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L. Crelier, (Bern-Biel).

Ueber einige wichtige Kurven des Kurbeltriebes.
I.

Wir wissen, class der Kurbeltrieb oder die Schubkurbel be-

stimnil ist durch eine bewegliche Strecke A B von fester Grösse,
so dass die Bollbahn CA) von A eine Gerade und diejenige von
B ein Kreis (B) ist, dessen Zentrum auf der Geraden liegt.

Wir kennen übrigens auch die fundamentalen Kurven dieses

Systems, wie das Rollbett, die rollende Kurve, die Rollbahnen
von Punkten der beweglichen Ebene und die Umhüllungskurven
der verschiedenen Geraden dieser gleichen Ebene.

Wir wollen in den folgenden Ausführungen eine gewisse
Zahl veränderlicher Figuren betrachten, die mit der Bewegung
der Koppel A B in Verbindung stehen und die geometrischen
Orte der charakteristischen Punkte dieser Figuren und ihre Eigen-
heiten studieren.

Wie wir zuerst sehen werden, bilden diese Kurven eine
Reihe schöner Beispiele für das Studium der höhern Singularitäten.

Im weitern führt uns das Bestimmen der Tangenten einiger
dieser Kurven zu verschiedenen originellen und eleganten Kon-
sfruktionen, wie auch zu einigen sehr beachtenswerten geome-
frischen Eigenartigkeiten.

Schliesslich führt uns diese Studie zu mehreren Resultaten,
die zu weitern Entwicklungen Anlass geben, wie wir in Form
einiger Beispiele anführen, welche zeigen sollen, wie eine ein-
fache Frage der kinematischen Geometrie den Ausgangspunkt zu
verschiedenen interessanten geometrischen Nachforschungen bilden
kann.

II.
Wenn AB 1 die Koppel ist und OB — R die Kurbel, so

beachten wir zuerst, dass OBA in allen Lagen einem andern Kurbel-
trieb OB'A entspricht, so dass OB' — 1 R' und B'A — R 1';
OB' sei dann Kurbel und AB' Koppel; OB'A ist zudem auf OA
und auf der gleichen Seite von OA symmetrisch zu OBA. (Fig. 1
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u. 2.) Wie wir einen Kurbeltrieb OBA oder OB'A rechts von Oy
haben, können wir auch einen solchen links davon annehmen.

Das Momentanzentrum von OBA liegt in C und dasjenige
von OB'A in C' und wenn R 5= 1, so haben wir R'

_
1'. und wir

sagen, es seien zwei Hauptfälle möglich R > 1 und R •< 1.

Unter den veränderlichen Figuren betrachten wir die Recht-
ecke OACC" und OAC'C", ferner das Rechteck BB'DE auf den

Diagonalen des erstem und endlich die Dreiecke ABI, OCII
und OCIII. In diesen letztern ist Oil AB und OUI J A^B.
(Fig. 9, 10, 11 u. 12).

AB und A,B sind zwei symmetrische Lagen der gleichen
Koppel.

Wir werden nun folgende Gebilde genauer studieren:
1. Den Ort der Punkte D auf der Diagonale OBC.
2. Den Ort der Punkte E auf der Diagonale AB'C".
3. Den Ort der Projektionen der Eckpunkte des Rechtecks

OACC" auf die Diagonalen, das heisst den Ort von F, H, J

und K. (Fig. 3, 4, 5 u. 6).

4. Den Ort der Punkte F,, II, und K,, wo OF, 2 OF,

C"H, 2 C"H. AJ| 2 A.I und CK, -= 2 CK sei.

5. Den Ort der Punkte M und M,, wenn C"M j OB' und

C"Mj 2 C"M.
6. Den Ort der Punkte I mit BI | AB und AI J_ Ox

7. Den Ort der Punkte II, mit Oil J_ AB und CII OIL
8. Die Tangente in einem Punkte der rollenden Kurve.
9. Die Tangente in einem Punkte des Rollbettes.

10. Die Tangente in einem Punkte der Kurve D.

11. Die verschiedenen Mechanismen oder kinematischen Systeme,
die aus den Tangentenkonstruktionen resultieren.

12. Spezielle Sehnen der Rollbahn (a) von a mit Aa — R auf
der Verlängerung der Koppel.
Unter den zu lösenden Fragen sind die direkten und voll-

ständigen Konstruktionen verschiedener Kurven von besonderer

Wichtigkeit.
Nur eine solche Konstruktion lässt eine sichere geometrische

Besprechung der Resultate zu.

Im allgemeinen haben wir jede Kurve für beide Fälle.
R > 1 und R < 1 konstruiert.



Die analytische Besprechung der einfachen Punkte soll hier-
auf gemäss der allgemeinen Theorie aufgestellt werden. Ueber-
all da, wo ein neues kinematisches System in ganzer oder teil-
weiser Bewegung der veränderlichen Figuren auftritt, ist es sehr

empfehlenswert, die fundamentalen Kurven davon zu studieren.
Nur dann wird es möglich sein, die Theorie der veränderlichen
Figuren zu beherrschen und deren Eigenartigkeiten zu verstehen-

III.
Rollbett. (Fig. 1 und 2.) Das Rollbett ist der Ort der

Punkte C für den Kurbeltrieb OBA.
Die Gleichung des Rollbettes lautet:

(x- + y2) [x- + R" - - 1" f 4 R" x ^

•)

oder o (o }- 2 R) cos- '/ -|- R — 1 0

Wenn 1 (> R. so haben wir zwei Asymptoten. (Fig. 2.)

x • v l- - R-

Im 1. Fall R >-1 haben wir keine Asymptoten. (Fig. 1.) Die

Polargleichung kann auch folgenderniassen geschrieben werden:

| R 1 \ L " - R + 1

V cos'h/
' cos r/i'

<£ (/ AOB GAB'; ce OAB - AÜB'.

Gibt man sich Rechenschaft über das Zeichen des Winkels,

so kann o immer durch den Ausdruck o — R -)- 1 darge-
cos </

stellt werden.

Im Falle R > 1 sind die Punkte des Kreises mit dem Radius
R die Mittelpunkte der Sehnen CO, des Rollbettes, welche auf
der gleichen Hälfte durch irgend einen beliebigen Radiusvector
bestimmt werden. (Fig. 1.)

Im Falle R <( 1 sind die Punkte des gleichen Kreises die
Mittelpunkte der Sehnen CCj auf einem beliebigen Strahle, aber
zwischen einem äussern Aste der einen und dem innern Aste der
andern Seite. (Fig. 2.)

