-
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mische Gleichgewicht, dem regulären Felde entsprechend und das

statistische Gleichgewicht, in dem auch die irregulären Kräfte keine
Veränderung der Verteilungsfunktion mehr hervorrufen können.
Vom regellosen Zustand ausgehend, bewirken vor allem die regulären

Kräfte eine gewisse Vermischung. Die Vermischungszeit bis
zum dynamischen Gleichgewicht wird auf 300 Millionen Jahre
geschätzt, der Umlaufszeit unserer Sonne im Milchstrassensystem
entsprechend. Nach Erreichung dieses Zustandes rufen nur noch
die irregulären Kräfte eine Aenderung der Verteilungsfunktion f
hervor, die Relaxation genannt wird. Die Relaxationszeit beträgt
grössenordnungsmässig 10u—1016 Jahre. Nach dieser Zeit ist
die Geschwindigkeitsverteilung kugelsymmetrisch nach
MAXWELL und die einzelnen Partikel zerstreuen sich ins Unendliche.
Statistische Stationarität ist in unserem Sternsystem offensichtlich

noch nicht erreicht. Bei der Herleitung der Differentialgleichung

für die Funktion f haben wir auch die Wirkung von
Kollisionen und nahen Passagen vernachlässigt. Nach den
bisherigen Beobachtungen befindet sich unser Sternsystem auch noch
nicht im Zustand eines dynamischen Gleichgewichtes. Dennoch
werden wir in der Folge meist diesen Zustand als erreicht
betrachten, um speziellere Ableitungen möglich zu machen. Wir
setzen deshalb in Gleichung (5)

di
— 0, die sich damit auf
et

(f, H) 0 (7)
reduziert.

HECKMANN und STRASSL zeigten, dass unter sehr

allgemeinen Voraussetzungen die Gleichung (7) auch für das Zeit-
-mittel der Funktion f von nicht stationären Zuständen gilt.

Methoden zur Lösung der Grundgleichungen
Die simultane Lösung der beiden Gleichungen (5) und. (6),

bzw. (7) und (6) stellt das Hauptproblem der Stellardynamik
dar, das aber in dieser Allgemeinheit noch nicht in Angriff
genommen wurde. Vielmehr wurden meist unter Voraussetzung von
Stationarität und gewissen Symmetrien Lösungen von (7) gesucht.
Die Bindung durch die POISSON'sche Gleichung (6) ist wegen
der Lösungsmannigfaltigkeit von (7) weniger streng, als man
beim ersten Anblick erwartet. Sie legt in erster Linie nur dieser
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Lösungsmannigfaltigkeit Beschränkungen auf. Zur Lösung (7) bzw.
(5) wurden im wesentlichen vier verschiedene Methoden
angewandt.

1. Lösung der Differentialgleichung nach der Methode von
LAGRANGE, der dieselbe auf die Lösung eines Systems
gewöhnlicher Differentialgleichungen zurückführt. Vgl. JEANS und
LINDBLAD.

2. Einsetzen eines bestimmten Ansatzes für f in die
Differentialgleichung und Bestimmung der Konstanten. Vgl. OORT und
EDDINGTON.

3. Aufstellen eines bestimmten Kraftansatzes. Dadurch ist die
Betrachtung individueller Sternbahnen möglich. Die folgende
statistische Zusammenfassung der Gesamtheit der Sterne, die einen
bestimmten Raumteil durchsetzen ergibt eine Verteilungsfunktion,

die der Gleichung (7) genügen muss. Vgl. BOTTLINGER.
4. Untersuchung der relativen Bewegung der Sterne in bezug auf

einen Idealstern in der Nähe der Sonne, der im System eine
Kreisbahn beschreibt. Das Potential V wird in der Nähe dieses
Idealsterns in eine Potenzreihe entwickelt, wodurch eine
Integration ermöglicht wird. Vgl. LINDBLAD und CHANDRASE-
KHAR.
Im folgenden werden diese vier Methoden im einzelnen

behandelt.

/. Methode

Geht man voraussetzungslos an die Lösung der partiellen linearen

Differentialgleichung erster Ordnung (7), so wird man nach

irgendeinem Lehrbuch über partielle Differentialgleichungen auf
die Lösung der Systeme gewöhnlicher Differentialgleichungen, die
Charakteristiken, geführt. Das zu unserer Gleichung (7) gehörige
System ist mit den Gleichungen (3) identisch.

