Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft Bern

Herausgeber: Naturforschende Gesellschaft Bern

Band: - (1920)

Artikel: Höhenpunkt-Transformation

Autor: Zollinger, H.

DOI: https://doi.org/10.5169/seals-319279

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

H. Zollinger, Ingenieur, Bern.

Höhenpunkt-Transformation.

Einleitung.

Mit dieser kleinen Skizze möchte ich den math. Leser bekannt machen mit einer Transformation, die ich bis jetzt in keinem Lehrbuche behandelt finde.

Eine durchgreifende Bearbeitung des sich bietenden Stoffes durch einen Synthetiker oder Analytiker würde sich lohnen. — Ich begnüge mich an dieser Stelle mit der Erledigung zweier interessanter spezieller Transformationsfälle.

A. Ueber eine Aufgabe der Projektivität.

In der synthetischen Geometrie wird als Hauptaufgabe gestellt: Gegeben ist ein Kegelschnitt durch 5 Punkte, oder 3 Punkte und eine Tangente, oder 1 Punkt und 2 Tangenten; man soll den Kegelschnitt zeichnen. — Wir wollen uns in diesem Kapitel eine ebensolche Aufgabe stellen.

Eine Hyperbel (siehe Tafel H.P.T.) sei bestimmt durch: Zwei Punkte im Endlichen P_3 und P_4 , einen Punkt im Unendlichen $(P_4 \infty)$ und einen weiteren Punkt $(P_2 \infty)$ im Unendlichen mit zugehöriger Tangente A_4 (Assymtote der Hyperbel). Die Verbindungsgerade von P_3 und P_4 heisse g, stehe senkrecht auf der Assymtote A_4 und schneide diese in O. Der unendlich ferne Punkt $(P_4 \infty)$ sei gegeben durch den Richtungsstrahl α . Die Punktbestimmung der Hyperbel geschehe mit Hülfe zweier projektivischer Büschel: Das eine habe das Zentrum in P_3 , das andere im Punkte $(P_2 \infty)$. Die Strahlen des letztern sind also parallel zur Assymtote A_4 . Man konstruiere die Hyperbel.

Wir errichten über P₃ P₄ als Durchmesser einen Kreis K. Durch O ziehen wir eine Gerade π, senkrecht zum Strahl α. Sei s₄ ein

Strahl aus $(P_2 \infty)$ und es treffe derselbe die Gerade π in S_i . Wir verbinden S_i mit P_4 durch den Strahl s_i . Den Schnittpunkt A des letztern mit dem Kreise K verbinden wir mit P_3 durch den Strahl s_i ; dann ist P_5 , Schnittpunkt von s_i " mit s_i ein gesuchter Hyperbelpunkt. Der Punkt P_6 ist mit Hülfe des Strahles s_2 in gleicher Weise konstruiert.

Die Büschel s_1 , s_2 ... und s_1 , s_2 ... sind perspektivisch; ihre Axe ist die Gerade π . Die Büschel s_1 , s_2 ... und s_4 , s_2 ... dagegen sind projektivisch, denn sie erzeugen den Kreis K; also sind auch s_1 , s_2 ... und s_4 , s_2 ... projektivisch, sie erzeugen einen Kegelschnitt. Dieser geht ohne weiteres durch die Punkte P_3 und $(P_2 \infty)$, ebenso durch P_4 und $(P_4 \infty)$. Wir ziehen den Strahl β durch P_3 parallel zur Geraden A_1 . Er repräsentiert die Verbindungsgerade der zwei Strahlenzentren P_3 und $(P_2 \infty)$. Fassen wir β auf als zugehörig zum Büschel P_3 und bestimmen wir den entsprechenden Strahl im Büschel $(P_2 \infty)$, so erkennen wir, dass gerade die gegebene Gerade A_4 dieser gesuchte Strahl und nach einem bekannten Satze Tangente in $(P_2 \infty)$ an den Kegelschnitt, also Assymtote ist.

