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Franz Hartmann.

a

Der Zusammenhang der Bessel'schen FunktionJ (x)
mit der hypergeometrischen Reihe.

Einleitung.

Felix Klein*) gruppiert in der höheren Analysis die
hauptsächlich durch ihre Anwendung in der mathematischen
Physik und Astronomie, bekannt und wichtig gewordenen
Funktionen nach folgenden zwei Hauptkategorien:

1. in die der elliptischen Funktionen und ihren verschiedenen
Verallgemeinerungen und Spezialfällen, wie z. B. die
hyperelliptischen Funktionen und Integrale, die Abel'schen
Funktionen, u. a. m.

2. in solche Funktionen

die als Lösung linearer Differentialgleichungen von der Form

(1) ÌX + MÌy+Ny 0
d x dx

definiert werden, wo M und N rationale Funktionen von x bedeuten.
Hieher gehört hauptsächlich die hypergeometrische Funktion,
nebst all ihren mannigfaltigen Spezialfunktionen wie z. B. die
Kugel- und Zylinderfunktionen.

Die vorliegende Arbeit trachtet nun darnach die spezielle
a

Zylinderfunktion J(x), d. h. die Bessel'sche Funktion erster Art,
vermittelst der allgemeinen hypergeometrischen Funktion
darzustellen und zu untersuchen.

Vorerst verbleiben wir aber bei der ganz allgemeinen
Definition der Funktionsarten, betrachten also die Differentialgleichung

(1). Vom theoretischen Standpunkte können zur
Integration hauptsächlich zwei Methoden angewendet werden,
nämlich :

1. die Integration vermittelst unendlicher Reihen ;

2. die Integration durch bestimmte Integrale.

*) F. Klein: Ueber die hypergeometrische Funktion. Leipzig 1906.
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Integration linearer Differentialgleichungen
durch unendliche Reihen.

Die Integration der Differentialgleichung (1) vermittelst
unendlicher Reihen ist, rein formell betrachtet, eine sehr einfache.
Nimmt man einen beliebigen Punkt a im Zahlenfelde an, der
weder für M noch für N singulären Charakter trägt, so können
in der Umgebung dieses Punktes die Funktionen M und N durch
Potenzreihen dargestellt werden, die nach steigenden Potenzen
von (x — a) fortschreiten. Der Convergenzradius reicht dabei
bis zu dem am nächsten bei a gelegenen singulären Punkte der
Funktion.

Wir setzen also

M 2*AT(x-ar; N^^B^x-a)'
0 0

in Gleichung (1) eingesetzt ergibt

,2 oo j oo

(2) ~}-r^K(—Y^-r^B^-,y.y 0

0 0

Man suche nun diese Differentialgleichung durch unendliche
Reihen zu integrieren. Zu diesem Zwecke wird angenommen,
es existiere ein partikuläres Integral, das sich durch die
Reihenentwicklung geben lässt:

oo
(3) 7 ^GJ {*-*)*

0

Diese Entwicklung darf deshalb wieder um den Punkt a

gewählt werden, weil das Integral der Differentialgleichung keine
andern singulären Punkte enthalten kann als diejenigen der
rationalen Funktionen M und N. Das Convergenzgebiet der
Reihe (3) wird durch das gemeinsame Flächenstück der
Entwicklungen um a in (2) dargestellt.
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Indem man den für y vorausgesetzten Wert in der
Differentialgleichung einsetzt, ergibt sich

oo oo

d22Xv(x-a)v ^ dN^lx-af
(4) °——2 +2TMx~a)dx' ' —J T v ' d X

0

^c oo

+2B.(x-at' -2°*(x_ a)T=°

Bezeichnet man abkürzungsweise :

oo

2' Av (x — a)T a0 + at x + a2 x2 +
o

oo

^BT(x-ar b0+blX + b2x2+....
0

oo

2' CT (x — a)v c0 + ct x + c2 x2 +
0

und denkt man sich diese Werte in (4) substituiert und zudem
die dritte Reihe in ihren Ableitungen ausgerechnet, so kann (3)

nur dann der Differentialgleichung als partikuläres Integral
genügen, wenn in (4) alle Summen der Koeffizienten gleich hoher
Potenzen von x zu Null werden.

Durch Herausheben der einzelnen Entwicklungskoeffizienten
erhält man :

i x° 1 2 c2 + ao ci + bo co °
| x1 | 2 • 3 c3 + 2 c2 a0 + cx at + ct b0 + c0 bt 0

Gibt man nun den Konstanten c0 und c1 gewisse Anfangswerte

z. B. c0 Cj 1, so können sämtliche unbekannten
Koeffizienten c„, c„,.. c sukzessive bestimmt werden. Auf
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diese Art erhält man ein, durch eine unendliche Reihe
dargestelltes, partikuläres Integral

(5) y f(x)

der Differentialgleichung (1), das zwar vorläufig nur in einem
beschränkten Teile des Zahlenfeldes Gültigkeit besitzt. Die
Untersuchung über die Fortsetzungsmöglichkeit der Funktion wird uns
aber allgemeinen Aufschluss geben.

Sind die Funktionen M und N der Differentialgleichung
von einfacher Form, so lässt sich meistens diese hier ganz
allgemein gegebene, allerdings nur formell durchgeführte Methode
bedeutend vereinfachen. Wir erinnern an die Integration der
hypergeometrischen Differentialgleichung, wie sie Weber*)
entwickelt, ferner an diejenige der Differentialgleichung der
Kugelfunktion, wie sie u. a. auch Graf**) vornimmt, wo in beiden
Fällen direkt der allgemeine Koeffizient der Reihenentwicklung
bestimmt werden kann.

Integration durch bestimmte Integrale.
Währenddem die Integration der in ganz allgemeiner Form

gegebenen Differentialgleichung (1) durch unendliche Reihen möglich

war, ist dies nun keineswegs der Fall, wenn die Integration
durch bestimmte Integrale durchgeführt werden soll.

Die allgemeinste lineare Differentialgleichung nter Ordnung,
die bis heute auf direktem Wege durch bestimmte Integrale
integriert wurde, ist die von Jordan ***) aufgestellte,
verallgemeinerte Gauss'sche Differentialgleichung von der Form:

(G) Q(x)^X-^-n)Q'(x)d^^^
dx11 " 7 " v ' dx11"1 '

(| - n) (g — n + 1) d11"2 y+ 1.2 ^ ()J^'
^i-fXn+l)R'(x)f2y
dx dxR(x)T-ir+X(!-n+l)R'(x)T-^2- +

*) Riemann-Weber: Differential-Gleichungen, Bd. 2 pag. 12.

*) J.H.Graf: Kugelfunktionen, Kollegienheft W. S. 16/17.
*) Jordan: Cours d'analyse III, pag. 241 ff.
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wo £ eine Konstante bedeutet und unter Q (x) und R (x) zwei

Polynome verstanden werden. Q(x)ist vom nten Grade, R (x) vom
Grade < n.

Setzt man

(7) y fu(u — xX'du

wo U durch die Bedingung bestimmt wird

R(u)U -f UQ(u)du v

also
C R<u1 j

u J_./qöX<
Q»

so geht unter Berücksichtigung des Taylor'sehen Satzes die

Differentialgleichung (6) über in

(8) fdUQ(u)(u—x)* n= fdV 0

Das Integral (8) ist nun gleich Null, d. h. der Differentialgleichung

wird Genüge geleistet, falls der Weg L entweder eine

geschlossene Integrationskurve ist, auf der V nach zurückgelegtem
Wege seinen ursprünglichen, den Anfangswert wieder annimmt,
oder falls L einen solchen Weg bedeutet, in dessen Anfangsund

Endpunkten V zu Null wird.
Der bekannteste Weg der ersten Art ist der nach Poch-

hammer*) so benannte Doppelumlauf, zu den letzteren sind
hauptsächlich die gewöhnlichen geradlinigen Integrationswege zu
zählen, sowie auch die Schleifenintegrale, d. h. offene Wege, die

von einem gewissen Punkte, für welchen V zu Null wird,
auslaufen und wieder in denselben zurückkehren.

Soll nun nach dem heutigen Stand der Theorie der linearen
Differentialgleichungen, die Gleichung (1) auf direktem Wege
durch bestimmte Integrale integriert werden können, so müssen

*) Math. Annalen. Bd. 35.
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die Funktionen M und N derart beschaffen sein, dass sich die
Differentialgleichung in der Form geben lässt:

(9) Q(x) |X-(|_ 2)Q/ (x)^+ «"«>«- X>

QXx) • y

R(x)4^+ (Xl)R'(x)-y 0
dx

wo Q (x) ein Polynom zweiten Grades, also

Q(x) (x —a)(x-b)
bedeutet, währenddem R (x) vom ersten oder nullten Grade sein
kann.

