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Max Schiirer

Die Dynamik der Sternsysteme *)

Inhaltsangabe

Nach einem kurzen geschichtlichen Riickblick in der Einleitung
und der Aufzihlung der Beobachtungsergebnisse, die durch die
Theorien dargestellt werden miissen, erfolgt die Ableitung der
Grundgleichungen der Dynamik eines Sternsystems. In der Folge
werden als Hauptziel dieser Arbeit die Grundgleichungen nach
vier Methoden wunter der Annahme eines dynamisch bekannten
stationdren Zustandes zu I6sen und einer vergleichenden Betrach-
tung zu unterwerfen versucht. ‘

Einleitung

Die Dynamik der Sternsysteme ist eines der jiingsten For-
schungsgebiete der Astronomie. Wohl hat schon H. LAMBERT
in seinen kosmologischen Briefen iiber die Einrichtung des Welt-
baues im Jahre 1761 die Sterne in ein dem Planetensystem {iber-
geordnetes System zusammengefasst, aber seine Theorie war von
rein spekulativem Charakter. Erst am Anfang des 20. Jahrhunderts
war die Beobachtungsgenauigkeit so weit fortgeschritten, dass
systematische Bewegungen der Sterne festgestellt und zu einer
Theorie der Sternbewegungen verwendet werden konnten. Bei
der Bestimmung der Apexbewegung der Sonne zeigten sich Un-
stimmigkeiten in den aus verschiedenen Sterngruppen hergelei-
teten Resultaten., Sie liessen sich unter der Annahme zweier Stern-
strome beseitigen. Es schien, als ob jeder Stern ein Vertreter
des einen oder andern Stromes sei, die einander in gegensitz-
lichen Richtungen durchdringen. Diese Zweistromtheorie wurde"
hauptsichlich von KAPTEYN gefoérdert und war zu Anfang des
Jahrhunderts die einzig herrschende. Einige Jahre spiter stellte
'SCHWARZSCHILD dar, dass man die Sterngeschwindigkeitsver-

*) Die vorliegende Abhandlung ist ein Auszug einer von der philosophischen
Fakultit 11 der Universitit Bern mit dem ersten Preis ausgezeichneten Arbeit.
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" teilung ausser durch die Zweistromtheorie auch durch eine Ellip-
soidtheorie erkldren konne. Nach ihr ist die Wahrscheinlichkeit
des Auftretens einer Sterngeschwindigkeit mit den rechtwinkligen
Komponenten u, v, w gleich
ce — h2u? 4 k2v2 4 1P w?)

¢, h, k, | sind nur mit dem Ort, aber nicht mit der Geschwindig-
keit verinderliche Grossen.

Obgleich beide Theorien die Beobachtungstatsachen mit ungefihr
derselben Giite darstellten, schien doch die SCHWARZSCHILD-
sche Hypothese physikalisch weniger sinnvoll zu sein. EDDING-
TON und JEANS haben im Jahre 1915 die letzte Theorie auch
dynamisch begriindet und ihr so zum Siege verholfen. Beob-
achtungsfehler, Unkenntnis der Entfernungen, interstellare Ab-
sorption, Abweichungen vom stationiren Zustand u. a. erschwe-
ren immer noch die Lésung des Problems, so dass von einem
Abschluss der Theorie keine Rede sein kann. Trotzdem ldsst
uns das Erreichte schon einen Einblick in die dynamischen Ver-
haltnisse des Sternsystems tun. ' :

Von der Dynamik der Sternsysteme verlangt man die Dar-
stellung: _

a) der differentiellen Rotationseffekte, hervorgerufen durch die

von Ort zu Ort veranderliche Massenstromung,

b) der Geschwindigkeitsverteilung in Form eines dreiachsigen
Ellipsoides, dessen grosste Achse in der Symmetrieebene
des Systems liegt und um wenig von der Richtung nach dem
Systemzentrum abweicht,

c) der Asymmetrie der Geschwindigkeitsverteilungen (die
Schwerpunkte der Geschwindigkeitskorper der Sterngruppen
mit grosser Geschwindigkeitsstreuung bleiben im Masse die-
ser Streuung hinter einer idealen Kreisbahnbewegung im
System zuriick),

d) der Spiralstruktur der Sternsysteme.

Die ersten drei Forderungen ergeben sich aus Beobachtungen
in unserem Milchstrassensystem. Die Spiralstruktur ist in unserem
eigenen System noch nicht mit Sicherheit nachgewiesen. Es darf aber
angenommen werden, dass das Milchstrassensystem ein Mitglied
der Spiralnebelfamilie darstellt. 'Wir dehnen deshalb unsere vier
Forderungen auf die Sternsysteme im allgemeinen aus. In der
Folge wird gezeigt, wie diese teilweise erfiillt werden kdnnen.
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Die Grundgleichungen

Unser Sternsystem ist mit einem abgeschlossenen System mate-
rieller Punkte zu vergleichen, die ein Gravitationsfeld erzeugen.
Dieses zerlegen wir in

a) das durch Mittelbildung gegliattete Gravitationsfeld des Ge-
samtsystems — gleich dem Gravitationsfeld einer kontinu-
ierlichen Massenverteilung, deren von Ort zu Ort stetig
verdnderliche Dichte gleich der Dichte unseres Sternsystems
ist — und

b) die ,,Unebenheiten‘‘ des Gravitationsfeldes in der Nachbar-
schaft der einzelnen Massenpunkte.

