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Konrad Witzig.

Ueber erzwungene Wellenbewegungen zäher,

inkompressibler Flüssigkeiten in elastischen Röhren.

I. Teil.

Historische Einleitung.
Die Bestrebungen, den Vorgang der Blutzirkulation genau

zu erforschen, führten schon E. Weber1) im Jahre 1827 auf
den Gedanken, die Pulsbewegungen experimentell zu verfolgen.
Hiebei stellte er fest, dass diese Pulsbewegung im ganzen
Arteriensystem nicht momentan erfolgt, wie bisher angenommen
wurde, sondern eine gewisse, messbare Geschwindigkeit besitzt.
Er fand, z. B., dass die Welle eine Röhre von 35,5 mm.
Durchmesser, 4 mm. Dicke und 9620 mm. Länge bei einem Druck
von 8 mm. Wassersäule in 0,964 Sek. durchläuft, sodass also die

Geschwindigkeit za. 10 m/Sek. beträgt.
W. Weber2) suchte die von seinem Bruder E. Weber

experimentell erhaltenen Resultate auf mathematischem Wege
herzuleiten. Er bestimmte die Differenz der Flüssigkeitsvolumina,
welche durch zwei unendlich benachbarte Querschnitte einer
elastischen Röhre, im Abstände dx voneinander, in dem
Zeitelement dt hindurchgehen; sie muss gleich der Vergrösserung
des Volumens der Röhre zwischen diesen beiden Querschnitten
sein. Ist c die veränderliche Geschwindigkeit der Flüssigkeit,
r der veränderliche Radius der Röhre und ist cdr«r-dc d. h.
die Geschwindigkeit sehr klein, so ergibt sich :

_
de _ 2_ dr
dx r dt

Die Elastizität der Röhre wurde dadurch berücksichtigt, dass die
Zunahme des Röhrenhalbmessers der Zunahme des Druckes p
proportional gesetzt wurde, also

dr a dp,
1
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wo a — Vergrösserung des Röhrenhalbmessers pro lkg Druck,

s „ „ „ beipkg. „
Diese Annahmen führen auf die bekannte Bewegungsgleichung

d2 r _ r d2 r
dt2"- 2~a7 dx2"'

wo q die Dichte der Flüssigkeit bedeutet.
rDer Wert drückt das konstante Verhältnis der beiden

2ao
partiellen Differentialquotienten aus, und dieser ist nach den
Gesetzen der Wellenbewegung gleich dem Quadrat der
Wellengeschwindigkeit V. Also ist nach W. Weber

/Ms/^k^sj1V
2

wo M der Elastizitätsmodul nach Webers Auffassung bedeutet.
Derselbe ist, entgegen der gewöhnlichen Definition, gleich
demjenigen spec. Druck (Druck dividiert durch die Dichtigkeit der
Flüssigkeit), welcher nach dem Gesetz der Elastizität einer
Verdoppelung des Röhrenhalbmessers entspricht.

Die Webersche Formel ergibt für eine Röhre von 16,5 mm.
Radius, bei einem Druck von 3500 mm. Wassersäule, eine
Geschwindigkeit von 10033 mm/Sek. Die unmittelbare Messung
ergab eine Geschwindigkeit vom 11255 mm/Sek., was mit der
Rechnung soweit übereinstimmt, als bei der damals erreichbaren
Genauigkeit erwartet werden kann. Re sal3) schlägt einen
ähnlichen Weg ein wie Weber und findet, wenn

v Geschwindigkeit der Flüssigkeit in Richtung der Achse,
e Dicke der Röhrenwand,

R0 Innerer Radius der Röhre,
7t :— Dichte der Flüssigkeit,
g Beschleunigung der Schwerkraft,

ds Abstand zweier unendlich benachbarter Querschnitte
der Röhre,

E — Yongs Elastizitätsmodul der Dehnung,
d2v _ Eeg d2v
dt2 ~ 2Ro7T

'
ds2'

Somit folgt für die Fortpflanzungsgeschwindigkeit der Welle
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V /Ëeg.
Dieser Formel entspricht auch die Webersche, wenn

— — und — — — gesetzt wird. Eine genaue Bestimmung
o n. a R0

beider verschieden definierten Elastizitätsmoduln führt also auf
die nämlichen Resultate.

Kor te weg4) bebandelt das Problem der Berechnung der
Schallgeschwindigkeit in elastischen Röhren. Er legt die sog.
Scheibchenhypothese zu Grunde. Dabei wird angenommen, dass

irgend ein, zwischen zwei auf der Röhrenachse senkrecht
stehenden Ebenen eingeschlossenes Flüssigkeitsscheibchen während
des Vorbeischreitens der Verdichtungswelle, zwar in radialer
Richtung breiter und in achsialer Richtung schmäler wird, aber
immer durch Ebenen begrenzt bleibt, so dass von Verbiegungen
dieser Ebenen abgesehen wird. Ferner wird angenommen, dass

die Wellenlänge gross genug sei, um bei den in der Röhrenwand

entstehenden Spannungen nur auf die Ausdehnung oder
Einschnürung des ringförmigen Durchschnittes, senkrecht zu der
Achse, achten zu müssen, während die Dehnungen in Richtung
der Achse vernachlässigt werden dürfen.

Der von Körte weg eingeschlagene Weg ist nun folgender:
Bezeichnen :

Ri Innerer Radius der Röhre,
ai Dicke der Röhrenwand,
Ei Elastizitätsmodul der Röhrenwand,
E Elastizitätsmodul der Flüssigkeit (für inkompressible

Flüssigkeit ist E X,
Qi Spec. Masse der Röhrenwand,
Q „ » „ Flüssigkeit,
x Entfernung eines Flüssigkeitsteilchens im Gleichgewicht

von einer zur x Achse senkrecht stehenden Ebene,
w Druck daselbst,

ui Änderung von x, zur Zeit t,
Pi n 11 *m 11 n n

ll 11 n 1^1 j) n n

so ergibt sich :
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1) Durch Vergleichung des Volumens eines Scheibchens im
Gleichgewichtszustände und während der Wellenbewegung:

PL_|_ dui ¦ 2n =0
E dx Ri

2) Durch Berechnung der Beschleunigung des Scheibchens

vermöge des Druckunterschiedes :

d2 Ui 1 dpj.

et2
—

ç 3x
'

3) Unter Berücksichtigung der Elastizität der Röhrenwand :

Ei ai ri
oz n Ri
at2 ai Qx

oder bei Vernachlässigung der geringen Trägheit der Röhrenwand

Ei ai rt

Unter diesen Voraussetzungen erhält man die Bewegungsgleichung

d2ui _ fQ_ 2qRx\ aam
0

dx2 VE Eiai/ 5t2
Diese Beziehung gilt, wenn sowohl Flüssigkeit als Röhrenwand
elastisch sind, und enthält die Fälle, wo entweder nur die Flüssigkeit,

oder nur die Röhre als elastisch zu betrachten ist.
Für inkompressible Flüssigkeiten, wenn E °°, folgt:

d2m _ 2gR! ô2ui _
dx2 Eiai St2 ~

und hieraus die Fortpflanzungsgeschwindigkeit der Welle,

V /aiEi
V2çRi'

1 gdies ist wiederum die Resalsche Form, wenn — — gesetzt
Q n

wird.
Diese Formel gilt nur unter den folgenden Bedingungen :

1) Wellenlängen gross gegenüber dem Röhrendurchmesser.
2) Vernachlässigung der lebendigen Kraft der Transversal¬

bewegung der Flüssigkeit gegen die der longitudinalen.
3) Elastizitätsmodul unabhängig von der Grösse der Be¬

lastung.



4) Flüssigkeit inkompressibel, ohne Berücksichtigung der
Zähigkeit.

5) Vernachlässigung der durch die Biegung der Röhren-
wrand erzeugten Längstensionen.

Wenn El den Yong'schen Elastizitätsmodul der Dehnung
bezeichnet, dann ist

Ei Eî(l-(l + -M-^I V l + u) 2Rt
wo l und fx die Lame'schen Konstanten der Elastizität bedeuten.
Setzt man nach Wertheim X 2 u, so ist

Ei Ei(l- 5ai
6Ri

Boussinesq5) findet in seiner Untersuchung über dieses
Problem dieselben Resultate wie Korteweg.

Eine exakte Behandlung der Gesetze der Schallausbreitung
in Flüssigkeiten, im Innern elastischer, zylindrischer Röhren,
ohne Rücksicht auf die Zähigkeit, wurde von Lamb6)
durchgeführt. Die Ableitung der von ihm gegebenen Gleichungen folgt
später. Er findet, dass die Geschwindigkeit in dünnen Röhren
zwischen

1 — O2 2 1 2

0 c0 und ó— Co liegt.
zax. „ 2ax

1 +hB hB
Hierin bedeuten :

a Innerer Radius der Röhre.
h Dicke der Röhrenwand.
c0 Geschwindigkeit in der unbegrenzten Flüssigkeit.

X
a Poissonscher Koeffizient, wo X und u

2(Xj-u)
(Steifigkeit) die bekannten Lame'schen Elastizitätskonstanten

sind.

E ^A X—ttl Yong's Elastizitätsmodul der Röhre,

E
B

1 -ei2
Kubische Kompressibilität der Flüssigkeit qo Co2

wo qo Dichte der Flüssigkeit.



Für inkompressible Flüssigkeiten, d. h. für sehr grosse /., werden
diese Grenzen :

Eh Bh
und

2aço 2 ago
also auch hier, da sich B nur wenig von E unterscheidet, eine

prinzipielle Übereinstimmung mit der Resalschen Formel.

V. Kries7) gibt ebenfalls eine angenäherte math. Theorie
der Schlauchwellen. Diese Untersuchung enthält schon die
wichtigsten qualitativen Resultate über den Einfluss der innern
Reibung auf die Wellenbewegung im elastischen Schlauch. Allein
dieser Einfluss ist hier in ganz allgemeiner Weise eingeführt,
unter Beibehaltung der Scheibchenhypothese und ohne Rücksicht
auf die speziellen Eigenschaften der Zähigkeit inkompressibler
Flüssigkeit. Soll dieselbe exakt berücksichtigt werden, so sind
die vollständigen hydrodynamischen Gleichungen zu benützen.
V. Kries geht aus von der Korteweg entsprechenden Formel
(pag. 4)

d v 1 d p

dt a dx
ergänzt dieselbe durch ein Reibungsglied, das allgemein der
Geschwindigkeit proportional gesetzt ist, aber behält immer noch
die Scheibchenhypothese bei, also

d v 1 dp
— i rj v.
dt a dx

Für den Druck p wird dann
d2 p e Q d2 p dp
dl2" ~~' X Jx^ ~ n ~t

Hierin bedeuten:
Q Querschnitt der Röhre.
x — Abstand eines Querschnittes vom beliebig gewählten

Anfangspunkt.
a Dichte der Flüssigkeit,
p ¦= Druck,

q Frequenz in 2 n Sekunden.

s Dämpfungskonstante (für lange Wellen X also
2a

sehr klein).
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a Fortpflanzungsgeschwindigkeit der Welle.