Wir betrachten vorerst den Fall, wo unter R (x) ein Polynom
ersten Grades zu verstehen ist, d. h. wir setzen

R (x) x — c
dann wird

R (u) ù — c A B

Q(u) (u —a)(u-b) (u — a) (u — b)
wo

a — cA=" Û'a— b
B_c-b

a — b
und man bekommt

/R(u) /" A f B
/ 7T7 i du== / du+ / üduJ Q(u) J u — a X u —b

ALg(u-a) + BLg(u-b)
woraus folgt:

/-RO)
J Quie Q(u) (u —x)f_n=- (u —a)A(u —b)B (u—x)*'"2

Dieser Integrand V verschwindet, die reellen Komponenten der
Exponenten positiv vorausgesetzt, für die Werte

u a u b u x
ferner für u + oo

und zwar je nachdem

A+B+f-2§0
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Da nun „,
U — ej ™ dU

(u - a)A-x (u- b)8""1
Q(u)

ist, erhält man als Lösung der Differentialgleichung (9) das

Integral

(10) y J (u - aX1 (u - b)8"1 (u - x)*'"1 du*)

wo für die Grenzen g und h zwei der Grössen a, b, x oder oo

gewählt werden dürfen, vorausgesetzt, dass das Integral für die

genannten Grenzwerte überhaupt einen Sinn hat. Sollte letzteres
nicht zutreffen, d. h. kann die Variable nicht bis in die Endpunkte
des Weges geführt werden, so sind freie Integrationswege
heranzuziehen. Wie schon erwähnt, leisten hier die Doppelumlaufsund

Schleifenintegrale sehr gute Dienste.

Fallen im Integral (10) die beiden Werte a und b zusammen,
so werden die Exponenten A und B unendlich gross, ihre Summe
hingegen behält endlichen Charakter. Um diesen Fall näher zu
untersuchen, setzen wir**)

b a — e I

A=C-X B=^ |
lime 0

E E I

und es wird

(x — a)A -1 (x — b)B _ 1 lim (x — a)c ~ l ~ 7 (x — a + £
1

o
'

nC — 2 x — a
(x — a) e

d. h. im Integral (10) fallen die singulären Punkte a und b in a

zusammen, es wird a zu einem wesentlich singulären Punkte des

Integranden. Die Variable kann nicht mehr um a herumgeführt
werden, Doppelumläufe um den Punkt a verlieren deshalb jede
Bedeutung, sie sind unmöglich ; hingegen können Schleifen-

*) Dieses Integral wird von E. Picard in seinem Werke: Traité
d'Analyse, Paris 1896, Tome III pag. 301, als hypergeometrisches Integral
definiert.

**) s. u. a. auch Klein, hypergeometrische Funktion.
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integrale hier erfolgreich benützt werden, da in gewissen
Richtungen [Winkelräumen] die Variable bis an den wesentlich
singulären Punkt geführt werden kann.*)

Bedeutet in der Differentialgleichung (9) R (x) ein Polynom
nullten Grades, also eine Konstante, so folgt aus der Partial-

bruchzerlegung des Quotienten dass in diesem Falle
Q(u)

A —B

sein muss. Im übrigen lässt sich das Integral auf denselben

Wegen herleiten wie oben.

Obschon, wie bereits erwähnt wurde, die Gleichung (9) die

allgemeinste Form einer linearen Differentialgleichung 2. Ordnung
ist, die bis heute auf direkten Wegen durch bestimmte Integrale
integriert werden konnte, bilden ihre Lösungen dennoch nur

*) In dieser Beziehung ist den Schleifenintegraldarstellungen
entschieden den Vorzug zu geben, weil bei diesen der Grenzübergang ohne
wesentliche Veränderung des Weges vorgenommen werden kann. Wir
erinnern hier nur an den Grenzübergang von der Binet'schen Funktion
zur Gammafunktion, wie ihn Graf**) vollzieht. Es wird dort das Binet'sche
Integral resp. das Euler'sche Integral erster Art, zweite Form durch das
Schleifenintegral

r Ix'-'ll | x)n d x
2 i sin a n

i <¦

gegeben, woraus sich ohne Schwierigkeiten das Integral für die Gamma-
funktion durch Vollziehung des bekannten Grenzüberganges ergibt, nämlich

nf*'*"r (a) -—-. ex • xa - l d x
2 i sin a

N-*

Würde man das Binet'sche Integral durch einen Doppelumlauf darstellen,
wie dies bis heute meistens der Fall war, so liesse sich der Grenzübergang
nicht durchführen ohne nicht langwierige Wegtransformationen vornehmen
zu müssen, die schliesslich zu einer Umwandlung des Doppelumlaufes in
eine einzige Schleife führen dürften.

**) .1. H. G>raf. Einleitung in die Theorie der Gammafunktion.
Bern 1894.
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einen kleinen Teil der in der Analysis bekannten Integrale, die
einer linearen Differentialgleichung 2. Ordnung als Lösung
genügen. Bei letzteren wurde aber umgekehrt verfahren, indem
vom bestimmten Integrale ausgehend, die Differentialgleichung
gesucht wurde. Auf diesem Gebiete haben u. a. hauptsächlich
E. Goursat,*) J. H. Graf,**) P. A. Nekrassoff***) und
Pochhammer****) gearbeitet. Nekrassoff hat direkt eine allgemeine
Methode angegeben, mit der sich die Differentialgleichungen
bestimmen lassen, deren Lösungen in Form bestimmter Integrale
gegeben sind.

Beiläufig sei hier bemerkt, dass z. B. sämtliche Integrale
von der Form

y f(x) / (u — a)«(u —by(u — x)f-1du

wo unter f (x) eine beliebige Funktion von x zu verstehen ist,
einer linearen Differentialgleichung 2. Ordnung als Lösung
genügen, wie leicht durch einfache Koeffizientenvergleichung mit
Hülfe der Gleichung (9) gezeigt werden kann. Je nach der
Beschaffenheit der Funktion f (x) nimmt die ihr entsprechende
Differentialgleichung andere Formen an. Die Koeffizienten M und
N der allgemeinen Gleichung (1) weisen aber, insofern wir sie

untersucht haben, die nötige Gesetzesmässigkeit nicht auf, als
dass es möglich wäre, die Gleichungen auf direkten Wegen
durch bestimmte Integrale integrieren zu können.

Aus diesen ganz allgemein gefassten Betrachtungen über
die Integrationsmethoden der unserer Funktionenkategorie als

Definition zu Grunde gelegten Differentialgleichung (1) wurde
ersichtlich, dass die meisten hieher gehörenden Funktionen auf
relativ einfache Art durch unendliche Reihen, sowie auch durch
bestimmte Integrale dargestellt werden können. So findet man

*) Goursat, Acta Mathematica, Bd. 2.

**) Graf, Math. Annalen, Bd. 45.

***) Nekrassoff, Math. Annalen, Bd. 38.

»***) Pochhammer, Math. Annalen, Bd. 38.
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denn auch in der Literatur durchwegs obige Funktionen von
drei Hauptgesichtspunkten aus betrachtet, nämlich:

1. in Form unendlicher Reihen,
2. durch ihre Differentialgleichung,
3. durch bestimmte Integrale,

wobei die Integraldarstellung meistens aus der Reihenentwicklung
hergeleitet wird, da sich auf solchem Wege das bestimmte
Integral in der Regel auf einfache Art bestimmen lässt.

Wir wollen nun auch in dieser Arbeit die Betrachtungen
nach obigen drei Gesichtspunkten gruppieren und beginnen mit
der Reihendarstellung.

I. Kapitel.
Die Reihendarstellung.

a

§ 1. Der Zusammenhang der Funktion J (x) mit der hyper¬

geometrischen Reihe. Konvergenzkriterium.
Die Bessel'sche Funktion 1. Art wird definiert durch die

Reihe*)

a) JW=2(-1);TT7 (a + l + 1)

Der Zusammenhang dieser Summe mit der
hypergeometrischen Reihe

(2) F(a,b,c>x)^l + A^x+a(a+1)b(b + l)x2+W V ' ' ' ' c-1 ^ c(c-fl) 1-2

_^ a(a+l). .(a+A—1)b(b +1)..(b+A—1)
~2jc(c + l)..(c+A-l)l-2 )X

*) Graf & Gubler, Einleitung in die Theorie der Bessel'schen
Funktionen. Bern, 1898. Heft I, pag. 25.
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ergibt sich wie folgt*):
Unter Berücksichtigung des Satzes, dass

/> + *+-l) r(a + l).(a + l) (a + 2).... (a + /)
wird (1) zu

X \ /X N K

j (x) _ _A^X'V (_ i)i
r(a + l)^J A!(a + 1)r(a + l)-^J/ A!(a + l)(a + 2)...(a + /)

mit dem Grenzwert

lim k(k + l)....(k + A-l).k(k + l)....(k + À-l) =1k °° kA k*
erweitert, erhält man

jW== lim Sil ^k(k+l)..(k+À-l)k(k+l)..(k+*-l)
k=-r(a+ l)^J(a + l)(a + 2)..(a+À) Il

2. \ /.
X

4 k2

Die in dieser Gleichung erhaltene Summe ist nun nach (2) gleich
der speziellen hypergeometrischen Reihe

2

F(k,k,a+1,-^)
es wird daher

/ x

(3) J(x) lim -2y/ F(k,k,a + 1, £,
K > y > k oor(a + i)\'' 4k2

Dieser Grenzwert tritt in der mathematischen Literatur
zuerst bei P. A. Hansen**) auf. Es ergibt sich daraus sofort

a

der Satz, dass sich die Funktion J(x) nur in Reihen, die nach
steigenden Potenzen des Argumentes x laufen, entwickeln lässt.
Eine Entwicklung nach steigenden Potenzen des Parameters a

ist nicht möglich.

