Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft Bern

Herausgeber: Naturforschende Gesellschaft Bern

Band: - (1915)

Artikel: Der Einfluss des Aussenmediums auf den Turgordruck einiger Algen

Autor: Buchheim, Alexander

Kapitel: Versuche mit "Chaetomorpha aerea" **DOI:** https://doi.org/10.5169/seals-319257

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

eine kleine Differenz im Verhalten von Tradescantia discolor zu Zucker- und Salzlösungen konstatiert. Wenn aber diese Differenz nicht so deutlich zu Tage kommt, so ist es nach meiner Meinung dadurch bedingt, dass er seine Versuchsobjekte nicht so lange der Einwirkung der Lösungen ausgesetzt hat. Es ist jedenfalls noch einmal zu betonen, dass bei Salzkulturen die Zeit der Einwirkung des Aussenmediums von hoher Bedeutung ist, da bei geringem Konzentrationsgefälle die Diffusion nur langsam sich vollzieht.

Was Spirogyra anbetrifft, so konnte ich jedenfalls nach meinen Versuchen mit Meerwasser die Tatsache bestätigen, dass der Ueberdruck (wenigstens für 2 Abstufungen der Konzentration, die ich untersucht habe) konstant bleibt. (s. S. 10.)

Leider konnte ich keine Versuche mit Salzlösungen mit Spirogyra anstellen. Einige Versuche, die ich unternahm, gaben keine genauen Resultate, da die Alge die Salzlösungen sehr schlecht vertrug.

Versuche mit Chaetomorpha aerea.

In den vorigen Kapiteln habe ich meine Versuche mit Süsswasseralgen ausführlich berichtet. Es war von Interesse, zu vergleichen, wie sich die Meeresalgen zur Konzentrationsänderung verhalten und ob ein prinzipieller Unterschied zwischen Meeresund Süsswasseralgen in dieser Hinsicht besteht.

Meine Versuche wurden in Villefranche¹) im März und April 1913 angestellt. Als Versuchsobjekt eignete sich besonders Chaetomorpha, die in reichlichen Mengen an den Steinen der Bucht wuchs. Die Fäden dieser Alge haben eine Länge von 15 bis 25 cm und eine Breite von 160 bis 180 μ — basaler Teil bis 280—300 μ — obere Partie. Störend war bei dieser Alge nur die äusserst dicke Membran, die besonders an der Basis stark ausgebildet war und fast 20 % der Zellenbreite ausmachte. Als plasmolysierende Lösung wurde wieder Saccharose verwendet.

Bei den unten geschilderten Versuchen ist die Konzentration als Grenzkonzentration bezeichnet, bei welcher ungefähr die Hälfte der Zellen im Faden plasmolysiert war. Schon bei Zuckerkonzentrationen von 32-34 % lässt sich eine kaum merkliche Ab-

¹⁾ Im Laboratoire russe de zoologie.

hebung des Protoplasten beobachten; die Membran wird deutlicher abgegrenzt, die Schichtungen derselben werden stärker. Diese Stufe der Plasmolyse lässt sich aber nie sehr genau erkennen. Darum wählte ich für meine Messungen stets die Konzentration als Grenze, bei welcher der ganze Vorgang etwas weiter vorgerückt ist und der Protoplast sich deutlich von den Wänden der Zellen abhebt.

Die dem Meere entnommene Chaetomorpha plasmolysiert in Zuckerkonzentrationen von 46-52 %. Die Variation des Turgordrucks ist also ziemlich erheblich; darum nahm ich bei meinen Untersuchungen Stücke eines und desselben Algenfadens und liess auf sie verschiedene Konzentrationen von Zucker einwirken. Das hindert nicht, später Mittelwerte zu nehmen; die Mittelwerte können auch in diesem Fall besser das Verhalten der Algen bei Kulturen in verschiedenen Lösungen charakterisieren.

Bei Versuchen mit einem und demselben Algenfaden konnte man nachweisen, dass der Turgordruck in der oberen und basalen Partie nicht derselbe war. So entnehmen wir aus dem vorigen Versuche, dass die obere Partie einen Druck = $47 \, {}^{\circ}/_{0}$ Zucker aufwies. (Breite $280-300 \, \mu$), dagegen die untere nur $45,5 \, {}^{\circ}/_{0}$ (Breite $160-180 \, \mu$).