Funktionen <p <p (q^ p() nennt man erste Integrale des kanonischen

Systems (3), wenn sie längs jeder Integralkurve qj (t)
einen konstanten Wert behalten. Funktionen solcher Art sind
z. B. der Energiesatz und das Flächenintegral. Diese Integrale
sind nun auch Lösungen der Differentialgleichung (f, H) 0.

Es gibt für unser System 5 von einander unabhängige erste
Integrale. Mit ihnen ist auch jede willkürliche differenzierbare Funktion

f f (<pi, (f2, <p3, <pi, <fi) eine Lösung. Jedes erste Integral stellt



62 Mitteilungen der Naturf. Gesellschaft Bern 1940

eine 5-dimensionale Hyperebene im 6-dimensionalen Phasenraum
dar, auf der die Bahnkurven des Systems verlaufen müssen. Die
ersten Integrale werden in zwei Klassen eingeteilt, in die primitiven,

d. h. unendlich vieldeutigen, und in die imprimitiven. Würden
in die willkürliche Funktion primitive Integrale eingesetzt, so wäre
das Ergebnis für unsere Verteilungsfunktion eine Konstante. LJm

diese triviale Lösung zu vermeiden, lassen wir als Argumente der
willkürlichen Funktion f nur imprimitive Integrale zu.

Um ausser dem Energieintegral weitere erste Integrale zu erhalten,

müssen bestimmte Symmetrievoraussetzungen gemacht werden.
Es werden im folgenden Kugelsymmetrie und Zylindersymmetrie
vorausgesetzt.

In einem kugelsymmetrischen System ist das Potential V eine
Funktion des Abstandes vom Kugelmittelpunkt allein. Wir führen
Polarkoordinaten ein.

x r cos <p sin ê
y — r sin <p sin #
z r cos #

Hieraus lässt sich leicht die kinetische Energie T berechnen.

T 1 (x'2 + y'2 + z'2)

y (r'2 -f. r2 sin2 & <p'2 + r2. #'8)

± (R2 + </>2 + 6>2)

R, 0 und 6 sind lineare, zu r', a>' und &' parallele
Geschwindigkeitskomponenten. Die den räumlichen Koordinaten r, <p, &

entsprechenden Impulskoordinaten p, v, <p erhält man aus
c"T (5T » • o q > $T Q,

p — r ; y — rä sin2 & w ; iL — r2 #
dr' *

dip'
y r ßa,

Die HAMILTONsche Funktion H erhält damit die Form

H H(qi; pO 1 (p»+ -jJg— 4- £) + V(r),
deren verschiedene partielle Ableitungen die kanonischen
Gleichungen

P — er ~ r8 sin2 û "+"
r3 dr

• - ß-^ 0Z
dip

,,____ dH _ y2 cotg #

r' :

dp p;

r*' _
en X

V r2 sin2 #'
#'

cH r2 J dß- r2 sin2 # ergeben.
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Erste Integrale dieses kanonischen Systems sind:

^ (R* -f 0* + d2) + 2 V konst.

I2 x r sin ê 0 konst.

I8 ^2 4- -^— r2 (<92 + <PS) konst.
sin2 # vi/Verlangen wir, dass nicht nur das Potential V, sondern auch die

Verteilungsfunktion Kugelsymmetrie zeigen soll, so ist das Integral
U wegen der Auszeichnung der «^-Richtung und der Abhängigkeit
von # zu verwerfen. Die Verteilungsfunktion ist somit von der
Form

f f (h, Is).

Lassen wir für die Verteilungsfunktion f, wie es die Beobachtungen

nahe legen, nur das SCHWARZSCHILD'sche Ellipsoidgesetz
f Pe - Jr f2

zu,

wo p und a Konst. sind und £2 eine quadratische Form in den

Geschwindigkeiten ist, so kann £2 nur die Form

p h 4- k Ia R2 -f (1 + k r2) (<Ü>2 4- ß2) -f 2 V
haben. Der Geschwindigkeitskörper ist also ein Rotationsellipsoid
mit dem Radiusvektor als Rotationsachse. Eine Sternströmung
kann nur in Richtung dieses Radiusvektors vorhanden sein.