—- a02 ist einfach V2 Quadrat der Wellengeschwindig-
a

keit nach Resal.
Aus obiger Gleichung folgt für die Geschwindigkeit der Welle

1 1 / ~J

a
und für die Dämpfung

'W'+l2 2 a02 * V ' "2

q2

Die Fortpflanzungsgeschwindigkeit der Welle nimmt demnach

mit zunehmender Reibung ab und ist umso grösser, je
grösser q, d. h. je kleiner die Wellenlänge. Die Dämpfung s

wächst mit steigendem q ; kurze Wellen werden stärker gedämpft
als lange.

Für kleine Reibung findet er ausserdem für die Geschwindigkeit

der Flüssigkeitsteilchen in Richtung der Röhrenachse

v — e cos q t \- o

a'a J{qlaf i 2 «

Ohne Reibung ergab sich

v —î— — e cos q t
a a a a \ a

Man sieht, dass (bei sinusförmigen Wellen) die Geschwindigkeit

der Flüssigkeitsteilchen mit oder ohne Reibung in
doppelter Weise modifiziert ist; erstlich ist der absolute Betrag
der Geschwindigkeitsschwankungen kleiner, zweitens findet eine
gewisse Phasendifferenz statt.

Über das Fliessen zäher Flüssigkeit in Röhren bestehen
Arbeiten von Boussinesq8) u. a. Die nachfolgende Untersuchung
im III. und IV. Teil soll den Einfluss der Zähigkeit auf die

Wellenbewegung in elastischen Röhren ermitteln.
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II. Teil.

Elementare Betrachtung der Wellenbewegung inkompressibler
Flüssigkeiten in elastischen, zylindrischen Röhren

nnter periodisch veränderlichem Druck, ohne Rücksicht
anf die Zähigkeit.

Die Flüssigkeit bewege sich im Innern einer unendlich
langen, zylindrischen Röhre von gleichförmigem Querschnitt und
sei an der Grenzfläche einem elastischen Druck unterworfen. Die
wirbelfreie Bewegung werde aus dem Ruhezustand durch Kräfte.
erzeugt, die nur anfänglich wirken, so dass nachher alle äussern

Kräfte, also auch die Schwerkraft, vernachlässigt werden. Im
weitern werde angenommen, dass die Bewegung sehr klein sei,
sodass die Quadrate der Geschwindigkeiten der einzelnen Teilchen
vernachlässigt werden können.

Es bezeichne:

p Druck in der Flüssigkeit (als Überdruck über den
im Ruhezustand vorhandenen konstanten Druck
aufgefasst).

a Elastizitätskonstante der Röhre (in gleicher Weise
definiert wie bei Weber, pag. 2).

R Innerer Radius der Röhre in Ruhe.

Jv Erweiterung des Röhrenhalbmessers unter dem
Drucke p zur Zeit t.

q Dichte der inkompressiblen Flüssigkeit,
q Geschwindigkeit eines Flüssigkeitsteilchens zur Zeit

t mit den Koordinaten x parallel zur Röhrenachse
und dem radialen Abstand r von derselben,

u, w Komponenten dieser Geschwindigkeit parallel zur
x Richtung bezw. zur radialen Richtung.

Wir benützen, da die Bewegung wirbelfrei ist, das
Geschwindigkeitspotential ; dann ist

d cp dop
u und w -,d x d r

wo tp Geschwindigkeitspotential.
Die Elastizität der Röhre führen wir ein durch den

einfachen Ansatz :



— 9 —

(1) p p0 + — Jv für r R.
a

Es gelten folgende hydrodynamischen Beziehungen :

1. Die Kontinuitätsgleichung

(2) *2 + *£+1*2^0.
dx2 dr2 r dr

2. Das bekannte Integral der Eulerschen Bewe-
gungsgleichunge n.9)

(3) P^-4q2 + F(t)
Q dt 2

wo F (t) eine willkürliche Funktion der Zeit darstellt^ die in —dt
eingeschlossen werden darf.

Für p setzen wir den Wert aus Gl. (1) in Gl. (3) ein, die

konstante Grösse — wird ebenfalls in — eingeschlossen, dann

folgt, da q2 verschwindend klein, und wenn — x gesetzt wird :

a,Q

(4) Jr — ^ fürr R.
% dt

Bei den verschwindend kleinen radialen Amplituden der
Bewegung, wird die Normalkomponente der Geschwindigkeit der
Flüssigkeitsteilchen der Normalkomponente der Grenzfläche in
erster Annäherung gleich sein, somit :

dtp d(z/r) '

—- ——- fur r R.(5) w —W dr dt
Differentieren wir Gl. (4) nach t und addieren Gl. (5), so folgt

(6) ^ + ,£2X0 fürr R.
dt2 dr

Für stehende Wellenbewegungen mit der Frequenz n und
2 7t

der Wellenlänge X setzen wir

(7) p Pcoskxei(,Tt + f)

wo P nur eine Funktion von r darstellt.
Diesen Wert für cp führen wir in Gl. (6) ein und bekommen
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(8) a2 tp x ^ für r R.
dr

Aus der Kontinuitätsgleichung (2) erhalten wir durch Einsetzen
von (7)

d2 P 1 d P— + — X_ Pk2) oder weil _ k2 (ik)2
dr2 • r dr
d2 P 1 dP

(9) —-— -f — — -f P 0.
d(ikr)2 ikr d(ikr)

Dies ist die bekannte Form der Besselschen
Differentialgleichung.10) Hieraus ergibt sich als allgemeines Integral

P A J(ikr) 4- B Y (ikr),
0

wo J(ikr) Besselsche Funktion nullter Ordnung 1. Art und

Y (ikr) » » » » 2. »

In der Röhre darf P natürlich nie unendlich gross werden.
o o

Da aber lim. Y (ikr) oo, so muss das Glied mit Y (ikr) ver-
r 0

schwinden, d. h. es muss die Konstante B o sein. Es bleibt
deshalb als Integral der Gl. (9)

(10) P AJ(ikr).
Diesen Wert in Gl. (7) eingesetzt ergibt :

(11) tp A J(ikr)coskxei(fft + f)

Unter Berücksichtigung dieser Gleichung folgt nach Gl. (8)

(12)
• a2=-xk|«

J(ikR)
_
i

Dieser Ausdruck ist reell, da iJ(ikR) reell ist.
Nach Gl. (4) ergibt sich für die Erweiterung des

Röhrenhalbmessers

(18) ^r iAJ(ikRXcos(kx)ei((rt + f)

x
oder, weil für uns nur der reelle Teil in Betracht kommt,

(13a) J r — — J (ik R) cos (kx) sin {at + s).
x
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Diese Gleichung stellt ein System stehender, radialer Wellen
dar. Um ein System fortschreitender Wellen zu erhalten, su-
perponieren wir, analog dem Vorgang in Lamb9) für Oberflächenwellen,

2 Systeme stehender Wellen von der gleichen Wellenlänge.

Dabei müssen sie einen Phasenunterschied von V* Wellenlänge

aufweisen, damit die Berge und Täler des einen Systems
mit den Knoten des andern zusammenfallen. Dann erhalten wir
auf analoge Weise wie oben

(14) q> AJ(ikr)ei(fft-kî)
und

(15) Jr i— J(ikR)eitßt-kx)
x

oder als reeller Teil

(15a) Jr — ™J(ikR)sin(fft-kx).
x

2 7t 2 7tEs ist X — die Wellenlänge, T — die Schwingungsdauer,
k a

somit folgt für die Fortpflanzungsgeschwindigkeit der Welle aus

X cT, c —, also nach Gl. (12)
k

(16)
— iJ(ikR) _

/ 1_ —iJ(ikR)
k J(ikR) V aek J(ikR)

Dieser Ausdruck gilt für beliebige Wellenlängen. Wird aber X

im Verhältnis zu R sehr gross, dann wird
i „R o

- i J (ikR) — und J (ik R) 1, also
A

(17) C^V¥"T \A# V2lb -Ueberein-

Stimmung mit Weber (pag. 2), also auch mit Resal, Korteweg, etc.
Unsere Berechnung zeigt somit, wie weit dieser Ausdruck bei
kleiner werdenden Wellenlängen zu modifizieren ist.
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III. Teil.

Wellenbewegung zäher inkompressibler Flüssigkeiten
in dünneu, zylindrischen, elastischen Röhren.

§ 1. Die hydrodynamischen Gleichungen.
Die allgemeinen Gleichungen für zähe Flüssigkeit ohne

Einwirkung äusserer Kräfte lauten nach Lamb9):
du du du du\ dp— + u — +v — -|-w— u Au - -f-dt dx dy dz/ dx

(18) Q — + U— -f V— + W— =/*Av- -^
\ot dx dy vi/ dy
/dw dw dw dw\ dp

M77+UT~+VX + w7~ =^Aw~"r\dt dx dy di] dz
Hierin bezeichnen u, v, w die Geschwindigkeitskomponenten

parallel zu den Koordinaten Achsen in einem Punkte (x y z) zur
Zeit t. Für irgend einen bestimmten Zeitmoment t geben sie
die Bewegung in irgend einem Punkte des von Flüssigkeit
erfüllten Raumes, wo p — Druck, q Dichte der Flüssigkeit,

d2 d2 d2
fj. Reibungskoeffizient ist und Adas Symbol für 1 1

dx2 dy2 dz2
bedeutet.

