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J. Neuberg (Liittich).

Ueber die einem Dreieck eingeschriebenen Kreise.

Die Mitteilungen der Naturforschenden Gesellschaft
in Bern, 1907, enthalten einen Artikel von Dr. O. Schenker
mit der Ueberschrift Neun Kreisscharen am Dreieck. Da
diese Abhandlung nicht die geniigende Beachtung gefunden hat,
sel es mir erlaubt durch eine neue Bearbeitung desselben Gegen-
standes zur. Kenntnis der interessanten Schenker’schen Sitze
beizutragen.

Bezeichnungen und bekannte Beziehungen.

a, b, ¢, A, B, C, die Seiten und Winkel des Grund-
dreiecks ABC.

(O, R), (I, r), (I, r), (I, r,), (I, ry), bezw. das Zentrum
und der Radius des Umbkreises, des Inkreises und der drei An-
kreise.

(D, E, F), (D, E, F), (D, E, F,), (D, E, F.), bezw. die
Berihrungspunkte der Seiten BC, CA, AB mit den Kreisen I,
I Is I

P, Q, die Schnittpunkte des Umkreises mit der inneren
und der &dusseren Halbierenden des Winkels A; sie sind die
Endpunkte des in der Mitte M der Seite B C senkrechten Durch-
messers. Bekanntlich 1st P die Mitte der Strecke II1, und Q
die Mitte der Strecke |

Ich bringe in Erinnerung die Beziehungen

a=—2RsinA, b=2RsinB, ¢ =2 Rsin(,

1-=4Rsiné—singsin—0—, r=4R siné—cos—cos—w—, usw.
2 2 2 2

DDl_b DzDg__b—I—c

2 2

MD=MD, — _Z'C,MD2=M1)3=
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Fillt man aus P und Q auf die Seite C A die Lote PP,
und QQ’, so hat man
! / EE a 7 ! E2 E3 a
P'E=P'E = 01—_—? QE,=Q B =—""=_,

PE=PE =PF=PF, QE,=QE,=QF,=QF,
Die Erklirungen setzen voraus, dass a™>b >c und A <
90°; jedoch sind die zu beweisenden Sitze allgemein.

dd

1. Satz. Der Kreis U mit Q zum Zentrum durch die
Punkte D und D, und der Kreis V mit P zum Zentrum durch
die Punkte E, F, K, F, gezogen schneiden sich im Umkreis O.

Beweis. Fir die Radien ¢ und o der Kreise U und V
hat man

2
¢ = QM | D = Q0 4 OMf + (25)
= R” (1 + cos AY 4 R’ (sin B — sin C)°

=4 R’ cos4A+sinzB — U :
2 2 2

) 2
ppr o (1 (3)

— 4 R’ [singg cos’ B-0C

.2 A 9 A
sin — cos —{.
5 TN 2]

Hieraus folgt
2 2 A A . A
F ? — 4R’ | cos® = (cos2 = | sin® —)
¢ +o [ 5 5 T E

—}—sinz—g— (sin2 B ;- G + cos’ B ; C)] —4R* =P Q},

und der Satz ist bewiesen.

Die gemeinsame Sehne der Kreise U und V. Der
Treffpunkt Z dieser Sehne mit der Zentrale P () geniigt der
Gleichung

¢ —ZQ =¢"—ZP,
die nach Substitution der obigen Werte von ¢’ und¢’” und ferner
nach Entwicklung von cos (B — C) und cos (B 4 C) gibt:
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(ZP +7.Q) ZP—7Q) — 4 R® [sin2 -g- cos (B—C)

+- cos® % cos (B C)]

— 4 R’(cos B cos C — sin B sin C cos A). (1)
Das erste Glied von (1) ist gleich 2 R, 2 Z O; mithin hat man
ZM=72Z04+O0OM=Z0-4Rcos A
= R (cos B cos C — sin B sin C cos A + cos A)

=RsinBsinC (1 —cos A)=AH sin’ A’
2

wo AH die Hohe des Dreiecks ABC ist. Dieses Resultat be-
stitigt folgende von Dr. Schenker gefundene Konstruktion der
gemeinsamen Sehne: Man ziehe PH und A (Q und verbinde ihren
Schnittpunkt S mit M ; so erhilt man den Treffpunkt L der Sehne
mit der Hohe AH. Man hat nimlich

LH=AH und MP=0P — OM = R(1—cosA)_2Rsin2£
MP 2

dabher LH =7 M.

2. Satz. Der Kreis U, aus P durch die Punkte D, und
D,, und der Kreis V, aus @ durch die Punkte E,, E;, F, und F,
gezogen schneiden sich im Umkreis O.