In einem achsensymmetrischen System ist das Potential V eine
Funktion des Abstandes von der Rotationsachse m (klein Pi) und
der Zylinderkoordinate z, d. h.

V V (5J, z).

Wir führen Zylinderkoordinaten ein.

x w cos #
y cd sin ¦&

z — z

Analog dem Früheren wird die kinetische Energie
T \ (öj'2 4- W2 d'2 4- z'2)

y (fl2 + 02 + Z2)

Die den räumlichen Koordinaten w, ê, z entsprechenden
Impulskoordinaten p, -f, C erhält man aus

dT _, dT _2 dT
P r—, w ; l -— w2 $ ; Ç —, Z

(Jeu cv dz
Die HAMILTON'sche Funktion und die kanonischen Gleichungen

lauten
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H 1 {pl + U + C) + V &' Z)

dH

dp j°;
dH
dw

^2
w¦ —

dV
dw

di. ~ ö>2
1 *•

dH

da
0

dH
Z ^cü: C; c

dH

dz —
dV
<5 z

Erste Integrale dieses kanonischen Systems sind:

Il (/7» + 02 + Z2) + 2V konst.

If --+ m 6 konst.

Ist V (s, z) von der Form V l (w) + V8 (z), oder anders ausgc
drückl:, ist

a2V
— n

dw dz

so existiert noch ein weiteres erstes Integral
I3 Zs + Va (z) konst.

Den beiden Fällen entsprechend kann unsere Verteilungsfunktion
die Formen

f f (h, I2) und f f (L, h, Is) annehmen.

Ist wiederum f von der Form

f Pe - a^ f\
so ist die allgemeinste Darstellung von g2 im ersten Falle

P Ii + 2 kr Is 4- ki U*

— /72 -f- ß2 4- Z2 4- 2 kt w ß 4- k2 m2 ö» 4- 2 V (m, z)

-n-+p+(H.M(. + ri^ïlP-rSl*il+2ï
/7* 4- a2 (ß — eay 4- z2 -f- 2 Vo

52 i I L. -S Û kl 5> 1 kl2 ÖJ2
/2 1 4" ks W*, ßo _8, Vo V —

1 -f ki w2' 2 1 -f k* w2

Der Geschwindigkeitskörper ist auch hier ein Rotationsellipsoid.
Die mittlere Geschwindigkeit ist aber für die betrachtete
Sterngruppe nicht gleich 0 wie beim kugelsymmetrischen Fall, sondern
gleich

öo ^ ö) «?'o w wa.

Die Rotationsachse des Geschwindigkeitskörpers liegt in einer
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der Ebenen z konst. und bildet mit der ss-Richtung einen rechten

Winkel. Dieses Resultat steht im Widerspruch zu den Beobachtungen,

die zwar ebenfalls ein Rotationsellipsoid als Darstellung
der Geschwindigkeitsverteilung wahrscheinlich machen, dessen
ausgezeichnete Achse aber in Richtung zum Zentrum des Systems liegt.

Zur Behebung dieser Schwierigkeit wurden nach verschiedenen
Autoren entweder die Fiktion eines dynamisch stationären Zu-
standes fallen gelassen (LINDBLAD, HECKMANN u. STRASSL)
oder die Gültigkeit des NEWTON'schen Gravitationsgesetzes
bezweifelt (PILOWSKI nimmt z. B. abstossende Zusatzkräfte an).
LINDBLAD geht unter anderem auch vom Bestehen der Beziehung

02V
—— •« 1 aus.
ôcu dz

Indem man diesen Ausdruck streng 0 setzt, kann für £2

e2 I, 4- 2 ki U 4- k2 I22 4- ks Is

gesetzt werden. Bei geeigneter Wahl der beliebigen Konstanten
kv k2 und k3 ist eine bessere Darstellung der beobachteten Ge-

schwindigkeitsellipsoide durch die Theorie möglich.
Unser Milchstrassensystem hat in grossen Zügen die Form eines

stark abgeplatteten Rotationsellipsoides, ist also ein achsensymmetrisches

System, das ein grosses Drehmoment vermuten lässt.
Wir haben gesehen, dass in solchen Systemen der Mittelpunkt der

Geschwindigkeitsellipsoide eine Bewegung senkrecht zur cu-Richtung,

eine Kreisbewegung ausführt. Wir gehen auf die dadurch
hervorgerufenen Effekte, die von OORT untersucht wurden, ein.
Es werden nur die Bewegungen der Ellipsoidmittelpunkte ins
Auge gefasst.

