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so erhält man durch Subtraktion (I — II)
a

III. ^^ ---J(x) +aj(x)
dx x

durch Addition von I und III wird ferner

IV. SJ(x)-î(x) 2d^
dx

Dies sind die bekannten vier Funktionalgleichungen, durch
die die Zylinderfunktionen meist definiert werden.*)

Der Vollständigkeit halber sei hier noch erwähnt, dass mit
Hilfe der Formel

F(a,b,c,l)^/^LflC-a-b) -

r(c —a)JT(c-b)
a

die Funktion J (x) für unendlich grosse Argumente geschätzt
werden kann. Auch in den Kettenbruchentwicklungen lässt sich
die Bessel'sche Funktion erster Art leicht als spezielle
hypergeometrische Funktion erkennen.

II. Kapitel.
Die Differentialgleichung.

§ 3. Definitionsbemerkungen.

Im ersten Kapitel wurde auf ganz einfache Art die Bessel'sche
a

Funktion J(x) durch eine hypergeometrische Reihe dargestellt,
worauf dann aus den allgemeinen Eigenschaften der letzteren
die Bessel'sche Funktion als deren Spezialfall untersucht wurde.
Vom theoretischen Standpunkte aus, wobei wir hauptsächlich an
die in der Einleitung erwähnten Grunddefinitionen denken, bieten
diese ersten Betrachtungen wenig, sie basieren auf einer
einfachen Schlussweise, die uns über die eigentliche
funktionentheoretische Beschaffenheit der Funktion wenig Auskunft gibt.

*) Nielsen: Handbuch der Theorie der Zylinderfunktionen,
Leipzig 1904.
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a

Ein tiefersehendes Studium der Funktion J(x), insbesondere was
deren Verwandtschaft mit der hypergeometrischen Funktion
anbetrifft, lässt sich bedeutend erfolgreicher und klarer
durchführen, wenn die Definitionsdifferentialgleichung an die Spitze
gestellt wird.

Aus den im ersten Abschnitte mit I und II bezeichneten
Funktionalgleichungen der Zylinderfunktion findet man leicht die
in der mathematischen Literatur zuerst bei Bessel*) auftretende,
nach ihm benannte Differentialgleichung:

(D |X + lÌl- + (l-^)y^0dx x dx \i x /
Um die im folgenden kommenden Bestimmungen der

Integrationskonstanten möglichst einfach durchführen zu können,
a

ziehen wir zur Definition der Funktion J(x) noch die im ersten
Abschnitte unter (4) gefundene Gleichung hinzu, die lautet:

(2) r<»+!).j-(x) i

d. h. wir definieren die Funktion J(x) als dasjenige partikuläre

Integral der Differentialgleichung (1), das mit dem Faktor —-—
' x

T
multipliziert für sämtliche Werte des Parameters a zu 1 wird,
falls das Argument der Funktion Null gesetzt wird.

§ 4. Herleitung der allgemeinen hypergeometrischen Differential¬
gleichung. — Die Riemann'sche P-Funktion.

Nach dieser einleitenden Bemerkung zur Definition der
Bessel'schen Funktion erster Art müssen wir einiges über die

hypergeometrischen Differentialgleichungen vorausschicken, bevor
die Gleichung (1) als ein Spezialfall der allgemeinen
hypergeometrischen Differentialgleichung, der Differentialgleichung der
Riemann'schen P-Funktion, betrachtet werden kann.

*) Werke. I pag. 47.
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Schon Euler*) fand, .dass sich die Reihe

y F(a, b, c, x)

als partikuläres Integral der Differentialgleichung

(3) x(l-x)^+!c-(a+ b + l)xj^-aby=0
dx I )dx

darstellen lässt.

Diese Differentialgleichung kann auf sehr einfache Weise,
nach den in der Einleitung erwähnten Methoden, auf direktem
Wege durch unendliche Reihen wie durch bestimmte Integrale
integriert werden.

In neuerer Zeit stellte sich nun aber heraus, dass die
hypergeometrische Reihe

y F (a, b, c, x)

als Definition der hypergeometrischen Funktion wenig zulässig
erscheint. Besonders darum, weil man heute bei Funktionen, die
sich durch Differentialgleichungen definieren lassen, nicht nur ein
bestimmtes partikuläres Integral ins Auge fasst, sondern allgemein
jedwelche mögliche Lösung der betreffenden Differentialgleichung
als eine diesbezügliche Funktion auffasst.