M Siehe: Literaturverzeichnis.
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IV.
Kurve D. Wir haben die Kurbel OB und die Koppel AB

und fällen ein Perpendikel vom Punkte B' auf die x-Axe.
welches die Kurbel OB schneidet.

Der Schnittpunkt wird mit D bezeichnet (Fig. 1 und 2).

Die betreffende Kurve ist der Ort der Punkte D. Ihre Gleichung
heisst:

(x=-Pj (x I y-l j I; v 0 ")
1 COS ff)

Wenn R > 1, ist die Kurve eine zweiblätterige Rosen-

kurve, und wenn R <' 1, sind 2 Asymptoten vorhanden, mit den

Gleichungen x p \/ ]- — R-.
Jedem Punkte D der betrachteten Kurve entsprechen zwei

Punkte der Kurve C, einer durch Addition, der andere durch
Subtraktion der Konstanten R. Unter diesen Bedingungen hat
die Gleichung des Ortes der Punkte C als Konchoïde des Ortes
der Punkte D folgende Form:

o' ç + R, oder einfacher Weise o' R

V.

Kurve E. Die 3 Punkte B, B' und D bestimmen mit dem

4. Punkte E ein Rechteck. Die neue Kurve ist der Ort der



Punkte E (Fig. 1 und 2). Es seien x und y die Koordinaten
von E, dann ist:

1" — R" sin'ù/
^ - sin-(r

cos-(jr
x R cos*/)

y- OD" sinh/~

Fig. 2. Kurven C, i), E mit K < 1.

Wir schaffen in beiden Gleichungen r/> weg.

R

y- - X"

R'"'

x- y"

-= |l-'-(R-'-^)](R'~ X-)

oder X" y" - 11" — R" - x-)J (R' — x-> - 0
So lautet die gesuchte Gleichung. Daraus folgt:

r cos- G (V- — 2 R" 4- 1") f R" (R- — 1") 0
Wenn R y> 1 so haben wir:

2 I x- — (R~ — 1") | (R" — x")- Somit mfissen wir haben

R < x < R und

- \ ü '
- F> x > i- \ fr ~ F

Der Wert von x liegt also zwischen den beiden Werten
von — R bis — V R" — 1" und 4- \ R" — 1" bis R.



— 6 —

Die Kurve setzt sich also aus 2 ovalen in Bezug auf die
x-Axe symmetrischen Teilen zusammen. (Fig. 1.)

Wenn R -< 1, haben wir

y~ -^2" [F — R" -f- x"] (R" — x"). Der erste Faktor ist immer

positiv. Beim andern müssen wir folgendes haben: — R <( x <'
-f- R; x muss man sich daher zwischen — R und R vor-
stellen und für x 0 ist die Axe eine doppelte Asymptote. Die
Koordinatenaxen sind ebenfalls zwei Symmetrieaxen. (Fig. 2.)

Reinerem»«/. Wenn wir von einem System OBA ausgehen
mit R (> 1, so gibt uns das System OB'A, das ans erste System
gebunden ist, seinerseits ein Rollbett, eine Kurve D und eine
Kurve E; es sind dies die zweiten Fälle des Vorausgehenden.
Man kann sie durch die nämlichen Gleichungen darstellen, in
denen R <' 1 sein wird oder die ursprünglichen Werte von R
und 1 behalten und sie dann vertauschen und durch w ersetzen
und umgekehrt.

Die betreffenden Kurven können wir folgenderweise zu-
sammenstellen :

Kurve C: 1.

2.

(x- + y") (x® -f R" — 1") 4 R" x*.

o _ R + 1
' cos </>

Kurve C: 1.

2.

(x" + y") (x- + Ï- - R") 4 1" X •

o 1 4- R —
COS CO

Kurve D: 1.

2.

(x*+y®) (x'-lHRV^
COS CO

e — 1

cos ff

Kurve D': 1.

2.

(x" + y") (x~ — R^) + F y" 0.

COS f/)
p K

COS (0

Kurve E: 1. x^ y" — (F — R' 4- x") (R" — X") 0.

2. o- cos- 0 (<f - 2 R- + 1") + R" (R- - F) o

Kurve E': 1. x' y" — (R" — F -f- x'- (F — x") 0.

2. cos-<9(^-21- +R-') + F (1- - R-) 0.
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Die 6 Kurven haben wir für jeden Fall R (> 1 oder R <( h

Die 1. Figur enthält sie für R >- 1 und die 2. für R <r' 1. Wie
gesagt worden ist, bildet die Kurve C der ersten Figur die
Kurve C der andern und umgekehrt und dasselbe haben wir
mit den Kurven D und D' und dann mit den Kurven E
und E'.

IV.
Kurve F. Der Punkt F ist der Fusspunkt der Normalen,

trachtete Kurve ist daher die Fusspunktskurve der Umhüllungs-
kurve dieser Diagonale inbezug auf den Ursprung. (Fig 3 und 4.)

Wir können die Gleichung des Ortes der Punkte F in Polar-
koordinaten suchen und wir haben

o OF OB' sin (« </) 1 sin (<-> <^)

1 sin wcosff -f-1 sin</> cos to sin </)
V'l ' — R" sin'-Vf -|- R sin rp cos</>.

Das Argument 0 heisst auch

0 90» — </>

<1- h.: o cos 0 V'l" — R" cos" 0 + R sin 0 cos 0.

oder: ((> — R sin 0 cos 0)~ cos" 0 (1" — R" cos" 0).
Man kann kürzen:

?" — 2R ç sin 0 cos 0 — il" — R") cos" 0 0.



— 8

Diese Gleichung ist die gesuchte Gleichung; in orthogo-
nalen Koordinaten heisst sie:

[V + y"T—x"]~ I IPVV (V -|- y'h
Die Gleichung ist vom 8. Grade. Die Koordinatenaxen sind

Symmetrieaxen.
Der Ursprung ist ein vierfacher Punkt und die y-Axe ist

eine vierfache Tangente in diesem Punkte.

Im übrigen sind die Punkte (+ \/p' — R-, o)u.( — V 1" — R", 0

Doppelpunkte der Kurve. Wenn E 1 ist, werden diese Doppel-
punkte der Kurve imaginär.

/ o o 9
Für den Fall R 1, bleibt uns; (x" ~|~ y" J — 4R- x" y", d. h.

die Gleichung der vierblättrigen Rosenkurve oder „Vierblatt",
die mit den Astroïden verwandt ist.")

