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Franz Hartmann.

Der Zusammenhang der Bessel’schen Funktionj (x)
mit der hypergeometrischen Reihe.

Einleitung.

Felix Klein®) gruppiert in der hoberen Analysis die
hauptsichlich durch ihre Anwendung in der mathematischen
Physik und Astronomie, bekannt und wichtig gewordenen Funk-
tionen nach folgenden zwer Hauptkategorien:

1. in die der elliptischen Funktionen und ihren verschiedenen
Verallgemeinerungen und Spezialfillen, wie z, B. die hyper-
elliptischen Funktionen und Integrale, die Abel’schen Funk-
tionen, u. a, m.

2. 1n solche Funkti.onen

y=1(x)
die als Losung linearer Differentialgleichungen von der Form
d’ d
(1) T+M-L i Ny=0
d x dx

definiert werden, wo M und N rationale Funktionen von x bedeuten.
Hieher gehort hauptsachlich die hypergeometrische Funktion,
nebst all ihren mannigfaltigen Spezialfunktionen wie z. B. die
Kugel- und Zylinderfunktionen.

Die vorliegende Arbeit trachtet nun darnach die spezielle

Zylinderfunktion j (x), d. h. die Bessel’sche Funktion erster Art,
vermittelst der allgemeinen hypergeometrischen Funktion dar-
zustellen und zu untersuchen.

Vorerst verbleiben wir aber ber der ganz allgemeinen De-
finition der Funktionsarten, betrachten also die Differential-
gleichung (1). Vom theoretischen Standpunkte koénnen zur
Integration hauptsichlich zwei Methoden angewendet werden,
namlich :

1. die Integration vermittelst unendlicher Reihen;

2. die Integration durch bestimmte Integrale.
*) F. Klein: Ueber die hypergeometrische Funktion. Leipzig 1906.

-
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Integration linearer Differentialgleichungen
duarch unendliche Reihen.

Die Integration der Differentialgleichung (1) vermittelst un-
endlicher Reihen ist, rein formell betrachtet, eine sehr einfache.
Nimmt man einen beliebigen Punkt a im Zahlenfelde an, der
weder fir M noch fir N singuliren Charakter trigt, so konnen
in der Umgebung dieses Punktes die Funktionen M und N durch
Potenzreihen dargestellt werden, die nach steigenden Potenzen
von (x — a) fortschreiten. Der Convergenzradius reicht dabei
bis zu dem am nédchsten bei a gelegenen singuliren Punkte der
Funktion.

Wir setzen also

O o0

M="3A (x—a); N:Eva(xéa)‘

0 0

in Gleichung (1) eingesetzt ergibt

d’y vdjf N 5w
2 +2vA —ay &Y ZvB- —a) - y=0

Man suche nun diese Differentialgleichung durch unendliche
Reihen zu integrieren. Zu diesem Zwecke wird angenommen,
es existiere ein partikulires Integral, das sich durch die Reihen-
entwicklung geben lasst:

3) y= Ev C, (x—a)

Diese Entwicklung darf deshalb wieder um den Punkt a
gewihlt werden, weil das Integral der Differentialgleichung keine
andern singuliren Punkte enthalten kann als diejenigen der
rationalen Funktionen M und N. Das Convergenzgebiet der
Reihe (3) wird durch das gemeinsame Flichenstiick der Ent-
wicklungen um a in (2) dargestellt.
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Indem man den fiir y vorausgesetzten Wert in der Diffe-
~ rentialgleichung einsetzt, ergibt sich

o0 oQ

d° Ev C, (x—a) o dzv C, (x —a)’

0 v 0
(4) d X2 + Ay (X'_" a') g

0
+20Bv (x—a) 2 C,(x—a) =0

Bezeichnet man abkiirzungsweise :

o0

EvAv(x—a)v:aO-{—alx-{—azxg—{—....

0

Eva(x—a)'=bO+b1x+b2x2—|—....

0

Eva(x—a)v=co—[—clx+czx2+....

0

und denkt man sich diese Werte in (4) substituiert und zudem
die dritte Reihe in ihren Ableitungen ausgerechnet, so kann (3)
nur dann der Differentialgleichung als partikulires Integral ge-
niigen, wenn in (4) alle Summen der Koeffizienten gleich hoher
Potenzen von x zu Null werden.

Durch Herausheben der einzelnen Entwicklungskoeffizienten
erhilt man:

X0 =2¢,+ay¢, +byc,=0
|x!|=2-8¢,4+2¢c,a,4¢,a 4c¢ b,|c,b=0
| %* | =... ven =0

Gibt man nun den Konstanten ¢, und ¢, gewisse Anfangs-
werte, z. B. ¢,=¢, = 1, so konnen simtliche unbekannten

Koeffizienten c,, c,,...c, ... sukzessive bestimmt werden. Auf
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diese Art erhilt man ein, durch eine unendliche Reihe dar-
gestelltes, partikuliares Integral

) y = {(x)

der Differentialgleichung (1), das zwar vorlaufig nur in einem
beschrinkten Teile des Zahlenfeldes Giiltigkeit besitzt. Die Unter-
suchung iiber die Fortsetzungsmoglichkeit der Funktion wird uns
aber allgemeinen Aufschluss geben.

Sind die Funktionen M und N der Differentialgleichung
von einfacher Form, so lisst sich meistens diese hier ganz all-
gemein gegebene, allerdings nur formell durchgefiihrte Methode
bedeutend vereinfachen. Wir erinnern an die Integration der
hypergeometrischen Differentialgleichung, wie sie Weber*®) ent-
wickelt, ferner an diejenige der Differentialgleichung der Kugel-
funktion, wie sie u. a. auch Graf**) vornimmt, wo in beiden
Fillen direkt der allgemeine Koeffizient der Reihenentwicklung
bestimmt werden kann.

Integration durch bestimmte Integrale.

Wihrenddem die Integration der in ganz allgemeiner Form
gegebenen Differentialgleichung (1) durch unendliche Reihen mog-
lich war, ist dies nun keineswegs der Fall, wenn die Integration
durch bestimmte Integrale durchgefiihrt werden soll.

Die allgemeinste lineare Differentialgleichung nter Ordnung,
die bis heute auf direktem Wege durch bestimmte Integrale
integriert wurde, 1st die von Jordan®**) aufgestellte, verall-
gemeinerte Gauss’sche Differentialgleichung von der Form:

—E—0 QW) S

, Ay
(6) Q(X)d

(§~D) (i ) rr dn_ '_.
T 1-2 9 )dx—2

~R(®) & Y ¢ n )R ) "y

*) Riemann-Weber: Differential-Gleichungen, Bd. 2 pag. 12.
**} J. H. Graf: Kugelfunktionen, Kollegienheft W.S. 16/17.
*#*) Jordan: Cours d’analyse III, pag. 241 ff.
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wo & eine Konstante bedeutet und unter Q (x) und R (x) zwei
Polynome verstanden werden. Q(x)ist vom n*® Grade, R (x) vom
Grade < n.

Setzt man

(7) ysz(u—x)é“—’du
'L

wo U durch die Bedingung bestimmt wird

d

also
R(w)
1 e"r &T"—) dll

U=
Q (u)

so geht unter Beriicksichtigung des Taylor’schen Satzes die
Differentialgleichung (6) iber in

(8) deQ(u)(u_-xf_“:fdvzo

Das Integral (8) ist nun gleich Null, d. h. der Differential-
gleichung wird Geniige geleistet, falls der Weg L entweder eine
geschlossene Integrationskurve ist, auf der V nach zuriickgelegtem-
Wege seinen urspriinglichen, den Anfangswert wieder annimmt,
oder falls L einen solchen Weg bedeutet, in dessen Anfangs-
und Endpunkten V zu Null wird.

Der bekannteste Weg der ersten Art ist der nach Poch-
hammer®*) so benannte Doppelumlauf, zu den letzteren sind
hauptsichlich die gewohnlichen geradlinigen Integrationswege zu
zihlen, sowie auch die Schleifenintegrale, d. h. offene Wege, die
von einem gewissen Punkte, fiir welchen V zu Null wird, aus-
laufen und wieder in denselben zurickkehren.