Man definiert daher heute als hypergeometrische Funktion
allgemein die obige Reihe, noch multipliziert mit einer Potenz
von x, einer solchen von (1 — x) und einer von x unabhängigen
willkürlichen Konstanten, nämlich

(4) y Cx<X-xFF(a,b,c,x)
Aus den beiden ersten Differentialquotienten dieser Funktion
ergibt sich durch einfache Koeffizientenvergleichung mit
Gleichung (3) die Differentialgleichung, der unsere neue Funktion als

partikuläres Integral genügt.

Führt man der Symmetrie des Resultates wegen die folgenden

sechs Konstanten ein:

(51
« —« ß=a — ö — y r Y

a' 1 — c + a ß' b — o — Y ï' — c — a — b + j'

*) Jecklin, Diss. phil. Bern 1901. pag. 12ff.



108 Mitteilungen der Naturf. Gesellsch. Bern 1919. (20)

woraus durch Addition folgt, dass

(6) « + «XXXXr + r' i
so wird die neue Definitionsdifferentialgleichung:

(7) x2(l-x)2|^-x(l-x){ (« +«'-l) + 0? + ^Xl)x}^

+ {««' -(««' -\~ßß' -yy')x + ßß' x^y^O
oder unter Berücksichtigung von (6)

(8)
d2y jl-a-a' | l-y-/|dydx2 l x x — lJdx

„/

I X x — 1 J x (x — 1)

Dies ist die allgemeine hypergeometrische Differentialgleichung,
deren Lösung wir durch die Funktion

y Cia(l-xFF(a,'bl c, x)

oder unter Berücksichtigung von (5), durch

(9) y=Cx«(l- xyF(a-\-ß-\- y, a + ß' + y, 1 +«-«', xj
definiert haben.

Es werde nun diese neue Definitionsgleichung (8), in Bezug
auf das Verhalten der komplexen Variablen x im Zahlenfelde,
des Nähern betrachtet.

Die Differentialgleichung weist in den Punkten

x — 0 x 1 X — oo

Stellen singulären Charakters auf, denn für diese Werte werden
die Koeffizienten der Gleichung unendlich gross. Wir sind nun
keineswegs an die spezielle Differentialgleichung (8) gebunden,
sondern wir suchen der Vollkommenheit halber, die drei singu
lären Punkte derselben allgemein zu definieren, indem wir die
zu Gleichung (8) analoge Differentialgleichung zu konstruieren
suchen, die in Bezug auf ihre Koeffizienten die Unstetigkeits-
stellen

x a, x b, x c
aufweist.

*) S. u. a Klein, hypergeometrische Funktion.
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Diese verallgemeinerte Differentialgleichung erhält man
durch die Substitution:

(z — a) (c — b)

(z — b) (c — a

oder nach z aufgelöst

b (a — c) x — a (b — c)

(a — c) x — (b — c)

aus welchen beiden Gleichungen der Uebergang der Pole
0 oo 1 in a b c rasch ersichtlich ist. Fürdie Differentialgleichung

(8) erhält man dann die Form*):

(10)

+!

d2y l a — a' l — ß — ß' 1 y. Ari
'dzdz l z — a

'
z — b z — c

a a' (a — b) (a — c) ß ß'{b - a) (b — c) yy'jc — a) (c— h)

z — c

0
(z — a) (z — b) (z — c)

Diese Differentialgleichung ist nun im Gegensatze zu (8)
in Bezug auf die Konstanten aa', ßß', yy' ganz symmetrisch
gebaut, und zwar gehören zu dem Pole a die Konstanten a a'
zu b ßß' und zu c yy'.

Als Lösung obiger Differentialgleichung erhält man nun die
durch Riemann**), allerdings auf ganz andere Art definierte
P-Funktion

(11)

Setzt man

a 0

abc
« ß y z

«' ß' /
b oo c=- 1

*) Papperitz, Math. Annalen, Bd. 25.

**) Riemann, Beiträge zur Theorie der durch die Gauss'sche Reihe
F (a, b, c, x) darstellbaren Funktion. Werke pag. 62 ff.
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so wird die Funktion zu

(12) y P
0 oo 1

« ß 7.

«' ß' /
und dies ist die Lösung der Differentialgleichung (8).