Wir können ohne Einschränkung der Allgemeinheit des
Problems unsern Ort im Raum mit den Koordinaten '

ä) =¦ tüo, d- 0, Z Zo

bezeichnen. Die mittlere Geschwindigkeit einer benachbarten
Sterngruppe mit den Koordinaten

<n 7= wo -\- dw, tf 0 + dì?, z zo-|-dz
wird durch den Geschwindigkeitsvektor

25 [m, 9t]

in einem NEWTON'schen Inertialsystem dargestellt;
5
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m (U, U, w)
w

CR =- %, 4- d 9Ì (so 4- d s, 0 + s« d â, z0 + d z)

(so 4- $, r/, zo 4- Q-

Die relative Geschwindigkeit in bezug auf den Beobachter im
Punkte

9îo (so, 0, zo) ist
0 25 — 25o [to, 9t] — [iüo, 9to]

[ro0 4- d m, 9to -f d 9t] — [n>o, 9to]

[n»o, d 9t] + [d ro, 9to] i, C).

j m „ I [iöo ßo. i d ßo 1,
d m (0, 0, — (— — — d s 4- —- dz

tuo L dw wo dz J

Eine einfache Rechnung unter Verwendung der oben gegebenen
Substitutionen ergibt

rr-i n\ ßo dßo -. dßo „0 (f V, C) (— — 1?, -TT £ + -"T— C 0)
tuo oeu ö Z

Wir führen Polarkoordinaten ein.

£ r cos 1 cos b

^ r sin 1 cos b

C r sin b

r' cos 1 cos b £' -|- sin 1 cos b rf -f- sin b <T

r cos b T — sin 1 £' 4" cos 1
• 7'

r b' — — cos 1 sin b £' — sin 1 sin b rf -\- cos b Ç

Setzen wir für £', y', Ç die gefundenen Werte ein, so erhält man

r' =z A r sin 2 1 cos2 b 4- C r sin 1 sin 2 b
T B 4- A cos 2 1 4- 2 C tg b cos 1

b' — ~ A sin 2 I sin 2 b — 2 C sin 1 sin2 b,
1 iddo ßo\ 1 /d<9o tVwo
1 /dWo Wo\

_ R
1 /dfe>o 6>o

2 '
c5 S So / ' 2 \d S So

p
1 dßo

^ ~ 2~dï
Betrachten wir die Bewegungen der Sterne in der Milchstrassen-

ebene, für die b 0 gesetzt werden kann, so erhält man für die
Radialgeschwindigkeiten r' und die Eigenbewegung in galaktischer
Länge 1' die etwas einfacheren Formeln

r' A r sin 2 1

1' B 4- A cos 2 1.
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Nach ihnen tragen die systematischen Bewegungen den Charakter

von Doppelwellen. 1 wird von der Richtung nach dem
Milchstrassenzentrum aus gezählt. Die Beobachtung ergibt für die beiden

Konstanten A und B

A — 0.0155 Km/sek per Parsek,
B —0.012 Km/sek per Parsek.

Es lassen sich im weiteren Beziehungen zwischen diesen
kinematischen Ergebnissen und der Geschwindigkeitsverteilung
herleiten. Nach Früherem ist

r. I a 0 00 n « ßo
B 4- A — -rr^, B — A rr- w;

Cl w w
k, s ki s

ßo
1 4- k. s,. ~" P '

dßo
_

ki 2 ki k2 m

Jû>~ ~~ I2" "I T1 '

B - A
B ~À

À ist das Achsenverhältnis des Geschwindigkeitsellipsoides,
das durch obige Gleichung mit den OORT'schen Rotationskonstanten

A und B in enger Beziehung steht. Ferner war
/TP + Z2 + 2 Vo (ß — ßo)2\

a2 ' b2 /f P e \
/n24-z2 (e—ß0)2\
X a2 "•" b* /f. e

2Vo a
À

f. P e a2 ' b

Die räumliche Dichte p findet man aus dem dreifachen Integral
oo

__ /n24-z2 (6>—ß0)2\
b2

J J fi e " " ' dEdödZ
CO

Durch die Substitutionen
X (ß - e0) ft ; ci2 n2 + Z2 4- ft2

erhält man dessen Lösung

_ 2 Vo

P a2 ä.8/2
P -j e (tu a2) '