Der Ort d er Punkte F ist d a lier eine V e r a 11 g e m e i n e -

rung des „Vierblattes ". Wir können bemerken, dass vom
geometrischen Gesichtspunkt aus betrachtet, die betrachtete
Kurve sich auf zwei Bewegungen des Kurbeltriebes bezieht, mit
gemeinsamem Zentrum in 0 und symmetrischer Lage inbezug
auf dasselbe.

Das System OBA ergibt nur eine Hälfte der Kurve-
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vu.
Kurve H. (Fig. 5 u. G). Es sei G" der 4. Eckpunkt eines

Rechteckes OACC" und OC eine Diagonale.
Fällen wir C" H J_ auf OC, so sei Ii der Fusspunkt des

Perpendikels von C" auf OC.

Es seien nun x und y die Koordinaten von H und x' und y'

diejenigen von C: dann haben wir:

Fig. 5. Kurven .i u. Fi mit R > 1.

OH" yy'; woraus y' -

y

woraus x xy' ^ x i x" j y")
x' y y y-

Indem wir diese Werte in die Gleichung für C einführen,
erhalten wir nach Vereinfachungen:

£x" (x" -p y4~ 4~ (^' — i") i'l ~ ^ ^ y' (*" "f" y")- e® ist
also die Gleichung für den Ort der Punkte H. In Polarkoordi-
naten werden wir folgendes haben:

(r • COS" </' — (p — R") sin '
</> -_F 2 R siiw/) cos"* f/

oder : o" cos"'
</> p 2 R o sin"' r/> cos" </> — (P — R" sin *

</> =-- 0

d. f. P R sin"'/ '/ HP VR'»inV costy 4" (1' — R") sinP/i cos"V/>
O ——

~~ ~

COS-ff
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R cos qp + V1" — R" sin" r/> J 1.— V
COS 'f

Wir können auch den Wert für o direkt aus x und y ab-

leiten:

— yy' ,9 sin rp • À' ty cp

Man hat aber: R qp sin w -)- R cos rp — R cos rp^ R V1" — R" sin" rp

sind. f.:
R sin" (/>

sin" y \/f" — R" sin"y
cos r/>

Fig. <>. Kurven .1 u. II mit R < 1.

Die Vorzeichen beider Resultate (1.) und (2.) stimmen über-
ein: man hat nur die Vorzeichen der Winkel zu berücksichtigen.

Die Kurve ist von 12. Ordnung, das niedrigste Glied vom
8. Grade, d. h. (ß? y8 _ q

Zusammenfassend ergibt eine geometrische Besprechung
folgende Bemerkungen :

1. Der Ursprung ist ein vielfacher Punkt 8. Ordnung.
2. Er besteht aus 4 symmetrischen Rückkehrpunkten mit der

x-Axe als Rückkehrlangente.
3. Mit R R> 1 hat die Kurve keine reellen Asymptoten. (Siehe

Fig. 5.)
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4. Mit R <U 1 sind die Geraden x + V R" — 1" doppelte Asym-

toten. (Siehe Fig. 6.)

VIII.
Kurve J. (Fig. 5 u. G.) Der Punkt J sei der Fusspunkt

des Perpendikels vom Eckpunkt A des Rechteckes OACC" auf
die Diagonale OC.

Wir haben:

v F — R- sin- </> ; 2 ,| R —R-sin'V
o, — o„ RH sin « — i

cos */< L cos*/.

COS- '/ R cos- */ + cos </> \/F __ R- sin- ^

d.h. (ç—Ii cos"*/) =cos"*/<(F—R" sin" */)

In orthogonalen Koordinaten erhalten wir nach Verein-
fachungen:

[(x- -| (R-— F)x'-J =4R'x (x"-|-y-)
Wir können diese Gleichung auch direkt aus derjenigen

von C ableiten.
Wir setzen: C (x', y') und J (x, y); dann ist:

x' y' xy'
— - und x — ; ferner:
x y y

(x y' — x y)
y- x (x' — x) - - — — • x, woraus:

y' A- (x- + y-) und x' —i "

Eingeführt in die Gleichung von C und vereinfacht, er-
halten wir:

[(x- -f- y")" -)- (R- — 1") x'] 4R- x' (x" -f y*)

Wir finden folgende geometrischen Eigenheiten :

1. Die Koordinatenaxen sind die Symmetrieaxen.
2. Die Kurve ist von 8. Ordnung und der Ursprung ist ein

vierfacher Punkt.
3. Die andern Schnittpunkte mit der x-Axe sind bestimmt

durch x R -(- 1 und x — R +1.
4. Die Kurve hat in der Unendlichkeit keine reellen Punkte.
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5. Für R <- ' 1 haben wir 4 Kurvenäste, die im Ursprung tangieren
und die y-Axe als gemeinschaftliche Tangente haben.

6. Für R>1 ist der Ursprung ein isolierter Punkt und die
Kurve setzt sich aus 2 geschlossenen Aesten zusammen,
die getrennt und symmetrisch inbezug auf die y-Axe sind.

IX.
Kurve K. (Fig. 3 u. 4.) Der Punkt K ist der Fusspunkt

des Perpendikels von C auf die Diagonale AB'. Der >rt der
Punkte K ist die gesuchte Kurve.

Wir setzen: K (x, y); C (x,,, y,-f): F (Xp, y^,) und wir haben:

< l 1+1 Vf
* — Xp —

^F

y - *F+ ^ F

yF
YF ~

X-
F

yf
1 '2 2 l

x"' y
' und v,.. 1! 3"

Yc YF ^ -- y p. ----- ; ferner

Eingeführt in die Gleichung von F, erhalten wir:

|
X - (x ' | yä -4- R- _ p i R- x L f y

Vom geometrischen Gesichtspunkte aus betrachtet, finden
wir: die Koordinatenaxen sind auch die Symmetrieaxen, die
Kurve hat 4 Doppelpunkte auf der x-Axe, sie sind bestimmt
durch x 1- (R —}— 1) und xI (I— R); es sind einfache

Rückkehrpunkte.
Für R 1 sind die Geraden x I \ F — R- doppelte

Asymptoten, die den Rückkehrpunkten zweiter Ordnung ont-
sprechen.

Für R > I sind diese Asymtoten imaginär und die Kurve
setzt sich aus 2 geschlossenen Aesten zusammen, die inbezug auf
die y-Axe symmetrisch liegen.

X.

