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II1. Kapitel.
Die Integraldarstellung.

§ 6. Integraldarstellung der Riemann’schen P-Funktion.
Die gewohnliche hypergeometrische Differentialgleichung

2
1) xEx—1) jxy -

¢c—(adb4Dx %#}-a-b-yzo

lisst sich sofort durch die in der Einleitung betrachtete Methode
durch bestimmte Integrale integrieren. Setzt man ndmlich:

x(x—1)=Q(x); x—1) (1+a—c)+x(c—b)=R(x)
und 1—a—=§

so erhialt man die bekannte Differentialgleichung:
2

® Q@ - F — -2 @ @Y

X
§— £--1 ! d ’
pEmAE-D g (X)-y—R(X)d—y+(§w1)R (x) -y =0
X 5
deren Losung sich durch das Integral
b
3) y = { Wt(u—1)1 (u—x)*du

g
geben lasst, falls die reellen Komponenten der Exponenten positiv
gedacht werden und wo die Grenzen zwischen den Werten

0 1 X und oo
beliebig gewiahlt werden dirfen.

Die partikuldaren Integrale der allgemeinen hypergeometri-
schen Differentialgleichung mit den singuliren Stellen 0,1 und oo

d’y l—a—a" | 1—yp—s'14d
) dug { | Y 7} Y
X X

oy | dx

—|—{ {—xy-}:l—l_ﬂﬁ}_(_x—_l)
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die sich von denjenigen der gewohnlichen hypergeometrischen
Differentialgleichung (2) nur dadurch unterscheiden, dass sie noch
mit den Faktoren Cx®(1— x)” multipliziert sind, werden daher

nach (3) )
(5) y = Cx*® (l—x)Yj T u—1)""" (u—x) " du

wo je nach Wahl der Grenzen zwischen den Grossen

0 1 X und o0

andere Funktionszweige entstehen.

Unter Beriicksichtigung der Formeln (5) und (6) des zweiten
Kapitels wird (5) zu:

h

(6) v=Cx*(l—xy f a1y o x) TP du
g
Aus (4) erhilt man bekanntlich die allgemeine hypergeo-
metrische Differentialgleichung der P-Funktion

1—a—d

1—p—p | 1—y—4y'|d
n f 13+ F—7 19¥

Z-—a z—Db Z—C dz

d2y
(7) df+{

[aa’(a——b)(a—g)_+_ﬁﬂ’ (b—a) (b—c)r_‘_yy’ (c—a) (c—b)l‘
| z—a z—Db Z—¢C |
y —0
(t—2a)(z—b) (z—0)
durch die Substitution: :
z—a'cmb

—+.

X =
z—b c¢c—a

Da z—¢ b—a
: 1 —x= -
z—b c¢—a

ergibt sich nach (6) als Losung von (7) das Integral:
v=C—btb—a)(c—a) " "(z—a)z—b) "7 (z—c)

h

’ , —_ a3 ¢c— b\—*-8—7
fua +845 ~1 (U _ 1)— a’'—pg'—y (ll —_— in—_%/ 2 — ];)) du

g
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oder, falls die konstanten Grossen in die Konstante genommen
werden,

y =0C,(z—a)(z—b) ¢ 7 (z—ecy

rua'"f'ﬁ%-?—l (ll _ 1)-a'—.3’""? (11 B b b _a—ﬁ—ydu
z—b ¢c—a

a4
g
Setzt man
u —a c— b

u = .
u—b c—a
so wird

uy—c¢c a—b>b z—a ¢—b c—b

u—-—]_: . ;u—— - s .

u,—b c—a z—b c¢—a c—a
Zz—u b-—a
u,—b z —b

1

0 = (c—b) (a—Dh) du,

d . 5
(c —a) (u,—b)

An Stelle der Grenzen 0 1 oo X
treten ;a c b z

Alle diese Werte eingesetzt, ergibt, falls wiederum alle konstanten
Grossen 1n der Integrationskonstanten aufgenommen werden

b _
y=C,(z—a)*z—by z—o) f (0,—2) " (0, — )T A
g .

(u‘1 — ) (g — ul);“_ﬁ_?’ du,

oder
h

(8) y=Cy(z—2)* (z—b)Yz—cy f (a—a)—e—F =7 (a—b)y—«'—#~7"
g
W—c) ¢ F=7 (u—2zy 7 du
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Je nachdem nun die Grenzen g und h zwischen den Grossen a,
b, ¢ und z gewihlt werden, erhilt man den einen oder.andern
Zwelg der Riemann’schen P-Funktion

a b ¢
y=P| e 8 y z
af ‘8! 7.’