Wir wollen die Krifte, die durch die beiden Teile des Gravita-
tionsfeldes hervorgerufen werden, regulir oder dynamisch, bzw.
irregular oder statistisch nennen. Eine Untersuchung von JEANS
zeigt, dass die irreguliren Krifte in unserem Sternsystem eine
untergeordnete Rolle spielen, Eine nahe Sternbegegnung — Ab-
lenkung der Sternbahn um weniger als 900 — kommt bei der
in der Nidhe der Sonne herrschenden Sterndichte in 3.101¢ Jah-
ren, ein Zusammenstoss nur in 6.1016 Jahren einmal vor. Diese
Tatsache unterscheidet unser Sternsystem von den Gasen, bei
welchen nicht das Gesamtgravitationsfeld, sondern die einzelnen
Zusammenstosse die Kinematik und Dynamik beherrschen.

Die Bewegungen und die Dichte unseres Sternsystems lasst
sich statistisch durch eine Verteilungsfunktion f der allgemeinen
Koordinaten q;, der Impulskoordinaten p; und der Zeit t beschrei-
ben, so dass

dM =: f (qi, p;, ) dqi dqgz dgs dp: dp: dps (1
die Masse bedeutet, die sich zur Zeitt in dem 6-dimensiona-
len Phasenelement dq, dq,dqs;dp,dp,dps; befindet. f ist die Mas-
sendichte am Orte q,, q,, q; mit den Impulsen py, ps, pPs zur Zeit t.
Die Dichtednderung wird bestimmt durch die verallgemeinerte
6-dimensionale Kontinuititsgleichung der Hydrodynamik

o f
51 (2)
DB ist ein 6-dimensionaler ,,Geschwindigkeitsvektor* mit den Kom-
ponenten qi’, q’, qs’, pt’, pe’, ps’. Die q’ und p; sind Ableitungen
nach der Zeit und geniigen den HAMILTON’schen kanonischen
Gleichungen

div (f8) = —
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S LU R HoTv
qi 6p, pi—-—aqi, == + ()

Da keine Bindungen vorhanden sind, ist die kinetische Energie
T=3 2 Zik 4’ G’

eine homogene quadratlsche Form der Geschwindigkeiten und

= V(qir t)
die potentielle Energie.

Gleichung (2) kann weiter umgeformt werden.
div (fB) = fdiv8 4 Bgradf = —

Nun ist aber

div%in{ (@) +ap.( }

H H

A0
i 16qi \opi opi \  6q;

eine Beziehung, die als LIOUVILLE’scher Satz bekannt ist und

aussagt, dass allen Phasenraumelementen dieselbe a-priori-Wahr-

scheinlichkeit zukommt. Gleichung (2) reduziert sich damit auf
of of
B grad f = 2! g7 B
s i { i 0q; T P 0pi}
H of H of
S { oH ¢ oH ¢ }

feb}
-

(o]
-+

of
= ({ H) = — — 5
G H) = — = ®
(f, H) ist der POISSON’sche Klammerausdruck. Das Poten-
tial V, welches nur den reguliren Kriften entsprechen soll, muss

der POISSON’schen Gleichung

+ oo |
ANV =4zxp = 4nx ffffdm dp: dps 0)

geniigen. p ist im Gegensatz zu f die rdumliche Massendichte, » ist
die QGravitationskonstante.

Stationaritit

Den zwei Teilfeldern der Gravitation entsprechend, unterschei-
den wir auch zwei Arten von stationidren Zustinden, das dyna-
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mische Gleichgewicht, dem reguliren Felde entsprechend und das
statistische Gleichgewicht, in dem auch die irregularen Krafte keine
Verinderung der Verteilungsfunktion mehr hervorrufen koénnen.
Vom regellosen Zustand ausgehend, bewirken vor allem die regu-
laren Krifte eine gewisse Vermischung. Die Vermischungszeit bis
zum dynamischen Gleichgewicht wird auf 300 Millionen Jahre
geschatzt, der Umlaufszeit unserer Sonne im Milchstrassensystem
entsprechend. Nach Erreichung dieses Zustandes rufen nur noch
die irreguliren Krifte eine Aenderung der Verteilungsfunktion f
hervor, die Relaxation genannt wird. Die Relaxationszeit betrigt
grossenordnungsmassig 1014—1016 Jahre. Nach dieser Zeit ist
die Geschwindigkeitsverteilung kugelsymmetrisch nach MAX-
WELL und die einzelnen Partikel zerstreuen sich ins Unendliche.
Statistische Stationaritit ist in unserem Sternsystem offensicht-
lich noch nicht erreicht, Bei der Herleitung der Differential-
gleichung fiir die Funktion f haben wir auch die Wirkung von
Kollisionen und nahen Passagen vernachldssigt. Nach den bis-
herigen Beobachtungen befindet sich unser Sternsystem auch noch
nicht im Zustand eines dynamischen Gleichgewichtes. Dennoch
werden wir in der Folge meist diesen Zustand als erreicht be-
trachten, um speziellere Ableitungen moglich zu machen. Wir
setzen deshalb in Gleichung (5)

f
% = 0, die sich damit auf
(f, Hy=20 (7)

reduziert,

HECKMANN und STRASSL zeigten, dass unter sehr all-
gemeinen Voraussetzungen die Gleichung (7) auch fiir das Zeit-
-mittel der Funktion f von nicht stationdren Zustinden gilt.

