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Franz Hartmann.

a

Der Zusammenhang der Bessel'schen FunktionJ (x)
mit der hypergeometrischen Reihe.

Einleitung.

Felix Klein*) gruppiert in der höheren Analysis die
hauptsächlich durch ihre Anwendung in der mathematischen
Physik und Astronomie, bekannt und wichtig gewordenen
Funktionen nach folgenden zwei Hauptkategorien:

1. in die der elliptischen Funktionen und ihren verschiedenen
Verallgemeinerungen und Spezialfällen, wie z. B. die
hyperelliptischen Funktionen und Integrale, die Abel'schen
Funktionen, u. a. m.

2. in solche Funktionen

die als Lösung linearer Differentialgleichungen von der Form

(1) ÌX + MÌy+Ny 0
d x dx

definiert werden, wo M und N rationale Funktionen von x bedeuten.
Hieher gehört hauptsächlich die hypergeometrische Funktion,
nebst all ihren mannigfaltigen Spezialfunktionen wie z. B. die
Kugel- und Zylinderfunktionen.

Die vorliegende Arbeit trachtet nun darnach die spezielle
a

Zylinderfunktion J(x), d. h. die Bessel'sche Funktion erster Art,
vermittelst der allgemeinen hypergeometrischen Funktion
darzustellen und zu untersuchen.

Vorerst verbleiben wir aber bei der ganz allgemeinen
Definition der Funktionsarten, betrachten also die Differentialgleichung

(1). Vom theoretischen Standpunkte können zur
Integration hauptsächlich zwei Methoden angewendet werden,
nämlich :

1. die Integration vermittelst unendlicher Reihen ;

2. die Integration durch bestimmte Integrale.

*) F. Klein: Ueber die hypergeometrische Funktion. Leipzig 1906.
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Integration linearer Differentialgleichungen
durch unendliche Reihen.

Die Integration der Differentialgleichung (1) vermittelst
unendlicher Reihen ist, rein formell betrachtet, eine sehr einfache.
Nimmt man einen beliebigen Punkt a im Zahlenfelde an, der
weder für M noch für N singulären Charakter trägt, so können
in der Umgebung dieses Punktes die Funktionen M und N durch
Potenzreihen dargestellt werden, die nach steigenden Potenzen
von (x — a) fortschreiten. Der Convergenzradius reicht dabei
bis zu dem am nächsten bei a gelegenen singulären Punkte der
Funktion.

Wir setzen also

M 2*AT(x-ar; N^^B^x-a)'
0 0

in Gleichung (1) eingesetzt ergibt

,2 oo j oo

(2) ~}-r^K(—Y^-r^B^-,y.y 0

0 0

Man suche nun diese Differentialgleichung durch unendliche
Reihen zu integrieren. Zu diesem Zwecke wird angenommen,
es existiere ein partikuläres Integral, das sich durch die
Reihenentwicklung geben lässt:

oo
(3) 7 ^GJ {*-*)*

0

Diese Entwicklung darf deshalb wieder um den Punkt a

gewählt werden, weil das Integral der Differentialgleichung keine
andern singulären Punkte enthalten kann als diejenigen der
rationalen Funktionen M und N. Das Convergenzgebiet der
Reihe (3) wird durch das gemeinsame Flächenstück der
Entwicklungen um a in (2) dargestellt.
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Indem man den für y vorausgesetzten Wert in der
Differentialgleichung einsetzt, ergibt sich

oo oo

d22Xv(x-a)v ^ dN^lx-af
(4) °——2 +2TMx~a)dx' ' —J T v ' d X

0

^c oo

+2B.(x-at' -2°*(x_ a)T=°

Bezeichnet man abkürzungsweise :

oo

2' Av (x — a)T a0 + at x + a2 x2 +
o

oo

^BT(x-ar b0+blX + b2x2+....
0

oo

2' CT (x — a)v c0 + ct x + c2 x2 +
0

und denkt man sich diese Werte in (4) substituiert und zudem
die dritte Reihe in ihren Ableitungen ausgerechnet, so kann (3)

nur dann der Differentialgleichung als partikuläres Integral
genügen, wenn in (4) alle Summen der Koeffizienten gleich hoher
Potenzen von x zu Null werden.