Da die Geschwiridigkeit sehr klein vorausgesetzt ist, können

~ „ du du du du dv
die Grossen u —, v —, w — etc. gegenüber —, — etc. ver-

dx dy dz dt dt
nachlässigt werden, und es bleibt

du dp
«Tt^^-Vx

(19) f^,Av-?dt dy -

dw dpç- mAw-/dt dz
Da die Bewegungserscheinungen symmetrisch zur Röhrenachse

sind, so führen wir die Zylinderkoordinaten x und r ein, wo
die x-Achse mit der Röhrenachse zusammenfällt. Bezeichnet
jetzt u die longitudinale Geschwindigkeitskomponente längs der
x-Richtung und w die radiale Geschwindigkeitskomponente, so
wird nach Stokes ")
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du /d2 u 1 du d2u\ dp

,„„, dt \dx2 r dr dr2 / dx
dw /d2w 1 dw d2w w\ dp
dt \dx2 r dr dr2 r2 / dr

Wir führen die Stokes'sche Stromfunktion tp ein,
indem wir setzen

,0i, 1 dr// 1 dip
(21) u und w — ~j -.r dr r dx
Damit wird die Kontinuitätsgleichung

(22) —+ Aw + fX. 0 erfüllt.
dx r dr

Setzen wir in Gl. (20) — v (wo v der sog. kinematische

Reibungskoeffizient ist), eliminieren den Druck p, indem wir die
obere Gl. nach dr und die untere nach dx ableiten und die
obere von der untern subtrahieren, so ergibt sich in symbolischer
Schreibweise

(23)
d / d2

"dt —
Xdx2 dr2 r dr rXjLdx drj

Nach (21) wird
dw du 1 fd2\p d2tp 1 di//
dx dv r \ d x2 d r2 r dr,'

also wird Gl. (23)

[±_,(JL + JL + 12._.L\j
|_dt Vdx2 dr2 r dr r2/J

\l_fShp_, ^x_i^\l 0[r \dx2 dr2 r dr/J

|_dt \dx2 dr2 r dr r2 J\

rxxxxi (x°-Ldx^ dr2 r dr Vs J \ r /
d2 d2 1 d 1

Zur Abkürzung sei symbolisch 1 1 D
dx2" dr2 r dr r2

gesetzt, dann lautet Gl. (24)

oder

(24)
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<*» (X'D)XH
Setzt man nach Stokes xp ipx 4- t//2, wobei D —- 0, so

ist
d „D\ /D^0 oder H\(~ "D)^1 0.

Die Gleichung (25) wird also auch erfüllt, wenn

D(^)-o»d b> (X'D)X°-
Für 1//1 und t/^ bestehen somit die folgenden Differentialgleichungen

:

(26) XfX_l^=0v
dx2 dr2 r dr

(27)
d2,/,2 hJXg 1^2 ldy>2 =adx2 dr2 rdr » ät

Wir suchen ein partikuläres Integral dieser Gleichungen,
das die Erscheinungen einer einfachen Sinus Wellenbewegung mit

vorgeschriebener Frequenz n — darstellt, setzen also sowohl
2/t

i/Zj wie auch i/»2 proportional e'((7t + kx) Es sei \px P. e'(<n + kx)

wo P nur eine Funktion von r, dann wird Gl. (26)

----- -k2P 0 oder, weil - k2 (ik)2
d r2 rdr

(28) XX + <ik>*P °-
ör rdr

Hieraus folgt 12)

P r [A! J (ikr) + E Y1 (ikr)] also

weil auch hier lim. Y (ikr) oo, muss die Konstante E, aus den-
r o

selben Gründen wie früher, Null sein. Es wird daher

i//1--=rA1J1(ikr)ei(,Tt + kx)

Aber da i J3 (ikr) reell ist, setzen wir Ai iA, also

(29) xf>1 r A i J1 (ikr) e! (at + kx)

Da nach obigem auch ip2 P'eUal + k*>, wird Gl. (27), wenn
— k2 — (ik)2 gesetzt wird,
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d2P' 1 dP' ia— --^£--)-(ik)2P' —— P' o
d r2 r d r v

iff(30) |-k2 /?2 gesetzt wird,
v

d2P' 1 dP'
(31) Xl---^L+(^)2P'.or rdr
Diese Form entspricht genau derjenigen der Gl. (28), deshalb

folgt
P' ^rBJ^i/îr)

also, wenn wir statt B, analog wie bei (29), i C setzen,

(32) ^2r=rCiJ1(i^r)ei(<Tt+kx)
Da tp xpt 4- t/>3, so wird
(33) i// r[AiJl(ikr) -f CiJ^i/îr)] e'(«+n)
wo /î durch Gl. (30) gegeben ist.

Durch diesen Ausdruck für tp wird die Differentialgleichung
(25) erfüllt. Gl. (33) ist also ein Integral derselben.

Um eine Beziehung zwischen der Stromfunktion tp und dem
Druck p zu finden, gehen wir aus von Gl. (20), in welcher wir

S

gibt sich:

_1

„. r drdt rdr\ dx2 dr2 X dr / q dx
1 d2tp v dX d2 tp d2tp ldip\ _ldp
r dxôt r dx \ d x2 d r2 rdr/ ç dr-

Durch Addition der Gl. (26) und (27) erhält man

(SR
d2yj d2tp ldjp__ 1 dip2

{ ' dx2 dr2 +r dr v dt
Diesen Wert setzen wir in Gl. (34) ein und bekommen

1 d2xp yd/ lStpA
___ ldp

r drJt r dr \ y dt J o dx

U2tj) y a / 1 gtM_ 1 dp
r dxdt rh^ii dt/ çdr

Da aber i// i//1 4- i/>2, so folgt

r und für u und w die Werte aus (21) einsetzen; dann erbt

sich:
1 e2tp v d d2ip d2ip idip\_ ldp
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eV _Q b V>i „„A dP._ Q d Vi(37) 1£ «*.£_£ und _ -

ex rdrdt dr rdxot
Diese Beziehungen finden sich bereits in der erwähnten

Arbeit von Stokes11).

Es sollen p und xp proportional el(<Tt + kx) sein. Dadurch
beschränken wir unsere Untersuchung auf rein stationäre,
fortschreitende Wellen mit bestimmt vorgeschriebenem Schwingungszustand

für p.

Multipliziert man beide Gl. (37) mit r, übt auf die Erstere
d d

¦7— und auf die Zweite -_— aus, addiert beide, so folgt:dx dr

<38> IXIXfX»
Für p P"(r)ei(at + kx) gesetzt, folgt aus (38) wenn — k2

(ik)2 wieder die bekannte Bessel'sche Differentialgleichung
d2P" 1 dP"

(39) X£X + _i_l£X + p 0.
d(ikr)2 ikr d (ikr)

Somit

P" CJ(ikr)4-DY(ikr).
Auch hier muss D —- 0 sein, damit p nicht für r — o

unendlich wird; es ist daher:

(40) p CJ(ikr)ei(ot + kx)

Unter Berücksichtigung • von Gl. (37) u. (29) wird

(41) p —ACffJ(ikr)elw,t + ta).

Führt man in den Gl. (21) für tp den Wert aus Gl. (33)
ein, so erhält man für die Geschwindigkeitskomponenten u und

w die folgenden Ausdrücke :

AkJ(ikr) -f <XJ(i/?r)lei(,Tt + kx>

w - AkJl(ikr) - CkJl(i/?r)]eI(l" + kx),

wo L J

p - AçffJ(ikr)ei(fft + kx)

i/,=r|"AiJ(ikr) 4- CiJ(i/Sr)lei(fft + kx)
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ß ± \J k2 + kt

Da aber k2 für lange Wellen (wie sie für unsere
Untersuchung allein in Betracht fallen) sehr klein und v klein, also

— gross gegenüber k2 so kann man setzen
v

^ + VXxX-ovr
o 1 j]jrFerner kann für k2 « 1, J(ikr) 1 und J(ikr) gesetzt

werden, dann folgt :

u= [~Ak f Cq\/rj(rq\/^l)le1(

w — f- A k2 r + C k J!(rq V71^)] es {ai + XIL I

i «Tt + kx)

WO

p — A?ffei(<Tt + kx)

n> r[-^ + CiJXqV^k (<J t + kx)

§ 2. Die Gleichungen der Elastizität.

^_+J*X
U.' I

•r-g**
Lffl:

OX \ï *—*

1
Fig. 1.

Wir greifen ein Volumelement der Röhrenwand heraus,
bezeichnen es mit J V und setzen voraus, dass es so dünn sei,

2
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dass die Variation der Wanddicke vernachlässigt werden könne.
Bezeichnet :

R Innerer Radius der Röhre im Ruhezustand.

J qy Winkel, unter dem das Element von der Röhrenachse
aus erscheint,

h unveränderliche Dicke der Röhrenwand.

J x Länge des herausgegriffenen Elementes,
u' Verschiebung in der Längsrichtung bei Einwirkung

eines radial gerichteten Druckes p.
w' Verschiebung in radialer Richtung unter demselben

Druck p.
Sp Spannung in Richtung der x-Achse.
jQ — Spannung in Richtung des Umfanges.
E Yongs Elastizitätsmodul der Röhrensubstanz.
0 — Poissonscher Koeffizient Koeffizient der Querkon¬

traktion zur Längendilatation. (Diese von Lamb
abweichende Bezeichnung benützen wir, um die
Verwechslung mit der Frequenz a zu vermeiden.)

q0 Dichte der Röhrensubstanz.

Es ist JV r-Jtp-hJx, somit die Masse dieses Elementes
JM Co • r • Jf • hJx.

du
~d~ d '

Dehnung in der Längsrichtung —.dx dx

Dehnung in Richtung des Umfanges — —

— S$ und — JQ sind die oben genannten Werte für die Dicke 1,
h h

R- dtp R

I die oben genannten Wt

so dass sich ergibt :

d n' 1

Dehnung in der Längsrichtung: — (5ß—0Q)
dx E • h
w' 1

Dehnung in tangentialer Richtung: (Û — Qty).
R Eh

Hieraus folgt :

(42) ^=A:E_/^:+0z:\* 1 — 92\dx R/
und
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(43) z=J=iK.(lL+e™
1 —02\R X

Wirkt aber in der Längsrichtung in irgend einem
Querschnitt die Spannung 5ß, so erreicht diese Spannung im Abstände

d*B
Jx von diesem Querschnitt den Wert 5)3-] J x. Die Kraft-

dx
wirkung auf unser Volumelement in der Längsrichtung beträgt
demnach

1 Jx li-R-z/ff>—— h • R • Jtp —- Jx ¦ R • J tp.
dx / h dx

Somit, da die Beschleunigung in longitudinaler Richtung
d2u' d2u dSß

ist, p0 • R- J tp -h- J x — Jx • R Jap also
dt2

V
dt2 dx *

(44) go h __ —.
o' t2 d x

Da der innere Überdruck, welcher in Richtung wachsender r
wirkt, p ist, so wirkt auf das Röhrenelement der Druck p • R •

Jop-Jx; in entgegengesetzter Richtung wirkt infolge der

Elastizität die Kraft — J x • h mit ihrer Komponente — Qz/x • h • sin —
h h 2

— O-Jx-hJ^. Somit, da die Beschleunigung in tangentialer
d2w'

Richtung —-
dt2

d2w'
Qo-h-R-Jop-Jx- p • R- Atp ¦ Jx — jQ • Jx • h- dtp, also

dt2
d2w' 1

(45) Qoh—^ n——£iK ' dt2 r
Substituiert man Gl. (42) in (44) und (43) in (45), so erhält

man die Lambschen Gleichungen.*)
d2u' B /d2u' © dw'(

(46)

wo B

dt2 Ço \dx2 R dx
dV_ p B /0 du' w'

und

dt2 hp„ q0 \R dx R2
E

02

*) Genau genommen müssen noch die durch die Zähigkeit der Flüssigkeit

erzeugten Druckkomponenten mitberücksichtigt werden. Statt p wäre
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Da u', w' und p proportional e1 (ff *+ kx), so ergibt sich :

(47)

B\ X0 B / A 1— u' -\ • — w' 0 und
Qo

' kR Qo

6>i B / 1 B

kR Ço V k2R2 qo/ k2h?0
In den hydrodynamischen Gleichungen treten die

Geschwindigkeitskomponenten auf und nicht die Verschiebungen wie in
du' d w'

Gl. (47); wir setzen also u und w, folglich sind
dt dt

diese Gleichungen noch nach der Zeit t zu differentieren. Sie
lauten dann :

B\ i& B
— u -| • — w o und
Qo 1 k R Q0

0i B_ „ X i
1 B X„ _ XP

(48)

— r^ u+ c2+77^r w
kR ß0 V k2R2 qo/ k2hp0

§ 3. Bedingungsgleichungen für die Geschwindigkeit
langer Wellen.