Die logarithmische Differentiation dieses Ausdrucks ergibt nach

einigen Umformungen
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j_ Ap L n — —i — (— —)
p ds s a2 a2 Ids s/

Wir wollen die „Rotationsgeschwindigkeit" unserer Sterngruppe
mit der Kreisbahngeschwindigkeit eines Sterns im Orte des
Beobachters vergleichen. Für die Kreisbahngeschwindigkeit gilt

n* - dV
0c w -rr'ucu

Setzen wir dies in obigen Ausdruck ein, so erhalten wir

p dcu w x a2 ' a2 w v '

Die Beobachtungen lassen erkennen, dass im allgemeinen die
Sternbahnen wenig von Kreisen abweichen. Die Differenz

S ßc — do

ist daher klein gegenüber ßo. Wir können deshalb für
6»c2 — 0O2 S2 4- 2 S 6»o oo 2 S 0o

setzen und erhalten schliesslich

J_ dp 1

n b%

p de
S — ^4-JL(i _ b!)lis ^ s l a2,J4 00

S stellt das Zurückbleiben der Geschwindigkeitsellipsoidmittel-
punkte hinter der Kreisbahngeschwindigkeit dar. Betrachten wir
verschiedene Sterngruppen, die nach physikalischen Gesichtspunkten

ausgelesen sein mögen, so ist nicht zu erwarten, dass alle
dieselbe Streuung zeigen. Da aber der Faktor von a2 in der
Gleichung für S für die verschiedenen Sterngruppen nahezu derselbe
sein wird, ist S proportional dem mittleren Geschwindigkeitsquadrat

der Sterngruppen, eine Gesetzmässigkeit, die schon STRÖMBERG

aus Beobachtungen erkannte und theoretisch zu deuten
versuchte.

Dasselbe Gesetz erhält man auf einem weniger strengen, aber
anschaulichen Weg. Wir vergleichen zu diesem Zwecke die
Gesamtenergie Wc des Sterns mit der Kreisbahngeschwindigkeit mit
der mittleren Gesamtenergie Wc pro Stern der betrachteten
Sterngruppe.

Wc ì 0C2 + V

Wo i (0o2 + a2 4- Ì b2) 4- V
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Die Differenz der beiden Energien beträgt

Wc - Wo Ì (0C2 - 0o2) - Ì (a2 4- i b2)

Betrachten wir die Randzone eines Sternsystems, so wird dort
Wc—Wo positiv sein, da sonst die Mehrzahl der Sterne der betrachteten

Sterngruppe während der längsten Zeit ihrer Bewegung
ausserhalb der Kreisbahn anzutreffen wären.

Diese Gefahr wächst mit der Streuung in der Sterngruppe. Wir
machen deshalb die etwas hypothetische Annahme

Wc—Wo x a2, x konstant > 0.

Mit derselben Vernachlässigung wie früher finden wir dann

&~ 00

1 b2

' + 2-0 + 2T*)

Es ist damit mehr eine Begründung unserer hypothetischen
Annahme, als ein Beweis für die STRÖMBERG'sche Asymmetrie
gewonnen.

2. Methode

OORT ist auf einem andern, spezielleren Wege an die Lösung
des Problems gegangen. Er macht schon am Anfang für die
Verteilungsfunktion den Ansatz

— [h2n24-k2(0-0o)24-l2Z24-mn(0-0o) + nIIZ4-p(0-0o)Z]
f foe

und setzt ihn in die Differentialgleichung (7) ein. Zu diesem
Zwecke muss letztere transformiert werden. Wir führen die
Koordinaten s, #, z, II, 0, Z ein. Es ist

DJ _ di_ _, elf „, &i _, ôf „, di „, di
Dt — dw " + 9* + ïi*+hn,+à"+àx

^n4-^74_—(-_—ìJ-^-r-M^ — ^l^Y-
ds "|" oz "t" c-n w dw + dß( s} dz ez

=:~

Es ist zu beachten, dass f0, h2, k2, l2, m, n, p Funktionen von
w und z sein können, aber weder von den Geschwindigkeiten, noch
von â abhängen. Es handelt sich bei obigem Ansatz also wieder
um ein SCHWARZSCHILD'sches Geschwindigkeitsellipsoid in
einem achsensymmetrischen System. Setzen wir f in die letzte
Gleichung ein und dividieren wir das Ganze durch —f, so folgt:



Ó4m0o) d(pßo)\ e,
m0o 2ezd(k?ßo) ^ djpßo)
s e? z dz
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ir ^ + n2 0 (?5 _ B) + n2Z(^ 4- S)
dw cw w' ' dz dw

+ n^ff + 2J^^)4-n0za + $1 -1)dcu o; ' ' xdZ dw w

+ nZ2(^4-^) + 03ni 0 ^4-^)(9tu oZ ' tw dz eu

I 0 z2 dp
i z-

"'8 n-e (in 0o)
2 n 0 {e{kt0o) k2do

dz dz d w l d tu w

(d(mßo) d(pßo)\

„/cH^eo2) - 0.9^v <9V 1 ôfo\ _, ôv ôV.
-f- Il i -^ 4-2 h2 n r v~ f — @(m h P r—)1 l dw ' dS dz fo ösj v as ' * dz'

7/a(k2eo2) 019av 5V 1 ôfo\ _ ev. 0ev4- Z< v 7 — 2 l2 5 n^-r r-\ — meo^^+peo^^^O.
y dz dz dw Io oz I ocu ' tfz

Diese Gleichung ist nach Potenzen von LT, 6 und Z geordnet. Da
die Geschwindigkeitskomponenten voneinander unabhängig sind,
müssen alle Koeffizienten verschwinden. Wir erhalten daraus zum
grösseren Teile eine Reihe von partiellen Differentialgleichungen,
die jedoch verhältnismässig leicht zu lösen sind. Das Resultat
deckt sich vollkommen mit demjenigen der ersten Methode. Es

wird.
m n p 0

h2 l2 k2 — c0 s2

— (h2 LT2 4- k2 (0 — Oo)2 4- h2 Z2)
f fo e

Auch die Beziehung zwischen dem Achsenverhältnis des Ge-

schwindigkeitsellipsoides und den OORT'schen Rotationskonstanten,

sowie die Formel für die STRÖMBERG'sche Asymmetrie
lässt sich ohne Schwierigkeit nach dieser Methode herleiten. Sie

lauten mit den neuen Ausdrücken
h2 _ B
k2 — B — A

und

s- i n sp ì _h2|
4 h2 (A — B \P dm ^ w

K k2'/
d2 V

•st -ir^r-cT 0, so folgt daraus wie früher, dass
dw dz

h2 nicht gleich l2.
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EDDINGTON hat diese Methode angewandt, um einen Satz von
allgemeiner Bedeutung aber mehr theoretischem Interesse
abzuleiten. Er setzt ebenfalls das SCHWARZSCHILD'sche Geschwin-
digkeitsverteilungsgesetz voraus. Die Achsen der von Ort zu Ort
veränderlichen Geschwindigkeitsellipsoide sind die Tangenten an
eine dreifache orthogonale Flächenschar, den Hauptgeschwindigkeitsflächen,

die bei dynamisch stationären Zuständen Flächen
zweiter Ordnung sein müssen.

3. Methode

Die erste und zweite Methode suchen direkt die
Geschwindigkeitsverteilungen darzustellen, ohne etwas über die einzelne Sternbahn

aussagen zu können. Die dritte und vierte Methode gehen
von der Betrachtung der einzelnen Sternbahn aus und suchen erst
nachträglich durch statistische Zusammenfassung der einzelnen
Bahnen Aussagen über die Geschwindigkeitsverteilungen zu
machen. Die dritte Methode untersucht die Sternbahnen im Grossen,

die vierte im Kleinen.
EDDINGTON hat die dritte Methode zur Untersuchung des

Dichteverlaufs in einem kugelförmigen, dynamisch stationären
Sternsystem angewandt, um sie mit Beobachtungen an Kugelsternhaufen

zu vergleichen. SCHWARZSCHILD stellte die Gleichungen
für die Bahnkurven in einem homogenen Sternsystem von der Form
eines dreiachsigen Ellipsoides auf und erhält, indem er sie
statistisch zusammenfasst, für die Verteilungsfunktion die Form