*) S. u. a. Jecklin, Diss. phil. Bern 1901.

**) Leipziger Abhandlungen, Bd. 2, 1852, pag. 252.
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Dividiert man die Gleichung (3) durch

x

r(a+l)
so erhält man durch Nullsetzen des Argumentes für sämtliche
Parametergrössen die Beziehung:

«) XX« lim F (k,k, a + 1,
k oo
x ü

4ka

denn nach Gleichung (2) wird:

F (a, b, c, x)

Die Beziehung (4) wird uns später bei der Bestimmung
der Integrationskonstanten sehr gute Dienste leisten. Vorerst
sei aber nach den Konvergenzbedingungen unserer speziellen
F-Reihe gefragt.

Die hypergeometrische Reihe F (a, b, c, x) konvergiert nach
den Untersuchungen von Gauss*) für sämtliche Argumente die
kleiner sind als 1. Der Einheitskreis ist Konvergenzkreis, wir
haben die Konvergenzbedingung

i x|< 1

/' -2
Für die Reihe lim F k, k, a + 1,

k oo

wird diese Bedingung zu

4 k'

lim
k oo 4 k' <1

d. h. es konvergiert unsere spezielle F-Reihe für jedes endliche x,
der Konvergenzkreis schliesst das gesamte endliche Gebiet in

sich ein. Die Funktion lim F k, k, a + 1, 5- ist im Gegen-
k oo \ 4 k

satz zur Reihe F (a, b, c, x) im Endlichen nirgends mehr
verzweigt und überall stetig. Da aber die Singularität im Punkte

*) Gauss: Ges. Werke III, 1866, pag. 125 ff,
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x 1 der Reihe F (a, b, c, x) für den betrachteten Spezialfall
ins Unendliche fällt, so wird der unendlich ferne Punkt wegen
des Zusammenfallens zweier Pole zur wesentlichen Singularität,
von der schon Schläfli*) bemerkte, dass sie schwierigen Cha-

a

rakter trage. Es zeigt sich also, dass die Funktion J (x) für jedes
endliche x konvergiert, was speziell das Verhalten der Funktion
auf dem Konvergenzkreise anbetrifft, so kommt eine

diesbezügliche Spezialisierung für den betrachteten Fall wegen des
/ \a

Faktors (~X nicht in Frage.

Wenn schon die hypergeometrische Reihe F (a, b, c, x)
nur innerhalb des Einheitskreises konvergiert, also zu einer
allgemeinen Darstellung der Funktion, dieses Element F (a, b, c, x)
einer analytischen Fortsetzung bedarf, fällt die Notwendigkeit

/ 2
/ X

einer solchen für die spezielle Reihe lim F k, k, a + 1,
k oo V 4 k

zum vorneherein dahin,da hier das ganze endliche Gebiet durch
den Konvergenzkreis umschlossen wird. Rein formell lässt sich
natürlich auch hier, entsprechend derjenigen von F (a, b, c, x),
eine analytische Fortsetzung durchführen. Man erhält auf diese
Art unbestimmte Symbole, die sich schwerlich in endliche Formen
überführen lassen werden. Bei der allgemeinen Betrachtung
der Differentialgleichung und deren Integrale wird darüber noch
weiteres angeführt werden müssen.

Gleichung (3) liefert auch für alle endlichen Werte von a
einen endlichen Funktionswert. Ist speziell a negativ ganzzahlig,
so werden die Nullstellen der reziproken Gammafunktion durch
das Unendlichwerden der F - Reihe gehoben, denn das
unbestimmte Symbol, das für solche Werte von a /entsteht, lässt sich
leicht durch blosses Ausrechnen unter Berücksichtigung der Formel

ar(a) r(a + l)
bestimmen.

Auf diese Art stösst man auch auf die bekannte Formel
— n n
J (x) (— l)n J(x) n ganze Zahl.

Schläfli, Math. Annalen, Bd. 3, pag. 136.



102 Mitteilungen der Naturf. Gesellsch. Bern 1919. (14)

§ 2. Eigenschaften der Funktion J (x).

Gauss*) hat in seinem Werke «Disquisitiones générales

circa seriem infinitam 1 + r.——x + ....» die hauptsächlichsten

Eigenschaften der F-Reihe hergeleitet, aus denen man
vermittelst der Formel (3) die rechnerischen Grundeigenschaften

a

der Bessel'schen Funktion J(x) leicht als Spezialfälle ermitteln kann.

So fand Gauss, dass

(5) dFM^.i)^.F(a+1)b + 1,c + 1)l)

ist. Diese Formel auf Gleichung (3) angewendet ergibt:

f-Y
dJ(x) lim d \2J x2\
~Tï k oo"d¥X(a + l)F(vk'k> a+1'-I^J

(î)
a—1

2

lim j 1
a- ' ,,-F k,k,a + l,

X

,0,2 r(a + l) V"'"'" ' *' 4k2

(ï) k2 X F(k + l,k + l,a + 2
x2

r(a-r-l) (a+1) 2ks V ' ' ' ' ' ' 4k

da nun (a + 1) r (a + 1) F (a + 2)

ist, wird

dJW= lim ja
(.27 F/tka + 1

*2

dx k oo|x r(a + l) V ' ' ^ ' 4k
v»+lx N

X F k,k,a + 2, —X^
r(a + 2) V 4 k2

*) Werke, III. pag. 125 ff.
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und nach (3) ergibt sich daraus

dx x

Hypergeometrische Reihen, deren drei Elemente a, b, c sich

nur um ganze Zahlen unterscheiden, nennt Gauss verwandte
F - Funktionen. Irgend drei solche Funktionen sind stets durch
eine lineare Relation von der Form

A1F1 + A2F2 + A3F3 0

verbunden, wo Av A2 und A3 rationale Funktionen von x
bedeuten.

Gauss hat sämtliche, durch obige Form möglichen
Gleichungen berechnet und fand deren 15. Von diesen Glei-

a

chungen kommen zur Untersuchung der Funktion J(x) in erster
Linie diejenigen in Betracht, bei denen das dritte Element, d. h.
der Parameter a sich um ganze Zahlen verändert. Die diesem
Fall entsprechende Gauss'sche Gleichung lautet:

c{c —1 — (2c — a — b — l)x} F(a,b,c,x)

+ (c — a) (c — b) x F (a, b, c + 1, x)

— c (c— 1) (1 — x) F (a, b, c -- 1, x) 0

r / 2 \
Für F (a, b, c, x) : F k, k, a +1, 5- gesetzt, ergibt

k oo \ 4k /

(a+-l)[a+[2(a-k) + l]X_jF(k,k,a + l,
lim 2

X

ïk*

(a + 1-k)24?F(k'k'a + 2'-4^)-a{a+1)(H'Ä

2 \
F( k,k,a, M =0li». 4k2 M
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lim |a(a + l)F(k,k,a + l,--X
k oo \ 4 k

2 \ / 2

|)F(k,k,a + 2,-X_J-a(a + l)F[k,k,a,-X2-)[ 0

2
multipliziert man diese Gleichung mit

a—1
X

T(a + 2)

und berücksichtigt man, dass »

a(a + l)r(a) r(a + 2)

so erhält man
a-lX

lim | \ 2 ' _ /'. x2
oo F k,k,a + l,r(a) \ ' ' ' ' 4k

a+l a—1
X \ / X -

nüäiF(k<"¦*¦<¦ * -ïp) -WrF(k'k'»<-4Wj=°
nun ist nach (3)

iy
J 00— lim ' F(k,k,a + 1,— -^

k t>c r(a+l) V 4k

daher wird die obige Gleichung zu

2aa a+l a_1
¦ — J(x) — J(x)— J(x) =0

X
oder

a—1 a+l Oo >

II. J (x) + J (x) — J (x)
X

nimmt man dazu die frühere Gleichung I

T dJ(x) a », "+1, ¦>

I. -X —J(x) — J(x)
dx x
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so erhält man durch Subtraktion (I — II)
a

III. ^^ ---J(x) +aj(x)
dx x

durch Addition von I und III wird ferner

IV. SJ(x)-î(x) 2d^
dx

Dies sind die bekannten vier Funktionalgleichungen, durch
die die Zylinderfunktionen meist definiert werden.*)

Der Vollständigkeit halber sei hier noch erwähnt, dass mit
Hilfe der Formel

F(a,b,c,l)^/^LflC-a-b) -

r(c —a)JT(c-b)
a

die Funktion J (x) für unendlich grosse Argumente geschätzt
werden kann. Auch in den Kettenbruchentwicklungen lässt sich
die Bessel'sche Funktion erster Art leicht als spezielle
hypergeometrische Funktion erkennen.