Aus dieser speziellen P-Funktion, die Riemann noch
einfacher mit

ß y
(13) y P

t' ß' y'
x

bezeichnet, deren einzelne Funktionszweige sich alle durch
hypergeometrische Reihen darstellen lassen, folgt indirekt, dass die
allgemeine P-Funktion (11) als Lösung der Differentialgleichung (10)
definiert werden darf.

Die Konstanten a, a' ; ß, ß' ; y, y' nennt man die Exponenten
der P-Funktion und zwar treten dieselben wie schon bemerkt
stets paarweise auf, indem jedes Exponentenpaar aa',ßß',yy'
zu den singulären Punkten a, b, c resp. 0, oo, 1 in gewissen
Beziehungen steht. Ferner muss auch für die P-Funktion die
frühere Bedingung bestehen bleiben, dass

a + «'+/? + /i' + ,X/ l
ist, des weitern haftet der Riemann'schen Definition noch die
Einschränkung an, dass keine der Exponentendifferenzen

a-a', ß-ß', y-y'
eine ganze Zahl sein darf.

§ 5. Zusammenhang der Bessel'schen Differentialgleichung mit
a

der hypergeometrischen. — Darstellung der Funktion J (x) als

Riemann'sche P-Funktion.

Klein*) findet folgenden Zusammenhang zwischen den

Differentialgleichungen (10) und (1)

Setzt man in (10)

a 0, b oo, c c, a a und a' — a

*) Hypergeometrische Funktion, pag. 281 ff.
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so erhält man, falls z durch x ersetzt wird :

£+11 + !=^ ÉZ + I»
d x Ix x — c i dx

2

/

+ ßß> + SJJL
X — c J x (x — c)

oder

d2y 1 l-"/-/[dydx2 Ix x — c Idx

Xr*xXXXX=°1 x (x — c) x (x — c) (x — c

Nun lasse man c unendlich wachsen, gleichzeitig aber auch die

Exponenten y, y' und ß, ß', doch derart dass

ß + ß', 7 + / sowie auch /9/3' — yy'
endlich bleiben, ferner soll dabei

lim^ 1
c"

sein.

Führt man den genannten Grenzübergang unter
Berücksichtigung der angeführten Bedingungen durch, so erhält man
die Bessel'sche Gleichung

a*) f^-x+l1--!^0d x x dx l x I

oder in der Form von Anger*)

(15) x2il + x^ + (x2-a8)y=0
dx dx

Die hypergeometrische Differentialgleichung geht somit in
die Bessel'sche über, wenn die singulären Punkte 1 und oo der
erstem im Unendlichen zusammenfallen, wenn also der Horizont
zum wesentlich singulären Punkte der Differentialgleichung wird.
Die Bessel'sche Differentialgleichung ist somit ein Grenzfall der
hypergeometrischen.

*) Anger, Untersuchungen über die Funktion J> Danzig 1855.
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Weil sich Gleichung (15) als Spezialfall von (10) geben
a

lässt, ist auch deren Lösung, die Bessel'sche Funktion J (x) durch
eine Riemann'sche P-Funktion darstellbar. Diese Darstellung
hat schon Ulbricht*) allerdings auf ganz andern Wegen,
vorgenommen.

Bezeichnet man mit v eine zum Unendlichgrosswerden
bestimmte Zahl, so kann

c + v

gesetzt werden, es ergeben sich für beide Vorzeichen gleiche
Resultate. Ferner müssen die Grössen y und y' sowie auch ß

und ß', falls sie unendlich gross gedacht werden, deren Summen
aber endlich sein sollen, unbedingt entgegengesetztes Vorzeichen
haben. Damit nun aber das Produkt im Zähler des Grenzwertes

lim*£=l
c

positiv ist, müssen die Exponenten y und y' imaginär sein. Das

gleiche gilt für die Exponenten ß und ß', da auch

ßß' -yy'
endlich bleiben soll.