f f (x'2 4- A2 x2, y'2 4- B2 y2, z'2 4, C2 z2i,

die sich auch nach der ersten Methode herleiten lässt. Die
Voraussetzungen sind hier von so spezieller Natur, dass diese
Untersuchungen nur von theoretischem Interesse sind. BOTTLINGER
geht von den wirklichen Verhältnissen in unserem Milchstrassensystem

aus, und wir wollen seinen Gedankengängen in kurzen

Zügen folgen. Er betrachtet in erster Linie ein ebenes Problem und
nimmt an, dass sich die Sterne in Ellipsen bewegen, deren Brennpunkt

im Zentrum des Milchstrassensystems liegt. Er denkt sich

also die gravitierende Masse des Systems im Zentrum vereinigt.
Aus dem Zweikörperproblem, nach welchem wir jetzt die Bahnen

behandeln dürfen, werden die nächsten Beziehungen
abgeleitet. Ist v die Geschwindigkeit, a die grosse Halbachse der
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Ellipse, e deren Exzentrizität, r der Radiusvektor und # der
Winkel zwischen Radiusvektor und Geschwindigkeitsvektor, dann

gilt
2 1

v2 x2 M -); v r sin â x yj M a (1 — e2)
r 3.

BOTTLINGER stellt die Geschwindigkeitsvektoren als Funktion

der Bahnhalbachse und der Exzentrizität graphisch dar. Er
benutzt die obigen Beziehungen, in denen man den Energiesatz und
den Flächensatz erkennt. Die Halbachse a und die Exzentrizität
e können an Stelle des Energieintegrals und des Flächenintegrals
treten. Unsere Verteilungsfunktion kann also auch als

f f(a, e) geschrieben werden.
Aus der oben genannten Figur (siehe z. B. Hdb. d. Astrophysik

Bd. V2) kann auf anschaulichem Wege die Asymmetrie erkannt
werden. Der Ort der Sonne in dieser Figur entspricht einer
Exzentrizität von ungefähr 0,15, einer Halbachse von 1,14 in
Einheiten Sonne-Milchstrassenzentrum und einer wahren Anomalie
von 320°. Man erkennt aus diesen Zahlenangaben die Anschaulichkeit

der Methode.
Die Voraussetzung, dass sich alle Sterne in einer Ebene und

in KEPLER-Ellipsen bewegen, muss fallen gelassen werden. In
Wirklichkeit wird ein Stern Rosettenbahnen beschreiben, die
zwischen einer KEPLER-Bewegung und einer harmonischen Ellipse
liegen. Die Bahnen werden im allgemeinen nahezu eben bleiben,
aber gegeneinander geneigt sein, und ein neues Integral (sin i
konst. im Zweikörperproblem entsprechend) wird auftreten. Die
der Knotenlänge und der Perihellänge entsprechenden Integrale
treten nicht auf, da dieselben bei achsensymmetrischen Systemen

auf den ganzen Kreisumfang gleichmässig verteilt sein müssen.

Nach der ersten Methode ist zwischen der „Neigung" und
der „Exzentrizität" eine enge Korrelation zu erwarten.
BOTTLINGER setzt empirisch a (sin i) a a (e), a ist die Verteilungsfunktion

für sin i, resp. e.

Wie man sieht, bleiben ungelöste Fragen bestehen. Es sollten
plausible Ansätze für die Kraft

(F t-rrn^ "ach BOTTLINGER, F % + DR nach OORT)
1 -(— Div1 K^

durchgerechnet und eine Erklärung für die Korrelation zwischen

„Neigung" und „Exzentrizität" gefunden werden.
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4. Methode
Nahezu kreisförmige Bahnen bezieht man in der Dynamik öfters

auf rotierende Koordinatensysteme. Die Abweichungen von der
Kreisbahn werden dadurch zu kleinen Schwingungen um ein
rotierendes Zentrum. LINDBLAD untersuchte nach dieser Methode
Sternbahnen in der Ebene. CHANDRASEKHAR entwickelte die
Verallgemeinerung in drei Dimensionen. Der Ursprung des
rotierenden Koordinatensystems bewege sich auf einer Kreisbahn im
Abstand Si vom Systemzentrum, mit der Winkelgeschwindigkeit
an. Die £-Achse falle beständig mit der s?i -Richtung zusammen,
die ^-Achse stehe senkrecht darauf und liege in der Symmetrieebene,