II. Kapitel.
Die Differentialgleichung.

§ 3. Definitionsbemerkungen.

Im ersten Kapitel wurde auf ganz einfache Art die Bessel'sche
a

Funktion J(x) durch eine hypergeometrische Reihe dargestellt,
worauf dann aus den allgemeinen Eigenschaften der letzteren
die Bessel'sche Funktion als deren Spezialfall untersucht wurde.
Vom theoretischen Standpunkte aus, wobei wir hauptsächlich an
die in der Einleitung erwähnten Grunddefinitionen denken, bieten
diese ersten Betrachtungen wenig, sie basieren auf einer
einfachen Schlussweise, die uns über die eigentliche
funktionentheoretische Beschaffenheit der Funktion wenig Auskunft gibt.

*) Nielsen: Handbuch der Theorie der Zylinderfunktionen,
Leipzig 1904.

Mitteilungen der Naturf. Gesellsch. Bern 1919. o
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a

Ein tiefersehendes Studium der Funktion J(x), insbesondere was
deren Verwandtschaft mit der hypergeometrischen Funktion
anbetrifft, lässt sich bedeutend erfolgreicher und klarer
durchführen, wenn die Definitionsdifferentialgleichung an die Spitze
gestellt wird.

Aus den im ersten Abschnitte mit I und II bezeichneten
Funktionalgleichungen der Zylinderfunktion findet man leicht die
in der mathematischen Literatur zuerst bei Bessel*) auftretende,
nach ihm benannte Differentialgleichung:

(D |X + lÌl- + (l-^)y^0dx x dx \i x /
Um die im folgenden kommenden Bestimmungen der

Integrationskonstanten möglichst einfach durchführen zu können,
a

ziehen wir zur Definition der Funktion J(x) noch die im ersten
Abschnitte unter (4) gefundene Gleichung hinzu, die lautet:

(2) r<»+!).j-(x) i

d. h. wir definieren die Funktion J(x) als dasjenige partikuläre

Integral der Differentialgleichung (1), das mit dem Faktor —-—
' x

T
multipliziert für sämtliche Werte des Parameters a zu 1 wird,
falls das Argument der Funktion Null gesetzt wird.

§ 4. Herleitung der allgemeinen hypergeometrischen Differential¬
gleichung. — Die Riemann'sche P-Funktion.

Nach dieser einleitenden Bemerkung zur Definition der
Bessel'schen Funktion erster Art müssen wir einiges über die

hypergeometrischen Differentialgleichungen vorausschicken, bevor
die Gleichung (1) als ein Spezialfall der allgemeinen
hypergeometrischen Differentialgleichung, der Differentialgleichung der
Riemann'schen P-Funktion, betrachtet werden kann.

*) Werke. I pag. 47.
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Schon Euler*) fand, .dass sich die Reihe

y F(a, b, c, x)

als partikuläres Integral der Differentialgleichung

(3) x(l-x)^+!c-(a+ b + l)xj^-aby=0
dx I )dx

darstellen lässt.

Diese Differentialgleichung kann auf sehr einfache Weise,
nach den in der Einleitung erwähnten Methoden, auf direktem
Wege durch unendliche Reihen wie durch bestimmte Integrale
integriert werden.

In neuerer Zeit stellte sich nun aber heraus, dass die
hypergeometrische Reihe

y F (a, b, c, x)

als Definition der hypergeometrischen Funktion wenig zulässig
erscheint. Besonders darum, weil man heute bei Funktionen, die
sich durch Differentialgleichungen definieren lassen, nicht nur ein
bestimmtes partikuläres Integral ins Auge fasst, sondern allgemein
jedwelche mögliche Lösung der betreffenden Differentialgleichung
als eine diesbezügliche Funktion auffasst.

Man definiert daher heute als hypergeometrische Funktion
allgemein die obige Reihe, noch multipliziert mit einer Potenz
von x, einer solchen von (1 — x) und einer von x unabhängigen
willkürlichen Konstanten, nämlich

(4) y Cx<X-xFF(a,b,c,x)
Aus den beiden ersten Differentialquotienten dieser Funktion
ergibt sich durch einfache Koeffizientenvergleichung mit
Gleichung (3) die Differentialgleichung, der unsere neue Funktion als

partikuläres Integral genügt.

Führt man der Symmetrie des Resultates wegen die folgenden

sechs Konstanten ein:

(51
« —« ß=a — ö — y r Y

a' 1 — c + a ß' b — o — Y ï' — c — a — b + j'

*) Jecklin, Diss. phil. Bern 1901. pag. 12ff.
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woraus durch Addition folgt, dass

(6) « + «XXXXr + r' i
so wird die neue Definitionsdifferentialgleichung:

(7) x2(l-x)2|^-x(l-x){ (« +«'-l) + 0? + ^Xl)x}^

+ {««' -(««' -\~ßß' -yy')x + ßß' x^y^O
oder unter Berücksichtigung von (6)

(8)
d2y jl-a-a' | l-y-/|dydx2 l x x — lJdx

„/

I X x — 1 J x (x — 1)

Dies ist die allgemeine hypergeometrische Differentialgleichung,
deren Lösung wir durch die Funktion

y Cia(l-xFF(a,'bl c, x)

oder unter Berücksichtigung von (5), durch

(9) y=Cx«(l- xyF(a-\-ß-\- y, a + ß' + y, 1 +«-«', xj
definiert haben.

Es werde nun diese neue Definitionsgleichung (8), in Bezug
auf das Verhalten der komplexen Variablen x im Zahlenfelde,
des Nähern betrachtet.

Die Differentialgleichung weist in den Punkten

x — 0 x 1 X — oo

Stellen singulären Charakters auf, denn für diese Werte werden
die Koeffizienten der Gleichung unendlich gross. Wir sind nun
keineswegs an die spezielle Differentialgleichung (8) gebunden,
sondern wir suchen der Vollkommenheit halber, die drei singu
lären Punkte derselben allgemein zu definieren, indem wir die
zu Gleichung (8) analoge Differentialgleichung zu konstruieren
suchen, die in Bezug auf ihre Koeffizienten die Unstetigkeits-
stellen

x a, x b, x c
aufweist.

*) S. u. a Klein, hypergeometrische Funktion.
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Diese verallgemeinerte Differentialgleichung erhält man
durch die Substitution:

(z — a) (c — b)

(z — b) (c — a

oder nach z aufgelöst

b (a — c) x — a (b — c)

(a — c) x — (b — c)

aus welchen beiden Gleichungen der Uebergang der Pole
0 oo 1 in a b c rasch ersichtlich ist. Fürdie Differentialgleichung

(8) erhält man dann die Form*):

(10)

+!

d2y l a — a' l — ß — ß' 1 y. Ari
'dzdz l z — a

'
z — b z — c

a a' (a — b) (a — c) ß ß'{b - a) (b — c) yy'jc — a) (c— h)

z — c

0
(z — a) (z — b) (z — c)

Diese Differentialgleichung ist nun im Gegensatze zu (8)
in Bezug auf die Konstanten aa', ßß', yy' ganz symmetrisch
gebaut, und zwar gehören zu dem Pole a die Konstanten a a'
zu b ßß' und zu c yy'.

Als Lösung obiger Differentialgleichung erhält man nun die
durch Riemann**), allerdings auf ganz andere Art definierte
P-Funktion

(11)

Setzt man

a 0

abc
« ß y z

«' ß' /
b oo c=- 1

*) Papperitz, Math. Annalen, Bd. 25.

**) Riemann, Beiträge zur Theorie der durch die Gauss'sche Reihe
F (a, b, c, x) darstellbaren Funktion. Werke pag. 62 ff.
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so wird die Funktion zu

(12) y P
0 oo 1

« ß 7.

«' ß' /
und dies ist die Lösung der Differentialgleichung (8).

Aus dieser speziellen P-Funktion, die Riemann noch
einfacher mit

ß y
(13) y P

t' ß' y'
x

bezeichnet, deren einzelne Funktionszweige sich alle durch
hypergeometrische Reihen darstellen lassen, folgt indirekt, dass die
allgemeine P-Funktion (11) als Lösung der Differentialgleichung (10)
definiert werden darf.