Beweis. Bezeichnet man die Radien der Kreise U, und
V, mit ¢, und ¢';, so findet man

o’ =P M - MD, = (PO — OM} + (bJQFC)

—=R*(1 — cos A)* 4 R (sin B - sin 0)’
s B—C
o)

r, —r\? a\’

S=QQ" + Q'-E.f=(" 5 ) +(z-)
B0 int ot 2,

2
hieraus folgt o, +o J=4 R*=PQ° was den Satz beweist.

of . 4 A 9 A
—4 R’ ( sin* = 4 cos® — cos
(1 g T8 5

—4R? (cos2 —g— sin

!
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Die gemeinsame Sehne der Kreise U, und V.. Es sei
7' der Schnittpunkt dieser Geraden und der Zentrale PQ. Die
Substitution der obigen Ausdriicke von ¢, und ¢’, in die Relation

912 —_— _P_Z’2 = 9'12 — Q__Z_'z gibt
(PZ' }-QZ) (P2 —QZ)=4R’ [0032 i;. cos (B — C)

+ sin® —2“3 cos (B 4~ C)]

== 4 R’ (cos B cos C - sin B sin C cos A). (2)
Das erste Glied von (2) ist gleich 2R . 20%Z’, und da
MZ' =MO + OZ’, kann man schreiben

MZ :R[cosBcosC—l—sinBsinCcosA— cos(B—l—C)]
— R sin B sin C (1 4+ cos A) = AH cos” %

Um daher den Teilpunkt L auf der Héhe AH zu bestimmen
ziche mun QH und AP und verbinde deren Schnittpunkt S’ mit
M; denn aus den Relationen

L’ H AH s A
MQ  PQ MQ=MO-+O0Q=R(cosA+}1)=2Rcos’ 5
folgt 'H=Z7'M. :

3. Satz. Man verlingert die Geraden DI, EI, FI dber 1
hinaus um

ID' =1FE =1F =PQ=2R.

Der Kreis U, aus P durch die Punkte B’ und F’, und der
- Kreis V, aus Q durch den Punkt DY gelegt schnelden sich im
Umkrels 0.

Beweils. Es seien g, und ¢/, dle Radien der Kreise U,
und V,. Da die Geraden ID’ und PQ gleich und parallel sind,
ist ¢, =PI Nennt man B’ den Gegenpunkt von B auf der
Kreislinie O, so sind die Dreiecke PIE’', PIF', P BB’ kongruent;
denn

LB = 1= BB, P1=—=FB,
Winkel PBB’' =PBC + MBO = % +90° — A= 90°—i§-

= PIE" = PIF".
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Hieraus folgt, dass Winkel IPE' = IPF’ = 90° und 922
+ o 22 —4R’=PQ° Der Satz ist somit bewiesen. Auch sieht
man dass die drei Punkte E’, P, F’ auf derselben Parallelen zu
L I, liegen.

Die gemeinsame Sehne der Kreise U, und V,. Ist Z"
der Schnittpnnkt dieser Sehne mit der Zentrale PQ, so hat man
P77 — o =QZ" — o',’; nun gibt das rechtwinklige Dreieck

PIE': ¢, =2R sin ig, 0,—=2Rcos %, und folglich

PZ”2—QZ”2-.~=922— 9’22 —4 R?cos A.

So findet man: OZ'’ = R cos A = MO. Man drehe also
die Seite BC im Umkreis O um 180° so fillt sie mit der ge-
meinsamen Sehne zusammen.

Definition der Kreise U, und V, vermittelst des
Ankreises I,. Da das Viereck IE'], F’ ein Rhombus ist, kann
man die Punkte E' und ¥’ bestimmen, indem man auf die Be-
rithrungsradien I, F, und I, E, des Ankreises I, vom Mittelpunkte
ab die Linge 2R abtragt. Nimmt man auch auf dem Beriihrungs-
radius I, D, die Linge ID’, =2R, so ist QD’, =QD’, und der
Kreis V, geht durch den Punkt D’..,

Definition der Kreise U, und V, vermittelst der
Ankreise I, und I, Die Punkte E' und F’ projizieren sich

auf BC in D, und D,; denn PE’ —_—2Rcos—§und Winkel (PE’,

Mp) —B—C

, also ist die Projektion von PE’ auf BC=2R

L)

cos i;—cosB —C und man hat auch MD,= b—;—c = R (sin B

. Folglich erhilt man die Punkte

—|—SinC)=2Rcos—g—cos

* E’ und F’, indem man auf die Bertthrungsradien I,D, und I, D,
die Linge Q P abtrigt.

Die zu L, I, senkrechte Gerade D’ Q D, treffe die Beriihrungs-
radien LE, L E;, in den Punkten T, T’. Man hat oben gezeigt,
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dass QI,= QI,=PE’; auch sind die Winkel QL T, QL T,
PIE’ einander gleich (parallele Seiten). Daher schliesst man

LT=LT =1E"=2R, QT =QT' =PI,

und dass die Punkte T und T’ mit D', und D’ zusammen fallen.

NB. Es sei gestattet auf eine Verallgemeinerung hinzuweisen, deren
die bewiesenen Sitze fihig sind. Dieselbe ergibt sich, wenn man die Be-
rithrungsradien des Inkreises, bezw. eines Ankreises in gleichem Verhiltnis
vergréssert oder verkleinert. An Stelle des Umkreises O tritt dann ein
damit konzentrischer Kreis.

Dr. O. Schenker.

Eingegangen am 8. Oktober 1919.
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