Untere Partie:	Obere Partie:			
9. IV. 13: Anfang des Versuches	Anfang des Versuches 5.38			
4.20				
$52{}^{0}\!/_{0}$ 5.18: alle Zellen schw.	52 ⁰ / ₀ 6.21: 13 Zellen stark			
plasmol. $(51)^1$	plasmolysiert (21)			
$50^{\circ}/_{\circ}$ 5.20: alle Zellen schw.	$50^{\circ}/_{\circ} 6.23$: 10 Zellen stark			
plasmol. (31)	plasmolysiert (21)			
48% 5.21: 15 Zell. stk. plas-	48% 6.25: 17 Zellen stark			
mol. (50)	plasmolysiert (17)			
46 % 5.23: alle » » (38)	46 % 6.28: schw. Plamolyse (29)			
44 $^{\circ}/_{\scriptscriptstyle{0}}$ 5.25: kaum merkl. Plas-	$44^{0}/_{0} 6.30:$ » (23)			
molyse (28)				
$40^{\circ}/_{\circ} 5.28:$ » » (28)	$40^{\circ}/_{\circ} 6.31$: keine » (47)			
36 % 5.27: keine Plasmolyse (26)	8			
Grenzkonzentration 45%	Grenzkonzentration 47 %			
10. IV. 13. untere Partie (160	obere Partie (360-380 µ)			
$-180 \mu)$				

¹) Die eingeklammerten Zahlen bedeuten die Gesamtzahl der im Faden enthaltenen Zellen. 7

Untere Partie:

Anfang des Versuches 10.30 52% 11.23: Zellen alle stk. (29)plasmolysiert 48% 11.15: Zellen alle stk. (39)plasmolysiert 44 % 11.18: kaum merkl. plasmolysiert (38)40 % 11.20: keine Plasmol. (25) Anfang des Versuches 10,32

50 % 11.25: plasmolysiert (28)

46 % 11.28: schwache Plas-

molyse (28)

Grenzkonzentration 46%.

Obere Partie:

Anfang des Versuches 4.32 52 º/o 5.22: alle Zellen deutlich plasmolysiert (22)48% 5.24: alle Zellen deutlich plasmolysiert $44^{\circ}/_{\circ}$ 5.25: keine Plasmolyse (20) 40 % 5.26:

Anfang des Versuches 4.34 50 % 5.28: 7 Zellen deutlich plasmolysiert (12)46 % 5.30: 6 Zellen deutlich plasmolysiert $42^{\circ}/_{\circ}$ 5.32: keine Plasmolyse (8) Grenzkonzentration 47 %.

Da das Meerwasser selbst schon einen hohen osmotischen Druck aufweist, so wurde versucht, Chaetomorpha sowohl an niedrigere als auch an höhere Aussendrucke anzupassen. In der Literatur fand ich keine Angaben, wie sich Meeresalgen beim allmählichen Uebertragen in Süsswasser verhalten. mir lohnend, solche Versuche mit Chaetomorpha anzustellen. Ich versuchte zuerst ganz allmählich Chaetomorpha an destilliertes (im Glas) Wasser zu gewöhnen. Aber diese Versuche scheiterten und es gelang mir, die Konzentration des Meerwassers nur bis auf 20 % herabzusetzen; im destillierten Wasser starb Chaetomorpha schon nach 1-2 Tagen: die Fäden verloren die Elastizität, der Protoplast schrumpfte ein. Die Kulturen in 80, 60, 40 und 20% Meerwasser waren noch nach 5-8 Tagen vollkommen lebensfähig. Weitere Versuche hatten die Aufgabe, den Turgordruck der Algen, die in 20, 40, 60, 80 und 100% Meerwasser kultiviert waren, zu bestimmen. Die Bestimmung geschah nach derselben Methode; ich will hier einige Versuche anführen:

11. IV. 13. (100 % Meerwasser-Kultur v. 7. IV.)

Anfang des Versuches 3.24.

54 % 3.58: alle Zellen plasmolysiert (11)

52 % 3.59: 5 Zellen (11)

50 % 4.01: keine Plasmolyse	
48 °/ ₀ 4.02: » »	(14)
Grenzkonzentration: 52 %.	
$(80^{\circ})_{0}$ Meerwasser-Kultur v. 7. IV.)	
Anfang des Versuches: 4.20.	
52 % 5.16: alle Zellen stark plasmolysiert	(17)
50 °/ ₀ 5.17: » » »	(17)
48 ⁰ / ₀ 5.19: keine Plasmolyse	(19)
Grenzkonzentration: 49 %.	` ,
$(60^{\circ})_{o}$ Meerwasser-Kultur v. 7. IV. 13).	
Anfang des Versuches: 5.15.	
50 % 5.48: 11 Zellen stark plasmolysiert	(13)
48 ⁰ / ₀ 5.50: schwache Plasmolyse	(6)
Grenzkonzentration: 48 %.	
$(40^{\circ})_{\circ}$ Meerwasser-Kultur v. 7. IV. 13).	<u></u>
Anfang des Versuches: 4.04.	
48 % 5.10: starke Plasmolyse	(7)
44 °/ ₀ 5.04: schwache Plasmolyse	(7)
42 % 5.06: keine deutliche Plasmolyse	(12)
Grenzkonzentration: 44 %.	

