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Franz Hartmann.

Der Zusammenhang der Bessel’schen Funktionj (x)
mit der hypergeometrischen Reihe.

Einleitung.

Felix Klein®) gruppiert in der hoberen Analysis die
hauptsichlich durch ihre Anwendung in der mathematischen
Physik und Astronomie, bekannt und wichtig gewordenen Funk-
tionen nach folgenden zwer Hauptkategorien:

1. in die der elliptischen Funktionen und ihren verschiedenen
Verallgemeinerungen und Spezialfillen, wie z, B. die hyper-
elliptischen Funktionen und Integrale, die Abel’schen Funk-
tionen, u. a, m.

2. 1n solche Funkti.onen

y=1(x)
die als Losung linearer Differentialgleichungen von der Form
d’ d
(1) T+M-L i Ny=0
d x dx

definiert werden, wo M und N rationale Funktionen von x bedeuten.
Hieher gehort hauptsachlich die hypergeometrische Funktion,
nebst all ihren mannigfaltigen Spezialfunktionen wie z. B. die
Kugel- und Zylinderfunktionen.

Die vorliegende Arbeit trachtet nun darnach die spezielle

Zylinderfunktion j (x), d. h. die Bessel’sche Funktion erster Art,
vermittelst der allgemeinen hypergeometrischen Funktion dar-
zustellen und zu untersuchen.

Vorerst verbleiben wir aber ber der ganz allgemeinen De-
finition der Funktionsarten, betrachten also die Differential-
gleichung (1). Vom theoretischen Standpunkte koénnen zur
Integration hauptsichlich zwei Methoden angewendet werden,
namlich :

1. die Integration vermittelst unendlicher Reihen;

2. die Integration durch bestimmte Integrale.
*) F. Klein: Ueber die hypergeometrische Funktion. Leipzig 1906.

-
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Integration linearer Differentialgleichungen
duarch unendliche Reihen.

Die Integration der Differentialgleichung (1) vermittelst un-
endlicher Reihen ist, rein formell betrachtet, eine sehr einfache.
Nimmt man einen beliebigen Punkt a im Zahlenfelde an, der
weder fir M noch fir N singuliren Charakter trigt, so konnen
in der Umgebung dieses Punktes die Funktionen M und N durch
Potenzreihen dargestellt werden, die nach steigenden Potenzen
von (x — a) fortschreiten. Der Convergenzradius reicht dabei
bis zu dem am nédchsten bei a gelegenen singuliren Punkte der
Funktion.

Wir setzen also

O o0

M="3A (x—a); N:Eva(xéa)‘

0 0

in Gleichung (1) eingesetzt ergibt

d’y vdjf N 5w
2 +2vA —ay &Y ZvB- —a) - y=0

Man suche nun diese Differentialgleichung durch unendliche
Reihen zu integrieren. Zu diesem Zwecke wird angenommen,
es existiere ein partikulires Integral, das sich durch die Reihen-
entwicklung geben lasst:

3) y= Ev C, (x—a)

Diese Entwicklung darf deshalb wieder um den Punkt a
gewihlt werden, weil das Integral der Differentialgleichung keine
andern singuliren Punkte enthalten kann als diejenigen der
rationalen Funktionen M und N. Das Convergenzgebiet der
Reihe (3) wird durch das gemeinsame Flichenstiick der Ent-
wicklungen um a in (2) dargestellt.
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Indem man den fiir y vorausgesetzten Wert in der Diffe-
~ rentialgleichung einsetzt, ergibt sich

o0 oQ

d° Ev C, (x—a) o dzv C, (x —a)’

0 v 0
(4) d X2 + Ay (X'_" a') g

0
+20Bv (x—a) 2 C,(x—a) =0

Bezeichnet man abkiirzungsweise :

o0

EvAv(x—a)v:aO-{—alx-{—azxg—{—....

0

Eva(x—a)'=bO+b1x+b2x2—|—....

0

Eva(x—a)v=co—[—clx+czx2+....

0

und denkt man sich diese Werte in (4) substituiert und zudem
die dritte Reihe in ihren Ableitungen ausgerechnet, so kann (3)
nur dann der Differentialgleichung als partikulires Integral ge-
niigen, wenn in (4) alle Summen der Koeffizienten gleich hoher
Potenzen von x zu Null werden.