Methoden zur Losung der Grundgleichungen

Die simultane Losung der beiden Gleichungen (5) und. (6),
bzw. (7) und (6) stellt das Hauptproblem der Stellardynamik
dar, das aber in dieser Allgemeinheit noch nicht in Angriff ge-
nommen wurde. Vielmehr wurden meist unter Voraussetzung von
Stationaritit und gewissen Symmetrien Losungen von (7) gesucht.
Die Bindung durch die POISSON’sche Gleichung (6) ist wegen
der LoOsungsmannigfaltigkeit von (7) weniger streng, als man
beim ersten Anblick erwartet. Sie legt in erster Linie nur dieser
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Losungsmannigfaltigkeit Beschriankungen auf, Zur Losung (7) bzw.
(5) wurden im wesentlichen vier verschiedene Methoden ange-
wandt.

1. Losung der Differentialgleichung nach der Methode von LA-
GRANGE, der dieselbe auf die Losung eines Systems ge-
wohnlicher Differentialgleichungen zuriickfiithrt. Vgl. JEANS und
LINDBLAD.

2. Einsetzen eines bestimmten Ansatzes fiir f in die Differen-
tialgleichung und Bestimmung der Konstanten. Vgl. OORT und
EDDINGTON.

3. Aufstellen eines bestimmten Kraftansatzes. Dadurch ist die Be-
trachtung individueller Sternbahnen moglich. Die folgende sta-
tistische Zusammenfassung der Gesamtheit der Sterne, die einen
bestimmten Raumteil durchsetzen ergibt eine Verteilungsfunk-
tion, die der Gleichung (7) geniigen muss. Vgl. BOTTLINGER.

4. Untersuchung der relativen Bewegung der Sterne in bezug auf
einen Idealstern in der Nihe der Sonne, der im System eine
Kreisbahn beschreibt. Das Potential V wird in der Nihe dieses
Idealsterns in eine Potenzreihe entwickelt, wodurch eine Inte-
gration ermoglicht wird, Vgl. LINDBLAD und CHANDRASE-
KHAR.

Im folgenden werden diese vier Methoden im einzelnen be-
handelt.

1. Methode

Geht man voraussetzungslos an die Lésung der partiellen linea-
ren Differentialgleichung erster Ordnung (7), so wird man nach
irgendeinem Lehrbuch iiber partielle Differentialgleichungen auf
die Losung der Systeme gewohnlicher Differentialgleichungen, die
Charakteristiken, gefithrt. Das zu unserer Gleichung (7) gehorige
‘System ist mit den Gleichungen (3) identisch,

Funktionen ¢ = ¢ (q;, p) nennt man erste Integrale des kanoni-
schen Systems (3), wenn sie lidngs jeder Integralkurve q; ()
einen konstanten Wert behalten. Funktionen solcher Art sind
z. B. der Energiesatz und das Flichenintegral. Diese Integrale
sind nun auch Loésungen der Differentialgleichung (f, H) = 0.
Es gibt fiir unser System 5 von einander unabhingige erste Inte-
grale. Mit ihnen ist auch jede willkiirliche differenzierbare Funk-
tion f = f (¢1, @2, ¢3, ¢4, ¢5) elne Losung. Jedes erste Integral stellt
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eine 5-dimensionale Hyperebene im 6-dimensionalen Phasenraum
dar, auf der die Bahnkurven des Systems verlaufen miissen. Die
ersten Integrale werden in zwei Klassen eingeteilt, in die primiti-
ven, d. h. unendlich vieldeutigen, und in die imprimitiven. Wiirden
in die willkiirliche Funktion primitive Integrale eingesetzt, so wire
das Ergebnis fiir unsere Verteilungsfunktion eine Konstante, Um
diese triviale Losung zu vermeiden, lassen wir als Argumente der
willkiirlichen Funktion f nur imprimitive Integrale zu.

Um ausser dem Energieintegral weitere erste Integrale zu erhal-
ten, miissen bestimmte Symmetrievoraussetzungen gemacht werden.
Es werden im folgenden Kugelsymmetrie und Zylindersymmetrie
vorausgesetzt.

In einem kugelsymmetrischen System ist das Potential V eine
Funktion des Abstandes vom Kugelmittelpunkt allein. Wir fithren
Polarkoordinaten ein.

X = 1 ¢c0s ¢ sin &
y = r sin ¢ sin ¢
Z = r cos ¢
Hieraus lasst sich leicht die kinetische Energie T berechnen.

T=3 X2+ y?+ 279
= 5 (' r2sin?d. ¢t 4+ 1. #?)
=1 R+ 0 + 6
R, @ und 6 sind lineare, zu r’, ¢’ und & parallele Geschwindig-
keitskomponenten. Die den rdumlichen Koordinaten r, ¢, ¢ ent-
sprechenden Impulskoordinaten p, y, ¢ erhdlt man aus
u£=r’;x:0T:rzsin?ﬂ.¢’; :ﬂ=r2.ﬁ’
or 0@’ o
Die HAMILTONsche Funktion H erhdlt damit die Form
1 2 ,\L2
H = H(g p) = 57 (P*+ 1.281+20 + =) + V)

deren verschiedene partielle Ableitungen die kanonischen Glei-
chungen

,__(?Hh__ . - eH 2 2 dv
r_a‘ﬁ_p’ p_—ar—rssinzz9+ﬁr?_a'
, oH Y _ P oH

T ey T P o X = ago_"o

g __ 4+ . 6H _ x® cotg ¥

T oy r?’ LT St ergeben.
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Erste Integrale dieses kanonischen Systems sind:
I, = (R* 4+ @* 4 6% + 2V = konst.
l, = y = rsind. @ = konst.
2
L, = 4% + 51%2'5 — 12 (8 + @%) = Konst.