In diesen Versuchen sind die Kulturen, die mit Stücken eines und desselben Algenfadens angestellt wurden, behandelt. Darum kann man dieselben Zahlen vergleichen, denn sie charakterisieren die Turgorsteigerung bei demselben Individuum. Weitere Versuche, die mit solchen Kulturen unternommen wurden, will ich hier nicht anführen. Ich gebe dagegen die aus meinen Untersuchungen gewonnenen Mittelwerte an.

Kulturen in

Dauer der Ein- wirkung	Meerwasser %	Zucker %	Turgordruck
	20 °/o	8 %	$36,75{}^{0}/_{0}{}^{1})$
	40 °/0	16 º/o	42,12 0/0
4-6 Tage	$60~^{\rm o}/_{\rm o}$	24 º/o	45,40 °/0
	80 °/o	32 %	47,90 º/o
	100 °/o	40 º/o	48,80 %

In der Tabelle habe ich ausser Meerwasserkonzentration noch die Konzentration des Aussenmediums in Zuckerprozenten

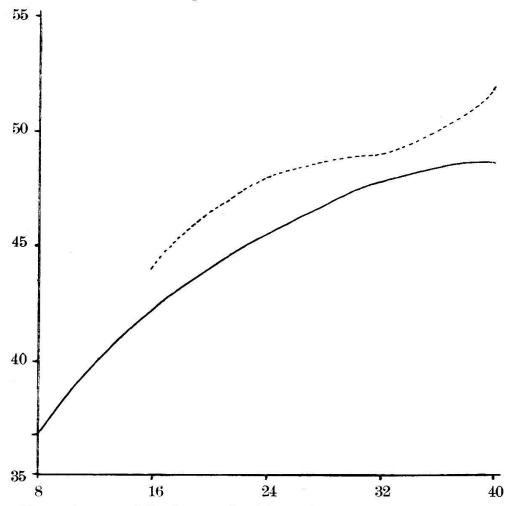
¹⁾ Mittelwerte aus 5-10 Versuchen.

gebracht: es geschah mit Rücksicht auf meine weiteren Versuche. um ein einheitliches Mass zum Vergleich der Aussenkonzentration Um den osmotischen Wert des Meerwassers zu bestimmen, habe ich Kulturen in verdünntem Wasser genommen. Da die Kulturen in verdünntem Meerwasser einen immer niedrigeren Turgordruck aufwiesen, dachte ich, den Turgordruck vermittelst dieser Methode noch tiefer herabzusetzen; man konnte schliesslich solch einen Turgordruck erzielen, bei welchem schon das Uebertragen in das normale Meerwasser Plasmolyse herbeiführt. Durch die Bestimmung mittelst Zuckerlösung des Turgordrucks der Algen, die aus solch einer Kultur stammten, erhält man den osmotischen Wert des Meerwassers.1) Es gelang mir aber nicht, solch eine verdünnte Kultur lebensfähig zu erhalten. Darum benutzte ich die 20- und 40 % igen Meerwasserkulturen und versuchte die Algen, die aus diesen Kulturen stammten, durch gesteigertes (durch Verdunsten) Meerwasser zu plasmolysieren. Meine Resultate stimmten nicht mit den Ergebnissen der chemischen Analyse²) überein; ich bestimmte den des Meerwassers als Aequivalent einer osmotischen Druck 34 ⁰/₀igen Zuckerlösung.³) Aus den Ergebnissen der Analyse in Monaco musste man denselben als 46 % Zuckerlösung aequivalent annehmen. Dieser Unterschied ist durch folgendes zu erklären: Es konnte möglich sein, dass bei der Steigerung des Salzgehaltes durch Verdunstung nicht alles Salz in Lösung blieb und deshalb wurde Plasmolyse erst bei viel konzentrierteren Lösungen erreicht, als es sonst der Fall wäre. Deswegen und auch wegen der Permeabilität der Plasmahaut für Salzlösungen könnte unsere Berechnung einen so kleinen osmotischen Wert des Meerwassers Im folgenden werden wir den osmotischen Wert des ergeben.