Da die Summe der Exponenten

atd +8+p +r+r=1

ist, ergibt sich, dass die Summe der Exponenten des Integrandes
in (8) S= — 2 sein muss.

§ 7. Bemerkungen zu diesem Integrale.

Das i Gleichung (8) auftretende Integral lisst sich all-
gemein in der Form geben:

h
9) S = f(u—a)*‘—l(umb)B—‘(u—c)c—l(u—d)‘)—ldu*)

wo die Grenzen zwelr der Grossen a, b, ¢, d bedeuten und die
Summe der Exponenten

(10) A4+B+C+ D=2
1st.

Das Integral (9) 1st nun nichts anderes als das, nach Klein*¥)
so bezeichnete allgemeine Euler'sche Integral vierter
Ordnung. Die Untersuchung der Bessel’'schen Integrale als
spezielle Formen der hypergeometrischen Funktionen fiithrt dem-
nach auf den Zusammenhang der aersteren mit den Euler’schen
Integralen.

Aus der Bedingung (10) ist ersichtlich, dass stets mindestens
einer der vier Exponenten eine positive reelle Komponente be-
sitzen muss, dass aber auch anderseits nie alle vier Exponenten
zugleich positiv sein konnen. Man ist daher auf alle Fille

*) Schlafli, Ueber die Gauss’sche Reihe. Math. Annalen, Bd. 3.
**) Klein, Hypergeometrische Funktion.
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gezwungen, freie Integrationswege zu betrachten. Da nun zu-
folge (10) stets mindestens einer der Exponenten positiv sein
muss, so liegt immer einer der Punkte a, b, ¢, d derart, dass
die Variable in ihn gefilhrt werden kann, d.h. irgendwo an-
fangend hat S hier einen endlichen Wert. Man kann nun von
diesem Punkte aus um jeden der andern Verzweigungspunkte
eine Schleife als Integrationslinie in rechtliufigem Sinne wéhlen.
Ist z. B. die recp. A positiv, so kénnen wir von a aus als Aus-
gangspunkt die Variable um jeden der Pole b, ¢, d fihren;
diese drei Schleifen entsprechen dann einer Schleife von a aus,
die simtliche andern Verzweigungspunkte in sich enthélt. Letztere
wird aber, da der Horizont fiir S als ein gewohnlicher Punkt
bezeichnet werden darf, zu Null. Daraus erhalten wir den Satz,
dass hochstens zwei der gesamten Integrale voneinander un-
abhingig sind. Durch diese beiden Integrale kann man jedes
andere, noch mogliche bestimmte Integral linear und homogen
ausdriicken.

Kann die Variable in keinen der beiden Grenzpunkte des
Weges gefiihrt werden, so bedient man sich entweder solcher
Wege, auf denen der Integrand nachdem die betreffenden Ver-
zweigungspunkte umlaufen wurden, wieder den Anfangswert an-
nimmt. d. h. geschlossener Wege wie z. B. Doppelumliufe, oder
man betrachtet auf irgend einer Verbindungslinie der zwei Ver-
zweigungspunkte einen Punkt, von dem als Ausgangspunkt zwe1
Schleifen, je um einen der Verzweigungspunkte gelegt werden.
Dabei wird natiirlich vorausgesetzt, dass auf der betreffenden
Verbindungslinie keine weiteren Verzweigungspunkte liegen. Be-
trachtet man daher die Punkte a und b, so hat man folgendes
Bild:

Fig. 1. Fig. 2.
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Von einer niheren Untersuchung des Doppelumlaufes sehen
wir hier ab, hingegen betrachten wir den Fall (2). Es sei:

T::fm—af—%m;m“*m—wf‘wu—m“*du

wo ¢ den Weg (2) darstellen soll.

Denkt man sich die Verbindungslinie ab in die Realitits-
gerade gelegt, so wird

P e {‘(u—a)Aml(u— b ' —¢)° Tu—d)P 'du

e/
-

a_ T3 R

{
N

+J,.(u _a]A—l(u—-b)B—l(U —-c)C" 1(u—d)D_1du

Rr@
— U4V

Wird der Weg auf die Réalitatsgerade zusammengezogen
und dem Erkennungsort die Phase = gegeben, so erhilt man:

'U;fm—@“*m—hf”m—mfﬂm_dﬁ*du

o 0
\ B
T (;\ R
4 »— 2 7

Hinweg: Phase = 0:
Integral f(u —a)* u—b)f T u—¢° u—d)P tdu
R
RﬁCkWCg: Phase — 9 7L
R
Integral e2 i A (‘(u A a)A_1 (u _— b)B_l (u-— c)C—l (u___d)l)__1 a5
daher

