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G. Hauser.

Teilungsgleichungen der elliptischen Funktionen in
imaginir-quadratischen Zahlkorpern.

EINLEITUNG.

Zu den wichtigsten Gleichungen der Algebra gehoren bekannt-
lich die Kreisteilungsgleichungen:

Zt — a8 =0,
‘Setzt man a = 1, so sind die nte® Einheitswurzeln, d. h. die Zahlen
2mi
fh—e B (h=0,1,2,:++ n—1),

die Wurzeln der obigen Gleichung.

Diesen Kreisteilungsgleichungen kommt nicht nur wegen ihrer
Bedeutung fiir die Elementargeometrie, sondern vor allem deswegen
eine besondere Rolle zu, weil ihre Durchforschung der héheren Al-
gebra neue Gesichtspunkte eroffnete und zu weitern Zielen den Weg
wies. Die ganze Theorie ist von Kronecker durch den Satz ge-
kront worden, dass die Wurzeln aller im Bereich der rationalen
Zahlen Abelschen Gleichungen in einem Korper der Einheitswurzeln
enthalten sind.?) ,

Aehnliches gilt nun von den Teilungsgleichungen der
elliptischen Funktionen, deren Wurzeln die Werte

h hs we
RS L

sind, welche eine gegebene elliptische Funktion » (z) mit den Perio-
den oy und w; an den Stellen
| h1 (03] -|-— h2 w3

n

Zhl‘hz =

annimmt. Ein wunderbares Ergebnis der modernen Algebra und
Zahlentheorie ist die Erkenntnis, dass diese Teilungsgleichungen in

1) Kronecker: Bericht der K. Akad. der Wiss. zu Berlin. 1853.
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bezug auf die imaginéiren quadratischen Zahlkirper das liefern, was
die Kreisteilungsgleichungen fiir die rationalen Zahlen; m. a. Worten:
Jede in einem imagindr-quadratischen Koérper Abelsche Gleichung
ist durch Kreiskorper und Teilungskorper der elliptischen Funktionen
16sbar.1)

Die Untersuchungen, die allméhlich zur Aufstellung dieses
Theorems gefiihrt haben, fasst man gemeinhin unter dem Namen
‘«Theorie der komplexen Multiplikation der ellipti-
schen Funktionen» zusammen. Das Reizvolle dieser Theorie
liegt darin, dass hier Funktionentheorie, Zahlentheorie und Algebra
in tiefstem Zusammenhange stehen. Sie ist im dritten Bande von
H. Webers Lehrbuch der Algebra?) dargestellt. Diese Darstellung
enthilt aber noch manche Liicken und weist ausserdem verschie-
dene Unrichtigkeiten auf. Es ist nun R. Fueter gelungen, simt-
liche Liicken der Weber'schen Darstellung auszufiillen. Anlésslich
des letzten internationalen Mathematiker-Kongresses in Strassburg
(22.—30. Sept. 1920) hat Fueter bereits die wichtigsten Resultate
seiner Untersuchungen mitgeteilt.?) Aus denselben geht deutlich
hervor, dass zwischen den Einheitswurzeln und den Wurzeln der
Teilungsgleichungen der elliptischen Funktionen iiberraschende Ana-
logien bestehen. | '

Die vorliegende Arbeit soll einen bescheidenen Beitrag an das
Zahlenmaterial zu diesen iiberaus interessanten Untersuchungen
liefern. Ihr Zweck ist die zahlenmissige Berechnung von Teilungs-
gleichungen in einigen einfachen imagindr-quadratischen Grund-
kiorpern. — In einer vor Jahresfrist erschienenen gekronten Preis-
schrift¢) hat C. Bindschedler die Teilungskdrper im Bereiche des

Korpers k (1/— 3) genauer untersucht und seiner Arbeit eine ziem-
lich umfangreiche Tabelle von numerisch berechneten Teilungs-
gleichungen beigefiigt. Von anderer Seite ist die Berechnung von

Teilungsgleichungen in k(}/—1) in Angriff genommen worden.

1) R. Fueter: Abelsche Gleichungen in quadratisch-imaginéren Zahl-
korpern. Math. Ann. Bd. 75, pag. 253.

2) 2. Aufl,, Braunschweig 1908.

3} R. Fueter: Einige Sitze aus der Theorie der komplexen Multipli-
kation der ellipt. Funktionen. Comptes rendus du Congrés internat. des
Mathématiciens. 1920.

4) C. Bindschedler: Die Teilungskorper der elliptischen Funktionen
im Bereich der dritten Einheitswurzel. Journal fiir die reine und ange-
wandte Mathematik, Bd. 152.
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Ausser fiir diese beiden Ausnahmefille sind meines Wissens bis
jetzt noch keine derartigen Berechnungen durchgefiihrt worden.

Wir legen unsern Berechnungen die drei elliptischen Funktionen
zweiter Ordnung:

V 3 . 4 ei2 - g? . JE—

2 (p(z; w1, 02) —e) (1=1,2,3)

zugrunde. Hier bedeutet p(z; wi, w:) die Weierstrass’sche p-Funk-
tion mit den Perioden «; und ws;

amr($). a=p(®H), a=s(3)

sind die 3 Wurzeln der Differentialgleichung
p2(z) =4p*(2) — g2p(2) — &,
wo go=—4(ere:}e1e3-}exe3), g8s—4e16z8s.
Dabei sind ferner die von z unabhiingigen Grossen

V3tel—g (1,93

wie folgt als eindeutig bestimmte Quadratwurzeln definiert:
A(5)=(3)
(%)
- (5F2) o (54)
P

cl‘(%) " (‘;2_)-1)
52 (“;)

Der Inhalt gliedert sich wie folgt: Im I Kapitel wird die
Multiplikationstheorie der Funktionen T;(z) fiir einen rationalen
Multiplikator n entwickelt. Insbesondere werden hier die Multi-
plikationsformeln fiir n = 2, 3, 4 und 5 berechnet. Dabei ergibt
sich die Tatsache, dass die in den Multiplikationsformeln auf-

Li(z; w1, w2) =

—é—-V3.4el2—gzm

—é—--“/g.4922—-—g2:

"%—1/34632 — 82—

1) Vgl. die von H. A. Schwarz herausgegebenen <Formeln und Lehr-
sitze zum Gebrauch der elliptischen Funktionen». 2. Aufl. 1. Abt. 21.
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tretenden Koeffizienten ganze ganzzahlige Funktionen der Grosse
2% 3¢
V22 302 —g

Im II. Kapitel werden die ti(i=1,2, 3) unter Zugrundelegung
von imagindr-quadratischen Zahlkérpern betrachtet und durch For-
meln dargestellt, die sich fiir eine rasche Berechnung eignen. Diese
Formeln werden dann noch auf einige Beispiele angewendet.

sind.

ti(wr, 02) =

Das III. Kapitel dient der Definition und der Zusammenstellung
der wichtigsten Eigenschaften der Teilungsgleichungen. Wir kénnen
dabei die entsprechenden Darlegungen in Webers Algebra, Bd. III,
ohne wesentliche Abénderungen fiir unsere Zwecke verwerten. —
Die Tabelle am Schluss enthilt die Resultate unserer Berechnungen.

L. Kapitel.
Die Multiplikationstheorie der Funktionen T;(z).

Unter der Multiplikation einer elliptischen Funktion ¢(z) von
2. Ordnung versteht man die Darstellung der Funktion ¢(nz) fiir
ein ganzzahliges n als rationale Funktion von ¢(z) und ¢’(z).
Da jede elliptische Funktion von 2. Ordnung ein Additionstheorem
besitzt, d. h. £(z 4 t) (worin t ein willkiirlicher Parameter bedeutet)
sich rational durch ©(z), ¢’(z), ¢(t) und ¢’(t) ausdriicken ldsst?!), so
ist dies eine Aufgabe, die immer gelost werden kann.

§ 1. Die Eigenschaften von T,(z).

Indem wir zunichst die Abkiirzung

& ,-2 —_— 0]
(1) o—=Y3:2 : —E

einfiihren, bekommt die Definitionsgleichung der Funktionen T;(z)
die Gestalt:

(2) Ti(z; w1, ) =

Ci
p(Z; w1, (02) — €

(i=1,2,3).

1) Vgl. H. Burkhardt: Elliptische Funktionen. 3. A. 1920, pag. 110.
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Aus den bekannten Eigenschaften der p-Funktion ergeben sich
sofort die folgenden Eigenschaften der Funktionen T;(z):
I. Ti(z) ist gerade in z.
II. T;(z) ist homogen von nullter Ordnung in z, w;, ws.
III. T;(z) besitzt im Grundperiodenparallelogramm an der
Stelle z:—g— einen Pol 2. Ordnung und wird im Null-
punkt von 2. Ordnung O.