Soll nun nach dem heutigen Stand der Theorie der linearen
Differentialgleichungen, die Gleichung (1) auf direktem Wege
durch bestimmte Integrale integriert werden konnen, so miissen

*) Math. Annalen. Bd, 35.
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die Funktionen M und N derart beschaffen sein, dass sich die
Differentialgleichung in der Form geben lisst:

2 I
® QA %—Z——-—-(s—- 2)Q @Y 4 EZBED gy

—R(X) +(§ DR (x) - y=
wo Q (x) ein Polynom zweiten Grades, also

Q(x)=(x—a2a)(x—b)

bedeutet, wihrenddem R (x) vom ersten oder nullten Grade sein

kann.
Wir betrachten vorerst den Fall, wo unter R (x) ein Polynom
ersten Grades zu verstehen ist, d. h. wir setzen

Rx)=x—c¢c
dann wird
R(u): u—-c _ A 4 B
Q) (u—a)(u—b) (u—a) (u—h)
wo
A_2C, B_c—-b
" a—b’ " a—b

und man bekommt

fQ(u)d u—-ad +/ :

—ALg(u-—-—a)+BLg(u-—-b)

woraus folgt:

R(u)
f‘“‘” (u——x)"t—n——: (u—a)A (u——b)B (u—x)‘f_?‘

V=e

Dieser Integrand V verschwindet, die reellen Komponenten der
Exponenten positiv vorausgesetzt, fir die Werte
u=—a u=>. u=x

ferner fiir u=-4oo

und zwar je nachdem

A}Bl §—250
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Da nun
U — 1 efm an i = )
Q (u)
(ist, erhilt man als Losung der Differentialgleichung (9) das
Integral | '

b
9

(10) y = l (u—a)*u—1b)*" (u—x) " du¥)

g

wo fir die Grenzen g und h zwei der Grossen a, b, x oder oo
gewihlt werden diirfen, vorausgesetzt, dass das Integral fir die
genannten Grenzwerte iberhaupt einen Sinn hat. Sollte letzteres
nicht zutreffen, d. h. kann die Variable nicht bis in die Endpunkte
des Weges gefithrt werden, so sind freie Integrationswege heran-
zuziehen. Wie schon erwihnt, leisten hier die Doppelumlaufs-
und Schleifenintegrale sehr gute Dienste.

Fallen im Integral (10) die beiden Werte a und b zusammen,
so werden die Exponenten A und B unendlich gross, ihre Summe
hingegen behilt endlichen Charakter. Um diesen Fall niher zu
untersuchen, setzen wir *¥)

be=a—¢
3 —0
A:C_i, B:ijllmﬁ
& €

und es wird

(x—a)A“l(x—b)B_lzliinO(x——a)C_l_%(x— a e)%‘l

:(xma)C——Qex—a

d. h. im Integral (10) fallen die singuliren Punkte a und b in a
zusammen, es wird a zu einem wesentlich singuliren Punkte des
Integranden. Die Variable kann nicht mehr um a herumgefiihrt
werden, Doppelumliufe um den Punkt a verlieren deshalb jede
Bedeutung, sie sind unméglich; hingegen konnen Schleifen-

*) Dieses Integral wird von E. Picard in seinem Werke: Traité
d’Analyse, Paris 1896, Tome III pag. 301, als hypergeometrisches Integral
definiert.

*¥) 8. u. a. auch Klein, hypergeometrische Funktion.
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integrale hier erfolgreich beniitzt werden, da in gewissen Rich-
tungen [Winkelraumen] die Variable bis an den wesentlich
singuliren Punkt gefithrt werden kann.*) |

Bedeutet in der Differentialgleichung (9) R (x) ein Polynom
nullten Grades, also eine Konstante, so folgt aus der Partial-

bruchzerlegung des Quotienten RE%, dass in diesem Falle
u
A=—B

sein muss. Im ubrigen lasst sich das Integral auf denselben
Wegen herleiten wie oben.

Obschon, wie bereits erwahnt wurde, die Gleichung (9) die
allgemeinste Form einer linearen Differentialgleichung 2. Ordnung
ist, die bis heute auf direkten Wegen durch bestimmte Integrale
integriert werden konnte, bilden ihre Losungen dennoch nur

*) In dieser Beziehung ist den Schleifenintegraldarstellungen ent-
schieden den Vorzug zu geben, weil bei diesen der Grenziibergang ohne
wesentliche Verinderung des Weges vorgenommen werden kann. Wir
erinnern hier nur an den Grenziibergang von der Binet’schen Funktion
zur Gammafunktion, wie thn Graf**) vollzieht. Es wird dort das Binet’sche
Integral resp. das Euler’sche Integral erster Art, zweite Form durch das

Schleifenintegral
1 a—1 n
—— | X (1} x)dx
21sinanm

gegeben, woraus sich ohne Schwierigkeiten das Integral fir die Gamma-
funktion durch Vollziehung des bekannten Grenziiberganges ergibt, nimlich

1
Na)=———— f‘e‘-xﬂldx

2isinan
L ¥4

—N<— o)

Wiirde man das Binet’sche Integral durch einen Doppelumlauf darstellen,
wie dies bis heute meistens der Fall war, so liesse sich der Grenziibergang
nicht durchfiihren ohne nicht langwierige Wegtransformationen vornehmen
zu miissen, die schliesslich zu einer Umwandlung des Doppelumlaufes in
eine einzige Schleife fithren dirften.

*) J. H. Graf Einleitung in die Theorie der Gammafunktion.
Bern 1894.
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einen kleinen Teil der in der Analysis bekannten Integrale, die
einer linearen Differentialgleichung 2. Ordnung als Losung ge-
niigen. Bei letzteren wurde aber umgekehrt verfahren, indem
vom bestimmten Integrale ausgehend, die Differentialgleichung
gesucht wurde. Auf diesem Gebiete haben u. a. hauptsichlich
E. Goursat,*) J. H. Graf **) P. A, Nekrassoff***) und Poch-
hammer****) gearbeitet. Nekrassoff hat direkt eme allgemeine
Methode angegeben, mit der sich die Differentialgleichungen
bestimmen lassen, deren Losungen in Form bestimmter Integrale
gegeben sind. ,

Beildufig se1 hier bemerkt, dass z. B. simtliche Integrale
von der Form

y =f(x) Ia(u——a)“(u——b)ﬂ(u—x);c—ldu

Q-

wo unter f (x) eine beliebige Funktion von x zu verstehen 1st,
einer linearen Differentialgleichung 2. Ordnung als Loésung ge-
nigen, wie leicht durch einfache Koeffizientenvergleichung mit
Hiilfe der Gleichung (9) gezeigt werden kann. Je nach der
Beschaffenheit der Funktion f(x) nimmt die ihr entsprechende
Differentialgleichung andere Formen an. Die Koeffizienten M und
N der allgemeinen Gleichung (1) weisen aber, insofern wir sie
untersucht haben, die nétige Gesetzesméssigkeit nicht auf, als
dass es maoglich wire, die Gleichungen auf direkten Wegen
durch bestimmte Integrale integrieren zu konnen.

Aus diesen ganz allgemein gefassten Betrachtungen iiber
die Integrationsmethoden der unserer Funktionenkategorie als
Definition zu Grunde gelegten Differentialgleichung (1) wurde
ersichtlich, dass die meisten hieher gehorenden Funktionen auf
relativ einfache Art durch unendliche Reihen, sowie auch durch
bestimmte Integrale dargestellt werden kénnen. So findet man

-*) Goursat, Acta Mathematica, Bd. 2.
**) Graf, Math. Annalen, Bd. 45.
¥**) Nekrassoff, Math. Annalen, Bd. 38,
***%) Pochhammer, Math. Annalen, Bd. 38.
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denn auch in der Literatur durchwegs obige Funktionen von
drei Hauptgesichtspunkten aus betrachtet, namlich:

1. in Form unendlicher Reihen,
2. durch ihre Differentialgleichung,
3. durch bestimmte Integrale,

wobei die Integraldarstellung meistens aus der Reihenentwicklung
hergeleitet wird, da sich auf solchem Wege das bestimmte
Integral in der Regel auf einfache Art bestimmen lisst.

Wir wollen nun auch in dieser Arbeit die Betrachtungen
nach obigen drei Gesichtspunkten gruppieren und beginnen mit
der Reihendarstellung.

I. Kapitel.
Die Reihendarstellung.

§ 1. Der Zusammenhang der Funktion j(x) mit der hyper-
geometrischen Reihe. Konvergenzkriterium.

Die Bessel'sche Funktion 1. Art wird definiert durch die
Reihe*)

c (i)a+21
1) )—Z( l'I‘ -T-z+1)

Der Zusammenhang dieser Summe mit der hypergeo-
metrischen Reihe

@ F(abex)—142">

_I_'a(a—~|—1)b(b+1) £ 4

c-1 c(c+1) 1-2
ziataﬂ)..(a+x--1)b(b+1)..(b+1_1)x
cled-1)..cFa—11-2........... 2

*) Graf & Gubler, Einleitung in die Theorie der Bessel’schen
Funktionen. Bern, 1898. Heft I, pag. 25.
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ergibt sich wie folgt*):
Unter Beriicksichtigung des Satzes, dass

ra+i4+1)=r(a+1)-(a+1)(@+2)....(a+ 4
wird (1) zu

G sy G
. 2/ < 2
s - T e B

mit dem Grenzwert

lim kk+1)....ck4+2—1)-k(k41)....(k+1—1) 1
k— o0 K k* |

erweitert, erhilt man

I = khmoo r(( 21)

2k(k+1) (k+Hr—1) k(k+1)..(k+2—1)
+1)@a+2..at+ 1 Al

Xz. i

('_ 418)

Die in dieser Gleichung erhaltene Summe 1st nun nach (2) gleich
der speziellen hypergeometrischen Reihe

2
F(k,k,a—l—l,—— X )

4k*
(3)
lim -——‘~2~—~)——F(kk 1, — Xz)
k=oor @t \ootTh T

Dieser Grenzwert tritt in der mathematischen Literatur
zuerst bei P. A, Hansen**) auf. Es ergibt sich daraus sofort

es wird daher

3  J(x) =

der Satz, dass sich die Funktion J (x) nur in Reihen, die nach
steigenden Potenzen des Argumentes x laufen, entwickeln lisst.
Fine Entwicklung nach stelgenden Potenzen des Parameters a
1st nicht moglich.

