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Konrad Witzig.

Ueber erzwungene Wellenbewegungen ziher,
inkompressibler Fliissigkeiten in elastischen Rohren.

I. Teil.

Historische Einleitung.

Die Bestrebungen, den Vorgang der Blutzirkulation genau
zu erforschen, fiihrten schon E. Weber!) im Jahre 1827 auf
den Gedanken, die Pulsbewegungen experimentell zu verfolgen.
Hiebei stellte er fest, dass diese Pulsbewegung im ganzen
Arteriensystem nicht momentan erfolgt, wie bisher angenommen
wurde, sondern eine gewisse, messbare Geschwindigkeit besitzt.
Er fand, z. B., dass die Welle eine Réhre von 855 mm. Durch-
messer, 4 mm. Dicke und 9620 mm. Linge bei einem Druck
von 8 mm. Wassersiaule in 0,964 Sek. durchliauft, sodass also die
Geschwindigkeit za. 10 m/Sek. betrigt. ‘ '

W. Weber?) suchte die von seinem Bruder E. Weber
experimentell erhaltenen Resultate auf mathematischem Wege
herzuleiten. Er bestimmte die Differenz der Fliissigkeitsvolumina,
welche durch zwei unendlich benachbarte Querschnitte einer
elastischen Rohre, im Abstande dx voneinander, in dem Zeit-
element dt hindurchgehen; sie muss gleich der Vergrosserung
des Volumens der Rohre zwischen diesen beiden Querschnitten
sein. Ist ¢ die verdnderliche Geschwindigkeit der Flissigkeit,
r der verinderliche Radius der Rohre und ist ¢-dr<’<“r-dec d. h.
die Geschwindigkeit sehr klein, so ergibt sich:

de 2 dr

dx r dt
Die Elastizitit der Rohre wurde dadurch beriicksichtigt, dass die
Zunahme des Rohrenhalbmessers der Zunahme des Druckes p
proportional gesetzt wurde, also

dr = adp,



W0 a = % =Vergrﬁsserung des Rohrenhalbmessers pro 1 kg Druck,
o == ” ” ” bei p kg ”
Dlese Annabmen fithren auf die bekannte Bewegungsgleichung

d’r ¥ d'r
dt? 2ag dx?’
wo ¢ die Dichte der Flussigkeit bedeutet.

Der Wert _2_1'_ driickt das konstante Verhaltnis der beiden
ag
partiellen- Differentialquotienten aus, und dieser ist nach den Ge-

setzen der Wellenbewegung gleich dem Quadrat der We]len
geschwindigkeit V. Also ist nach W. Weber

V:\/__::\/_,
. 2ap 2

wo M der Elastizitiitsmodul nach Webers Auffassung bedeutet.
Derselbe ist, entgegen der gewohnlichen Definition, gleich dem-
jenigen spec. Druck (Druck dividiert durch die Dichtigkeit der
Flussigkeit), welcher nach dem Gesetz der Elastizitit einer Ver-
doppelung des Rohrenhalbmessers entspricht.

Die Webersche Formel ergibt fiir eine Rohre von 16, 5 mm.
Radius, bei einem Druck von 3500 mm. Wassersaule, eine Ge-
schwindigkeit von 10033 mm/Sek. Die unmittelbare Messung
ergab eine Geschwindigkeit vom 11255 mm/Sek., was mit der
Rechnung soweit iibereinstimmt, als bei der damals erreichbaren
Genauigkeit erwartet werden kann. Resal?) schligt einen dhn-
lichen Weg ein wie Weber und findet, wenn

v = (Geschwindigkeit der Flissigkeit in Richtung der Achse,
e = Dicke der Rohrenwand,
R, = Innerer Radius der Rohre,
7 == Dichte der Flussigkeit,
= Beschleunigung der Schwerkraft,
= Abstand zweler unendlich benachbarter Querschnitte
der Rohre,
E = Yongs Elastizititsmodul der Dehnung,
d*v __ Eeg dv
dt? 2R.w ds?
Somit folgt far die Fortpflanzungsgeschwindigkeit der Welle

g
ds




_ 8 —

V:\/Eeg.
2R,

Dieser Formel entspricht auch die Webersche, wenn

1_8 und = = Big gesetzt wird. Eine genaue Bestimmung
0 7T a Ro

beider verschieden definierten Elastizititsmoduln fithrt also auf
die nimlichen Resultate.

Korteweg®) behandelt das Problem der Berechnung der
Schallgeschwindigkeit in elastischen Rohren. Er legt die sog.
Scheibchenhypothese zu Grunde. Dabei wird angenommen, dass
irgend ein, zwischen zwei auf der Rohrenachse senkrecht ste-
henden Ebenen eingeschlossenes Flissigkeitsscheibchen wihrend
des Vorbeischreitens der Verdichtungswelle, zwar in radialer
Richtung breiter und in achsialer Richtung schmiler wird, aber
immer durch Ebenen begrenzt bleibt, so dass von Verbiegungen
dieser Ebenen abgesehen wird. Ferner wird angenommen, dass
die Wellenlinge gross genug sei, um bei den in der Rohren-
wand entstehenden Spannungen nur auf die Ausdehnung oder
Einschniirung des. ringformigen Durchschnittes, senkrecht zu der
Achse, achten zu miissen, wihrend die Dehnungen in Richtung
der Achse vernachlissigt werden diirfen.

Der von Korteweg eingeschlagene Weg ist nun folgender:
Bezeichnen :

R, = Innerer Radius der Réhre,

a; = Dicke der Rohrenwand,

E, = Elastizititsmodul der Rohrenwand,

E = Elastizititsmodul der Flassigkeit (fir inkompressible
Flussigkeit ist E = oo),

o1 = Spec. Masse der Rohrenwand,

b= | " , Flussigkeit,

x = Entfernung eines Fliissigkeitsteilchens im Gleichgewicht
von einer zur x Achse senkrecht stehenden Ebene,

w = Druck daselbst, I

|

u; = Anderung von x, zur Zeit t,
pL= " n W, p nooon
I == b ” Rl " nooon

so ergibt sich: -
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1) Durch Vergleichung des Volumens eines Scheibchens im
Gleichgewichtszustande und wihrend der Wellenbewegung:
Pr ou; 2r, 0
E + 3X + Rl . ‘
2) Durch Berechnung der Beschleunigung des Scheibchens
vermoge des Druckunterschiedes :

#u 1 é‘pl
o2 0 ox ,
3) Unter Beriicksichtigung der Elastizitat der Rohrenwand
g " Eiain
02 I - Pt R2
at? T ap 01

oder bei Vernachliassigung der germgen Tragheit der Réhren-

wand
E1 ay I‘1

R; i
Unter diesen Voraussetzungen erhilt man die Bewegungs-
gleichung

pl""

azul_(i+2QR1)BZU1:0
o0 x2 E E; a; ot?
Diese Beziehung gilt, wenn sowohl Flissigkeit als Réhrenwand
elastisch sind, und enthilt die Félle, wo entweder nur die Flissig-
keit, oder nur die Rohre als elastisch zu betrachten ist.
Fir inkompressible Flissigkeiten, wenn E — oo, folgt:
0% uy 20R,
BX‘ E1 a 8t2
und hieraus die Fortpﬂanzungsgeschwmdlgkelt der Welle,

o a1 Ky .
20R,;’
dies ist wiederum die Resalsche Form, wenn 5 =5 gesetzt
s

wird.
Diese Formel gilt nur unter den folgenden Bedingungen :
1) Wellenlingen gross gegeniiber dem Rohrendurchmesser.
2) Vernachliassigung der lebendigen Kraft der Transversal-
bewegung der Flissigkeit gegen die der longitudinalen.
3) Elastizitatsmodul unabhingig von der Grosse der Be-
lastung.
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4) Flussigkeit inkompressibel, ohne Beriicksichtigung der
Zahigkeit.

5) Vernachliassigung der durch die Biegung der Rohren-
wand erzeugten Lingstensionen.

Wenn Ej den Yong’schen Elastizitaitsmodul der Dehnung
bezeichnet, dann ist

E, = E! 1 .
' { (+A+;¢)2Rl}

wo 4 und u die Lame’schen Konstanten der Elastizitit bedeuten.
Setzt man nach Wertheim 4 = 2y, so ist
E, = E! (1 _ 5"‘1).
6 R,

Boussinesq?) findet in seiner Untersuchung iiber dieses
Problem dieselben Resultate wie Korteweg.

Eine exakte Behandlung der Gesetize der Schallausbreitung
in Flussigkeiten, im Innern elastischer, zylindrischer Rohren,
ohne Riicksicht auf die Zihigkeit, wuarde von Lamb ¢ durch-
gefiihrt. Die Ableitung der von ihm gegebenen Gleichungen folgt
spater. Er findet, dass die Geschwindigkeit in diinnen Rohren
zwischen

Hierin bedeuten :

a = Innerer Radius der Rohre.

h = Dicke der Rohrenwand.

co = (reschwindigkeit in der unbegrenzten Flissigkeit.
A

2(2 +u)

(Steifigkeit) die bekannten Lame’schen Elastizitats-
konstanten sind.

_ B (i 'l_:‘ 21 __ == Yong's Elastizitiitsmodul der Réhre,
“ .

B 8

1 — a2
» = Kubische Kompressibilitit der Flussigkeit = go co?,
wo go = Dichte der Fliissigkeit.

== Poissonscher Koeffizient, wo A und u




P -

Fiir mkompressible Fliissigkeiten, d. h. fiir sehr grosse z, werden
diese Grenzen:

Eh und Bh

2ago ‘) ago :
also auch hier, da sich B nur wenig von E unterscheidet, eine
prinzipielle Ubereinstimmung mit der Resalschen Formel.

V. Kries?) gibt ebenfalls eine angeniherte math. Theorie
der Schlauchwellen. Diese Untersuchung enthilt schon die wich-
tigsten qualitativen Resultate iber den Einfluss der innern Rei-
bung auf die Wellenbewegung im elastischen Schlauch. Allein
dieser Einfluss 1st hier in ganz allgemeiner Weise eingefiihrt,
unter Beibehaltung der Scheibchenhypothese und ohne Riicksicht
auf die speziellen Eigenschaften der Zahigkeit mkompressibler
Flissigkeit. Soll dieselbe exakt beriicksichtigt werden, so sind
die vollstindigen hydrodynamischen Gleichungen zu beniitzen.
V. Kries geht aus von der Korteweg entsprechenden Formel

(pag. 4) .
ov 1 dp
ot ¢ ox
erginzt dieselbe durch ein Reibungsglied, das allgemein der Ge-
schwindigkeit proportional gesetzt ist, aber behilt immer noch
die Scheibchenhypothese bei, also
ov 1 op
at o dx
Firr den Druck p wird dann

?Zp  eQap 6p

otz o ox? 1 ot
Hierin bedeuten:
Q = Querschnitt der Rohre.
x = Abstand eines Querschnittes vom beliebig gewiihlten
Anfangspunkt.
¢ = Dichte der Flissigkeit.
p = Druck.
q = Frequenz in 2 7z Sekunden.
¢ =— Dampfungskonstante (fir lange Wellen = 2L also
(44

sehr klein).
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o« = Fortpflanzungsgeschwindigkeit der Welle.
eq == o:o ist einfach V2 = Quadrat der Wellengeschwindig-
o

keit nach Resal.