. ® . . 9 . .
Dabei bedeutet - eine zusammenfassende Bezeichnung fiir die

2
Halbperioden, d. h. es ist
=5  firi=1
(3) %Zwl—é—ﬁi % =8
%i — % » 1=3.1)
Entwickeln wir den Ausdruck mci__éf’ unter Verwendung der

bekannten Reihe

@) Py =+ Ew 4 Eat ..

nach steigenden Potenzen von z, so erhalten wir die folgende
Reihenentwicklung um den Nullpunkt:

() ¢i(z)=ciz2—|—eiciz4+ci(ei—2g—8 2+

Zur Bestimmung der Reihenentwicklung um den Pol z=§,

leiten wir vorerst eine — auch fiir das Spéitere wichtige — Beziehung

zwischen T;(z) und der Grosse p(z — }él) her. Da T;(z) im Grund-

. . @) .
periodenparallelogramme nur bei 2= einen Pol, und zwar von

2. Ordnung hat, so gilt die folgende Darstellung durch p(z — -—)
w
Tiw)=m+bip(z—5),

. w . . . . . .
1) Das w In - sei nicht zu verwechseln mit dem spéter einzufiihrenden

2
Periodenverhiltnis w = —:ﬁ
1
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und wegen T;(0)=0, ist a;= —b;e;. Wir erhalten also mit Be-
riicksichtigung von (4) die Reihe

(6) ci(z):_biei_l_bi(z_%)_?.[

Wir miissen noch b; bestimmen; dazu setzen wir die folgende
Taylor’'sche Entwicklung fiir p(z) in (2) ein:

@) =5(2) +%+— it ),z—%)2+...,

wobei rechts das 2. Glied wegen p’ (——) =0 wegfilllt. Es ist dann
2 ¢

w($) (- ——)
Die Vergleichung der Koeffizienten der Potenz (z ——)

(6) und (6°) ergibt fiir b; den Wert:
2 ¢

(3

Beriicksichtigen wir noch die Relation
p(z)=06p*(z) — 5
und denken wir an die Bedeutung von ¢; [vgl. (1)], so finden wir

schliesslich, dass 1

by — —
C;

ist. Es besteht also die Gleichung

o(i=3)

Ci

(6°) Li(z) =

(M) Ti(z) =

Vertauschen wir in (4) z durch z — ié’_ und setzen wir alsdann

diese Reihe in (7) fiir p(z - —) ein, so erhalten wir nun die ge-

suchte Reihenentwicklung um den Pol z—%:

® G-t () R 9+
2
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Die Gleichung (7) liefert uns ferner den Beweis des Satzes:

IV. @;(z) nimmt den reziproken Wert an, wenn das Argument
um die zugehorige Halbperiode vermehrt wird, d. h. T;(z)
geniigt der Funktionalgleichung:

o) 1
Setzen wir némlich in (7) z+£2)~ fiir z, so ergibt sich die iden-

tische Gleichung:

T (z -l——g—) Zp(z)i—e;:@dl( y Wz b. w.

Wir fassen die wichtigsten Ergebnisse dieses Paragraphen noch
kurz zusammen in den

V3. 4e2—g,

i=12,3
TG —ey i — 129
sind elliptische Funktionen 2. Ordnung mit folgenden Polen und

Nullstellen:
1. Pole 2. Ordnung: z=%+9

2, Nullstellen2.Ordn.: z=
Sie geniigen ferner den Gleichungen:

a) &i(—z)="UT;(z),

b) T;(tz; ter, tows) = Ti(z; w1, ws),
© 1

¢) T (Z-I—?) A

unter Beachtung von (3).

Satz: Die drei Funktiohen Ti(z; o, 02)=

Q=h; w1 -+hsws und }11; =0 E 2. 4

§ 2. Die Differentialgleichung.

Ein allgemeiner Satz besagt, dass jede elliptische Funktion einer
algebraischen Differentialgleichung erster Ordnung hoheren Grades
geniigt, in der die unabhiingige Verdnderliche explicite nicht vor-
kommt.?) Um diesen Satz fiir den Fall der Funktionen T;(z) veri-
fizieren zu konnen, miissen wir die Ableitungen T (z) (i=1,2,3)
betrachten. Dazu kniipfen wir am besten an Gleichung (7) an und
differenzieren sie nach z. So ergibt sich

(10) T (z) =

/(-3

1) Vgl. H. Burkhardt: Ellipt. Funktlonen, pag. 92.
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Nach dieser Gleichung besitzt also T; (z) im wesentlichen die-

selben Eigenschaften wie p’ (z — %) Der von z unabhiéingige Fak-

tor % bedingt nur einen Unterschied beziiglich der Homogenitét.
Dieses Resultat soll in den nachfolgenden Sitzen noch etwas aus-
fithrlicher dargelegt werden: .

I. Jede der drei Ableitungen T;(z)(i=1,2,3) ist eine ellip-
tische Funktion 3. Ordnung mit den beiden Perioden w:, ws
und den folgenden Polen und Nullstellen:

1. Pole 3. Ordnung: z=g~+9,
2a) Nullstellen 1. Ordnung von T (z):
Qg gt s P
f==8,2 5 —+Q, z 2—{—9,
b) Nullstellen 1. Ordnung von T:(z):
—— — — 2
ge= B, B 5 +Q,z= 3 + R,
c) Nullstellen 1. Ordnung von T (z):
Z—- (;[_I_Q (!)1+0)2+Q
wobei @ alle Gitterpunkte durchliuft.

II. @/ (z) ist ungerade in z.
III. @’ (z) ist homogen in z, w;, ws von der Dimension —1.

Diese Eigenschaften von T;’(z) erkennen wir auch leicht aus
den beiden Reihenentwicklungen

(11) Ci’(z):2ciz+4eiciz3+6ci(c‘2—2g—8 254
und
(12) T(z)=—

. ).;+1 (Z"%)+7g_ii(z‘%)3+""
G\2—y

die sich durch beidseitige Differentiation von (5) bezw. (8) ergeben.

Zur Aufstellung der Differentialgleichung fiir T;(z) miissen wir
uns mit Hilfe von T;’(z) eine gerade elliptische Funktion von z mit
den beiden Perioden «;, @ bilden, da nur solche Funktionen sich
rational durch @;(z) allein ausdriicken lassen. Betrachten wir also
die Funktionen T;2(z) (1=1,2,3). Aus den Eigenschaften I und II
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von T;’(z) folgt sofort, dass die T;’?(z) gerade elliptische Funktionen
von 6. Ordnung sind. Sie besitzen dieselben Pole und Nullstellen
wie @; (z), mit dem Unterschiede, dass jetzt die Pole je von 6. Ord-
nung und die Nullstellen je von 2. Ordnung angenommen werden.
Es hat also z. B. @T;’2(z) dieselben Pole und Nullstellen wie die
folgende ganze rationale Funktion 3. Grades in T (z):

T (z) - (@:1 (z) — T, (w)) (Cl (z2)— T, (";2))
Es gilt somit die Relation

T =c 6@ (@ -4 (2F)) (- ()

Zur Bestimmung der Konstanten ¢ haben wir nur die Ent-
wicklungen der linken und der rechten Seite nach Potenzen von
;
2
begniigen konnen. Auf Grund von (8) und (12) erhalten wir:

4 1 c 1
5+"' I

0_12(_“_2 ’"c_ﬁ"(_gﬁ
2=y Z—3

so dass wir fiir ¢ den Wert 4 ¢, finden. Es besteht also die iden-
tische Gleichung

(130) T (z)=4e T2 (G-t (252) (e -u($)).

Analog ergeben sich die beiden entsprechenden Relationen fiir
1=2 und i=23 in der Form:

(13h) T*(2)=4e: C(@) (T2 — T (%)) (T —T(3)),

(13¢) Tr(a)=4e To(z) (T — (%)) (T — & (252)).

Die endgiiltige Gestalt der gesuchten Differentialgleichung er-
halten wir durch Ausmultiplizieren der rechten Seiten von (13a, b, ¢).

z — —- miteinander zu vergleichen, wobei wir uns je mit dem 1. Glied

Wir fithren dies fiir den Fall i—1 wirklich durch und geben
fiir die beiden iibrigen Fille wieder nur die Resultate an. Es ist

G — s 60— (6 () 4.6 (3)) -G
F1a(25) 0 (3) G



128 Mitteilungen der Naturf. Gesellschaft in Bern 1923. (10)

Nun ist nach (2) und wegen e; } e: | e3=0:"

o1+ we C1 ct 3ec
(2 ( )+¢1( ) eo—el+e3—el— (92—01)(93‘—91)‘
Ferner gllt nach (2) und infolge der Funktionalgleichung (9):
T, (m1+¢02) g, (wz) _ez o eg-cie, =1,
also ist

| (e2 —e1) (63 — &) =¢12,
woraus hervorgeht, dass

o (2fe) 4o (2) =2

Ct

€ (252 . ¢, (%) =1

ist. Zwischen T, (z) und T’ (z) besteht also die Differentialgleichung:
¢1’2( ) =4 ¢13(Z) + 12 € ¢12(Z) + 4 C1 El (Z)
Ebenso gilt:
T (z2) =4 T3 (z) 412 e ([22 (z) + 4 co T (2),
T2(z) =4 ¢ Tp*(z) + 12 €3 T2 (2) -+ 4 ¢3 T (2).
Damit ist der folgende Satz bewiesen:
Satz: Die Funktionen T;(z) (1= 1,2, 3) geniigen einer alge-
braischen Differentialgleichung mit von z unabhéngigen Koeffizienten,
von der Form: .

