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I. Abschnitt.

§ 1. Klassifizierung der Reihen.

In der genannten Arbeit teilt Kostler die eigentlichen Ent-
wicklungen nach Bessel’schen Funktionen ganz allgemein in fol-
gende drei Typen ein: |

1. Entwicklungen erster Klasse:

Reihenentwicklungen mit gleichbleibendem Parameter und
veranderlichem Argument, dessen Anderung sich nach einem durch
die Laufzahl A beherrschten Gesetz vollzieht.

Thre allgemeine Form ist:

Feo=S4, f [3 (92 (9) J

2. Entwicklungen zweiter Klasse:

Reihenentwicklungen mit gleichbleibendem Argument und
veranderlichem Parameter, dessen Anderung sich nach einem
durch die Laufzahl 1 beherrschten Gesetz vollzieht.

Ihre allgemeine Form ist:

F)= A, f [‘?((p (x) ]

3. Entwicklungen dritter Klasse:

Reihenentwicklungen mit verinderlichem Argument und
verinderlichem Parameter, deren Anderungen sich jeweilen nach
einem durch die Laufzahl A beherrschten Gesetz vollziehen.

Thre allgemeine Form 1st:
a-,

F(x) =V 4, f[J" 0 (x))] |
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Die Entwicklungen der zweiten Klasse im besonderen lassen sich
wieder in zwei Gruppen trennen, namlich:

a. Entwicklungen nach einfachen J-Funktionen. Sie werden
nach Niels Nielsen als Nenmann’sche Rethen erster Art bezeichnet
und sind im Allgemeinen von der Form:

v+a

_21 AT (x)

v+21
21 AT (x)

Sie wird besonders zur Darstellung von einfachen analytischen
Funktionen, vorteilhaft verwendbar, wie in der genannten Schrift
von W. Kostler ausfiihrlich gezeigt wird.

b. Entwicklungen nach einfachen Produkten von J-Funktionen.
Sie werden nach Niels Nielsen als Neumann’schen Reihen zweiter
Art bezeichnet und sind im allgemeinen von der Form:

v+l uti
2;1 A J(x)-J(x)
vl uti

2 T2
2& A J(x) T (x)
A At
speziell 21 A d(x) !(LX)

Sia o]

Die zwel letztgenannten Arten der Entwicklung geben verhiltnis-
miissig einfache Darstellungen und sie sollen im Folgenden ein-
gehend untersucht werden. '

§ 2. Erste Methode von Carl Neumann.

Die von Carl Neumann® angegebene Methode ist in vielen
Teilen analog der von Kostler zitierten zweiten Methode zur
Entwicklung nach einfachen J-Funktionen.. Die Methode sei hier
soweit ausgefiihrt, als sie fiir die folgenden Untersuchungen von
Bedeutung ist. '
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An die Spitze der genannten Abhandlung stellt C. Neumann
den Satz:
_ sversteht man unter n eine der Zahlen 0,1,2,3,.... oo,
so kann die Potenz x?" in eine nach Quadraten von
Bessel’schen Funktionen fortschreitende Reihe ent-
wickelt werden, welche gilltig bleibt fiir jeden endlichen
Wert von x“

Definiert man nach F. W. Bessel'!, Carl Neumann '?,
Hermanwn Hankel'® die allgemeine Bessel’sche Funktion durch

die Gleichung:
5

J(X)—'zl TTaFiED

wo n jede beliebige reelle, ganze, positive Zahl sein kann, dann
hat die Enwicklung der Potenz x2® nach einfachen Bessel’schen
Funktionen die Form:

x2"=a0?](x)—|—az.2](x)—|—a4j(x)—]—a;;f](x)—|—.... in inf.

Die nach Quadraten derselben Bessel’schen Funktion fort-
schreitende Entwicklung lautet dann:

{ao Boltellol talleol++.. inf.}

n!n!
(2n)!

Die Koeffizienten der letzteren Entwicklung sind also propor-
tional mit denen der ersteren, ndmlich von diesen nur verschieden
n!n!

(2m)!
Nun sind die Entwicklungen von x° x2, x*.... nach
Bessel’schen Funktionen gegeben durch:

x2n=

durch den gemeinschaftlichen Faktor

1=J(x) 42 -Sx ?'(x)

oo - . 2
X = 2:- %1 (24)-J(x)
-
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_ 2 .fn e [e—2] T

2 -21 227 [(21)° — ‘2“’] [(2 1) — 47] ?]l(x)

= 2 SA @ v [en’ -2 [en’ — £y —6] I x

= 2 .Sa @221 —2][@ 1) —47....