Aus obiger Gleichung folgt fﬁr die Geschwindigkeit der Welle

ai? 2a0 L \/ )

und fir die Dampfung

q’ T
& = 2(‘(02 (\/1 —]L- q“—z- 1)

Die Fortpflanzungsgeschwindigkeit der Welle nimmt dem-
nach mit zunehmender Reibung ab und ist umso grosser, je
grosser g, d. h. je kleiner die Wellenlinge. Die Dampfung e
wichst mit steigendem q; kurze Wellen werden stirker gedampft.
als lange.

Fir kleine Reibung findet er ausserdem fir die Geschwin-
digkeit der Flissigkeitsteilchen in Richtung der Rohrenachse

v==e " A e cosq(t—i-i—d)
. (84

o\ JETT

Ohne Reibung ergab sich
o= ()
V= —"—==8 —cosq|(t— —).

(104 o« «

Man sieht, dass (bei sinusformigen Wellen) die Geschwin-
digkeit der Flissigkeitsteilchen mit oder ohne Reibung in
doppelter Weise modifiziert ist; erstlich ist der absolute Betrag
der Geschwindigkeitsschwankungen klemer, zweitens findet eine
gewisse Phasendifferenz statt.

Uber das Fliessen ziher Fliissigkeit in Rohren bestehen
Arbeiten von Boussinesq?®) u. a. Die nachfolgende Untersuchung
im III. und IV. Teil soll- den Einfluss der Zihigkeit auf die
Wellenbewegung in elastischen Rohren ermitteln.
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II. Teil.

Elementare Betrachtung der Wellenbewegung inkompressibler
Fliissigkeiten in elastischen, zylindrischen Rohren
unter periodisch verinderlichem Druck, ohne Riicksicht
anf die Zihigkeit.

Die Flissigkeit bewege sich im Innern einer unendlich
langen, zylindrischen Rohre von gleichférmigem Querschnitt und
sei an der Grenzfliche einem elastischen Druck unterworfen. Die
wirbelfreie Bewegung werde aus dem Ruhezustand durch Krifte .
erzeugt, die nur anfianglich wirken, so dass nachher alle #ussern
Krifte, also auch die Schwerkraft, vernachlissigt werden. Im
weitern werde angenommen, dass die Bewegung sehr klein sei,
.sodass die Quadrate der Geschwindigkeiten der einzelnen Teilchen
vernachlissigt werden konnen.

Es bezeichne : .

p == Druck in der Fliissigkeit (als Uberdruck iber den
im Ruhezustand vorhandenen konstanten Druck
aufgefasst).
a = Elastizititskonstante der Rohre (in gleicher Weise
definiert wie ber Weber, pag. 2).
R = Innerer Radius der Rohre in Ruhe.
Adr = Erweiterung des Rohrenhalbmessers unter dem
Drucke p zur Zeit t.
= Dichte der inkompressiblen Flissigkeit.
= Geschwindigkeit eines Flissigkeitsteilchens zur Zeit
t mit den Koordinaten x parallel zur Rohrenachse
und dem radialen Abstand r von derselben. '
u, w =— Komponenten dieser Geschwindigkeit parallel zur
X Richtung bezw. zur radialen Richtung.
Wir beniitzen, da die Bewegung wirbelfrei ist, das Geschwin-
digkeitspotential ; dann ist
. und w=— QQ,
0 x or
wo ¢ = Geschwindigkeitspotential.

Die Elastizitit der Rohre fithren wir ein durch den ein-
fachen Ansatz:

0
q

n =



(1) p:po—l——l—d.r fir r = R.
a

Es gelten folgende hydrodynamischen Beziehungen :
1. Die Kont1nu1tatsglelchung
¥ —
@ o T T
2. Das bekannte Integral der Eulerschen Bewe-
gungsgleichungen.?)
P da

.(3) —é---a—t—-;2+F(t)

wo F (t) eine willkiirliche Funktion der Zeit darstellt; die in %c%

eingeschlossen werden darf.
Fir p setzen wir den Wert aus Gl. (1) in Gl (3) ein, die

konstante Grosse £- wird ebenfalls in %% eingeschlossen, dann
g
folgt, da q? verschwindend klein, und wenn E3 =« gesetzt wird:
ae
(4) dr=~1—8—(£ fir r = R.

7z Ot

Bei den verschwindend kleinen radialen Amplituden der
Bewegung, wird die Normalkomponente der Geschwindigkeit der
Flassigkeitsteilchen der Normalkomponente der Grenzfliche in
erster Anniherung gleich sein, somit:

5) W:__aﬁ_a(//r) fir r = R.
' or ot
lefelentleren wir Gl. (4) nach t und addieren Gl. (5), so folgt
(6) 6t§’+ —0 fir r = R.
Fir stehende Wellenbewegungen mit der Frequenz ZL =n und
. 7T

der Wellenlinge 1 = ?k_”’ setzen wir

(7) ¢ = Pcoskxe @+
wo P nur eine Funktion von r darstellt.
Diesen Wert fiir ¢ fithren wir in Gl (6) ein und bekommen
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8) 02qv=x—a—q—)- fur r = R.
or

Aus der Kontinuitatsgleichung (2) erhalten wir durch Einsetzen
von (7)

)2
PP L LB pre sder weil - k= (k]
o2 - r or
2P 1 oP
9 - . P=0
®) d (ikr)? r ikr 0 (ikr) +

Dies i1st die bekannte Form der Besselschen Differen-

tialgleichung.'®) Hieraus ergibt sich als allgemeines Integral
— A J(ikr) + B Y(ikr),

wo J (ikr) = Besselsche Funktion nullter Ordnung 1. Art und

Y(kr) = » " s > 2 s
In der Rohre darf P natiirlich nie unendlich gross werden.

0 0
Da aber lim. Y (ikr) = oo, so muss das Glied mit Y (ikr) ver-
F==1)
schwinden, d. h. es muss die Konstante B = o sein. Es bleibt
deshalb als Integral der Gl. (9)

0
(10) P = A J(ikr).
Diesen Wert in Gl (7) eingesetzt ergibt:

0 "
(11) @ = A J(ikr) cos kxe' @+
Unter Beriicksichtigung dieser Gleichung folgt nach Gl. (8)
1

(12) _ 0_2:__%l~1;J(1kR)

J(1kR)

1
Dieser Ausdruck ist reell, da 1J(ik R) reell ist.
Nach Gl. (4) ergibt sich fir die Erweiterung des Rohren-
halbmessers

(13) A ==

0
i A Gl Ry cos (kx) - ' (18

A
oder, weil fiir uns nur der reelle Teil in Betracht kommt,

0
(13%) At = — 29 T ik R) cos (kx) sin (st + 2).
7



Diese Gleichung stellt ein System stehender, radialer Wellen
dar. Um ein System fortschreitender Wellen zu erhalten, su-
perponieren wir, analog dem Vorgang in Lamb ?) fir Oberflichen-
wellen, 2 Systeme stehender Wellen von der gleichen Wellen-
linge. Dabei miissen sie einen Phasenunterschied von '/« Wellen-
lange aufweisen, damit die Berge und Tiler des einen Systems
mit den Knoten des andern zusammenfallen. Dann erhalten wir
auf analoge Weise wie oben

(14) o= A J(ikr)el ot =k
und

(15) Jr:i&&(ik[{)eiwwn)
oder als reeller Tefl

(15°) Ar = — -54;‘—’ J (ik R) sin(ot =0,

Es 1st 4 = —21{7—5— die Wellenlidnge, T = 27 die Schwingungsdauer,
o

somit folgt fir die Fortpflanzungsgeschwindigkeit der Welle aus
b =T, == %, also nach Gl. (12)

1 1
(16) ¢ — kN -——OlJ(lk R) _ 1 -——-OIJ(lkR). |
k J (1ik R) ack J(kR)
Dieser Ausdruck gilt fir beliebige Wellenlingen. Wird aber 1

im Verhiltmis zu R sehr gross, dann wird

<L, 7t R 5
— 1J (1ikR) = und J 1k R) = 1, also

A
17 e/ R _/ R_ /R . -
(17) \/k T 1 \/4 5 V2a9’ in Ueberein

stimmung mit Weber (pag. 2), also auch mit Resal, Korteweg, etc.
Unsere Berechnung zeigt somit, wie weit dieser Ausdruck bei
kleiner werdenden Wellenlingen zu modifizieren ist.



IIIL. Teil.

Wellenbewegung ziiher inkompressibler Fliissigkeiten
in diinnen, zylindrischen, elastischen Rihren.

§ 1. Die hydrodynamischen Gleichungen.