Um zu dem identischen Kegelschnitt (Hyperbel) zu gelangen, hätte man als erzeugende projektivische Büschel wählen können zwei Büschel mit dem einen Zentrum in P_4 (statt P_3) und dem anderen in $(P_2 \infty)$ wie oben. Die Punktkonstruktion ist ähnlich der ersteren. Für die Punkte P_5 , P_6 habe ich sie in Tafel (H. P. T.) eingetragen. Statt der Punkte A, B,.... auf dem Kreise K erhält man die Punkte A', B',...., welche beide Punktreihen projektivisch auf K liegen. Ihre Doppelelemente sind M und N, zugleich Hyperbelpunkte.

Die Lage der zweiten Assymptote habe ich ermittelt mit Hülfe des Satzes von Brianchon (leicht punktierte Linien), und der Tangente in P₃ an die Hyperbel.

B. Höhenpunkttransformation 1. Art. $(J = J_0)$.

Anwendung auf einen speziellen Fall der Grundkurve.

Wir denken uns zwei Ebenen. Die Punkte der einen seien bezogen auf das rechtwinkelige Coordinatensystem (x, y); die Punkte der anderen auf das System (x_1, y_1) . Die beiden Ebenen werden aufeinander gelegt so, dass y und y_1 zusammenfallen und gleich ge-

richtet sind. Die Abscissen x und x_1 seien entgegengesetzt gerichtet. (Fig. 1).

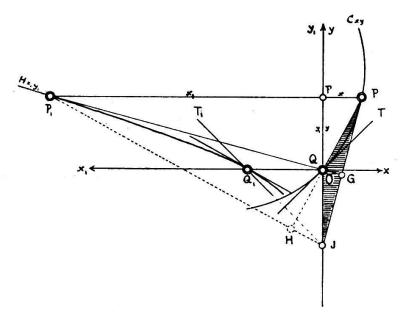


Fig. 1. Höhenpunkttransformation I. Art.

Eine Funktion y = f(x) möge bezogen sein auf die (x, y)Ebene. Ihr Bild sei die Kurve C(x, y). Man bestimme zu einem Punkt P derselben geometrisch einen zugehörigen Punkt P_1 mit den Coordinaten $x_1 y_1$ gemäss den zwei Transformationsgleichungen:

$$y_1 = y$$

$$x_1 = \frac{y(y + J_0)}{x}$$

$$J_0 \text{ bedeutet eine Konstante.}$$

Wir tragen von O nach abwärts die Strecke J₀ ab und erhalten den Punkt J. Durch P ziehen wir eine Parallele zu x. Auf die Verbindungsgerade der Punkte (J.P) fällen wir von O aus eine Normale (OG) und bringen sie zum Schnitt mit der Parallelen durch P. Schnittpunkt P₁. Aus der Konstruktion ergibt sich ohne weiteres die erste der Transformationsgleichungen. Die zweite folgt aus der Aehnlichkeit der zwei Dreiecke P₁ OF und JFP. (Fig 1.)

Lautet (wie oben angenommen) die Gleichung der Grundkurve C(x,y):

$$y = f(x)$$

und setzt man für x und y die Werte aus 1) ein, so erhält man in impliziter Form die Gleichung der Kurve $H(x_1, y_1)$, nämlich:

3)
$$H(x_{i}y_{i}) = y_{i} - f\left[\frac{y_{i}(y_{i} + J_{0})}{x_{i}}\right] = 0$$

Der Punkt P_i ist Höhenpunkt des Dreiecks J. O.P.; es erscheint die Kurve $H(x_i, y_i)$ als geometrischer Ort des Höhenpunktes eines Dreiecks (schraffiert) mit den beiden festen Ecken in O und J. und der dritten Ecke in P, beweglicher Punkt auf C(x,y). Wir bezeichnen die Kurve $H(x_i, y_i)$ mit Höhenpunktskurve; die durch Gleichungssystem 1) definierte Transformation mit Höhenpunkttransformation erster Art.

Die Höhenpunktskurve $H(x_1y_1)$ und die Hyperbel von Tafel (H. P. T.) haben gemeinsam, dass sie beide erzeugt werden durch zwei Strahlenbüschel; während letztere aber im Falle der Hyperbel projektivisch sind im gewöhnlichen Sinne, ist dies bei der allgemeinen Kurve $H(x_1y_1)$ von Fig. 1 nicht mehr der Fall. Es wurde eben die perspektivische Axe π in Tafel (H. P. T.) ersetzt durch eine allgemeine Kurve C(x, y).