Verlangen wir, dass nicht nur das Potential V, sondern auch die
Verteilungsfunktion Kugelsymmetrie zeigen soll, so ist das Integral
I: wegen der Auszeichnung der @-Richtung und der Abhingigkeit
von ¢ zu verwerfen. Die Verteilungsfunktion ist somit von der
Form

f =1 (I L)

Lassen wir fiir die Verteilungsfunktion f, wie es die Beobachtun-
gen nahe legen, nur das SCHWARZSCHILD’sche Ellipsoidgesetz
f = Pe — 53352 Zu,
wo p und a Konst. sind und &% eine quadratische Form in den

Geschwindigkeiten ist, so kann §® nur die Form

&=L+ kh=R -+ ({1 +kr}) (@4 642V
haben. Der Geschwindigkeitskorper ist also ein Rotationsellipsoid
mit dem Radiusvektor als Rotationsachse. Eine Sternstromung
kann nur in Richtung dieses Radiusvektors vorhanden sein.

In einem achsensymmetrischen System ist das Potential V eine
Funktion des Abstandes von der Rotationsachse & (klein Pi) und
der Zylinderkoordinate z, d. h.

V=V (& z)
Wir fithren Zylinderkoordinaten ein,
X = @ cos ¢
y = @ sin ¢
g =g
Analog dem Friitheren wird die kinetische Energie
T = % (@ + @ . 92 4 2%

— L6 7

Die den raumlichen Koordinaten @, ¢, z entsprechenden Impuls-
koordinaten p, 4, { erhdlt man aus

T , 0T oT

= — i : L e —— == Tk T == e— B
aal w ¥ 'Y aﬁ! w . 19 ] C 62’ Z
Die HAMILTON’sche Funktion und die kanonischen Gleichun-

gen lauten
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H._:;_(p2_l_%:._|_(:'2)+\/((—u',z)

o H M _ g v
—op = "% = & 0@
,_C”/\H—'SL. ' 6H___ .
Y=0 =7 ¥ =" ="
z’—*ﬁ——C‘ —_-A__ &

o eC  édz 9z

Erste Integrale dieses kanonischen Systems sind:
L = (II* 4 6* 4+ Z% + 2V = konst.
I = 4 — @ 6 = konst,
Ist V (@, z) von der Form Vi (@) 4 V:(z), oder anders ausge-
driickt, ist
0*V
0D 0Z
so existiert noch ein weiteres erstes Integral
[s = Z* + V: (z) = konst.
Den beiden Fillen entsprechend kann unsere Verteilungsfunktion
die Formen

f=1f (i, [.) und f = { (I4, Is, Is) annehmen.
Ist wiederum' f von der Form

f—Pe—z ¢,

so ist die allgemeinste Darstellung von &2 im ersten Falle
§ =hL 4+ 2 ki Iz 4 ke I®
=1+ 6* + 72 + 2k, @0 + k, @* 62 4+ 2 V (@, 2)
ki @ ki? @?
2 2 o . ... i<
I + Z +(I+k2w)(6+l+kzag) 1+k26_02—|—2v
=P+ 220 — 6+ 22 + 2V,
ki @ 1 k? a®
2 —9 S —_— —_— e —
F=lthkd b=—grpm VW=V—grris
Der Geschwindigkeitskorper ist auch hier ein Rotationsellipsoid.
Die mittlere Geschwindigkeit ist aber fiir die betrachtete Stern-

gruppe nicht gleich 0 wie beim kugelsymmetrischen Fall, sondern
gleich

Go — @ Yo = @ wo.

Die Rotationsachse des Geschwindigkeitskorpers liegt in einer
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der Ebenen z=konst. und bildet mit der #-Richtung einen rech-
ten Winkel. Dieses Resultat steht im Widerspruch zu den Beobach-
tungen, die zwar ebenfalls ein Rotationsellipsoid als Darstellung
der Geschwindigkeitsverteilung wahrscheinlich machen, dessen aus-
gezeichnete Achse aber in Richtung zum Zentrum des Systems liegt.

Zur Behebung dieser Schwierigkeit wurden nach verschiedenen
Autoren entweder die Fiktion eines dynamisch stationiren Zu-
standes fallen gelassen (LINDBLAD, HECKMANN u. STRASSL)
oder die Giiltigkeit des NEWTON’schen Gravitationsgesetzes be-
zweifelt (PILOWSKI nimmt z. B. abstossende Zusatzkrifte an).
LINDBLAD geht unter anderem auch vom Bestehen der Beziehung
02V
0w 0Z
Indem man diesen Ausdruck streng O setzt, kann fiir §&°

&=L+ 2kl + ke >4+ ks I5
gesetzt werden. Bei geeigneter Wahl der beliebigen Konstanten
ky, k, und k; ist eine bessere Darstellung der beobachteten Ge-
schwindigkeitsellipsoide durch die Theorie méglich.