Die allgemeinen Gleichungen fiir zihe Flissigkeit ohne
Einwirkung #dusserer Krifte lauten nach Lamb ®):

du du du du\ op
Q(6t+u3x+v8y+waz)_yAu ox

ov v ov v dp

18 — u— -+ v— w— )= vV— —
e Q(at+ ox T oy T 6z> MOV =S
ow ow ow ow Jop

— u— v — w— | = wW——

Q(at—l_ 3x+ 6y+ Gz) o oz

Hierin bezeichnen u, v, w die Geschwindigkeitskomponenten
parallel zu den Koordinaten Achsen in einem Punkte (x y z) zur
Zeit t. Fiir irgend einen bestimmten Zeitmoment t geben sie
die Bewegung in irgend einem Punkte des von Fliissigkeit er-
fillten Raumes, wo p = Druck, ¢ = Dichte der Flissigkeit,
u = Reibungskoeffizient ist und /\ das Symbol far o + & + &

dx?  0y%? 0z
bedeutet. _ .
Da die Geschwirdigkeit sehr klein vorausgesetzt ist, konnen

; . du oJu Ju . du dv
die Groéssen u —, v —, w — etc. gegeniilber —, — etc. ver-
A dx dy oz at ot

nachléssigt werden, und es bleibt

du op
— u——.———-
th A 0x
dv op
19 — = V — =i
(19) e =el 5y
dw dp
—— w—_—
th »,uA oz

Da die Bewegungserscheinungen symmetrisch zur Rohren-
achse sind, so fithren wir die Zylinderkoordinaten x und r ein, wo
die x-Achse mit der Rohrenachse zusammenfillt. Bezeichnet
jetzt u die longitudinale Geschwindigkeitskomponente lings der
x-Richtung und w die radiale Geschwindigkeitskomponente, so
wird nach Stokes %)



1 du ;| d2u dp
u(W £ 4 )

(20) H(BZW 1ow | &Pw lw) ép

0x? r 6r or? re

Wir fihren die Stokes’sche Stromfunktion Y eln,
indem wir setzen

(21) u=—lﬂ’l—J und w-:-wl—la—w.
r or r ox

Damit wird die Kontinuititsgleichung

(22) AL S AL ) erfillt.
o0x - r or

Setzen wir in Gl. (20) %:v (wo » der sog. kinematische

Reibungskoeffizient ist), eliminieren den Druck p, indem wir die
obere Gl nach dr und die untere nach ¢x ableiten und die
obere von der untern subtrahieren, so ergibt sich in symbolischer
Schreibweise

0 1 ¢ 1 cw du
@ |5 letwtins)|ln-5-
Nach (21) wird
ow_du_ 1o dy_ 1w
ox or (61{2 or? r or/
also wird GL. (28)

(L4l L
ot o x? Br* r or r’“’)

m(821p+621p_18w)' — 0,
¢ Lex* g9 r dr

oder |
0 02 1 ¢ 1
24 —— - ="
@4 [8t (d:@ 6r2+r or r‘z)]
62 19 1| /v
—Ft—F——==|(=)=0.
[6x2+6r2 -l_r or r2J(r>
0
Zur Abkirzung sei symbohsch — -I— —[—1:9—-—-12 =D
r

gesetzt, dann lautet Gl. (24)
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(25) (f——v )(Dﬂ)r.o
ot r
Setzt man nach Stokes ¢ =y, 4+ v,, wobei D (ﬂ) =0, so
»

1st

(ﬂ—vD)<D”i)=o oder DI(-a—-- w)ﬂ?_]:o.
ot ' r ot r |

Die Gleichung (25) wird also auch erfillt, wenn

s

) D(”i):o und  b) (i—yD) ¥ _ o,
ot

r r
Fir vy, und 1y bestehen somit die folgenden Differential-
gleichungen :

(26)

yn , Py —lM%O
%2 or? r or
(GERTI) 02 U 10 Ur 146 123
9x2 ' or r dr v dt
Wir suchen ein partikulires Integral dieser Gleichungen,

das die Erscheinungen einer einfachen Sinuswellenbewegung mit

- (27)

vorgeschriebener Frequenz n :21 darstellt, setzen also sowohl
7T

y, wie auch i, proportional &' @+ Es sei y,= P.e
wo P nur eine Funktion von r, dann wird Gl. (26)

i(ot 4 kx)
?

2 9

i P——I—Q——kZP == oder, weil — k¥ = (ik)®,

or? r or

P 14aP 4 8
28 — k) P =0.
(28) 7w oy T B

Hieraus folgt !*)
1
P = r[A; J(ikr) 4+ EY!(ikr)] also
weil auch hier lim. Y'(ikr) = oo, muss die Konstante E, aus den-
Pl

selben Griinden wie frither, Null sein. Es wird daher
P, =rA Ji(ikr)e @t +E)
Aber da 1J'(ikr) reell ist, setzen wir A; = iA, also
(29) Y, = rAiJi(ikr)e ot T 0
Da nach obigem auch y,=P’e"®**+* wird GL (27), wenn
— k? = (1k)? gesetzt wird, |
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812 r Or (kPP — v o=
oder, wenn
(30) £—|— k? = g* gesetzt wird,
P’ 19 P' ,
(31) - ~ - prP

Diese Form entspricht genau der;]emgen der Gl. (28), deshalb
folgt
P'=rBJ'(ipr)

also, wenn wir statt B, analog wie bei (29), 1C setzen,

(32) W,=rCiJl(ipr)e! Ttk
Da v =, 4 ,, so wird
(33) p=r[A1d! (ikr) 4 CiJ( lﬁr)] ei(0t4kx)

wo 2 durch Gl. (30) gegeben ist.
Durch diesen Ausdruck fiir y wird die Differentialgleichung
(25) erfillt. Gl (33) ist also ein Integral derselben.

Um eine Beziehung zwischen der Stromfunktion 1 und dem
Druck p zu finden, gehen wir aus von GL (20), in welcher wir

£ = und fir u und w die Werte aus (21) einsetzen; dann er-

S
gibt sich:

16%y 1/8( &y 13,)_ 1dp
34) T rdrét ror\ 4x2 4r? "'r ér/) g dx

rdxot r ox x  8r2 r dr
Durch Addition der Gl. (26) und (27) erhilt man

Fy Fy 19y 13dys
(35) T dx2 9r? +r ar v at

Diesen Wert setzen wir in Gl. (34) ein und bekommen

LEy ro( 1im)_ iop

r ordt ror y 0t an
(36) 4 .

1dy v o 10m)_ 1op

r 6xot rax vy dt /] oor

Da aber yr=w, 4 v, so folgt
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&
°p_e &y dp__e &y
(37) Jx rarat und or raxdt

Diese Beziehungen finden sich bereits in der erwihnten
Arbeit von Stokes!?).

Es sollen p und w proportional e!@+¥0 goin  Dadurch
beschrinken wir unsere Untersuchung auf rein stationire, fort-
schreitende Wellen mit bestimmt vorgeschriebenem Schwmgungs
zustand far p.

Multipliziert man beide Gl. (37) mit r, tibt auf die Erstere

0 . ]
+~—— und auf die Zweite _6_

% 55 aus, addiert beide, so folgt:

p lép
(38) ax2 81"3 _|_1 or

Fir p = P’'(r)e' * + ) gegetzt, folgt aus (38) wenn — k?2
= (ik)? wieder die bekannte Bessel’sche Differentialgleichung

oI 1
(39) S
d(ikr)? ~ 1ikr d(ikr)

Somit
0 0
P = CJ (ikr) 4~ D Y (ikr).
Auch hier muss D == 0 sein, damit p nicht fir r = o un-
endlich wird; es ist daher:

o -
(40) p = CJ (ikr)e! ¢+ ¥
- Unter Beriicksichtigung-von Gl. (87) u. (29) wird
0 .
(41) p = — AgsJ(ikr)e' "t + 5

Fibhrt man in den Gl (21) fir y den Wert aus Gl. (33)
em, so erhilt man fir die Geschwindigkeitskomponenten u und
w die folgenden Ausdriicke:

( u = [A k&(ikr) -+ Cp’%(iﬁr)] el @t + kx)

W= [— AkJ!(ikr) — Cle(iﬂr)] g! 10+ ),
I. ! wo '

0 s
p = — AgoJ (ikr)e @t + ¥
| L4
Y =r [Aij(ier 4 OiJ(iﬁr)] g 1078 - 0
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p=t \fie 412

Da aber k2 fiir lange Wellen (wie sie fiir unsere Unter-
suchung allein in Betracht fallen) sehr klein und » klein, also

Y )
— gross gegeniiber k?, so kann man setzen

v
-._'_O'— g = o
B=+ \/1 7=¢\E\/1 =q\Vi
0 1 :
Ferner kann fir k? << 1, J(ikr) =1 und J(ikr) = 1k?r_gesetzt

werden, dann folgt :

y 0 - .
n=[ Ak + CaviTeay=i e
J we —| LAk + Cle(rq\/-—i) gt Ex),
II.} WO 2
pzﬂAQGei(Gt_Fkx)
w:r[_A:r+CiJ1(rq\/_T5:|ei(O‘t+kIX)

§ 2. Die Gleichungen der Elastizitét.

Wir greifen ein Volumelement der Rohrenwand heraus, be-
zeichnen es mit 4V und setzen voraus, dass es so dinn sei,
2
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dass die Variation der Wanddicke Verné.chlélssigt werden koénne.
Bezeichnet :

R = Innerer Radius der Rohre im Ruhezustand.
4 @ = Winkel, unter dem das Element von der Rohrenachse
aus erscheint, :
h = unverinderliche Dicke der Rohrenwand.
4 x == Lange des herausgegriffenen Elementes.
u’ = Verschiebung in der Lingsrichtung bei Einwirkung
eines radial gerichteten Druckes p.
w’ = Verschiebung in radialer Richtung unter demselben
Druck p.
P$ = Spannung in Richtung der x-Achse.
£ = Spannung in Richtung des Umfanges.
E = Yongs Elastizititsmodul der Roéhrensubstanz.
©® == Poissonscher Koeffizient = Koeffizient der Querkon-
traktion zur Léangendilatation. (Diese von Lamb ab-
weichende Bezeichnung beniitzen wir, um die Ver-
wechslung mit der Frequenz ¢ zu vermeiden.)
0o = Dichte der Rohrensubstanz.
Esist 4V =r-4¢-hAx, somit die Masse dieses Elementes
AM =g, -r-Ad¢p-hdx. :
- du’

72 7% aw
Dehnung in der Léngsrichtung = L
d X ox
Dehnung 1in Richtung des Umfanges — R+wHdg9 —RA R
R.-d¢ R

%2]} und %Q sind die oben genannten Werte fiir die Dicke 1,

so dass sich ergibt:

Dehnung in der Langsrichtung : i —=_-——(‘.B O9)
dx E-h
Dehnung in tangentialer Richtung : i,_____ 2 -6
8 8 bung: o= B).
Hieraus folgt:
h-E Bu w
42 == —
(42) = @2( R)

und
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h-E /w Ju’
43 £ == ()] .
(43) 1—@2(R+ 83{)

Wirkt aber in der Léngsrichtung in irgend einem Quer-
schnitt die Spannung P, so erreicht diese Spannung 1m Abstande

4 x von diesem Querschnitt den Wert J + SB A4 x. Die Kraft-

wirkung auf unser Volumelement in der Langsrlchtung betragt
demnach

(_+‘“"h )h R.dg— P .h-R-Ap—"2 4x.R-4¢.
h ox h 0x
Somit, da die Beschleunigung in longitudinaler Richtung

e’ 8%u 0P :

— ist, g+ R-dp-h-dx —=—4dx-Rdyg also

ot? Jt?  ox

(44) YL
ot® dx

Da der innere Uberdruck, welcher in Richtung wachsender r
wirkt, p ist, so wirkt auf das Rohrenelement der Druck p-R-
degp - Ax, in entgegengesetzter Richtung wirkt mfolge der Ela-

stizitat die Kraf‘u—\'ﬁ}—1 4x-h mit ihrer Komponenteiﬁdx -h- sm%o
== 0-.4x-hdg. Somit, da die Beschleunigung in tangentialer

