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G. Hauser.

Teilungsgleichungen der elliptischen Funktionen in
imaginär=quadratischen Zahlkörpern.

EINLEITUNG.
Zu den wichtigsten Gleichungen der Algebra gehören bekanntlich

die Kreisteilungsgleichungen:
zn — a o.

Setzt man a — 1, so sind die nten Einheitswurzeln, d. h. die Zahlen
2 ni h

zh e n (h 0,l,2,---n-l),
die Wurzeln der obigen Gleichung.

Diesen Kreisteilungsgleichungen kommt nicht nur wegen ihrer
Bedeutung für die Elementargeometrie, sondern vor allem deswegen
eine besondere Rolle zu, weil ihre Durchforschung der höheren
Algebra neue Gesichtspunkte eröffnete und zu weitern Zielen den Weg
wies. Die ganze Theorie ist von Kronecker durch den Satz
gekrönt worden, dass die Wurzeln aller im Bereich der rationalen
Zahlen Abelschen Gleichungen in einem Körper der Einheitswurzeln
enthalten sind.1)

Aehnliches gilt nun von den Teilungsgleichungen der
elliptischen Funktionen, deren Wurzeln die Werte

/hi «n -f-b-2 m\ f, a 1 o i\?{ j (hi,h2 0,1,2, •••n-l)
sind, welche eine gegebene elliptische Funktion œ (z) mit den Perioden

toi und ü>2 an den Stellen
hl Wl -f- ll2 0) ä

zhi,l>2= n

annimmt. Ein wunderbares Ergebnis der modernen Algebra und
Zahlentheorie ist die Erkenntnis, dass diese Teilungsgleichungen in

*) Kronecker: Bericht der K. Akad. der Wiss. zu Berlin. 1853.
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bezug auf die imaginären quadratischen Zahlkörper das liefern, was
die Kreisteilungsgleichungen für die rationalen Zahlen; m. a. Worten:
Jede in einem imaginär-quadratischen Körper Abelsche Gleichung
ist durch Kreiskörper und Teilungskörper der elliptischen Funktionen
lösbar.x)

Die Untersuchungen, die allmählich zur Aufstellung dieses
Theorems geführt haben, fasst man gemeinhin unter dem Namen
<Theorie der komplexen Multiplikation der elliptischen

Funktionen» zusammen. Das Reizvolle dieser Theorie
liegt darin, dass hier Funktionentheorie, Zahlentheorie und Algebra
in tiefstem Zusammenhange stehen. Sie ist im dritten Bande von
H. Webers Lehrbuch der Algebra2) dargestellt. Diese Darstellung
enthält aber noch manche Lücken und weist ausserdem verschiedene

Unrichtigkeiten auf. Es ist nun R. Fueter gelungen, sämtliche

Lücken der Weber'schen Darstellung auszufüllen. Anlässlich
des letzten internationalen Mathematiker-Kongresses in Strassburg
(22.—30. Sept. 1920) hat Fueter bereits die wichtigsten Resultate
seiner Untersuchungen mitgeteilt.3) Aus denselben geht deutlich
hervor, dass zwischen den Einheitswurzeln und den Wurzeln der
Teilungsgleichungen der elliptischen Funktionen überraschende
Analogien bestehen.

Die vorliegende Arbeit soll einen bescheidenen Beitrag an das
Zahlenmaterial zu diesen überaus interessanten Untersuchungen
liefern. Ihr Zweck ist die zahlenmässige Berechnung von
Teilungsgleichungen in einigen einfachen imaginär - quadratischen
Grundkörpern. — In einer vor Jahresfrist erschienenen gekrönten
Preisschrift4) hat C. Bindschedler die Teilungskörper im Bereiche des

Körpers k (1/— 3) genauer untersucht und seiner Arbeit eine ziemlich

umfangreiche Tabelle von numerisch berechneten
Teilungsgleichungen beigefügt. Von anderer Seite ist die Berechnung von
Teilungsgleichungen in k (1/— 1) in Angriff genommen worden.

*) R. Fueter: Abelsche Gleichungen in quadratisch-imaginären
Zahlkörpern. Math. Ann. Bd. 75, pag. 253.

2) 2. Aufl., Braunschweig 1908.

s) R. Fueter: Einige Sätze aus der Theorie der komplexen Multiplikation

der ellipt. Funktionen. Comptes rendus du Congrès internat, des
Mathématiciens. 1920.

*) C. Bindschedler: Die Teilungskörper der elliptischen Funktionen
im Bereich der dritten Einheitswurzel. Journal für die reine und
angewandte Mathematik, Bd. 152.
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Ausser für diese beiden Ausnahmefälle sind meines Wissens bis
jetzt noch keine derartigen Berechnungen durchgeführt worden.

Wir legen unsern Berechnungen die drei elliptischen Funktionen
zweiter Ordnung:

^'*.->=2iie^Ä) tf-w)
zugrunde. Hier bedeutet p(z; wi, 0)2) die Weierstrass'sche /»-Funktion

mit den Perioden coi und w2;

ei=HyJ' e2=,^(—2—J' e3=n-2X
sind die 3 Wurzeln der Differentialgleichung

p'2 (z) 4 i>3 (z) — g2 p (z) - g3,

wo g2 — 4 (ei e2 -f- ei e3 -f- e2 e8), g3 4eie2e3.

Dabei sind ferner die von z unabhängigen Grössen

V^f-» (i l,2,3)

wie folgt als eindeutig bestimmte Quadratwurzeln definiert:

1 .«-j-,— XXGf)

2 X <HîXx9
f Ö>2 ^ f «»2 ^

fy».«>•-.- X.X Zl)

Der Inhalt gliedert sich wie folgt: Im I. Kapitel wird die
Multiplikationstheorie der Funktionen d(z) für einen rationalen
Multiplikator n entwickelt. Insbesondere werden hier die
Multiplikationsformeln für n 2, 3, 4 und 5 berechnet. Dabei ergibt
sich die Tatsache, dass die in den Multiplikationsformeln auf-

Vgl. die von H. A. Schwarz herausgegebenen «Formeln und Lehrsätze

zum Gebrauch der elliptischen Funktionen >. 2. Aufl. 1. Abt. 21.
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tretenden Koeffizienten ganze ganzzahlige Funktionen der Grösse

ti (coi, io2) sind.
1/2«.3eI*-g»

Im II. Kapitel werden die ti (i 1,2, 3) unter Zugrundelegung
von imaginär-quadratischen Zahlkörpern betrachtet und durch
Formeln dargestellt, die sich für eine rasche Berechnung eignen. Diese
Formeln werden dann noch auf einige Beispiele angewendet.

Das III. Kapitel dient der Definition und der Zusammenstellung
der wichtigsten Eigenschaften der Teilungsgleichungen. Wir können
dabei die entsprechenden Darlegungen in Webers Algebra, Bd. III,
ohne wesentliche Abänderungen für unsere Zwecke verwerten. —
Die Tabelle am Schluss enthält die Resultate unserer Berechnungen.

I. Kapitel.

Die Multiplikationstheorie der Funktionen Ci(z).

Unter der Multiplikation einer elliptischen Funktion <p(z) von
2. Ordnung versteht man die Darstellung der Funktion ?>(nz) für
ein ganz zahl ige s n als rationale Funktion von <p(z) und f'(z).
Da jede elliptische Funktion von 2. Ordnung ein Additionstheorem
besitzt, d. h. tp(z-(-t) (worin t ein willkürlicher Parameter bedeutet)
sich rational durch y(z), <p'(z)> <p(t) und <p'(t) ausdrücken lässt1), so

ist dies eine Aufgabe, die immer gelöst werden kann.

§ 1. Die Eigenschaften von £j(z).

Indem wir zunächst die Abkürzung

(1) Ci
VJLiXiL

einführen, bekommt die Definitionsgleichung der Funktionen iEi(z)
die Gestalt:

(2) Ci (z ; wi, o)2) —, ^X «
G 2> 3)-

Vgl. H. Burkharde Elliptische Funktionen. 3. A. 1920, pag. 110.



Halbperioden, d. h. es ist
0)

Y"
0)1

_ 2

m ï- 0)1 -(-0)2
2

0)

2~~
0)2

~~2~
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Aus den bekannten Eigenschaften der ^-Funktion ergeben sich
sofort die folgenden Eigenschaften der Funktionen fo(z):

I. Ci(z) ist gerade in z.

H. Ii(z) ist homogen von nullter Ordnung in z, o)i, o)2.

III. €i(z) besitzt im Grundperiodenparallelogramm an der

Stelle z -ö- einen Pol 2. Ordnung und wird im

Nullpunkt von 2. Ordnung 0.

Dabei bedeutet -x- eine zusammenfassende Bezeichnung für die

für i 1,

» i 2,

» i=3.])
C"

Entwickeln wir den Ausdruck —rX unter Verwendung der
p(z) ei

bekannten Reihe

(4) ^) ^ + Ìz2 + Ìz4 + ---.
nach steigenden Potenzen von z, so erhalten wir die folgende
Reihenentwicklung um den Nullpunkt:

(5) €i(z) CiZ2 + eiciz* + Ci(ei-g)z« + ---.