<< 1 aus.

Unser Milchstrassensystem hat in grossen Ziigen die Form eines
stark abgeplatteten Rotationsellipsoides, ist also ein achsensym-
metrisches System, das ein grosses Drehmoment vermuten lasst.
Wir haben gesehen, dass in solchen Systemen der Mittelpunkt der
Geschwindigkeitsellipsoide eine Bewegung senkrecht zur g-Rich-
tung, eine Kreisbewegung ausfithrt. Wir gehen auf die dadurch
hervorgerufenen Effekte, die von OORT untersucht wurden, ein.
Es werden nur die Bewegungen der Ellipsoidmittelpunkte ins
Auge gefasst.

Wir konnen ohne Einschrinkung der Allgemeinheit des Pro-
blems unsern Ort im Raum mit den Koordinaten '

o= w, ¢ =0, z =12
bezeichnen. Die mittlere Geschwindigkeit einer benachbarten Stern-
gruppe mit den Koordinaten
o=@ + da, 4§ =0+ d¥, z =z + dz

wird durch den Geschwindigkeitsvektor

B = [m, R]
in einem NEWTON’schen Inertialsystem dargestellt;

5
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m:(O,O,?P—(g—’—zl:w)
9{:9{0+d9{z(50—|—d6, 0 + @ d &, zo + dz)
= (w0 + &, 7, zo |+ 0.

Die relative Geschwindigkeit in bezug auf den Beobachter im
Punkte

ERO = (cﬁo, 0, Zo) ist
pe=B — By = [m, ER] — [I'Oo, 9{0]

= [I‘DO + d m, Ko —|— dC.R]— [0, 9{0]

= [wg, d R] 4+ [d w, Re] = (&, 7, {).

1 ¢ 6o 6o 0 6o
dw = (0,0, = | (55 — =) da + = dz )

Eine einfache Rechnung unter Verwendung der oben gegebenen
Substitutionen ergibt

6o 060 &6o
e (B P ) = —
D €, 7, <) ( = 656—{—62 )
Wir fithren Polarkoordinaten ein.
§ =r1coslcosb
7 =rsinl cos b
{=rsinb
r—=coslcosb.& 4+ sinlcosb.y +sinb.
rcos b. I = —sinl. & 4 cos 1 .7
r.b =—coslsinb.& —sinlsinb.» 4+cosb./

Setzen wir fiir &, »’,  die gefundenen Werte ein, so erhélt man

= Arsin2lcos?b 4+ Crsinlsin2b
'=B + Acos21 4+ 2Ctgbcosl

b == — 4 Asin 21sin 2 b — 2 C sin | sin® b,
1 /060 6o\ 1 /060 6o
wo A=z(G—a)  B—z(m T3
1 ¢6o
C=2%

Betrachten wir die Bewegungen der Sterne in der Milchstrassen-
ebene, fiir die b =0 gesetzt werden kann, so erhilt man fiir die
Radialgeschwindigkeiten r’ und die Eigenbewegung in galaktischer
Linge I’ die etwas einfacheren Formeln

r’ =A rsin 21
’=B-+ A cos 21.
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Nach ihnen tragen die systematischen Bewegungen den Charak-
ter von Doppelwellen. 1 wird von der Richtung nach dem Milch-
strassenzentrum aus gezahlt. Die Beobachtung ergibt fiir die bei-
den Konstanten A und B

A = —0.0155 Km/sek per Parsek,
B=—0.012Km/sek per Parsek.

Es lassen sich im weiteren Beziehungen zwischen diesen kine-
matischen Ergebnissen und der Geschwindigkeitsverteilung her-
leiten. Nach Fritherem ist

d 6o 6o
B—l‘—A _@’ B—A E:(U,
G0 — k]@ L klﬁ
0__I+kw»__ FER

d 6 2kikew
6E:_iz+—'
B—A_z

A ist das Achsenverhiltnis des Geschwindigkeitsellipsoides,
das durch obige Gleichung mit den OORT’schen Rotationskonstan-
ten A und B in enger Beziehung steht. Ferner war

M+ 22+ 2Vo | (6—60)
e+ 72+ +.b2)}

F==PE \ at
I? 4 Z2 (6 — 6o)?
= f; e o {ﬁ"_ilj;_— _!_ T)}
_ 2V a __
h=Pe. a? ’ b
Die rdumliche Dichte p findet man aus dem dreifachen Integral
+ oo : 1+ Z2 (6 — 60)®
T (e esey
::IJ fi e dIIdedZ
-_—0
Durch die Substitutionen
A (0 — Bo) = 6 a? = II* + Z2 4 6.2
erhilt man dessen Lésung
_ 2V
p— e ¥ @ay”

2
Die logarithmische Differentiation dieses Ausdrucks ergibt nach
einigen Umformungen
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1 dp l b? 2 (dV 6,2
— a0~ ( )
Wir wollen die ,,Rotationsgeschwindigkeit‘‘ unserer Sterngruppe

mit der Kreisbahngeschwindigkeit eines Sterns im Orte des Be-
obachters vergleichen. Fiir die Kreisbahngeschwindigkeit gilt