Durch Herausheben der einzelnen Entwicklungskoeffizienten
erhilt man:

X0 =2¢,+ay¢, +byc,=0
|x!|=2-8¢,4+2¢c,a,4¢,a 4c¢ b,|c,b=0
| %* | =... ven =0

Gibt man nun den Konstanten ¢, und ¢, gewisse Anfangs-
werte, z. B. ¢,=¢, = 1, so konnen simtliche unbekannten

Koeffizienten c,, c,,...c, ... sukzessive bestimmt werden. Auf
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diese Art erhilt man ein, durch eine unendliche Reihe dar-
gestelltes, partikuliares Integral

) y = {(x)

der Differentialgleichung (1), das zwar vorlaufig nur in einem
beschrinkten Teile des Zahlenfeldes Giiltigkeit besitzt. Die Unter-
suchung iiber die Fortsetzungsmoglichkeit der Funktion wird uns
aber allgemeinen Aufschluss geben.

Sind die Funktionen M und N der Differentialgleichung
von einfacher Form, so lisst sich meistens diese hier ganz all-
gemein gegebene, allerdings nur formell durchgefiihrte Methode
bedeutend vereinfachen. Wir erinnern an die Integration der
hypergeometrischen Differentialgleichung, wie sie Weber*®) ent-
wickelt, ferner an diejenige der Differentialgleichung der Kugel-
funktion, wie sie u. a. auch Graf**) vornimmt, wo in beiden
Fillen direkt der allgemeine Koeffizient der Reihenentwicklung
bestimmt werden kann.

Integration durch bestimmte Integrale.

Wihrenddem die Integration der in ganz allgemeiner Form
gegebenen Differentialgleichung (1) durch unendliche Reihen mog-
lich war, ist dies nun keineswegs der Fall, wenn die Integration
durch bestimmte Integrale durchgefiihrt werden soll.

Die allgemeinste lineare Differentialgleichung nter Ordnung,
die bis heute auf direktem Wege durch bestimmte Integrale
integriert wurde, 1st die von Jordan®**) aufgestellte, verall-
gemeinerte Gauss’sche Differentialgleichung von der Form:

—E—0 QW) S

, Ay
(6) Q(X)d

(§~D) (i ) rr dn_ '_.
T 1-2 9 )dx—2

~R(®) & Y ¢ n )R ) "y

*) Riemann-Weber: Differential-Gleichungen, Bd. 2 pag. 12.
**} J. H. Graf: Kugelfunktionen, Kollegienheft W.S. 16/17.
*#*) Jordan: Cours d’analyse III, pag. 241 ff.
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wo & eine Konstante bedeutet und unter Q (x) und R (x) zwei
Polynome verstanden werden. Q(x)ist vom n*® Grade, R (x) vom
Grade < n.

Setzt man

(7) ysz(u—x)é“—’du
'L

wo U durch die Bedingung bestimmt wird

d

also
R(w)
1 e"r &T"—) dll

U=
Q (u)

so geht unter Beriicksichtigung des Taylor’schen Satzes die
Differentialgleichung (6) iber in

(8) deQ(u)(u_-xf_“:fdvzo

Das Integral (8) ist nun gleich Null, d. h. der Differential-
gleichung wird Geniige geleistet, falls der Weg L entweder eine
geschlossene Integrationskurve ist, auf der V nach zuriickgelegtem-
Wege seinen urspriinglichen, den Anfangswert wieder annimmt,
oder falls L einen solchen Weg bedeutet, in dessen Anfangs-
und Endpunkten V zu Null wird.

Der bekannteste Weg der ersten Art ist der nach Poch-
hammer®*) so benannte Doppelumlauf, zu den letzteren sind
hauptsichlich die gewohnlichen geradlinigen Integrationswege zu
zihlen, sowie auch die Schleifenintegrale, d. h. offene Wege, die
von einem gewissen Punkte, fiir welchen V zu Null wird, aus-
laufen und wieder in denselben zurickkehren.