Zur Bestimmung der Reihenentwicklung um den Pol z -=-,

leiten wir vorerst eine — auch für das Spätere wichtige — Beziehung

zwischen Ci(z) und der Grösse p( z—X her. Da £i(z) im

Grundperiodenparallelogramme nur bei z -=¦ einen Pol, und zwar von

2. Ordnung hat, so gilt die folgende Darstellung durch piz—X:
Ci(a) ai + b1i>(z —y),

J) Das <u in -_- sei nicht zu verwechseln mit dem später einzuführenden

Periodenverhältnis u> —.
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und wegen Ci(0) 0, ist ai —— bjOi. Wir erhalten also mit
Berücksichtigung von (4) die Reihe

(6) g-i(z) _biei + bi(z-|-)"2- [¦¦•].
Wir müssen noch bi bestimmen; dazu setzen wir die folgende

Taylor'sehe Entwicklung für p(z) in (2) ein:

,w=X)+*+t(X)!+--
wobei rechts das 2. Glied wegen p~ i -~-J =0 wegfällt. Es ist dann

(6') Ii(z)= \C'\- r
* ri(l+ •••)•

„ f 0) \ COV v

Die Vergleichung der Koeffizienten der Potenz (z—X in

(6) und (6') ergibt für b; den Wert:
2 Cibr

^(t)'
Berücksichtigen wir noch die Relation

p"0) 6j>*(z)--|gt
und denken wir an die Bedeutung von c; [vgl. (1)], so finden wir
schliesslich, dass

bX
ist. Es besteht also die Gleichung

piz — ^-j—ei
(7) Ii(z) —

AJ
Ci

Vertauschen wir in (4) z durch z —x- und setzen wir alsdann

diese Reihe in (7) für pi z — -X ein, so erhalten wir nun die

gesuchte Reihenentwicklung um den Pol z—~-:

'" «=ÎX-î+s('-?)+s(,-ï)'+-
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Die Gleichung (7) liefert uns ferner den Beweis des Satzes:

IV. €i(z) nimmt den reziproken Wert an, wenn das Argument
um die zugehörige Halbperiode vermehrt wird, d. h. T;(z)
genügt der Funktionalgleichung:

Setzen wir nämlich in (7) z -f- -^- für z, so ergibt sich die

identische Gleichung:

^XX-^XcX *•-• "
Wir fassen die wichtigsten Ergebnisse dieses Paragraphen noch

kurz zusammen in den

Satz : Die drei Funktionen Ci (z ; «h, o)2) =-LX ^ (i 1,2,3)
* \P\Z) — ei)

sind elliptische Funktionen 2. Ordnung mit folgenden Polen und
Nullstellen :

1. Pole 2. Ordnung : z=H+ßln -.hil Aliio,° 2 )fì=hio)i+h2o)2Und, f=0,±l,±2,±-
2. Nullstellen2. Ordn. : z=fl I 21

Sie genügen ferner den Gleichungen:
a)Ci(-z) Ci(z),
b) Ci (tz; to)i, to>2) Ci (z; <oi, m),

c)Ci(z + ï)=c^)'
unter Beachtung von (3).

§ 2. Die Differentialgleichung.
Ein allgemeiner Satz besagt, dass jede elliptische Funktion einer

algebraischen Differentialgleichung erster Ordnung höheren Grades

genügt, in der die unabhängige Veränderliche explicite nicht
vorkommt.1) Um diesen Satz für den Fall der Funktionen Ci(z)
verifizieren zu können, müssen wir die Ableitungen Ci' (z) (i 1,2,3)
betrachten. Dazu knüpfen wir am besten an Gleichung (7) an und
differenzieren sie nach z. So ergibt sich

pÌ*-j)
(10) CiXX tt^-.

0 Vgl. H. Burkharde Ellipt. Funktionen, pag. 92.
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Nach dieser Gleichung besitzt also Ci'(z) im wesentlichen

dieselben Eigenschaften wie p' i z — X. Der von z unabhängige Faktor

— bedingt nur einen Unterschied bezüglich der Homogenität.

Dieses Resultat soll in den nachfolgenden Sätzen noch etwas
ausführlicher dargelegt werden:

I. Jede der drei Ableitungen C;' (z) (i 1,2,3) ist eine ellip¬
tische Funktion 3. Ordnung mit den beiden Perioden wi, o)2

und den folgenden Polen und Nullstellen:

1. Pole 3. Ordnung: z=X + ß,

2 a) Nullstellen 1. Ordnung von Ci(z):

t Q,z ±^+ Q,z % + Q,

b) Nullstellen 1. Ordnung von C2(z):

z G,z + G,z f+ Q,

c) Nullstellen 1. Ordnung von C3(z):

z ß,z f+ ß,z ^4-^ + G,

wobei ü alle Gitterpunkte durchläuft.

II. Ci'(z) ist ungerade in z.

III. Ci'(z) ist homogen in z, o», o)2 von der Dimension —1.

Diese Eigenschaften von Ci'(z) erkennen wir auch leicht aus
den beiden Reihenentwicklungen

(11) Ci'(z) 2ciz + 4eiCiZ3-f6ci(c12-|j)z* + "-

und

m ^)=_ * +îiL(2_|)+i(2_S)V,
die sich durch beidseitige Differentiation von (5) bezw. (8) ergeben.

Zur Aufstellung der Differentialgleichung für Ci(z) müssen wir
uns mit Hilfe von Ci' (z) eine gerade elliptische Funktion von z mit
den beiden Perioden 0)1, to2 bilden, da nur solche Funktionen sich
rational durch Ci (z) allein ausdrücken lassen. Betrachten wir also
die Funktionen Ci'2(z) (i 1,2, 3). Aus den Eigenschaften I und II
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von Ci'(z) folgt sofort, dass die d'2(z) gerade elliptische Funktionen
von 6. Ordnung sind. Sie besitzen dieselben Pole und Nullstellen
wie Ci' (z), mit dem Unterschiede, dass jetzt die Pole je von 6.

Ordnung und die Nullstellen je von 2. Ordnung angenommen werden.
Es hat also z. B. Ci'2(z) dieselben Pole und Nullstellen wie die
folgende ganze rationale Funktion 3. Grades in Ci(z):

Ci (z) • (d (z) - Ci (=4=!)) (Ci (z) - C, (-)).
Es gilt somit die Relation

Ci'X) c • Ci.(z) (C, (z) - Ci(24^)) ((Ci (z) - d (f
Zur Bestimmung der Konstanten c haben wir nur die

Entwicklungen der linken und der rechten Seite nach Potenzen von

z — -~ miteinander zu vergleichen, wobei wir uns je mit dem 1. Glied

begnügen können. Auf Grund von (8) und (12) erhalten wir:

A !__+...=_£.. L_+...
ci2 (z-f)ß ci3 (z-f)8 '

so dass wir für c den Wert 4 Ci finden. Es besteht also die
identische Gleichung

(13a) C,'2(z)=4ciCi(z)(c1(z)-C1(^))(^(z)-^(t))-
»

Analog ergeben sich die beiden entsprechenden Relationen für
i 2 und i 3 in der Form:

(13b) CXz) 4c2 C2(z) (C2(z) -C2(y)) (C2(z)- C2(f

(13c) C3'2(z) 4c3C3(z)(c3(z)-C3(f)) (C3(z)-C3(=4r^)-
Die endgültige Gestalt der gesuchten Differentialgleichung

erhalten wir durch Ausmultiplizieren der rechten Seiten von (13 a, b, c).

Wir führen dies für den Fall i — 1 wirklich durch und geben
für die beiden übrigen Fälle wieder nur die Resultate an. Es ist

d'2(z) 4 ci Ci«(z) - 4 Cl (Ci p4^) + Ci (f • Ci2(z)

+ 4ciC1(^)-C1(f)-C,(z).
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Nun ist nach (2) und wegen ei -f- e2 -f- e3 ±= 0 :

g- fo>i + o>iA .j. (<ü2\ _ ci Ci 3eiCi
"H 2 )^~^l\2J~ e2 —eXe3-e1— (e2-ei)(e3-e1)-

Ferner gilt nach (2) und infolge der Funktionalgleichung (9):

r f 0)1+0)2^ -fr fo>2\ _ ci ci __i
also ist

(e2 — ei) (e3 — ei) Ci2,

woraus hervorgeht, dass

c.C4Xc,Cr)=X
und

«.(-Lf-i). «,(«)_,
ist. Zwischen Ci (z) und Ci' (z) besteht also die Differentialgleichung:

Ci'2(z) 4 d Ci3(z) -f 12 ei Ci2(z) + 4 ci Ci (z).

Ebenso gilt:
C2'2 (z) 4 ca C23 (z) -f12 e2 C22 (z) + 4 c2 C2 (z),
C3'2 (z) 4 c3 C33 (z) +12 e3 C32 (z) + 4 c8 C3 (z).

Damit ist der folgende Satz bewiesen:

Satz : Die Funktionen C; (z) (i 1, 2, 3) genügen einer
algebraischen Differentialgleichung mit von z unabhängigen Koeffizienten,
von der Form :

(14) Cj'2 (z) 4 Ci Ci8 (z) + 12 6i Ci2 (z) -f 4 C; C; (z).

Aus (14) erhalten wir durch wiederholte Differentiation nach z

der Reihe nach die Relationen:

(15) Ci" (z) 6 Ci C;2 (z) + 12 e; C; (z) + 2 Ci,

(16) Ci'" (z) 12 (c; Ci (z) + e;) • Ci' (z).

§ 3. Das Additionstheorem. — Rekursionsformel.

Wir leiten das Additionstheorem der Funktionen Ci (z) aus
demjenigen der p-Funktion her. Dieses hat bekanntlich die Form:

(n) P(»+t)=4-(y;j;ji^)--pw-p(t),
worin t ein willkürlicher Parameter bedeutet. In (7) ersetzen wir
das Argument z durch z -f-1 und erhalten :
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P f(z — -"-) + tl — 6i
Ci(z + t) — ^ J

Ci

Diese Gleichung geht nun vermöge der Relation (17), in welcher

wir uns z — •=- für z eingesetzt denken, über in

y(z-f)-p'(t)i_
4

(18) Ci(z+t) - p(z-f)—!>(*)-
i>(z — f)—p(t) — ei

Ci

Um hieraus eine Formel von der Gestalt:

Ci(z-l-t) rat. Funktion (C;(z), Ci'(z), C;(t), Ci'(t))
zu bekommen, müssen wir piz — y\ jp'fz — -^J, ^)(t) und j>'(t)
bezw. durch Ci(z), Ci'(z), Ci(t) und Ci'(t) ausdrücken. Durch
Auflösen der Definitionsgleichung (2) nach p(z) ergibt sich:

und daraus durch Differentiation nach z:

^(z) -c'C?(z)-
Ferner erhalten wir durch Auflösung von (7) nach p(z — ^\:

P (z — y) ei + d £i (z)

und daraus durch Differentiation nach z:

?(?-?) *&(*)¦
Indem wir nun diese 4 Beziehungen verwenden, wird (18) zu

Ci'(t) x2X CiCi^ +cp^ \
cW-J -.-^.W-e,---.