(14) a2 (Z) =4¢; T3 (Z) + 12 ¢; T;2 (Z) + 4¢;T; (Z)
Aus (14) erhalten wir durch wiederholte Differentiation nach z
der Reihe nach die Relationen:
(15) T7(z) =6¢T2(z)+ 126 T;(2) + 2 ¢,
(16) Eim (Z) s T2 (Ci @:i (Z) + ei) ‘ Ei, (Z)

und

§ 3. Das Additionstheorem. — Rekursionsformel.

Wir leiten das Additionstheorem der Funktionen T;(z) aus dem-
jenigen der p—Funktion her. Dieses hat bekanntlich die Form:

) pato=7(EE=EE) —r@ -

worin t ein willkurhcher Pa.rameter bedeutet. In (7) ersetzen wir
das Argument z durch z 4t und erhalten:
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A (Gt R

Diese Gleichung geht nun vermége der Relation (17), in welcher

wir uns z — «%1 fir z eingesetzt denken, iiber in
> w 3 2
1 [#(z=5)—P®) "
| = (=) —p—e
p(z-3)—p)] =
(18) Tiz+bH— -
Um hieraus eine Formel von der Gestalt:
Ti(z +t) = rat. Funktion (T;(z), T/ (2), Ti(t), T (1))
zu bekommen, miissen wir p(z—%), P (z—\%), p(t) und p’(t)
bezw. durch T;(z), T; (z), T;(t) und T;(t) ausdriicken. Durch Auf-
16sen der Definitionsgleichung (2) nach p(2) erglbt sich:
p@)=e+7r T (Z)

und daraus durch Differentiation nach z:
) T’ (z)
p(z)=—c¢73 Tz (z)

Ferner erhalten wir durch Auflésung von (7) nach p ( z-——g—):

z{m—~}—a+mmu>

und daraus durch Differentiation nach z

i (z - %) emiffy C[i’ (2).

Indem wir nun diese 4 Beziehungen verwenden, wird (18) zu

l(ch@+&@?3) T () 6o
4 —ej"""Ci ilZ —el———ei k
. e +¢ @i(z)—" e,—¢C —]:—— E,(t)

T+ t)— L
((I (z)- T+ T (t -—U.'-(z)——-L——SE
T4 E M\ T(z)-Tit)~ 1 o) o
(cti @ T2+ TH)) —4aT@T2W) (T - TE) — 1)
4¢,T2(t) (Ti(z) - Lit)—1)°
— 4T (TR TG —1) —126T2(t) (L) Tt — 1)
40,T2(t) (Ti(z) - Tit) — 1)’

Mitteilungen der Naturf. Gesellschaft in Bern 1923, 9
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oder abgekiirzt:

(19) Toa4t) — (T, T@), L), T ()

4e Cﬂ(t)(ii (z) T(t —1)

Der Zahler Z lidsst sich durch Ausmultiplizieren der einzelnen
Klammern und ‘Vereinigung der gleichartigen Ausdriicke zunéchst
auf die Form bringen:

Z(T2), -, @) =T2) [4el(@) + 2T @ T (1) + 4 aTi(t)
+4c¢ (2)T(t) +46T(2) T2 () + 24 6 L) T(H) ]

In der eckigen Klammer erginzen wir die 3 ersten Glieder zu
(T (2)+ T ()}’ indem wir die fehlenden Glieder (vgl. (14))
12e,T2(z)+4 ¢T3 (2)
und 12,T2(t) +4 T3 ()
addieren und subtrahieren:
Z(G@), ) =t® [4ale®) (TE) — T1H) —16T2@)-
(T2 —T(t) — 12 (T2(2) +2T(2) T(t)
+ &)+ (W@ + T w)]

_4c€2t)[4 (4T ) - (C@-tw):

(Co+it+am)]

Fiihren wir noch die Abkiirzung
(20) f T 2B
Ci

ein, so erhalten wir schliesslich die folgende in z und t symmetrische
Formel :

b)

(@ o) - (Te-tw) (C@+ o)’

@1) Ti(z+t)= (G Tt) - 1)°

Wir nennen diese Formel das Additionstheorem der Funk-
tionen T,(z).

Wenn man (21) z. B. nach z differenziert, erhdlt man das
Additionstheorem der Ableitungen T’(z) in der Gestalt:
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@) 46T T (T20)-1)-T7 0 ( L@ Tt+1) ]
c(@: (z)E(t 1)’
¢ O 462 T (T2(2)-1)-T7 (2)( LTt +1)]
(@:i(z) T, (t —1)
wobei [nach (15)] T.”(z) =6 ¢,Ti(z)+ 12 €,T,(z) + 2 c..

An dieser Stelle wollen wir noch durch eine kurze funktionen-
theoretische Ueberlegung eine Rekursionsformel herleiten, die uns
im néchsten Paragraphen gute Dienste leisten wird.

Betrachten wir das Produkt T;(z4-t)- T,(z—1t). Dasselbe wird
nach § 1, III von 2. Ordnung unendlich fir alle Werte z, die der
Bedingung

(22) T (z+t)=

z+t—§(mod82)

geniigen, also von der Form sind:
z=Ft+g+hotho,

wobei ﬁ‘}:o, 1,42+

2

T.(z4t)-Ti(z—t) wird von 2. Ordnung O fiir alle Werte z, die der
Bedingung
z—+t = 0(mod Q)

Z:——{——t+ h10)1—|—h-3(.02,
wobel wieder h; und hy voneinander unabhingig alle ganzen Zahlen
durchlaufen. Wir kénnen also mit Riicksicht auf Funktionalgleichung

(9) setzen:
T(ett) La—t) =k (ZI @) T t()[l-(—t)l

Die Bestimmung der Konstanten k geschieht am einfachsten durch
die spezielle Wahl: z-——0. Obige Gleichung geht nimlich dabei in
die folgende iiber:

geniigen, also fiir

€2 (t) =k -Ta(b),
woraus sich fiir k der Wert 1 ergibt. Es besteht also die elegante
Formel:

Lttt Liz—t) = (rg i((zz))a—i_(t?in(f )1 2
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Wenn wir hierin z durch (m+1)-z und t durch mz ersetzen, so
erhalten wir folgende fiir die Berechnung der Multiplikationsformeln

wertvolle Relation: ( )
T((m+1)z) — T(mz) \°
9 G(En+nz) 4o h'(o:((m+1)z) T, (m7) — 1)’

welche uns T, ((2 m + 1) z) liefert, wenn T,(mz) und (T.(m+1)z)
bekannt sind. '

§ 4. Die Multiplikation.

Wir haben die ndtigen Vorbereitungen getroffen, um nun das
Multiplikationsproblem lésen zu kénnen. Wegen
T (—- Z) =0T, (Z)
wird sich ;(nz), fiir ein ganzzahliges n, als rationale Funktion von
T.(z) allein darstellen lassen.
Wir erhalten sofort eine solche Darstellung fiir n =2, wenn
wir in dem Additionstheorem (21) t=1z setzen. Es ist

a.’2(z)
T, (22z) = ci(Ei2 @ —1)
T (4T +4:Ti(2)+-4)
a (Te(z) — 1)2
(mit Beniitzung von (14) und 20)).

Durch Differentiation der Formel (24) nach z oder bequemer
noch, indem wir in dem Additionstheorem (22) t — z setzen, er-
halten wir:

(24)

, [4eT2()(T2@)-1)— (T2 @+1) T'(@)] T @)
@’ 22)= - —
e (T2(z)--1)
T (2) [2T4(2) + 1, T3 (2) + 122 (2) + £ Ti(2) + 2
(T2(2)— 1)-”

(25)

~ (mit Riicksicht auf (15) und (20))-

Wir konnten in dieser Weise fortfahren. Setzen wir aimlich
in (21) t=22z und beniitzen wir die hergeleiteten Darstellungen
von @;(2z) und T (2z), so erhalten wir T,(3z) als rationale Funk-
tion von @, (z), daraus durch Differentiation @T’(3z) als rationale
Funktion von T;(z) und T/’ (z), u.s. f.
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Wenn wir also T, ((n — 1)z) und T, ( (n—l)z) kennen, so kénnen
wir daraus @,(nz) mit Hilfe der Formel (21) berechnen. Dieses
Rekursionsverfahren ist aber sehr miithsam. Wir kommen rascher
zum Ziele, wenn wir die Rekursionsformel (23) verwenden.

Setzen wir in (23) m =1, so erhalten wir zunéchst

_ (G2 —T(22z) \?
Ei(?»z)-ﬂ:;(z)-— Ci(z)C,(2z)—-1 .