Grenzfälle der Kurven F, H, J und K.

1. Wir haben schon bemerkt, dass der Grenzfall der Kurve F.
1 R, ein Vierblatt ist.
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(x~ -|- y"/ 4 R~ x~ y". Die Kurvenäste liegen sym-
metrisch zwischen den Koordinatenaxen.

2. Der Grenzfall von H gibt: R=1 und

(x* + y'f 4 R" y' oder
o- 2 R sin- i.)

Es ist dies die Doppeleilinie von MüngerA)
Die Kurve wird von der y-Axe symmetrisch geschnitten.
Die Kurve J gibt einen analogen Grenzfall:

fx" -j- y~) — 4 R~ x'
oder o 2 R cos- w.
Es ist dies die gleiche Kurve, aber diesmal durch die x-Axe
geschnitten.

3. Der Grenzfall der Kurve K ist eine reguläre Astroïde mit
dem Parameter 2 R :

x=' -| 1 2 R

XI.
Andere Bemerkungen über die Kurven F, H, J und K.

Die Vektoren haben ergehen:

Pp (y. sin w cos w ; sin- w ; tp çy, cos- o.

Wir können ebenfalls das Argument y in bezug auf den

Vektor von K ableiten:

Xp OJ cos (/ — (y. cos- y cos

Vp OH sin (jp Op sin'^yf). sin r/>

_
e.r sin" V _ 3^ *K gjCOs'fjp

^ ^
1

tg t oder tg r/ tg-y.
Die Koordinaten des laufenden Punktes jeder Kurve können

abgeleitet werden von denjenigen des korrespondierenden Punktes
von irgend einer andern unter ihnen.

Aus den schon abgeleiteten Resultaten lässt sich folgende
Tabelle zusammenstellen :
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c F H .1 K

X y
xy= x*y xy' y® x-y X* y'

x''+y* x=+y* x*+y* x= l-y* x*+y* x* iy- x" iy- x'+v-

x- - y2 x- + y-
X X

OX^ y- v° x^

X y
y

y X y
X y

x(x- + y'0 x- + y-
X

X-
X y

X- x"' X®

y- y y }• y'-' y-
y

x- •- y- yix > »

o
y- y- y il y

3

X X" X
y

X X-
X y X

X"

2 >

X ' ' 4 V-'

2 2

X -f- Y
' 1 2

X«y|-i

2 1

xy
1 2

xSyS y X

2 1

xlïy:« Xl l y
X ' y"

Bemerkung: Im Rechteck OAC'C" können wir eben-
falls 4 analoge Kurven aufstellen, nämlich je die zweiten Fälle
der vorangehenden. Ihre Gleichungen kann man direkt auf-
stellen, indem man OB' 1 und B'A R einsetzt oder in-
dem man in den ersten Gleichungen R und 1 vertauscht und

g durch (m ersetzt.
Die neue Kurve F beispielsweise ist die Fusspunktkurve

der Umhüllungskurve der Koppel inbezug auf den Ursprung,
weil man den Ursprung auf AB projiziert.

Die neuen Kurven werden wir als Kurven von F', H', J'
und K' bezeichnen ; ihre Gleichungen liefern mit den vorher-
gehenden die folgende Zusammenstellung:

Kurve F:
' K*'"' + ^ ~ ^ ~ ^ ^
2. o" — 2 R (; sin ö cos ft — (l~ — R") cos" 0 0

Kurve F': '' fc* + ^ ~~ ^ ^ *"'] ' ^ ^
2. o" — '2 1 o sin ft cos ft — (R~ — 1") cos" Ô Ü
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Kurve H• ^ ~ ^ 'J * **

2. o" cos" w |- 2 Ii sin" w cos" « — (1" — R") sin'^ w 0

Kurve H' : 1. [x" -f- (x" -j- y")~ -(- (*" —R^)}''] 4 lV y' (x^ + v")

2. tr cos- f/ • |- 21 ç sin- y cos- qp — (R" — 1") sin' </< — 0

Kurve J : 1. [(x" + y~f (R" ~ 1") x"] 4 R" x"^ (x" + y")

2. (ç — R cos" </)" cos" </> (I" — R^ sin" r/>)

Kurve J' : 1. | x" -f- y^ -f- G~ — R")x~ |" 4 fx* (x" -f- y")

2. (ü — 1 cos- w) cos- w (R- — i- gin" w)

Kurve K :

Kurve K' :

(x" |- y") -)- R" — 1" 4R"x« y y")

(x® + y®) + 1" " R- 4 r x'' (x" + y"3 3
X Vx

XII.
Die Kurven F,. II,, J,. K,. Tragen wir nun OF^ 2 OF;

C"'H, — 2 C"H; AJ, 2 AJ und CK^ 2 CK ab, so wird der

Ort der Punkte F,, H,, J, und K, die Kurven bilden, die wir
näher betrachten wollen.

Für die erste /vwre haben wir:

^ 2 gj. - 2 sin cos y
*1

I'k, 2R sin (/ cos «/ + sin </> y/4 f — 4 R- sin qp

Es ist die gleiche Kurve wie der Ort der Punkte F. Der
fundamentale Kurbeltrieb aber ist von doppelter Dimension. Die
Kurbel ist — 2 R und die Koppel 2 1. In orthogonalen Koordi-
naten lautet die Gleichung:

f(x" + y")~ — 4 (1" — R") x"J 16 R" x" y" (x" + y")

Die 2. JC-uri'e gibt uns:

Gp — y,,; H ist so gelegen, dass

HÖH, HOC ^ — </ "»4 XOHj ^ — 2 7
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7t 3 yf
0 2>r - — 2rf -2./

cos- ff — sin- (/ — sin 0
sin 1-1 und cos ff -| /l -{- sin 0./ jl — sin r/ unu cos r/> -f- /

> \ o y
Daraus folgt:

_l / w i \ ^ ~ ^ ^ — sin 0) \. /I — sin G
Dt, D ^ " ' - ' " + V 1 : sin0

' Y 2

Die Gleichung in orthogonalen Koordinaten würde man
durch direkte Transformation erhalten oder davon ausgehend,
dass:

— 2 x„ und y„ 2y,
1

oder „

> e
1 >n y^ + yùi)

Es würde dann genügen, diese Werte in die Gleichung für
den Ort der Punkte H einzusetzen.