Die Gleichungen II charakterisieren die Bewegung der
Flüssigkeit für lange Wellen. Die Gleichungen (48) dagegen
diejenige der elastischen Röhre. An der Röhrenwand, für r R,
müssen die Geschwindigkeiten u und w der Gl. II denjenigen
der Gl. (48) entsprechen. Wir führen die Werte aus II in (48)
ein, sondern die Konstanten A und C ab, dann folgt aus (48)

A • a 4- C ß o
(49) ï Ay +CM o,

d w
p — 2 p zu setzen, ebenso ist in der tangentialen Richtung ein Zusatz-

d r
glied zu £x mit dem Faktor p beizufügen. Diese Glieder können aber in

den Gl. (46) im Verhältnis zu p und zum grossen Faktor — vernachläs-

sigt werden, um so mehr als eine ev. Reibung in der elastischen Wand
sowieso nicht berücksichtigt wird.
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wo

« Rk(D4-^

ß J(RqV/X) (RqV/fD J&VjX)_ i @h
1 J(RqV/-i)

(50) | y i0b + i^^-i|- + i^(woff=k.c)

^J(Rq^xU^®bJÄB
l k .J(RqV-i)

f Rk (d2 —
V k2 R2

wenn — b, c2 — b D und —-.— % gesetzt
Q q(1 — @2) Q"h

wird. Da die Determinante der Gl. (49) null sein muss, so
erhalten wir als Bedingungsgleichung für k

(51) a-d ß-y.
Ferner ergibt sich aus Gl. (49) der Wert für die

Konstante C

(52) C — —.ß

Führt man in Gl. (51) die Werte (50) ein, berücksichtigt,

dass q y i — q y— i, und setzt R q \J— i Z, so ergibt sich
i

'lrwJ(Z) iJL^ ;b ./ k2R2
DZ X^- — i © b i 0 b — i — 4- i c2 t 4-

.{ J(Z) I' 2 V 2

(53) 0 w^•Z^ + Rkfc2-^ Rk(c2-b4-^kR j(Z)^ V k2R2;[| V 2 /\

Aber % —— ist bei nicht zu dicken Röhrenwänden relativ
Qo h

k2 R2
gross, also kann für lange Wellen gegenüber % vernach-

lässigt werden.
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o

J (ZiWeil
1

eine komplexe Grösse ist, setzen wir
J(Z)

o

(54) Rq\Z=TJ(RqjO=Z^ P4-iQ.
J(Rq\/— i) J(Z)

Setzen wir ferner zur Abkürzung

(55) S b(--e\; L 2D4-0b,
so ergibt Gl. (53)
(56) [D(P 4- iQ) 4- 0bj [k2S — Rra2]

4-k2r(P + iQ)0b-b]| O.

Dies ist die Bedingungsgleichung zur Berechnung von k.
Da k eine komplexe Grösse ist, setzen wir k m4-in

wo m — —, X c T Wellenlänge, T Schwingungs-
X t;

dauer, n Dämpfungskonstante in Richtung der
Fortpflanzungsgeschwindigkeit.

Den Wert für k2 =- (m2 — n2) 4- i 2 mn und a — m • e in
Gl. (56) eingeführt, gibt:

— Tm2c2[RD(P + iQ)4-R0b]4-(m2- n24-i2mn)
(57) .[D(P-f-iQ) + 0b] S

4- (m2 — n2 4- i 2 mn) [(P 4- i Q) 0b — b] - 0.

Diese Gleichung gestattet zunächst, das Verhältnis — zu be-
n

rechnen. Zerlegen wir sie in ihre reelle und imaginäre Kompo-
ponente, ordnen nach den Variabeln n und m, so folgt :

._£.
m2 a' — n2 ß' — 2 mn/ o

' m2 Ô' — n2 / 4- 2 mn/î' o,
wenn zur Abkürzung folgende Setzungen gemacht werden :

' — - %c2 RP - b^ 4- 02b2 (' -2 \2

(59)

D (~-rc2RP-b)4-02b2X—1) — rc2R0b

X^(P-2)(D+02b)
y' Q ^(D+ 02b)l

b OT,\ 02b2"|D / - — t c2 R
2 X 2 J
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Dividiert man die Gl. durch m-n, addiert beide und ordnet,
so folgt :

m ß'2 _1_ y'2 #

— — 2 -t-—!—^— ; die obigen Werte eingesetzt, ergibt :

n a'r' — ß'ö'
m 2 b(c2-b + Q2b)(Q24(P-2)2) •)

n 2Q[2(c2—b) +@b]rc2R
Wir berechnen ferner aus Gl. (56) die

Fortpflanzungsgeschwindigkeit c. Zu dem Zweck schreiben wir sie wie folgt:

(61) [d(P + iQ) 4- ebl ¦ |~2S-2tR ^-1

- r(P + iQ)0b-blL.
Wir setzen links den Ausdruck

(62) 2 r R — X 4- i Y.
k2

Die reellen und imaginären Teile der Gl. (61) sind dann :

1. Reeller Teil:
(63) — X[DP 4- 0b] -f Y'DQ

—2S[DP4- ©b] - (P0b —b)L
2. Imaginärer 'feil :

(64) XDQ4-Y[D-P 4- 0b] Q0bL 4-2S-D-Q.
Aus diesen beiden Gleichungen folgt durch Elimination von Y

- X [(DP 4- ©b){ —2S(D-P-f 0b) — (P0b — b) • L }

(65> ,1 1
— DQ2 0bL4-2S-D

J (DP 4- 0b)2 4- D2 Q2

Löst man die Klammern auf und ordnet, so wird

(66) X
b (D + @2 b) [(P ~ 2) (P ' P + 6h) + Q2 D]

(D • P 4-0b)2 4-D2 Q2

*) Anmerkung: In den für uns in Betracht kommenden Fällen
• i m „ist — sehr gross. Denn für p Po 1, b oo !08 Q 0,5, Rr 10,

c2 ~ 106 (s. pag. 36—36) und den Werten für Rq 10, P oo Q c>j 10 (s.

pag. 34) ergibt sich — oo
1C)8 •1()8 -10 ^ io2

n 10 108 .106 10

Es darf also jedenfalls n2 gegen m2 in erster Annäherung aber auch
n gegen m vernachlässigt werden.
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ff2
X ist der reelle Teil von 2 t R —. Für k m 4- i n wird, wenn

k2
n2 <C<C m2 (s. Anmerkg. pag. 21), X 2 % R c2.

Dies in Gl. (66) eingesetzt, ergibt in erster Annäherung,

wenn c2 zunächst gegen b vernachlässigt wird, also

D —b=:—— und D4-02b -b(l —02) ——
Qo Qo

gesetzt wird :

(67) c2 JLÄ (P-2)(P-0)4-0^ c2 K<

2Re (P— 6>)24-Q2

Ist die Reibung v—o, also q » /_£_== °o, so wird auch«-v/t-
P Q oo, also K 1 und es bleibt

h ¦ E
(68) Co die von Resal gefundene Form (s. p. 3).

2Rq
Der Ausdruck K - — berücksich-

(P - ©)2 4- Q2

tigt die Zähigkeit der Flüssigkeit, er ist also der
Resalschen Formel als Korrektionsfaktor beizufügen.

Für eine genauere Berechnung kann der so korrigierte
Wert in Gl. (66) eingeführt werden. Es wird dann in 2.

Annäherung :

D c2-b=XK — b — bH wo

¦ H 1 — 4r K .1 - h(1o~r^e) K dann wird
b Z ix

(69)' c2 -C2H-©2 (P-2)(HP-Q) + HQ2
IWJ C — Co j _ @2 (H p _ @)2 + H2Q2 — Co^o,

wo K0 ein verbesserter Korrektionsfaktor ist. Wenn nötig, kann
durch fortgesetzte Substitution in Gl. (66) der Wert von c2

mit beliebiger Genauigkeit ermittelt werden.

§ 4.. Die Longitudinale und die radiale
Geschwindigkeit der Flüssigkeitsteilchen

bei einfach harmonischer Schwingung von p.

In Gl. (52) ist die Konstante C durch die Konstante A
ausgedrückt. Da C komplex ist, so schreiben wir zweckmässig,
damit die Ausdrücke für die Geschwindigkeiten u und w möglichst
einfach ausfallen.
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Ak($4-i !P)
__

Ak (0 + i f) (-\/X)
q\/i q

wo £> und T zu bestimmende Funktionen von R sind. Aus Gl.
(52) folgt, wenn für a und ß die Werte (50), sowie die Substitutionen

L und Z Gl. (54) und (55) eingeführt werden.