Ci (z +1) MIJ

_4ciCi2(t)V C^zX-CW-l ; t,w C,(t) "c,

(C (z) • C,2 (t) + Ç (t))2 - 4 c, C, (z) C,2 (t) C, (z) ¦ C, (t) - l)2
~~

4ciC12(t)(Ci(z)-Ci(t)-l)2

- 4 c,Ct(t) (C,(z)C.(t) - l)8 - 12 e,C»(t) (C(z)C(t) - l)2
4clC,2(t)(Ci(z)-Ci(t)-l)2

Mitteilungen der Naturf. Gesellschaft in Bern 1923. 9
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oder abgekürzt:
zfC,(z),C,'(z),(E.(t),Cls(t)}

(19) d (z +1) v — --—X )VJ^ J

4ciCi2(t)(Ci(z)C1(t)-l)2
Der Zähler Z lässt sich durch Ausmultiplizieren der einzelnen

Klammern und Vereinigung der gleichartigen Ausdrücke zunächst
auf die Form bringen:

Z (Ci(z), •••, Ci'(t)) C;2(t) [4 cC(z) + 2 C,'(z)C,'(t) + 4 c,I,(t)

+ 4 c, C,2 (z) Ci (t) + 4 c, C, (z) d2 (t) + 24 e, C, (z) C, (t)]
In der eckigen Klammer ergänzen wir die 3 ersten Glieder zu

(Ci'(z)-f-Ci'(t))2, indem wir die fehlenden Glieder (vgl. (14))

12eiCi2(z) + 4ciCi3(z)

und 12eiCi2(t)+4c1Ci8(t)
addieren und subtrahieren:

Z(Ci(z),--, Ci'(t)) C,2(t) [4 Cid2(t) (C,(z) - Ci(t))-4CiCi2(z).
(d (z) - C, (t)) - 12 ei (C,2(z) + 2 C,(z) C, (t)

+ C,2(t)) + (Ci'(z) + Ci'(t))2]

4CiCi2(t)[^i(Ci'(z)+C;(t))2-(Ci(Z)-Ci(t))2

(Ci(z) +^ + C,(t))]

Führen wir noch die Abkürzung

(20) ^XX
ein, so erhalten wir schliesslich die folgende in z und t symmetrische
Formel :

i(t,'W+t,,(t))'-(c,(z)-c,(t))!(c,(z)+-!-t,+c1(t))i

Wir nennen diese Formel das Additionstheorem der
Funktionen Ci(z).

Wenn man (21) z. B. nach z differenziert, erhält man das

Additionstheorem der Ableitungen Cf'(z) in der Gestalt:
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loo, tv * C,'(z)[4cICî(z)Cî(t)(C,2(t)-l)-C,"(t)(Ci(z)Cî(t)+l)]

^(Ci^CX-l)3
Ci-(t)[4c,Ci(z)Ci(t)(Ci2(z)-l)-Ci"(z)(C,(z)C1(t)+l)]

+
Ci(Ci(z)-C,(t)-l)3

wobei [nach (15)] C,"(z) 6 c, C,2 (z) +12 e,Œ,(z) + 2 c
An dieser Stelle wollen wir noch durch eine kurze

funktionentheoretische Ueberlegung eine Rekursionsformel herleiten, die uns
im nächsten Paragraphen gute Dienste leisten wird.

Betrachten wir das Produkt Ci(z-f-t)- d(z— t). Dasselbe wird
nach § 1, III von 2. Ordnung unendlich für alle Werte z, die der
Bedingung

z +1 -j,- (mod ii)

genügen, also von der Form sind:

z — +1 -f- -g- -j- hi o)i -4- h2 o)2,

wobei J1} 0>±1,±2,+ —

Ci(z-j-t)Ci(z —t) wird von 2. Ordnung 0 für alle Werte z, die der

Bedingung
z +1 0 (mod ä)

genügen, also für
z +1 -4- hi o)i -\- hä o)2,

wobei wieder hi und h2 voneinander unabhängig alle ganzen Zahlen
durchlaufen. Wir können also mit Rücksicht auf Funktionalgleichung
(9) setzen:

Ci(z + t).Ci(z-t) k.(|i|^\)2.
Die Bestimmung der Konstanten k geschieht am einfachsten durch
die spezielle Wahl: z 0. Obige Gleichung geht nämlich dabei in
die folgende über:

Ci2(t) k-Ci2(t),
woraus sich für k der Wert 1 ergibt. Es besteht also die elegante
Formel :

^+«^-xê§yx!
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Wenn wir hierin z durch (m-(-l)z und t durch mz ersetzen, so
erhalten wir folgende für die Berechnung der Multiplikationsformeln
wertvolle Relation:

,nn, ~c ^ / C,f(m + l)zi-Ci(mz) V
23 C,(2m-fl)z)C.(z)= /V X ' J ——),

welche uns C,((2m-j-l)z) liefert, wenn C,(mz) und (C,(m-f l)z)
bekannt sind.

§ 4. Die Multiplikation.
Wir haben die nötigen Vorbereitungen getroffen, um nun das

Multiplikationsproblem lösen zu können. Wegen
Ci(-z) C,(z)

wird sich Ci(nz), für ein ganzzahliges n, als rationale Funktion von
Ci(z) allein darstellen lassen.

Wir erhalten sofort eine solche Darstellung für n 2, wenn
wir in dem Additionstheorem (21) t z setzen. Es ist

fCl(2z) - «™
Ci(Ci2(z)-l)2

_Ci(z)(4Ci2(z) + tiCi(z) + 4)

(X2(z)-l)2 ~
(mit Benützung von (14) und 20)).

Durch Differentiation der Formel (24) nach z oder bequemer
noch, indem wir in dem Additionstheorem (22) t z setzen,
erhalten wir:

_[4c1Ci2(z)(C.2(z)-l)-(C,2(z) + l)-C1"(z)]-C,'(z)
(Li (<ä Z) r— —

c,(C,2(z)-l)3
C,' (z) [2 Ci* (z) +1, C,8 (z) +12 Ci2 (z) + ti C, (z) + 2]

(axz)-i)3
(mit Rücksicht auf (15) und (20))-

Wir könnten in dieser Weise fortfahren. Setzen wir «ämlich
in (21) t 2 z und benützen wir die hergeleiteten Darstellungen
von Ci (2 z) und CT (2 z), so erhalten wir Ci(3z) als rationale Funktion

von Ci(z), daraus durch Differentiation Ci'(3 z) als rationale
Funktion von Ci (z) und Ci' (z), u. s. f.

(24)

(25)
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Wenn wir also Ci((n— l)z) und Ct'((n—l)z) kennen, so können

wir daraus Ci(nz) mit Hilfe der Formel (21) berechnen. Dieses
Rekursionsverfahren ist aber sehr mühsam. Wir kommen rascher
zum Ziele, wenn wir die Rekursionsformel (23) verwenden.

Setzen wir in (23) m l, so erhalten wir zunächst

Nun ist mit Rücksicht auf (24)

Ci(z)(C,2(z)-l)2-C,(z)(4Ci2(z) + t,C,(z)-f-4)
C,(z) - C,(2z) _ (Ci2(z)-l)2

_
C, (z) (Ç* (z) - 6 C,2 (z) - t. C, (z) - 3)

(C,2(z)-1)2

C,2(z)(4C,2(z) + tiC,(z) + 4)-(C,2(z)-l)2
C,(z) C,(2z)-1_

(C,2(z)-1)2
_3C,Hz) + t,C,3 + 6Ci2(z)-l

(C,2(z)-1)2
Es ist somit

f9R, erro, Ci(Z)(C,HZ)-6Ci2(z)-t,C,(z)-3)2
(26) C,(3z)_

C3C|4(,) + tgt.(,) + 6C|,(a)_1)»
•

Ci (4 z) bekommen wir am einfachsten, wenn wir in der Formel
(24) z durch 2 z ersetzen. Es ist dann

ïi(4z)-Ci(C,2(2z)-lf
oder ausgerechnet (mit Benützung von (14), (20), (24) und (25)) :

Ci(z)(lC,2(z)+t,Ci(z) + 4)(C,2(Z)-l)2-(2Ci*(z)+tiCi3W+12Ci2(z)+tiCi(z)+2)2
(27) C,(4z)=

(Ci8(z)-20Ci6(z)-8tiCi6(z)-(26+t,2)Ci*(z)-8tiCi3(z)-20Ci2(z) + l)2

Zur Berechnung von Ci (5 z) wenden wir wieder die Rekursionsformel

(23) an. Wir setzen in derselben m 2 und erhalten so die
Relation
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Nach (24) und (26) ist aber

a- ,<m_t ,^_kOOQTO+t.C.fo+WäC4(') + t.C»{(z)+6Ci2(z)-1)2
M*J W*) •

(ci2(z)-l)a(3CiMz) + tiCi3(z)+6Ci2(z)-l)2

-C,(z)(C,2 (z) - l)2(CiMz)-6Ci2(z)-t,C,(z)-3)2
(Ci2(z)-l)2(3CiHz)-ft,C,3(z)-f6Ci2(z)-l)2

und

in,,, vn* i_g»'(')0^(')+t,c.(.o+0(g:.4(')-6q:.g(»)-t.c«(i)-3)ii
i[ ' il j (Ci2(z)-l)2.(3CiHz) + tiC,3(z) + 6Ci2(z)-l)2

- (C,2 (z) -1)2. (3 C,* (z) +1, C,3 (z) + 6 C,2 (z) -1)2
(C.2 (z) -1)2. (3 Ci* (z) + ti C,3 (z) + 6 Ci2 (z) - l)2

Dies gibt für Ci (5z) die folgende Darstellung:

Ä 12-i
2Ja,C(z)

(28)

wobei

C,(5z) C,(z)-

S 12-i
biC(z)

a0 bi2 1,

ai bn 0,

a2 bio — —50,
a3 bs) — 351;,

a4 b8 — 5 (25 + 2 tia),

a5 b7 =- ti (92 + t,2),

a6 bB -15(20 + ti2),

a7 b3 — 90 ti,

a« hi 7= — 105,

a., b« 20. ti,
a,o b>=62-f ti2,

a„ bi =5 ti,

ai2 bo 5.