Man erhält deshalb für die Grössen der P -

Funktionsdarstellung der Bessel'schen Transcendenten :

lim|a==a /* i v y i v b oo j

'=oo| a'= — a ß''= — iv y' =—iv c —+v |

weshalb sich nach (11) als Lösung der Bessel'schen Differentialgleichung

folgende P-Funktion ergibt:

(16)

Man trachte nun danach diese spezielle P - Funktion in

hypergeometrischen Reihen darzustellen. Zu diesem Zwecke

0 oo ±v
limP a i V i V
r— oo — a -— iv — iv

*) Olbricht, Diss. phil. Leipzig 1887.
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muss die Funktion einer Transformation unterworfen werden,
wonach die Verzweigungspunkte

oo + ylim 0

übergehen in die Werte

0 1

Viele von uns angestellte Transformationsversuche zeigten,
dass eine einfache Transformation auf direkten Wegen sich hier
kaum finden lässt. Wir kehren deshalb noch einmal zu der
allgemeinen hypergeometrischen Differentialgleichung (10) zurück
und leiten daraus die Bessel'sche Gleichung auf ganz andere Art
her, indem wir nämlich an den Zusammenhang der Bessel'schen
Funktionen mit den Kugelfunktionen denken. Die auf diese Weise
hervorgehende P-Funktion lässt sich dann sehr leicht transformieren,

worauf sich eine Darstellung durch hypergeometrische
Reihen rasch finden lässt.

Setzt man in Gleichung (10)

z cos —
n

so werden die Differentialquotienten
dy _dz

n dy
• x dxsin— ux

n

d2y _|d2y dy 1 i— coty
dx n

x n"

dz2 1 dx2 n 2xsin —
n

Geben wir nun den Verzweigungspunkten

a b c

die Werte — 1 n +1
so geht (10) über in:

d2y 1-a-o:' i-ß-ß' i-r-r'
X

Sin_ J 1 An dy 1 x dy£ cotg—. —
n dx n n dxdx2

1

X X
cos H cos n

n n

i

cos 1
n
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+ 2««'(l+n) /3/?'K-l 2/r'd-n)
cos 1-1

n ' cos- cos 1
n

• 2 X
sin —

n
2

n
X

x J- 0
(cos f-1) (cos n) (cos 1)

n n n

Zur Grenze lim n oo übergegangen ergibt, falls die Exponenten-
summen a + a' und ß + ß' endlich bleiben,

dy (««' ßß' 4yy'\d2y 2(1 -y-y') dy 1

dx2 x dx X

Setzt man nun
a

dx n
y-o

2 2

und lässt man ferner die Exponenten ß und ß' unendlich wachsen,
doch derart, dass deren Summe

ß + ß' l
ist, so erhält man wiederum die Bessel'sche Differentialgleichung,
nämlich

d2y
i 1 dy X a

dx x dx \ x
0

deren Lösung sich nun als folgende P-Funktion ergibt:

- 1 oo +1
a a

— n —
2 2

a a
— — n+1 — —
2 2

(17) y lim P
n oo

X
COS —

n

In dieser Funktion sind zwei Exponentendifferenzen einander
gleich. Solche P-Funktionen definiert Klein*) direkt als
Kugelfunktionen, da sie stets auf solche führen. Auf diese Weise
ergibt sich sehr einfach das Verwandtschaftsverhältnis zwischen
den Bessel'schen- und Kugelfunktionen.

*) Klein, hypergeometrische Funktionen, pag. 219.



(27) Zusammenh. d. Bessel'schen Funkt. J (x) m. d. hypergeom. Reihe. 115

Riemann*) fand nun, dass sich P-Funktionen, in denen
zwei Exponentendifferenzen einander gleich sind, durch 144

hypergeometrische Reihen darstellen lassen, wo je '/3, also 48
Entwicklungen um einen Verzweigungspunkt Geltung haben. Jeder
der sechs Zweige der Funktion

p« pa' p/5 p/3' pr p/
liefert 24 Entwicklungen, wo diejenigen für papa resp. P P

resp. P Py in der Umgebung der Pole a resp. b resp. c konvergieren

werden.

Die früher als Integral der Bessel'schen Differentialgleichung

gefundene P - Funktion (16)

0 00 V
lim p a iv iv

T=00
— a -— iv — iv

zeigt nun aber, dass von den 144 Reihendarstellungen zum Vorneherein

s/3 wegfallen, denn die Pole b und c obiger Funktion
fällen im Unendlichen zusammen, es entsteht eine wesentliche,
singulare Stelle, um die eine Entwicklung nicht existieren kann.
Eine Darstellung der Funktionszweige P'3, P*3', P^, P^' ist nicht
möglich. Aus der zweiten Darstellung ist ferner ersichtlich, dass
eine Vertauschung der Exponentenpaare unter sich keine neuen
Reihendarstellungen liefert, wie leicht durch Ausrechnung
gezeigt werden kann. Die noch existierenden 48 Entwicklungen
werden deshalb nochmals um '/* reduziert, so dass schliesslich noch
12 hypergeometrische Reihen zur Darstellung unserer P-Funktion
verbleiben. Diese 12 Reihen können vorläufig bloss als Symbole
betrachtet werden, wie schon Ulbricht**) bemerkt hat. Lassen
sich die Grenzübergänge vollziehen, so erhält man durch
passende Bestimmung der Integrationskonstanten Reihendar-

a —a

Stellungen für die zwei partikulären Integrale J (x) und J (x). Den
einfachsten dieser Grenzübergänge, der zu einer wirklichen
Reihendarstellung führt, wollen wir hier vornehmen.