. _dV

@c a au"
Setzen wir dies in obigen Ausdruck ein, so erhalten wir
1 dp 1 b? 2 2 ;
o da — 7 =3 — 55 65— &

Die Beobachtungen lassen erkennen, dass im allgemeinen die
Sternbahnen wenig von Kreisen abweichen. Die Differenz
S = 6, — 6
ist daher klein gegeniiber 6,. Wir konnen deshalb fiir
9C2~ﬂ—902———82+25@0r\;2890

setzen und erhalten schliesslich
a’ao b?
S"‘_wo[p dw+ ( az]'

S stellt das Zuriickbleiben der Geschwmdlgkeltsellipsoidmittel-
punkte hinter der Kreisbahngeschwindigkeit dar. Betrachten wir
verschiedene Sterngruppen, die nach physikalischen Gesichtspunk-
ten ausgelesen sein mogen, so ist nicht zu erwarten, dass alle die-
selbe Streuung zeigen. Da aber der Faktor von a2 in der Glei-
chung fiir S fiir die verschiedenen Sterngruppen nahezu derselbe
sein wird, ist S proportional dem mittleren Geschwindigkeitsqua-
drat der Sterngruppen, eine Gesetzmissigkeit, die schon STROM-
BERG aus Beobachtungen erkannte und theoretisch zu deuten ver-
suchte,

Dasselbe Gesetz erhdlt man auf einem weniger strengen, aber
anschaulichen Weg. Wir vergleichen zu diesem Zwecke die Ge-
samtenergie W, des Sterns mit der Kreisbahngeschwindigkeit mit
der mittleren Gesamtenergie W, pro Stern der betrachteten Stern-

gruppe.
1
We = 3 824+ V

WOZ;—(QO —|—a~—|——b2)—l—V
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Die Differenz der beiden Energien betriagt
1 ” 1 1
Wc — Wo = -2“ (@C" e 902) —-2— (&2 + E bg)

Betrachten wir die Randzone eines Sternsystems, so wird dort
W .—W, positiv sein, da sonst die Mchrzahl der Sterne der betrach-
teten Sterngruppe wihrend der langsten Zeit ihrer Bewegung aus-
serhalb der Kreisbahn anzutreffen wiren.

Diese Gefahr wichst mit der Streuung in der Sterngruppe. Wir
machen deshalb die etwas hypothetische Annahme
W —Wo = xa? x — konstant > 0.
Mit derselben Vernachldssigung wie frither finden wir dann

S= gzt

Es ist damit mehr eine Begriindung unserer hypothetischen An-
nahme, als ein Beweis fiir die STROMBERG’sche Asymmetrie
gewonnen.

2. Methode

OORT ist auf einem andern, spezielleren Wege an die Losung
des Problems gegangen. Er macht schon am Anfang fiir die Ver-
teilungsfunktion den Ansatz

— [h* I+ k*(6 - 60)*+ 1?2 + mI1(6 — o)+ n LI Z+-p (6 - 60) Z]
f—="foe
und setzt ihn in die Differentialgleichung (7) ein. Zu diesem
Zwecke muss letztere transformiert werden. Wir fiihren die Ko-
ordinaten @, &, z, II, 6, Z ein. Es ist

Df of . of . of 7
Dt 6c_uw+ + +“IIH+“@8+oZ
of ke of e of ¢V
o I 52 B b gl —~ 39 + B =57 —1

Es ist zu beachten, dass f,, h? k2 12, m, n, p Funktionen von
@ und z sein kénnen, aber weder von den Geschwindigkeiten, noch
von ¢ abhidngen. Es handelt sich bei obigem Ansatz also wieder
um ein SCHWARZSCHILD’sches Geschwindigkeitsellipsoid in
einem achsensymmetrischen System. Setzen wir f in die letzte
Gleichung ein und dividieren wir das Ganze durch —f{, so folgt:
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o h? om m oh? on
3c 2 —_— il o
P+ 11260 (o — o) + 20 + )
ak2 2h2— 2k om . op  p
+I16% (o _(?—)—I‘H@Z(—ff-a—c_u*“%)
2 D
+H22(01 + O el ez 0D
5 0 5 ol2 (n 6) {a(k”@o) ke 90}
+oz2f 1228 mBW _oqefii T
. (m o) o(p 90)} méo 0 (k2 @o) ¢ (p 6v)
HZ{ oz T o ) ¥ 20L — & az
(")k(@ dV (")V 1 "‘f
o (k2002) av 8V 1 &k B
T {_az —2‘23—2—“%‘@?}— @Oa_c'a+p8°82m0'

Diese Gleichung ist nach Potenzen von II, ® und Z geordnet. Da
die Geschwindigkeitskomponenten voneinander unabhdngig sind,
miissen alle Koeffizienten verschwinden. Wir erhalten daraus zum
grosseren Teile eine Reihe von partiellen Differentialgleichungen,
die jedoch verhiltnismissig leicht zu l6sen sind. Das Resultat
deckt sich vollkommen mit demjenigen der ersten Methode. Es
wird.

m=a=7p==4_0
h? = 12 = k2 — ¢, @
— (2 112 4+ k2 (0 — 00)2 + hZ Z2)
f=1oe

Auch die Beziehung zwischen dem Achsenverhiltnis des Ge-
schwindigkeitsellipsoides und den OORT’schen Rotationskonstan-
ten, sowie die Formel fir die STROMBERG’sche Asymmetrie
lisst sich ohne Schwierigkeit nach dieser Methode herleiten. Sie
lauten mit den neuen Ausdriicken

e B
kk B—A
und
. 1 {1 6’p }
S_4h2(A—Bp +_('
o2V P m
Ist —=— = 0, so folgt daraus wie friiher, dass
ow 0z

h2 nicht gleich 12.