Die Entwicklung dieser letzten Kurve, sowie auch deren
geometrische Besprechung bildet ein Uebungsbeispiel.

f/ebMMfyen. 1. Es sei die Gleichung des Ortes der Punkte 1 i,
in orthogonalen Koordinaten auf die 2 angegebenen Arten ab-

zuleiten.
2. Es sei die Kurve für die beiden Fälle R !> 1 und Ii \ I

zu konstruieren.
3. Geometrische Besprechung von Ursprung, Schnittpunkte

mit den Axen und Asymptoten.
Die 3. AVrce ist der Ort der Punkte J,.
Das entsprechende Argument 0 — 2 </ gibt;

cos- */ — sin- (f — cos 0
/l — cos 0

sin </ I y •_»

/i -f- cos 0
cos f — + Y 9 daraus folgt:

2 1" - R~ (1 - cos 0)\, A +
* \ ~ ~

1 -I cos 0
'

V 9
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Die Gleichung in cartesisclien Koordinaten kann wie vor-
her auf 2 Arten gefunden werden, entweder durch direkte Trans-
formation oder durch:

2 yj und x.. X, - 2 (x„ — Xj) 2 x — x„
UebMur/en :

1. Es sei nach den 2 angegebenen Methoden die Gleichung des

Ortes der Punkte J, in orthogonalen Koordinaten abzu-

leiten.
2. Es sei die Kurve J, für die 2 Fälle R > 1 und R <; 1 zu

konstruieren.
3. Geometrische Diskussion über Ursprung, Schnittpunkte mit

den Axen und Asymptoten.
Die 7. /vmve, der Ort der Punkte K,, gibt:

OK, _L CK, und

(?,; cos 2 9
Das entsprechende Argument: 0 2 /c — </>

sin 0 — sin und cos 0 cos </

Die Polargleichung heisst dann:

?K, (r + \A -el r-- ") ®

Man erhält die Gleichung in carthesischen Koordinaten
durch direkte Transformation oder durch folgende Beziehungen:

2 Xj, - X,, und y^ 2 y^ — y„
Die Gleichung, die etwas einfacher ist, als die vorhergehende,

lautet:

[(x- — y")" (1" — R") — X" (x- -|- y')] 4 R' x' (x" — y") (x" + y*)
Cekunyye» :

1. Ableitung der vorstehenden Gleichung durch die ange-
gebenen Substitutionen.

2. Konstruktion der Kurve K, für die 2 Fälle.
3. Geometrische Besprechung des Ursprunges, der Schnitt-

punkte mit den Axen und der Asymptoten.

XIII.
Kurven M und M,. (Fig. 7 u. 8). Wenn wir vom Eckpunkt

C" des Rechteckes OACC" ein Perpendikel auf die Diagonale
OC des Rechteckes OACC'" fällen, so finden wir M auf OC'

•2
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und OMi; mit OM^ — 2 OM auf der Verlängerung dieses Per-

pendikels.

Die Polargleichung von M gibt uns:

ç2 oÄi" y M
sin w

1

Yc 0^ sin<p ()p • sin w, woraus:
1 /„ lcoso\ 1

o p„ t=t suP w= hl ,-c- sin- «R y cos r/> / U

P sin'2 cd cos w
o 1 sim w -1—j— —=Vr' — 1" sin «

p ist das Argument von M; daraus folgt:
(p — 1 sin^ fd) (R~ — 1" sin' cd) — 1 ' sin^ cd cos' cd.
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So lautet die Polargleiehung von M. Man kann sie auch

folgendermassen schreiben :

e(<? — 21 sin" w) (R- — 1" sin" «) l" sin w (1" - R")

In orthogonalen Koordinaten erhalten wir:

^-21r)(R>"~l"y") l"y'(l"- R")

[«• (R* <>* - c'y'') - l'y* (i* - K*)j'= (KV- l'y')*
oder

|u' + y*r [P (x= + ,') -1=, j -1"y* 0'- K')}'= 41" y* 0- + y',

[K'ix'+ri—iy;ï

Die Kurve ist von 12. Ordnung und der Ursprung ein viel-
facher Punkt 8. Ordnung. Die Koordinatenaxen sind Symmetrie-
axen. Die x-Axe ist eine vierfache Tangente.
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Die Kurve hat keine andern reellen Schnittpunkte mit der
x-Axe.

Im Falle R >-1 sind die Punkte y — F 1 der y-Axe doppelte
Punkte der Kurve und die Kurve gleicht 4 geschlossenen Ovalen,
die im Ursprung tangieren. (Fig. 7.)

Mit R < 1 (Fig. 8) sind die Schnittpunkte mit der y-Axe ima-

ginär und die Kurve lässt die beiden Geraden y -}- (V 1" — R") x
als doppelte Asymptoten zu.

Wenn wir nur den ursprünglichen Kurbeltrieb betrachten,
so erhält man die Kurve des 2. Falles (Fig. 7) auch durch Pro-

jektion von C'" auf die Diagonale OC.

Ihre Gleichung würde man erhalten durch Austauschen von
1 gegen R und umgekehrt in den vorangehenden Gleichungen.
Betrachten wir nun die Kurve M^. Wir haben:

Oy Yc O sin y
3 yr

Das Argument ist: 0 f- 2w und wir haben:
2

/I — sin 0 /1 —J— sin 0
sin eu + W g

nnd cos w + W ^

Daraus ergibt sich:
1 cos c.) \ 1 sin w cos \ 1 sin o>

^ ^
V R \ vI^Tsk^T /

'
R

1 /„ / 1 -4- sin © \ /l — sin 0" ± B (® + V2B'-1'(1-Ä^) V 2

Die Gleichung in orthogonalen Koordinaten kann gleich
wie bei den Kurven H^, und K^ behandelt werden und wie
vorher können wir folgende Uebungen anschliessen:

f/efrMW/ew:

1. Konstruktion der Kurve in 2 Fällen.

2. Geometrische Diskussion über Ursprung, Schnittpunkte mit
den Axen und Asymptoten der Kurve.

Bemerkung: Die gleichen Kurven F,, H^, J^, K^, M und
können auf gleiche Weise wie vorher mit dem Rechteck

OAC'C'" erhalten werden.
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XIV.
Kurve I. (Fig. 9 u. 10.) Diese Kurve ist der Ort der Punkte

I, die man erhält, indem man vom Endpunkte B der Kurbel auf
die Koppel ein Perpendikel errichtet und verlängert bis zum
Schnittpunkt mit der Normalen von (A) in A.