LRq\/r
(71) 0 4-1^

2J1(Z)[DRqV/i^||-i0b]
Nach unserer Setzung (54) wird im Nenner

o o

RqVri2L= *. q ^rri®Ui.(p + ìq).H
J!(Z) i J!(Z) i

Führen wir nun die Thomsonsche 12) Bezeichnung ein

(72) — yCII Ji(Z) ber' Z 4- i bei' Z, so wird

$ 4- i ^f= - RqV/r * ^ 1V"1 2[ber'Z+ibei'Z] XP+iQ)-i0b

(73) <2> 4- i ^1

2[ber'Z + ibei'Z] D(P + iQ)+0b
Setzen wir noch zur Abkürzung

M DP 4- 0b und DQ N,
so erhält man aus (73) durch Trennung des reellen und imaginären

Teiles

Rq L(Mbei'Z4-Nber'Z)

oder
iRq

(74)

<2>

2 [ber' Z2 4- bei' Z2 ] (M2 + N2)

Rq L(Mber'Z —Nbei'Z)
2 [ber' Z2 4- bei' Z2 ] (M2 4- N2

Wird in erster Annäherung c2 gegenüber b vernachlässigt,
also, weil D c2 — b, L b (0 — 2), M b (0 — P) und
N — — b Q gesetzt, so folgt

_ Rq(2 - Q)[(P — 0) ¦ bei'Z 4- Q ber'Z]

(74a-,

f ~~
2 [ber'Z2+bei'Z2].[(P-0)24-Q2)

Rq (2 — 0) [(P — 0) ber'Z — Qbei' Z

2 [ber'Z2 + bei' Z2]-[(P — 0)2 4- Q2]
Mit der Substitution (70) ergeben die Gl. II:
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Erstens: für die Geschwindigkeit u in Richtung der

Röhrenachse, wenn wir r q y— i z setzen und nach Thomson

(75) J (r q y — i) ber z 4-1 bei z einführen,

(76) u Ak[l — (<Z> 4-i >F) { berz 4-i bei z }] e*((r * + kx)

Da k m-f-in, wo aber n nach Gl. (60) gegenüber m

vernachlässigt werden darf (s. Anmerkung auf pag. 23) folgt,

(77) u Aenim[l- (<P4-if)(berz-f-ibeiz)]ei(<Tt + mx)

Da wir im Folgenden nur die Schwingungen der
Flüssigkeitsteilchen betrachten, die in der Gleichgewichtslage in einem
bestimmten Querschnitt (z. B. x o) liegen, so braucht auf diese

Dämpfung nicht mehr weiter Rücksicht genommen zu werden,
— nx

so dass wir den Faktor e weglassen. Er ergibt sich als reeller
Teil aus Gl. (77) :

(78) u Am[(14- ^berz— ^beizjcosx — (¥*berz4- 0beiz)sinjc],
wo x ff t 4- mx

Bezeichnen wir den Koeffizient von sin % mit E und
denjenigen von cos % mit F, so ist
u - Esinx 4- Fcosjj Gcos(z + ô), also G ±\fW 4- F2
somit :

(79)

u Anu/(l+<2>berz- ^beiz^+Cfberz+ <£beiz)2-cos(x4<5),

wo

„ E fberz 4- 3>beiz
tg à — —

F 1 + (Dberz — fbeiz
Zweitens: für die Geschwindigkeit w in radialer Richtung,

ebenfalls unter Vernachlässigung der Dämpfung n,

(80) w=— -^-[^-K<D+i¥)(— v/X)J1(rqV/^i)|ei(<Tt + mi)

und, wenn

(81) (— VXT) J!(rq \Xi) ber'z 4- i bei'z,
ergibt der reelle Teil von (80) :

Am2 T
(82) w ((D ber'z — ¥ bei'z) cos %

q I

— (— + *Pber'z 4- Obei'z)sin/
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oder, analog behandelt wie u :

AE! XI SE. _j_ ^ber'z 4- Q bei'z]' 4-

(83)

W:
q

WO

4-1 CD ber'z — 'Fbei'z1 cos (x 4- ô1),

Ç-f îFber'z4- CD bei'z
te A' -ö (0 ber'z—lFbei'z

§ 5. Untersuchung der Bewegung bei Annahme
rein radialer Schwingung der Röhr en wand.

Die bisherigen Ausdrücke zeigen, dass stets u, die Geschwindigkeit

in Richtung der Röhrenachse, ausserordentlich viel grösser
ist als die Geschwindigkeit w senkrecht zur Röhrenachse. Die
Röhrenwand macht also hauptsächlich longitudinale Schwingungen.

Betrachten wir deshalb den speziellen Fall, wo sie nur
radiale Schwingungen vollzieht.

Es sei also in der Röhre für r R die Geschwindigkeit
der Flüssigkeit an der Röhrenwand in Richtung der Röhrenachse

u o ; ebenso setzen wir —. da dieser Betrag sehr klein
dx'

ist, gleich null.
Aus Gl. (46) folgt unter dieser Annahme und unter

Berücksichtigung der Bemerkung, die zu der Gl. (48) führte, sowie
¦p

mit der Substitution — b,
Qo

(84) w (für die Röhrenwand).1
dt2 he„ dt R2

p und w setzen wir auch hier proportional el(<Tt + kx), dann ist

(85) — ff2 w i ff p w.
hQo R2

Es ist ff3 gegenüber sehr klein, wir lassen es also weg und
R2

bekommen als Bedingungsgleichung für k :
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(86) __w i —p.R2 hço
Da wir an der Röhrenwand r R, die Geschwindigkeit u o
annehmen, folgt aus II

A k + C q yi J (Z) o, hieraus
(87) Ak

x—'qViJ(Z)
Diesen Wert für die Konstante C führen wir im Ausdruck für
w in II ein und bekommen für r R unter Berücksichtigung
von (54)

(88) w — Ak2f— ULX^ + ^.
V2 P + iQ/

Diesen Wert in (86) eingesetzt, gibt
(89) k2(±- ï_\=^.\2 P + iQ/ b
Aber k2 (m2 — n2) -j-i2mn, ff2 m2 c2 und

1 P Q

P + iQ P2 + Q2 P2 4- Q2
Also wird Gl. (89):

(90) (m2 — n2 + i2mn) (— - |-i ^
2 P2 + Q2 P2 + Q2

— m2 c2 % — o ;
b

hieraus ergeben sich für die reelle und imaginäre Komponente
folgende Gleichungen :

l2 ^/'i P \ o™„ Q

(91)

(m2 — n2) — 2mn' ' 2 P2 4- Q2 / P2 4- Q2
R
b

(m2-n2)—^ \- 2mnf- o.
P24-Q2 \2 P24-Q2

*1 Bemerkung: Nach Gl. II wird für v=o, wenn keine Reibung

vorhanden wäre, w — — A k2 R ë <-a ' + kx) und p — A<? oe' <-al + kx)

Da ff k. c, folgt aus Gl. (86)

; dies ist wieder die Resalsche Form, wenn
2 Phgo

2RoBE..b — gesetzt wird, was in erster Annäherung statthaft ist
Po Po
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Aus diesen beiden Gleichungen berechnet sich das Verhältnis
m
— zu:
n

1921
m
n

bji(P2 + Q2_2P)2+Q2J
\V6) (P2 + Q2)Qc2rR

Eine Überschlagsrechnung ergibt der Grössenordnung nach den
nämlichen Wert wie Gl. (60), so dass wir auch hier zur Berechnung

von c, n gegenüber m vernachlässigen können. Unter dieser
Voraussetzung ergibt die 1. Gl. (91)

1 (P2+Q2-2P) 2
R

nr — - —- — m2c2r— o und
2 P2 + Q2 b

hieraus, wenn durch m2 dividiert wird, und die Werte von b und
% (pag. 20) eingesetzt werden,

(93) c2=-^ l(P2 + Q2-2PXEh (P2 + Q2-2P)
tR 2 (P2 + Q2) 2Re(l —02)(P2 + Q2)

^K',
2Rq

wo K' das Korrektionsglied angibt, das der Resalschen Formel
beigefügt wird.

Zur Berechnung der Geschwindigkeit u bei radialen
Schwingungen der Röhrenwand setzen wir den Wert der
Konstanten C aus (87) in II ein und bekommen :

o

(94) u Ak (l — -M\ e»<<" + !«>.
V j(Z)/

Für k m + in und mit der Thomsonschen Bezeichnung nach

(75) und unter Vernachlässigung der Dämpfung in der x-Rich-
tuhg, wird der reelle Teil in (94), wenn ff t + m x /,

(95) u Am 1 „, ,,,.,„ (COS/ +ber Z • berz + beiZ • beiz

berZ2 + beiZ2

berZ-beiz — beiZ-berz
berZ2 + beiZ2

oder analog behandelt wie Gl. (79)

sinx
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(96)

Am-cos(x + (î) L 2

berZ2 + beiZ2 \/LberZ-beiz —beiZ-berzJ +

+ [berZ2+ beiZ2 —{berZ-berz + beiZ-beiz}]2

tg<5 -

12

WO

ber Z • beiz — bei Z • ber z

berZ2 — beiZ2 — [berZ • berz + beiZ • beiz]
Auf gleiche Weise ergeben sich aus II, nach Einführung der
Gl. (87), für die Geschwindigkeit in radialer Richtung
die folgenden Gleichungen:

(97) w - Ak2 \— ^-1 el<fft + X
L2 q\/iJ(Z)J

Unter den nämlichen Bedingungen wie früher wird die reelle
Komponente

,__. „„ T berZber'z + beiZbei'z
(98) w Am2R L cos %l (berZ2+beiZ2)Rq

oder

berZbei'z — beiZber'z
sin %

(99)

_ Am2-cos(x + d')
~~

q(berZ2 + beiZ

(berZ2 + beiZ2)Rq 2R

-II I
iZ>)V

berZbei'z — beiZ • ber'z

^.(berZ2 + beiZ2

wo

]T+ [berZber'z + beiZbei'zT

berZbei'z — beiZber'z — B. (berZ2 + beiZ2)
tgó' f

berZber'z + bei Z bei'z

§ 6. Untersuchung der Bahn eines einzelnen
Flüssigkeitsteilchens.

Es seien (x, r) die Gleichgewichtskoordinaten eines
Flüssigkeitselementes in einer Meridianebene, (xr) die Koordinaten der
Verschiebung aus dieser Mittellage. Nun ist :

da; d(x + sc) 1 dip

finOì I dt dt r dr
{W) i -dr^d(r + r) 1 Sip

dt dt r dx
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Für u und w setzen wir die gefundenen Werte aus den
Gleichungen (79), (83), (96) und (99) ein und bezeichnen zur
Abkürzung die Amplituden von u und w mit f bezw. F, dann ist

| dx f cos (fft + m (x + x) + ô) dt
(1°1) \ dr F cos (fft + m (x + sc) + Ò') dt.

Bei der Integration nach t können im Argument die mit
dem kleinen Faktor m multiziplierten Werte x als konstant
angesehen werden, also

(102)

x f — sin (fft + m x + S)

r F - sin (fft + m x + ô').

(104)

Aus diesen Gleichungen ergibt sich nach Elimination der
Zeit t:

(103) x2 F2 + r' f2 - 2xr ¦ Ff cos (d'-d) \ f F2sin2(d'—ò).-

Dies ist die Mittelpunktsgleichung einer Ellipse mit
variabler Neigung der Achsen.

Zur Bestimmung dieser Neigung gegen die Röhrenachse
transformieren wir die Gl. (103) auf ein neues Koordinatensystem,
indem wir setzen:

x — x' cos y — r' sin y

x' sin y + r' cos y, woraus folgt

X2
+ r'2 [F2 sin2 y + f2 cos2 y + 2 F f cos (ò'—d) cos y ¦ sin y]

— 2 x'r' [FJ cos y sin y — f cos y sin y + F f cos (ô'—ô)

• (sin2 y — cos2 y)] — \ î2 F2 sin2 (d"—d) 0.