Max Schiirer, Die Dynamik der Sternsysteme 71

EDDINGTON hat diese Methode angewandt, um einen Satz von
allgemeiner Bedeutung aber mehr theoretischem Interesse abzu-
leiten. Er setzt ebenfalls das SCHWARZSCHILD’sche Geschwin-
digkeitsverteilungsgesetz voraus. Die Achsen der von Ort zu Ort
verdnderlichen Geschwindigkeitsellipsoide sind die Tangenten an
eine dreifache orthogonale Flichenschar, den Hauptgeschwindig-
keitsflichen, die bei dynamisch stationdren Zustinden Fliachen
zweiter Ordnung sein miissen.

3. Methode

Die erste und zweite Methode suchen direkt die Geschwindig-
keitsverteilungen darzustellen, ohne etwas iiber die einzelne Stern-
bahn aussagen zu kénnen. Die dritte und vierte Methode gehen
von der Betrachtung der einzelnen Sternbahn aus und suchen erst
nachtraglich durch statistische Zusammenfassung der einzelnen
Bahnen Aussagen iiber die Geschwindigkeitsverteilungen zu
machen. Die dritte Methode untersucht die Sternbahnen im Gros-
sen, die vierte im Kleinen.

EDDINGTON hat die dritte Methode zur Untersuchung des
Dichteverlaufs in einem kugelféormigen, dynamisch stationdren
Sternsystem angewandt, um sie mit Beobachtungen an Kugelstern-
haufen zu vergleichen, SCHWARZSCHILD stellte die Gleichungen
fiir die Bahnkurven in einem homogenen Sternsystem von der Form
eines dreiachsigen Ellipsoides auf und erhilt, indem er sie stati-
stisch zusammenfasst, fiir die Verteilungsfunktion die Form

f=1 x2 4 A2 x2, y2 4 B2 y? z2 4 C2 22),
die sich auch nach der ersten Methode herleiten lisst. Die Voraus-
setzungen sind hier von so spezieller Natur, dass diese Unter-
suchungen nur von theoretischem Interesse sind. BOTTLINGER
geht von den wirklichen Verhiltnissen in unserem Milchstrassen-
system aus, und wir wollen seinen Gedankengingen in kurzen
Ziigen folgen. Er betrachtet in erster Linie ein ebenes Problem und
nimmt an, dass sich die Sterne in Ellipsen bewegen, deren Brenn-
punkt im Zentrum des Milchstrassensystems liegt. Er denkt sich
also die gravitierende Masse des Systems im Zentrum vereinigt.
Aus dem Zweikorperproblem, nach welchem wir jetzt die Bah-
nen behandeln diirfen, werden die nidchsten Beziehungen abge-
leitet. Ist v die Geschwindigkeit, a die grosse Halbachse der
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Ellipse, e deren Exzentrizitit, r der Radiusvektor und & der
Winkel zwischen Radiusvektor und Geschwindigkeitsvektor, dann
gilt

V2:x2M(~f——;—); vrsind =xy Ma (1 — e

BOTTLINGER stellt die Geschwindigkeitsvektoren als Funk-
tion der Bahnhalbachse und der Exzentrizitit graphisch dar. Er
benutzt die obigen Beziehungen, in denen man den Energiesatz und
den Flachensatz erkennt. Die Halbachse a und die Exzentrizitit
e konnen an Stelle des Energieintegrals und des Flichenintegrals
treten. Unsere Verteilungsfunktion kann also auch als

f=1(a, e) geschrieben werden.

Aus der oben genannten Figur (siehe z. B. Hdb. d. Astrophysik
Bd. V;) kann auf anschaulichem Wege die Asymmetrie erkannt
werden. Der Ort der Sonne in dieser Figur entspricht einer
Exzentrizitdit von ungefihr 0,15, einer Halbachse von 1,14 in
Einheiten Sonne-Milchstrassenzentrum und einer wahren Anomalie
von 3200, Man erkennt aus diesen Zahlenangaben die Anschau-
lichkeit der Methode.

Die Voraussetzung, dass sich alle Sterne in einer Ebene und
in KEPLER-Ellipsen bewegen, muss fallen gelassen werden. In
Wirklichkeit wird ein Stern Rosettenbahnen beschreiben, die zwi-
schen einer KEPLER-Bewegung und einer harmonischen Ellipse
liegen. Die Bahnen werden im allgemeinen nahezu eben bleiben,
aber gegeneinander geneigt sein, und ein neues Integral (sin i=
konst. im Zweikorperproblem entsprechend) wird auftreten. Die
der Knotenlinge und der Perihellinge entsprechenden Integrale
treten nicht auf, da dieselben bei achsensymmetrischen Syste-
men auf den ganzen Kreisumfang gleichmassig verteilt sein miis-
sen. Nach der ersten Methode ist zwischen der ,Neigung‘ und
der ,,Exzentrizitit‘* eine enge Korrelation zu erwarten. BOTT-
LINGER setzt empirisch ¢ (Sini) = «. g (€). o ist die Verteilungs-
funktion fiir sin i, resp. e.