¹) Unter osmotischer Wert des Meerwassers verstehen wir die entsprechende Konzentration einer Zuckerlösung, welche dieselbe, plasmolytische Wirkung ausübt als das Meerwasser.

²) Dr. M. Oxner. Institut Océanographique Monaco. Die Analyse ergab:

Chlorgehalt = 20,96 %


Salzgehalt = 37,86 » Hydrograph. Tabellen von Martin Knudsen, Kopenhagen, 1901.

Daraus ergibt sich der osmotische Druck = 25,04 Atm. = 46,5 % Zucker.

3) Siehe Anhang.

Meerwassers als Aequivalent einer $40\,^{\circ}/_{\circ}$ igen Zuckerlösung annehmen. Die Annahme $46\,^{\circ}/_{\circ}$ Zucker kann deshalb nicht gemacht werden, weil die Kultur in Meerwasser + 21 $^{\circ}/_{\circ}$ Zucker also gleich $67\,^{\circ}/_{\circ}$ Zucker (nach der Annahme Meerwasser = $46\,^{\circ}/_{\circ}$ Zucker) noch vollkommen lebensfähig war und dieselbe Kultur plasmolysierte in $62\,^{\circ}/_{\circ}$ Zuckerlösung! Also hat sie einen negativen Ueberdruck - 5 $^{\circ}/_{\circ}$ Zucker ergeben!?

Doch kehren wir zu den Ergebnissen unserer früheren Versuche mit verdünntem Meerwasser zurück und stellen sie zur besseren Uebersicht graphisch dar. (Kurve 9.)

Kurve 9: — Mittelwerte des Turgordruckes aus 5-6 Versuchen bei Chaetomorpha.

····· Individuelle Turgordruckkurve für einen Faden von Chaetomorpha.

Der Verlauf der Turgorkurve in 20, 40, 60, 80 und 100% Meerwasser ist ganz analog dem Verlauf, welchen die Turgor-

kurven von Cylindrocystis und Spirogyra in Zuckerlösungen aufweisen. Es scheint bei Verdünnung des Meerwassers keine Exosmose des Salzes in grösseren Mengen stattzufinden (Janse (8) konnte auch kein Exosmieren von NaCl und KNO₃ bei Spirogyra konstatieren), denn die Turgorabnahme ist hier nicht der Konzentrationsabnahme proportional. Doch auch das Webersche Gesetz ist für verdünnte Meerwasserkulturen nicht gültig.

Nun möchte ich meine Versuche mit Chaetomorpha in Zuckerkulturen berichten. Reine Zuckerkulturen (Zuckerkultur in destilliertem Wasser) zu bekommen, war ziemlich schwer. Die Bedingungen des Versuches waren offenbar zu verschieden von den natürlichen Lebensbedingungen der Meerwasseralgen. Die meisten Kulturen sind eingegangen. Mir gelang es nur bei 30, 35 und 40 % iger Zuckerkultur den Turgordruck festzustellen.

30 % Zuckerkultur von 9. IV. — 14. IV. 1913.

(16)
•
(30)
(23)
(17)
(21)
(18)
(14)
(17)
(12)
(17)
,
ži.
(25)
(19)
(23)
(20)
(24)
()

Weitere Versuche unternahm ich mit 50 % igem Meerwasser, dem 10, 20 und 30 % Zucker zugefügt wurden; auf diese Weise wollte ich den Unterschied der Turgorregulation in isotonischen Lösungen (Meerwasser und 50 % iges Meerwasser + Zucker) feststellen.

Kulturen vom 13. IV. 13.

```
50^{\circ}/_{\circ} Meerwasser + 10^{\circ}/_{\circ} C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>.
                    + 20 º/o
      dasselbe
                                 id.
      dasselbe
                    + 30 %
                                 id.
                    +40^{\circ}/_{0}
      dasselbe
                                 id.
                                            plasmolysiert.
                    +50^{\circ}/_{\circ}
                                 id.
      dasselbe
   17. IV. 50^{\circ}/_{\circ} Meerwasser +30^{\circ}/_{\circ} Saccharose.
      Anfang des Versuches: 9.28.
60 % 10.00: alle Zellen plasmolysiert
      Anfang des Versuches: 10,24.
58 % 11.01: alle Zellen stark plasmolysiert
                                                       (39)
56 % 11.00: 12 Zellen stark plasmolysiert
                                                       (20)
54 % 10.59: 5 Zellen deutlich plasmolysiert
                                                       (19)
52 % 10.58: kaum merkliche Plasmolyse
                                                       (35)
      Grenzkonzentration: 54 %.
50 % Meerwasserkultur + 20 % Saccharose.
      Anfang des Versuches: 11.08.
54 % 11.52: alle Zellen stark plasmolysiert
                                                       (21)
52 % 11.51: alle Zellen deutlich plasmolysiert
                                                       (24)
50 °/o 11.50:
                                                       (20)
48 º/o 11.49:
               2
                                                       (11)
      Grenzkonzentration: 49 %.
50 % Meerwasserkultur + 10 % Saccharose.
      Anfang des Versuches: 11.12.
52 % 11.56: starke Plasmolyse
                                                       (15)
50 % 11.55:
                                                       (24)
48 % 11.54: deutliche Plasmolyse
                                                       (16)
46 % 11.53: schwache
                                                       (19)
      Grenzkonzentration: 47 %.
```

