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so erhalt man durch Subtraktion (I— II)
al(x) _

a a—1
111 e [ AN ()
dx X
darch Addition von I und III wird ferner
' a1 a1 T
Iv. J(x) — J(x) = 239®
dx

Dies sind die bekannten vier Funktionalgleichungen, durch
die die Zylinderfunktionen meist definiert werden.*)

Der Vollstindigkeit halber sei hier noch erwihnt, dass mit
Hilfe der Formel
F(ab,c, 1) __I'(¢I'(c—a—h)
I'ic—a)I'(c—Db)
die Funktion J(x) fir unendlich grosse Argumente geschitzt
werden kann. Auch in den Kettenbruchentwicklungen lisst sich
die Bessel’sche Funktion erster Art leicht als spezielle hyper-

geometrische Funktion erkennen.

I1. Kapitel.
Die Differentialgleichung.

§ 3. Definitionsbemerkungen.
Im ersten Kapitel wurde auf ganz einfache Art die Bessel’sche

Funktion J (x) durch eine hypergeometrische Reihe dargestellt,
worauf dann aus den allgemeinen Eigenschaften der letzteren
die Bessel’sche Funktion als deren Spezialfall untersucht wurde.
Vom theoretischen Standpunkte aus, wobei wir hauptsichlich an
die in der Einleitung erwihnten Grunddefinitionen denken, bieten
diese ersten Betrachtungen wenig, sie basieren auf einer ein-
tachen Schlussweise, die uns iiber die eigentliche funktionen-
theoretische Beschaffenheit der Funktion wenig Auskunft gibt.

*) Nielsen: Handbuch der Theorie der Zylinderfunktionen,
Leipzig 1904.
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Ein tiefersehendes Studium der Funktion 3 (x), insbesondere was
deren Verwandtschaft mit der hypergeometrischen Funktion
anbetrifft, lasst sich bedeutend erfolgreicher und klarer durch-
fuhren, wenn die Definitionsdifferentialgleichung an die Spitze
gestellt wird.

Aus den im ersten Abschnitte mit I und Il bezeichneten
Funktionalgleichungen der Zylinderfunktion findet man leicht die
in der mathematischen Literatur zuerst bei Bessel*) auftretende,
nach ihm benannte Differentialgleichung:

1y "‘*9+1 dy +( Xo)y——O

x dx
Um die im folgenden kommenden Bestimmungen der Inte-
grationskonstanten moglichst einfach durchfithren zu konnen,

ziechen wir zur Defimtion der Funktion j (x) noch die 1m ersten
Abschnitte unter (4) gefundene Gleichung hinzu, die lautet:

|
PRCES I N

G

d. h. wir definieren die Funktion J (x) als dasjenige partikulare

I'(a+1)

()

multipliziert fiir samtliche Werte des Parameters a zu 1 wird,
falls das Argument der Funktion Null gesetzt wird.

(2)

Integral der Differentialgleichung (1), das mit dem Faktor

§ 4. Herleitung der allgemeinen hypergeometrischen Differential-
gleichung. — Die Riemann’sche P-Funktion.

Nach dieser einleitenden Bemerkung zur Definition der
Bessel’schen Funktion erster Art miissen wir einiges iiber die
hypergeometrischen Differentialgleichungen vorausschicken, bevor
die Gleichung (1) als ein Spezialfall der allgemeinen hyper-
geometrischen Differentialgleichung, der Differentialgleichung der
Riemann’schen P-Funktion, betrachtet werden kann.

*) Werke, I pag. 47.
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Schon Euler*) fand, .dass sich die Reihe
y =F(a, b, ¢, x)
als partikul'ares Integral der Differentialgleichung

(3) x(l——x) —l— c—(a+b41)x ———aby—O

darstellen ]asst.

Diese Differentialgleichung kann auf sehr einfache Weise,
nach den in der Einleitung erwihnten Methoden, auf direktem
Wege durch unendliche Reihen wie durch bestimmte Integrale
integriert werden.

In neuerer Zeit stellte sich nun aber heraus, dass die hyper-

geometrische Reihe
y = F(a7b7c)x)

als Definition der hypergeometrischen Funktion wenig zulissig
erscheint. Besonders darum, weil man heute bei Funktionen, die
sich durch Differentialgleichungen definieren lassen, nicht nur ein
bestimmtes partikuldres Integral ins Auge fasst, sondern allgemein
jedwelche mogliche Losung der betreffenden Differentialgleichung
als eine diesbeziigliche Funktion auffasst.