) G ,
Richtung = s

a2’

3!

o-h-R-dg-dx- Fw

=p-Redp-dx — Q-4x-h-4¢, also

’w’ 1
(45) ¢ h T :Pf?ﬁ

Substituiert man Gl. (42) in (44) und (43) in (45), so erhilt
man die Lambschen Gleichungen.¥)

d2a’ B ®dw'
' it e (dx2 R dx) und
(4:6) I d2wi_—— p -——Ii ﬂdu W!
dt?  he, (R dx RZ)
wo B = E .
1— 6

*) Genau genommen miissen noch die durch die Zihigkeit der Fliissig-
keit erzeugten Druckkomponenten mitberiicksichtigt werden. Statt p wire
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Da u’, w’ und p proportional €' ?*+ 50 5o ergibt sich :

(cz——lg—) ’-]—ﬁ Bw =) und
O1 ( 1 B) ,

—_— ......-u + o — W = — 9
kR o k2 R? g k? h g,

In den hydrodynamischen Gleichungen treten die Geschwin-

digkeitskomponenten auf und nicht die Verschiebungen wie in

Gl. (47); wir setzen also 211 = u und % = w, folglich sind

diese Gleichungen noch nach der Zeit t zu dlﬁ"erentleren Sie
lauten dann :

(cz____) 10 szo und

Qo ©o

(48) __Ql.gu{—(c?—]— 1 __B_)W__ iop
kR ¢, k2R? g, k2he,

§ 3. Bedingungsgleichungen fiir die Geschwindigkeit
langer Wellen.

Die Gleichungen II charakterisieren die Bewegung der
Flissigkeit fiir lange Wellen. Die Gleichungen (48) dagegen
diejenige der elastischen Rohre. An der Rohrenwand, fir r = R,
miissen die Geschwindigkeiten u und w der Gl. II denjenigen
der Gl. (48) entsprechen. Wir fithren die Werte aus Il in (48)
ein, sondern die Konstanten A und C ab, dann folgt aus (48)

A-a+Cg=0
(49 Ap JOf—un

p—2u Z;j zu setzen, ebenso ist in der tangentialen Richtung ein Zusatz-

-

glied zu & mit dem Faktor x beizufiigen. Diese Glieder kénnen aber in

den GIl. (46) im Verhiltnis zu p und zum grossen Faktor B vernachlis-

. . . . go:,
sigt werden, um so mehr als eine ev. Reibung in der elastischen Wand
sowieso nicht beriicksichtigt wird. :



. Rk(D n %b)

ﬂ:.ll(Rq\/ji){Rq\/i_D TRaV=D)_ ;4

WO

J(Rqy—1i)
2 2 h2 2
60) |  ,—ieb4i~ I; X —i%+i%@(woa=k-c)

0 T
a:i(Rq\/:i—){q \ﬁ%@b‘?ﬁﬂ:ﬂ

JRqV—i)
. b
FRE (¢ = 1))
: E 0
wenn — =——— =Db, ¢2—b =D und = ¢ gesetzt
e o(1—6?) ¢ h

wird. Da die Determinante der Gl. (49) null sein muss, so er-
halten wir als Bedingungsgleichung fiir k

(51) ¢-0=pf-y.
Ferner ergibt sich aus Gl (49) der Wert fiir die Kon-
stante C

(52) C—_4u

e

Fibrt man in Gl. (61) die Werte (50) ein, beriicksichtigt,

dass q\/l_ =i qV—1, und setzt Rq\y—1i=12, so ergibt sich
1

1y,
tJ@

—10b

k2 R? )

. . b .
Ob —i— Fie |
1 | 1 1¢C (’L’

(53)

~|ev I , b
- 2 Zj(z)+Rk(c kZRz)

Rk(cg——-— b - gb)

Aber 7 = Qh ist bel nicht zu dicken Rohrenwinden relativ
Qo '

gross, also kann fir lange Wellen

gegeniiber 7 vernach-

léiséigt werden.
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0

Weil{(z) eine komplexe Grosse ist, setzen wir

J(2)
— — Z
3 RqV—1) (Z)
Setzen wir ferner zur Abkiirzung
©5) S—b _;__@); L—2D 4 &b,

so ergibt Gl. (53)
56)  [D(P +iQ) + Ob][k’S — Ree’]

+ K2 [(P +1 Q)@'O—b]——0

Dies ist die Bedingungsgleichung zur Berechnung von k.

Da k eine komplexe Grosse ist, setzen wir k = m -} 1n
WO m = —Z—E A= ¢ T = Wellenlange, 1I'= g—j—x — Schwingungs-
dauer, n = Dampfungskonstante in Richtung der Fortpflanzungs-
geschwindigkeit. |

Den Wert fir k? = (m?> —n?) 4 12mn und ¢ =m-c in
Gl. (56) eingefiihrt, gibt:

— tm?c[RD((P +1Q) 4- R®b] 4 (m® — n? -} i2mn)

(57) [DP +1Q) + Ob]S i |

+ (m2® — n? 4 12 mn) [(P—|—iQ)@b—-—b]—2-=

Diese Gleichung gestattet zunichst, das Verhiltnis T zube-
- n

rechnen. Zerlegen wir sie in ihre reelle und imaginire Kompo-
ponente, ordnen nach den Variabeln n und m, so folgt:
' m?’e’ —n?pf —2mny' =o
(85) m?d’ —n?y -+ 2mnp’ = o,
wenn zur Abkirzung folgende Setzungen gemacht werden:

(o =D (%9- +¢* RP — b)+@2b° (5_1) ~7?ROb

=2p _9 D+ o)
(59) 2
r=Ql30+ &)

v=apren ey
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Dividiert man die Gl. durch m-n, addiert beide und ordnet,
so folgt:
D=2 M; die obigen Werte eingesetzt, ergibt:
n alrf - 6’6,
m_ ob(—b4+ &b (Q+ (P—2°)%
o 2Q[2(c?-- b) + @bl R
Wir berechnen ferner aus Gl. (56) die Fortpflanzungs-
geschwindigkeit ¢. Zu dem Zweck schreiben wir sie wie folgt:

(61) [D(P 1iQ) + @b] - [25_2&; -E-z-]

(60)

—_ — [(P—l—iQ)@b—b]L.
Wir setzen links den Ausdruck
2
- (62) 2*5R%2-=X+iY.

Die reellen und imaginiaren Teile der Gl (61) sind dann:
1. Reeller Teil:
63  —X[DP + 6b] +YDQ = |
— —2S[DP 4 @b] — (POb — b)LL
2. Imaginirer [eil:
(64) XDQ+Y[D:-P+ 6b]=Q6bL 4+ 2S.-D-Q.
Aus diesen beiden Gleichungen folgt durch Elimination von Y

—X:[(DP—[—Qb){—ZS(D-P—l—@b)—(P@b——b)-L}

) DQ{6bL +2S.D)} 1
| J " (DP 4 Obp + D2 Q2
Lost man die Klammern auf und ordnet, so wird
(66) x PO+ &h[(P—2D-P+ 6b) QD]

(D - P + 6b) -} D2 Q2

Y Anmerkung: In den fiir uns in Betracht kommenden Fiillen
ist % sehr gross. Denn fir p =9, = 1, b o 108, & = 05, R = 10,
. ¢? v 10° (s. pag. 35—36) und den Werten fir Rg =10, P oo Q o~ 10 (s.

8 108 102
pag. 34) ergibt sich ™ (\)—l—O—M - i 10
n 10.10°.10°.10

Es darf also jedenfalls n2 gegen m? , in erster Anniherung aber auch

n gegen m vernachlassigt werden.
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2
X ist der reelle Teil von 27 R ]:—2. Fiir k=m -} in wird, wenn

n? <<~ m? (s. Anmerkg. pag. 21), X =27z R 2. |
Dies in Gl. (66) eingesetzt, ergibt in erster Annédhe-
rung, wenn c’zuniichst gegen b vernachlissigt wird, also

D:—bz—eﬁo und D+@2b=—~b(lﬂ~—@2):——é}jol—
gesetzt wird : | i
(67) cz___h'E.(P_z)(P—@)‘I‘QZ____CgK.
2Re (P—6PF+Q
Ist die Reibung » =o, also q = /%2 =00, so wird auch
P=Q =00, also K =1 und es bleibt ’
(68) c 2%%’ die von Resal gefundene Form (s. p. 3).
Der Ausdruck K = P—2FP -6+ beriicksich-
®— 6P+ @

tigt die Zihigkeit der Flissigkeit, er ist also der
Resalschen Formel als Korrektionsfaktor beizufiigen.

Fir eine genauere Berechnung kann der so korrigierte
Wert in Gl. (66) eingefithrt werden. Es wird dann in 2. An-
niherung: ' )

D=¢c—b=cK—b=—bH ' wo
‘2 . 2
Hel— 2 K—1- h(lz_R@) K dann wird
' 2 H—6" (P—2)(HP —0) +HQ®
(69) c —Col_ @2 * (HP"—- @)2+H2Q2 === 00K07

wo K, ein verbesserter Korrektionsfaktor ist. Wenn notig, kann
durch fortgesetzte Substitution in Gl. (66) der Wert von ¢2
mit beliebiger Genauigkeit ermittelt werden.

§ 4. Die Longitudinale und die radiale
Geschwindigkeit der Flissigkeitsteilchen
bei einfach harmonischer Schwingung von p.

In Gl (52) ist die Konstante C durch die Konstante A aus-
gedrickt. Da C komplex ist, so schreiben wir zweckmiissig, da-
mit die Ausdriicke fir die Geschwindigkeiten u und w moglichst
einfach ausfallen,



— 95

k(D+i%®) _ Ak(®@+i®)(--V-1)

qVi q
wo @ und ¥ zu bestimmende Funktionen von R sind. Aus Gl.
(52) folgt, wenn fiir ¢ und 3 die Werte (50), sowie die Substitu-

tionen L und Z Gl. (54) und (55) eingefiithrt werden.
LR q \/i_

(70) e =

(71) I

2JYZ)[DRq Vi JL(Z; i0b]

Nach unserer Setzung (54) wird 1rn Nenner

SAVEIVIS. JVERS (0 W P

JU(Z) 1 J1(Z)
Fiihren wir nun die Thomsonsche !2) Bezeichnung ein
(72) =N d L(Z) = ber’ Z -+ i bel’ Z, ~ so wird

®}ir=—Rq\i — LD
—1 2(ber’ Z +ibet’ Z][ : (P—[—iQ)—-—i@b]
i

oder

(@) o4iP—-- L L .
2[ber'Z 4 ibei’Z] D(P 4 iQ) -} 6b
Setzen wir noch zur Abkiirzung
M=DP + ®b und DQ = N,
so erhilt man aus (73) durch Trennung des reellen und imagi-

niaren Teiles

___Rq L(M bet’ Z 4+ N ber’ Z)
(74) .2 [ber’ Z2 4 bei” 72 ] (M2 + N2)
Rq. L(Mber'Z — N bei’ Z)
2  [ber'Z? + bei’ Z2 ] (M2 + N?)