Aus 1) folgt:

4)
$$\frac{dy_{i}}{dx_{i}} = \frac{\frac{dy}{dx}}{\frac{dx_{i}}{dx}}$$

Diese Gleichung nochmals nach x, differenziert, liefert:

$$\frac{\mathrm{d}^2 y_1}{\mathrm{d}^2 x_1} = \frac{y''\left(\frac{\mathrm{d}x_1}{\mathrm{d}x}\right) - y'\frac{\mathrm{d}^2 x_1}{\mathrm{d}^2 x}}{\left(\frac{\mathrm{d}x_1}{\mathrm{d}x}\right)^3}$$

Gleichungen 1) 4) 5) ergeben:

6)
$$\frac{dy_1}{dx_1} = \frac{y'x^2}{xy'(2y+J_0)-y(J_0+y)}$$

7)
$$\frac{d^2 y_1}{d^2 x_1} = x^3 \frac{-y''(xy^2 + J_0 xy) - 2y'^3 x^2 + y'^2(4xy + 2J_0 x) - 2y'(y^2 + J_0 y)}{[xy'(2y + J_0) - y(J_0 + y)]^3}$$

Die Grundkurve C(x, y) gehe wie in Fig. 1.. speziell angenommen durch den Nullpunkt O. In diesem Punkte seien:

8)
$$x = y = 0$$
; $\frac{dy}{dx} = y'_{0}$; $\frac{d^{2}y}{d^{2}x} = y''_{0}$ $\frac{d^{n}y}{d^{n}x} = y^{n}_{0}$.

Der Punkt O beziehungsweise Q wird durch die Höhenpunkttransformation nach Q_1 transformiert mit dem Abstand: $QQ_1 = J_0 y_0'$. Alle Ableitungen: $\frac{dy_1}{dx_1}$, $\frac{d^2y_1}{d^2x_1}$, $\frac{d^ny_1}{d^nx_1}$ werden in Q₁ unbestimmt $\frac{0}{0}$

Die Grenzwertbestimmung vollzieht sich nach den gewöhnlichen Regeln. Indem man beispielsweise Zähler und Nenner von $\frac{dy_i}{dx_i}$ dreimal differenziert nach x und Gleichung 8) beachtet, erhält man:

9)
$$\left(\frac{dy_1}{dx_1}\right)_{x=y=0} = \frac{y'_0}{y'_0^2 + 0.5 J_0 y''_0}$$

Auf raschere Art gewinnt man die Werte der gesuchten Ableitungen in Q_i nach folgendem Verfahren:

Ist y = f(x) in O analytisch und entwickelbar nach Taylor, so folgt:

10)
$$\Delta y = \Delta x y'_0 + \frac{\Delta x^2}{2} y''_0 + \frac{\Delta x^3}{6} \cdot y'''_0 + \dots$$

Mit Benutzung von Gleichung 1):

11)
$$x_{i} = (J_{0} + \Delta y) (y'_{0} + \frac{\Delta x}{2} y''_{0} + \frac{\Delta x^{2}}{6} y'''_{0} + ..)$$

Hieraus:

Ausdruck 12) eingesetzt in Gleichung 4), liefert 9). Indem man x_4 in 11) zweimal nach x differenziert und $\Delta x = 0$ setzt, wird:

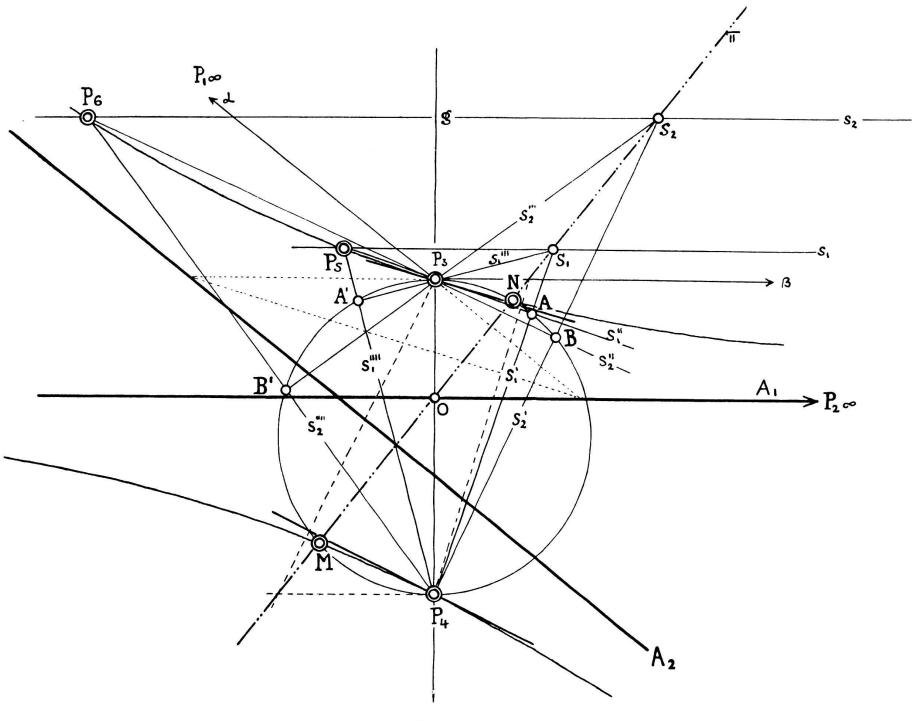
13)
$$\left(\frac{d^2 x_1}{d^2 x}\right)_{\Delta x = 0} = \frac{J_0}{3} y'''_0 + 2 y'_0 y''_0$$

und mit Berücksichtigung von 5)

14)
$$\begin{pmatrix} \frac{d^2 y_1}{d^2 x_1} \end{pmatrix}_{\substack{y_1 = 0 \\ x_1 = J_0 y_0'}} = \frac{0.5 J_0 y_0''^2 - y_0'^2 y_0'' - J_0/3 y_0'' - J_0/3 y_0''}{(y_0'^2 + 0.5 J_0 y_0'')^3}$$

In dieser Weise lassen sich auch $\frac{d^3y_4}{d^3x_1}$, $\frac{d^ny_4}{d^nx_4}$ bestimmen.

Gleichung 9) enthält eine interessante Eigentümlichkeit der Höhenpunkttransformation erster Art. Transformiert man nämlich die Tangente T in Q an die Kurve C(x, y) (Fig. 1), so wird T wohl wieder in eine Gerade T_i übergeführt; allein diese ist nicht die Tangente an die Höhenpunktskurve $H(x_i, y_i)$ in Q_i . Die Tangente und die Gerade T_i bilden miteinander daselbst vielmehr einen en dlichen Winkel.



Tafel (H.P.T.): Höhenpunkt-Transformation.

C. Höhenpunkttransformation 2. Art. (J = 0).

Krümmungsradius einer Kurve.

Synthetisch interessant ist der Fall, wenn in Tafel (H.P.T.) sich der Punkt P₄ auf der Geraden g vom Punkte P₃ in einer unendlich kleinen Distanz befindet. Bei dieser speziellen Lage P₃P₄ wird g Tangente an die Hyperbel. Die Punktkonstruktion derselben ist einfach, so dass ich sie nicht weiter zu beschreiben habe.

Wir denken uns wieder zwei Ebenen mit den Coordinatensystemen (x, y) und (x_i, y_i) . Wir legen jene so aufeinander, dass x und x_i zusammenfallen und gleichgerichtet sind, während die y entgegengesetzt gerichtet sein sollen. (Fig. 2.)

Eine Grundkurve C(x,y) bezogen auf das Coordinatensystem (x,y), von der wir bei der nun folgenden Betrachtung annehmen wollen, sie tangiere in O die x-Axe, soll transformiert werden nach:

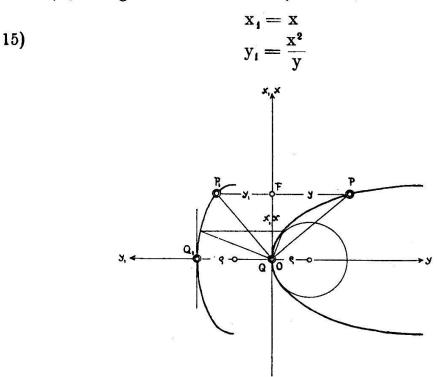


Fig. 2. Höhenpunkttransformation II. Art.