Man definiert daher heute als hypergeometrische Funktion
allgemein die obige Reihe, noch multipliziert mit einer Potenz
von X, einer solchen von (1-—x) und einer von x unabhingigen
willkiirlichen Konstanten, nimlich

4) y = Cx*(1—x) F(a,b,c,x)

Aus den beiden ersten Differentialquotienten dieser Funktion
ergibt sich durch einfache Koeffizientenvergleichung mit Glei-
chung (3) die Differentialgleichung, der unsere neue Funktion als
partikuldres Integral geniigt.

Fihrt man der Symmetrie des Resultates wegen die folgen-
den sechs Konstanten ein:
pr = g=a—a—y P

B s te f'=b—e—y i =c—a—b+ry

*) Jecklin, Diss. phil. Bern 1901. pag. 12ff.
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woraus durch Addition folgt, dass

(6) at-o L4 +r47r=1

so wird die neue Defimtionsdifferentialgleichung:

N (R S RECE AR by
d x* dx

+{aa’ — (e’ +BF —yy) x+ 88 xz}yr‘)

oder unter Beriicksichtigung von (6)

(M) x* (1 — x)*

dzy le—a—'—a' l—y——y'}ﬂ

®) dx2+ X T x—1 dx
LN T Y o
+{ : +X_1+ﬁﬁ}xg_d) 0%)

Dies ist die allgemeine hypergeometrische Differentialgleichung,
deren Losung wir durch die Funktion

y=0Cx*(1—x)F (a,'b, ¢, X)

oder unter Beriicksichtigung von (5), durch

9 y=Cx*Q—xFla+4-8+ pye +3 4+ 71+a—a, x)
definiert haben.

Es werde nun diese neue Definitionsgleichung (8), in Bezug
auf das Verhalten der komplexen Variablen x im Zahlenfelde,
des Nihern betrachtet.

Die Differentialgleichung weist in den Punkten
Xx==0 x=1 X = o0

Stellen singularen Charakters auf, denn fiur diese Werte werden
die Koeffizienten der Gleichung unendlich gross. Wir sind nun
keineswegs an die spezielle Differentialgleichung (8) gebunden,
sondern wir suchen der Vollkommenheit halber, die drei singu
laren Punkte derselben allgemein zu definieren, indem wir die
zu (leichung (8) analoge Differentialgleichung zu konstruieren
suchen, die in Bezug auf ihre Koeffizienten die Unstetigkeits-
stellen

aufweist,

*) S. u. a Klein, hypergeometrische Funktion.
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Diese verallgemeinerte Differentialgleichung erhilt man
durch die Substitution: '

x:(z—a)(c-—b)
(z—Db)(c — a)

oder nach z aufgelost
Z_b(aé——c)x-—a (b — ¢)
(@a—c¢)x —(b—c)

aus welchen beiden Gleichungen der Uebergang der Pole
0 o 1 in a b c¢ rasch ersichtlich ist. Fiirdie Differential-
gleichung (8) erhilt man dann die Form®):

B e e | dy

Z—a z—Db Z—C dz

+_[aa’ {a —b) (a —c)
l

+ﬁ/9’ (b —a) (b—0)+ yy'(e —a)(e—h) |

Z — a z—Db Z— ¢ |

Y =0
(z—a)(z—b) (z—ec)

Diese Differentialgleichung ist nun im Gegensatze zu (8)
in Bezug auf die Konstanten oo, p’, yy' ganz symmetrisch
gebaut, und zwar gehéren zu dem Pole a die Konstanten oo’

!

zu b.... 88 und zu c.... yy.

Als Losung obiger Differentialgleichung erhilt man nun die
durch Riemann**), allerdings auf ganz andere Art definierte
P-Funktion

a b c
(11) . y=Ple 8 7 z
af ‘{))I 7/f

Setzt man

¥) Papperitz, Math. Annalen, Bd. 25.