Wir bezeichnen die Koordinaten von I mit x und y und
diejenigen des Momentanzentrums C mit Xp und y^. Wir haben:

i
1 1'"'

x x,. und y — — —i
sin w R sin </>

Yc
da aber sin <y — -7 -, so erhält man:

V4 + yc

1" V*' ~f~ yf 1 p2 2 2 i4 / 2
1 2\

y =— r— und R y y„ 1 (x -)- yj
c

1 ' x-
yc 2 TT ferner x,,= x

Ry — 1
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Man setzt diese letztern Werte in die Gleichung des Roll-

bettes, welches der Ort der Punkte C ist, ein und man erhält:

y» (x* + R° - 1*/ - 4 x'"' (R» y'"' - 1«)

Die Kurve ist von 6. Ordnung; die Koordinatenaxen sind
die Symmetrieaxen. Der Ursprung ist ein isolierter Punkt.
Ferner hat man:

— R — l<x< — R+l
R — l<x<R-|-l. Man hat ferner 4 Asymptoten:
x + (R + 1) und

Die Polargleichung der Kurve heisst:

(<?" cos" i// -f- R" — 1") sin" i// cos i// (R" p" sin" t/< — l')
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XV.
Kurven II und III. Wir haben die 2 Punkte C und

der Kurve C gehabt, die bei jeder beliebigen Lage der Kurbel
gleich weit vom Endpunkte B derselben entfernt sind. (Fig. 11

u. 12.)
Projizieren wir diese beiden Punkte auf die Normale OF'

der Koppel (OF' AB), so erhalten wir die Punkte II und III
und die gesuchten Kurven bilden den geometrischen Ort dieser
Punkte II und III. (Fig. 9, 10, 11 u. 12.)

Wir haben: £ Oil — CO sin (w -f~ (/))

(R -f- cos eu) sin (w -j- y)
Das bezügliche Argument von o ist 0 90 — eu; daraus

folgt:

C

Fig. 11. Kurven F' u. III mit K > 1.

— si" « \/R? — P' sin"* w + 21 sin « cos tu -)

V/R'-l' sinken

Das ist die Polargleichung des Ortes der Punkte II.
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Die Gleichung in orthogonalen Koordinaten bietet nichts
von besonderem Interesse.

Die geometrische Diskussion der Kurve zeigt uns:
1. Die Koordinatenaxen sind Symmetrieaxen.
2. Der Ursprung ist ein vierfacher Punkt der Kurve.
3. Die y-Axe ist eine 4-fache Tangente der Kurve. Für R 1

ist sie viermal einfache Tangente und für R 1 ist sie

viermal Krümmungstangente.
4. Für R <C 1 verschwinden diese doppelten Punkte, aber die

Kurve liisst folgende Geraden zu:

„ /l" — R'* /l* - R''
y +y ^ • X und y -\/ ^ x

als doppelte Asymptoten. Die Asymptoten stehen senk-
recht zu den Lagen von AB, für welche B auf der y-Axe
und das Momentanzentrum C im Unendlichen liegt.
Betrachten wir nun die Kurve III näher (Fig. 11 u. 12),

so finden wir, dass sie bedeutend einfacher ist, dass sie aber
andere nicht weniger wichtige Eigenschaften aufweist. Wir haben
zuerst :

OC^ sin (« -j- <p) /r -- sin (w qp)



1 COS M
o K

cos
^ (sin « cos y -f- sin y cos w)

sin VR" — 1" sin"
i2 • 2
1 sin co cos

sin co

V'r" — 1" sin" «

(R" — 1" sin" w — 1" cos" w) sin <•> (R" — 1")

V R 1 sin m V'R- — 1" siR «

oder
R" - I" cos" 0

In orthogonalen Koordinaten haben wir:

(x- + y'-') [R"(x* + y') - 1" x"] (R= - vf x"

Die Kurve ist vom 4. Grade. Die Koordinatenaxen sind
Symmetrieaxen ; der Ursprung ist ein Doppelpunkt und die y-Axe
ist eine doppelte Tangente. Infolge der Symmetrie setzt sich
der Doppelpunkt aus zwei entgegengesetzten Rückkehrpunkten
zusammen.

Im Falle R > 1 besitzt die Kurve zwei einfache und sym-
metrische Schnittpunkte auf der x-Axe, mit

X + VR^ - f
Der Ursprung ist der Berührungspunkt zweier geschlossenen,

symmetrischen Kurvenäste.

Im Falle R < 1 sind die andern Schnittpunkte mit der
x-Axe imaginär und die Kurve lässt zwei einfache Asymptoten zu :

\^-R* VI" • • Ry + 1 z_ • x und y — X.
R ' R

Diese Geraden sind die gleichen wie im vorangehenden
Falle. Der Ursprung wird durch zwei Inflexionspunkte gebildet,
die beide die y-Axe als Inflexionstangente zulassen.

Betrachten wir nun (Fig. 11) zwei Punkte C und des

Rollbettes, die auf dem gleichen Strahle liegen und suchen wir
die Lage von zwei korrespondierenden Punkten 1TI und III,.

Die Koppeln AB und A,B sind symmetrisch, folglich werden
die Normalen dieser Richtungen symmetrisch sein inbezug auf
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die x-Axe. Es seien ferner die bezüglichen Winkel der Koppeln
BAO — BAjA w, dann haben wir:

BC A

COS f/)

Olli (R + A) cos ^ - — c.) -|- </A (R -)- A) sin (w — <p)

OIIIj= (R — A) cos — w — <p\ (R — A'i sin (w -f- rp)

daraus folgt: Olli — OIII^.
Da wir nur die absoluten Werte der Vektoren betrachten,

und da wir wissen, dass sie ferner symmetrische Argumente bilden,
können wir daraus schliessen, dass die Punkte III und III^
symmetrische Punkte seien.

Einen ähnlichen Schluss können wir im Falle R<M ziehen
und wir ünden auf symmetrischen Strahlen zwei symmetrische
Punkte inbezug auf den Ursprung.

Unter diesen Bedingungen wird die Kurve III die totale
Bewegung der Koppeln, die symmetrisch auf jeder Seite der

y-Axe hegen, doppelt durchlaufen. Mit R 1 erzeugt die voll-
ständige Bewegung der Koppel rechts zweimal die rechte Seite
der Kurve; mit R < 1 erzeugt die gleiche Bewegung die
zwei Aeste der Kurve aber nur einmal ; wenn wir die Koppel
links haben, so erzeugt sie dieselben noch einmal. Im ersten
Falle durchläuft die linksstehende Koppel zweimal die linke Seite
der Kurve.