Durch fortgesetzte Anwendung dieses rekurrenten Verfahrens
erhalten wir auch die weitern Multiplikationsformeln: die Formeln
für n 2 m -+11 ergeben sich jeweilen mit Hilfe von (23) und die
Formeln für n 2m dadurch, dass man in Ci(mz) z durch 2 z

ersetzt.
Nun wollen wir d(nz) für ein beliebiges ganzzahliges n als

rationale Funktion von Ci(z) darstellen. Nach § 1, Schlussatz, ist
Ci(nz) eine gerade elliptische Funktion von z, welche von 2.

Ordnung unendlich wird für alle Werte z, die der Bedingung
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(29) nz j (mod. Q)

(unter Beachtung von § 1, (3)) genügen, also von der Form sind:

o) hio)1 + h8o)2 hi) ,„z~2n + n ' h2XU'±1'±Z,± '

und die ferner von 2. Ordnung Null wird für alle Werte z, die
der Bedingung

(29') nz 0(mod.ß)

genügen, also für
hl Ü)l -4- ll2 0)2Z= n

>

wenn wieder hi und h2 beliebige ganze rationale Zahlen sind.

Wir erhalten sowohl alle unter (29), wie auch alle unter (29')
enthaltenen inkongruenten Werte, wenn wir hx und h2 je das kleinste
positive Restsystem nach dem Modul n durchlaufen lassen. Die
Funktion d(nz) besitzt also im ursprünglichen
Grundperiodenparallelogramm n2 Pole und n2 Nullstellen von je 2. Ordnung; in
bezug auf dieses Parallelogramm ist C;(nz) somit eine elliptische
Funktion von 2n2 Ordnung.

Wir konstruieren jetzt eine rationale Funktion von d(z), welche
dieselben Pole und Nullstellen hat wie Ci(nz). Auf Grund der
unmittelbar vorangehenden Erwägungen wird diese Funktion folgendes

Aussehen haben:

nz (Ci(z)-Ci;r.,r.)
Rn (Ci (Z)) r-<=!=>

nN(Ci(z)-Ci;r,X
(n, ra)

worin

ci;r„r, =Ci(r-i^4i^)
Ci;ri,„=Ci(^4 rimi -f- ^0)2^

und ri, r2 zunächst beliebige Zahlen des kleinsten positiven
Restsystems mod. n bedeuten sollen. Wir haben nun zu untersuchen,
über welche Wertepaare ri, r2 die Produkte nz und nN wirklich zu
erstrecken sind. Dabei müssen wir auseinanderhalten, ob n ungerade
oder gerade ist.
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1. Es sei n ungerade.
In diesem Falle wird Rn an allen Nullstellen von Ci(nz) genau

von 2. Ordnung Null, falls ri und r2 in nz je das kleinste positive
Restsystem mod. n vollständig durchlaufen. Denn Ci (z) hat in z 0
eine Nullstelle 2. Ordnung und jeder andere in Uz auftretende
Linearfaktor kommt gerade zweimal vor, da die beiden
inkongruenten Werte

ri o)i -j- V2 o)2
~~ n

(n — ri) coi -j- (n — r2) o)2und z ¦

n

wegen Ci(— z) Ci(z) den gleichen Wert von Ci(z) ergeben. Der
Zähler der gesuchten Funktion Rn lautet also:

Ci(z)-nj(Ci(z)-Ci;n,rO,
(ri,rî)

wo ri,r2 die nachstehenden Wertepaare durchläuft:
n—1

(30)
0,1
0,2

1,0

1,1
1,2

2,0
2,1
2,2

,0

n-
n-

0 — 1 - ±2^ n-1

~1,1
-1,2

n —1

n2 1

Es sind dies im ganzen —^— Kombinationen. Der Zähler von Rn

ist mithin vom Grad n2 in d(z).
R„ wird an allen Polen von Ci (nz), die nicht zugleich Pole von

Ci(z) sind, genau von 2. Ordnung unendlich, wenn ri und r2 in IIN

je das kleinste positive Restsystem mod. n durchlaufen, mit
Ausnahme der Kombination für die

ri o)i -(- r2 o)2 w

n ~2
0)

2n

wird ; dies tritt ein für ri

» n

» ri :

f
n-

2

n —1
2

0

und r2 0, wenn i 1,

n—1 0> r2 —g—, > i 2,

n-1 „» r2 —5—, > i 3.
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In jedem der 3 Fälle (i l, 2, 3) hat somit ri,r2 in nN n2 — 1

Wertepaare zu durchlaufen. Der Grad des Nenners von Rn ist
daher n2 — 1 in Ci(z) und weil jeder Linearfaktor wegen Ci(—z) d(z)
auch hier wieder zweimal auftritt, so hat der Nenner die Form:

n^(C,(z)-CI;r„r,),
(n,rO

wobei ri,r2 die folgenden Kombinationen durchläuft:

0,0 1,0 2,0 5=2,0

0,1 1,1 2,1 n-1,1
0,2 1,2 2,2 n-1,2

n n — 3 n —3 9 n—3 n — 3

'"IT- '~2 'XT~ n~1>~2~
(30') n-1 n-1 n-3 n—1

' 2 ' 2 ' ' ' 2 ' 2 '

dazu für i—1 die Kombinationen : 0, —5—
und —0—, —5— n — 1, -Li Cl LI Li

» » i=2 » » 0,5=1 » 1^1,0 ....n-1,0
• O n_1 n_1 n_1 A 1 A» » i=3 » » -ö-.-ö- * —ô— >° • • n—1,0.

2. Es sei n gerade.
In diesem Fall ist bei der genaueren Bestimmung des Zählers

von Rn zu beachten, dass unter den im ursprünglichen
Grundperiodenparallelogramm auftretenden Nullstellen von Ci(nz) auch
der Pol von d(z) vorkommt, so dass ri, r2 in nz alle innerhalb
des kleinsten positiven Restsystems mod. n möglichen Kombinationen

zu durchlaufen hat, mit Ausschluss der einzigen Kombination

n -p-, r2 0, wenn i 1,

n n _
• n= -g-, r» 2"i * * '

n „ri 0, r2 -jr, » i 3.
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Die n2 — 1 Linearfaktoren, über die wir das Produkt nz zu bilden
haben, kommen wieder je zweimal vor, mit Ausnahme der drei:

d(z), d(z)-Ci(l^),C1(z)-Ci(f), wenn i l,

C2(z), C2 (z) - C2 (f C2 (z) - C2 (Ç),

Ca(z), Cs(z)-Ca(|), Cs(z) - C, (^),
» i 2,

» i 3.

Diese Faktoren verschwinden aber je von 2. Ordnung und da nach
(13 a, b, c), (14) und (20):

C1(z).(Ci(z)-Ci(^))(Ci(z)-Ci(f))=^
C1(z)(c?(z)-f--jC1(z) + l),

C2(z)-(c2(z)_C2(f))(c2(z)-C2(f)) =*£&
d(z)(c5(z) + ^C2(z) + l),

Ca (z) • (d (z) - Ca(f (Ca (z) - C3 (=+«)) ^
d(z)(c!(z)-f-^C3(z)-f-l),

so hat der Zähler von Rn die Gestalt:

Ci(z)- (d2(z)+ ACi(Z) + l) • U°(Ci(z) - Ci;r,r,),
v * ' (ri,rs) v '

wobei ri,r2 in nz die folgenden Wertepaare durchläuft:

(31)

0,1
0,2

1.0 2,0

1.1 2,1
1.2 2,2

1,0

n —1,1
n—1,2

0,-5-1 l,-5-12,|-l
1 - 2 -l, 2 ^-2 • •

n-1,2-1
n

1
n

2~ 'T



(21)

Es sind dies

G. Hauser. Teilungsgleichungen.

-4

139

Kombinationen, so dass der Grad von nz in

n2 4
£i (z) —s— und mithin der Grad des Zählers von Rn n2 — 4 -f- 3

n2 — 1 ist.
Rn wird an allen Polen von d(nz) genau von 2. Ordnung

unendlich, wenn ri und r2 in nM voneinander unabhängig das kleinste
positive Restsystem mod. n vollständig durchlaufen. Denn die halben
Perioden treten unter den Polen von Ci (nz) nicht auf, falls n gerade
ist. Der Grad des Nenners von Rn ist also n2 in d(z), und weil
hier ausserdem jeder der n2 Faktoren zweimal vorkommt, so hat
der Nenner die Form:

nHCi(z) — Ci;r„„),

wobei ri,r2 die folgenden Wertepaare durchläuft:

(31')

0,0 1,0 2,0. 2 1,0

0,1 1,1 2,1. n-1,1
0,2 1,2 2,2. n-1,2

05_i i E.
u'2 '2 -i *,J-- 1 i n

n-1,2"-1,

dazu für i 1 die Wertepaare: 05u,2 1
n
2

2 n
'2 • • •

n 1 n
2 '2'

» » i 2u.3 » » -02'
n
2 + 1 05

2 +2.J. i nn-1, g.