Um die Normalform herzustellen, muss die letzte Klammer
Null sein, also:

(105) F2 cos y sin y — f2 cos y sin y — Ff cos (ô'-~â) (cos2 y

— sin y) 0
hieraus folgt

2 F f cos (d' —
(106) tg 2 y -j^—p

x'2 [F2 cos2 y + f2 sin2 y — 2 F f cos (ô'—ô) cos y sin r]
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Da die Amplituden der Geschwindigkeit w senkrecht zur
Röhrenachse stets sehr viel kleiner sind als diejenigen von u in
Richtung der Röhrenachse, also F « f, so ist aus Gl. (106)
ohne weiteres ersichtlich, dass die grossen Achsen der Ellipsen
der einzelnen Flüssigkeitsteilchen praktisch parallel zur Röhrenachse

liegen.

IV. Teil.
Diskussion der erzwungenen Wellenbewegung einer zähen

inkonvpressiblen Flüssigkeit.

§ 1. Zusammenfassung.
In unseren Untersuchungen des III. Teiles stellten wir die

hydrodynamischen Gleichungen für die Bewegung einer zähen,
inkompressiblen Flüssigkeit auf und suchten unter Benützung
der Stokes'schen Stromfunktion ein Integral für Wellenbewegungen

im Innern einer unendlich langen, zylindrischen Röhre
mit kreisförmigem Querschnitt, ohne Rücksicht auf die Schwerkraft.

Hiebei ergab sich Gl. (33).
Die Grenzbedingungen der Flüssigkeitsbewegung folgten

aus der Elastizitätstheorie mit der Annahme einer elastischen
RöhrenSubstanz und unter der Voraussetzung, dass die Röhre
im Vergleich zum Durchmesser nur eine geringe Wandstärke
besitze. Dabei wurde jedoch die Reibung im Innern der Röhrenwand

unberücksichtigt gelassen, obwohl sie möglicherweise einen
merklichen Einfluss auf die Fortpflanzung der Wellenbewegung
der Flüssigkeit ausüben könnte.

Die ganze Betrachtung beschränkte sich auf einen stationären

Zustand; auf die Entstehung der Wellen wurde nicht
Rücksicht genommen. Die erzwungenen, fortschreitenden-Wellen
haben eine bestimmte gegebene Frequenz a (in 2rt Sek.) und

haben eine sehr grosse Wellenlänge X
-^—, so dass also

k « 1 ist. Für den periodisch oszillierenden Druck wurde eine
einfache cos. Schwingung angenommen, p — A off cos (fft + kx),
wo o die Dichte der Flüssigkeit bezeichnet.
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Die Dämpfung in Richtung der Röhrenachse ergab sich

aus der komplexen Grösse k m + i n, wo n die Dämpfungskonstante

bedeutet. Wie sich aus der Ueberschlagsrechnung

Seite 21 zeigte, ist das Verhältnis — von einer zu vernach-& ' m
lässigenden Grössenordnung.

Unter diesen Bedingungen gelten unsere Gleichungen, die
hier zusammengestellt sind.

I. Fortpflanzungsgeschwindigkeit der Wellenbewegung.

a) Für allgemeine Wellenbewegung.
In erster Annäherung:

c V/IH". /(g^jHP-6>) + Q: ^V 2 R q V (P — 0)2 + Q2 ° v

wo c0 =v/ö~t5— die bekannte Formel von Resal ist, oder

in zweiter Annäherung:

,-v/^:E v ,/H - ®2 (P-2)(HP-0) + HQ2_ /r-
C-V2Ro-yi-02- (HP-0)2 + H2Q2 C^}

wo H — 1 K und b — =-.
b Q Q{l-02)

b) Für rein radiale Schwingung der Röhrenwand.
P2 + Q2 - 2 P ,._. _. ,QQ.

c0 y^K'. Gl. (93)VfroV(1 - 02) (P2 + Q2)

IL Geschwindigkeiten der Flüssigkeitsteilchen.

a) Für allgemeine Wellenbewegung.
1) In Richtung der Röhrenachse:

u Am V/(l + <Z>berz — <f beiz)2+ (*P ber z + <Z>beiz)2 cos (/ +
Gl. (79)

wo
L

!F ber z + $ bei z
tg ô

1 + <Z> ber z — 'Fbei z'
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2) In radialer Richtung senkrecht zur Röhrenachse:

w eüL i /[Ç+ Vber'z + *bei' *T + [ # ber' z — 'Fbei' z]2

• cos {x + â),
wo

qr „, _, Gl. (83)\ + W ber' z + $ bei' z v 7

tg<î'~ <P ber' z— f bei'z
wo

_ Rq (2 — 0)[(P — 0) • bei'Z + Qber'Z]
~~

2
'

[ber'Z2 + bei'Z2] [(P — 0)2 + Q2]'

_ Rq (2 — 0) [(P — Q) ber'Z — Q bei'Z]~ 2 [ber'Z2 + bei'Z2] [(P — 0)2 + Q2]'

} Gl. (74").

b) Für rein radiale Schwingung der Röhrenwand.

1) In Richtung der Röhrenachse:

_ Am cos (x + ô) /" ~
U ~ berZ2 + beiZ^ y LberZ-beiz - beiZ-berzJ +

+ [berZ2 + beiZ2 — {berZ • berz + beiZ • beiz }]3

wo Gl. (96).
ber Z • bei z — bei Z • ber z

tg Ò — ;
ber Z2 — beiZ2 — [berZ • berz + beiZ • beiz]

2) In radialer Richtung, senkrecht zur Röhrenachse

q(berZ2 + beiZ2) 41
Am2 cos (v + ô') .,-,-. n i /w ^-! X / berZ • bei z — beiZ • ber'z

^- (berZ2 + beiZ2)T+ TberZ
• ber'z + beiZ • bei'z?

wo
"

Gl. (99).

berZ-bei'z — beiZ • ber'z — ^- (berZ2 + bei Z2)

g ber Z • ber'z + bei Z-bei'z
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III. Die Elongationen x, r der Flüssigkeitsteilchen.

x f — sin (ff t + m x + è)

l Gl. (102)
r =F — sin(fft + mx4 o")

tg2yJ2F-fF2C°^-^ Gl. (106)

wo f Amplitude bezw. Maximalwert von u
F Amplitude bezw. Maximalwert von w
y Neigung der Achse der Bahnellipse zur Röhrenachse.

Ferner bedeuten in den obigen Ausdrücken
A Eine Konstante, die sich aus p — A o ff cos (ff t + kx) be¬

stimmen lässt.
E Yong's Elastizitätsmodul der Dehnung.
© — Poissonscher Koeffizient (Verhältnis der Querkontraktion

zur Längsdilatation).
Qo Dichte der Röhrensubstanz.
h — Dicke der Röhrenwand.
R Radius der Röhre.
o Dichte der Flüssigkeit.

wo v — kinematischer Reibungskoeffizient (Visko-v^
o

sität) der Flüssigkeit, a Frequenz in 2 ft Sekunden.

Z —Rq\/—i und z rq\/—i.
J(z)—berz + ibeiz= Besselsche Funktion nullter Ordnung

I. Art.
— V— i JX) ber'z + i bei'z Besselsche Funktion I. Ord¬

nung I. Art nach Thomsons Darstellungen.

P + iQ Z^^- Rq\/=l-(-^3 (Gl- 54.)^ J!(Z) J!(Rq\/-i)

§ 2. Berechnung der Funktionen P und Q,
die durch Bessel'sche Funktionen dargestellt
sind, und Zusammenstellung der Konstanten.

Wir benützen nach obigem die von Thomson 1S) eingeführte
Bezeichnung ber, für den reellen. und bei für den imaginären
Teil der Besselschen Funktion :
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° 7 rJ (r q y— i) ber (rq) + i bei (rq)

\l^\ J1 (r q \/=X) ber'(r q) + i bei (r q),

(rq)4 (rq)8 (rq)12
er\T(l) 224? ' 22426282 22426282102122

bei(rai M---^- + —i^)10
22 224262 22426282102

Es sei J^L J^L ,i und Rq\XI 2x05" \Xi=?=x;
2y2 y8

ferner ist nach Gray and Mathews u),

lJW=1_ (l2J!_(!/^_ (IM6 _(!/?)! _
i3(x/2)1

2 J!(x) 2 12 48 180 8640

H (x/2)
12

26880
Deshalb folgt näherungsweise für x <; 1

RqV^ JtRqVXT) _X1+_X_|_
2 J^Rq^-i) \ 3

+ i»2(i-^-
Für x > 1 gibt Sommerfeld15) näherungsweise den Wert

Rq\XT J(Rq\XX / 1 3X2 JHRqy'-i) V 4
' 64x

,-./ 3 3

64 x 128 x2

Für 10 >> x ~~> 1,5 gilt sehr genau nach Zenneck16)

^X1 rX^X (°'"7 » -I- °<277) + i t1'007 * - °'04°)-
2 J (Rq y—i)

Multiplizieren wir diese Gl. mit 2, so folgt für unsere Gl. (54)

Rq Y/=I J°gq^ P + i Q 2 (0,997 x + 0,277)
J (Rq V—i)

Rq\
+ i 2 (1,007 x — 0,040) für 1,5 < x (=-t= j < 10.

Also wird:
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p XiX£ ¦+•-')

und

P-2VV,8 + 4 + 64-qRJ

0,997 \
^qR+0,277jP 2

4D4
n _oq2RVi q4R*
^-2_8X1_6X4

Q-2IXL\/8 64 qR 128q2R2J

für x <C 1

für x > 1

für 10 > x > 1,5

für x < 1

für x > 1
64 qR 128

T 1,007 "I
Q 2 X|- qR — 0,040 für 10 > x > 1,5

In der folgenden, Jahnke und Emde IS) entnommenen Tabelle,
sind für verschiedene Argumente Rq die numerischen Werte von
P und Q,*) sowie von ber, bei, ber' und bei' angegeben.