Die Konstanten a, a' ; ß, ß' ; y, y' nennt man die Exponenten
der P-Funktion und zwar treten dieselben wie schon bemerkt
stets paarweise auf, indem jedes Exponentenpaar aa',ßß',yy'
zu den singulären Punkten a, b, c resp. 0, oo, 1 in gewissen
Beziehungen steht. Ferner muss auch für die P-Funktion die
frühere Bedingung bestehen bleiben, dass

a + «'+/? + /i' + ,X/ l
ist, des weitern haftet der Riemann'schen Definition noch die
Einschränkung an, dass keine der Exponentendifferenzen

a-a', ß-ß', y-y'
eine ganze Zahl sein darf.

§ 5. Zusammenhang der Bessel'schen Differentialgleichung mit
a

der hypergeometrischen. — Darstellung der Funktion J (x) als

Riemann'sche P-Funktion.

Klein*) findet folgenden Zusammenhang zwischen den

Differentialgleichungen (10) und (1)

Setzt man in (10)

a 0, b oo, c c, a a und a' — a

*) Hypergeometrische Funktion, pag. 281 ff.



(23) Zusammenh. d. Bessel'schen Funkt. J (x) m. d. hypergeom. Reihe. Hl

so erhält man, falls z durch x ersetzt wird :

£+11 + !=^ ÉZ + I»
d x Ix x — c i dx

2

/

+ ßß> + SJJL
X — c J x (x — c)

oder

d2y 1 l-"/-/[dydx2 Ix x — c Idx

Xr*xXXXX=°1 x (x — c) x (x — c) (x — c

Nun lasse man c unendlich wachsen, gleichzeitig aber auch die

Exponenten y, y' und ß, ß', doch derart dass

ß + ß', 7 + / sowie auch /9/3' — yy'
endlich bleiben, ferner soll dabei

lim^ 1
c"

sein.

Führt man den genannten Grenzübergang unter
Berücksichtigung der angeführten Bedingungen durch, so erhält man
die Bessel'sche Gleichung

a*) f^-x+l1--!^0d x x dx l x I

oder in der Form von Anger*)

(15) x2il + x^ + (x2-a8)y=0
dx dx

Die hypergeometrische Differentialgleichung geht somit in
die Bessel'sche über, wenn die singulären Punkte 1 und oo der
erstem im Unendlichen zusammenfallen, wenn also der Horizont
zum wesentlich singulären Punkte der Differentialgleichung wird.
Die Bessel'sche Differentialgleichung ist somit ein Grenzfall der
hypergeometrischen.

*) Anger, Untersuchungen über die Funktion J> Danzig 1855.
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Weil sich Gleichung (15) als Spezialfall von (10) geben
a

lässt, ist auch deren Lösung, die Bessel'sche Funktion J (x) durch
eine Riemann'sche P-Funktion darstellbar. Diese Darstellung
hat schon Ulbricht*) allerdings auf ganz andern Wegen,
vorgenommen.

Bezeichnet man mit v eine zum Unendlichgrosswerden
bestimmte Zahl, so kann

c + v

gesetzt werden, es ergeben sich für beide Vorzeichen gleiche
Resultate. Ferner müssen die Grössen y und y' sowie auch ß

und ß', falls sie unendlich gross gedacht werden, deren Summen
aber endlich sein sollen, unbedingt entgegengesetztes Vorzeichen
haben. Damit nun aber das Produkt im Zähler des Grenzwertes

lim*£=l
c

positiv ist, müssen die Exponenten y und y' imaginär sein. Das

gleiche gilt für die Exponenten ß und ß', da auch

ßß' -yy'
endlich bleiben soll.

Man erhält deshalb für die Grössen der P -

Funktionsdarstellung der Bessel'schen Transcendenten :

lim|a==a /* i v y i v b oo j

'=oo| a'= — a ß''= — iv y' =—iv c —+v |

weshalb sich nach (11) als Lösung der Bessel'schen Differentialgleichung

folgende P-Funktion ergibt:

(16)

Man trachte nun danach diese spezielle P - Funktion in

hypergeometrischen Reihen darzustellen. Zu diesem Zwecke

0 oo ±v
limP a i V i V
r— oo — a -— iv — iv

*) Olbricht, Diss. phil. Leipzig 1887.
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muss die Funktion einer Transformation unterworfen werden,
wonach die Verzweigungspunkte

oo + ylim 0

übergehen in die Werte

0 1

Viele von uns angestellte Transformationsversuche zeigten,
dass eine einfache Transformation auf direkten Wegen sich hier
kaum finden lässt. Wir kehren deshalb noch einmal zu der
allgemeinen hypergeometrischen Differentialgleichung (10) zurück
und leiten daraus die Bessel'sche Gleichung auf ganz andere Art
her, indem wir nämlich an den Zusammenhang der Bessel'schen
Funktionen mit den Kugelfunktionen denken. Die auf diese Weise
hervorgehende P-Funktion lässt sich dann sehr leicht transformieren,

worauf sich eine Darstellung durch hypergeometrische
Reihen rasch finden lässt.

Setzt man in Gleichung (10)

z cos —
n

so werden die Differentialquotienten
dy _dz

n dy
• x dxsin— ux

n

d2y _|d2y dy 1 i— coty
dx n

x n"

dz2 1 dx2 n 2xsin —
n

Geben wir nun den Verzweigungspunkten

a b c

die Werte — 1 n +1
so geht (10) über in:

d2y 1-a-o:' i-ß-ß' i-r-r'
X

Sin_ J 1 An dy 1 x dy£ cotg—. —
n dx n n dxdx2

1

X X
cos H cos n

n n

i

cos 1
n
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+ 2««'(l+n) /3/?'K-l 2/r'd-n)
cos 1-1

n ' cos- cos 1
n

• 2 X
sin —

n
2

n
X

x J- 0
(cos f-1) (cos n) (cos 1)

n n n

Zur Grenze lim n oo übergegangen ergibt, falls die Exponenten-
summen a + a' und ß + ß' endlich bleiben,

dy (««' ßß' 4yy'\d2y 2(1 -y-y') dy 1

dx2 x dx X

Setzt man nun
a

dx n
y-o

2 2

und lässt man ferner die Exponenten ß und ß' unendlich wachsen,
doch derart, dass deren Summe

ß + ß' l
ist, so erhält man wiederum die Bessel'sche Differentialgleichung,
nämlich

d2y
i 1 dy X a

dx x dx \ x
0

deren Lösung sich nun als folgende P-Funktion ergibt:

- 1 oo +1
a a

— n —
2 2

a a
— — n+1 — —
2 2

(17) y lim P
n oo

X
COS —

n

In dieser Funktion sind zwei Exponentendifferenzen einander
gleich. Solche P-Funktionen definiert Klein*) direkt als
Kugelfunktionen, da sie stets auf solche führen. Auf diese Weise
ergibt sich sehr einfach das Verwandtschaftsverhältnis zwischen
den Bessel'schen- und Kugelfunktionen.

*) Klein, hypergeometrische Funktionen, pag. 219.
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Riemann*) fand nun, dass sich P-Funktionen, in denen
zwei Exponentendifferenzen einander gleich sind, durch 144

hypergeometrische Reihen darstellen lassen, wo je '/3, also 48
Entwicklungen um einen Verzweigungspunkt Geltung haben. Jeder
der sechs Zweige der Funktion

p« pa' p/5 p/3' pr p/
liefert 24 Entwicklungen, wo diejenigen für papa resp. P P

resp. P Py in der Umgebung der Pole a resp. b resp. c konvergieren

werden.

Die früher als Integral der Bessel'schen Differentialgleichung

gefundene P - Funktion (16)

0 00 V
lim p a iv iv

T=00
— a -— iv — iv

zeigt nun aber, dass von den 144 Reihendarstellungen zum Vorneherein

s/3 wegfallen, denn die Pole b und c obiger Funktion
fällen im Unendlichen zusammen, es entsteht eine wesentliche,
singulare Stelle, um die eine Entwicklung nicht existieren kann.
Eine Darstellung der Funktionszweige P'3, P*3', P^, P^' ist nicht
möglich. Aus der zweiten Darstellung ist ferner ersichtlich, dass
eine Vertauschung der Exponentenpaare unter sich keine neuen
Reihendarstellungen liefert, wie leicht durch Ausrechnung
gezeigt werden kann. Die noch existierenden 48 Entwicklungen
werden deshalb nochmals um '/* reduziert, so dass schliesslich noch
12 hypergeometrische Reihen zur Darstellung unserer P-Funktion
verbleiben. Diese 12 Reihen können vorläufig bloss als Symbole
betrachtet werden, wie schon Ulbricht**) bemerkt hat. Lassen
sich die Grenzübergänge vollziehen, so erhält man durch
passende Bestimmung der Integrationskonstanten Reihendar-

a —a

Stellungen für die zwei partikulären Integrale J (x) und J (x). Den
einfachsten dieser Grenzübergänge, der zu einer wirklichen
Reihendarstellung führt, wollen wir hier vornehmen.