*¥) Riemann, Beitrige zur Theorie der durch die Gauss’sche Reihe
F (a, b, ¢, x) darstellbaren Funktion. Werke pag. 62 ff.
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so wird die Funktion zu

0 0o 1
(12) y=Ple 3 7 x
o p}f ;’f i

und dies ist die Losung der Differentialgleichung (8).
Aus dieser speziellen P-Funktion, die Riemann noch ein-
facher mit

(13) ¥ =

bezeichnet, deren einzelne Funktionszweige sich alle durch hyper-
geometrische Reihen darstellen lassen, folgt indirekt, dass die
allgemeine P-Funktion (11) als Losung der Differentialgleichung (10)
definiert werden darf. ' ' |

Die Konstanten e, ¢’; 3, 8'; 7, ' nennt man die Exponenten
der P-Funktion und zwar treten dieselben wie schon bemerkt
stets paarweise auf, indem jedes Exponentenpaar c¢ea’, 343, v/
zu den singuliren Punkten a, b, ¢ resp. 0, oo, 1 In gewissen
Beziehungen steht. Ferner muss auch fir die P-Funktion die
frithere Bedingung bestehen bleiben, dass

ctd o4ty =1

1st, des weitern haftet der Riemann’schen Definition noch die
Einschrinkung an, dass keine der Exponentendifferenzen

w— " f—F, g—7¢
eme ganze Zahl sem darf.

§ 5. Zusammenhang der Bessel’schen Differentialgleichung mit
der hypergeometrischen., — Darstellung der Funktion J (x) als
Riemann’sche P-Funktion.

Klein*) findet folgenden Zusammenhang zwischen den
Differentialgleichungen (10) und (1)
Setzt man in (10)

a=0,b=o0,¢c=¢,e—=aund ¢/ =—a

*) Hypergeometrische Funktion, pag. 281 ff.
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so erhilt man, falls z durch x ersetzt wird:

g pflploep )i, fon

d x° X X—¢ dx X
’ C"”’
et
X—c | x(x—¢)
oder
dy |1 1*/*7’}61}’
dx2+ X—' X —c dx
ca’ ﬂff’—rr’ vy }
=

Nun lasse man c unendhch wachsen, gleichzeitig aber auch dle
Exponenten y, ' und g, 8/, doch derart dass

g+ 8, v+ sowie auch g8 — yy'
endlich bleiben, ferner soll dabei

77y
¢

sein.

Fihrt man den genannten Greniﬁbergang unter Beriick-
sichtigung der angefiithrten Bedingungen ‘durch, so erhilt man
die Bessel’sche Gleichung

y 1 dy a’
(14) =Tty =0
x dx X"
oder in der Form von Anger¥)
(15) “”‘; L x 3 —aly—o

Die hypergeometrlsche Differentialgleichung geht somit in
die Bessel'sche iiber, wenn die singuliren Punkte 1 und co der
erstern 1m Unendlichen zusammenfallen, wenn also der Horizont
zum wesentlich singuliren Punkte der Differentialgleichung wird.
Die Bessel’sche Differentialgleichung ist somit ein Grenzfall der
hypergeometrischen.

h ‘
¥) Anger, Untersuchungen iiber die Funktion Jk , Danzig 1855.
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Weil sich Gleichung (15) als Spezalfall von (10) geben

lasst, 18t auch deren Losung, die Bessel’sche Funktion J (x) durch
eine Riemann’sche P-Funktion darstellbar. Diese Darstellung
hat schon Olbricht¥) allerdings auf ganz andern Wegen, vor-
genommen.

Bezeichnet man mit v eine zum Unendlichgrosswerden be-
stimmte Zahl, so kann

CEST Y

gesetzt werden, es ergeben sich fiir beide Vorzeichen gleiche
Resultate. Ferner missen die Grossen y und y'. sowie auch p
und (', falls sie unendlich gross gedacht werden, deren Summen
aber endlich sein sollen, unbedingt entgegengesetztes Vorzeichen
haben. Damit nun aber das Produkt im Zahler des Grenzwertes

77
g =1
c

lim

positiv ist, miissen die Exponenten y und y’ imaginar sein. Das
gleiche gilt fur die Exponenten # und 3, da auch

B —ry
endlich bleiben soll.

Man erhalt deshalb fir die Grossen der P - Funktions-
darstellung der Bessel’schen Transcendenten :

lim

a = a g=1iv ¥
V= o0 a’:—-——a ﬁ’__‘_—iv y'

Il

1V b=oo |
v

—iv e=+v |

weshalb sich nach (11) als Losung der Bessel’schen Differential-
gleichung folgende P-Funktion ergibt:

0 o0 iV
(16) = lim P a iv 1V X
TE® | —a —iv —1v ,

Man trachte nun danach diese spezielle P- Funktion in
hypergeometrischen Reihen darzustellen. Zu diesem Zwecke

*) Olbricht, Diss. phil. Leipzig 1887.
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muss die Funktion einer Transformation unterworfen werden,
wonach die Verzweigungspunkte
lim 0 o0 +v
V= 0o
abergehen in die Werte
0 oo 1

Viele von uns angestellte Transformationsversuche zeigten,
dass eine einfache Transformation auf direkten Wegen sich hier
kaum finden lidsst. Wir kehren deshalb noch einmal zu der all-
gemeinen hypergeometrischen Differentialgleichung (10 zuriick
und leiten daraus die Bessel’sche Gleichung auf ganz andere Art
her, indem wir nimlich an den Zusammenhang der Bessel’schen
Funktionen mit den Kugelfunktionen denken. Die auf diese Weise
hervorgehende P-Funktion lisst sich dann sehr leicht transfor-
mieren, worauf sich eine Darstellung durch hypergeometrische
Reihen rasch finden lisst.