*) S, u. a. Jecklin, Diss. phil. Bern 1901.
**) Leipziger Abhandlungen, Bd. 2, 1852, pag. 252.
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Dividiert man die Gleichung (3) durch

3)
(a4 1)

so erhilt man durch Nullsetzen des Argumentes fiir samtliche
Parametergrossen die Beziehung:

denn nach Gleichung (2) wird:
==_[

x=()

T (a,b,c, )

Die Beziehung (4) wird uns spiiter bei der Bestimmung
der Integrationskonstanten sehr gute Dienste leisten. Vorerst
sel aber nach den Konvergenzbedingungen unserer speziellen
F-Reihe gefragt.

Die hypergeometrische Reihe F (a, b, ¢, x) konvergiert nach
den Untersuchungen von Gauss*) fiir simtliche Argumente die
kleiner sind als 1. Der Einheitskreis 1st Konvergenzkreis, wir
haben die Konvergenzbedingung

x| <1
1 2
Fur die Reihe k]irr;o (k, Is, dieds L, = :kz)
wird diese Bedingung zu ‘
2
o |2 <!

d. h. es konvergiert unsere spezielle F-Reihe fiir jedes endliche x,
der Konvergenzkreis schliesst das gesamte endliche Gebiet in

2
. sich ein. Die Funktion him F (k, ka1, — X2 ) st im Gegen-

satz zur Reihe F (a, b, ¢, x) im Endlichen nirgends mehr ver-
zweigt und iiberall stetig. Da aber die Singularitit im Punkte

*) Gauss: Ges. Werke III, 1866, pag. 125 ff,



a
(13) Zusammenbh. d. Bessel’schen Funkt. J (x) m. d. hypergeom. Reithe. 101

x = 1 der Reihe F (a, b, ¢, x) fiir den betrachteten Spezialfall
ins Unendliche fillt, so wird der unendlich ferne Punkt wegen
des Zusammenfallens zweier Pole zur wesentlichen Singularitit.
von der schon Schlifli*) bemerkte, dass sie schwierigen Cha-

rakter trage. Es zeigt sich also, dass die Funktion J (x) fir jedes
endliche x konvergiert, was speziell das Verhalten der Funktion
auf dem Konvergenzkreise anbetrifft, so kommt eine dies-
beziigliche Spezialisierung fir den betrachteten Fall wegen des

X a
Faktors (;) nicht in Frage.

Wenn schon die hypergeometrische Reihe F (a, b, ¢, x)
nur innerhalb des Einheitskreises konvergiert, also zu einer all-
gemeinen Darstellung der Funktion, dieses Element F (a, b, ¢, x)
einer analytischen Fortsetzung bedarf, fallt die Notwendigkeit

. 2
einer solchen fiir die spezielle Reihek lim F (k, k,a4 1, — fk—2>
= 00

zum vorneherein dahin,da hier das ganze endliche Gebiet durch
den Konvergenzkreis umschlossen wird. Rein formell lisst sich
natiirhch auch hier, entsprechend derjenigen von F (a, b, ¢, x),
eine analytische Fortsetzung durchfithren. Man erhilt auf diese
Art unbestimmte Symbole, die sich schwerlich in endliche Formen
tiberfilhren lassen werden. Beil der allgemeinen Betrachtung
der Differentialgleichung und deren Integrale wird dariiber noch
weiteres angefiilhrt werden miissen.

Gleichung (3) liefert auch fiir alle endlichen Werte von a
einen endlichen Funktionswert. Ist speziell a negativ ganzzahlig,
so werden die Nullstellen der reziproken Gammafunktion durch
das Unendlichwerden der F - Reihe gehoben, denn das unbe-
stimmte Symbol, das fiir solche Werte von a entsteht, lisst sich
leicht durch blosses Ausrechnen unter Beriicksichtigung der Formel

al'(fay=TI(a-+}+1)
bestimmen,

Auf diese Art stosst man auch auf die bekannte Formel

—n n
J (x)=(—1)" J(x) n = ganze Zahl.
wﬁ:)wgcgllafli, Math. Annalen, Bd. 3, pag. 136.
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§ 2. Eigenschaften der Funktion J (x).
Gauss*) hat in seinem Werke <«I)isquisitiones generales

fx -}....» die hauptsichlichsten

circa seriem infinitam 1 - i
Eigenschaften der F-Reihe hergeleitet, aus denen man ver-
mittelst der Formel (3) die rechnerischen Grundeigenschaften

der Bessel’schen Funktion J (x) leicht als Spezialfalle ermitteln kann,

So fand Gauss, dass

) dF(E:l,lx),c,x):_a(;b,F(a+1,b+1’c+1’x)

1st. Diese Formel auf Gleichung (3) angewendet ergibt:

. (5)
di®_ lm a  \2 <
dx k=oo dx F(a—|—1)F(k ey Bt d5— 4k2)

lim {1 (%)aw F(kk 1, — 12)
k=oo |2 ' TEFD a L=

(%) 'Y

(k—l—l k41, 848 — X2>}

ST+l @+ '2k 41K
da nun @t r@af1)=ra+2)
ist, wird

a Ll
QL}PQ__ lim {E (2) -F(kka+1_xz)

dx  k—oso x'm 4k
X\
”r((i)Jrz) F(kka+2 :k)}

*) Werke, III, pag. 125 ff.
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und nach (3) ergibt sich daraus

dj(x)__a i a1
1. s ——}ZJ(x)—J(x)

Hypergeometrische Reihen, deren drei Elemente a, b, ¢ sich
nur um ganze Zahlen unterscheiden, nennt Gauss verwandte
F - Funktionen. Irgend drei solche Funktionen sind stets durch
eine lineare Relation von der Form |

AF+AF+AF=0
verbunden, wo A, A, und A, rationale Funktionen von x be-
deuten.
Gauss hat sidmtliche, durch obige Form moglichen

Gleichungen berechnet und fand deren 15. Von diesen Glei-

chungen kommen zur Untersuchung der Funktion J(x) in erster
Linie diejenigen in Betracht, bei denen das dritte Element, d.h.
der Parameter a sich um ganze Zahlen verindert. Die diesem
Fall entsprechende Gauss’sche Gleichung lautet:

cle—1—(2c—a—b—1)x} F(a,b,c, x)
-+ (c—a)(c—b)xF(a,b,c+ 1, x)
—clc—1)(1—x)F(a,b,c—1,x) =0

2

L F (k, k,a}1,— :kQ) gesetzt, ergibt

Fﬁr F(a,b,c,x): "

lim x x
k,:ool(a+l)[a+[2(a—k)+1] 4k2]F(k’k’a+1’_ﬁ)
s X° | i ul 3
—@t+1—k =7 (k’k’a+2’_4k‘3)_a(a+l)(1 4741{")

,

X?\
F(k,k,a,—m) = )
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lim x2)
+1)F(k kat1,— ",

k == oo

~(elnnragn) -swrnr(uns
< il

und beriicksichtigt man, dass .

a(@a+1)I'(a)=1TI (-} 2)

multipliziert man diese Gleichung mit ————

so erhilt man
a—1

x .
lim | (E) " /k " . o2
.
\ a—1
) (3)
2 2 2
By (k k,a 2, — 4Xk2)— g F(k,k,a,—f»—g

nun ist nach (3)

a xz
T = et ( e+l — 4k)

daher wird die obige Gleichung zu

22 =T =T ) =0
X

oder
2a 2
IT. J(x)—{—J(x)_..—J(x)
nimmt man dazu die frithere Gleichung I
: a a+41
I. i) 2 Sy )

dx X

- %)

(16)

I
=
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so erhalt man durch Subtraktion (I— II)
al(x) _

a a—1
111 e [ AN ()
dx X
darch Addition von I und III wird ferner
' a1 a1 T
Iv. J(x) — J(x) = 239®
dx

Dies sind die bekannten vier Funktionalgleichungen, durch
die die Zylinderfunktionen meist definiert werden.*)

Der Vollstindigkeit halber sei hier noch erwihnt, dass mit
Hilfe der Formel
F(ab,c, 1) __I'(¢I'(c—a—h)
I'ic—a)I'(c—Db)
die Funktion J(x) fir unendlich grosse Argumente geschitzt
werden kann. Auch in den Kettenbruchentwicklungen lisst sich
die Bessel’sche Funktion erster Art leicht als spezielle hyper-

geometrische Funktion erkennen.