Zusammenfassend stellen wir fest, dass die gesuchte Funktion
R„(Ci(z)) wie folgt lautet:

A-IP(Ci(z)-Ci;ri)r!)
(32) MM-tw-^zia.(n, rs)N

worin ri, r2 für ungerades n in n, die Wertepaare (30) und in IIN
die Wertepaare (30'), für gerades n in ü» die Wertepaare (31) und
in nN die Wertepaare (31') durchläuft und wobei ferner:

A 1, falls n ungerade ist,
A C? (z) + | C, (z) +1, falls n gerade ist.
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Da d(nz) und die soeben definierte Funktion Rn (d(z)) bezüglich
der Pole und Nullstellen genau übereinstimmen, so gilt nun die
Relation :

(33) C,(nz) C-Rn(C,(z)).
Setzen wir zunächst voraus, dass n ungerade sei, so finden

wir durch den Grenzübergang z->-^ für C den Wert:

(34) C l
In diesenV,Fall ist nämlich nach (32):

C'^H1 + CïïzT(const-+---)]C.(nz)_r ~*w 1/ rC,(z)
goo *'7„\ri_L.xd(z)[l +c^ (const.+...)]'

woraus wegen lim d (z) oo folgt, dass
Ol

Z~V2

-i^IiMC lim

Z~X

oo

tu £'(Z) °°

ist. Differenzieren wir Zähler und Nenner je nach z, so ergibt sich

wiederum die unbestimmte Form —, weil auch lim d(z) oo ist
00 CO

(vgl. § 2, I). Durch abermaliges Differenzieren erhalten wir:

d"(nz)

oder mit Berücksichtigung von (15):

12 e, 2 c,
«,,-(nzj o Ci -f-

C n2 • lim

n2
d(nz)l2lim

Z~*Y
C(z)

n2-C2.
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Da C lim X r eine von Null verschiedene Konstante ist, so
«, Ci(z)

Z^2
dürfen wir die letzte Gleichung durch diese Grösse dividieren,
woraus das Resultat (34) folgt.

Ist dagegen n gerade, so erhält man die Konstante C durch
Entwicklung beider Seiten von (33) nach steigenden Potenzen von z
mit Benützung von (5) und (32) und nachheriger Vergleichung der
Koeffizienten der niedersten Potenz von z. So ergibt sich für C

folgender Wert:
HljCi;ri,r2

C n2-^2i
nz*Ci;r.,

(ri, rs)

worin also ri, r2 in n, bezw. nN die Wertepaare (31) bezw. (31')
durchläuft. Nun gilt aber die Beziehung

(35) nzCi;r,,n nHCi;ri,r, 1, falls n gerade ist.
(ri,r,) (ri,n,)

n2 4
Denn in diesem Falle lässt sich durch Betrachtung der —^— Werte-

n2
paare (31), sowie der -*- Wertepaare (31') und mit Beachtung der

Funktionalgleichung (9) leicht erkennen, dass in n, mit jedem Faktor

C,(ritùl + r2t°2) und in nN mit jedem Faktor E,Q^+r^ + r2(ù2)

auch die reziproke Grösse

_ fri toi -f- r2 o)2 oA _ w ri o)i-(-r2 o)2 w "\

H î + 2-J bezw- *% + n + 2)
auftritt. Man kann demnach sowohl die Faktoren von n. wie
diejenigen von n„ je in Paare gruppieren, von denen jedes als Produkt
den Wert 1 ergibt, woraus die Relation (35) hervorgeht. Somit
ist für gerades n:

(36) C n2.

Setzen wir nun

nz (Ci(z) — Ci;r.,r.), wenn n ungerade,
I (ri,n)
j n • nz (Ci (z) — d ; r,, r,), » n gerade,

(37)
jn-nN (Ci(z) — Ci;r.,n), wenn n ungerade,

Zn(Ci(z))
tJ

l (n.n)

Nn (Ci (z)) - j <J£> ,Ci (z) _ c_
; ^

v

; > n gerade>
l(n,rs)
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wobei ri, r2 in IL die Wertepaare (30)' bezw. (31) und in nN die
Wertepaare (30') bezw. (31') durchläuft und hat ferner A wiederum
die unter (32) festgesetzte Bedeutung, so bekommt die
Multiplikationsformel für ein beliebiges ganzzahliges n auf Grund von (32),
(33), (34) und (35) die folgende Gestalt:

d(nz) Z°(C,(z))
(38)

d(z) N'n(d(z)

n2 1
Bei ungeradem n haben Zn und Na denselben Grad —~—; bei

n2 n2
geradem n ist Z„ vom Grad ^ 2 und Nn vom Grad -~.

Bezüglich der Funktionen Zn(d(z)) und Nn(d(z)) lassen sich
nun noch die beiden folgenden Sätze beweisen:

Satz I: Die Koeffizienten der Funktionen Zn(d(z)) und N„(d(z))
sind ganze ganzzahlige Funktionen von ti.

Der Beweis stützt sich auf die Multiplikationsformeln (24) bis
(28). Nach denselben gilt der Satz für n 2,3, 4,5. Aus der am
Anfang dieses Paragraphen geschilderten rekurrenten Berechnungsweise

der Multiplikationsformeln ist ferner ersichtlich, dass unsere
Behauptung auch für n 2m und n 2m-f-l richtig ist, falls dies
für n m und gleichzeitig für n m -4- 1 zutrifft. Durch vollständige

Induktion geht alsdann die Gültigkeit des Satzes für ein
beliebiges ganzzahliges n hervor.

Satz II: 1. Wenn n ungerade ist, so besteht zwischen den
Funktionen Zn und Nn die Relation

N.ICW^mX'-Z,^);
d. h. ihre Wurzeln sind zueinander reziprok. Es ist insbesondere

an'-i n„ d ; n, r, n,
2 (ri, ri)

bn'-l n • nN Ci; ri, r> 1 •

2 (r>> ri)

2. Wenn n gerade ist, so ist sowohl Zn wie auch N„ eine
reziproke Funktion, d. h. es gilt:

Zn(Ci(z)) Ci2(z)-Zn(f;L))
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und H!

N"(Ci(z)) Ci(z).Nn(^).

Es ist also insbesondere

an= n • nz d;n,« n
2

' (r»>r!)

bn-* nNCi;ri,r!= 1-
2 (ri>r2)

Beweis: 1. Es sei n ungerade, also von der Form
2m -f 1 (m 1,2, ¦ • •). Dann ist nach (38) :

Ci(nz)^_Z;(Ci(z))
d(z) N*(d(z))'

wobei
nJ— 1 n2—3

Zn (Ci (z)) d (z) -f ai d (z) -f- • • • -f an^-3 • d (z) + an>_i
2 2

n — 1 ll2 — 3

und Nn (d (z)) n • Ci (z) + bi Ci &) + ¦•¦ + b^ d (z) -f bn±_i.
2 2

Ersetzen wir nun überall z durch z -f- ^, so geht wegen (9) die linke

Seite über in

C(Z) _Nü(Ct(s))
d(nz) Z°(C,(z))

und die rechte Seite in
rr —3 n2— 1. 2

7» fJX) -4=i(1 + ai^(z)+-Xan!=ii-Ci(z) + a1i!_iCi(2z)

"MLfzV d(z)\ 2 2 /

^ (Z); "ii « + bl C,.(Z) + ' • X bn-3 d (Z) + bn^-1 Ci (Z)

d(z)V 2 2 /

Daraus folgt, dass
n a„=_i,

2

bi an*-3,

bn'-3 ai
2

b„'-l=l
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d. h. in Nn treten dieselben Koeffizienten auf wie in Zn, nur in
umgekehrter Reihenfolge, w. z. b. w.

2. Es sei n gerade, also von der Form 2m (m 1,2, • • ¦). Dann
ist nach (38):

C,(nz) C,(Z) (C?(2) -h^ C^) -f-

wobei
2!_2 îî!_3
2 2

• Zn(Ci(z)) n-Ci(z) + ä1d(z)-|---Xän2 Ci(z)-fän.
T-3 "8

n2 n2_

und Na|(C, (z)) Ci2(z) + bi d(z) -| 1- b=!_i d (z) + b„2.
2

0)
Ersetzen wir hier wieder überall z durch z-f-~, so bleibt die linke

Seite ungeändert; die rechte Seite dagegen geht nach (9) über in

C(z)(c?(z)+|c(z) + i) z;(^)
d4(z) N°(-^-i

:C,(z)(C?(z) + ^CI(z) + l)

1
/

C,(z)\
n -f- ai C, (z) -| \- an2

¥~3 T~2\
_3d(z)-f-än2_2C,(z) j

1 /
n2—*

d(z)\ l + b1Ci(z) + --Xbn2
K 2 _t

• d2(z) -j- bn2 CW j
Daraus folgt, dass n =än=

Y
1 =b£!,

äi än2
T-3

bl bn2
2

X

allgemein : cIt* ¦ dn! •X(r+2)
br bn2

d. h. die Koeffizienten von Z„ und von Nn sind symmetrisch in bezug
auf den mittleren Koeffizienten, w. z. b. w.
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II. Kapitel.

Die Grössen t, (o) (i 1, 2, 3).

§ 1. Darstellung von ti(to) durch die Funktionen f(w),fi(o)),f2(o)). *)

Betrachten wir die in Kap. I, § 3 (pag. 12) eingeführten, von z

unabhängigen Grössen

7A7 If N
23 -361(0)1,0)2) f, QN(1) t,(o)i,o)2) —= - y

(1 1,2,3).
y 22 • 3 e;(o)i w2)—g2 (0)1, o)2)

Aus den bekannten Relationen

ei (to)i,to)2) t-2ei(0)1,0)2),
§2 (tö)l, tü)2) t-4 g2 (tOl, 0)2),

worin t ein willkürlicher Parameter bedeutet, folgt, dass ti(o)i,o)2)
in 0)1,0)2 homogen von Oter Dimension ist, also nur vom

Periodenverhältnis to —, mit positivem Imaginärteil, abhängt.

Wir legen nun den imaginären quadratischen Körper k("J/m)
zugrunde. Die Zahlen dieses Körpers haben die Form:

x -f y Vm, m < 0

und ohne quadrat. Teiler und wobei x und y rationale Zahlen sind.
Wir setzen ausserdem voraus, dass

m+-l, +-32)
ist. Es sei iü (0)1,0)2) irgend ein Ideal aus k(l/m), worin 0)1, o)2

eine Basis desselben bedeute und o) — mit positiv imaginärem

Teil vorausgesetzt werde. Ist 0)1', o)2' eine andere Basis von m
derselben Eigenschaft, so existiert eine unimodulare, lineare
Substitution S, sodass

(2) 5*1 o)' So).
0)1

Sind td (ö)i,ö)2) und wo aequivalente Ideale, so muss ebenfalls

(3) —- w So)
0)1

sein.