Durch Herausheben der einzelnen Entwicklungskoeffizienten
erhält man :

i x° 1 2 c2 + ao ci + bo co °
| x1 | 2 • 3 c3 + 2 c2 a0 + cx at + ct b0 + c0 bt 0

Gibt man nun den Konstanten c0 und c1 gewisse Anfangswerte

z. B. c0 Cj 1, so können sämtliche unbekannten
Koeffizienten c„, c„,.. c sukzessive bestimmt werden. Auf
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diese Art erhält man ein, durch eine unendliche Reihe
dargestelltes, partikuläres Integral

(5) y f(x)

der Differentialgleichung (1), das zwar vorläufig nur in einem
beschränkten Teile des Zahlenfeldes Gültigkeit besitzt. Die
Untersuchung über die Fortsetzungsmöglichkeit der Funktion wird uns
aber allgemeinen Aufschluss geben.

Sind die Funktionen M und N der Differentialgleichung
von einfacher Form, so lässt sich meistens diese hier ganz
allgemein gegebene, allerdings nur formell durchgeführte Methode
bedeutend vereinfachen. Wir erinnern an die Integration der
hypergeometrischen Differentialgleichung, wie sie Weber*)
entwickelt, ferner an diejenige der Differentialgleichung der
Kugelfunktion, wie sie u. a. auch Graf**) vornimmt, wo in beiden
Fällen direkt der allgemeine Koeffizient der Reihenentwicklung
bestimmt werden kann.

Integration durch bestimmte Integrale.
Währenddem die Integration der in ganz allgemeiner Form

gegebenen Differentialgleichung (1) durch unendliche Reihen möglich

war, ist dies nun keineswegs der Fall, wenn die Integration
durch bestimmte Integrale durchgeführt werden soll.

Die allgemeinste lineare Differentialgleichung nter Ordnung,
die bis heute auf direktem Wege durch bestimmte Integrale
integriert wurde, ist die von Jordan ***) aufgestellte,
verallgemeinerte Gauss'sche Differentialgleichung von der Form:

(G) Q(x)^X-^-n)Q'(x)d^^^
dx11 " 7 " v ' dx11"1 '

(| - n) (g — n + 1) d11"2 y+ 1.2 ^ ()J^'
^i-fXn+l)R'(x)f2y
dx dxR(x)T-ir+X(!-n+l)R'(x)T-^2- +

*) Riemann-Weber: Differential-Gleichungen, Bd. 2 pag. 12.

*) J.H.Graf: Kugelfunktionen, Kollegienheft W. S. 16/17.
*) Jordan: Cours d'analyse III, pag. 241 ff.
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wo £ eine Konstante bedeutet und unter Q (x) und R (x) zwei

Polynome verstanden werden. Q(x)ist vom nten Grade, R (x) vom
Grade < n.

Setzt man

(7) y fu(u — xX'du

wo U durch die Bedingung bestimmt wird

R(u)U -f UQ(u)du v

also
C R<u1 j

u J_./qöX<
Q»

so geht unter Berücksichtigung des Taylor'sehen Satzes die

Differentialgleichung (6) über in

(8) fdUQ(u)(u—x)* n= fdV 0

Das Integral (8) ist nun gleich Null, d. h. der Differentialgleichung

wird Genüge geleistet, falls der Weg L entweder eine

geschlossene Integrationskurve ist, auf der V nach zurückgelegtem
Wege seinen ursprünglichen, den Anfangswert wieder annimmt,
oder falls L einen solchen Weg bedeutet, in dessen Anfangsund

Endpunkten V zu Null wird.
Der bekannteste Weg der ersten Art ist der nach Poch-

hammer*) so benannte Doppelumlauf, zu den letzteren sind
hauptsächlich die gewöhnlichen geradlinigen Integrationswege zu
zählen, sowie auch die Schleifenintegrale, d. h. offene Wege, die

von einem gewissen Punkte, für welchen V zu Null wird,
auslaufen und wieder in denselben zurückkehren.

Soll nun nach dem heutigen Stand der Theorie der linearen
Differentialgleichungen, die Gleichung (1) auf direktem Wege
durch bestimmte Integrale integriert werden können, so müssen

*) Math. Annalen. Bd. 35.
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die Funktionen M und N derart beschaffen sein, dass sich die
Differentialgleichung in der Form geben lässt:

(9) Q(x) |X-(|_ 2)Q/ (x)^+ «"«>«- X>

QXx) • y

R(x)4^+ (Xl)R'(x)-y 0
dx

wo Q (x) ein Polynom zweiten Grades, also

Q(x) (x —a)(x-b)
bedeutet, währenddem R (x) vom ersten oder nullten Grade sein
kann.