Ich möchte noch erwähnen, dass ich auch Versuche mit Meerwasser + 11 % Zucker und Meerwasser + 21 % Zucker ausgeführt habe. Die gewonnenen Zahlen stelle ich hier zusammen.

Dauer der Einwirkung 5 Tage		zentration des ssenmediums	Aus	entrat. d. senmed. ucker % 30 35 40	Grenz- konzentr. in Zucker % 35,5 44 46
4 Tage { 5 10	50 °/0		accharose » »	30 40 50 32 40 51	47 49 54 47,9 48,8 57
$5-6$ Tage $\begin{cases} 10 \\ 10 \end{cases}$	00 °/0 » 00 °/0 »	$+21{}^{\circ}\!/_{\! \circ}$	»	61	62
oder graphisch	n: (Kurve	10).			
60	1			"	, err err err err
55					
45				6	
40		. *			
35					E) (H)
32.5					
30 35	40	45	50	55	60
Kurve 10: —	•• 100 % Me	erwasser + Zu erwasser + Zu altur von <i>Cha</i>	ıckerkultur	von Cha von Cha	etomorpha. etomorpha.

Man kann aus dem Verlauf der Kurve schliessen, dass die Meerwasserkulturen einen höheren Turgordruck ausüben, als die entsprechenden 50% Meerwasser + Zucker oder Zuckerkulturen. Hier sieht man also wieder, dass die Konzentrationssteigerung durch Salz eine grössere Turgorsteigerung bewirkt, als diejenige, die durch Zucker verursacht wird. Also ist anzunehmen, dass das Eindringen des Salzes jedenfalls bei der Turgorsteigerung bei Meeresalgen mitspielt.

Biologische Beobachtungen.

Im Anschluss an meine Untersuchungen wird es von Interesse sein, sich etwas näher mit den Lebensbedingungen, denendie Algen in Moortümpeln unterliegen, zu befassen. tigsten Faktoren, die hier in Betracht kommen, sind: chemische-Zusammensetzung des Wassers, Wärme und Licht. Fast allgemein ist die Auffassung vertreten, dass das Moorwasser eine stark saure Reaktion aufweist, die auf Vorhandensein von Humussäuren beruht. Nach den Untersuchungen von Endel (5) ist die Acidität des Moorwassers gleich 0,007 bis 0,008 HCl. saure Reaktion soll durch freie Kohlensäure bedingt sein. Auch andere Untersuchungen, besonders die von A. Baumann (1) bringen neues Licht in das ganze Problem der Humussäuren. Für uns ist von Bedeutung, dass das, was man unter Humussäuren versteht, ein Komplex von kolloidalen Stoffen ist, die ganz eigenartige Reaktionen mit Salzen der Mineralsäuren aufweisen. An dieser Stelle möchte ich nicht näher auf die Ergebnisse der Humussäure-Forschung eingehen. Ich möchte nur nochmals betonen, dass die kolloidale Natur der Säuren besonders wichtig für die Pflanzen der Moore zu sein scheint, da in diesem Falle die Säuren den grössten Teil ihres schädigenden Einflusses eingebüsst haben, weil sie fast gar nicht dissoziiert sind. die übrigen Substanzen des Moorwassers anbetrifft, so möchte ich erwähnen, dass in Bezug auf Salze die Moorwasser sehr arm sind. Nach Ramann (19) besitzen die Hochmoore 1-3 Teile Mineralsubstanzen auf 100,000 Teile Wasser. Die Wasser der Flachmoore sind reicher an löslichen Substanzen (etwa die zehnfache Menge der Hochmoore). Das Moorwasser enthält relativ viel Kali, SiO₂ und P₂O₅. In grösseren Mengen sind organische