Wie man sieht, bleiben ungeldste Fragen bestehen. Es sollten
plausible Ansitze fiir die Kraft
(F — T-;“IQW nach BOTTLINGER, F — = + DR nach OORT)
durchgerechnet und eine Erklirung fiir die Korrelation zwischen
,Neigung“ und , Exzentrizitit’“ gefunden werden.
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4. Methode

Nahezu kreisformige Bahnen bezieht man in der Dynamik 6fters
auf rotierende Koordinatensysteme. Die Abweichungen von der
Kreisbahn werden dadurch zu kleinen Schwingungen um ein ro-
tierendes Zentrum. LINDBLAD untersuchte nach dieser Methode
Sternbahnen in der Ebene. CHANDRASEKHAR entwickelte die
Verallgemeinerung in drei Dimensionen. Der Ursprung des rotie-
renden Koordinatensystems bewege sich auf einer Kreisbahn im
Abstand @ vom Systemzentrum, mit der Winkelgeschwindigkeit
w1. Die &-Achse falle bestindig mit der z;-Richtung zusammen,
die y-Achse stehe senkrecht darauf und liege in der Symmetrie-
ebene, wihrend die {-Achse parallel zur z-Achsz gerichtet ist.
Das Potential sei wie frither V=V(@, z). Die Gleichungen von
LAGRANGE lauten

” , _ @ g oV
& 207 —ar @ 4§ =— 2T
: B 2y — 19V
7" 4+ 2w & w? p = iy
OV
Wir bestimmen die kaelgeschwmdlgkelt aus der Gleichung
6
w2 = (5 Z)1

Das Koordinatensystem sei im fiibrigen so gewdihlt, dass die
Koordinaten §&, », { des betrachteten Sterns wihrend langerer Zeit
klein bleiben. Wir koénnen dann die Ableitungen der Potential-
funktion nach Taylor entwickeln.

o = w1 + E v
eV oV o2
(8w) @ C (%5) T ¢ ( 2) + < (d SC)
(gyc) @ & (g%)l +¢ (acaw) ¢ @222)
Unter Beachtung von
7+ 2w & =0 —> 7 =—2am &

nehmen die Gleichungen von LAGRANGE die Form

S R e
C+pEt+ri=—Q

an, Ihre Integration Idsst sich nach bekannten Methoden aus-
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fiihren. Transformiert man endlich die erhaltenen Integrale auf
ein fiir alle Sterne gemeinsames Koordinatensystem, so lauten
dieselben

=Gt eE O+ g

L )
+-g?(60—_§.32ﬁTa {o)?

- 212 —a 70 B
=B g + s O+ Gt
1 12 — ,
_}_@(g ; QEO""C’O)z

- Z;u_o{‘““ (a~2)°}

I, und I, sind zwei erste Integrale, die wie bei der ersten
Methode als Argumente einer beliebigen Funktion f dieselbe zu
einer Losung unseres Problems machen. Speziell ist

— k (It + 2 L).
f=1fo e

Eine Diskussion dieser Gleichung zeigt, dass das Geschwin-
digkeitsellipsoid drei verschiedene Achsen haben kann, und dass
die Hauptachse, die nach der Symmetrieachse des Systems zeigt
mit derselben einen Winkel == 90° einschliessen kann. CHAND-
RASEKHAR glaubt, damit einen Widerspruch zwischen Theorie
und Beobachtung behoben zu haben. M. E. kann man nach der
beschriebenen Methode nur Aussagen iiber beschrinkte Gebiete,
in denen unser Ansatz fiir das Potential nahezu seine Giiltigkeit
behilt, machen. Aussagen iiber das System als Ganzes sind un-
zulassig.

Gt

Z0f

Schlusswort

Die vier betrachteten Methoden fithren im grossen Ganzen zu
gleichen Resultaten. Einige Unterschiede miissen noch geklart
werden. Vor allem weisen die letzten beiden Methoden, wenn
auch noch nicht beweiskriftig, auf ein drittes Integral, das die
grosste Unstimmigkeit zwischen Beobachtung und Theorie, das
Bestehen eines dreiachsigen Ellipsoides, zum Verschwinden brichte.
Es hat eine Reihe Versuche gegeben, diesen Widerspruch durch
Aufgeben der Stationaritit oder des NEWTON’schen Gravitations-
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gesetzes zu losen (HECKMANN und STRASSL, LINDBLAD,
PILOWSKI und andere). Die dabei verwendeten Methoden sind
dieselben geblieben. Die verfiigbaren Konstanten werden ver-
mehrt, und es ist anzunehmen, dass sich die Theorie den Beobach-
tungen besser anpassen ldsst. Die Erklirung der Doppelwellen
in den Radialgeschwindigkeiten und den Eigenbewegungen ist bei
jeder Sternstromung 'moglich (PILOWSKI, OGRODNIKOFF,
MILNE).

Vielleicht wird einmal eine Theorie iiber die Spiralstruktur
der Sternsysteme zugleich weitere Widerspriiche in der Dynamik
eines Sternsystems Iosen. Es gibt schon jetzt hiefiir bemerkens-
werte Anzeichen.
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