Wir betrachten vorerst den Fall, wo unter R (x) ein Polynom
ersten Grades zu verstehen ist, d. h. wir setzen

R (x) x — c
dann wird

R (u) ù — c A B

Q(u) (u —a)(u-b) (u — a) (u — b)
wo

a — cA=" Û'a— b
B_c-b

a — b
und man bekommt

/R(u) /" A f B
/ 7T7 i du== / du+ / üduJ Q(u) J u — a X u —b

ALg(u-a) + BLg(u-b)
woraus folgt:

/-RO)
J Quie Q(u) (u —x)f_n=- (u —a)A(u —b)B (u—x)*'"2

Dieser Integrand V verschwindet, die reellen Komponenten der
Exponenten positiv vorausgesetzt, für die Werte

u a u b u x
ferner für u + oo

und zwar je nachdem

A+B+f-2§0
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Da nun „,
U — ej ™ dU

(u - a)A-x (u- b)8""1
Q(u)

ist, erhält man als Lösung der Differentialgleichung (9) das

Integral

(10) y J (u - aX1 (u - b)8"1 (u - x)*'"1 du*)

wo für die Grenzen g und h zwei der Grössen a, b, x oder oo

gewählt werden dürfen, vorausgesetzt, dass das Integral für die

genannten Grenzwerte überhaupt einen Sinn hat. Sollte letzteres
nicht zutreffen, d. h. kann die Variable nicht bis in die Endpunkte
des Weges geführt werden, so sind freie Integrationswege
heranzuziehen. Wie schon erwähnt, leisten hier die Doppelumlaufsund

Schleifenintegrale sehr gute Dienste.

Fallen im Integral (10) die beiden Werte a und b zusammen,
so werden die Exponenten A und B unendlich gross, ihre Summe
hingegen behält endlichen Charakter. Um diesen Fall näher zu
untersuchen, setzen wir**)

b a — e I

A=C-X B=^ |
lime 0

E E I

und es wird

(x — a)A -1 (x — b)B _ 1 lim (x — a)c ~ l ~ 7 (x — a + £
1

o
'

nC — 2 x — a
(x — a) e

d. h. im Integral (10) fallen die singulären Punkte a und b in a

zusammen, es wird a zu einem wesentlich singulären Punkte des

Integranden. Die Variable kann nicht mehr um a herumgeführt
werden, Doppelumläufe um den Punkt a verlieren deshalb jede
Bedeutung, sie sind unmöglich ; hingegen können Schleifen-

*) Dieses Integral wird von E. Picard in seinem Werke: Traité
d'Analyse, Paris 1896, Tome III pag. 301, als hypergeometrisches Integral
definiert.

**) s. u. a. auch Klein, hypergeometrische Funktion.
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integrale hier erfolgreich benützt werden, da in gewissen
Richtungen [Winkelräumen] die Variable bis an den wesentlich
singulären Punkt geführt werden kann.*)

Bedeutet in der Differentialgleichung (9) R (x) ein Polynom
nullten Grades, also eine Konstante, so folgt aus der Partial-

bruchzerlegung des Quotienten dass in diesem Falle
Q(u)

A —B

sein muss. Im übrigen lässt sich das Integral auf denselben

Wegen herleiten wie oben.

Obschon, wie bereits erwähnt wurde, die Gleichung (9) die

allgemeinste Form einer linearen Differentialgleichung 2. Ordnung
ist, die bis heute auf direkten Wegen durch bestimmte Integrale
integriert werden konnte, bilden ihre Lösungen dennoch nur

*) In dieser Beziehung ist den Schleifenintegraldarstellungen
entschieden den Vorzug zu geben, weil bei diesen der Grenzübergang ohne
wesentliche Veränderung des Weges vorgenommen werden kann. Wir
erinnern hier nur an den Grenzübergang von der Binet'schen Funktion
zur Gammafunktion, wie ihn Graf**) vollzieht. Es wird dort das Binet'sche
Integral resp. das Euler'sche Integral erster Art, zweite Form durch das
Schleifenintegral

r Ix'-'ll | x)n d x
2 i sin a n

i <¦

gegeben, woraus sich ohne Schwierigkeiten das Integral für die Gamma-
funktion durch Vollziehung des bekannten Grenzüberganges ergibt, nämlich

nf*'*"r (a) -—-. ex • xa - l d x
2 i sin a

N-*

Würde man das Binet'sche Integral durch einen Doppelumlauf darstellen,
wie dies bis heute meistens der Fall war, so liesse sich der Grenzübergang
nicht durchführen ohne nicht langwierige Wegtransformationen vornehmen
zu müssen, die schliesslich zu einer Umwandlung des Doppelumlaufes in
eine einzige Schleife führen dürften.