XVI.
Tangenten: Wir wissen, dass die rollende Kurve des be-

trachteten Kurbeltriebes eine Konchoïde eines Kegelschnittes ist,
inbezug auf einen Brennpunkt dieses letztern; die Konstante R
der Konchoïde ist gleich der halben Axe a derselben."* Die
Rollende ist die Kurve von Jerabek®'. Es sei C der Kegelschnitt;
die Brennpunkte sind Fj und F., und das Zentrum 0. ' Wir be-
zeichnen die rollende Kurve mit K^ (Fig. 13). Es ist eine Kon-
choïde von C inbezug auf F.,.

Wenn wir die Tangente in einem beliebigen Punkte M von
Kj bestimmen wollen, so ziehen wir F„ M bis a' auf dem Leit-
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kreis von C inbezug auf Fg. In der Mitte von «' F^ errichten
wir ein Perpendikel, welches a gibt und die Tangente in a ist.

Ein Perpendikel zu dieser Tangente in « liefert die Nor-
male von C. Sie schneidet die durch F„ gehende Senkrechte
von MF, in J. J ist dann das Momentanzentruni des Mechanis-

mus, welcher aus der um F., drehbaren Geraden MF., besteht,
und wovon ein bestimmter Punkt a der Geraden MF, den Kegel-
schnitt C beschreibt. Die Bahn von M, mit «M R konstant,
ist die rollende Kurve des ursprünglichen Kurbeltriebes. JM ist
ihre Normale von M und das betreffende korrespondierende
Perpendikel in M ist die gesuchte Tangente.

Wenn wir von K, ausgehen, ohne dass wir C kennen, so
suchen wir zuerst die konstante R mit Ob J_ OM und 6 auf
F.,M. F.,6 stellt R dar.®) Wir können ferner «' auf dem Leit-
kreise bestimmen mit F^a' 2 R. Man erhält dann a des Kegel-
Schnittes, dann J und endlich die Tangente in M.

Der betrachtete Mechanismus, der durch eine Gerade,
welche sich um F., dreht, gebildet wird, während ein bestimmter
Punkt dieser Geraden auf einem Kegelschnitte gleitet, kann zu

folgenden Uebungen führen.

Fig. 13. Tangente der rollenden Kurve.
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1. Es sei das betreffende Rollbett graphisch und analytisch zu
bestimmen.

2. Es sei davon die rollende Kurve zu bestimmen.
3. Es sei die Umhüllungskurve einer Parallelen oder einer

Senkrechten der beweglichen Geraden zu bestimmen.

Aus dem Vorangehenden können wir die Konstruktion der
Tangente in einem Punkte des Rollbettes des Kurbeltriebes OBA
ableiten. Wir suchen die Tangente des Rollbettes für den Punkt
C (Fig. IT). Wir wissen, dass das Rollbett und die Rollende
in jedem Punkte C eine gemeinschaftliche Tangente besitzen
und dass jeder Punkt C einer bestimmten Lage der Kurve K^
entspricht.

Für unsern Punkt ist die rollende Kurve auf AB als Axe
konstruiert. A ist der Mittelpunkt des Hülfskegelschnittes und
B sein Brennpunkt, der als Fundamentalpunkt für die Konchoïde
dient.

Unter diesen Bedingungen können wir die Tangente in C

auf AB wie vorher konstruieren und wir finden so die Tangente
des Rollbettes in C.
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Die bezügliche Konstante der Rollenden ist die Kurbel

R OB. Wir erhalten den Punkt des Kegelschnittes auch, in-
dem wir CD R machen, sodass BD -f- Da 2R; er sei der
2. Brennpunkt des Hiilfskegelschnittes.

Es ist zu bemerken, dass der Punkt des Kegelschnittes mit
dem korrespondierenden Punkte der Kurve D zusammenfällt.

Anderseits gibt die Verlängerung von BC bis auf den Leit-
kreis den Punkt 6, der ebenfalls auf dem Grundkreise liegt.

Die Gerade a6 ist parallel mit der x-Axe, weil 0 und A die
Mittelpunkte der Geraden B6 und Ba sind.

Die Tangente des Kegelschnittes in D ist also parallel zur
y-Axe. Sie geht durch B' und so ist die Normale des Kegel-
Schnittes durch D eine Parallele zur x-Axe. Sie schneidet das

Perpendikel auf BC durch B in p.

Der Punkt p ist das Momentanzentrum des erzeugenden
Mechanismus der rollenden Kurve K^.

pC ist die Normale in C und man erhält die Tangente durch
das Perpendikel auf pC durch C.

Die vorangehende Konstruktion kann daher zur folgenden
einfachen Regel führen.

«Man erhält die Normale in einem Punkte C des
Rollbettes, indem man im Endpunkte B der Kurbel eine
Senkrechte auf diese errichtet und durch den betreffen-
den Punkt D der Kurve eine Parallele zu Ox zieht. Die
Verbindungsgerade pC des Schnittpunktes dieser Ge-
raden mit, C ist die gesuchte Normale.» (Fig. 14.)

Der bezügliche Punkt p^ der symmetrischen Lage A^B der

Koppel liegt auf der Verlängerung von Bp und so, dass p, in
der Mitte durch die x-Axe geschnitten wird.

Nach den vorangehenden Konstruktionen können wir auch

die Tangente der Kurve D in einem beliebigen Punkte D be-

stimmen. Der Ort der Punkte C ist eine Koncho'ide der Kurve
D inbezug auf den Ursprung 0.

Wir haben also eine Gerade, die sich um den Ursprung
dreht, während ein bestimmter Punkt derselben die Kurve D
beschreibt.
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Das Momentanzentrum für eine Lage des neuen Mechanis-
mus befindet sich auf einer Normalen im Ursprung der beweg-
liehen Geraden und auf der Normalen von D in D; die Normale
von C geht durch diesen Punkt, weil DC R konstant. Die
Normalen in C und in 0 sind bekannt; sie schneiden sich in
d; daher ist dieser Punkt das betrachtete Momentanzentrum-
Folglich hat man auch die Normale OD in D, dann die ent-
sprechende Tangente. Mit erhalten wir das Momentan-
Zentrum d,.

Die Momentanzentren d und <^, die 2 symmetrischen
Lagen der Koppel entsprechen, liegen auf dem gleichen
Strahle, in gleicher Entfernung vom Ursprung.