*) Werke, pag. 73.

**) Diss. phil. Leipzig, 1887.
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Nach Riemann*) gilt für P-Funktionen, deren zwei
Exponentendifferenzen einander gleich sind, die Transformation

1 oo +1

7

y'

ß

ß'

7

7'

P

0 oo 1

0 ß

2
7

1 ß'
—- y
2 2

dies auf die Funktion (18) angewendet, ergibt:

a»)y=.Ü"p

— 1 oo +1
a a

2

a

2

n

-n —

cos-

0 oo

n

1

a
lim

P
0 ¥ ¥ 2

COS
X

n oc 1 nn a

2 2 2

und dies wird zu, da lim cos2X=1

lim _y „ PJ n oo

n

0 oo

0 1
2

1 _ IL
2 2

1

a

¥
a

¥
durch Vertauschung der Pole 0 und 1 ergibt sich

(20)
lim

y n c

o

a
¥~

a

2

oo

n

2

n

'¥

0 x_a

2

1 n

2

Die zwei in der Umgebung von a voneinander unabhängigen
Zweige P" und Pa' der Funktion

0 OO 1

ß ß 7 X
1

a ß' 7'

•) Werke, pag. 71.
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lauten nun in Form von hypergeometrischen Reihen

(21)
y1 Pö=Cxa(l-xFF(ß + /3+y,ß+/?Xy,l + a-ß,,x)
y3 Pa'=C'xa'{l-xyF{a'+ß +Y,a'+ß'+y,l-a + a', x>

hierin die Werte von (20) eingesetzt, ergibt

y1==
lim c(4)tF^+X---)a + l,4'l n oo \nV \2 2 2 2 ¦ n2

lim ry / x
y2 ti' I — I - F

nun kann gesetzt werden:

a n a n
— ^r> 1 —a>

hm F X_IL,a + 1 M lim p (n na + 1 _^«-oo \2 2 n2/ n 00 V 4n2

somit ergeben sich folgende zwei, voneinander unabhängige
partikuläre Lösungen der Bessel'schen Differentialgleichung

y1== lim C1x'F(n,n,a + ll—-^y
(22) n=°° V 4n

y2 lim C2x "F (n,n, 1

4 z
n

wie ersichtlich, geht yx in y2 über, falls a durch — a ersetzt wird.

Bedenken wir nun, dass am Anfang dieses Kapitels die
Bessel'sche Funktion erster Art als dasjenige partikuläre Integral
der Bessel'schen Differentialgleichung definiert wurde, für das
nach Gleichung (2)

r(a + i

x=0

ist, so ergibt sich danach für die erste der zwei Gleichungen (22)
für C,
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r(a-l-l) ¦ Ctx

(30)

•F n,n,a + l, x
In2

x=0

c,

analog wird

2" r(a+l)
1 1

Hl—a)
und es resultieren durch Einsetzen der Werte Ct resp. C2 in (22)
die bekannten Funktionen

(23)

J (x) lim
n=oc r(a+l)

Fin, n, a+l,

J (x) lim
»=oo r(i —a)

F I n, n, 1 - a,

4n<

4na

Das allgemeine Integral wird unter Zuziehung zweier
willkürlicher Integrationskonstanten durch die Form gegeben

(24) Y cJ(x)+c1 j"(x)

Hiebei bleibt zu berücksichtigen, dass diese Darstellung nur
ungebrochene Parameter gilt, denn in den P-Funktionen (16) und
(17) dürfen laut Definition die Exponentendifferenzen nicht
ganzzahlig sein.

Die spezielle Betrachtung für ganzzahlige Parameter fordert
n

die Einführung der Neumann'schen Funktion Y (x) resp. der
n

Schläfli'schen K (x) Funktion als zweites partikuläres Integral der

Differentialgleichung.
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III. Kapitel.
Die Integraldarstellung.

§ 6. Integraldarstellung der Riemann'schen P-Funktion.

Die gewöhnliche hypergeometrische Differentialgleichung

(1) x (x - 1) 44 - {c - (a + b + 1) x \±L + a • b • y 0
dx l )dx

lässt sich sofort durch die in der Einleitung betrachtete Methode
durch bestimmte Integrale integrieren. Setzt man nämlich:

x(x — l) Q(x); (x — l)(l + a-c) + x (c —b) B (x)

so erhält man die bekannte Differentialgleichung:

(2) Q(x).ÌÌ_(!_-2).Q'(x)Ay
dx dx

+ (g_2)(|-i)Q//(x) ,y_R(x)_dy_ + (g_1)R,(x) .y_0
deren Lösung sich durch das Integral

h

(3) y== (ua-c(u— lJ-^Cu —x)-du
g

geben lässt, falls die reellen Komponenten der Exponenten positiv
gedacht werden und wo die Grenzen zwischen den Werten

0 1 x und oo

beliebig gewählt werden dürfen.

Die partikulären Integrale der allgemeinen hypergeometrischen

Differentialgleichung mit den singulären Stellen 0,1 und oo

(4) &+.{--a—a' 1— y— / ] dy
x x — 1 J dx

+! aa'-\-ry\+ßß' y =0
x(x-l)
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die sich von denjenigen der gewöhnlichen hypergeometrischen
Differentialgleichung (2) nur dadurch unterscheiden, dass sie noch
mit den Faktoren Cx°(l— x)y multipliziert sind, werden daher
nach (3)

(5) y Cx°(l — xY j u"Xu — ^"""'(u—x)~adu

wo je nach Wahl der Grenzen zwischen den Grössen

0 1 x und oo

andere Funktionszweige entstehen.

Unter Berücksichtigung der Formeln (5) und (6) des zweiten
Kapitels wird (5) zu:

h

(6) y Cx" (1- xYfuf"+/S+r-1(u-lX'-*-r (u_ XT"-?-* du
g

Aus (4) erhält man bekanntlich die allgemeine hypergeometrische

Differentialgleichung der P-Funktion

m d2y fl-a-«' 1-ß-ß' l-y-/(dy
dz2 M z-a ^ z-b "*" z-c Idz

|«q'(a — b)(a — c) ßß' (b - a) (b — c) yy' (c —a)(c —b)[
| z — a z — b z — c I

——y =o
(z — a) (z — b) (z — c)

durch die Substitution:
z — a c — b

x •

z — b c — a

Da H z — c b — a
1 — x •

z — b c — a

ergibt sich nach (6) als Lösung von (7) das Integral:

y C (c — b)a (b — &y (c — a)-a -y (z — a)a (z — b)-"-^ (z — cf

/„¦¦««• -,«- ir '->¦-•¦ -M+ X)~"
' -y

du
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oder, falls die konstanten Grössen in die Konstante genommen
werden,

y =C1(z-a)a(z-b)-a-''(z-cF
h

C^a+ß+y-1 (u _ ira'-ß>-y L _ ^___1 ÌZZ^]""^du
z— b c — a

g

Setzt man
u1 — a c — b

u
u, — b c — a

so wird

u, — c a — b z — a c — b c — b
u — 1 — — • ; u • •

Uj — b c — a z — b c — a c — a

z — ux b — a

Uj — b z — b

du (c-b)M) du,
(c —a) X—b)2

An Stelle der Grenzen 0 1 oo x

treten / a c b z

Alle diese Werte eingesetzt, ergibt, falls wiederum alle konstanten
Grössen in der Integrationskonstanten aufgenommen werden

h

y=c2(z—a)a(z—by»(z—cy C{ü—a)-a-^,-y'(u1~h)~a'-^-y'
s

(ui — c)-«'-?'-? (z — Ul)-a_/?_r d u,

oder

(8)

h

v C3(z-'a)a(z-b^z-cf f(u-a)-a-'s'->''(u-b)-a'-'s-"/
g

(u — c)-"'-?-? (u — z)-«-/s-y d u

Mitteilungen der Naturf. Gesellsch. Bern 1919. 9
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Je nachdem nun die Grenzen g und h zwischen den Grössen a,

b, c und z gewählt werden, erhält man den einen oder andern

Zweig der Riemann'schen P-Funktion

abc
a ß y z

a' ß' y'

Da die Summe der Exponenten

« + a' + ß + ß' + y + y' 1

ist, ergibt sich, dass die Summe der Exponenten des Integrandes
in (8) S — 2 sein muss.

§ 7. Bemerkungen zu diesem Integrale.

Das in Gleichung (8) auftretende Integral lässt sich
allgemein in der Form geben :

h

(9) S= Au — a)A_1(u — b)B-1(u —c)c-1(u — d)D-1du*)
g

wo die Grenzen zwei der Grössen a, b, c, d bedeuten und die
Summe der Exponenten

(10) A + B + C + D 2

ist.

Das Integral (9) ist nun nichts anderes als das, nach Klein**)
so bezeichnete allgemeine Euler'sche Integral vierter
Ordnung. Die Untersuchung der Bessel'schen Integrale als

spezielle Formen der hypergeometrischen Funktionen führt demnach

auf den Zusammenhang der ersteren mit den Euler'schen
Integralen.