Setzt man in Gleichung (10)
X
Z==¢0S —
n
so werden die Differentialquotienten

dy ____n dy
dz Sil’li dx
n
2 2 2
i%.:{d);_dy.icotgi n
dz dx dx n nj .sx
Sin —

Geben wir nun den Verzweigungspunkten

a b c
die Werte —1 n +1

so geht (10) iber 1n:

. X
2 ’ a_ar e ¢ |S1N—
d);m_[l—a-—a +1 B—p +1 s rl n-g—y—lcotg
dx’ n dx n n dx

x dy

X X X
lcos—+l cos——n cos——1
n Il n
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+]2aa'(1+n g8’ (0’~1 , 27 (1—n)

X X
l cos;—}—l CoS—-—n cos——-—-i

O

x - |
(cosi—l—l) (cosi—n) (cos——-1)
n n n

Zur Grenze lim n = oo iibergegangen ergibt, falls die Exponenten-
summen « + «’ und g + ' endlich bleiben,

dy 20—y —7) dy 1 dy , (ad’  pp | 4y ,
AR i — o =0
dx2+ X dx X dx+ n’ n’ n” y
Setzt man nun
ey B o B
7 27 4 2

und liasst man ferner die Exponenten g und g8’ unendlich wachsen,
doch derart, dass deren Summe

f4p =1

1st, so erhilt man wiederum dle Bessel’sche Differentialgleichung,
d2y

nimlich ‘
dx2 ) y=20

deren Losung sich nun als folgende P-_Funktion ergibt:

— 1 oo + 1
a X
17 — lim P — n — cOS —
1 y=tmbP - n
a a
- —n 1 —_—
o + 2

In dieser Funktion sind zwei Exponentendifferenzen einander
gleich. Solche P-Funktionen definiert Klein*) direkt als Kugel-
funktionen, da sie stets auf solche fithren. Auf diese Weise
ergibt sich sehr einfach das Verwandtschaftsverhiltnis zwischen
den Bessel’schen- und Kugelfunktionen.

*) Klein, hypergeometrische Funktionen, pag. 219.
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Riemann®*) fand nun, dass sich P-Funktionen, in denen
zwel Exponentendifferenzen einander gleich sind, durch 144 hyper-
geometrische Reihen darstellen lassen, wo je !/s, also 48 Ent-
wicklungen um einen Verzweigungspunkt Geltung haben. Jeder
der sechs Zweige der Funktion

PP’ PPPY PP
liefert 24 Entwicklungen, wo diejenigen fiir p°p* resp. 2 ol

resp. P’P” in der Umgebung der Pole a resp. b resp. ¢ konver-

gieren werden,

Die frither als Integral der Bessel’schen Differentialglei-
chung gefundene P - Funktion (16)

. o o0 v
m . . ;
¥ == P a v Iv X
V=00 : ;
e I — W

zeigt nun aber, dass von den 144 Reihendarstellungen zum Vorne-
herein */s wegfallen, denn die Pole b und ¢ obiger Funktion
fallen im Unendlichen zusammen, es entsteht eine wesentliche,
singuldre Stelle, um die eine Entwicklung nicht existieren kann.
Eine Darstellung der Funktionszweige P#, P?, P?, P”" ist nicht
moglich. Aus der zweiten Darstellung ist ferner ersichtlich, dass
eine Vertauschung der Exponentenpaare unter sich keine neuen
~ Reihendarstellungen liefert, wie leicht durch Ausrechnung ge-
zeigt werden kann. Die noch existierenden 48 Entwicklungen
werden deshalb nochmals um '/s reduziert, so dass schliesslich noch
12 hypergeometrische Reihen zur Darstellung unserer P-Funktion
verbleiben. Diese 12 Reihen konnen vorldufig bloss als Symbole
betrachtet werden, wie schon Olbricht**) bemerkt hat. Lassen
- sich die Grenziiberginge vollziehen, so erhdlt man durch
passende Bestimmung der Integrationskonstanten Reihendar- -

stellungen fiir die zwei partikuliren Integrale J (x) und J (x). Den
einfachsten dieser Grenziiberginge, der zu einer wirklichen Reihen-
darstellung fihrt, wollen wir hier vornehmen.