(@) —@n—2].J )

Hieraus ergeben sich nach dem oben zitierten Neumann’schen

Satz die Entwicklungen dieser Potenzen nach den Quadraten
der J-Funktionen zu:

1=[F @42 -El B

XZ

8

inz

X :12 2,1 @21 — 27 [2n)? *4][(21) S

)

1 ~ o4 2
= 3 2(2&) [ (x)]
12 . 8 s o2 (4P
- oy 2 @)@ —2% - [J(x)]
- . (L.
— 1_5 N @) [2n _?llen—e. Fub |“

5.6

&) [

ey —2 (@ —47. .

[(@4"— (@0 —2)]. [J(X)} )
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Nachdem die Eniwicklungen fiir die geraden Potenzen
gegeben sind, ist es moglich, die Entwicklung einer geraden
Funktion herzuleiten. Ebenda beweist C, Neumann mit jeder
wiinschbaren Strenge, dass jede Funktion f (x), welche eindeutig,
stetig und gerade ist in einem Gebiet, das vollstindig innerhalb
eines Kreises um den Nullpunkt mit dem Radius R liegt, in eine
Reihe entwickelt werden kann von der Form:

)=k [T @)
0

welche giiltig ist fur alle der Bedingung |x| <R entsprechen-
den Werte von x. Um nun mit Hilfe der vorhin hergeleiteten
Entwicklungen fir die geraden Potenzen von x eine einfache
Methode zur Bestimmung der Entwicklungskoefizienten k; zu
erhalten, stellt man vorerst eine gerade Funktion durch ein
gewisses Integral dar.

Auf der x-Ebene sei um den Punkt x =0 ein Kreis mit
dem Radius R beschrieben. Ferner sei f(x) eine gegebene
Funktion, welche eindeutig, stetig und gerade ist, solange |x | <<R
ist. Das Verhalten der Funktion auf der Peripherie des Kreises,
d. h. fir |x|=R, wird als unbekannt betrachtet. Sei ferner
x =c ein beliebiger Punkt innerhalb der Kreisfliche (R), d. h.
fir den c¢|<Cr<CR ist. Dann lasst sich nach dem bekannten
Satz von Cauchy der Wert der gegebenen Funkiion f(x) im
Punkte ¢ darstellen durch:

= [ 125

217 () X—¢

die Integration erstreckt in positivem Sinne iiber die Peripherie
der Kreisfliche (r). Diese Formel muss gelten fiir jeden andern
innerhalb der Kreisfliche (r) gelegenen Punkt, also auch z. B.
fir den Punkt — ¢, also:

1 dx
f(—e)= - f(x
(=) 217 f(l) ()x—l—c
Durch Addition der beiden letzten Formeln folgt sofort:

f@+(—g_ 1 [ g xd

2 217 (r) X% — ¢?
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Zufolge der Voraussetzung, dass f(x) eine gerade Funktion sein
soll, ist f(c) = f(c); daher
1 £ (x) - x-dx

217z J (r) x? —¢?’

(3.)

£ (c) =

Damit ist jede gerade Funktion f(c), die endlich, stetig und
gerade bleibt fiir jeden der Bedingung | x| <R gentigenden Wert
von X, durch ein Integral von der Form der Gleichung (3.

dargestellt. ~
Vermoge der bisherigen Resultate gelingt es nun, den Neu-
mann’schen Ausdruck . e (y3 — xz)_l in die gewiinschte
—_— X ¥

Entwicklung zu bringen. Seien x und y zwel beliebige, komplexe
Grossen, y moge als fest, x als veranderlich betrachtet werden.