I1. Kapitel.
Die Differentialgleichung.

§ 3. Definitionsbemerkungen.
Im ersten Kapitel wurde auf ganz einfache Art die Bessel’sche

Funktion J (x) durch eine hypergeometrische Reihe dargestellt,
worauf dann aus den allgemeinen Eigenschaften der letzteren
die Bessel’sche Funktion als deren Spezialfall untersucht wurde.
Vom theoretischen Standpunkte aus, wobei wir hauptsichlich an
die in der Einleitung erwihnten Grunddefinitionen denken, bieten
diese ersten Betrachtungen wenig, sie basieren auf einer ein-
tachen Schlussweise, die uns iiber die eigentliche funktionen-
theoretische Beschaffenheit der Funktion wenig Auskunft gibt.

*) Nielsen: Handbuch der Theorie der Zylinderfunktionen,
Leipzig 1904.

Mitteilungen der Naturf, Gesellsch. Bern 1919, 8
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Ein tiefersehendes Studium der Funktion 3 (x), insbesondere was
deren Verwandtschaft mit der hypergeometrischen Funktion
anbetrifft, lasst sich bedeutend erfolgreicher und klarer durch-
fuhren, wenn die Definitionsdifferentialgleichung an die Spitze
gestellt wird.

Aus den im ersten Abschnitte mit I und Il bezeichneten
Funktionalgleichungen der Zylinderfunktion findet man leicht die
in der mathematischen Literatur zuerst bei Bessel*) auftretende,
nach ihm benannte Differentialgleichung:

1y "‘*9+1 dy +( Xo)y——O

x dx
Um die im folgenden kommenden Bestimmungen der Inte-
grationskonstanten moglichst einfach durchfithren zu konnen,

ziechen wir zur Defimtion der Funktion j (x) noch die 1m ersten
Abschnitte unter (4) gefundene Gleichung hinzu, die lautet:

|
PRCES I N

G

d. h. wir definieren die Funktion J (x) als dasjenige partikulare

I'(a+1)

()

multipliziert fiir samtliche Werte des Parameters a zu 1 wird,
falls das Argument der Funktion Null gesetzt wird.

(2)

Integral der Differentialgleichung (1), das mit dem Faktor

§ 4. Herleitung der allgemeinen hypergeometrischen Differential-
gleichung. — Die Riemann’sche P-Funktion.

Nach dieser einleitenden Bemerkung zur Definition der
Bessel’schen Funktion erster Art miissen wir einiges iiber die
hypergeometrischen Differentialgleichungen vorausschicken, bevor
die Gleichung (1) als ein Spezialfall der allgemeinen hyper-
geometrischen Differentialgleichung, der Differentialgleichung der
Riemann’schen P-Funktion, betrachtet werden kann.

*) Werke, I pag. 47.
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Schon Euler*) fand, .dass sich die Reihe
y =F(a, b, ¢, x)
als partikul'ares Integral der Differentialgleichung

(3) x(l——x) —l— c—(a+b41)x ———aby—O

darstellen ]asst.

Diese Differentialgleichung kann auf sehr einfache Weise,
nach den in der Einleitung erwihnten Methoden, auf direktem
Wege durch unendliche Reihen wie durch bestimmte Integrale
integriert werden.

In neuerer Zeit stellte sich nun aber heraus, dass die hyper-

geometrische Reihe
y = F(a7b7c)x)

als Definition der hypergeometrischen Funktion wenig zulissig
erscheint. Besonders darum, weil man heute bei Funktionen, die
sich durch Differentialgleichungen definieren lassen, nicht nur ein
bestimmtes partikuldres Integral ins Auge fasst, sondern allgemein
jedwelche mogliche Losung der betreffenden Differentialgleichung
als eine diesbeziigliche Funktion auffasst.

Man definiert daher heute als hypergeometrische Funktion
allgemein die obige Reihe, noch multipliziert mit einer Potenz
von X, einer solchen von (1-—x) und einer von x unabhingigen
willkiirlichen Konstanten, nimlich

4) y = Cx*(1—x) F(a,b,c,x)

Aus den beiden ersten Differentialquotienten dieser Funktion
ergibt sich durch einfache Koeffizientenvergleichung mit Glei-
chung (3) die Differentialgleichung, der unsere neue Funktion als
partikuldres Integral geniigt.

Fihrt man der Symmetrie des Resultates wegen die folgen-
den sechs Konstanten ein:
pr = g=a—a—y P

B s te f'=b—e—y i =c—a—b+ry

*) Jecklin, Diss. phil. Bern 1901. pag. 12ff.
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woraus durch Addition folgt, dass

(6) at-o L4 +r47r=1

so wird die neue Defimtionsdifferentialgleichung:

N (R S RECE AR by
d x* dx

+{aa’ — (e’ +BF —yy) x+ 88 xz}yr‘)

oder unter Beriicksichtigung von (6)

(M) x* (1 — x)*

dzy le—a—'—a' l—y——y'}ﬂ

®) dx2+ X T x—1 dx
LN T Y o
+{ : +X_1+ﬁﬁ}xg_d) 0%)

Dies ist die allgemeine hypergeometrische Differentialgleichung,
deren Losung wir durch die Funktion

y=0Cx*(1—x)F (a,'b, ¢, X)

oder unter Beriicksichtigung von (5), durch

9 y=Cx*Q—xFla+4-8+ pye +3 4+ 71+a—a, x)
definiert haben.

Es werde nun diese neue Definitionsgleichung (8), in Bezug
auf das Verhalten der komplexen Variablen x im Zahlenfelde,
des Nihern betrachtet.

Die Differentialgleichung weist in den Punkten
Xx==0 x=1 X = o0

Stellen singularen Charakters auf, denn fiur diese Werte werden
die Koeffizienten der Gleichung unendlich gross. Wir sind nun
keineswegs an die spezielle Differentialgleichung (8) gebunden,
sondern wir suchen der Vollkommenheit halber, die drei singu
laren Punkte derselben allgemein zu definieren, indem wir die
zu (leichung (8) analoge Differentialgleichung zu konstruieren
suchen, die in Bezug auf ihre Koeffizienten die Unstetigkeits-
stellen

aufweist,

*) S. u. a Klein, hypergeometrische Funktion.
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Diese verallgemeinerte Differentialgleichung erhilt man
durch die Substitution: '

x:(z—a)(c-—b)
(z—Db)(c — a)

oder nach z aufgelost
Z_b(aé——c)x-—a (b — ¢)
(@a—c¢)x —(b—c)

aus welchen beiden Gleichungen der Uebergang der Pole
0 o 1 in a b c¢ rasch ersichtlich ist. Fiirdie Differential-
gleichung (8) erhilt man dann die Form®):

B e e | dy

Z—a z—Db Z—C dz

+_[aa’ {a —b) (a —c)
l

+ﬁ/9’ (b —a) (b—0)+ yy'(e —a)(e—h) |

Z — a z—Db Z— ¢ |

Y =0
(z—a)(z—b) (z—ec)

Diese Differentialgleichung ist nun im Gegensatze zu (8)
in Bezug auf die Konstanten oo, p’, yy' ganz symmetrisch
gebaut, und zwar gehéren zu dem Pole a die Konstanten oo’

!

zu b.... 88 und zu c.... yy.

Als Losung obiger Differentialgleichung erhilt man nun die
durch Riemann**), allerdings auf ganz andere Art definierte
P-Funktion

a b c
(11) . y=Ple 8 7 z
af ‘{))I 7/f

Setzt man

¥) Papperitz, Math. Annalen, Bd. 25.

*¥) Riemann, Beitrige zur Theorie der durch die Gauss’sche Reihe
F (a, b, ¢, x) darstellbaren Funktion. Werke pag. 62 ff.
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so wird die Funktion zu

0 0o 1
(12) y=Ple 3 7 x
o p}f ;’f i

und dies ist die Losung der Differentialgleichung (8).
Aus dieser speziellen P-Funktion, die Riemann noch ein-
facher mit

(13) ¥ =

bezeichnet, deren einzelne Funktionszweige sich alle durch hyper-
geometrische Reihen darstellen lassen, folgt indirekt, dass die
allgemeine P-Funktion (11) als Losung der Differentialgleichung (10)
definiert werden darf. ' ' |

Die Konstanten e, ¢’; 3, 8'; 7, ' nennt man die Exponenten
der P-Funktion und zwar treten dieselben wie schon bemerkt
stets paarweise auf, indem jedes Exponentenpaar c¢ea’, 343, v/
zu den singuliren Punkten a, b, ¢ resp. 0, oo, 1 In gewissen
Beziehungen steht. Ferner muss auch fir die P-Funktion die
frithere Bedingung bestehen bleiben, dass

ctd o4ty =1

1st, des weitern haftet der Riemann’schen Definition noch die
Einschrinkung an, dass keine der Exponentendifferenzen

w— " f—F, g—7¢
eme ganze Zahl sem darf.