Nun ist mit Riicksicht auf (24)
T.(z) (T2(2) — 1) — Ti(2) (4T2(2) + £ Ti(z) +4)
(T(z) —1)°
) (TH) — 6T (2) — LT (2) — 3)
o (C2(z) —1)°
€2 T22)— _Lo(tl@+6La) _|2- 4)—(Te(z) —1)°
(T2(z) — 1)

_ 304 (2) 46T 4682 () —1
T2z —1)° '

T(z) — T, (22) =

Es ist somit
Ti(2) (Tt (2) — 6T2(z) — t,Ti(z) — 3)°
(3Ti(z) 4T3 () 6Te(z) — 1 )2 '
T.(4z) bekommen wir am einfachsten, wenn wir in der Formel
(24) z durch 2 z ersetzen. Es ist dann

_ T2 (2z)
G (4 Z) - ¢ (Eig (2 Z) _ 1)2’

oder ausgerechnet (mit Beniitzung von (14), (20), (24) und (25)):

Ti(2) 1T20)+45Ti () +4) (T2()—1)% - QTAQ) +T3 )+ 2T 2 (1) + 4T, (1) + 2)°
(TP 0T () - SLEo (1) — (B+ 1) T () SLEA (D) - DT 2@ +1)F

26) T.(3z) =

27) T,(k1)=

Zur Berechnung von T,(5z) wenden wir wieder die Rekursions-
formel (23) an. Wir setzen in derselben m — 2 und erhalten so die
Relation

__(&(@22)— T\(32) \?
E.(ﬁz)-@.(z)—(&(22)_@(3@:1 '
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Nach (24) und (26) ist aber
€00 €,y SOUTHOH G0 HIGT +6T0) +6T20) 1)
' ' (T2(z) — 1) (BT (z) + t: TP (z)+ 6T i2(z) — 1)°

—T(2) (T2 (2) — 1) (T (2)— 6 T2 (2) — 1, Ty (2) —3)
(@@= 16U @ +hT(2) + 6T (z)—1)

und
C20) (T2 HT ) (T W —6 T2 () — Ty () —3)
(@2 ()~ 1) (3T (2)+ tT* (2) + 6T (z) — 1)?
(€20 — 1) (3T (2) + T () + 6T () 1)
(T(z2)—1)2(8T* (z) + TP (z) + 6T (z) — 1)

T TG —1=

Dies gibt fiir @, (5z) die folgende Darstellung:

T O
D ali(2)
(28) T (5z) =Ti(z) - [ -5 —,
M bT(2)
i=0
wobel ap== b= 1 a; = b; = — 90t

a1:b11=0, ay :b4:—105,
as = bjp= — 50, a9 = hy =20 ti,
as—'——bg 2_35ti, 310:b2:62+ti2,
a4:b3 -:-—5(25—1—21}2), 311:b1:5tj,
a;—=b;, =—1#; (92 + tig), a2 = by =H.
s =by = — 15 (20 t2),

Durch fortgesetzte Anwendung dieses rekurrenten Verfahrens
erhalten wir auch die weitern Multiplikationsformeln: die Formeln
fir n=2m -+ 1 ergeben sich jeweilen mit Hilfe von (23) und die
Formeln fiir n — 2 m dadurch, dass man in & (mz) z durch 2z
ersetzt.

Nun wollen wir T,(nz) fiir ein beliebiges ganzzahliges n als
rationale Funktion von @;(z) darstellen. Nach § 1, Schlussatz, ist
& (nz) eine gerade elliptische Funktion von z, welche von 2. Ord-
nung unendlich wird fiir alle Werte z, die der Bedingung
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(29) nz = % (mod. Q)
(unter Beachtung von § 1, (3)) geniigen, also von der Form sind:

. hlml+h2w2 h1
2= 2n+ n " he

und die ferner von 2. Ordnung Null wird fiir alle Werte z, die
der Bedingung

(29°) nz =0 (mod. Q)

geniigen, also fiir

|=0,41,42,+-,

_ it by

n
wenn wieder h; und h; beliebige ganze rationale Zahlen sind.

Wir erhalten sowohl alle unter (29), wie auch alle unter (29°)
enthaltenen inkongruenten Werte, wenn wir h; und h; je das kleinste
positive Restsystem nach dem Modul n durchlaufen lassen. Die
Funktion T,(nz) besitzt also im urspriinglichen Grundperioden-
parallelogramm n® Pole und n? Nullstellen von je 2. Ordnung; in
bezug auf dieses Parallelogramm ist T;(nz) somit eine elliptische
Funktion von 2n? Ordnung. :

Wir konstruieren jetzt eine rationale Funktion von T,(z), welche
dieselben Pole und Nullstellen hat wie T;(nz). Auf Grund der un-
mittelbar vorangehenden Erwigungen wird diese Funktion folgen-
des Aussehen haben:

H (G:l (Z) = Ei;rn r:)
R. (Ti(2)) = ()
Iy (Ti (2) — Tisnrs)

(11, 12)

worin

b)

E;n'n — T (99{1+r1m1+_1‘2_@_2_)

n

T'r ® I'2 w2
Ciseyre = @ (B2

und r;, r; zunéichst beliebige Zahlen des kleinsten positiven Rest-
systems mod. n bedeuten sollen. Wir haben nun zu untersuchen,
iiber welche Wertepaare ri, r, die Produkte II, und Iy wirklich zu
erstrecken sind. Dabel miissen wir auseinanderhalten, ob n ungerade
oder gerade ist.
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1. Es sei n ungerade.

In diesem Falle wird R, an allen Nullstellen von @;(nz) genau
von 2. Ordnung Null, falls r; und r; in II, je das kleinste positive
Restsystem mod. n vollstindig durchlaufen. Denn @;(z) hat in z=10
eine Nullstelle 2. Ordnung und jeder andere in II, auftretende
Linearfaktor kommt gerade zweimal vor, da die beiden inkon-
gruenten Werte

g T o
n
(n—r)or + (n—r3) 2
n
wegen T;(—z)={T;(z) den gleichen Wert von T;(z) ergeben. Der
Zihler der gesuchten Funktion R, lautet also:

Ei (Z)( H:)(Ex (Z) a a:i; r:,rz),

ri, T2

und z=—

wo r1, T2 die nachstehenden Wertepaare durchléduft:
n—1

1,0 2,0 5 ,0
0,1 1,1 2,1 . . . . . . . n-1,1
30 {t0,2 1,2 2.2 . .. . .. . n=1,2
n_.l. .n-.—l. .n;—l. .. .n_l
O, ) 1, ) 2, 9 o s w s W 11—1,——2—
nz—1

Es sind dies im ganzen 5 Kombinationen. Der Zihler von R,

ist mithin vom Grad n? in T;(z).

R, wird an allen Polen von T;(nz), die nicht zugleich Pole von
@;(z) sind, genau von 2. Ordnung unendlich, wenn r; und r, in Il
je das kleinste positive Restsystem mod. n durchlaufen, mit Aus-
nahme der Kombination fiir die

® ;oo o

2n n 2
wird; dies tritt ein fiir n:n_-é—_ und .= 0, wenni=1,
> rl:n-—l » rgzg-_:—-—l—, » 1=2
2 2 ?
» = 0 > r2=n_1 » 1i=3

2 ?
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In jedem der 3 Fille (i=1, 2, 3) hat somit ry,r; in IIy n2—1
Wertepaare zu durchlaufen. Der Grad des Nenners von R, ist da-
her n?—1 in T,(z) und weil jeder Linearfaktor wegen T,(—z)=0T,(2)
auch hier wieder zweimal auftritt, so hat der Nenner die Form:

Hl%; (@i (Z) = El;r:,l‘:),

(r1,12)

wobei ry,r; die folgenden Kombinationen durchléuft:

n—3

0,0 1,0 2,0 5 ,0
0,1 1,1 2,1 n—1,1
0,2 1,2 2,2 n—1,2
n—3 ., n—3_, n—3 n—3
0, 5 1, 5 2, 5 n 1,———2_
(309 1 n—1 9 n—1 n—3 n—1
? 2 4 2 "o 2 b 2 ?
y : - n—1 . n—1 n-—-1 n—1
dam fir 1=1 die Kombinationen: O, 5 und 5 g - .n—l,——2——,
» » 1=2 » » O,n—;]i » n—;-—l,o ....n—1,0
; n—1 n—1 n—1
» » 1=3 » > 5 g > g , 0 ....n—1,0.

2. Es sei n gerade.

In diesem Fall ist bei der genaueren Bestimmung des Zihlers
von R, zu beachten, dass unter den im urspriinglichen Grund-
periodenparallelogramm auftretenden Nullstellen von T;(nz) auch
der Pol von T;(z) vorkommt, so dass r,r; in II, alle innerhalb
des kleinsten positiven Restsystems mod. n moglichen Kombinatio-
nen zu durchlaufen hat, mit Ausschluss der einzigen Kombination

n 5

n =, re—=0, wenni=1,
n n s

I :-g, I‘2:§-, > 1=.2,
n .