Aus der Bedingung (10) ist ersichtlich, dass stets mindestens
einer der vier Exponenten eine positive reelle Komponente
besitzen muss, dass aber auch anderseits nie alle vier Exponenten
zugleich positiv sein können. Man ist daher auf alle Fälle

*) Schläfli, Ueber die Gauss'sche Reihe. Math. Annalen, Bd. 3.

**) Klein, Hypergeometrische Funktion.
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gezwungen, freie Integrationswege zu betrachten. Da nun
zufolge (10) stets mindestens einer der Exponenten positiv sein

muss, so liegt immer einer der Punkte a, b, c, d derart, dass

die Variable in ihn geführt werden kann, d. h. irgendwo
anfangend hat S hier einen endlichen Wert. Man kann nun von
diesem Punkte aus um jeden der andern Verzweigungspunkte
eine Schleife als Integrationslinie in rechtläufigem Sinne wählen.
Ist z. B. die recp. A positiv, so können wir von a aus als

Ausgangspunkt die Variable um jeden der Pole b, c, d führen;
diese drei Schleifen entsprechen dann einer Schleife von a aus,
die sämtliche andern Verzweigungspunkte in sich enthält. Letztere
wird aber, da der Horizont für S als ein gewöhnlicher Punkt
bezeichnet werden darf, zu Null. Daraus erhalten wir den Satz,
dass höchstens zwei der gesamten Integrale voneinander
unabhängig sind. Durch diese beiden Integrale kann man jedes
andere, noch mögliche bestimmte Integral linear und homogen
ausdrücken.

Kann die Variable in keinen der beiden Grenzpunkte des

Weges geführt werden, so bedient man sich entweder solcher
Wege, auf denen der Integrand nachdem die betreffenden
Verzweigungspunkte umlaufen wurden, wieder den Anfangswert
annimmt, d. h. geschlossener Wege wie z. B. Doppelumläufe, oder
man betrachtet auf irgend einer Verbindungslinie der zwei
Verzweigungspunkte einen Punkt, von dem als Ausgangspunkt zwei
Schleifen, je um einen der Verzweigungspunkte gelegt werden.
Dabei wird natürlich vorausgesetzt, dass auf der betreffenden
Verbindungslinie keine weiteren Verzweigungspunkte liegen.
Betrachtet man daher die Punkte a und b, so hat man folgendes
Bild:

1) 2)

/
0° b°

Fig. 1. Fig.
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Von einer näheren Untersuchung des Doppelumlaufes sehen

wir hier ab, hingegen betrachten wir den Fall (2). Es sei :

T= f(u — a)4"1^ — b)B_1(u-c)c-1 (u-d)D_1du
IS
C

wo c den Weg (2) darstellen soll.

Denkt man sich die Verbindungslinie a b in die Realitätsgerade

gelegt, so wird

T= | (u— a)A_1(u— b)B _1(u — c)c_1(u — d)D-ldu

(X=X r
+ I (u—a)A_1(u —b)B_1(u —c)0_1(u —d)D_1du

R^zX)
u + v

Wird der Weg auf die Realitätsgerade zusammengezogen
und dem Erkennungsort die Phase n gegeben, so erhält man :

U /*(u — a)A -'(u-bf-'fu-cf-'fu-dfXlu
0

n a R

Hinweg : Phase 0 :

a

Integral Au- a)A~ x(u — b)B " l (u — c)0"1 (u — d)D_1 du

R

Rückweg: Phase 2 jt:
R

Integral e2 'n A f(u - a)A_1 (u - b)5"1 (u — c)c_1 (u — d)1*-1 d u

a

daher
a

U (1- e2 ' " A) f(u- aX1 (u- b)6"1 (u - c)0"1 (u- df~l d u
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analog wird
b

V (1 _ e2 ' " B) Au- a)A"x (u - b)3"1 (u - cX1 (u - df"1 d u

Nun ist nach (9)

o o a

S= /¦(u-a)A-1(u-b)B-1(u~c)°-1(u-d)D-1du= f - f
R R

oder die betreffenden Werte eingesetzt:

(11) S

(XXx5) /(u ~ a)A_1 (u _ b)B_1 (u ~~ c)0_1 (u ~~ d)D~l d u

R < "h\

(i_e2,"A) J (u_i

(XX R

Ist nun in S speziell

lA—1 f U\B-1 / \C—1 / J\t>—1 1
t) (u — b) (u — c) (u — d) du

A B

so erhält man, falls im zweiten Integral das Minuszeichen die

Wegrichtung ändert

S
1

1 2 i n A s

(1 —e
f [(u — a) (u - b)]A_l (u- c)0-1 (u - d)D_1 d u

R ^=

+ | [(u — a) (u — b)f_1 (u — cX1 (u — d)u_1 d u

Die beiden Integrale können, da im Punkte R der Integrand
gleiche Werte aufweist, miteinander verbunden werden und
es wird
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(12) xA- C-l nD-1
a) (u — b)]A-i (u - cX1 (u — d)""1 d u

- „ La, f Ku - a) (u - b)]4"1 (u - c)0"1 (u - d)0"1 d u
(1 —e )Jexx

woraus der Satz folgt, dass wenn in einem Euler'schen Integrale
zwei Exponenten einander gleich sind, der Integrand schon bei
einem Umlaufe um die betreffenden zwei Pole der Exponten-
basis, wieder auf seinen Anfangswert zurückkehrt. Dies trifft
hauptsächlich für die Integrale der Kugel- und Zylinderfunktionen
zu, welch letztere nun noch des Nähern betrachtet werden sollen.

§ 8. Zusammenhang der Bessel'schen Integrale mit denjenigen
der Riemann'schen P-Funktion.

Die im zweiten Kapitel gefundene Darstellung der Bessel'schen

Funktion J(x) durch eine P-Funktion lautete (Formel 17):

— 1

a

y lim P 2n= oo
a

~2

ir setzen

+ 1

a
cos —

2 n

-n+1 -4

cos —- z
n

und transformieren nach Riemann*)
— 1 oo + 1 0 oc 1

P
a a

— n — z
2 2 P

0 n
~2

_a_ 2

2

a .a—n+1
2 2

1 1 —n a

2 2 ~~2

*) Werke, pag. 71.
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die Pole oo und 1 vertauscht, ergibt
0 1 oo -1 + 1 oo

0 i2 a

2 z2

Z

:P
n

~2

n
— a
2p — 1

1 1 —n
2 2

a" 2
1-n 1-

2
-n a
2

Nun ist

dei

z

x
COS —

n

x
COS

n

Vz2-1

nnach wird

\J 2 Xv COS

n
die P-Funktion

1
x

i sin —
n lim n — oo

— i oo +1

(13 y :limP
n= oo

n
2~

1—n
2

n
a —

2

1 —n
a

2

n

i x

\/z2-l

1 X

woraus nach (8) als Lösung der Bessel'schen Differentialgleichung
das Integral folgt :

y c - — n
i x

lim n oo
h

r(u + l)'-,/,(u-l)—,/,(u—nWu—^5_)
n "du

g

durch Zusammenzug sämtlicher konstanten Grössen in der
Integrationskonstanten wird :

hf/ „ \ —n—a / • \— n — a

(u»_ir*/JL\ L.lsL-A
\ i x / \ n /n=oo g

y C2xa f(l -u2)a~,/2limA-
J n=oo\
g

h

C_.a i (¦* 2\a — Vi ixu i2x 1(1 — u) e du

uix
n

du
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Der unendlich ferne Punkt wird also zur wesentlichen
Singularität, die Variable kann in der Nord-Südrichtung ins Unendliche
geführt werden, ohne dass das Integral seinen Sinn verliert. Die
Grenzen g und h können demnach zwischen den Grössen

— 1 -flund —
x

wo N eine sehr gross gedachte Zahl bedeutet, gewählt werden.