Wird in erster Annéherung c® gegeniiber b vernachlissigt,
also, well D=¢*—b, L=b(® —2), M=b(® — P) und
N = — b Q gesetzt, so folgt

__Rq@ — 0)[(P — 0) bei'Z 4 Q ber' Z]

(74%) 2 [ber'Z* 4 bei' Z2]-[(P — O + Q) '
Rq @ — O)[(P — @) ber'Z — Qbei’ Z
2 [ber'Z2 - bei’ Z2][(P — 6 +Q?]
Mit der Substitution (70) ergeben die Gl. II:

O —
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Erstens: fir die Geschwindigkeit u in Richtung der
Rohrenachse, wenn wir r q\/— 1=z setzen und nach Thomson

(75) :)T (rqy—1) = berz | ibeiz einfithren,
(76) u=Ak[l — (& -Fi®){berz - ibeiz} e @t+

Da k= m + in, wo aber n nach Gl. (60) gegeniiber m
vernachlissigt werden darf (s. Anmerkung auf pag. 23) folgt,

—n

@)  u—Ae m[l—(®4iF)(berz- ibeiz)]e @t+m0

Da wir im Folgenden nur die Schwingungen der Flissig-
keitsteilchen betrachten, die in der Gleichgewichtslage in einem
bestimmten Querschnitt (z. B. x = o) liegen, so braucht auf diese
Diampfung nicht mehr weiter Ricksicht genommen zu werden,

— nx

so dass wir den Faktor e weglassen. Er ergibt sich als reeller
Teil aus Gl. (77):
(78) u=Am[(1 4} Pberz— Fbeiz)cosy — (Pberz4- dbeiz)siny],
wo y=—=o0t 4} mx

Bezeichnen wir den Koeffizient von siny mit E und den-
jenigen von cosy mit F, so ist .
u = — Esiny + Fcosy = Geos(y -+ 4), also G = + \/E? - F?
somit : ,

u = Am\/ (1-+ @bel_'z — Pbeiz)*+(Fberz+ dbeiz)?-cos(x+9),

(79)| wo
tg 0 _E __ Fhers ~+ @ beiz .
F 1-} ®berz — Pbeiz
Zweitens: fir die Geschwindigkeit w in radialer Rich-

tung, ebenfalls unter Vernachlassigung der Dampfung n,

80) w2 @ Iy [t
und, wenn
(81) (—V=1)J(rq V= 1) = ber'z 4 i bei’z,

ergibt der reelle Teil von (80):
2 3
82) w=— S [((D ber’z — ¥bei’z) cos y

(4 s+ ot
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oder, analog behandelt wie u:

2
W-_—Am \/lqr+’f‘berz+d)be1z] sl

(83) +|®baz-Wbm{ram@,FyL

WO

q_2r + ¥ber'z 4 @bei'z

r__
hgdl’ = ® ber'z — ¥hei'z

§ 5. Untersuchung der Bewegung bei Annahme

rein radialer Schwingung der Rohrenwand.

Die bisherigen Ausdriicke zeigen, dass stets u, die Geschwin-
digkeit in Richtung der Rohrenachse, ausserordentlich viel grosser
ist als die Geschwindigkeil w senkrecht zur Rohrenachse. Die
Rohrenwand macht also hauptsichlich longitudinale Schwin-
gungen. Betrachten wir deshalb den speziellen Fall, wo sie nur
radiale Schwingungen vollzieht.

Es sei also in der Rohre fir r = R die Geschwindigkeit
der Flussigkeit an der Rohrenwand in Richtung der Réhren-

achse u = o; ebenso setzen wir (Z—W; da dieser Betrag sehr klein
X

ist, gleich null.
Aus Gl. (46) folgt unter dieser Annahme und unter Be-
riicksichtigung der Bemerkung, die zu der Gl. (48) fiihrte, sowie

mit der Substitution B ="
d? w 1 dp b

(84) — ——w (far die Rohrenwand).
dt2 hgo dt R?
p und w setzen wir auch hier pr0portional et EY dann ist
(85) A e g — W
' hgo R?

Es 1st ¢? gegenitiber % sehr klein, wir lassen es also weg und

bekommen als Bedingungsgleichung fiir k:



(86) LI
R? hg,
Da wir an der Rohrenwand r = R, die Geschwindigkeit u = o

annehmen, folgt aus II

l Ak 1+ Cq \/1_3 (Z) = o, hieraus
(87) ] C— Ak
qViJ(2Z)

Diesen Wert fur die Konstante C fithren wir im Ausdruck fir
w In II ein und bekommen fir r = R unter Beriicksichtigung
von (b4)

(88) w = — AKk? (-iE————iR~ )ei(‘”“““).
2 P+41Q
Diesen Wert in (86) eingesetzt, gibt
/ 2
- (89) K (i_ _ ):” L]
2 P41Q b
Aber k¥ = (m? — n?) 4-12mn, o¢>=m?c? und
1 P s Q
— P+iQ P4@ P +@
Also wird Gl (89):
(90) (m? — n? 4 12mn) (l— - +1 @ )
2 PAQ P
—m?c? 7 — = o;

hieraus ergeben sich fiir die reelle und imaginire Komponente
folgende Gleichungen :

eyl P N\ _opn_ 9
s ) i
(91) —mzczfv—b—=o,
2 poy_ @ LS S O
(m n)P2+Q2+ 2mn(2 P2—|-—'Q2) 0.

*) Bemerkung: Nach GL II wird fir »—= o, wenn keine Reibung

vorhanden wire, w = ——%Ak2 Rel(0t +kx) ypd p = — Agoel (0L +EX)
Da ¢ =k.c¢, folgt aus Gl. (86)
2 bhe, . " ; . ; '
c =:2—R*; dies ist wieder die Resalsche Form, wenn
¢ ;

(g

I

Ica

I
?Im

b=
)

gesetzt wird, was in erster Annéhérung‘ statthaft ist.
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Aus diesen beiden Gleichungen berechnet sich das Verhiltnis

m
— Zu:

n b{2 (P Q@ — 2P 4 @

92) m_ g

{ 0 P QR

Eine Uberschlagsrechnung ergibt der Grossenordnung nach den
namlichen Wert wie Gl. (60), so dass wir auch hier zur Berech- .

nung von ¢, n gegenitber m vernachlissigen konnen. Unter dieser
Voraussetzung ergibt die 1. Gl. (91)

e % - = -;2(?; 592 £l — 111202’5-E =0 und

hieraus, wenn durch m? dividiert wird, und die Werte von b und
v (pag. 20) eingesetzt werden,

b 1P*4Q@—2P) Eh (P24 Q*—2P)
R 2 (P+Q) 2Re(l— )PP+ Q)
__Eh K’
2Ro
wo K’ das Korrektionsglied angibt, das der Resalschen Formel
beigefiigt wird.
Zur Berechnung der Geschwindigkeit u ber radialen

Schwingungen der Rohrenwand setzen wir den Wert der Kon-
stanten C aus (87) in II ein und bekommen :

93) ¢ =

(94) uzAk(l — —g—@> g (Ot k)

I(Z)
Fir k = m 4 in und mit der Thomsonschen Bezeichnung nach
(75) und unter Vernachlissigung der Dampfung in der x-Rich-
tung, wird der reelle Teil in (94), wenn 6t + mx = y,

@) u—Am|(1— berZ-berz +- beiZ-beiz
o ( berZ? - beiZ?

berZ-beiz — beiZ-berz . X]

)cosz—l—

T berZ? + beiZ? =

oder analog behandelt wie Gl. (79)
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Am-cos(y + ¢ /
b= ber 72 —i—(/i):i_Zg \/[berZ -beiz — beiZ-berz]2 +
(96) + [ber Z2 + beiZ? -— {berZ-berz + beiZ-beiz} [,
wo
to § = — berZ - beiz — be1Z - berz
8 berZ? — beiZ? — [berZ - berz -} beiZ - beiz] -

Auf glelche Weise ergeben sieh aus II, nach Einfithrung der
Gl. (87), fir die Geschwindigkeit in radlaler Richtung
die folgenden Gleichungen:

(97) w = — A k2 [_r_ Jl(i] ol (06 +kx)

° Vi@
- Unter den namlichen Bedingungen wie friither wird die reelle
Komponente

98 w— Am’R berZber’z —|—lfe1Z bei'z —
(berZ? 4 be1Z2)Rq
{beerei’z —beiZber'z r } . ]
—_ — sin y

(berZ? 4 beiZ?)Rq 2R

oder _

@ S0 x40 \/ berZhei'z — beiZ- ber'z —

( q(berZ? + beiZ?) V |
2 ‘ 3
I;—q (berZ2 -} bei ZZ)] -|- [beerer’z -+ beiZbei'z]
wo
berZbei'z — beiZber'z — — (berZ? -+ be1Z2)

 tgd =

berZber'z beIZbel z

§ 6. Untersuchung der Bahn eines einzelnen
Flussigkeitsteilchens.

Es seien (x, r) die Gleichgewichtskoordinaten eines Fliissig-
keitselementes in einer Meridianebene. (x7) die Koordinaten der
Verschiebung aus dieser Mittellage. Nun ist:

do_d(x+a) _ 1w

dt dt - r or

(100) dr_dedn L 16y

dt dt ‘ r 0x



Fir u und w setzen wir die gefundenen Werte aus den Glei-
chungen (79), (83), (96) und (99) ein und bezeichnen zur Ab-
kiirzung die Amplituden von u und w mit f bezw. F, dann ist
de = f cos (6t + m (x + x) + 6) dt

(101)] dr = F cos (¢t + m (x 4 ) 4 ¢) dt.

Bei der Integration nach t kénnen im Argument die mit
dem kleinen Faktor m multiziplierten Werte x als konstant
angesehen werden, also

ac::f%sin(at—[—mx—l—d)
(102) 1
rngsin(ot—I—mx—{—é’).
Aus diesen Gleichungen ergibt sich nach Elimination der
Zeit t:

: 3 o , 1 .
(103) o F*+ " £ — 2xr - Ff cos (0'—0) =-0—2f2F2sm2(a’-a).-

Dies ist die Mittelpunktsgleichung einer Ellipse mit
variabler Neigung der Achsen.