' =0, r2—-'§', » i—3
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Die n?—1 Linearfaktoren, iiber die wir das Produkt I, zu bilden
haben, kommen wieder je zweimal vor, mit Ausnahme der drei:

Ti(z), T”i(z) — T, (ml ;‘mz), Ti(z)— T (9)2—2), wenn i-—1,

@, GEH—G(%), T©H-G(%Y), ——

6@, Go—6(%), Go-6(2E®), > i=s

Diese Faktoren verschwinden aber je von 2. Ordnung und da nach
(13a, b, ¢), (14) und (20):

@ (G@-a(*42) (G —-a(y)) =752
:muﬂﬁ@+zmuH4}
T2(z)- (@:2 (z) — @2(%)) (@'2 (z) — Eg(%)) :%QCL:)
—4@(Co+ 2t +1),
G (Ts(2) — a;g(g)) (@) — T (2Ee2)) = T5(2)

4 Cs
40 (T +30Lo+1),
so hat der Zahler von R, die Gestalt:

G (T2 + 2T +1). H”(E(z)—— fyeem ),

I‘: l‘z

wobei ry,r; in II, die folgenden Wertepaare durchliuft:

n

1,0 2,0 . '2"'_1,0

0,1 1,1 2,1 n—1,1

0,2 1,2 2,2 n—1,2

@Gy §. .. :
n n n n
0,§'—'1 1,5—1 2,—2——'—1 o v ow owm S o n—l,—2——1

n n n n
1,§ 2,§ 4 —2——*1,-2-—
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2

Es sind dies >
2__
Ti(2) 1 5 2 und mithin der Grad des Zihlers von R, n?2—4-43

—=n?—1 ist.

R, wird an allen Polen von T;(nz) genau von 2. Ordnung un-
endlich, wenn r; und r; in IIy voneinander unabhingig das kleinste
positive Restsystem mod. n vollstindig durchlaufen. Denn die halben
Perioden treten unter den Polen von T;(nz) nicht auf, falls n gerade
ist. Der Grad des Nenners von R, ist also n? in T;(z), und weil
hier ausserdem jeder der n? Faktoren zweimal vorkommt, so hat
der Nenner die Form:

Kombinationen, so dass der Grad von II; in

II% (El (Z) "—Ei;n,rz),

(r1,12)

wobei r;, ro die folgenden Wertepaare durchléuft:

0,0 1,0 2.0 . 3—1,0.
0,1 1,1 2,1. . . . . . . n—1,1
0,2 1,2 22. . . . . . . n—1,2
B w . a . m n
0,“2—_1 l,é"——']. 2,§—1 i ow s om s n—l,g—l,
Fiel o2 D on L
dam fir i=1  die Wertepaare: 0,2 1,2 2,2 g 1,2,
. n_ .n n n n
> » i=2u3» > §,0§+1,0—2——|—2, 5 n—l,g.

Zusammenfassend stellen wir fest, dass die gesuchte Funkfion
R. (Ei(z)) wie folgt lautet:

| AT (T (2) — Tisn
2 Rn . sl . r1, T2 _ ,
(3 ) (¢ (Z)) E (Z) HRN (El (Z) _ ai;ri,rz)

(ri,r2)

worin ry, r; fiir ungerades n in II, die Wertepaare (30) und in Ily
die Wertepaare (30°), fiir gerades n in II, die Wertepaare (31) und
in IIy die Wertepaare (31°) durchlduft und wobei ferner:

A ==1, falls n ungerade ist,
A=T@+ 2T @41, falls 0 gorade ist.
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Da T, (nz) und die soeben definierte Funktion R, (Ei(z)) beziiglich
der Pole und Nullstellen genau fibereinstimmen, so gilt nun die
Relation:

(33) T, (nz) = C- R,(Ti(2)).
Setzen wir zunichst voraus, dass n ungerade sei, so finden
wir durch den Grenziibergang z— — fur C den Wert:
1
n.—

In dieséi?x",Fall ist ndmlich nach (32):

(34) ‘ C=

&, inz) Ct:z(;)l [1 + f;%ij (const. . . . )J

= Py

Ti(z) C(2) [1 J- f%z_) (const. . . . )] ’

woraus wegen lim &;(z)=oc folgt, dass

>3
_1: Q:i(nz) __ﬁ
C--_hmuJ T =
Z—'*'—Q—

ist. Differenzieren wir Zihler und Nenner je nach z, so ergibt sich

wiederum die unbestimmte Form g, weil auch lim T, (z)=oc ist

w
Z—>
2
(vgl. § 2, I). Durch abermaliges Differenzieren erhalten wir:
C — lim n2. & (02
w ()7
Z'—>'§

oder mit Beriicksichtigung von (15):

" 12 e 2¢
Tl (nz) (6 &+ T (nz) + T(nz) )

C=n?.lim
i 12 e, 2 ¢
Z~>-§ Ti(z) (6 i - a:i(z) @’(Z))

9. . Ei (HZ) =
—n [ hmﬂ a:i(Z)J

2

=n2-C2
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Da C= lim €,(n2) eine von Null verschiedene Konstante ist, so

w E‘ (Z)

diirfen wir die letzte Gleichung durch diese Grosse dividieren, wo-
raus das Resultat (34) folgt.

Ist dagegen n gerade, so erhdlt man die Konstante C durch
Entwicklung beider Seiten von (33) nach steigenden Potenzen von z
mit Beniitzung von (5) und (32) und nachheriger Vergleichung der
Koeffizienten der niedersten Potenz von z. So ergibt sich fiir C fol-
gender Wert:

¢1 ;T1,T2

C=n2- (n,rz)
II2 El 3T1,T2

(r1,T2)
worin also ry,r, in II, bezw. Iy die Wertepaare (31) bezw. (31°)
durchlduft. Nun gilt aber die Beziehung
(35) 1L, T, = Il Tiorr = 1, falls n gerade ist.

(r1,r2) (r1,12)

2
2
paare (31), sowie der ? Wertepaare (31°) und mit Beachtung der

Funktionalgleichung (9) leicht erkennen, dass in Il, mit jedem Faktor
Ii(%@%) und in IIy mit jedem Faktor E‘(%+wl—i_—22)
auch die reziproke Grosse

) g OY] —1—1"2 w2 (3] ® Iym —'—1‘2 w2 ()]
T (mn -} ;2—) bezw. T, (2—5 -+ — -+ -2“)

auftritt. Man kann demnach sowohl die Faktoren von II, wie die-
- jenigen von Ilyje in Paare gruppieren, von denen jedes als Produkt
den Wert 1 ergibt, woraus die Relation (35) hervorgeht. Somit
ist fiir gerades n:

(36) ' C=n2

Setzen wir nun
i(z) — @, r,,rz) , wenn n ungerade,

7 (rt,rz) (
a (T (z)) = 1L, (Ti(z) — T;, i), » 0 gerade,

(

(

(37) (l‘:,ra) B
n( IID; Ti(z) — Ti;riyr ,) , wenn n ungerade,
N (Ti(2)) = My (T (2) — Tiyenrs),  » T gerade,

(r1, T2)
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wobel 1y, rp in II, die Wertepaare (30) bezw. (31) und in Iy die
Wertepaare (30°) bezw. (31°) durchlduft und hat ferner A wiederum
die unter (32) festgesetzte Bedeutung, so bekommt die Multipli-
kationsformel fiir ein beliebiges ganzzahliges n auf Grund von (32),
(33), (34) und (35) die folgende Gestalt:

Lnz)_ , Z(T(2)

(38)

G(z)  — NiT(2)

2__
Bei ungeradem n haben Z, und N, denselben Grad 11_2_1’ bel

2 2
geradem n ist Z, vom Grad %——2 und N, vom Grad %

Beziiglich der Funktionen Z, (Ei(z)) und Nn(Ei(z)) lassen sich
nun noch die beiden folgenden Sitze beweisen: '

Satz I: Die Koeffizienten der Funktionen Z,(T,(z)) und N, (T,(z))
sind ganze ganzzahlige Funktionen von {,.

Der Beweis stiitzt sich auf die Multiplikationsformeln (24) bis
(28). Nach denselben gilt der Satz fiir n—=2,3,4,5. Aus der am
Anfang dieses Paragraphen geschilderten rekurrenten Berechnungs-
weise der Multiplikationsformeln ist ferner ersichtlich, dass unsere
Behauptung auch fiir n=2m und n =2m -} 1 richtig ist, falls dies
fiir n=m und gleichzeitig fiir n = m -} 1 zutrifft. Durch vollstin-
dige Induktion geht alsdann die Giiltigkeit des Satzes fiir ein be-
liebiges ganzzahliges n hervor.

Satz II: 1. Wenn n ungerade ist, so besteht zwischen den
Funktionen Z, und N, die Relation

n*—1

N.(G@)=T@) *° % c:il(z)) :

d. h. ihre Wurzeln sind zueinander reziprok. Es ist insbesondere
an”—-l — Hn ai;h,l‘z — n,
2 (r1,13)
bn’—l =n- HN Ci;n,rz =1.
2 (r1,12)
2. Wenn n gerade ist, so ist sowohl Z, wie auch N, eine rezi-
proke Funktion, d. h. es gilt:

n?

7. (Ti(2)) = 0:?(;)2- Z (‘[_1(_2))
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und n?

N”(@:i (z)) = (Iiz(z) ‘N, (@Zil(z)) :

Es 1st also insbesondere

an? :n'Hin;ri,rz:n,
3 2 (T1,12)

bn’ — HN a:i;rt,rz = 1.
) (r1, 12)

Beweis: 1. Es sei n ungerade, also von der Form
2m+1(m=1,2,---). Dann ist nach (38):
Ti(nz) Z, (Ei (z))
ACEEAAR

wobel

n*—1 n*—3

Z. (Ei (z)) ={q, (22) -+ a @;g—k R aL:z}‘ T.(z)+ a’L;-l

n—i n*—3
2

wd  Na(T(@)=n T2+ biT(2)+ -+ bus Tu(2) + bus.