§ 5. Zusammenhang der Bessel’schen Differentialgleichung mit
der hypergeometrischen., — Darstellung der Funktion J (x) als
Riemann’sche P-Funktion.

Klein*) findet folgenden Zusammenhang zwischen den
Differentialgleichungen (10) und (1)
Setzt man in (10)

a=0,b=o0,¢c=¢,e—=aund ¢/ =—a

*) Hypergeometrische Funktion, pag. 281 ff.
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so erhilt man, falls z durch x ersetzt wird:

g pflploep )i, fon

d x° X X—¢ dx X
’ C"”’
et
X—c | x(x—¢)
oder
dy |1 1*/*7’}61}’
dx2+ X—' X —c dx
ca’ ﬂff’—rr’ vy }
=

Nun lasse man c unendhch wachsen, gleichzeitig aber auch dle
Exponenten y, ' und g, 8/, doch derart dass

g+ 8, v+ sowie auch g8 — yy'
endlich bleiben, ferner soll dabei

77y
¢

sein.

Fihrt man den genannten Greniﬁbergang unter Beriick-
sichtigung der angefiithrten Bedingungen ‘durch, so erhilt man
die Bessel’sche Gleichung

y 1 dy a’
(14) =Tty =0
x dx X"
oder in der Form von Anger¥)
(15) “”‘; L x 3 —aly—o

Die hypergeometrlsche Differentialgleichung geht somit in
die Bessel'sche iiber, wenn die singuliren Punkte 1 und co der
erstern 1m Unendlichen zusammenfallen, wenn also der Horizont
zum wesentlich singuliren Punkte der Differentialgleichung wird.
Die Bessel’sche Differentialgleichung ist somit ein Grenzfall der
hypergeometrischen.

h ‘
¥) Anger, Untersuchungen iiber die Funktion Jk , Danzig 1855.
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Weil sich Gleichung (15) als Spezalfall von (10) geben

lasst, 18t auch deren Losung, die Bessel’sche Funktion J (x) durch
eine Riemann’sche P-Funktion darstellbar. Diese Darstellung
hat schon Olbricht¥) allerdings auf ganz andern Wegen, vor-
genommen.

Bezeichnet man mit v eine zum Unendlichgrosswerden be-
stimmte Zahl, so kann

CEST Y

gesetzt werden, es ergeben sich fiir beide Vorzeichen gleiche
Resultate. Ferner missen die Grossen y und y'. sowie auch p
und (', falls sie unendlich gross gedacht werden, deren Summen
aber endlich sein sollen, unbedingt entgegengesetztes Vorzeichen
haben. Damit nun aber das Produkt im Zahler des Grenzwertes

77
g =1
c

lim

positiv ist, miissen die Exponenten y und y’ imaginar sein. Das
gleiche gilt fur die Exponenten # und 3, da auch

B —ry
endlich bleiben soll.

Man erhalt deshalb fir die Grossen der P - Funktions-
darstellung der Bessel’schen Transcendenten :

lim

a = a g=1iv ¥
V= o0 a’:—-——a ﬁ’__‘_—iv y'

Il

1V b=oo |
v

—iv e=+v |

weshalb sich nach (11) als Losung der Bessel’schen Differential-
gleichung folgende P-Funktion ergibt:

0 o0 iV
(16) = lim P a iv 1V X
TE® | —a —iv —1v ,

Man trachte nun danach diese spezielle P- Funktion in
hypergeometrischen Reihen darzustellen. Zu diesem Zwecke

*) Olbricht, Diss. phil. Leipzig 1887.
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muss die Funktion einer Transformation unterworfen werden,
wonach die Verzweigungspunkte
lim 0 o0 +v
V= 0o
abergehen in die Werte
0 oo 1

Viele von uns angestellte Transformationsversuche zeigten,
dass eine einfache Transformation auf direkten Wegen sich hier
kaum finden lidsst. Wir kehren deshalb noch einmal zu der all-
gemeinen hypergeometrischen Differentialgleichung (10 zuriick
und leiten daraus die Bessel’sche Gleichung auf ganz andere Art
her, indem wir nimlich an den Zusammenhang der Bessel’schen
Funktionen mit den Kugelfunktionen denken. Die auf diese Weise
hervorgehende P-Funktion lisst sich dann sehr leicht transfor-
mieren, worauf sich eine Darstellung durch hypergeometrische
Reihen rasch finden lisst.

Setzt man in Gleichung (10)
X
Z==¢0S —
n
so werden die Differentialquotienten

dy ____n dy
dz Sil’li dx
n
2 2 2
i%.:{d);_dy.icotgi n
dz dx dx n nj .sx
Sin —

Geben wir nun den Verzweigungspunkten

a b c
die Werte —1 n +1

so geht (10) iber 1n:

. X
2 ’ a_ar e ¢ |S1N—
d);m_[l—a-—a +1 B—p +1 s rl n-g—y—lcotg
dx’ n dx n n dx

x dy

X X X
lcos—+l cos——n cos——1
n Il n
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+]2aa'(1+n g8’ (0’~1 , 27 (1—n)

X X
l cos;—}—l CoS—-—n cos——-—-i

O

x - |
(cosi—l—l) (cosi—n) (cos——-1)
n n n

Zur Grenze lim n = oo iibergegangen ergibt, falls die Exponenten-
summen « + «’ und g + ' endlich bleiben,

dy 20—y —7) dy 1 dy , (ad’  pp | 4y ,
AR i — o =0
dx2+ X dx X dx+ n’ n’ n” y
Setzt man nun
ey B o B
7 27 4 2

und liasst man ferner die Exponenten g und g8’ unendlich wachsen,
doch derart, dass deren Summe

f4p =1

1st, so erhilt man wiederum dle Bessel’sche Differentialgleichung,
d2y

nimlich ‘
dx2 ) y=20

deren Losung sich nun als folgende P-_Funktion ergibt:

— 1 oo + 1
a X
17 — lim P — n — cOS —
1 y=tmbP - n
a a
- —n 1 —_—
o + 2

In dieser Funktion sind zwei Exponentendifferenzen einander
gleich. Solche P-Funktionen definiert Klein*) direkt als Kugel-
funktionen, da sie stets auf solche fithren. Auf diese Weise
ergibt sich sehr einfach das Verwandtschaftsverhiltnis zwischen
den Bessel’schen- und Kugelfunktionen.

*) Klein, hypergeometrische Funktionen, pag. 219.
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Riemann®*) fand nun, dass sich P-Funktionen, in denen
zwel Exponentendifferenzen einander gleich sind, durch 144 hyper-
geometrische Reihen darstellen lassen, wo je !/s, also 48 Ent-
wicklungen um einen Verzweigungspunkt Geltung haben. Jeder
der sechs Zweige der Funktion

PP’ PPPY PP
liefert 24 Entwicklungen, wo diejenigen fiir p°p* resp. 2 ol

resp. P’P” in der Umgebung der Pole a resp. b resp. ¢ konver-

gieren werden,

Die frither als Integral der Bessel’schen Differentialglei-
chung gefundene P - Funktion (16)

. o o0 v
m . . ;
¥ == P a v Iv X
V=00 : ;
e I — W

zeigt nun aber, dass von den 144 Reihendarstellungen zum Vorne-
herein */s wegfallen, denn die Pole b und ¢ obiger Funktion
fallen im Unendlichen zusammen, es entsteht eine wesentliche,
singuldre Stelle, um die eine Entwicklung nicht existieren kann.
Eine Darstellung der Funktionszweige P#, P?, P?, P”" ist nicht
moglich. Aus der zweiten Darstellung ist ferner ersichtlich, dass
eine Vertauschung der Exponentenpaare unter sich keine neuen
~ Reihendarstellungen liefert, wie leicht durch Ausrechnung ge-
zeigt werden kann. Die noch existierenden 48 Entwicklungen
werden deshalb nochmals um '/s reduziert, so dass schliesslich noch
12 hypergeometrische Reihen zur Darstellung unserer P-Funktion
verbleiben. Diese 12 Reihen konnen vorldufig bloss als Symbole
betrachtet werden, wie schon Olbricht**) bemerkt hat. Lassen
- sich die Grenziiberginge vollziehen, so erhdlt man durch
passende Bestimmung der Integrationskonstanten Reihendar- -

stellungen fiir die zwei partikuliren Integrale J (x) und J (x). Den
einfachsten dieser Grenziiberginge, der zu einer wirklichen Reihen-
darstellung fihrt, wollen wir hier vornehmen.