In der Tat können wir inbezug auf die Schnittpunkte C,

C, und B den Strahl OB als eine Gerade betrachten, die sich
an die drei Kurven anlehnt und die Normale einer derselben ist.
Die Normalen in C und C, schneiden die Normale Od der Um-
hüllungskurve von OB in den Punkten <5, d,, die folgendes ergeben:

CB : BC, d'O : Od,

weil CB BC,; daher dO — Od,.

XVII.
Andere Eigenschaften, die sich auf die Konstruktionen der

Tangenten beziehen.
1. Gleichung der Kurve d: Der Strahl Od bildet einen

Winkel 0, der von r/i abhängig ist. Wir haben (Fig. 14):

sin 0 — cos </ ; cos © — sin </

ferner Od «y. tg (OCd) ç>,

1 cos M

Byy
^ BC

R /t>2 2 i2 2 \ •
I

cos ff (K cos u — 1 cos ei) sin«)Bd ' ig </

— R)
"

1 • cos fe» cosh/>

(R" — 1") sinV (R" — L) cos 0
iw 1— woraus p,

cos^ — R%in^qp ' sirT 0 Y ^ — R^cos~ ©
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In orthogonalen Koordinaten erhalten wir:

I' (x- + r) - RV| - (R» - ]') yV + ;•-> «tar

(x» + y-')|(tf-l=)r'_i=y'l= iCyV.
Der Ursprung ist ein vierfacher Punkt. Im Falle R 1

wird dieser Punkt durch zwei Inllexionspunkte gebildet, die die

Axe Oy als gemeinschaftliche Tangente zulassen. Die geo-
metrische Diskussion ergibt, dass die Perpendikel auf die

äussersten Kurbeln y — 1 — L-= • x Asymptoten sind, deren
V R" - 1'

\/j^2 i2
Gleichung ihrerseits lautet: y | L_ x.

Wir haben eine vollständige Symmetrie inbezug auf die
Axen und das Zentrum. Der Kurbeltrieb rechts erzeugt selbst
die ganze Kurve und der Kurbeltrieb links ergibt sie noch ein
zweites Mal; dies sei erwähnt, weil bei vielen der vorangehenden
Kurven jeder Kurbeltrieb nur eine Hälfte der ganzen Kurve er-

zeugt hat.
Mit R < 1 liegen die unendlich fernen Punkte auf hori-

zontalen Tangenten des Hilfskreises, dessen Radius gleich der
Länge der Koppel ist. Diese Punkte sind nicht mehr die Schnitt-
punkte zweier paralleler Richtungen und die vorerwähnten Tan-

genten sind nicht mehr Asymptoten. Die zwei Kurvenäste sind

parabolische Aeste-

2. Bahn von a mit Aa 1. Wir können zuerst an die

Gleichung der Bahn des Punktes a auf der Verlängerung der

Koppel erinnern oder die Gleichung aufstellen:
Wir haben: Art 1 «B — 21 und nach den allgemeinen

Gleichungen der Bahnen der Koppel"' erhalten wir:

(x* - 3 y* + 41'- R? 16 x= (f - y")

Wenn wir dagegen direkt ableiten, so erhalten wir:
x R cos r/i +21 cos w

y — — 1 sin w, ferner

x \'R' — y"' f 2 V'l' — y' oder

(x' - R" - 41= + 5 y')~ 16 (R= - y (F - y')
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Die beiden Gleichungen sind identisch; eine einfache alge-
braische Modifikation führt uns von der einen zur andern. Die
so erhaltene Kurve ist auch der Ort des zweiten Brennpunktes
a der Hilfskegelschnitte, die nötig waren zur Konstruktion der
Tangenten.

Die Strahlen Do und DB sind die betreffenden Vektoren
des Punktes D des Kegelschnittes.

Der Strahl Do ist parallel dem Strahle AB' des Haupt-
kreises und Do verlängert bis BB' parallel zur Normalen gibt
Dr? BD und or? 2 R — Konstante des Kegelschnittes. Im

übrigen ist die Mitte M von od auf der x-Axe.

Wir wollen nun den Ort der Punkte d suchen.

x — 21 cos w — R cos </

y -j- 1 sin w woraus

x 2\/f' — y® - VR" — y"

(x~ — R" — 41" -)- 5 y") — IG (R" — y") (1" — y")
Diese Kurve ist ebenfalls die Bahn von o.

Daraus ergibt sich folgender Lehrsatz:
Le/wsofo.- Im Kurbeltrieb besteht eine bewegliche Ge-

rade von fester Länge 2R, die durch den Punkt D

geht und symmetrisch zum Strahl ODB liegt, so dass

ihr Mittelpunkt auf der x-Axe gleitet, während ihre
Endpunkte die Bahn (a) eines Punktes a der Koppel
mit Aa R durchlaufen.

oder mit andern Worten:
Die Sehnen der Bahn (a), die symmetrisch zu den
Strahlen OB liegen und durch die verschiedenen
Punkte D gezogen sind, haben feste Länge 2R und
werden durch die x-Axe in gleiche Teile geteilt.

8. Tangenten in d. Die Normale oC von (o) in o und
die Senkrechte »o zu Ox durch m ergeben das bezügliche
Momentanzentrum der Bewegung der Geraden or?. Die Normale
in r? geht daher durch den Punkt « und man kann daraus die
betreffende Tangente ableiten. Es ist weiter zu bemerken, dass

diese Normale r?e durch den entsprechenden Punkt des Rollbettes
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geht. Die Gerade r/6, symmetrisch zu Ba ergibt die Koppel A,B,,
welche mit r/ auf der Rollbahn (a) korrespondiert und von A„
findet man das Momentanzentruni G„ auf dem Rollbett, durch

welches die Normale dr gehen muss. Der Punkt C„ ist zu C,

symmetrisch inbezug auf das Zentrum.
Die Normalen in C., und C'„. welches symmetrische Punkte

von C und Cy sind, gehen auch durch d und wegen der Sym-
metrie. Die bezüglichen Hauptaufgaben der Bewegung der Sehne

od können in folgenden Uebungen abgeleitet werden.
f/e/wnr/en :

1. Geometrische Diskussion der Balm («) für R Sg 1.

2. Geometrische Diskussion der Bewegung von ad in den
2 Fällen R 1.

3. Aufstellung und Besprechung des Ortes der Momentan-
Zentren c.

Ich möchte an diesem Orte Herrn M. Baumann in Hengnau,
der die Uebersetzung meines Manuskripts besorgt hat, herzlich
danken.
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