Rq p Q ber (Rq) bei (Rq) ber' (Rq) bei' (Rq)

0 2,0000 0 1,000 0 0 0
0,5 2,0000 0,0626 0,999 0,063 - 0,008 0,249
1,0 2,0002 0,2494 0,984 0,249 — 0,062 0,499
1,5 2,0516 0,5554 0,921 0,558 - 0,210 0,730
2,0 2,1610 0,9612 0,752 0,972 — 0,493 0,917
2,5 2,3494 1,4272 0,399 1,457 — 0,944 0,998
3,0 2,6360 1,9016 - 0,221 1,938 — 1,569 0,881
3,5 2,9840 2,344 — 1,194 2,283 — 2,336 0,435
4,0 3,3556 2,746 — 2,563 2,293 — 3,135 — 0,491
4,5 3,7256 3,116 — 4,299 1,686 — 3,754 — 2,053
5,0 4,0860 3,474 — 6,230 0,116 - 3,844 - 4,354
5,5 4,4380 3,832 — 7,974 — 2,790 — 2,907 - 7,373
6,0 4,7874 4,186 — 8,858 - 7,335 — 0,293 —10,846
8,0 6,1912 5,628 + 20,974 - 35,017 + 38,294 - 7,662

10,0 7.5880 6,874 + 138,841 + 56,370 + 51,373 +135,230

*) Der Hälfte dieser Werte P und Q entsprechen in der Tabelle von
w' Li' w

Jahnke und Emde Seite 147, die Ausdrücke — bezw. •——
w. w„
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Ueber die Grösse der in Flüssigkeiten und Röhrensubstanzen
auftretenden physikalischen Konstanten geben die folgenden
Tabellen Aufschluss.

1. Viskosität und Dichte einiger Flüssigkeiten.17)

Flüssigkeit
Viskosität

n
beider Temp.

t°
Dichte

Q

Wasser
Terpentinöl
Olivenöl
Glyzerin
Blut*)

0,0178 4- 0,0028
0,0146 4- 0,007
0,808 — 0,115

42 — 7,8
0,07 - 0,108

0 — 100
20 — 80
20 — 80

2,8 — 20,9
37°

1

0,87
0,91
1,24

1,053-1,066

2. Elastizitätskoeffizienten.17)

Substanz
Elastizitätsmodul

in Dyn/cm2
E

Poissoihscher
Koeffizient

0

Dichte
Qo

Eisen 21000 • IO8 0,243-0,310 7,8
Kupfer 10500 • IO8 0,348 8,9
Blei 1700 • 10s 0,375 11,4
Glas 4700—7900 • IO8 0,22-0,31 2,4-3,8
Holz 500-1000 • 10s — 0,5
Kautschuk 0,02—0,8 • IO8 0,5 0,92—0,99

Für die numerischen Beispiele wählen wir die Konstanten
so, wie sie etwa einer Röhre aus Kautschuk entsprechen, in
welcher eine relativ zähe Flüssigkeit, wie z. B. Blut, mit einer
Frequenz, die ungefähr der Pulsfrequenz entspricht, Wellenbewegungen

ausführt.
B E

Es sei q Qa — 1, b — —yz—-rzz 0,5 • 108 Dyn/cm2V *°
Q0 ^(l—ö)

0 0,5 also E 0,38 • IO8, a möge zwischen 1 und 10,

v zwischen 0,01 und 0,1, R zwischen 1 und 10 cm variieren.

Da diese 3 Grössen immer in der Form Z Rq Ry-
zusammen auftreten, so können natürlich für bestimmte Werte

*) Nach E. Münzer und F. Bloch18) ist die Viskosität des normalen
Blutes ca. 4—6 mal grösser als für Wasser.
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von Z noch viel mannigfachere Kombinationen von R, ff, v

vorgenommen werden.
Das Verhältnis der Dicke der Röhrenwand zum innern

Radius, h/R, sei im allgemeinen 0,1 also Rt 10.

§ 3. Fortpflanzungsgeschwindigkeit der Wellen und
Berechnung der Konstanten £> und W.

Unter den angenommenen Verhältnissen ergibt sich, ohne
Rücksicht auf die Zähigkeit, nach Resal:

Jco V/-^T 1369 cm/sek.

Der Korrektionsfaktor erster Annäherung, der den Einfluss der

Zähigkeit ergibt, wird für Z R V /— 10, also z. B. für

eine Röhre von 1 cm Radius, bei einer Frequenz a 10 (in
2 n Sek.) und einer Zähigkeit v — 0,1, K 0,891, somit

c c0yK 1290 cm/sek. Es ist ersichtlich, dass die Zähigkeit
einen nicht zu vernachlässigenden Einfluss auf die

Fortpflanzungsgeschwindigkeit der Welle ausübt. Die Formel
für die erste Annäherung ist in unserem Fall genügend genau,
obwohl hier c2 (oo 1,7 • 106) gegenüber b (oo 0,5 • 108)

vernachlässigt wurde; denn der Korrektionsfaktor der 2. Annäherung
wird K0 — 0,885, woraus sich c zu 1285 cm/sek ergibt, d. h.

ein Wert, der von dem Vorigen nicht zu unterscheiden ist. Die
Art und Weise, wie c mit der Zähigkeit variiert, zeigt die
nachfolgende Tabelle und Figur (2) für den Korrektionsfaktor K,
wobei auch der Korrektionsfaktor K' für rein radiale Schwingung
der Röhrenwand angegeben ist. Beide Kurven nehmen zu, wenn
Z wächst, wenigstens innerhalb der hier angegebenen Werte.
Die Fortpflanzungsgeschwindigkeit der Welle nimmt also mit
abnehmendem Röhrendurchmesser, abnehmender
Frequenz und mit zunehmender Viskosität ab. Der
Einfluss des Erstem macht sich aber viel stärker geltend, da er

gegenüber — im Quadrat auftritt; der Einfluss der Frequenz und
v

der Zähigkeit dagegen macht sich in gleich starker Weise gerade
entgegengesetzt geltend. Ferner folgt, dass in erster Annäherung
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die Elastizität der Rö h renwand keinen wesentlichen

Einfluss auf die Fortpflanzungsgeschwindigkeit
ausübt; denn in den beiden Korrektionsfaktoren

K u. K' tritt nur der Poissonsche Koeffizient auf, welcher sich
für die verschiedensten Substanzen nur in verhältnismässig
geringen Grenzen bewegt, während b nicht auftritt.

Fig. 2.

0,9

0,8

0,7

0.5

.--- --"~ ----

/ /

1 /

/ K fur radiale /\Zélle n

/ -K' furai Qeroe ineW 'lien

ti
II

if
il

Z=
Rq

K K'

0 0 0

0,5 0,0018 0,0013

1,0 0,027 0,020

1,5

2,0

0,143 0,140

0,3050,324

2,5 0,493 0,503

3,0 0,608 0,675

3,5 0,680 0,782

4,0 0,728 0,859

4,5

5,0

0,760 0,915

0,786 0,958

5,5 0,805 0,990

6,0 0,821 1,018

1,1008,0 0,865

10,0 0,891 1,141

R<ys 0 12 3 4 5 6 7

Vergleichen wir noch im folgenden die Formel von v. Kries
(pag. 7) mit unsern Resultaten.

Die Formel von v. Kries lautet in unserer Bezeichnungsweise
du ldp
dl==-^dx-riU-

Wir gingen aus von den Eulerschen Gleichungen
d u _ ldp
d~ " ~

etc. etc.

-T^ + *
Q dx

d u.ö ui^ u
ä 2 I" 3 2 l ä 2
d x d j dl
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Nehmen wir an, dass u nicht von r abhängig sei, legen
also die Scheibchenhypothese zu Grunde, so ist

d u _ ldp, d2u

~dt~~~QJ^+ "^X
a2

da u oo e
^

—ô — k u> folgt
dx
du ldp 2

TT X ~ * k u-dt ç d x
Diese Gleichung ist mit derjenigen von v. Kries identisch, wenn

ij k2»' ; es ist also ij selber eine Funktion der Frequenz.
n 2

Setze k — m ~, dann ist ij v m —g-; hierin kann
c

füre die Resalsche Wellengeschwindigkeit c0 gesetzt werden, so dass

2Vö. 2 2 TZ • \i] — —2" (wo Co ao von v. Kries)
co

Dies in die v. Kries'sche Formel für die Fortpflanzungsgeschwindigkeit

eingesetzt, ergibt:
2 2

V ff

c^2^(1+V1+V
also

/ 2
c Co » / / 2 2r (für Scheibchenhypothese)

V' + v1 Co2

Der v. Kries'sche Korrektionsfaktor, der sich schreiben lässt
ï 2 2

1 £ -
g zeigt auch eine Abhängigkeit von v, von a und

4 co2

von R, aber doch in wesentlich anderer Weise, als in unseren
Formeln. Der Einfluss der Zähigkeit der Flüssigkeit ist also
durch den v. Kries'schen Ausdruck nicht richtig wiedergegeben.

V*
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z —
Rq 0 W

0 0 0
0,5 — 0,99 + 0,05
1,0 — 0,94 + 0,28
1,5 — 0,74 + 0,53
2,0 — 0,39 + 0,64
2,5 — 0,09 + 0,58
3,0 + 0,09 + 0,43
3,5 + 0,18 + 0,27
4,0 + 0,19 + 0,15
4,5 + 0,16 + 0,05
5,0 + 0,13 — 0,006
5,5 + 0,09 — 0,04
6,0 + 0,05 — 0,04
8,0 — 0,01 — 0,02

10,0 - 0,005 + 0,002

Die Konstanten 0 und "F sind
gegeben durch die Gl. (74a) wenn c2 gegen
b zu vernachlässigen ist. Die Werte von
0 u. V finden sich in nebenstehender
Tabelle; der graphische Verlauf für
verschiedene Rq, also für verschiedene
Röhrendurchmesser, verschiedene Frequenzen
und verschiedene Flüssigkeiten ist aus

Fig. (3) ersichtlich. Auch die genaue
Formel (74), wo c2 nicht gegen b
vernachlässigt ist, liefert für Rq 10 keine
merklich verschiedenen Werte ; z. B. wird
nach (74) 0 — 0,007 und nach (74a)

0 — 0,005.
Da also die Vernachlässigung von c2

gegen b statthaft ist, zeigen sich 0 und

Fig. 3.
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fund damit alle unsere weitem Ausdrücke im wesentlichen

von der Elastizität der Röhrensubstanz
unabhängig; denn sie enthalten nur den Poisson'schen Coeffizienten
0, nicht b.