¥) Werke, pag. 73.
**) Diss. phil. Leipzig, 1887.
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Nach Riemann?®) gilt fir P-Funktionen, deren zwei Ex-
ponentendifferenzen einander gleich sind, die Transformation

—1 o0 }1 0

oo 1
0 B ¥
2
P y 8 v x| =P 2 X
I / ! 1 ﬁ' 4
3 —=
v 7 9 2 7
dies auf die Funktion (18) angewendet, ergibt:
—1 oo 1 0 oo 1
a _a o D 2
' = b . a4 =2 <
(19)y=n£r:° P 2 2 con— =n1_1__n;oP 2  2cos’ =
_a_,_a 0@ 1 n_a P
2 2 2 2 2
2
- - l.m 2 i
und dies wird zu, da "M cos®* —=1— 3
n—=0o0 I
0 o 1
n a
; o - 2 2
y=,m p 2 2 (1— iz)
Tl _n_a "
2 2 2
durch Vertauschung der Pole 0 und 1 ergibt sich
| 0 oo 1 |
a n 2
. — — 0 x
lim =
20 y=___P| 2 2 2
= Toj_a_n 17
2 2 2

Die zwei in der Umgebung von a voneinander unabhingigen
Zweige P* und P* der Funktion

0 ool ‘
Ple Byx
a’ﬁ’y’

*) Werke, pag. 71.
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lauten nun in Form von hypergeometrischen Reihen

Yi=P=Cx*(1—x)F(at+pt+y,at+p +y,1+e—d, x)

21
&) ya=Pa'=-‘C'x“'(lﬂx)yF(a’—’rﬁ—f‘r,a'+,3'+7,1—-a+a’, X)

hierin die Werte von (20) eingesetzt, ergibt

232 2
lim ) a | n a n X
N oo n’, 2 2’ 2 2’ T n’

2 ;]
e lim o’ (X )_?F (_i n _ B 7 1— x-)
Yo n? g T o' M

n= oo

nun kann gesetzt werden:

, 2 2
im g (—I—l—,—-ll,a—f—l,ig—) lim F(nna-—l—l x2>
2 n 4n

n= oo 9 1= 00

somit ergeben sich folgende zwei, voneinander unabhingige parti-
kulare Losungen der Bessel’schen Differentialgleichung

2
y, = lim C, x*F (n,n, a1, ——‘?)
4n

(22) nEee
2
y, = lim C,x*F (n, n,1— a,—x—2>
n— oo 4[1

wie ersichtlich, geht y, in y, iiber, falls a durch —a ersetzt wird.

Bedenken wir nun, dass am Anfang dieses Kapitels die
Bessel’sche Funktion erster Art als dasjenige partikuliare Integral
der Bessel’schen Differentialgleichung definiert wurde, fiir das
nach Gleichung (2)

' ALk
|
NG

ist, so ergibt sich danach far die erste der zwei Gleichungen (22)
far C, '
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| IF(a—|——1)-Clx“.F(nna+1__X_g) =1
(“X_)a 3 Y ’ 4._“2
2/ ’ lx=0
c, — 1a 1
2" I'(a41)
analog wird c 1 1

27 9™ r(1—a)

und es resultieren durch Einsetzen der Werte C, resp. C, in (22)
die bekannten Funktionen

()
.ﬂI(x) — lim 2

=00 ?(a—l— 1)

F(n, n,a—l—l,——x—‘>
n

QI
T]a(x) = lim Aal F (n, n,1-—-a, — 3 )
n=oco ['(l—a)

Das allgemeine Integral wird unter Zuziehung zweier will-
kiirlicher Integrationskonstanten durch die Form gegeben

24 Y=cJ(x) d¢ J(x)

Hiebei bleibt zu beriicksichtigen, dass diese Darstellung nur fir
gebrochene Parameter gilt, denn in den P-Funktionen (16) und
(17) diirfen laut Definition die Exponentendifferenzen nicht ganz-
zahlig sein.

Die spezielle Betrachtung fiir ganzzahlige Parameter fordert
die Einfiihrung der Neumann’schen Funktion Y (x) resp. der

Schlafli’schen K (x) Funktion als zweites partikulires Integral der
Differentialgleichung.
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II1. Kapitel.
Die Integraldarstellung.

§ 6. Integraldarstellung der Riemann’schen P-Funktion.
Die gewohnliche hypergeometrische Differentialgleichung

2
1) xEx—1) jxy -

¢c—(adb4Dx %#}-a-b-yzo

lisst sich sofort durch die in der Einleitung betrachtete Methode
durch bestimmte Integrale integrieren. Setzt man ndmlich:

x(x—1)=Q(x); x—1) (1+a—c)+x(c—b)=R(x)
und 1—a—=§

so erhialt man die bekannte Differentialgleichung:
2

® Q@ - F — -2 @ @Y

X
§— £--1 ! d ’
pEmAE-D g (X)-y—R(X)d—y+(§w1)R (x) -y =0
X 5
deren Losung sich durch das Integral
b
3) y = { Wt(u—1)1 (u—x)*du

g
geben lasst, falls die reellen Komponenten der Exponenten positiv
gedacht werden und wo die Grenzen zwischen den Werten

0 1 X und oo
beliebig gewiahlt werden dirfen.

Die partikuldaren Integrale der allgemeinen hypergeometri-
schen Differentialgleichung mit den singuliren Stellen 0,1 und oo

d’y l—a—a" | 1—yp—s'14d
) dug { | Y 7} Y
X X

oy | dx

—|—{ {—xy-}:l—l_ﬂﬁ}_(_x—_l)
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die sich von denjenigen der gewohnlichen hypergeometrischen
Differentialgleichung (2) nur dadurch unterscheiden, dass sie noch
mit den Faktoren Cx®(1— x)” multipliziert sind, werden daher

nach (3) )
(5) y = Cx*® (l—x)Yj T u—1)""" (u—x) " du

wo je nach Wahl der Grenzen zwischen den Grossen

0 1 X und o0

andere Funktionszweige entstehen.

Unter Beriicksichtigung der Formeln (5) und (6) des zweiten
Kapitels wird (5) zu:

h

(6) v=Cx*(l—xy f a1y o x) TP du
g
Aus (4) erhilt man bekanntlich die allgemeine hypergeo-
metrische Differentialgleichung der P-Funktion

1—a—d

1—p—p | 1—y—4y'|d
n f 13+ F—7 19¥

Z-—a z—Db Z—C dz

d2y
(7) df+{

[aa’(a——b)(a—g)_+_ﬁﬂ’ (b—a) (b—c)r_‘_yy’ (c—a) (c—b)l‘
| z—a z—Db Z—¢C |
y —0
(t—2a)(z—b) (z—0)
durch die Substitution: :
z—a'cmb

—+.

X =
z—b c¢c—a

Da z—¢ b—a
: 1 —x= -
z—b c¢—a

ergibt sich nach (6) als Losung von (7) das Integral:
v=C—btb—a)(c—a) " "(z—a)z—b) "7 (z—c)

h

’ , —_ a3 ¢c— b\—*-8—7
fua +845 ~1 (U _ 1)— a’'—pg'—y (ll —_— in—_%/ 2 — ];)) du

g
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oder, falls die konstanten Grossen in die Konstante genommen
werden,

y =0C,(z—a)(z—b) ¢ 7 (z—ecy

rua'"f'ﬁ%-?—l (ll _ 1)-a'—.3’""? (11 B b b _a—ﬁ—ydu
z—b ¢c—a

a4
g
Setzt man
u —a c— b

u = .
u—b c—a
so wird

uy—c¢c a—b>b z—a ¢—b c—b

u—-—]_: . ;u—— - s .

u,—b c—a z—b c¢—a c—a
Zz—u b-—a
u,—b z —b

1

0 = (c—b) (a—Dh) du,

d . 5
(c —a) (u,—b)

An Stelle der Grenzen 0 1 oo X
treten ;a c b z

Alle diese Werte eingesetzt, ergibt, falls wiederum alle konstanten
Grossen 1n der Integrationskonstanten aufgenommen werden

b _
y=C,(z—a)*z—by z—o) f (0,—2) " (0, — )T A
g .

(u‘1 — ) (g — ul);“_ﬁ_?’ du,

oder
h

(8) y=Cy(z—2)* (z—b)Yz—cy f (a—a)—e—F =7 (a—b)y—«'—#~7"
g
W—c) ¢ F=7 (u—2zy 7 du

Mitteilungen der Naturf. Gesellsch, Bern 1919. 9
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Je nachdem nun die Grenzen g und h zwischen den Grossen a,
b, ¢ und z gewihlt werden, erhilt man den einen oder.andern
Zwelg der Riemann’schen P-Funktion

a b ¢
y=P| e 8 y z
af ‘8! 7.’

Da die Summe der Exponenten

atd +8+p +r+r=1

ist, ergibt sich, dass die Summe der Exponenten des Integrandes
in (8) S= — 2 sein muss.