Uzu—w“”ﬂfm—aﬁ*m—m“Ww—@“%w~meu
R



. a
(37) Zusammenh. d. Bessel’schen Funkt. J (x) m. d. hypergeom. Rethe. 125

analog wird

V=(1— e B)[(u— a)A_1 (u— b)B_1 (u— c)C"L (u — d)D_1 du

Nun ist nach (9)
b b a
o — f (a — a)A_1 (u— b)B_1 (u— c)C_1 (u — d)D_1 du= f — f

oder die betreffenden Werte eingesetzt :

(1) | S —

;j ) /(u“a)A - U—b)B Ya—e) Tu—d)"du—

1
1— ek f (W—a)"" @—b"" @—¢°" (w—d" du
(a "» R
Ist nun in S speziell

A=B

so erhialt man, falls im zweiten Integral das Minuszeichen die
Wegrichtung andert

So= g f u—a)(u—b)J"" (u—0)"" (a—d)°" du
B )
+f[u—a Yu—b)Pr u—eo) u—ad)® " du
Die beiden Integrale konnen, da im Punkte R der Integrand

gleiche Werte aufweist, miteinander verbunden werden und
es wird
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(12) S, = [‘ [(u—a)u—Db]* " u—c)* " (u—a)" du

—:g“z"i?r) f [u—a)u—b* " w—e® "' w—d" " du

' OO}

woraus der Satz folgt, dass wenn in einem Euler’schen Integrale
zwel Exponenten einander gleich sind, der Integrand schon bei
einem Umlaufe um die betreffenden zwei Pole der Exponten-
basis, wieder auf seinen Anfangswert zuriickkehrt. Dies trifft
hauptsichlich fiir die Integrale der Kugel- und Zylinderfunktionen
zu, welch letztere nun noch des Néhern betrachtet werden sollen.

§ 8. Zusammenhang der Bessel’schen Integrale mit denjenigen
der Riemann’schen P-Funktion.

Dieim zweiten Kapitel gefundene Darstellung der Bessel’schen
Funktion J (x) durch eine P-Funktion lautete (Formel 17):

— 1 oo +1
: 2 n L —
y=n]_1__mooP 2 U H
a a
ey el e
2 T 2
Wir setzen
cos — = z
n
und transformieren nach Riemann?®)
— 1 oo 41 0 o< 1
3 2, o LB e
P 2 2 =P 2 2
a a 1 1—n a
S 1 2 - -
2 + 2 2 2 2

*} Werke, pag. 71.
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die Pole oo und 1 vertauscht, ergibt
0 1 ) —1 1
n a 7z n n Z
0o — — 3 — — a —
p 2 2 27—1 | =P 2 2 Va2 —1
_l_l——n __a 1—n l—n_
2 2 2 2 2
Nun 1st
X
cos — cos —
Z . n _ n | _n
\/Zz"l \/coszi—-l 18ln — Lx
n n limn = ©Q
demnach wird die P-Funktion
—1 o~ 41
n a a &
(13) y=lmP 2 2 ix
n—=— 0<C
1-—n . 1—n
2 2

woraus nach (8) als Losung der Bessel’schen Differentialgleichung
das Integral folgt: '

1X

m_)g( T
f(u4 1)~ u

durch Zusammenzug samtlicher konstanten Grossen in der Inte-
grationskonstanten wird:
h

y = C, [‘(uQ—l)“'/’(.i)* ) (u E--w1> .
lim ¢ 1X ; n

=00 g
a“1”11 (1 ———IE) du

y—ngf(l
n

y=0C,x f(l — ) e’ " du

g

y———C(.n

~—1,>a"”(u—nr“(u—.i)_“_“du

1X
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Der unendlich ferne Punkt wird also zur wesentlichen Singu-
laritit, die Variable kann in der Nord-Siidrichtung ins Unendliche
gefilhrt werden, ohne dass das Integral seinen Sinn verliert. Die
Grenzen g und h kénnen demnach zwischen den Groéssen

—1 —{—lund-l)r—l
X

wo N eine sehr gross gedachte Zahl bedeutet, gewihlt werden.