Ich bezeichne diese Transformation als Höhenpunkttransformation II. Art. Ihre geometrische Deutung ist in Fig. 2 enthalten. Die Gleichung der Höhenpunktskurve zweiter Art lautet, wenn die Grundkurve C(x, y) durch y = f(x) gegeben ist:

16)
$$x_i^2 - y_i f(x_i) = 0$$

Für P, erhalten wir als Ableitungen der Höhenpunktskurve:

$$\frac{dy_1}{dx_1} = 2\left(\frac{x}{y}\right) - \left(\frac{x}{y}\right)^2 y'$$

18)
$$\frac{d^2 y_1}{d^2 x_1} = \frac{2}{y} - 4 \left(\frac{x}{y^2}\right) y' + 2 \left(\frac{x^2}{y^3}\right) y'^2 - \left(\frac{x}{y}\right)^2 y''$$

Infolge der gemachten Annahme, dass in Q beziehungsweise O besteht:

19)
$$x = y = y' = 0$$

werden für Q_i die Ausdrücke 17) und 18) unbestimmt. Ihre Grenzwertbestimmung vollzieht sich wie folgt. Es seien $y'_0, y''_0, y'''_0, \dots, y^n_0$ die Werte der Ableitungen von C(x, y) in O; C(x, y) sei daselbst analytisch und entwickelbar nach Taylor.

20)
$$y = \frac{x^2}{2}'' y_0 + \frac{x^3}{6} y'''_0 + \dots$$

Daraus folgt:

21)
$$\frac{x}{y} = \frac{1}{0.5 \times y''_0 + \frac{1}{6} \times x^2 y'''_0 + \dots}$$

Für y, aus Gleichung 15) ergibt sich:

22)
$$y_1 = x \left(\frac{x}{y}\right) = \frac{1}{\frac{1}{2}y''_0 + \frac{1}{6}(x)y'''_0 + \dots}$$

Für Q_i ergeben sich daher die Coordinaten:

$$x_{i} = 0$$

$$y_{i} = \frac{2}{v''_{0}}$$

Indem wir y_1 nach x_2 beziehungsweise nach x differenzieren und $x = \Delta x = 0$ setzen, erhalten wir:

$$\left(\frac{d y_1}{d x_1}\right)_{Q_1} = -\frac{2 y'''_0}{3 (y''_0)^2}$$

Durch zweimalige Differenziation von y, nach x und Nullsetzen von x folgt:

(25)
$$\left(\frac{d^2 y_1}{d^2 x_1}\right)_{Q_1} = -\frac{y^{IV_0}}{3(y''_0)^2} + \frac{4(y'''_0)^2}{9(y'')^3}$$

In gleicher Weise ermittelt man $\frac{d^3y_1}{d^3x_1}$ etc. Die Ausdrücke in 24), 25) und allgemein $\frac{d^ny_1}{d^nx_1}$ sind unabhängig von der Wahl des Coordinatensystems (x, y), auf welches die Grundkurve bezogen wird.

Das interessante Ergebnis unserer Betrachtung liegt aber in Gleichung 23), welche besagt:

26)
$$QQ_{1} = \frac{2}{y''_{0}} = 2 \rho$$

wo ρ der Krümmungsradius bedeutet von C(x, y) in Q, d. h.:

Liegt eine Kurve als Bild einer analytischen Funktion vor, die wir uns bezogen denken können auf ein rechtwinkliges Coordinatensystem (x,y) und kennt man in einem Punkte derselben die Tangente, dann kann man mittelst einer einfachen Zeichenoperation den Krümmungsradius daselbst bestimmen. Wir konstruieren die Höhenpunktskurve zweiter Art im Sinne von Fig. 2 und den Punkt Q₁.

Der Kreis als Grundkurve bestätigt das Gesagte ohne weiteres. Eingegangen, 10. Mai 1920.