§ 7. Bemerkungen zu diesem Integrale.

Das i Gleichung (8) auftretende Integral lisst sich all-
gemein in der Form geben:

h
9) S = f(u—a)*‘—l(umb)B—‘(u—c)c—l(u—d)‘)—ldu*)

wo die Grenzen zwelr der Grossen a, b, ¢, d bedeuten und die
Summe der Exponenten

(10) A4+B+C+ D=2
1st.

Das Integral (9) 1st nun nichts anderes als das, nach Klein*¥)
so bezeichnete allgemeine Euler'sche Integral vierter
Ordnung. Die Untersuchung der Bessel’'schen Integrale als
spezielle Formen der hypergeometrischen Funktionen fiithrt dem-
nach auf den Zusammenhang der aersteren mit den Euler’schen
Integralen.

Aus der Bedingung (10) ist ersichtlich, dass stets mindestens
einer der vier Exponenten eine positive reelle Komponente be-
sitzen muss, dass aber auch anderseits nie alle vier Exponenten
zugleich positiv sein konnen. Man ist daher auf alle Fille

*) Schlafli, Ueber die Gauss’sche Reihe. Math. Annalen, Bd. 3.
**) Klein, Hypergeometrische Funktion.
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gezwungen, freie Integrationswege zu betrachten. Da nun zu-
folge (10) stets mindestens einer der Exponenten positiv sein
muss, so liegt immer einer der Punkte a, b, ¢, d derart, dass
die Variable in ihn gefilhrt werden kann, d.h. irgendwo an-
fangend hat S hier einen endlichen Wert. Man kann nun von
diesem Punkte aus um jeden der andern Verzweigungspunkte
eine Schleife als Integrationslinie in rechtliufigem Sinne wéhlen.
Ist z. B. die recp. A positiv, so kénnen wir von a aus als Aus-
gangspunkt die Variable um jeden der Pole b, ¢, d fihren;
diese drei Schleifen entsprechen dann einer Schleife von a aus,
die simtliche andern Verzweigungspunkte in sich enthélt. Letztere
wird aber, da der Horizont fiir S als ein gewohnlicher Punkt
bezeichnet werden darf, zu Null. Daraus erhalten wir den Satz,
dass hochstens zwei der gesamten Integrale voneinander un-
abhingig sind. Durch diese beiden Integrale kann man jedes
andere, noch mogliche bestimmte Integral linear und homogen
ausdriicken.

Kann die Variable in keinen der beiden Grenzpunkte des
Weges gefiihrt werden, so bedient man sich entweder solcher
Wege, auf denen der Integrand nachdem die betreffenden Ver-
zweigungspunkte umlaufen wurden, wieder den Anfangswert an-
nimmt. d. h. geschlossener Wege wie z. B. Doppelumliufe, oder
man betrachtet auf irgend einer Verbindungslinie der zwei Ver-
zweigungspunkte einen Punkt, von dem als Ausgangspunkt zwe1
Schleifen, je um einen der Verzweigungspunkte gelegt werden.
Dabei wird natiirlich vorausgesetzt, dass auf der betreffenden
Verbindungslinie keine weiteren Verzweigungspunkte liegen. Be-
trachtet man daher die Punkte a und b, so hat man folgendes
Bild:

Fig. 1. Fig. 2.
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Von einer niheren Untersuchung des Doppelumlaufes sehen
wir hier ab, hingegen betrachten wir den Fall (2). Es sei:

T::fm—af—%m;m“*m—wf‘wu—m“*du

wo ¢ den Weg (2) darstellen soll.

Denkt man sich die Verbindungslinie ab in die Realitits-
gerade gelegt, so wird

P e {‘(u—a)Aml(u— b ' —¢)° Tu—d)P 'du

e/
-

a_ T3 R

{
N

+J,.(u _a]A—l(u—-b)B—l(U —-c)C" 1(u—d)D_1du

Rr@
— U4V

Wird der Weg auf die Réalitatsgerade zusammengezogen
und dem Erkennungsort die Phase = gegeben, so erhilt man:

'U;fm—@“*m—hf”m—mfﬂm_dﬁ*du

o 0
\ B
T (;\ R
4 »— 2 7

Hinweg: Phase = 0:
Integral f(u —a)* u—b)f T u—¢° u—d)P tdu
R
RﬁCkWCg: Phase — 9 7L
R
Integral e2 i A (‘(u A a)A_1 (u _— b)B_l (u-— c)C—l (u___d)l)__1 a5
daher

Uzu—w“”ﬂfm—aﬁ*m—m“Ww—@“%w~meu
R
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analog wird

V=(1— e B)[(u— a)A_1 (u— b)B_1 (u— c)C"L (u — d)D_1 du

Nun ist nach (9)
b b a
o — f (a — a)A_1 (u— b)B_1 (u— c)C_1 (u — d)D_1 du= f — f

oder die betreffenden Werte eingesetzt :

(1) | S —

;j ) /(u“a)A - U—b)B Ya—e) Tu—d)"du—

1
1— ek f (W—a)"" @—b"" @—¢°" (w—d" du
(a "» R
Ist nun in S speziell

A=B

so erhialt man, falls im zweiten Integral das Minuszeichen die
Wegrichtung andert

So= g f u—a)(u—b)J"" (u—0)"" (a—d)°" du
B )
+f[u—a Yu—b)Pr u—eo) u—ad)® " du
Die beiden Integrale konnen, da im Punkte R der Integrand

gleiche Werte aufweist, miteinander verbunden werden und
es wird
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(12) S, = [‘ [(u—a)u—Db]* " u—c)* " (u—a)" du

—:g“z"i?r) f [u—a)u—b* " w—e® "' w—d" " du

' OO}

woraus der Satz folgt, dass wenn in einem Euler’schen Integrale
zwel Exponenten einander gleich sind, der Integrand schon bei
einem Umlaufe um die betreffenden zwei Pole der Exponten-
basis, wieder auf seinen Anfangswert zuriickkehrt. Dies trifft
hauptsichlich fiir die Integrale der Kugel- und Zylinderfunktionen
zu, welch letztere nun noch des Néhern betrachtet werden sollen.

§ 8. Zusammenhang der Bessel’schen Integrale mit denjenigen
der Riemann’schen P-Funktion.

Dieim zweiten Kapitel gefundene Darstellung der Bessel’schen
Funktion J (x) durch eine P-Funktion lautete (Formel 17):

— 1 oo +1
: 2 n L —
y=n]_1__mooP 2 U H
a a
ey el e
2 T 2
Wir setzen
cos — = z
n
und transformieren nach Riemann?®)
— 1 oo 41 0 o< 1
3 2, o LB e
P 2 2 =P 2 2
a a 1 1—n a
S 1 2 - -
2 + 2 2 2 2

*} Werke, pag. 71.
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die Pole oo und 1 vertauscht, ergibt
0 1 ) —1 1
n a 7z n n Z
0o — — 3 — — a —
p 2 2 27—1 | =P 2 2 Va2 —1
_l_l——n __a 1—n l—n_
2 2 2 2 2
Nun 1st
X
cos — cos —
Z . n _ n | _n
\/Zz"l \/coszi—-l 18ln — Lx
n n limn = ©Q
demnach wird die P-Funktion
—1 o~ 41
n a a &
(13) y=lmP 2 2 ix
n—=— 0<C
1-—n . 1—n
2 2

woraus nach (8) als Losung der Bessel’schen Differentialgleichung
das Integral folgt: '

1X

m_)g( T
f(u4 1)~ u

durch Zusammenzug samtlicher konstanten Grossen in der Inte-
grationskonstanten wird:
h

y = C, [‘(uQ—l)“'/’(.i)* ) (u E--w1> .
lim ¢ 1X ; n

=00 g
a“1”11 (1 ———IE) du

y—ngf(l
n

y=0C,x f(l — ) e’ " du

g

y———C(.n

~—1,>a"”(u—nr“(u—.i)_“_“du

1X
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Der unendlich ferne Punkt wird also zur wesentlichen Singu-
laritit, die Variable kann in der Nord-Siidrichtung ins Unendliche
gefilhrt werden, ohne dass das Integral seinen Sinn verliert. Die
Grenzen g und h kénnen demnach zwischen den Groéssen

—1 —{—lund-l)r—l
X

wo N eine sehr gross gedachte Zahl bedeutet, gewihlt werden.