¥) Werke, pag. 73.
**) Diss. phil. Leipzig, 1887.
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Nach Riemann?®) gilt fir P-Funktionen, deren zwei Ex-
ponentendifferenzen einander gleich sind, die Transformation

—1 o0 }1 0

oo 1
0 B ¥
2
P y 8 v x| =P 2 X
I / ! 1 ﬁ' 4
3 —=
v 7 9 2 7
dies auf die Funktion (18) angewendet, ergibt:
—1 oo 1 0 oo 1
a _a o D 2
' = b . a4 =2 <
(19)y=n£r:° P 2 2 con— =n1_1__n;oP 2  2cos’ =
_a_,_a 0@ 1 n_a P
2 2 2 2 2
2
- - l.m 2 i
und dies wird zu, da "M cos®* —=1— 3
n—=0o0 I
0 o 1
n a
; o - 2 2
y=,m p 2 2 (1— iz)
Tl _n_a "
2 2 2
durch Vertauschung der Pole 0 und 1 ergibt sich
| 0 oo 1 |
a n 2
. — — 0 x
lim =
20 y=___P| 2 2 2
= Toj_a_n 17
2 2 2

Die zwei in der Umgebung von a voneinander unabhingigen
Zweige P* und P* der Funktion

0 ool ‘
Ple Byx
a’ﬁ’y’

*) Werke, pag. 71.
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lauten nun in Form von hypergeometrischen Reihen

Yi=P=Cx*(1—x)F(at+pt+y,at+p +y,1+e—d, x)

21
&) ya=Pa'=-‘C'x“'(lﬂx)yF(a’—’rﬁ—f‘r,a'+,3'+7,1—-a+a’, X)

hierin die Werte von (20) eingesetzt, ergibt

232 2
lim ) a | n a n X
N oo n’, 2 2’ 2 2’ T n’

2 ;]
e lim o’ (X )_?F (_i n _ B 7 1— x-)
Yo n? g T o' M

n= oo

nun kann gesetzt werden:

, 2 2
im g (—I—l—,—-ll,a—f—l,ig—) lim F(nna-—l—l x2>
2 n 4n

n= oo 9 1= 00

somit ergeben sich folgende zwei, voneinander unabhingige parti-
kulare Losungen der Bessel’schen Differentialgleichung

2
y, = lim C, x*F (n,n, a1, ——‘?)
4n

(22) nEee
2
y, = lim C,x*F (n, n,1— a,—x—2>
n— oo 4[1

wie ersichtlich, geht y, in y, iiber, falls a durch —a ersetzt wird.

Bedenken wir nun, dass am Anfang dieses Kapitels die
Bessel’sche Funktion erster Art als dasjenige partikuliare Integral
der Bessel’schen Differentialgleichung definiert wurde, fiir das
nach Gleichung (2)

' ALk
|
NG

ist, so ergibt sich danach far die erste der zwei Gleichungen (22)
far C, '
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| IF(a—|——1)-Clx“.F(nna+1__X_g) =1
(“X_)a 3 Y ’ 4._“2
2/ ’ lx=0
c, — 1a 1
2" I'(a41)
analog wird c 1 1

27 9™ r(1—a)

und es resultieren durch Einsetzen der Werte C, resp. C, in (22)
die bekannten Funktionen

()
.ﬂI(x) — lim 2

=00 ?(a—l— 1)

F(n, n,a—l—l,——x—‘>
n

QI
T]a(x) = lim Aal F (n, n,1-—-a, — 3 )
n=oco ['(l—a)

Das allgemeine Integral wird unter Zuziehung zweier will-
kiirlicher Integrationskonstanten durch die Form gegeben

24 Y=cJ(x) d¢ J(x)

Hiebei bleibt zu beriicksichtigen, dass diese Darstellung nur fir
gebrochene Parameter gilt, denn in den P-Funktionen (16) und
(17) diirfen laut Definition die Exponentendifferenzen nicht ganz-
zahlig sein.

Die spezielle Betrachtung fiir ganzzahlige Parameter fordert
die Einfiihrung der Neumann’schen Funktion Y (x) resp. der

Schlafli’schen K (x) Funktion als zweites partikulires Integral der
Differentialgleichung.
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