§ 4. Bewegung der Flüssigkeitsteilchen.
Ueber die Geschwindigkeit u in Richtung der Röhrenachse

und w senkrecht dazu in radialer Richtung, geben die Gl. 79
und 83 für allgemeine Wellen und die Gl. 96 und 99 für rein
radiale Schwingung der Röhrenwand Aufschluss. Da w im
Verhältnis m : 1 kleiner ist als u, so sind die radialen
Geschwindigkeitskomponenten der Flüssigkeitsteilchen stets sehr klein im
Vergleich zu den Longitudinalen. Die Werte der Amplituden

von u und w, also die Maximalwerte
dieser Geschwindigkeiten, für allgemeine
Wellen und für rein radiale Bewegung
der Röhrenwand, finden sich in den
nachstehenden Tabellen. In der nebenstehenden

Zusammenstellung sind die Amplituden

von u für allgemeine Wellenbewegung,

für 2 Werte von Rq angegeben
(je mit 10s multipliziert), Fig. 4 zeigt

die graphische Darstellung derselben.
Geschwindigkeit u für allgemeine Wellen. Fig. 4.

lif.10

rq
Geschwindigk. u

Rq 4 Rq 10

0

2,0
4,0
6,0
8,0

10,0

5,98
5,21
0,94

4,97
4,97
5,05
5,29
4,96
1,06

Rq.10

™H

R<Li4

-0
Gesd,wndi*k(it u-tO

Die unerwartete Form dieser Kurven, wie auch der spätem.
Fig. 5 u. 6, lässt sich durch folgende Ueberlegung verstehen.
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Durch die mit konstanter Amplitude erzeugte Schwingung der
elastischen Umhüllung werden die anliegenden Flüssigkeitsteilchen
ebenfalls in gleichen Schwingungszustand gebracht und die
kinetische Energie wird nun auf die benachbarten Flüssigkeitsschichten
übertragen. Infolge der freien Beweglichkeit der Flüssigkeit,
können dieselben mit zunehmender Geschwindigkeit hin und her
pendeln, so dass bei dünnen Röhren, resp. kleiner Frequenz oder

grosser Viskosität (Rq 4) (gestrichelte Kurve) die Amplitude
der Geschwindigkeitskomponente u bis zur Röhrenachse stetig
zunimmt. Es nimmt aber mit wachsender Geschwindigkeit und
besonders mit wachsendem Geschwindigkeitsgefälle in radialer
Richtung auch die Reibung zu, so dass diese Amplituden bei
genügend grossen Röhren und bei genügend kleiner Viskosität,
wo u rasch wachsen kann, also auch ein starkes radiales Gefälle
besitzt, nicht dauernd zunehmen, sondern ein Maximum erreichen
und dann wieder abnehmen. Für Rq 10 (ganz ausgezogene
Kurve Fig. 4), für eine Röhre mit relativ grossem Durchmesser

resp. für grosse Frequenz oder relativ kleine Viskosität, tritt
diese Erscheinung deutlich zu Tage. Im Abstand von ca. 3/s R
ist dieses Maximum erreicht, nachher nimmt u bei Annäherung
an die Röhrenachse wieder ab. Bei zäherer Flüssigkeit dagegen

zeigt die nebenstehende Tabelle und die
schwach punktierte Kurve der Fig. 4 für
R q 4 (welche für dieselbe Röhre, mit
dem gleichen Radius R wie diejenige für
Rq 10, nur mit veränderlichem q,
speziell für grössere Viskosität gilt), dass
in der Nähe der Röhrenwand die
Geschwindigkeitszunahme viel langsamer
erfolgt, also auch die Reibung viel geringer

wird als für Rq 10. Infolgedessen kann die Geschwindigkeit

mit Annäherung an die Röhrenachse immer noch zunehmen,
während sie für die weniger zähe Flüssigkeit bereits ihr Maximum

erreicht hat. Es ist* also möglich, dass, wie Fig. 4 zeigt,
für zähe Flüssigkeiten die Kurve bis zur Röhrenachse stetig
zunimmt.

Genau dieselben Bemerkungen gelten für rein radiale
Schwingungen der Röhrenwand.

r
Geschwindigk. u

Rq 4 Rq 10

0 5,90 4,97
0,25 5,85 4,97
0,50 5,20 5,14
0,60 4,70 5,29
0,80 3,20 4,96
1,00 0.94 1,06



Numerische Angaben für allgemeine WellenbewegungDf.

rq
Max. d. Geschw. 103 Phasen-

differenz

â <""

Verschiebungen aus der Gleichgewichtslage multipl. mit 10*

u in
x Richtg.

w in
r Richtg.

t 0 t T/8 t 2T/8 t 3 T/8 t 7 T/16
X r x j r X r X r X r

0 4,97 0 0°7' 0 + 0,0104 0 3,525 0 4,97 0 3,51 0 1,88 0

2,5 4,97 0,003 - 0°21' + 90° — 0,0311 +0,003 3,504 +0,002 4,97 0,000 3,52 —0,002 1,93 —0,003
5,0 5,14 0,006 — 0°46' +89° 22' — 0,0674 +0,006 3,585 +0,004 5,14 0,000 3,68 -0,004 2,07 —0,006
8,0 4,96 0,010 +12° 20' —87° 40' + 1,060 —0,010 4,160 —0,007 4,84 +0,0004 2,67 +0,008 0,875 +0.010

10,0 106 0,011 + 4° 18' —83° 15' + 0,0795 -0,011 0,800 —0,007 1,06 +0,0013 0,69 +0,009 0,331 +0.011

Numerische Angaben für rein radiale Schwingung d er Röhrenwand.

rq
Max. d. Geschw. 108 Phasen¬

differenz

â â'

Verschiebungen aus der Gleichgewichtslage multipl. mit IO4

u in
x" Richtg.

w in
r Richtg.

t 0 t T/8 t 2 T/8 t 3T/8 t 7 T/16

X r X r X r X r X r
0 4,97 0 — 0°12' 0 + 0,017 0 3,520 0 4,97 0 3,50 0 2,03 0

2,5 4,97 0,003 — 0°40' +90° — 0,055 + 0,003 3,473 + 0,002 4,97 0,000 3,55 — 0,002 2,10 —0,003
5.0 5,17 0,006 — 1°22' +89° 12' — 0,124 — 0,003 3,570 + 0,004 5,17 0,000 3,74 — 0,004 2,28 —0,005

8,0 4,80 0,010 +28° 26' —86° 56' + 2,576 — 0,010 4,60 -0.007 4.23 0,001 1,37 + 0,007 -0,49 +0,009
10,0 0 0,014 90° -82° 10' 0 — 0,014 0 — 0.009 0 0,002 0 {- 0,010 0 +0,014

Ol
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Für die Amplituden der Geschwindigkeit w, senkrecht zur
Röhrenachse gelten analoge Betrachtungen, nur dass hier ihr
Betrag auf der Röhrenachse Null ist und an der Röhrenwand
der Maximalwert erreicht wird.

Um die Bewegung der einzelnen Flüssigkeitsteilchen

genau zu verfolgen, genügt es nicht, die Amplituden
von u und w zu kennen, es spielen die auftretenden
Phasendifferenzen ô u. ô' gegenüber der Schwingung des Druckes eine
beträchtliche Rolle. Noch deutlicher ergibt sich diese Bewegung
durch Berechnung der Elongationen x und r der einzelnen Teilchen
für verschiedene Zeiten. In den vorstehenden Tabellen sind
für einen bestimmten Fall, Rq 10, diese Werte berechnet,
wobei die Zahlen mit 103 resp. 1Ö4 erweitert sind. Dabei wurde

2 nm —j— — 0,005 gesetzt, was bei einer Frequenz a 10, einer

Fortpflanzungsgeschwindigkeit c 20 m/sek, entspricht. Fig. 5
zeigt die betreffenden Verhältnisse für allgemeine Wellen für
die Mittellage x o in graphischer Darstellung für die Werte

T2T3T /7_T\ 4T 5T 6T 7_T /15 T\ 8_T
°' 8' 8 ' 8 ' \ 16/' 8 ' 8 ' 8 ' 8 ' V 16 P 8

(wo T Schwingungsdauer) R 1, a — 10 und v 0,1.
In Fig. 6 sind die nämlichen Verhältnisse für rein radiale

Schwingung der Röhrenwand aufgetragen.

§ 5. Bemerkungen über die Anwendung der Formeln
auf Bestimmung derFortpflanzungsge sch windigkeit

der Pulswellen in den Arterien.
Ueber die Fortpflanzungsgeschwindigkeit der Pulswellen

im menschlichen Körper wurden seit Weber von Prof. Münzer19)
u. a. zahlreiche Versuche gemacht; die Werte von Münzer
variieren zwischen 5—26 m/sek. je nach dem pathologischen
Zustand des Patienten und der Anzahl Pulsbewegungen. Um
unsere Formeln auf die experimentellen Resultate anwenden zu

können, sollte in erster Linie der Elastizitätsmodul E der
Arterien bekannt sein, worüber aber keine bestimmten Angaben
vorliegen urtd überhaupt schwer zu erhalten sein werden, da die
Arterien nicht das einfache Verhalten eines isotropen, elastischen

Körpers zeigen und zudem die sie umgebenden Fettmassen, Bind-
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gewebe etc. den Elastizitätsmodul beeinflussen. Als
Röhrendurchmesser R käme der mittlere Arteriendurchmesser zwischen
den beiden Messpunkten, zwischen denen die
Fortpflanzungsgeschwindigkeit c ermittelt wird, in Betracht, und in entsprechender

Weise müsste ein Mittelwert für die Dicke h der Arterien

bestimmt werden. Da aber bei den Arterien das Verhältnis -=-

nicht klein ist, so fallen dieselben wieder etwas ausserhalb des

Gültigkeitsgebietes unserer Formeln. Immerhin ist es möglich
h • E

in angenäherter Weise, aus Gl. (67) c2
0 p K, bei bekannten
Zq bi,

Dimensionen der Arterien und bei bekannter Viskosität v einen
Elastizitätsmodul E der Arterien zu berechnen.*) Aber diese
Konstante E hat natürlich aus den angeführten Gründen keine
einfache physikalische Bedeutung mehr. Dagegen zeigen unsere
Ausdrücke, wie die Wellengeschwindigkeit c (wie auch
die Geschwindigkeitskomponenten u und w der einzelnen
Blutteilchen) von dem Arteriendurchmesser, der Pulsfrequenz
und der Viskosität des Blutes abhängen, woraus vielleicht
Konsequenzen für die Physiologie gezogen werden können.
Insbesondere liegt auch die Möglichkeit vor, die von Prof. 0. Frank20)
ausgeführten Messungen an Manometerschläuchen auf ihre
Abhängigkeit von der Zähigkeit der Flüssigkeit hin zu prüfen.

Berechnungen über die Dissipation von Energie infolge der
Reibung wurden in der vorliegenden Arbeit nicht durchgeführt.
Ueber direkte Energie-Messungen der Pulswelle sei auf die
Arbeiten von Dr. Th. Christen,*1) Prof. Dr. Sahli22) u. a. verwiesen.

*) Umgekehrt kann bei irgend einer elastischen Röhre, deren Dimensionen

und Elastizitätsmodul bekannt sind, nach experimenteller Bestimmung

von c die Konstante K berechnet werden, aus welcher sich nach

Fig. 2 ein bestimmtes Rq ergibt, und hieraus kann, da E q i / —> bei

gegebener Frequenz a der kinematische Reibungskoeffizient v
berechnet werden.
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a)Pur allgemeine Wellenbewegung.
Eìonqabionen der Flüssigkeitsteilchen für Rq ¦ 10
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b) Für rein radiale Schwingung der Röhrenwand. M
rß. Die radialen Elongationen sind der Deutlichheit wegen
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