Es ergeben sich somit als Losung der Bessel’schen Differential-
gleichung die folgenden Integrale:

+1
(a) y1 = Cs xaj (1—d®)* e’ ™ du
—1
E
(b) vy = Csy x* f(1 — P e " du
£1
ET_}
(c) Y3=C4ka] (1—wp—"reixt gy

e
wobel natiirlich vorausgesetzt wird, dass die reelle Komponente
von (a--'/2) positiv ist.*)

*) Eine einfache Ueberfithrung ergibt sich auch aus dem gewohn-
lichen hypergeometrischen Integrale.
1

F(ab,e x)=C [ub_l(l""u)cub—l(l--xu)"'“du

da 0

(3)
2 lim \2)

T =, Z oo I(at1)

<2
F (k k,a+1, — - )
» K, a4 o

Durch Einfiihrung freier Integrationswege stosst man dabei rasch
auf das bekannte Integral:
a X 1
J(x) = 1 fe 3(‘—T)t““—ldt
21n .
N
- /ﬁh?\

X e S
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Wir bestimmen nun die zur Funktion J (x) gehorenden
Integrationskonstanten vermittelst der Gleichung:
J (x)

a
X

. 1
o T (at1

Aus (a) folgt:

1
2 I (a1 1)

Ja (x)

X

x=0

= 02] (1—u2)a—1/2du=
*

1

+1
nun ist f (1 _u2)a_1/a iy, — 2f(1_ ug)a—i”zdu
=

0

a="Yz, duzéz“lt’ dz

+1 1
f(l-—u‘“’)a““du: fz“" (1—2) " dz
el b

Das Binet’sche Integral lautet aber

1

fua—-l(l__u)b—l du :_F(a) T (b)

9 T@+b)
+1
daher ist A—u)P"qu= L (*/2) T (a 4 /2)
it I'(a+41)
dies oben eingesetzt, ergibt

1 1

2" r(h)ra+ )
und das Integral (a) wird:
Ol
(14) J(x)= F(l/g)\l“(a—|—1/z) I(l—u)e‘Xudu*)

G ==
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setzt man X1u=— —u
so wird
N +xi
5 J s 2 — 2a—1]z —ud *

Fir (b) erhilt man:

J(x) - 1
} C f(l | du__ I (a+1)

zerlegt:

= Cs {‘(l—u‘“))a_lf’du 1+ {‘(1—ul‘2)a_i"2 dul[

= —1u,

—Cs {j,.(l—ug.)’_l" du+ if(l 4 uzg)““’"dqul

0

u2=x,du=%x"” dx

1 °p
% f (1—x)* *x dx+i J (1+x)*“"=x*"ﬁdx}
0 0

Nun 1st nach der Theorie der Gammafunktion**)

1 o)

I T x* _ T (b)
‘['x (1—x) % Of T dx Tath

daher
ljix)!:__Ea{T<‘/s)rta+1/=)+ir(l/s)r(—a) _ 1
.2l raiy rih—a | 2°r@a+i)

*) Hankel, Math. Annalen, Bd. 1, ferner Graf, Bessel’sche Funktion 1.
**) Graf, Gammafunktionen, pag. 12.
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da aber 1 = — id
T'(a)I'(1—a) sin a 7z
folgt
C,— a1—1 {_ 1 +i '75 I'(Y2—a)
2 r(‘f)I(a+ ) sin a 7 I (1)

i (b) eingesetzt, ergibt

(16) J (x) =

1 x" 1 . 7€
-1 - —I_ 1— :
2° T (Y2) I (a-/e) sin a 7

_I‘Li.
. I"(I/2 _a)}f(l_ t2)a—‘,f: eitx dt
e 1

Fir (c¢) erhilt man auf gleichen Wegen

a 1 x° 1 . 7T
(17) J(x) = ga—1 T (Ys) {T(a—|—1/2) +1 sina 7

. I'({2 —a) }j(l — )Pt dt

Durch Addition von (16) und (17) ergibt sich die Gleichung
(14), woraus der frither bewiesene Satz, dass hochstens zwei
Integrale voneinander unabhingig sein konnen, auf praktischen
Wegen hergeleitet 1st.

Durch die Substitution

Xit=—u

ergeben sich aus (16) und (17) die Integrale:

a L 1 _ x " = vy ’
(18) J(x) = 2*1 1)l sinazn rCh—a)
: 1 PR 2ya—tfs ,—u
: t ratm ” te] v

--X1
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(2 — a)

o g

sin a 7¢
N

} f 4z e™ du
—'{—xi

durch Addition dieser beiden Gleichungen ergibt sich die friher
gefundene Form (15). |

~ I'(a+1%s)

§ 9. Freie Integrationswege.

Die gefundenen Integralformen (14)—(19) setzen voraus,

dass die reelle Komponente von (a | /2) positiv ist. Fir be-
liebige a miissen freie Integrationswege eingefithrt werden.

Als Losung der Bessel’schen Differentialgleichung ergab
sich das Integral

ychj%f—n“mé”du

wobel als Grenzen die Werte

—1 —I—lund—lji
X

in Betracht fielen.

Der Integrand
(w— 1= (@ D g

weist zwel gleiche Exponenten auf, es kann deshalb, wie friiher
in § 7 ganz allgemein gezeigt wurde, um die Pole — 1 und 4} 1
ein einfacher, geschlossener Umlauf von Achterform als Weg
gewihlt werden.

Da der Horizont wesentlich singuliren Charakter trigt,

sind von N ausgehend nur Schleifenintegraldarstellungen moglich.
X
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Wir haben daher folgende méglichen Integrationskurven

S DI, &/‘ O/‘
1) 2) 3) 3)

Von diesen Wegen betrachten wir nur den ersten und
letzten.

Aus (12) folgt, wenn darin

a=—1 b=1 A=a+ 1, W—c) ' u—d)’ '=¢*"
gesetzt wird:
+1 .

2 a—1!: iux . 2 a—12 ixu
J(u — 1) "e dur—(1__ezm(a+'/=))fv '—1)"""e " "du

1 v
Nach (14) ist aber falls D)

(— 1) e
ausgeklammert wird

6] .

J (X) / . ei nf(a—‘./z) (112 _ l)a—‘/z ei xu du

T (Rt ) .

1

fur das Integral obigen Wert eingesetzt ergibt
G)
J 2 g Tl f .
J (x) = / : _ 2 qye— ixu
) = o et ) (= et/ @— D e du

Nun ist, unter Berucksichtigung dass T

€

- r—a =

sin a s
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1 . 21 1
( 1 e2i7l(a+ ‘/z)) _""é'i (a4 Y (e— im@-+ts) einta+ ‘/‘:)J ) 9 i
1 1
sin 7z (a-Y2)e' T T 24

1 -F(a—[—-l/z)r(l/z—a)

T %ix et

eingesetzt und gekiirzt ergibt die von Hankel¥) gegebene Form

. ree—a()
@ J@=—s

’/‘(u?.__ 1)3——-‘fz eixu du.g.)

D)

nix =+t

21«

substituiert man

so wird das Integral zu

@y JE=(—1L (;/’(1/; a).@z’?; f e (2 x)* " d tr)

()
(e

eine Form die auch schon bei Hankel auftritt.

Betrachten wir nun noch das Integral

yzcx“f(u2—1)“—‘/’ e*"du

N

—1+2) 4

das nach unsern Untersuchungen auch eine partikulire Losung
der Besselschen Differentialgleichung darstellt.

*) Hankel, Math. Annalen, Bd. 1.
**) S. auch Graf & Gubler, Bessel’sche Funktionen L
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Durch Anwendung der Substitution
uix=—t
wird, falls wieder simtliche neu auftretenden Konstanten in C,
vereimnigt werden:

y= Clx_afet (4 x) " dt

+ixy A

Zur Bestimmung der Konstanten C, beniitzt man wieder

die Formel:"

J ()

a
X

1 _ 1
x =10 23‘ r(a‘_l—])

in der, wegen des Faktors x " vor dem Integral, a durch — a
ersetzt werden muss, Es ist demnach:

L I A | P
X e - I'(l—a)
—N g

Das Weyerstrass'sche Integral lautet nun*)

1 1 x —&
= e -x dx
I (a) Zinf

e
also wird

leett“‘ldtzcl-ﬂ——: 2
' rt—=2a r(1—a

. 1 r(1—23)2a
' 2%2ix r{l—a)

*) Graf, Gammafunktion.
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Unter Beriicksichtigung des Satzes iiber die Verdopplung
des Argumentes der Gammafunktion¥)

rep =2 Tere+h)

I (')
wird
o 1 T@li—a) , 27" r(Ye—a)I'(1—a) o
o e D L :
217 I'(1—a) 212 (") I (1 — a)
27T (Y —a)
C 2im-I ()

im Integral eingesetzt, ergibt:

@) Jxm=°=L (;f("l;;‘)z(? ’;)"a f‘ e (0 4 x%* ~ " d u*)
TN

substituiert man nun wieder zuriick, d. h. setzt man

u=—xt1

so erhilt man da r (o) =\n

a

—a 1/, . 1
(23) J(X):F(/z,/z a), 2aX+1 {‘extl(l._—tg)a—/z dt

¢

Eingegangen am 15. Februar 1919.

*) Graf, Gammafunktion.
**) 8. auch Graf & Gubler, Bessel’sche Funktionen.
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