Soll nun nach dem heutigen Stand der Theorie der linearen
Differentialgleichungen, die Gleichung (1) auf direktem Wege
durch bestimmte Integrale integriert werden konnen, so miissen

*) Math. Annalen. Bd, 35.
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die Funktionen M und N derart beschaffen sein, dass sich die
Differentialgleichung in der Form geben lisst:

2 I
® QA %—Z——-—-(s—- 2)Q @Y 4 EZBED gy

—R(X) +(§ DR (x) - y=
wo Q (x) ein Polynom zweiten Grades, also

Q(x)=(x—a2a)(x—b)

bedeutet, wihrenddem R (x) vom ersten oder nullten Grade sein

kann.
Wir betrachten vorerst den Fall, wo unter R (x) ein Polynom
ersten Grades zu verstehen ist, d. h. wir setzen

Rx)=x—c¢c
dann wird
R(u): u—-c _ A 4 B
Q) (u—a)(u—b) (u—a) (u—h)
wo
A_2C, B_c—-b
" a—b’ " a—b

und man bekommt

fQ(u)d u—-ad +/ :

—ALg(u-—-—a)+BLg(u-—-b)

woraus folgt:

R(u)
f‘“‘” (u——x)"t—n——: (u—a)A (u——b)B (u—x)‘f_?‘

V=e

Dieser Integrand V verschwindet, die reellen Komponenten der
Exponenten positiv vorausgesetzt, fir die Werte
u=—a u=>. u=x

ferner fiir u=-4oo

und zwar je nachdem

A}Bl §—250
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Da nun
U — 1 efm an i = )
Q (u)
(ist, erhilt man als Losung der Differentialgleichung (9) das
Integral | '

b
9

(10) y = l (u—a)*u—1b)*" (u—x) " du¥)

g

wo fir die Grenzen g und h zwei der Grossen a, b, x oder oo
gewihlt werden diirfen, vorausgesetzt, dass das Integral fir die
genannten Grenzwerte iberhaupt einen Sinn hat. Sollte letzteres
nicht zutreffen, d. h. kann die Variable nicht bis in die Endpunkte
des Weges gefithrt werden, so sind freie Integrationswege heran-
zuziehen. Wie schon erwihnt, leisten hier die Doppelumlaufs-
und Schleifenintegrale sehr gute Dienste.

Fallen im Integral (10) die beiden Werte a und b zusammen,
so werden die Exponenten A und B unendlich gross, ihre Summe
hingegen behilt endlichen Charakter. Um diesen Fall niher zu
untersuchen, setzen wir *¥)

be=a—¢
3 —0
A:C_i, B:ijllmﬁ
& €

und es wird

(x—a)A“l(x—b)B_lzliinO(x——a)C_l_%(x— a e)%‘l

:(xma)C——Qex—a

d. h. im Integral (10) fallen die singuliren Punkte a und b in a
zusammen, es wird a zu einem wesentlich singuliren Punkte des
Integranden. Die Variable kann nicht mehr um a herumgefiihrt
werden, Doppelumliufe um den Punkt a verlieren deshalb jede
Bedeutung, sie sind unméglich; hingegen konnen Schleifen-

*) Dieses Integral wird von E. Picard in seinem Werke: Traité
d’Analyse, Paris 1896, Tome III pag. 301, als hypergeometrisches Integral
definiert.

*¥) 8. u. a. auch Klein, hypergeometrische Funktion.



96 Mitteilungen der Naturf. Gesellsch. Bern 1919. (8)

integrale hier erfolgreich beniitzt werden, da in gewissen Rich-
tungen [Winkelraumen] die Variable bis an den wesentlich
singuliren Punkt gefithrt werden kann.*) |

Bedeutet in der Differentialgleichung (9) R (x) ein Polynom
nullten Grades, also eine Konstante, so folgt aus der Partial-

bruchzerlegung des Quotienten RE%, dass in diesem Falle
u
A=—B

sein muss. Im ubrigen lasst sich das Integral auf denselben
Wegen herleiten wie oben.

Obschon, wie bereits erwahnt wurde, die Gleichung (9) die
allgemeinste Form einer linearen Differentialgleichung 2. Ordnung
ist, die bis heute auf direkten Wegen durch bestimmte Integrale
integriert werden konnte, bilden ihre Losungen dennoch nur

*) In dieser Beziehung ist den Schleifenintegraldarstellungen ent-
schieden den Vorzug zu geben, weil bei diesen der Grenziibergang ohne
wesentliche Verinderung des Weges vorgenommen werden kann. Wir
erinnern hier nur an den Grenziibergang von der Binet’schen Funktion
zur Gammafunktion, wie thn Graf**) vollzieht. Es wird dort das Binet’sche
Integral resp. das Euler’sche Integral erster Art, zweite Form durch das

Schleifenintegral
1 a—1 n
—— | X (1} x)dx
21sinanm

gegeben, woraus sich ohne Schwierigkeiten das Integral fir die Gamma-
funktion durch Vollziehung des bekannten Grenziiberganges ergibt, nimlich

1
Na)=———— f‘e‘-xﬂldx

2isinan
L ¥4

—N<— o)

Wiirde man das Binet’sche Integral durch einen Doppelumlauf darstellen,
wie dies bis heute meistens der Fall war, so liesse sich der Grenziibergang
nicht durchfiihren ohne nicht langwierige Wegtransformationen vornehmen
zu miissen, die schliesslich zu einer Umwandlung des Doppelumlaufes in
eine einzige Schleife fithren dirften.