Es ergeben sich somit als Losung der Bessel’schen Differential-
gleichung die folgenden Integrale:

+1
(a) y1 = Cs xaj (1—d®)* e’ ™ du
—1
E
(b) vy = Csy x* f(1 — P e " du
£1
ET_}
(c) Y3=C4ka] (1—wp—"reixt gy

e
wobel natiirlich vorausgesetzt wird, dass die reelle Komponente
von (a--'/2) positiv ist.*)

*) Eine einfache Ueberfithrung ergibt sich auch aus dem gewohn-
lichen hypergeometrischen Integrale.
1

F(ab,e x)=C [ub_l(l""u)cub—l(l--xu)"'“du

da 0

(3)
2 lim \2)

T =, Z oo I(at1)

<2
F (k k,a+1, — - )
» K, a4 o

Durch Einfiihrung freier Integrationswege stosst man dabei rasch
auf das bekannte Integral:
a X 1
J(x) = 1 fe 3(‘—T)t““—ldt
21n .
N
- /ﬁh?\

X e S
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Wir bestimmen nun die zur Funktion J (x) gehorenden
Integrationskonstanten vermittelst der Gleichung:
J (x)

a
X

. 1
o T (at1

Aus (a) folgt:

1
2 I (a1 1)

Ja (x)

X

x=0

= 02] (1—u2)a—1/2du=
*

1

+1
nun ist f (1 _u2)a_1/a iy, — 2f(1_ ug)a—i”zdu
=

0

a="Yz, duzéz“lt’ dz

+1 1
f(l-—u‘“’)a““du: fz“" (1—2) " dz
el b

Das Binet’sche Integral lautet aber

1

fua—-l(l__u)b—l du :_F(a) T (b)

9 T@+b)
+1
daher ist A—u)P"qu= L (*/2) T (a 4 /2)
it I'(a+41)
dies oben eingesetzt, ergibt

1 1

2" r(h)ra+ )
und das Integral (a) wird:
Ol
(14) J(x)= F(l/g)\l“(a—|—1/z) I(l—u)e‘Xudu*)

G ==
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setzt man X1u=— —u
so wird
N +xi
5 J s 2 — 2a—1]z —ud *

Fir (b) erhilt man:

J(x) - 1
} C f(l | du__ I (a+1)

zerlegt:

= Cs {‘(l—u‘“))a_lf’du 1+ {‘(1—ul‘2)a_i"2 dul[

= —1u,

—Cs {j,.(l—ug.)’_l" du+ if(l 4 uzg)““’"dqul

0

u2=x,du=%x"” dx

1 °p
% f (1—x)* *x dx+i J (1+x)*“"=x*"ﬁdx}
0 0

Nun 1st nach der Theorie der Gammafunktion**)

1 o)

I T x* _ T (b)
‘['x (1—x) % Of T dx Tath

daher
ljix)!:__Ea{T<‘/s)rta+1/=)+ir(l/s)r(—a) _ 1
.2l raiy rih—a | 2°r@a+i)

*) Hankel, Math. Annalen, Bd. 1, ferner Graf, Bessel’sche Funktion 1.
**) Graf, Gammafunktionen, pag. 12.
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da aber 1 = — id
T'(a)I'(1—a) sin a 7z
folgt
C,— a1—1 {_ 1 +i '75 I'(Y2—a)
2 r(‘f)I(a+ ) sin a 7 I (1)

i (b) eingesetzt, ergibt

(16) J (x) =

1 x" 1 . 7€
-1 - —I_ 1— :
2° T (Y2) I (a-/e) sin a 7

_I‘Li.
. I"(I/2 _a)}f(l_ t2)a—‘,f: eitx dt
e 1

Fir (c¢) erhilt man auf gleichen Wegen

a 1 x° 1 . 7T
(17) J(x) = ga—1 T (Ys) {T(a—|—1/2) +1 sina 7

. I'({2 —a) }j(l — )Pt dt

Durch Addition von (16) und (17) ergibt sich die Gleichung
(14), woraus der frither bewiesene Satz, dass hochstens zwei
Integrale voneinander unabhingig sein konnen, auf praktischen
Wegen hergeleitet 1st.

Durch die Substitution

Xit=—u

ergeben sich aus (16) und (17) die Integrale:

a L 1 _ x " = vy ’
(18) J(x) = 2*1 1)l sinazn rCh—a)
: 1 PR 2ya—tfs ,—u
: t ratm ” te] v

--X1
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(2 — a)

o g

sin a 7¢
N

} f 4z e™ du
—'{—xi

durch Addition dieser beiden Gleichungen ergibt sich die friher
gefundene Form (15). |

~ I'(a+1%s)

§ 9. Freie Integrationswege.

Die gefundenen Integralformen (14)—(19) setzen voraus,

dass die reelle Komponente von (a | /2) positiv ist. Fir be-
liebige a miissen freie Integrationswege eingefithrt werden.