Weber, Lehrbuch der Algebra, Bd. III, § 34.
2) Bezüglich dieser beiden Ausnahmefälle vgl. die Einleitung.

Mitteilungen der Naturf. Gesellschaft in Bern 1923. 10
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Da g2(o)i,o)2) bekanntlich gegenüber den linearen, unimodularen
Substitutionen invariant ist und die ei, e2, e3 bei solchen
Substitutionen ineinander übergehen, so gilt infolge (1), (2) und (3) der

Satz I: Durchlaufen die beiden Perioden wi und o)2 die
Basiszahlen aller Ideale it> einer Idealklasse aus k Q/m), so gehen dabei
die 3 Grössen ti (o)) (i 1,2,3) ineinander über.

Um über die arithmetische Natur der ti(o)) Aufschluss zu
bekommen, wollen wir sie durch x, den Modul der elliptischen
Funktionen, und x' Y 1—x2 ausdrücken. Bekanntlich ist

5c2=e2-ea
ei — e3

es ist ferner
2 K 2 i K'

«* rp » W2:"X7=>V ei — e3 y ei — e3

wobei 4K und 2 i K' die beiden Perioden von snu(u= ']/d — e3 z)2)
sind. Da nun die ti (o>) nur Funktionen des Verhältnisses

2iK'
Q)2 y ei — e3

on ~ 2K
1/ei — e8

sind, so dürfen wir zur Vereinfachung der Rechnung ohne weiteres
die Festsetzung treffen:

toi 2 K, o)2 2 i K',
was den Uebergang zu einem ähnlichen Gitter bedeutet. Alsdann ist

1+x'2 x'2 —x2 1 + x2
ei — —g— e2 — g— e3 ^—

ferner

gî i-(l-**•*'*). 3)

Daraus ergibt sich durch einfache Rechnung:

1/22-3e?-g2 2 x',
l/22-3eI— g2 2ixx',
]/29--3el~ g2 2x;

') Weber: Alg. III, § 46, (4).
2) Ebenda, § 44, (22).
3) Ebenda, § 46, (14).
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also ist
23-3ei =4ri+jX1

l/22-3e;-g2 ^ *' J'

(4) t2_ 23-3e2 _.4i(x'2-x2)
l/2*-3eï — g2 *¦*'

|/22-3e?-g2 V * }
Führen wir weiterhin noch die Klasseninvariante1)

4 • 27 s* 1

j(o)) lX=, G ^(gs2~27g|)

ein, so gilt nun der folgende

Satz II: Die Grössen ti(w) genügen der Gleichung 6. Grades:

(5) tf — 9 • 161? - [j (<o) — 27 28] • t? + 64 [j (co) — 27 • 64] 0,

deren Koeffizienten ganze algebraische Zahlen sind2) und folglich
sind die ti selbst ganze algebraische Zahlen.

Beweis: Wir zeigen zunächst, dass z. B. ts — 4(—L—I
der obigen Gleichung wirklich genügt. Denn aus

j(o))-27-64 64^ + -2-fy2XX,J x4-x'4
3>

folgt, wegen x'2 1 — x2,

(j — 27 • 64) (1 — x2)2 • x4 64 [2 + x2 (1 — x2)]2 • (1 — 2 x2)2.

Nach dem Auflösen der Klammern und Ordnen nach Potenzen von
x ergibt sich:

28-x12 — 3-28x10 + (6-28 — j)x8 — (7-28 — 2j)-x«
X (6 • 28 — j)x4 — 3-28x2-f 28 0.

Diese Gleichung ist symmetrisch; darum ist

28(x12+l)—3-28(x10-X2) + (6-28X)(*X*4X (7-28—2j)xu=0.
Setzen wir vorübergehend x2 ß, so folgt nach der Division durch ß3:

28(ß3+i)~3-28(ß2+i) + (6-28-j)(ß+i)-(7-28-2j) 0.

Weber: Alg. III, §, 47, (16); ferner § 115.

2) Ebenda; § 116, VI; vgl. ferner § 156, (3).
s) Ebenda: § 47, (16).
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Setzen wir ferner çk (s) ßk -f- ^, so ist

tp1(s) ß-f-|- s, <p2(s) s2—-2, <p3(s) s3 —2s,

und wir erhalten:
28 (s3 — 3 s) — 3 • 28 (s2 — 2) -f (6 • 28 — j) s — (7 • 28 — 2 j 0

oder

28-s3—3-28-s2-f(3-28 —j)-s —(28 —2j) 0.

Da s x2 + ^=(x-t-i)2 — 2, so ist

16s [4(x-f- -i)|2 — 32 ts2 — 32

und die mit 2* multiplizierte Gleichung geht über in

(tX32)3 —3-24(t?—32)2+(3-28—j)(tX32)-24(28 —2j) 0.
Ordnet man schliesslich nach Potenzen von t3, so ergibt sich die
Gleichung (5) (für i 3).

Da nun j (co) wegen j (Sw) j (cd) *) nicht von der Wahl des
Ideals to und dessen Basis, sondern nur von der Klasse von n? in
k('|/m) abhängt, so folgt aus Satz I, dass mit t3 auch ti und t2 der
obigen Gleichung genügen müssen. Damit ist Satz II bewiesen.

Es wäre nun naheliegend, zur numerischen Berechnung der
Grössen ti die Gleichung (5) aufzulösen und alsdann die Beziehung

(f(o))2*—16)3
i>x114n—-2)f(0))

zu verwenden. Es ist aber zweckmässiger, die ti direkt durch die
Funktionen f(o)), fi(w) und f2(o)) darzustellen. Die Definitionen dieser
Funktionen lauten3) :

100 2r-lN
f(o)) =q 24n 1 + q

l_oo _fi(o)) q 24n(l-q-r

f2(o)) y2q«n(l-f-qr),
r lx '

H1(JU

worin q e

i) Weber: Alg. III, § 53, 2.
2) Ebenda; § 69, (3).
3) Ebenda; § 24, (11).
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Auf Grund dieser Definitionen lassen sich aber die folgenden
Beziehungen herleiten *¦) :

fH TF
1/2

(7)

1/xx'

f (o))
— K * '

f2(0)).
f(0))

4

1/x
Durch Elimination von x und x' aus (4) und (7) ergeben sich alsdann
die gesuchten Formeln:

(8)

4(f(0))8 + fi(0))B)
tl(w)= f(«o)* •&(«,)*

'

t2(0)) i-f(0))i(f1(0))8—f2(0))8),

4(f(o))8 + f2((o)8)
t3(o))

f(0))4"f2(0))*

Es bestehen ausserdem die beiden folgenden fundamentalen
Beziehungen zwischen den 3 Funktionen f, fi und f2 2) :

fi(W)8+f2(o))8 f(oX
f(o))-fi(o))-f2(o)) l/2.

Hieraus erhalten wir ohne weiteres die Gleichungen

(9)

{ns f 7g l/f(o))24 — 64
f,(o))8-f2(o))8 ym)4 :

(10) f(tó)8 + f2(tó)s Ì^Xg.±6É)

f(.)« + ft(.).= ^?—.
In bezug auf das Vorzeichen der rechts auftretenden Wurzeln ist
folgendes zu bemerken: Für ein verschwindendes q werden die linken
Seiten nach (6) positiv unendlich. Das Vorzeichen der 1. Wurzel

Weber: Alg. Bd. III, § 54, (2) und (3).
2) Ebenda, § 34, (11).
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ist demnach positiv zu nehmen, solange — iw reell und grösser als
1 ist; denn dieses Vorzeichen wechselt nur für f(o))24 64, also
laut Tabelle VI in Webers Algebra, Bd. III, ') für o) i. Das
Vorzeichen der beiden andern Wurzeln ist positiv zu nehmen, solange
— iw reell und positiv ist; denn sowohl fi(o))24 wie auch f2(o))24

werden nie — 64, falls —iw nur solche Werte durchläuft.
Die Formeln (9) und (10) sind für die praktische Rechnung

wertvoll, weil man mit ihrer Hilfe aus dem numerischen Wert der
einen der 3 Grössen f8, f,8 und f8, sofort den Wert der beiden andern
bestimmen kann.

§ 2. Die Berechnung der tX) für imaginär - quadratische
Körper.

Da wir uns bei der zahlenmässigen Berechnung der ti (co) nur
auf einige der einfachsten imaginären quadratischen Körper
beschränken wollen, so werden wir in jedem Fall die schon erwähnte
Tabelle VI in Webers Algebra, Bd. III, verwerten können. Diese
enthält ein Verzeichnis von Klasseninvarianten aller imaginär-quadratischen

Körper k("j/m), für die |m|^52, und dann noch für
einzelne weitere derartige Körper (bis zu |m| 1848).

Wegen § 1, Satz I, können wir uns jeweilen darauf beschränken,
für w das Verhältnis der Basiszahlen des einfachsten Repräsentanten
einer Idealklasse zu wählen. Der einfachste Vertreter der Hauptklasse

ist das Einheitsideal

ym falls m EEJH 1 (4),
o (1, w), worin w ] i _|_ ym

[—L^—, » m l(4).
A. Es sei zunächst w das Verhältnis der Basiszahlen des

Einheitsideals. Alsdann lassen sich die folgenden Fälle unterscheiden :

1. m =£ 1 (4), w ym.

a) m^0(2).
In diesem Falle können wir aus Tabelle VI (loc. cit.) den Wert
von f(l/m) entnehmen. Wir setzen ihn in

fl(0))8 + f2(0))8=f(0))8

- f,(»)«-fcW.=iX5X
Am Schlüsse des Buches.
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(vgl. § 1, (9) und (10)) ein und addieren bezw. subtrahieren dann
diese beiden Gleichungen. So ergibt sich:

(ID
ft«
f2(o))

„ fW'HVfW^-64
2 f (to)4

s_f«-l/f(tof--64
2 f (o))4

Durch Anwendung der Formeln (8) erhalten wir schliesslich die
gesuchten numerischen Werte der ti (co).