*) Werke, pag. 73.

**) Diss. phil. Leipzig, 1887.
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Nach Riemann*) gilt für P-Funktionen, deren zwei
Exponentendifferenzen einander gleich sind, die Transformation

1 oo +1

7

y'

ß

ß'

7

7'

P

0 oo 1

0 ß

2
7

1 ß'
—- y
2 2

dies auf die Funktion (18) angewendet, ergibt:

a»)y=.Ü"p

— 1 oo +1
a a

2

a

2

n

-n —

cos-

0 oo

n

1

a
lim

P
0 ¥ ¥ 2

COS
X

n oc 1 nn a

2 2 2

und dies wird zu, da lim cos2X=1

lim _y „ PJ n oo

n

0 oo

0 1
2

1 _ IL
2 2

1

a

¥
a

¥
durch Vertauschung der Pole 0 und 1 ergibt sich

(20)
lim

y n c

o

a
¥~

a

2

oo

n

2

n

'¥

0 x_a

2

1 n

2

Die zwei in der Umgebung von a voneinander unabhängigen
Zweige P" und Pa' der Funktion

0 OO 1

ß ß 7 X
1

a ß' 7'

•) Werke, pag. 71.
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lauten nun in Form von hypergeometrischen Reihen

(21)
y1 Pö=Cxa(l-xFF(ß + /3+y,ß+/?Xy,l + a-ß,,x)
y3 Pa'=C'xa'{l-xyF{a'+ß +Y,a'+ß'+y,l-a + a', x>

hierin die Werte von (20) eingesetzt, ergibt

y1==
lim c(4)tF^+X---)a + l,4'l n oo \nV \2 2 2 2 ¦ n2

lim ry / x
y2 ti' I — I - F

nun kann gesetzt werden:

a n a n
— ^r> 1 —a>

hm F X_IL,a + 1 M lim p (n na + 1 _^«-oo \2 2 n2/ n 00 V 4n2

somit ergeben sich folgende zwei, voneinander unabhängige
partikuläre Lösungen der Bessel'schen Differentialgleichung

y1== lim C1x'F(n,n,a + ll—-^y
(22) n=°° V 4n

y2 lim C2x "F (n,n, 1

4 z
n

wie ersichtlich, geht yx in y2 über, falls a durch — a ersetzt wird.

Bedenken wir nun, dass am Anfang dieses Kapitels die
Bessel'sche Funktion erster Art als dasjenige partikuläre Integral
der Bessel'schen Differentialgleichung definiert wurde, für das
nach Gleichung (2)

r(a + i

x=0

ist, so ergibt sich danach für die erste der zwei Gleichungen (22)
für C,
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r(a-l-l) ¦ Ctx

(30)

•F n,n,a + l, x
In2

x=0

c,

analog wird

2" r(a+l)
1 1

Hl—a)
und es resultieren durch Einsetzen der Werte Ct resp. C2 in (22)
die bekannten Funktionen

(23)

J (x) lim
n=oc r(a+l)

Fin, n, a+l,

J (x) lim
»=oo r(i —a)

F I n, n, 1 - a,

4n<

4na

Das allgemeine Integral wird unter Zuziehung zweier
willkürlicher Integrationskonstanten durch die Form gegeben

(24) Y cJ(x)+c1 j"(x)

Hiebei bleibt zu berücksichtigen, dass diese Darstellung nur
ungebrochene Parameter gilt, denn in den P-Funktionen (16) und
(17) dürfen laut Definition die Exponentendifferenzen nicht
ganzzahlig sein.

Die spezielle Betrachtung für ganzzahlige Parameter fordert
n

die Einführung der Neumann'schen Funktion Y (x) resp. der
n

Schläfli'schen K (x) Funktion als zweites partikuläres Integral der

Differentialgleichung.
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