Zur Bestimmung dieser Neigung gegen die Roéhrenachse
transformieren wir die Gl. (103) auf ein neues Koordinatensystem,
indem wir setzen:

x = « cos y — r' sin y

Y I X ' % . .
(104) r = a sin y -+ r' cos y, woraus folgt

x'? [F* cos” y -+ i? sin® y — 2 F £ cos (8’ —0) cos y sin 7]
4+ 7% [F? sin® y £ cos® y -+ 2 F £ cos (8'—3) cos y - sin y]
— 2 a'r' [F’ cos ¥ sin y — f° cosysin y 4 F £ cos (8'—9)
. (sin® y — cos” y)] — G%fz F? sin® (¢’ —8) = 0.
Um die Normalform herzustellen, muss die letzte Klammer
‘Null sein, also:
(105) F?cos y sin y — f* cos y sin y — F f cos (¢'—d) (cos” y
— sin® y) =0
hieraus folgt
2 F fcos (0" — 0)

.F2_f2

(106) tg 2 y =



= B .

, Da die Amplituden der Geschwindigkeit w senkrecht zur
Rohrenachse stets sehr viel kleiner sind als diejenigen von u in
Richtung der Rohrenachse, also F <<f, so ist aus Gl. (106)
ohne weiteres ersichtlich, dass die grossen Achsen der Ellipsen
der einzelnen Flissigkeitsteilchen praktisch parallel zur Rohren-
achse liegen. "

IV. Teil.
Diskussion der erzwungenen Wellenbewegung einer zihen
inkompressiblen Fliissigkeit.

§ 1. Zusammenfassung.

In unseren Untersuchungen des III. Teiles stellten wir die
hydrodynamischen Gleichungen fiir die Bewegung einer zihen,
. inkompressiblen Fliissigkeit auf und suchten unter Bentitzung
der Stokes’schen Stromfunktion ein Integral fiir Wellenbewe-
gungen im Innern einer unendlich langen, zylindrischen Rohre
mit kreisformigem Querschnitt, ohne Riicksicht auf die Schwer-
kraft. Hiebei ergab sich Gl. (33).

Die Grenzbedingungen der Flissigkeitsbewegung folgten
aus der Elastizitatstheorie mit der Annahme einer elastischen
Rohrensubstanz und unter der Voraussetzung, dass die Rohre
im Vergleich zum Durchmesser nur eine geringe Wandstirke
besitze. Dabei wurde jedoch die Reibung im Innern der Réhren-
wand unberiicksichtigt gelassen, obwohl sie moglicherweise einen
merklichen Einfluss auf die Fortpflanzung der Wellenbewegung
der Flassigkeit austiben konnte.

Die ganze Betrachtung beschrinkte sich auf einen statio-
niren Zustand; auf die Entstehung der Wellen wurde nicht
Ricksicht genommen. Die erzwungenen, fortschreitenden-Wellen
haben eine bestimmte gegebene Frequenz ¢ (in 27z Sek.) und

haben eine sehr grosse Wellenlinge 1 = 2—1?, so dass also

k?<<1ist. Fir den periodisch oszillierenden Druck wurde eine
einfache cos. Schwingung angenommen, p—=-— Agocos(ot + kx),
wo ¢ die Dichte der Flissigkeit bezeichnet.
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Die Dampfung in Richtung der Rohrenachse ergab sich
aus der komplexen Grosse k —= m -+ in, wo n die Dampfungs-
konstante bedeutet. Wie sich aus der Ueberschlagsrechnung

Seite 21 zeigte, ist das Verhiltnis r—I; von einer zu vernach-

lassigenden Grossenordnung.
Unter diesen Bedingungen gelten unsere Gleichungen, die
hier zusammengestellt sind.

I. Fortpflanzungsgeschwindigkeit der Wellenbewegung.

a) Fir allgemeine Wellenbewegung.

In erster Anndherung:

_\/ \/E-WP N+ _ . vk 6L e
2Re V(P —06)+Q

wo ¢, Z—E—% die bekannte Formel von Resal ist, oder

in zweltel Anniherung:

#\/ H— ¢ (P—Z)(HP—@)+HQ o Vo
2Roe V1 -6 (HP — 6y + Q] iy

. B . Gl (69)
WOH——Wl——#K und b = — = ey
b ¢ o(1—0)
b) Fir rein radiale Schwinging der Rohrenwand.
ch\/ \/P + @ —22P —— VK Gl (93)
2R o 0 1 — 6% P4 Q)

II. Geschwindigkeiten der Fliissigkeitsteilchen.

a) Fir allgemeine Wellenbewegung.

1) In Richtung der Rohrenachse:

u=Am \/(1—]- @ ber z — P beiz)’ 4 (¥ berz - Gbeiz)’ cos (x+ J),
Gl (79)

wo __ Wherz | @ beiz
1} ®berz— Fheiz
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2) In radialer Richtung senkrecht zur Rohrenachse:

W=é§}_2\/|:qz-£+ 'Pbef z -+ Pbei’ z]z -+ [‘@ber’z — PFhei’ z]2

-cos (x + d)r
WO

t_:12_r + Fhber'z |+ P belz Gl. (83)

tg 9" = ® ber'z — Fhel'z
wOo
___Rq 2—6)[(P—6)-bei'’Z 4 Qber'Z]
2 [ber'Z? + bei'Z?][(P — 62 + Q%] |
| b Gl (74%).

— _ Rq 2—0) [(P — @) ber'Z — Qbel’Z]
2 [ber'Z? -+ bei'Z] (P — O + Q'

b) Fir rein radiale Schwingung der Rohrenwand.

1) In Richtung der Rdohrenachse:
. Am cos (g 4 6)
berZ2 - be1Z?
-+ [berZ? -} beiZ? — { berZ - berz -} beiZ - beiz }
wo _ Gl. (96).
berZ - beiz — beiZ - berz
ber Z? — beiZ? — [berZ - berz + beiZ - beiz]

[berZ-beiz — beiZ-berz|" 4

tgd = —

2) In radialer Richtung, senkrecht zur Rohrenachse

w — Am? cos (x + ¢')
q (ber Z2 4 beiZ?)

[berZ -bei'z — beiZ - ber’'z —

2 2

% (berZ2 -+ beiZz)] + [berZ -ber'z 4 beiZ - bei’z]
wo' Gl. (99).
berZ-bei’z — beiZ - ber'z — 52& (berZ?® 4 beiZ?)

berZ - ber’'z |- beiZ - bei'z

tgd =



IIl. Die Elongationen x, » der Fliissigkeitsteilchen.
B == flsin(ot—}—mx -+ d)
g

1 Gl. (102)
r =F —sin(ct 4+ mx -} §)

a
2F-f-cos(d’ — )
2 — f2
wo f= Amplitude bezw. Maximalwert von u
F = Amplitude bezw. Maximalwert von w
v = Neigung der Achse der Bahnellipse zur Rohrenachse.
Ferner bedeuten in den obigen Ausdriicken
A = Eine Konstante, die sich aus p=Aocos(ot -+ kx) be-
stimmen lisst.
E = Yong’s Elastizitaitsmodul der Dehnung.
® = Poissonscher Koeffizient (Verhaltnis der Querkontraktion
zur Langsdilatation).
0o = Dichte der Réhrensubstanz.
h = Dicke der Rohrenwand.
R = Radius der Rohre.
o = Dichte. der Fliissigkeit.
o

= \/ 9 wo »= kinematischer Reibungskoeffizient (Visko- |
” .

sitit) der Flissigkeit, ¢ = Frequenz in 2 sz Sekunden.
Z=Rq\y—1i und 2=rq\—1

J (z)=Dberz 41 bel z — Besselsche Funktion nullter Ordnung

: I. Art.

—\/—1J(z) = ber’z | ibei’z — Besselsche Funktion I. Ord-
nung I Art nach Thomsons Darstellungen.

— J J(Rqy=i)
P zJ
+iR= JI(Z) RV =i SRV =0

tg2y =

Gl (106)

(GL. 54.)

§ 2. Berechnung der Funktionen P und Q,
die durch Bessel’sche Funktionen dargestellt
sind, und Zusammenstellung der Konstanten.

Wir beniitzen nach obigem die von Thomson %) eingefiihrte

Bezeichnung ber, fir den reellen.und bei fiir den imaginiren
Teil der Besselschen Funktion :
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J (rq \/— 1) = ber (rq) + ibei (rq)
—V/—1J'(rqy/—1) = ber'(rq) + ibei (rq),

WO

(rq)’ (rq)’ (rq)”
ber (r q) e 1 - 2242 + 2242628'3 ._ 224:26282 102 122 _,— ....
; (rq)’ (rq)° (rq"
bel (rq) = oo — 224262_+ 22628100
. Rq Rq C o
Es sel =2 —% und R —1=22V2V—1=x:
g " qV vey :

ferner ist nach Gray and Mathews ),

xI® _ R G (RS 136h)
o (x) 2 12 48 180 8640
G /o) B |
26880
Deshalb folgt niaherungsweise fiir » <1

Rqy=1 J (RqV=1)
qV (q\/__.);—(l—f-mi-—l—'“')
2 JLRqV—1) 2 . i
' ' ) 54.
€ i (1 — _é__>
| Fur x> 1 gibt Sommerfeld ') niherungsweise den Wert

Rqy—i J(Rqy=1) _(ZJFLJF 3 )

2 Jl(Rq\/_ i) 4 64x/
3 3
+1(’ T 6z 1284 )

Far 10 > « > 1,5 gilt sehr genau nach Zenneck %)

RaV—i " (RaV—1) _ 4997, -1 0,277) 1 i (1,007« — 0,040
2 J'RqV—) — (O DT A 1007 — 0040

Multiplizieren wir diese Gl. mit 2, so folgt fiir unsere Gl (54)

_J(Rq\/ 4 o (o ' ”
Rq \/— T (Rq \/__I)_P—{— Q =2(0,997 « + 0,277)

Rq
-+ 12(10074— 0,040) fir 15<,z (——%)< 10.
Also wird:




q4R4 o
P:2<1—|—§_~B—4-—|—....) fiir » << 1
5 (B, 1 3Vﬂ i
P—a(Vg—F4 BTqR fllrﬂ>1
0,997
F=4% Vg—qR—l—O,ZW) fur 10 >« > 15

und
41y4
_od R /[ aR i -
Q=2 g (1 6-64”"> fir » << 1
4R 3ys 3-8 1
V=28 “eiqr " 18¢R Wl
1,007

Q=2 _\/i qR — 0,040 | fir 10 >« > 15"

In der folgen(ien, Jahnke und Emde '*) entnommenen Tabelle,
sind fir verschiedene Argumente Rq die numerischen Werte von
P und Q,*) sowie von ber, bei, ber’ und bei’ angegeben.