Beispiel: Es sei o)= j/— 5, d. h. wir setzen w gleich dem

Verhältnis der Basiszahlen des Einheitsideals o (1, V— 5) aus k fl/ — 5),
dessen Klassenzahl h 2 ist.

Nach Tabelle VI ist
fC|XX)4 2e,

1 "\ / "

;-— die Grundeinheit des reellen Körpers kCj/5) ist.wo £
2

Setzen wir diesen Wert in die rechten Seiten der Gleichungen (11)
ein, so finden wir mit Berücksichtigung von s2 — e —1=0, dass

f,(y:=5)8 2(i + iX)2,
f2(i/^5)8=2(i-y£")2.

Mit Hilfe der Formeln (8) ergeben sich dann die folgenden Werte:

ti (1/X5) 2 y 2 (3_s2 + 2 1/7) (1 - VT),
U(V — 5)=16iel/e,

-2 1/2"(3 e2 — 2 l/7)(l +1/7).t3(V^5)

b) m 0 (2)

Dann liefert Tabelle VI den Wert von fi(l/m), den wir uns in

f(0))8 —f2(ü))8 fl(0))8

und f^XiU8-VSSIf(0))8 + f2(0))8
fi(o))4 ^ L (9) u. (10))

eingesetzt denken. Durch Addition und Subtraktion dieser
Gleichungen ergibt sich:

(12)

f fi(o))i2 + l/fi(o))24 + 64

f2(0))8
fi(o))^2 + l/fi(24) + 64

2fi(o))4
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Setzen wir nun die Werte von f8, fJ und f| wieder in die Formeln
(8) ein, so erhalten wir die Werte der ti (w).

Beispiel: Es sei o> V—10, d. h. wir setzen o> gleich dem

Verhältnis der Basiszahlen des Einheitsideals o (l, V —10) aus
dem Körper k(l/—10), dessen Klassenanzahl h 2 ist.

Nach Tabelle VI ist

1/2-fl(lXXÖ)2 2s,

wo wieder e '^ —. Somit ist

fi(l/^W 2s2.

Aus (12) und s12-(-1 2-32-e8 folgt ferner, dass

f (1XXÖ)8 2 e (s3 + 3 V 2)
und _f2(l/~10)8 — 2e(e3 — 31/2)

ist. Mit Benützung von (8) erhalten wir sodann die Resultate:

ti (1/XÎÔ) 6 (3- I/IO) (e3 +1/2) 1/2s'3(£*3-31/2"), e'
1 -^-,

t2 (X^ÎO) 6 i (e3 -1/2") • 1/2£3(e3 + 31/2),

t3(l/^10) 24l/2s3.

2. m l(4),o) l+X5.
Für alle o) dieser Form lassen sich die ti(o)) wiejolgt berechnen:

Aus Tabelle VI entnimmt man den Wert von f (Vm und setzt ihn
in die Transformationsformel 2. Ordnung *)

(13) f (V m). f2 (—-^-^) e^" • V2

ein, wodurch f2 (X~-—j bestimmt ist. Zur Bestimmung von

f(1+2|/m)8 und fi (L+J^?-)8 dienen die unter (9) und (10)

enthaltenen Beziehungen

i) Weber: Alg. III, § 34, (19).
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f (1 +Vm y_ fi (1+Vm )*= u (l±V^y,

f^—§—J +fll-^—J - f n + i/my
Dabei hat man das Vorzeichen der Wurzel positiv zu nehmen,
solange |m| > 1. Denn für ein unendlich grosses |m| wird nach (6) sowohl

,/1 +VmV, n+1/my • 1

• fl 2—>+H-^T—) wie auch

,(l4X^r
11t

abgesehen von dem konstanten Faktor e 6, positiv unendlich. Das

(1
_1_1/—"\24
"X—) — 64,

was für m =— 1 eintritt, wie man sich mit Hilfe von (13) und
Tabelle VI leicht überzeugt.

Durch Addition bezw. Subtraktion der beiden obigen Gleichungen
findet man:

2 -.(XX
(14) _

,^. -(!(xxx'f,(xxx4
2 fi

2 y q +yx*(XX
Die gefundenen numerischen Werte setzt man alsdann in die
Formeln (8) ein und bekommt so die gewünschten Werte von

t(XX
Es lässt sich aber speziell ti I J-— j besonders einfach durch

f2 "X allein ausdrücken. Denn nach der ersten Formel des

Systems (8) und mit Benützung von (14) ergibt sich
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,rl+y5i X(XXX4 2 j KXX.(XX.(X^)'
oder, wegen (9),

(15) h(l±^)_^(l±£=)" + 64

In den Fällen, wo oi= '

^—, ist also die erste der Formeln (8)

durch (15) zu ersetzen.

Beispiel: Es sei o> —!—| d. h. w sei das Verhältnis der

(i i i/TZ7\
1,

'

9
I aus k (V — 7)

(h l).
Aus Tabelle VI entnehmen wir:

flXX)=l/2;
nach (13) ist also

*(XXX-
Die Formeln (14) liefern sodann die Werte:

f(l+VE!)8=i=±VE!.e¥

fl(i+|^I)8=-i+3VE!.e^
Mit Benützung von (15) und (8) ergibt sich somit:

4X)=*.
t,(l+fzI) "+y-7 3(2 + 0)),

/1 + 1/—7\ 15 —3V —7 _,_t3(.— 2 F ~3(3-o)).
B. Ist w das Verhältnis der Basiszahlen eines einfachen Nebenideals,

so lassen sich die ti(o)) ebenfalls mit Hilfe eines der
beschriebenen Verfahren berechnen, nur muss man in gewissen Fällen
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statt (13) eine andere Transformationsformel 1. oder 2. Ordnung
der Funktionen f, ft und f2 *) herbeiziehen.

Beispiel: Es sei o/= —^—, d. h. o) sei das Verhältnis der

Basiszahlen des Nebenideals tt> (2, V —10) aus k(/j/ —10).
In diesem Falle müssen wir von folgender Transformationsformel

2. Ordnung ausgehen:

fi(o))-f2(J)=l/2X
Da fi(V — I0)2 1/2s (vergi, pag. 34), so folgt aus dieser
Beziehung, dass

Setzen wir diesen Wert in (14) ein, so erhalten wir:

f (^-^y=2 e (s'3+3 y 2),

fl (Î^=i5)8 - 2 s' (s'3 -31/2).
Die Formeln (8) und (15) ergeben alsdann die folgenden Resultate:

tiG1^^) =-241/2 s",

t2 (^^^) - 6 i (s'3- 1/2) • 1/2s'3(e'3 + 3V2),

t, (^=^) - 6 (3 + 1/ÏÔ) X +1/2) ¦ 1/2£3(s3-3V2).

In der untenstehenden Tabelle haben wir die berechneten
Beispiele zusammengestellt. Wir haben uns auf die 5 einfachen Körper
kOX^), k(X=7), k (1/^ÏU), kftX^n) und kfl/=23), deren
Klassenanzahl h bezw. gleich 2,1,2,1, 3 ist, beschränkt und dabei
jeweilen das Einheitsideal zugrunde gelegt. (Da die Ausdrücke für

ti —-p J und ti( v, ] (i 2,3) kompliziert ausfallen,

haben wir sie in der Tabelle weggelassen.) Diese Tabelle enthält
ausserdem die ti (o)) für je einen einfachen Vertreter der Nebenideale

der zweiklassigen Körper k(V — 5) und k(l/—10).

Vergi. Weber, Alg. III, § 34.
2) Loc. cit.



Tabelle der berechneten Grössen ti (co) (i 1, 2, 3).

m

> .e:

il 0) tl(0)) t2(co) t3(co)

-5 2
V^5

l+V/^ö
2

2 ^2 (3 s2 + 2 vT) (i - V7)
16 i e' y/7

16 i b \'7
2 V 2 (3 e'* + 2 V?) (l - V?)

Ie 2 'e 2

- 2 v/2 (3 s2 - 2 \/7) (i -f y7)

- 2 V2 (3 e'* - 2 V?) (l + V?)

— 7 1 î+VX
2

3 V?"
15 + 32V^7_3(2 + u))

15 - 3 \TTi
2

3 (3 " *")

2
V—io

V—io
2

10
6 (3- VÏ5) (e3 + V?) ¦ y2eX3-3 \/2)

.— 24 \/2 e's

6i(fS-\/¥)-1/2es(s3+3v/2) 24 \/2 e»

-6i (e'3 -VI) ' 1/2e's(£'3+3\/2)

/ 1 + V5 l-\^5\
Ie 2 ' - 2 /

-6(3+ VIS) (e'3 + \/2) ' y2s3(ss_ y/2)

1
î+vXï 4(l+x)-V3-x2,

x3— 2x*-f 2x-2 0

3 3

x g
-4-

g (1/ 17 + 3 V33 + V 17 - 3 V33")2

3 î-t-V"1^23 - (3 — 4x-x2). V3 + 2x-x2,
X3—X-1=0 .4(l/1!+i('V,,)+l/»+J(17?))2

Ü1
Ol

g

B
OS

»

sa.
œ

a

&

Cd
ce

co
ta
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III. Kapitel.
Die Teilungsgleichungen.

Die Erwägungen des letzten Kapitels haben vor allem ergeben,
dass die Grössen ti (co) (i l,2,3) ganze algebraische Zahlen sind

(vgl. § 1, Satz II). Daraus folgt nun insbesondere der

Satz: Die Wurzeln Ci;r„,., C, (Tim + r2^\ der Gleichung

Za(£i(z)) 0

sind algebraische Zahlen; wenn n ungerade ist, so sind es ganze
algebraische Zahlen.