Als Losung der Bessel’schen Differentialgleichung ergab
sich das Integral

ychj%f—n“mé”du

wobel als Grenzen die Werte

—1 —I—lund—lji
X

in Betracht fielen.

Der Integrand
(w— 1= (@ D g

weist zwel gleiche Exponenten auf, es kann deshalb, wie friiher
in § 7 ganz allgemein gezeigt wurde, um die Pole — 1 und 4} 1
ein einfacher, geschlossener Umlauf von Achterform als Weg
gewihlt werden.

Da der Horizont wesentlich singuliren Charakter trigt,

sind von N ausgehend nur Schleifenintegraldarstellungen moglich.
X
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Wir haben daher folgende méglichen Integrationskurven

S DI, &/‘ O/‘
1) 2) 3) 3)

Von diesen Wegen betrachten wir nur den ersten und
letzten.

Aus (12) folgt, wenn darin

a=—1 b=1 A=a+ 1, W—c) ' u—d)’ '=¢*"
gesetzt wird:
+1 .

2 a—1!: iux . 2 a—12 ixu
J(u — 1) "e dur—(1__ezm(a+'/=))fv '—1)"""e " "du

1 v
Nach (14) ist aber falls D)

(— 1) e
ausgeklammert wird

6] .

J (X) / . ei nf(a—‘./z) (112 _ l)a—‘/z ei xu du

T (Rt ) .

1

fur das Integral obigen Wert eingesetzt ergibt
G)
J 2 g Tl f .
J (x) = / : _ 2 qye— ixu
) = o et ) (= et/ @— D e du

Nun ist, unter Berucksichtigung dass T

€

- r—a =

sin a s
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1 . 21 1
( 1 e2i7l(a+ ‘/z)) _""é'i (a4 Y (e— im@-+ts) einta+ ‘/‘:)J ) 9 i
1 1
sin 7z (a-Y2)e' T T 24

1 -F(a—[—-l/z)r(l/z—a)

T %ix et

eingesetzt und gekiirzt ergibt die von Hankel¥) gegebene Form

. ree—a()
@ J@=—s

’/‘(u?.__ 1)3——-‘fz eixu du.g.)

D)

nix =+t

21«

substituiert man

so wird das Integral zu

@y JE=(—1L (;/’(1/; a).@z’?; f e (2 x)* " d tr)

()
(e

eine Form die auch schon bei Hankel auftritt.

Betrachten wir nun noch das Integral

yzcx“f(u2—1)“—‘/’ e*"du

N

—1+2) 4

das nach unsern Untersuchungen auch eine partikulire Losung
der Besselschen Differentialgleichung darstellt.

*) Hankel, Math. Annalen, Bd. 1.
**) S. auch Graf & Gubler, Bessel’sche Funktionen L
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Durch Anwendung der Substitution
uix=—t
wird, falls wieder simtliche neu auftretenden Konstanten in C,
vereimnigt werden:

y= Clx_afet (4 x) " dt

+ixy A

Zur Bestimmung der Konstanten C, beniitzt man wieder

die Formel:"

J ()

a
X

1 _ 1
x =10 23‘ r(a‘_l—])

in der, wegen des Faktors x " vor dem Integral, a durch — a
ersetzt werden muss, Es ist demnach:

L I A | P
X e - I'(l—a)
—N g

Das Weyerstrass'sche Integral lautet nun*)

1 1 x —&
= e -x dx
I (a) Zinf

e
also wird

leett“‘ldtzcl-ﬂ——: 2
' rt—=2a r(1—a

. 1 r(1—23)2a
' 2%2ix r{l—a)

*) Graf, Gammafunktion.
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Unter Beriicksichtigung des Satzes iiber die Verdopplung
des Argumentes der Gammafunktion¥)

rep =2 Tere+h)

I (')
wird
o 1 T@li—a) , 27" r(Ye—a)I'(1—a) o
o e D L :
217 I'(1—a) 212 (") I (1 — a)
27T (Y —a)
C 2im-I ()

im Integral eingesetzt, ergibt:

@) Jxm=°=L (;f("l;;‘)z(? ’;)"a f‘ e (0 4 x%* ~ " d u*)
TN

substituiert man nun wieder zuriick, d. h. setzt man

u=—xt1

so erhilt man da r (o) =\n

a

—a 1/, . 1
(23) J(X):F(/z,/z a), 2aX+1 {‘extl(l._—tg)a—/z dt

¢

Eingegangen am 15. Februar 1919.

*) Graf, Gammafunktion.
**) 8. auch Graf & Gubler, Bessel’sche Funktionen.
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