Ersetzen wir nun iiberall z durch z +-‘(’2—)-, so geht wegen (9) die linke
Seite iiber in /

Tz  N(Tw)

Ci(nz) 72 (Ti(2))
und die rechte Seite in

n*—3 n*—1, 2

2

72 (L) —},:;<1+a1¢;(z)++an~___,;¢1(z)—}—a,ﬂ¢,(;))
" \Ti(z) 2 2

__ T
Nﬁ(%(z))

n?—3 ni—1, 2"
2 N
" (n + by @ (2) 4 burmg Ti(z) by Ci(z))
@i (Z) 2 2
Daraus folgt, dass
n —8n—1i,
2
by = an:_3,

.......

bp:—y = a4 3
2
bn2_1 = 1 ;

2

-
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d. h. in N, treten dieselben Koeffizienten auf wie in Z,, nur in
umgekehrter Reihenfolge, w. z. b. w.

2. Essein gerade, also von der Form 2m (m—=1,2,---). Dann
ist nach (38):

Z:(Ti(z
TGy =L@ (T E+7 b T+ 1) 'Nz((fi Ez;% ,
wobei
“—'—2 2’_3
Z, (C@) =1 6@ +ul @)+ e T e

“und  N,|(T@(2)) = Ei(z)—}—blﬁ(z)—{— +b,,z Ti(2)+ by

Ersetzen wir hier wieder iiberall z durch z —|—g, so bleibt die linke

Seite ungeéindert; die rechte Seite dagegen geht nach (9) iiber in
6O (TE+2T@+1) 2 (c())

T!(z) N:(m)

L) (@) + ;0@ +1):
1
A0

2
53 72

(+31¢(Z)+"'+§«1; E(Z)-I-dm E,(z))

nz

1 2 _ ? :
AP >(1+b1¢ @+ +by 8@+ b GO )
Daraus folgt, dass n = in:_, : 1 = E&”
2 2
a; =— a‘n__"'__ ’ _bl - biz_ ’
. 2
allgemein : dr=8n_ r=bn__,

d. h. die Koeffizienten von Z, und von N, sind symmetrisch in bezug
auf den mittleren Koeffizienten, w. z. b. w.
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I1. Kapitel.
Die Grossen t(0) (i =1, 2, 3).
8 1. Darstellung von t;(0) durch die Funktionen f(v),f; (w),f(w).1)

Betrachten wir die in Kap. I, § 3 (pag. 12) eingefiihrten, von z
unabhiingigen Grossen _

23. 3 €; (0)1, (.02)
1223 e} (o1 v2) — g (w1, 02)
Aus den bekannten Relationen

1) - tlop o) =

i=12,3)

€; (t(!)1, t(!)g) = t2¢ (0)1, u)g),
g2 (boor, bog) = 4 g5 (w1, we),
worin t ein willkiirlicher Parameter bedeutet, folgt, dass t;(w,ws)
In o;,w homogen von Oter Dimension ist, also nur vom Perioden-
verhéltnis o = 2)—)3, mit positivem Imaginérteil, abhéngt.
1

Wir legen nun den imaginéiren quadratischen Korper k(]/m)
zugrunde. Die Zahlen dieses Korpers haben die Form:

x+y1m m<o

und ohne quadrat. Teiler und wobei x und y rationale Zahlen sind.
Wir setzen ausserdem voraus, dass

me+—1, +—39
ist. Hs sei m = (o1, m0) irgend ein Ideal aus k(]/m), worin wy,a:
eine Basis desselben bedeute und o :$—2 mit positiv imaginérem
1

Teil vorausgesetzt werde. Ist w,’,w;’ eine andere Basis von v der-
selben Eigenschaft, so existiert eine unimodulare, lineare Sub-
stitution S, sodass
2
()]
(2) = = Se.

(.!)1’

I
g

Sind ™ = (@, ®:) und wo aequivalente Ideale, so muss ebenfalls
(3) — =0 = Soe
sein.

1) Weber, Lehrbuch der Algebra, Bd. III, § 34.
?) Beziiglich dieser beiden Ausnahmefille vgl. die Einleitung.
Mitteilungen der Naturf. Gesellschaft in Bern 1923. 10
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Da gs(wi,w:) bekanntlich gegeniiber den linearen, unimodularen
Substitutionen invariant ist und die ey, ez, es bei solchen Substi-
tutionen ineinander iibergehen, so gilt infolge (1), (2) und (3) der

Satz I: Durchlaufen die beiden Perioden w, und w. die Basis-
zahlen aller Ideale w einer Idealklasse aus k (J/m), so gehen dabei
die 3 Grossen t,(w) (i ==1,2,3) ineinander iiber.

Um iber die arithmetische Natur der f;(w) Aufschluss zu be-
kommen, wollen wir sie durch %, den Modul der elliptischen Funk-
tionen, und »’ = }/ 1—=2 ausdriicken. Bekanntlich ist

e —ez’

x?

es ist ferner
© 2K 2iK" 1)
I — L

W9 ==
W ey —og TV e e’

wobei 4K und 2 i K’ die beiden Perioden von snu (u="7,"e,— e; z)2)
sind. Da nun die t,(») nur Funktionen des Verhiltnisses

21K’
- wm Vei—es
H#Lt)l_u 2K
V e1—ey

sind, so diirfen wir zur Vereinfachung der Rechnung ohne weiteres
die Festsetzung treffen:

w1 =2K, w=2iK,
was den Uebergang zu einem #dhnlichen Gitter bedeutet. Alsdann ist

o 1422 o %2 — n? . 1 4 22
== 9 SRS 3 Fmi
3 b 3 b 3 ’

ferner
4 o e
g=7 (1—=2-2'?), 8

Daraus ergibt sich durch einfache Rechnung:
1 22-3el — go = 2%,
1V 22-3el—go=2in-%,
1/ 22-3el — g =— 2 x;
) Weber: Alg. I1I, § 46, (4).

2) Ebenda, § 44, (22).
3) Ebenda, § 46, (14).
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also ist
- 23'361 o 1+’K.32
tl_ym~4( xa—),
(4) o 203e  4i(x?—w)
9 == — . ,
: 1/22'36'3*82 VR
23.3 e, 142
t: b— 2_4 ol .
% 1/22-3ef — g ( % )

Fithren wir weiterhin noch die Klasseninvariante?)
. 4-27 g 1.,
jo) =", G =1z (81 —27g))
ein, so gilt nun der folgende
Satz II: Die Grissen f;(w) geniigen der Gleichung 6. Grades:

(B) t2—9-16t — [j(w) —27-28| -2 4-64 | j(0) —27-64] =0,

deren Koeffizienten ganze algebraische Zahlen sind?) und folglich
sind die t; selbst ganze algebraische Zahlen.

1—-|—x_2)

Beweis: Wir zeigen zunichst, dass z. B. t;—=—4 ( =

der obigen Gleichung wirklich geniigt. Denn aus
64 (2 __+_ %2 . %’2)2 ('%’2 _ 7!.2)2

jw)—27-64 = #
folgt, wegen »2=1— 22
(—27-64) (1 —x2)2-2*t =64 [2 “+ 22 (1 M%?)]g- (1-—222)2.
Nach dem Auflésen der Klammern und Ordnen nach Potenzen von
% ergibt sich: '
D812 - 3-28%10 | (625 — ) 58— (7-28—27)-ub
+(6-28 —j)nt—3-2892-4-28 =0,
Diese Gleichung ist symmetrisch; darum ist
20 (47 1)—8+ 28 (1049 (6-2°—J) (' 4-08) —(7 -2 2j) 13 =0
Setzen wir voriibergehend «? = @, so folgt nach der Division durch {3:

28(53_’_%}_)_3.28(B2+é§)+(6.28_j)(B+}G) —(7-28—27)=0.

1) Weber: Alg. II1, § 47, (16); ferner § 115.
2) Ebenda; § 116, VI; vgl. ferner § 156, (3).
5) Ebenda: § 47, (16).
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Setzen wir ferner ¢, (s) :Bk_l_Blf! so ist

nE=f+g=s @lE—s—2, nE—s—2s,

und wir erhalten:
28(s®—38)—3-28(s2—2) (628 —j)s—(7-28—27=0
oder
2f-gt — 32852 L-(3:28—f)ra— (25 —2])=0.

Da s=ut4 = (z41) —2, so ist

. 1\12 \ .
165 — [4 (%Jr;)] 3=t 32
und die mit 2¢ multiplizierte Gleichung geht iiber in
(ts—32)3 —3-24 (11 —32)2+(3-28—j) (15 —32) —2¢(28—2j) =0.
Ordnet man schliesslich nach Potenzen von f;, so ergibt sich die
Gleichung (5) (fiir 1=23).

Da nun j(w) wegen j(Sw)=j(w)!) nicht von der Wahl des
Ideals 1 und dessen Basis, sondern nur von der Klasse von m in
k(1/m) abhéngt, so folgt aus Satz I, dass mit t; auch f; und t» der
obigen Gleichung geniigen miissen. Damit ist Satz IT bewiesen.