Rq| P Q ber (Rq) | bei (Rq) | ber’ (Rq) | bei” (Rq)

0 [2,0000, 0 1,000 0 0 0
0,5 2,0000 0,0626] 0,999 0,063 — 0,008 0,249
1,0/2,0002, 0,2494 0,984 0,249 — 0,062 0,499
1,5/ 2,0516 05554 0,921 0558 — 0210 0,730
2,0/2,1610 0,9612] 0,752 0972 | — 0,493 0,917

925 2,3494/ 1.4272] 0,399 1457 | — 0944 0,998
3,0 2,6360 1,9016/ — 0,221 1,938 | — 1,569 0,881
35 298402344 | — 1,194 2283 — 2,336 0,435
4,0 3,3556 2,746 |— 2563 2293 — 3,135 — 0491|
455/37256 8,116 |— 4,299 1,686 — 38,754| — 2,053
5,0/ 4,0860 3,474 |— 6,230 0116 — 3844 | — 4,354
55 4,4380/3,832 | — 7974 — 2790 — 2907 | — 7,373
6,0 4,7874/4,186 |— 8858| — 17.335 0,293 | — 10,846

8,0 6,1912/ 5,628 |1 20,974 - 85,017 | 4 38,294| — 7,662
10,0, 7.5880| 6,874 |}- 138,841 | 156,370 | -+ 51,373 | 4-135,230

*} Der Hiilfte dieser Werte P und Q entsprechen in der Tabelle von

’ ’ L,r
Jahnke und Emde Seite 147, die Ausdriicke g—bezw; :VW
o

o
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Ueber die Grosse der in Flissigkeiten und Rohrensubstanzen
auftretenden physikalischen Konstanten geben die folgenden
Tabellen Aufschluss.

1. Viskositiat und Dichte einiger Fliissigkeiten.!?)

Fliissigheit Vls:Lio_s__ltﬁt | beldertOTemp. chz)hte
Wasser 0,0178 — 0,0028| 0 — 100 1
Terpentinél | 0,0146 — 0,007 | 20 — 80 0,87
Olivenol 0,808 — 0,115 | 20 — 80 0,91
Glyzerin 42 — 7.8 2,8 — 20,9 1,24
| Blut*) 0,07 — 0,108 37° | 1,053—1,066
2. Elastizitatskoeffizienten.!)
Elastizititsmodul | Poissonscher Dichte
Substanz in Dyn/cm? Koeffizient P
pe) %
Eisen 21000 - 10® | 0,243—0,310 7,8
Kupfer 10500 - 108 0,348 8,9
Blei 1700 - 108 0,375 11,4
Glas 4700—7900 - 10° | 022—031 | 2438
Holz 500—1000 - 10® — 0,5
Kautschuk 0,02—0,8 - 10® 0,5 0,92—0,99

Fir die numerischen Beispiele wihlen wir die Konstanten
so, wie sie etwa einer Rohre aus Kautschuk entsprechen, in
welcher eine relativ zihe Flissigkeit, wie z. B. Blut, mit einer
Frequenz, die ungefihr der Pulsfrequenz entspricht, Wellenbe-

wegungen ausfiihrt.

. B E '
E — =1,b=—=———30,5108D s
S se1 g = g, . o o (1—09 yn/cm

O = 05 also E = 0,38 - 10%. ¢ moge zwischen 1 und 10,
v zwischen 0,01 und 0,1, R zwischen 1 und 10 cm variieren.
Da diese 3 Grossen immer in der Form Z = Rq = R \/ %

zusammen auftreten, so koénnen natirlich fir bestimmte Werte

*) Nach E. Miinzer und F. Bloch'®) ist die Viskositit des normalen
Blutes ea. 4—6 mal grosser als fir Wasser.
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von Z noch viel mannigfachere Kombinationen von R, ¢, » vor-
genommen werden.

Das Verhiltnis der Dicke der Rohrenwand zum innern
Radius, h/R, sei im allgemeinen 0,1 also Rz = 10.

§ 8. Fortpflanzungsgeschwindigkeit der Wellen und
Berechnung der Konstanten & und %

Unter den angenommenen Verhiltnissen ergibt sich, ohne
Riicksicht auf die Zihigkeit, nach Resal:

== \/ SR . o — 1369 cm/gek.

Der Korrektionsfaktor erster Anniherung, der den Einfluss der

| Zahigkeit ergibt, wird fir Z = R \/ —g— = 10, also z. B. fir

eine Robre von 1 cm Radius, bei einer Frequenz ¢ = 10 (in
2 7 Sek.) und einer Zahigkeit » = 0,1, K = 0,891, somit
¢ = ¢, Y K = 1290 cm/sek. Es ist ersichtlich, dass die Zahig-
keit einen nicht zu vernachlissigenden Einfluss auf die
Fortpflanzungsgeschwindigkeit der Welle austibt. Die Formel
fir die erste Annidherung ist in unserem Fall geniigend genau,
obwohl hier ¢’ (~ 1,7 - 10°%) gegeniiber b (~ 0,5 - 10% ver-
nachlissigt wurde; denn der Korrektionsfaktor der 2. Anniaherung
wird K, = 0,885, woraus sich ¢ zu 1285 cm/sek ergibt, d. h.
ein Wert, der von dem Vorigen nicht zu unterscheiden ist. Die
Art und Weise, wie ¢ mit der Zihigkeit variiert, zeigt die nach-
folgende Tabelle und Figur (2) far den Korrektionsfaktor K,
wobei auch der Korrektionsfaktor K’ fiir rein radiale Schwingung
der Rohrenwand angegeben ist. Beide Kurven nehmen zu, wenn
Z wichst, wenigstens innerhalb der hier angegebenen Werte.
Die Fortpflanzungsgeschwindigkeit der Welle nimmt also mit
abnehmendem Réhrendurchmesser, abnehmender Fre-
quenz und mit zunehmender Viskositidt ab. Der Ein-
fluss des Erstern macht sich aber viel stirker geltend, da er

gegeniiber % 1mm Quadrat auftritt; der Einfluss der Frequenz und

der Zahigkeit dagegen macht sich in gleich starker Weise gerade
entgegengesetzt geltend. Ferner folgt, dass in erster Annidherung
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die Elastizitiat der Rohrenwand keinen wesent-
lichen Einfluss auf die Fortpflanzungsgeschwin-
digkeit ausiibt; denn in den beiden Korrektionsfaktoren
K u. K’ tritt nur der Poissonsche Koeffizient auf, welcher sich
fir die verschiedensten Substanzen nur in verhiltnismissig ge-
ringen Grenzen bewegt, wihrend b nicht auftritt.

Fig. 2.
12 _
'~ x| &
3 -— |Ra
] 0| 0 0
1,0 pra
// 0,5 0,0018 0,0013
" / TS | 1,0 0027 0,020
08 // e 15| 0,143 | 0,140
07 V. 2,0 0,324 | 0,306
N 25| 0,493 | 0503
06 £
/’ . | 3,0 | 0,608 | 0,675
os ! ‘
/ 1 K Ifar radiate Welldn 351 0,680 | 0,732
04 i 40 0,728 0,859
. { ——4- K'faral gemene ellen ZE'fo,7eo 0515
/ 1 50| 0,786 | 0,958
o 4 A
/ | 55| 0,805 | 0,990
o / 60| 0821 1,018
- : ——]
Rg=0 1 2 3 4 S_ 6 7 8 3 10 8,0 | 0,865 | 1,100
—RyRY 10,0 | 0,891 | 1,141

Vergleichen wir noch im folgenden die Formel von v. Kries
(pag. 7) mit unsern Resultaten.
Die Formel von v. Kries lautet in unserer Bezeichnungsweise

du_ 1dp a
ot 00X K
Wir gingen aus von den Eulerschen Gleichungen
du_ 14dp (‘8211 8° u 82u>
ﬂ__gﬁ—f_v 8x2+8y2+8z2

etc. ete,



4] —

Nehmen wir an, dass u nicht von r abhingig sei, legen
also die Scheibchenhypothese zu Grunde, so ist

ou 10p 8°u
T T eax T g
l 52
\dauﬁ)e’(ét"'“), 5—Xg=-—k2u, folgt
ou 16‘p 2
FT= gFx E™

Diese Gieichung 1st mit derjenigen von v. Kries identisch, wenn

y = k’; es ist also 7 selber eine Funktion der Frequenz.
: - . 2 v 0'2 <
Setze k == m = -, dann ist 4 =» m" = —; hierin kann
c

fiir c die Resalsche Wellengeschwindigkeit ¢ gesetzt werden,so dass

2 .
Vo 2 2 2
n = c—g—(wo co = ap von v. Kries). .

0
Dies in die v. Kries’sche Formel firr die Fortpflanzungsgeschwin-

~digkeit eingesetzt, ergibt:

1 1 / Vo?
F=ae 1)
also
B 2
¢ =1p / T am (fiir Scheibchenhypothese)
| \ Lyt

Der v. Kries’sche Korrektionsfaktor, der sich schreiben ldsst

\/ 1 1 v 02, zeigt auch eine Abhingigkeit von », von ¢ und

4 C()2
von R, aber doch in wesentlich anderer Weise, als in unseren
Formeln, Der Einfluss der Zihigkeit der Fliissigkeit ist also
durch den v. Kries’schen Ausdruck nicht richtig wiedergegeben.