**) .1. H. G>raf. Einleitung in die Theorie der Gammafunktion.
Bern 1894.
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einen kleinen Teil der in der Analysis bekannten Integrale, die
einer linearen Differentialgleichung 2. Ordnung als Lösung
genügen. Bei letzteren wurde aber umgekehrt verfahren, indem
vom bestimmten Integrale ausgehend, die Differentialgleichung
gesucht wurde. Auf diesem Gebiete haben u. a. hauptsächlich
E. Goursat,*) J. H. Graf,**) P. A. Nekrassoff***) und
Pochhammer****) gearbeitet. Nekrassoff hat direkt eine allgemeine
Methode angegeben, mit der sich die Differentialgleichungen
bestimmen lassen, deren Lösungen in Form bestimmter Integrale
gegeben sind.

Beiläufig sei hier bemerkt, dass z. B. sämtliche Integrale
von der Form

y f(x) / (u — a)«(u —by(u — x)f-1du

wo unter f (x) eine beliebige Funktion von x zu verstehen ist,
einer linearen Differentialgleichung 2. Ordnung als Lösung
genügen, wie leicht durch einfache Koeffizientenvergleichung mit
Hülfe der Gleichung (9) gezeigt werden kann. Je nach der
Beschaffenheit der Funktion f (x) nimmt die ihr entsprechende
Differentialgleichung andere Formen an. Die Koeffizienten M und
N der allgemeinen Gleichung (1) weisen aber, insofern wir sie

untersucht haben, die nötige Gesetzesmässigkeit nicht auf, als
dass es möglich wäre, die Gleichungen auf direkten Wegen
durch bestimmte Integrale integrieren zu können.

Aus diesen ganz allgemein gefassten Betrachtungen über
die Integrationsmethoden der unserer Funktionenkategorie als

Definition zu Grunde gelegten Differentialgleichung (1) wurde
ersichtlich, dass die meisten hieher gehörenden Funktionen auf
relativ einfache Art durch unendliche Reihen, sowie auch durch
bestimmte Integrale dargestellt werden können. So findet man

*) Goursat, Acta Mathematica, Bd. 2.

**) Graf, Math. Annalen, Bd. 45.

***) Nekrassoff, Math. Annalen, Bd. 38.

»***) Pochhammer, Math. Annalen, Bd. 38.
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denn auch in der Literatur durchwegs obige Funktionen von
drei Hauptgesichtspunkten aus betrachtet, nämlich:

1. in Form unendlicher Reihen,
2. durch ihre Differentialgleichung,
3. durch bestimmte Integrale,

wobei die Integraldarstellung meistens aus der Reihenentwicklung
hergeleitet wird, da sich auf solchem Wege das bestimmte
Integral in der Regel auf einfache Art bestimmen lässt.

Wir wollen nun auch in dieser Arbeit die Betrachtungen
nach obigen drei Gesichtspunkten gruppieren und beginnen mit
der Reihendarstellung.

I. Kapitel.
Die Reihendarstellung.

a

§ 1. Der Zusammenhang der Funktion J (x) mit der hyper¬

geometrischen Reihe. Konvergenzkriterium.
Die Bessel'sche Funktion 1. Art wird definiert durch die

Reihe*)

a) JW=2(-1);TT7 (a + l + 1)

Der Zusammenhang dieser Summe mit der
hypergeometrischen Reihe

(2) F(a,b,c>x)^l + A^x+a(a+1)b(b + l)x2+W V ' ' ' ' c-1 ^ c(c-fl) 1-2

_^ a(a+l). .(a+A—1)b(b +1)..(b+A—1)
~2jc(c + l)..(c+A-l)l-2 )X

*) Graf & Gubler, Einleitung in die Theorie der Bessel'schen
Funktionen. Bern, 1898. Heft I, pag. 25.
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