Es wire nun naheliegend, zur numerischen Berechnung der
Grossen t; die Gleichung (5) aufzulésen und alsdann die Beziehung

_ (f(w)—16)*
J(w) = (o) )

zu verwenden. Es ist aber zweckmissiger, die t; direkt durch die
Funktionen f(w), f; (w) und f;(») darzustellen. Die Definitionen dieser
Funktionen lauten ?):

__loo’ 2r—1
fo) =q * I (144" ),

2r—1
if

e
filo)=q 211 (l—q
r=1

f2(0) =12 qﬁz(l +q'7,

. niw
worin q =¢€ .

1) Weber: Alg. III, § 53, 2.
?2) Ebenda; § 69, (3).
3) Ebenda; § 24, (11).
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Auf Grund dieser Definitionen lassen sich aber die folgenden

Beziehungen herleiten !):
6

fo) = L2,
. Vu-

f2 ()]

f((w) V.

Durch Elimination von » und %’ aus (4) und (7) ergeben sich alsdann
die gesuchten Formeln:

4{f(0)P 4 (@)

S T A
0 to () = i+ £(0)* (£ (@)P— fo (w)),
4(f(P 2 (0)9)

bl == Tfar by

Es bestehen ausserdem die beiden folgenden fundamentalen
Beziehungen zwischen den 3 Funktionen f, f; und f; 2):

£ @) 4o (0)° = @),
9
® flw) fi(w) f(0) =12.

Hieraus erhalten wir ohne weiteres die Gleichungen

fi ()° — £ (w)° Vﬂﬁzf“,
(10) _f(w)s £y (w)f = Vi g)g(z:);y@ ’
t(o) 4 (0)r = LB i;” Ef.fﬁf o

In bezug auf das Vorzeichen der rechts auftretenden Wurzeln ist -
folgendes zu bemerken: Fiir ein verschwindendes q werden die linken
Seiten nach (6) positiv unendlich. Das Vorzeichen der 1. Wurzel

1) Weber: Alg. Bd. IIL, § 54, (2) und (3).
%) Ebenda, § 34, (11).
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ist demnach positiv zu nehmen, solange — iw reell und grosser als
1 ist; denn dieses Vorzeichen wechselt nur fiir f(w)*=064, also
laut Tabelle VI in Webers Algebra, Bd. IIL, 1) fiir e =1i. Das Vor-
zeichen der beiden andern Wurzeln ist positiv zu nehmen, solange
— 1w reell und positiv ist; denn sowohl f; (0)* wie auch f(w)*
werden nie — — 64, falls —ie» nur solche Werte durchliuft.

Die Formeln (9) und (10) sind fiir die praktische Rechnung
wertvoll, weil man mit ihrer Hilfe aus dem numerischen Wert der
einen der 3 Grossen f°, f} und f; sofort den Wert der beiden andern
bestimmen kann.

8§ 2. Die Berechnung der {(w) fiir imaginir - quadratische
Korper.

Da wir uns bei der zahlenmiissigen Berechnung der f;(w) nur
auf einige der einfachsten imagindren quadratischen Korper be-
schrinken wollen, so werden wir in jedem Fall die schon erwéhnte
Tabelle VI in Webers Algebra, Bd. III, verwerten kdnnen. Diese
_enthilt ein Verzeichnis von Klasseninvarianten aller imaginir-qua-
dratischen Korper k(1/m), fir die |m|=52, und dann noch fiir
einzelne weitere derartige Korper (bis zu |m| = 1848).

Wegen § 1, Satz I, konnen wir uns jeweilen darauf beschrinken,
filr v das Verhdltnis der Basiszahlen des einfachsten Repriisentanten
einer Idealklasse zu Wahlen Der einfachste Vertreter der Haupt-
klasse ist das Einheitsideal '

] Vm , falls m=E1(4),
0= (1, ), worln o = m
(1, e, @ 1%1419—, » m=1(4).
A. Es sei zuniichst o das Verhiltnis der Basiszahlen des Ein-
heitsideals. Alsdann lassen sich die folgenden Fille unterscheiden:

1. m==14), o=71m.
a) m=0(2).

In diesem Falle kénnen wir aus Tabelle VI (loc. cit.) den Wert
von f(}1/m) entnehmen. Wir setzen ihn in

f) ()8 1+ 15 (0)8 =1 (0)®
und £, ()8 — £ () — V o —64

f(m)*

1) Am Schlusse des Buches.
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(vel. § 1, (9) und (10)) ein und addieren bezw. subtrahieren dann
diese beiden Gleichungen. So ergibt sich:

_ f(w)4 VT 6
fulw)= 2 F (o)t ’

f(o)? f(w
f ()= ° 21{(0))
Durch Anwendung der Formeln (8) erhalten wir schliesslich die
gesuchten numerischen Werte der (o).
Beispiel: Es sei @ = 1/—5, d.h. wir setzen  gleich dem Ver-

hiltnis der Basiszahlen des Einheitsideals 0 = (1, 1/—5) aus k (}/ —5),
dessen Klassenzahl h—=2 ist.

Nach Tabelle VI ist
_ f(’l/jf)—)izge,
WO ¢ :]—_’—T;Q die Grundeinheit des reellen Korpers k(1/5) ist.

Setzen wir diesen Wert in die rechten Seiten der Gleichungen (11)
ein, so finden wir mit Beriicksichtigung von e2—¢—1=0, dass

(VB =201+ Ve,
B()Y/ —5)P=2(01—Ve)
Mit Hilfe der Formeln (8) ergeben sich dann die folgenden Werte:

(1 —5) =2V¥2@Be+21 )1 —Ve),
t: (1 —B) =16i¢ Ve,
() —B)=—21282—2Ve)(14Ve)

) b) m=0(2)
Dann liefert Tabelle VI den Wert von f;(1/m), den wir uns in
f(w) —fs ()" =11 (w)®

24
und o) - (o = (E’%JM ((§ 1, 9) u. (10))
eingesetzt denken. Durch Addition und Subtraktion dieser Glei-
chungen ergibt sich:

@+ VFwP F 6
‘ S 2 (w)’

by = ()21 (34 - —|—64
lfg(m) = 3T, (o) '

(11)

(12)
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Setzen wir nun die Werte von f8 f} und f} wieder in die Formeln
(8) ein, so erhalten wir die Werte der {(w).

Beispiel: Es sei w = 1/—10, d. h. wir setzen o gleich dem
Verhiltnis der Basiszahlen des Einheitsideals o = (1, 1/ —10) aus
dem Kérper k(}/—10), dessen Klassenanzahl-h—2 ist.

Nach Tabelle VI ist
V2-£ (1) —10)* =25,
14+ 15

wo wieder ¢ — —5 Somit ist
fi()/ —10)' =2e

Aus (12) und e} 1=2-32-¢% folgt ferner, dass

f( —10)°=2¢(2431/2)

£()/ =T10)° = —2¢ (2 —31/2)
ist. Mit Beniitzung‘ von (8) erhalten wir sodann die Resultate:
H(Y—=10)=6E8—1T10)(1+12) V23 (2 —312), ¢ — 1;2V5,
(1Y =10)=6i(2—1/2)- V2 (2 +37/2),
ts (1 —10) =241/ 2.

und

2 mE1(4),mzl.+2_VE.

Fiir alle o dieser Form lassen sich die t () wie folgt berechnen:
Aus Tabelle VI entnimmt man den Wert von f(}/m) und setzt ihn
in die Transformationsformel 2. Ordnung!)

wi

(13) (m. (L R) —e yz
ein, wodurch f, (u-_;/—m) bestimmt ist. Zur Bestimmung von

T 8 1 o8
f(l—i_—z—v—m) und f, (ﬂ}v_‘“) dienen die unter (9) und (10) ent-
haltenen Beziehungen

1) Weber: Alg. III, § 34, (19).
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f(Ligﬁiyi‘ﬁ(1+géﬁgi:ﬁ(l+g/a)i

]/fg (lj:-ZZE) “ + 64
(e

Dabei hat man das Vorzeichen der Wurzel positiv zu nehmen, so-
lange |m| > 1. Denn fiir ein unendlich grosses |m| wird nach (6) sowohl

| f (1—_-!_21;”:)‘8—% f; (1i21—{§—)8 wie auch

f(LEYm) oy (LYY

1
14 Ymy¢
Y
_ )
~E
abgesehen von dem konstanten Faktor e ¢, positiv unendlich. Das

g |
Vorzeichen der Wurzel dndert sich aber erst fiir f; (l_l_g—vm) = — 064,

was . fiir m=—1 eintritt, wie man sich mit Hilfe von (13) und
Tabelle VI leicht iiberzeugt.