Die Konstanten & und ¥ sind

7= & P gegeben durch die Gl. (74%) wenn ¢? gegen
Rq b zu vernachlassigen ist. Die Werte von
0 0 0 @ u. F finden sich in nebenstehender Ta-
2’(5) ““g’gz +g’gg belle; der graphische Verlauf fiir ver-
15 B 074 10’53 schiedene R q, also fiir verschiedene Roh-
20 |—039 |1 064 | rendurchmesser, verschiedene Frequenzen
25 |—009 |+058 | und verschiedene Flissigkeiten ist aus
30 |-+009 | 4043 | Fig, (3) ersichtlich. Auch die genaue
i’g +g’;§ ‘I'gv?g Formel (74), wo c¢® nicht gegen b ver-
1 i 0.16 _T_ 0.0 nachlissigt ist, liefert fir Rq = 10 keine
50 | 1013 |—o000s| merklich verschiedenen Werte; z. B. wird
55 | 4+0,09 | —0,04 nach (74) & = — 0,007 und nach (74?)
6’0 _{'_0’05 _Oa04 @ _— = 0,005-
13’3 _8’8(1)5 _8’832 Da also die Vernachlissigung von c¢?
Q] 000810 gegen b statthaft ist, zeigen sich & und
Fig. 3.
Q7
06 P :
05 A \‘1\
04 ,1' \\\
/ N
0,3 4 AY
o £ l‘\‘\
01 / 7] N \\‘1\ ’
ol 1 2 /3 A “\\ 5 - 7 8 9 i Ho—*ﬁ‘y-
"oz [ _ ¢= _Ry (z-e)[(P-O)Abfiiz *Q—bcr’z] .
03 i z (ber'l‘+b¢i'I’][(P-8)‘+Q'}
o SRV e P-o)ber I - Qbei' Y]
05 T [ber’ Pobei’ X} IP-974Q7)

e
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¥ und damit alle unsere weitern Ausdriickeim wesent-
lichen von der Elastizitiat der Rohrensubstanz unab-
hangig; denn sie enthalten nur den Poisson’schen Coeffizienten
@, nicht b.

§ 4 Bewegung der Fliissigkeitsteilchen.

- Ueber die Geschwindigkeit u in Richtung der Rohrenachse
und w senkrecht dazu in radialer Richtung, geben die Gl. 79
und 83 fir allgemeine Wellen und die Gl. 96 und 99 fir rein
radiale Schwingung der Rohrenwand Aufschluss. Da w im
Verhaltnis m: 1 kleiner ist als u, so sind die radialen Geschwin-
digkeitskomponenten der Fliissigkeitsteilchen stets sehr klein im
Vergleich zu den Longitudinalen. Die Werte der Amplituden
‘ von u und w, also die Maximalwerte

Geschwindigk. u | dieser Geschwindigkeiten, fir allgemeine

rq A ; .
Rq=4|Rq=10] Wellen und fiir rein radiale Bewegung
0 5,98 4,97 der Rohrenwand, finden sich in den nach-
201 521 4,97 stehenden Tabellen. In der nebenstehen-
401 04 25 den Zusammenstellung sind die Ampl-
670 - 5y29 e * .
8.0 _ 196 | tuden von u fir allgemeine Wellenbe-
10:0 — 106 wegung, fiar 2 Werte von Rq angegeben

. (je mit 10° multipliziert), Fig. 4 zeigt
die graphische Darstellung derselben.
Geschwindigkeit u fiir allgemeine Wellen. Fig. 4.
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Die unerwartete Form dieser Kurven, wie auch der spitern
Fig. 5 u. 6, lasst sich durch folgende Ueberlegung verstehen.
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Durch die mit konstanter Amplitude erzeugte Schwingung der
elastischen Umbhiillung werden die anliegenden Fliissigkeitsteilchen
ebenfalls in gleichen Schwingungszustand gebracht und die kine-
tische Energie wird nun auf die benachbarten Flissigkeitsschichten
ubertragen. Infolge der freien Beweglichkeit der Flissigkeit,
konnen dieselben mit zunehmender Geschwindigkeit hin und her
pendeln, so dass bei diinnen Rohren, resp. kleiner Frequenz oder
grosser Viskositit (Rq = 4) (gestrichelte Kurve) die Amplitude
der Geschwindigkeitskomponente u bis zur Rohrenachse stetig
zumimmt, KEs nimmt aber mit wachsender Geschwindigkeit und
besonders mit wachsendem Geschwindigkeitsgefille in radialer
Richtung auch die Reibung zu, so dass diese Amplituden bei ge-
niigend grossen Rohren und bei geniigend kleiner Viskositiit,
wo u rasch wachsen kann, also auch ein starkes radiales Gefille
besitzt, nicht dauernd zunehmen, sondern ein Maximum erreichen
und dann wieder abnehmen. Fir Rq = 10 (ganz ausgezogene
Kurve Fig. 4), fiir eine Rohre mit relativ grossem Durchmesser
resp. fir grosse Frequenz oder relativ kleine Viskositat, tritt
diese Erscheinung deutlich zu Tage. Im Abstand von ca. 35 R
ist dieses Maximum erreicht, nachher nimmt u bei Anniherung
an die Rohrenachse wieder ab. Bei ziherer Flissigkeit dagegen
zeigt die nebenstehende Tabelle und die
Geschwindigk. u | schwach punktierte Kurve der Fig. 4 fir
Rq=4 |Rq=10] Rq =4 (welche far dieselbe Rohre, mit

r

0 5,90 4,97 dem gleichen Radius R wie diejenige fiir
0,25 585 4,97 Rq =10, nur mit veridnderlichem q,
0,50 520 5,14

speziell fiir grossere Viskositit gilt), dass
0,60| 4,70 5,29 ; : ) :
oso| 320 L96 in der Nihe der Rohrenwand die Ge-
100] 091 1.06 schwindigkeitszunahme viel langsamer er-
' folgt, also auch die Reibung viel geringer
wird als fir Rq = 10. Infolgedessen kann die Geschwindig-
keit mit Anndherung an die Rohrenachse immer noch zunehmen,
~ withrend sie fir die weniger zihe Flissigkeit bereits ihr Maxi-
mum erreicht hat. Es ist also moglich, dass, wie Fig. 4 zeigt,
fir zahe Flussigkeiten die Kurve bis zur Rohrenachse stetig
zunimmt. ' ,
Genau dieselben Bemerkungen gelten fiir rein radiale
Schwingungen der Rohrenwand. '
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Fir die Amplituden der Geschwindigkeit w, senkrecht zur
Rohrenachse gelten analoge Betrachtungen, nur dass hier ihr
Betrag auf der Rohrenachse Null 1st und an der Réhrenwand
der Maximalwert erreicht wird.

" Um die Bewegung der einzelnen Flissigkeits-
teilchen genau zu verfolgen, geniigt es micht, die Amplituden
von u und w zu kennen, es spielen die auftretenden Phasen-
differenzen 0 u. 0’ gegeniiber der Schwingung des Druckes eine
betrichtliche Rolle. Noch deutlicher ergibt sich diese Bewegung
. durch Berechnung der Elongationen @« und » der einzelnen Teilchen
fiir verschiedene Zeiten. In den vorstehenden T abellen sind

fiir einen bestimmten Fall, Rq = 10, diese Werte berechnet,
~ wobei die Zahlen mit 10° resp. 10* erweitert sind. Dabei wurde
iy == ?{—E = 0,005 gesetzt, was bei einer Frequenz ¢ — 10, einer

Fortpflanzungsgeschwindigkeit ¢ = 20 m/sek, entspricht. Fig. 5
zeigt die betreffenden Verhiltmsse fir allgemeine Wellen fir
die Mittellage x = o in graphischer Darstellung fiir die Werte

- T 2T 3T (7T) 4T 5T 6T 7T 15T 8T

'8 8’ 8'\16/" 8’ 8’ 8’ 8"

(wo T = Schwingungsdauer) R =1, o == 10 und y = 0,1.

In Fig. 6 sind die namlichen Verhiltnisse fir rein radiale
. Schwingung der Rohrenwand aufgetragen.

§ 5. Bemerkungen iiber die Anwendung der Formeln
auf Bestimmung der Fortpflanzungsgeschwindigkeit
der Pulswellen in den Arterien,

Ueber  die Fortpflanzungsgeschwindigkeit der Pulswellen
im menschlichen Korper wurden seit Weber von Prof. Miinzer!?)
u. a. zahlreiche Versuche gemacht; die Werte von Minzer vari-
ieren zwischen 5—26 m/sek. je nach dem pathologischen Zu-
stand des Patienten und der Anzahl Pulsbewegungen. Um
unsere Formeln auf die experimentellen Resultate anwenden zu
konnen, sollte in erster Linie der Elastizitdtsmodul E der
Arterien bekannt sein, woriitber aber keine bestimmten Angaben
vorliegen urid dberhaupt schwer zu erhalten sein werden, da die
Arterien nicht das einfache Verhalten eines isotropen, elastischen
Korpers zeigen und zudem die sie umgebenden Fettmassen, Bind-
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gewebe etc. den Elastizititsmodul beeinflussen. Als Rohren-
durchmesser R kime der mittlere Arteriendurchmesser zwischen
den beiden Messpunkten, zwischen denen die Fortpflanzungs-
geschwindigkeit ¢ ermittelt wird, in Betracht, und in entsprechen-
der Weise miisste ein Mittelwert fiir dié Dicke h der Arterien
bestimmt werden. Da aber bei den Arterien das Verhiltnis ;—1
nicht klein ist, so fallen dieselben wieder etwas ausserhalb des
Giltigkeitsgebietes unserer Formeln. Immerhin ist es moglich
in angenidherter Weise, aus Gl. (67) ¢ = gg% K, bei bekannten
Dimensionen der Arterien und bei bekannter Viskositit » einen
Elastizititsmodul E der Arterien zu berechnen.*) Aber .diese
Konstante E hat natiirlich aus den angefithrten Grinden keine
einfache physikalische Bedeutung mehr. Dagegen zeigen unsere
Ausdricke, wie die Wellengeschwindigkeit ¢ (wie auch
die Geschwindigkeitskomponenten u und w der einzelnen Blut-
teilchen) von dem Arteriendurchmesser, der Pulsfrequenz
und der Viskositdt des Blutes abhingen, woraus vielleicht
Konsequenzen fiir die Physiologie gezogen werden konnen. Ins-
besondere liegt auch die Moglichkeit vor, die von Prof. O. Frank*)
ausgefithrten Messungen an Manometerschliuchen auf ihre Ab-
hiangigkeit von der Zahigkeit der Flissigkeit hin zu prifen.
Berechnungen iiber die Dissipation von Energie infolge der
Reilbung wurden in der vorliegenden Arbeit nicht durchgefiihrt.
Ueber direkte Energie-Messungen der Pulswelle sei auf die
Arbeiten von Dr. Th. Christen,?*!) Prof. Dr. Sahli®*?) u. a. verwiesen.

*) Umgekehrt kann bei irgend einer elastischen Rohre, deren Dimen-
sionen und Elastizititsmodul bekannt sind, nach experimenteller Bestim-
mung von ¢ die Konstante K berechnet werden, aus welcher sich nach

/
Fig. 2 ein bestimmtes Rq ergibt, und hieraus kann, daRq = \/ -"g—, bei

gegebener Frequenz o der kinematische Reibungskoeffizient »
berechnet werden.
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Elongationen der Flissigkeitsteilchen Fir Rq - 10.

a)fur allgemeine Wellenbewegung.
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