während die Ç-Achse parallel zur z-Achse gerichtet ist.
Das Potential sei wie früher V V(öj, z). Die Gleichungen von
LAGRANGE lauten

e» o ,,> 2 i- i t\ Si 4- £ ^Vf _ 2 w, r, - w* (tui 4- £) ^- ^
n dW

V" + 2 Wl £' - tui2 r) — \ £2
w äw

<*» _£¥
Wir bestimmen die Winkelgeschwindigkeit aus der Gleichung

BV
<o'Zw, =(--),

Das Koordinatensystem sei im übrigen so gewählt, dass die
Koordinaten £, -q, Ç des betrachteten Sterns während längerer Zeit
klein bleiben. Wir können dann die Ableitungen der Potentialfunktion

nach Taylor entwickeln.

s Si 4~ £

iB V\ /8 V\ /ë2V\ „ / 8* V
+ e bsL + c

\dojlw, C wa»/i wa»2/ i \dw dÇ/ i

Unter Beachtung von

if + 2 o-t £' 0 -> 7' — 2 cui £

nehmen die Gleichungen von LAGRANGE die Form
£" 4- a £ 4- /9 C 0
C" + /9 £ + r C - Q

an. Ihre Integration lässt sich nach bekannten Methoden aus-
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führen. Transformiert man endlich die erhaltenen Integrale auf
ein für alle Sterne gemeinsames Koordinatensystem, so lauten
dieselben

h l(2 (A+co) + aT=P Q) + gT^^(Co + «r^ä2 Q)/2 (A 4- tu) '
ay - ß2 "" '

g22 — a v'u '

ay — ß

+ -4, (£'o ^— Co)2
gl2 g>2 — ß

ß v2(A4-tu) '

ay— ß2 ^ ' ^ ' ay—ß2
1 ,&»-a e,. „«+ «?<*-?-*-<••>

A ;{^2-©0}4a»o

I, und I2 sind zwei erste Integrale, die wie bei der ersten
Methode als Argumente einer beliebigen Funktion f dieselbe zu
einer Lösung unseres Problems machen. Speziell ist

— k (I, 4- ;.2 I,).
f fo e

Eine Diskussion dieser Gleichung zeigt, dass das Geschwin-
digkeitsellipsoid drei verschiedene Achsen haben kann, und dass

die Hauptachse, die nach der Symmetrieachse des Systems zeigt
mit derselben einen Winkel 41 90° einschliessen kann. CHAND-
RASEKHAR glaubt, damit einen Widerspruch zwischen Theorie
und Beobachtung behoben zu haben. M. E. kann man nach der
beschriebenen Methode nur Aussagen über beschränkte Gebiete,
in denen unser Ansatz für das Potential nahezu seine Gültigkeit
behält, machen. Aussagen über das System als Ganzes sind
unzulässig.

Schlusswort

Die vier betrachteten Methoden führen im grossen Ganzen zu

gleichen Resultaten. Einige Unterschiede müssen noch geklärt
werden. Vor allem weisen die letzten beiden Methoden, wenn
auch noch nicht beweiskräftig, auf ein drittes Integral, das die
grösste Unstimmigkeit zwischen Beobachtung und Theorie, das

Bestehen eines dreiachsigen Ellipsoides, zum Verschwinden brächte.
Es hat eine Reihe Versuche gegeben, diesen Widerspruch durch
Aufgeben der Stationarität oder des NEWTON'schen Gravitations-
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gesetzes zu lösen (HECKMANN und STRASSL, LINDBLAD,
PILOWSKI und andere). Die dabei verwendeten Methoden sind
dieselben geblieben. Die verfügbaren Konstanten werden
vermehrt, und es ist anzunehmen, dass sich die Theorie den Beobachtungen

besser anpassen lässt. Die Erklärung der Doppelwellen
in den Radialgeschwindigkeiten und den Eigenbewegungen ist bei

jeder Sternströmung möglich (PILOWSKI, OGRODNIKOFF,
MILNE).

Vielleicht wird einmal eine Theorie über die Spiralstruktur
der Sternsysteme zugleich weitere Widersprüche in der Dynamik
eines Sternsystems lösen. Es gibt schon jetzt hiefür bemerkenswerte

Anzeichen.
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