Durch Addition bezw. Subtraktion der beiden obigen Gleichungen

findet man:
sy M VT
2 on (LE)m) |
(14) . ___
f(1+1ﬁ)8:-——fg(1+21/m) +l//f2(1—|—21/m) —}—64‘
2 HE )

Die gefundenen numerischen Werte setzt man alsdann in die
Formeln (8) ein und bekommt so die gewiinschten Werte von

(L)

—
Es lasst sich aber speziell t; (1 +21LE) besonders einfach durch

(1)

Systems (8) und mit Beniitzung von (14) ergibt sich

allein ausdriicken. Denn nach der ersten Formel des
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. (H-VE)_ 4'|/f2 (%1/—@)24“"64
SRy (LY (L V)

oder, wegen (9),

a5 (1) Vo () e

In den Fillen, wo mzl_—l—g/_m, ist also die erste der Formeln (38)
durch (1) zu ersetzen.
Beispiel: Es sei m:igi, d. h. o sei das Verhéltnis der

Basiszahlen des Einheitsideals o — (1, 1——1;‘12/—“7:) aus k(1/—7)

(h=1).
Aus Tabelle VI entnehmen wir:

V' —7)=12;
fo (1+1/—7) —e24 :

nach (13) ist also

Die Formeln (14) liefern sodann die Werte:

f(1+1/—7) 1—~%1/—7 ”?‘

fl(igi—_?) :_%-ﬁ.

Mit Beniitzung von (15) und (8) ergibt sich somit:
t (%Z) —31/7,
1 —7\__ 15431 —7
NEE =

o),

N = Y N}

B. Ist w das Verhiltnis der Basiszahlen eines einfachen Neben-
ideals, so lassen sich die f(») ebenfalls mit Hilfe eines der be-
schriebenen Verfahren berechnen, nur muss man in gewissen Fillen
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statt (13) eine andere Transformationsformel 1. oder 2. Ordnung
der Funktionen f, f; und f;!) herbeiziehen.

1/ —10
2
Basiszahlen des Nebenideals m = (2,1 —10) aus k{(]/ —10).

In diesem Falle miissen wir von folgender Transformations-
formel 2. Ordnung ausgehen:

fi (o) - fs (g) =132

Da f, (/" ~10)2=1/2¢ (vergl. pag. 34), so folgt aus dieser Be-
ziehung, dass

f; (V:E)QzVES’, ¢ 1@1/5.

Beispiel: Es seli w= , d. h. o sei das Verhiltnis der

2 2
Setzen wir diesen Wert in (14) ein, so erhalten wir:
—10\¢ _
() =20 @ +312),
A 8 _
f1 (1/ 210) :——283(873-—31/2).

Die Formeln (8) und (15) ergeben alsdann die folgenden Resultate:

t (]/:;16) — 21T,

b (V—?J ——Bi(3—12)- V23 (" +3V2),
(VS10) - o4 v 1) Vaa G VD

In der untenstehenden Tabelle haben wir die berechneten Bei-
spiele zusammengestellt. Wir haben uns auf die 5 einfachen Korper

k(1 —5), k(1V—"1), k() —10), k(}/—11) und k(}/—23), deren
Klassenanzahl h bezw. gleich 2,1,2 1, 3 ist, beschrinkt und dabel
jeweilen das Einheitsideal zugrunde gelegt. (Da die Ausdriicke fiir

/11 —93
‘. (ir_lz_i_l) und t, (}—i—%——‘?—é) (i =2, 3) kompliziert ausfallen,

haben wir sie in der Tabelle weggelassen.) Diese Tabelle enthalt
ausserdem die t;(w) fir je einen einfachen Vertreter der Nebenideale

der zweiklassigen Korper k(}/-—5) und k(1 —10).

1) Vergl. Weber, Alg. III, § 34.
2) Loc. cit.
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ITI. Kapitel.

Die Teilungsgleichungen.

Die Erwigungen des letzten Kapitels haben vor allem ergeben,
dass die Grossen t,(w) (i=1,2,3) ganze algebraische Zahlen sind
(vgl. § 1, Satz II). Daraus folgt nun insbesondere der

Satz: Die Wurzeln T;r,r.=T, (IL(HTHE) der Gleichung
Z.(Ti(2z)) =0

sind algebraische Zahlen; wenn n ungerade ist, so sind es ganze
algebraische Zahlen.

Denn nach Kap. I, § 4, Satz I sind die Koeffizienten der Funk-
tion Z,, wie auch der Funktion N,, ganze algebraische Zahlen, als

ganze ganzzahlige Funktionen von t;(w). Bei ungeradem n ist ausser-
dem der oberste Koeffizient von Z, gleich 1 [vgl. Kap. I, (37)].
Ist n ungerade, dann ist (nach Kap.I, §4) der Grad von Z,=0
nZ—1
2 | A
wenn wir ry, r; die Wertepaare (30) (pag. 18) durchlaufen lassen. Ist

und wir erhalten alle Wurzeln ;. r. dieser Gleichung,

gleich

dagegen n gerade, so ist der Grad von Z,=0 gleich I:1—2——2 und

ihre Wurzeln sind die Werte ;,:,r., die man erhilt, wenn r;, r» alle
Wertepaare (31) (pag. 20) durchliuft.

Im Anschluss an H. Weber!) nennen wir die Gleichung Z,=0
die Periodenteilungsgleichung oder kurz die Teilungsgleichung.
Dieselbe verdient besonderes Interesse, wenn n ungerade ist. Es
sei daher von jetzt an n==0 (2).

Wegen der Homogenitét der Funktionen T, (z) (vgl. Kap.L §1,1I)
kénnen wir nun A

op=1, m=—o
setzen und nehmen dabei an, dass w das Verhiiltnis der Basiszahlen
eines Ideals aus dem imaginir-quadratischen Kérper k(}/m),
m<0: #_17 :I:'_?):
sel. Dann ist jede Periode
rnw +rewe=r+ro=y (r;, T2 = ganze, rat. Zahlen)

1) Alg., Bd. III, pag. 205 u.ff.
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eine Zahl aus k(]/m). Setzen wir ferner als Rationalititsbereich

den Korper k(}/m,t) voraus, der aus k(}/m) durch Adjunktion
der Grossen t;,(w) (1=1,2,3) hervorgeht, so ist die Teilungsgleichung
Z,—0 im al]gemelnen redumbel Denn es ist klar dass diejenigen

Zahlen T, ( ) fiir die v und n einen gememsamen Teiler v, haben,

auch Wurzeln der Gleichung Z,=0 sind. Es ldsst sich demnach

Z, auof rationalem Wege von derartigen Faktoren T, (z) — T, (%)
befreien. Man erhilt so eine Funktion T,(T:(z)), n=(n), deren
Wurzeln diejenigen Zahlen T, (%) sind, fiir die (v,n)=(1), und
deren Koeffizienten wieder Zahlen aus k (]/m, t;) sind. Da 2 Grdssen
(i (—}l) und T, (g) nur dann einander gleich sind, wenn

y=-1v (mod. n),
so ist der Grad der Funktion T, (T,(z)) gleich % ©(n), wo die nume-

rische Funktion ¢(n) die Anzahl aller zu n relativ primen Zahlen
eines vollstindigen Restsystems mod. n angibt.!) Die Gleichung

T, (T;(z)) =0 nennen wir die Idealteilungsgleichung fiir den
Divisor n=(n). Die Wurzeln dieser Gleichung bestimmen einen
Kérper K (n) iiber dem Korper k(}/m,t), den Teilungskérper
fiir den Divisor n. Von diesen Teilungskorpern ldsst sich vor
allem zeigen, dass sie in bezug auf den Korper k(}/m,t,) relativ
Abelsch sind. ?) '

Zur zahlenmissigen Berechnung von Teilungsgleichungen muss
man von den Multiplikationsformeln fiir einen ungeraden Multipli-
kator n [Kap. I, § 4, (38)]:

/i (:@:i (Z))
N ﬁ(@;, (z)) ’
ausgehen. Dieselben liefern die Teilungsgleichungen 7Z,=0. Ist
nun speziell n gleich einer Primzahl p, so ist Z, WO in k(}/m, t)
reduzibel oder nicht, je nachdem das Ideal p=(p) in k(}/m) in

Ei(ﬂZ):ci(Z)‘ n:2m+1 (m:1,2,"'),

1) Vgl. Hilbert: Zahlbericht, Satz 23.
2) Vgl. Weber: Alg., Bd. III, §§ 154 u. 158.
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2 Primideale zerfillt oder selbst Primideal ist. Der Euklidsche
Algorithmus und die Methode der unbestimmten Koeffizienten sind
die naheliegenden Mittel zur Bestimmung der irreduziblen Faktoren.
Im Falle n—=23 haben wir die letztere Methode angewendet. Die
erwiahnten Verfahren gestalten sich jedoch sehr bald so umstind-
lich und zeitraubend, dass schon von n=>5 an eine praktische Ver-
wertung derselben nicht mehr in Frage kommt.

Die nachfolgende Tabelle enthélt nun eine Anzahl zahlenméssig
berechneter Teilungsgleichungen fiir n—=23 und n =>5. Dabei haben
wir uns jeweilen auf denjenigen der 3 Fille i—1, 2, 3 beschrinkt,
fiir den die zugehorige Grosse f,(») am einfachsten ausfillt. — Es
ist uns noch nicht gelungen, in den Fillen, wo (5) zerfillt, die Zer-
legung von Z; — 0 durchzufithren. Doch hoffen wir, die betreffenden
Zerfillungen durch Verwendung von Beziehungen zu bekommen,
die sich aus der komplexen Multiplikation der Funktionen T, (z)
ergeben.
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