Denn nach Kap. I, § 4, Satz I sind die Koeffizienten der Funktion

Zn, wie auch der Funktion Nn, ganze algebraische Zahlen, als

ganze ganzzahlige Funktionen von ti (co). Bei ungeradem n ist ausserdem

der oberste Koeffizient von Zn gleich 1 [vgl. Kap. I, (37)].

Ist n ungerade, dann ist (nach Kap. I, § 4) der Grad von Zn 0
n2 1

gleich —çj— und wir erhalten alle Wurzeln Ci;ri,r> dieser Gleichung,

wenn wir ri, r2 die Wertepaare (30) (pag. 18) durchlaufen lassen. Ist
n2

dagegen n gerade, so ist der Grad von Z„ 0 gleich 2 und

ihre Wurzeln sind die Werte (LX,rs, die man erhält, wenn ri, r2 alle
Wertepaare (31) (pag. 20) durchläuft.

Im Anschluss an H. Weber1) nennen wir die Gleichung Z„ 0
die Periodenteilungsgleichung oder kurz die Teilungsgleichung.
Dieselbe verdient besonderes Interesse, wenn n ungerade ist. Es
sei daher von jetzt an n + 0 (2).

Wegen der Homogenität der Funktionen Ci (z) (vgl. Kap. I, § 1, II)
können wir nun

0)1 1 Ü)2 0)

setzen und nehmen dabei an, dass co das Verhältnis der Basiszahlen
eines Ideals aus dem imaginär-quadratischen Körper k(]/m),

m<0X-l, X-3,
sei. Dann ist jede Periode

ri coi + r2 co2 ri + r2 co v (rt, r2 ganze, rat. Zahlen)

Alg., Bd. III, pag. 205 u. ff.



158 Mitteilungen der Naturf. Gesellschaft in Bern 1923. (40)

eine Zahl aus k(l/m). Setzen wir ferner als Rationalitätsbereich
den Körper k(ym,t;) voraus, der aus k(l/m) durch Adjunktion
der Grössen ti(co) (i 1,2,3) hervorgeht, so ist die Teilungsgleichung
Z„ 0 im allgemeinen reduzibel. Denn es ist klar, dass diejenigen

Zahlen C; — ], für die v und n einen gemeinsamen Teiler vi haben,

auch Wurzeln der Gleichung Za 0 sind. Es lässt sich demnach
vT

Z» auf rationalem Wege von derartigen Faktoren Ci (z) — Ci - j
befreien. Man erhält so eine Funktion Tn (C, (z)), n (n), deren

Wurzeln diejenigen Zahlen Ci(-) sind, für die (v, n) (l), und

deren Koeffizienten wieder Zahlen aus k(]/m, ti) sind. Da 2 Grössen

Ci(-) und Ci(-) nur dann einander gleich sind, wenn

v + v' (mod. n),

so ist der Grad der Funktion Tn(C,(z)) gleich ^ 'f(n), wo die numerische

Funktion tp(n) die Anzahl aller zu n relativ primen Zahlen
eines vollständigen Restsystems mod. n angibt.r) Die Gleichung
Tn(Ci(z)) 0 nennen wir die Idealteilungsgleichung für den
Divisor n (n). Die Wurzeln dieser Gleichung bestimmen einen

Körper K(n) über dem Körper k(ym,ti), den Teilungskörper
für den Divisor n. Von diesen Teilungskörpern lässt sich vor
allem zeigen, dass sie in bezug auf den Körper k (V m, ti) relativ
Abelsch sind.2)

Zur zahlenmässigen Berechnung von Teilungsgleichungen muss
man von den Multiplikationsformeln für einen ungeraden Multiplikator

n [Kap. I, § 4, (38)] :

Zn(Ci(z)i
Ci(nz) C,(z)-

' X, n 2m + l (m l,2,---),1 ' W Nn(C,(z))' ^
ausgehen. Dieselben liefern die Teilungsgleichungen Z„ 0. Ist
nun speziell n gleich einer Primzahl p, so ist Zp 0 in k(l/m, ti)

reduzibel oder nicht, je nachdem das Ideal p (p) in k(1/m) in

i) Vgl. Hilbert: Zahlbericht, Satz 23.

2) Vgl. Weber: Alg., Bd. III, §§ 154 u. 158.
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2 Primideale zerfällt oder selbst Primideal ist. Der Euklidsche
Algorithmus und die Methode der unbestimmten Koeffizienten sind
die naheliegenden Mittel zur Bestimmung der irreduziblen Faktoren.
Im Falle n 3 haben wir die letztere Methode angewendet. Die
erwähnten Verfahren gestalten sich jedoch sehr bald so umständlich

und zeitraubend, dass schon von n 5 an eine praktische
Verwertung derselben nicht mehr in Frage kommt.

Die nachfolgende Tabelle enthält nun eine Anzahl zahlenmässig
berechneter Teilungsgleichungen für n 3 und n 5. Dabei haben
wir uns jeweilen auf denjenigen der 3 Fälle i 1,2,3 beschränkt,
für den die zugehörige Grösse ti(co) am einfachsten ausfällt. — Es
ist uns noch nicht gelungen, in den Fällen, wo (5) zerfällt, die
Zerlegung von Z6 0 durchzuführen. Doch hoffen wir, die betreffenden
Zerfällungen durch Verwendung von Beziehungen zu bekommen,
die sich aus der komplexen Multiplikation der Funktionen £,(z)
ergeben.



Beispiele von Teilungsgleichungen.

[örper h Divisor n ï*(") Teilungsgleichung Tn=0.

2 <s)=(s,i+V=ö)(!u V^ö)

(3,1 +V1^)

(3,1-V^&)

(5)=(5,V^6)2 (V:Z5)S

(5,V^5) (V^5)

2

1

1

10

2

V^5) ^ + 2i[/1+2V/ö.2:2_(2_V5)-o

10

T(6) =2 « &X 0, «0=1,
i 0

T,^_=S? + ßi2:2 + ß2==0,
(r-s)

wobei T(6)-T(K-5) ZB(3;*) ai, + aiS;V-|-ag^i0-(-... + aioSS-|-aii28 + ai*=0,

TV a,- 1«011+,VS.1/1+,VB,

aa- ..fin^ + Vö.l/l+Vö. afl=-105,

/ i _L */*\ ao —3201 —-^— • 1/ —-ö*— >

a4 5 (487 +1024- y 2 * 2

,A -ai=«)ii+y6-l/1+s.V6'
ae 60(59 + 128.1ÌV5), ^^

V=7) 1 (3) (3)

(5) (5)

4

12

SÎ—6SÎ-3 VTSi-3 0

3Î2 - 50 Sì0-105 VT 3?- 75531 - 465 VT3Î - 1245 2Î- 270 VT 3X 105 3Î

+ 60 VT £*+125 33 + 15 VT3i+5 0.
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Beispiele von Teilungsgleichungen (1. Fortsetzung).

[örpcr h Divisor n l<?(n) Teilungsgleichung Tn=0.

V-lö) 2 (3) (3)

(5) (5,V-10)2
(6.V-10)

4

10

2

SX 6SX 24 V2 (2+ Vö) 2s - 3 0

T(. ^.—^Sf + ai'Ss + aa'SsH (-a8'2Î +««'3. + aio 0,

Tferrlü) 22+.ßi'2s + ßa=0,
wobei T(. f—)2 ¦ T(5 y—^ Z6 (2s) 2j2 - 50 2J° - 840 V2 (2 + \fb) 2?

-5(20761 + 9216 Vö)2s-96 V2 (2+ Vö) (2615+1152 Vö)2s-60 (2597+1152 \ß) 2?

- 2160 V2 (2 + VT) 2t - 105 2s + 480 \/2 (2 + Vö) 29s + 2 (5215 + 2304 Vö) 3*

+ 120 V2 (2+ Vö) 2s + ö 0.

1

(i + V-ii)

¦

(x1+vXn)

2

1

1

8

2

2

V-H) 2î + x2. V3-x2-2i + 3(l-x2) 0

2i x..(V»-*'+V8)_0

2i x2.(V3_x22_V3)-0, x3 2x + 2x 2-0

T(5) 2Î+ «i"2Ï-| h «°ïi + <X8" 0,

t r-=2' + ß,»2, + ß,>=o,

T
'

=2Ï + T"3i + Ï»" 0,

wobei T(5) • T r— • T _ y— Zb (2i) 2Î2 - 60 2Î" - HO (1 + x) y/i- x* • 2?
'

2 j 2

+ ö(135-384x + 128x2)2Xl6(29 + 83x) V3-x2 21 + 60(15 —48x +16x2)2?
-360(l + x)-V3-X2-2Ï-1052î + 80(l +x)V3-x22X2(9 -96x + 32x2)2Î

+ 20(l + x) VS —x2-2i+ö 0, xs - 2x« + 2x-2 0.
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Beispiele von Teilungsgleichungen (2. Fortsetzung). CO

Körper Divisor n Xn) Teilungsgleichung T„=0.
g

e
a
tra
<s
H

Cl
a>

CD

O
B"
P

to
CD

g

(V-Ì3) (3)^3,^(3,^)
/. 1 + V^23\

1 - V — 23\
2 I

(5) (5) 12

2Î+V3 + 2x-x2-2i + 3(x-l) 0

2i- V3 + 2x-x2 + (l + x)V3
2

%i
V3 + 2X-X2 -(l + x)V3_0

Ci

2i - 00 2iu -+ 30 (3 - 4 x + x2) • V 3 + 2 x - X2 2ï - ö (201 + 30 x - 60 x2) 2Î

+ ö (125 - 113 x - 58 x2) • V 3 + 2 x - x2 2Ï - 15 (108 + 15 x - 25 x») ¦ 25

+90(3-4x-x2) • v'3+2x-x22Î- 1052Î + 20 (- 3+4x + x2) V3 + 2x^1«• 2Î

+ 5 (30 + 3 x - ö x2) 2î + ö (- 3 + 4 x + x2) • V 3 + 2 x — x2 2i + ö 0,

x3 - x — 1 0.
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