Es ergeben sich somit als Lösung der Bessel'schen Differentialgleichung

die folgenden Integrale:
+i

(a) yi C2 xa / (1 - u2XVl e ixu du
— i

Ni

(b)

X

Ca i f-t 2\a — Vi im j3x Ml — u e du
9.J

+ 1

Ni

(c) yB C4x',y*(l-u^-V'eiludu
— 1

wobei natürlich vorausgesetzt wird, dass die reelle Komponente
von (a + 7») positiv ist.*)

*) Eine einfache Ueberführung ergibt sich auch aus dem gewöhnlichen

hypergeometrischen Integrale.
i

F(a,b, c, x) C I ubXl — u)c~b-l(l—xup*du

da

: I ubXl-u)
ò

j(x) lim _XLFfk)k]aH_Xk 00/^+1) V. 4kX
Durch Einführung freier Integrationswege stösst man dabei rasch

auf das bekannte Integral:

J(x) — j e TV "Dt-" _1 dt2iX
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Wir bestimmen nun die zur Funktion J (x) gehörenden
Integrationskonstanten vermittelst der Gleichung:

Aus (a) folgt:

J(x)

J(x)

+ i

c=0 2X(a + l)

c2 | l-u2)a-'/!du ^ 1

x=o ^ 2X(a+l)
L 1

nun ist f (1 - u2)a-,/s du 2 Al - u2)a~V2 d u

-1 o

u \/z du -z_1'!dz
2

+ i i

J (i -u2)*"''' du= jz-v' (1 - zX*' d.
— 1 Ò

Das Binet'sche Integral lautet aber

i
C «-i/i ,b-i, r(a) r(b)
| u (1 — u) du=: ———-—-' .r(a + b)

o

+ i

daher ist [ (l- u2)""* d u T/QrQ+VO
J r(a + i)

dies oben eingesetzt, ergibt

C2
x

2* r(7.)r(a+7.)
und das Integral (a) wird:

+ i

(14) J(x) "--l [ (l — u2)eixudu*)
r(7,)r(a + 70 j/ v
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setzt man

so wird
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x i u — Ui

+ xi

(42)

(15) J (x) (2 x)"8
1 f (u2 + x2)a-'l! e-u du*)

Für (b) erhält man:
Ni

J(X)

zerlegt : C3

C3 Ch - u8)—''* d u —
,=o J U U; 2X(a + l)

+ 1

0 Ni i

f(1 _ u2)* - V» d u +. Çfr _ u2) « - V d u
1 Ò

U -1U,

!1
J>

/ (l-u2X'" d u + i Al + u22)a"'2du2

u2 x.du — x /! dx

Ca

2
fa-xfXXix+i (i+x)a-'x-,/sdx

0 0 i

Nun ist nach der Theorie der Gammafunktion**)
1 00

fx'-^l-^-'dx^ f -," J (1 +
0

daher

J (x)

(1 + x)1
a + b dx r(a)T(b)

r(a + b)

C31r(70r(a + 7,) +. r (7,) r(- a)

* x=o 2l r(a + l) r(7«-a) 2ar(a+l)

*) Hankel, Math. Annalen, Bd. 1, ferner Graf, Bessel'sche Funktion 1.

**) Graf, Gammafunktionen, pag. 12.
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da aber
r (a) r (1 — a) sin a n

folgt

c =_J_I 1 i j 7t XV»-a)
8 2—1 I r (iys) r (a _|_ y8) "r sin a w r (1/j)

in (b) eingesetzt, ergibt

(16) J(x) -Xr-^T(-— 1
— + i "

r(1/s) l r(a + 7«) sin a TT

Ni

/«" h2\a —•/, „itxr(Vt-a) / (1- ty-'"e,,x dt
+ i

Für (c) erhält man auf gleichen Wegen

(17) j(x)__l_._X^j 1

+ i. "
v ' K ' 98-1 rHL\ rca_l_i/„l '2a-i r(7«) 1 r(a + 7t) sin a 7*

Ni

• r(7i-a)l/(1- t2)a-'|2eitx dt

Durch Addition von (16) und (17) ergibt sich die Gleichung
(14), woraus der früher bewiesene Satz, dass höchstens zwei
Integrale voneinander unabhängig sein können, auf praktischen
Wegen hergeleitet ist.

Durch die Substitution

xi t — u

ergeben sich aus (16) und (17) die Integrale:

(18) J(xi~(-—r('/,-a)2 -T(7*) ' sm a TT

N

+ Ì r(u2+x2)a-*/2 e"11 du
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(19) J (X)
1 Xl j -XX r(,/2 _ a)

2 r(7«) l sin a /r
N

2-,a—'s —uI f(u2 + x')a-'e-u du+X)Ür(a+
-fxi

durch Addition dieser beiden Gleichungen ergibt sich die früher
gefundene Form (15).

§ 9. Freie Integrationswege.

Die gefundenen Integralformen (14)—(19) setzen voraus,
dass die reelle Komponente von (a + '/2) positiv ist. Für
beliebige a müssen freie Integrationswege eingeführt werden.

Als Lösung der Bessel'schen Differentialgleichung ergab
sich das Integral

Ca 1/2 i \a —Va iiu ix | (u — 1) ' e du

wobei als Grenzen die Werte

— 1 + 1 und —x

in Betracht fielen.

Der Integrand

(U— 1)—'/'(U + I)-'/. eix»

weist zwei gleiche Exponenten auf, es kann deshalb, wie früher
in § 7 ganz allgemein gezeigt wurde, um die Pole — 1 und + 1

ein einfacher, geschlossener Umlauf von Achterform als Weg
gewählt werden.

Da der Horizont wesentlich singulären Charakter trägt,
Nisind von ausgehend nur Schleifenintegraldarstellungen möglich.
x
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Wir haben daher folgende möglichen Integrationskurven

Ni Ni. Ni

1) l) 3) V)

Von diesen Wegen betrachten wir nur den ersten und
letzten.

Aus (12) folgt, wenn darin

a -l, b l, A a + 7i, (u — c)c_1 (u — d)D-1 eix"

gesetzt wird :

+A i rI (u — 1) e dn
^_e2i»(. + v.)J (n —x) e du

Nach (14) ist aber falls XX<2) ï
/ i)a-1/! e' "(a - w

ausgeklammert wird

M
/TA) r (a+7,)

für das Integral obigen Wert eingesetzt ergibt

J (x) wi„W ,— • ei7r(a-'/!) T(u2- l)a-'/äeixu du

x
i n (a—Vi)

JW
rCMna + w

¦ X?^X<U irV'°d°
Nun ist, unter Berücksichtigung dass Cz^/XOl

r (a) • r (1 - a) -X—sin a re
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1 2i J_
(1 _ e2i7»(a+VD\ *£i»i(a+«/«)/-e-i«(a-t-Vi) ginla+'W)

'
2i

1 _1_
~~ sin7r(a+7ä)ei7I(a+1/,)" 2i

_ i r(a + 7»)r(7.-a)
21^ e« *<•-¦/.)

eingesetzt und gekürzt ergibt die von Hankel*) gegebene Form

x
2 / 1,2 -.-.a—Vi-i*u

r (7» - a)

i i n

(X)t
(20) J (x) ^^ / (u" — l)a~~ " e1 x a du*)V ; W r (72) • 2 i * M

substituiert man
u i x t

so wird das Integral zu

(21) J (x) (- l)a r(V'~a) • ^_" f e* (t» + x3). - V* d nv v

r(Vt) 2Ì7T 7 ;

-MC

eine Form die auch schon bei Hankel auftritt.

Betrachten wir nun noch das Integral

Ca / / 2 \a — Vi ix u Jx I (u — 1) e du
N i

w |

das nach unsern Untersuchungen auch eine partikuläre Lösung
der Besselschen Differentialgleichung darstellt.

*) Hankel, Math. Annalen, Bd. 1.

**) S. auch Graf & G ubi er, Bessel'sche Funktionen I.
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Durch Anwendung der Substitution

u i x t
wird, falls wieder sämtliche neu auftretenden Konstanten in Cx

vereinigt werden :

=Xfe' 2\» - V«(tf + xT '* dt

-ix.
Zur Bestimmung der Konstanten Cx benützt man wieder

die Formel:

J(x)
xa x=0 2a r(a + l)

in der, wegen des Faktors x_a vor dem Integral, a durch — a

ersetzt werden muss. Es ist demnach:

J(x) t a a — 1
C. e't dt r 1 - a

X U

N -<

Das Weyerstrass'sche Integral lautet nun*)

-J—^_J_ fe^x-'dx
r(a) 2i 7t J

also wird

G, fe't23-1 dt C, •
2i* 2*

V r(l-2a) r(l-a)

daher

n 1 r(l-2a) 0a

2 i TT r (1 — a)

*) Graf, Gammafunktion.
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Unter Berücksichtigung des Satzes über die Verdopplung
des Argumentes der Gammafunktion*)

22p-1r(p)r(p + 7s)
r(2p) r (7«)

wird

c _J_ r(2[7«-a])
_ 2a 2~2ar(78-a)r(i-a)

_ 2a
1 2Ì7T r(l — a) 2iwr(7i)r(i — a)

2_a r(7i —a)
2 i 7t ¦ r (Vi)

-N ^ —
1 X

im Integral eingesetzt, ergibt:

(22) 7(x) rX-a)(2xp r „ (u2 + x2)a- v* d u**}r (7*) 2 i TT
'

t
substituiert man nun wieder zurück, d. h. setzt man

u — x t i

so erhält man da r (7*) V^

(23) T(x) ^iX^ ^_ /V4i (1 - t2)a-"2 d t

NiiA

-i + i

Eingegangen am 15. Februar 1919.

*) Graf. Gammafunktion.
*) S. auch Graf & Gubler, Bessel'sche Funktionen.
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