*) J. H. Graf Einleitung in die Theorie der Gammafunktion.
Bern 1894.
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einen kleinen Teil der in der Analysis bekannten Integrale, die
einer linearen Differentialgleichung 2. Ordnung als Losung ge-
niigen. Bei letzteren wurde aber umgekehrt verfahren, indem
vom bestimmten Integrale ausgehend, die Differentialgleichung
gesucht wurde. Auf diesem Gebiete haben u. a. hauptsichlich
E. Goursat,*) J. H. Graf **) P. A, Nekrassoff***) und Poch-
hammer****) gearbeitet. Nekrassoff hat direkt eme allgemeine
Methode angegeben, mit der sich die Differentialgleichungen
bestimmen lassen, deren Losungen in Form bestimmter Integrale
gegeben sind. ,

Beildufig se1 hier bemerkt, dass z. B. simtliche Integrale
von der Form

y =f(x) Ia(u——a)“(u——b)ﬂ(u—x);c—ldu

Q-

wo unter f (x) eine beliebige Funktion von x zu verstehen 1st,
einer linearen Differentialgleichung 2. Ordnung als Loésung ge-
nigen, wie leicht durch einfache Koeffizientenvergleichung mit
Hiilfe der Gleichung (9) gezeigt werden kann. Je nach der
Beschaffenheit der Funktion f(x) nimmt die ihr entsprechende
Differentialgleichung andere Formen an. Die Koeffizienten M und
N der allgemeinen Gleichung (1) weisen aber, insofern wir sie
untersucht haben, die nétige Gesetzesméssigkeit nicht auf, als
dass es maoglich wire, die Gleichungen auf direkten Wegen
durch bestimmte Integrale integrieren zu konnen.

Aus diesen ganz allgemein gefassten Betrachtungen iiber
die Integrationsmethoden der unserer Funktionenkategorie als
Definition zu Grunde gelegten Differentialgleichung (1) wurde
ersichtlich, dass die meisten hieher gehorenden Funktionen auf
relativ einfache Art durch unendliche Reihen, sowie auch durch
bestimmte Integrale dargestellt werden kénnen. So findet man

-*) Goursat, Acta Mathematica, Bd. 2.
**) Graf, Math. Annalen, Bd. 45.
¥**) Nekrassoff, Math. Annalen, Bd. 38,
***%) Pochhammer, Math. Annalen, Bd. 38.
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denn auch in der Literatur durchwegs obige Funktionen von
drei Hauptgesichtspunkten aus betrachtet, namlich:

1. in Form unendlicher Reihen,
2. durch ihre Differentialgleichung,
3. durch bestimmte Integrale,

wobei die Integraldarstellung meistens aus der Reihenentwicklung
hergeleitet wird, da sich auf solchem Wege das bestimmte
Integral in der Regel auf einfache Art bestimmen lisst.

Wir wollen nun auch in dieser Arbeit die Betrachtungen
nach obigen drei Gesichtspunkten gruppieren und beginnen mit
der Reihendarstellung.

I. Kapitel.
Die Reihendarstellung.

§ 1. Der Zusammenhang der Funktion j(x) mit der hyper-
geometrischen Reihe. Konvergenzkriterium.

Die Bessel'sche Funktion 1. Art wird definiert durch die
Reihe*)

c (i)a+21
1) )—Z( l'I‘ -T-z+1)

Der Zusammenhang dieser Summe mit der hypergeo-
metrischen Reihe

@ F(abex)—142">

_I_'a(a—~|—1)b(b+1) £ 4

c-1 c(c+1) 1-2
ziataﬂ)..(a+x--1)b(b+1)..(b+1_1)x
cled-1)..cFa—11-2........... 2

*) Graf & Gubler, Einleitung in die Theorie der Bessel’schen
Funktionen. Bern, 1898. Heft I, pag. 25.
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