Der Ausdruck

1
B (4)
y? —x
stellt allsdann eine Funktion von x dar, welche eindeutig, stetig
und gerade ist, solange x der Bedingung geniigt |x | <|y| Dann
besteht nach dem oben zitierten Neumann’schen Satz eine Ent-

wicklung von der Form:

1 —Zz K [T @l 6

die giltig ist fir jedes beliebige, der Bedingung |x|<C|y| ent-

sprechende x. Die Koeffizienten k, der Entwicklung werden

abhingig sein vom Parameter 1 und von y. Sie seien bezeichnet

mit ¢, 2% (y), wo =1, g=¢,=g;=..... =1 T =]
In dieser Schreibweise wird die Entwicklung (5.) zu:

Ny 2 ) Dl (52)

oder

=2 P2 2 0 Fel. 6b)
1
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Es sei hier an die Analogie der ebenfalls von C. Neumann'?
gegebenen Methode zur Entwicklung nach einfachen J-Funktionen
erinnert. Der Weg ist folgender: Der Neumann’sche Ausdruck

i |
y—X

wird in Reihe entwickelt von der Form:

L 6 (¥) J (x)4-2 -EA (_)5 (y) 3 (=) (6.)

y—x

i
wo die darin auftretende Funktion O (y) definiert ist durch die
Formel:

n

o

2
. n (n—A—1)1 /2\"HE
o= ;= (5) 62)

0

nach der von J. H. Graf!* gegebenen Formulierung.

Um die in den Formeln (5a) und (5b) auftretenden unbe-
kannten Funktionen ©* (y) zu bestimmen, beachte man, dass ver-
moge der Bedingung |x|<C|y| der Ausdruck (4.) entwickelt
werden kann in der Form:

1

y2 . X?.

x2

y4

4 6
zyiz_|_ +%+§‘g++.... in inf. (7)

multipliziert man

1= [JO (x)]2~-|— 2 -?.:l [f (X)]B

: 1 ~— 2 /. 2

= ~— 2.9 (247 I (x

Xt = = 2 @2 [ ()]

d— L2, .ix @@ n — 2] [F @)

3-4 -
: .11 1 .
der Rethe nach mit —; --; —; ..... und addiert, dann er-
vyt oy

hialt man links den Ausdruck (7.). Rechts dagegen kommt:



Ll 20l +2 el +2 [+
y ¥y y g
S 22wl ot el o 4 2 et
y 2y 2y

1.2 2 202, 2 1.2 2 S
7'?'12 4[J(X)] +§.—;"y—6‘126[3(x)]+

2.3 2

y

3
- 82.6° [T ()] ...
Addiert man die Vertikalen, denselben Parametern der
J-Funktion enthaltenden Kolonnen, so erhilt man eine Reihe,

A
deren Koeffizienten mit £2(y) bezeichnet sein sollen, von der Form:

I 22 T OF 22 @ T ] +22° 0 Tl +
g . i
120 T@] b Ay SO T ... it (8)

d. h. die Koeffizienten sind identisch mit den Koeffizienten in
den Entwicklungen (5a.) und (5b.). Man hat demnach als Defini-
tionsformel dieser von C. Neumann eingefithrten 2-Funktion in
der allgemeinen Darstellung:

;42m3+1.2_gxﬁu2nﬁu2ﬂ_
2 y* 3.4 ys

ﬁm=%+ +

2 2 p) s 2 (9')
1-2-3 @ [2n)°' —2°] [(@4)° — 4]

P = 15 T

Die Q-Funktion ist demnach eine ganze rationale Funktion

vonl2 ganz entsprechend der durch Formel (6a.) definierten

O (y)-Funktion, die bei den Entwicklungen nach einfachen J-Funk-
tionen dieselbe Rolle spielt, wie die £-Funktion fur die Ent-
wicklungen zweiter Art. Zwecks vorteilhafterer Verwendung der
O-Funktion bei den spiteren Anwendungen, geben wir nach-
stehend eine allgemeine Summenformel. Der allgemeine Summand
der Formel (9.) lautet:
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el @21 —27[24)° — 4°][@ 1)° — 6°].... [(24)°— 2»—2)']

2)! y2v+2
ol VR 172 A —37.. .. [A— (v — 1]
@) y2rt?

2w.vhﬂ(l—v+dﬂk—w+2 J(A—1)-A-A (A4
2 FD0F2 ... Gtr—2 Gtr—1)

2y +4-2
y+

1 =22p‘v!v!'l-(£+v—1)!
y2v+2 2»)! (A —»)!

woraus die allgemeine Summenformel lautet:
vl A-A+r—1! 1 0 1
Q=D 2?7. 22 2 (y)== (10.
(mjg o g e YW= 10)

| Daraus ergeben sich fiir einige Werte von 4 die folgenden
nummerischen Werte fir die Q-Funktion:

1
siz"(y)::-E
y
1, 2
Q=5+
oy
2 . 1,8 82
Q (Y)——“;z“‘F;-F—G
. 1 192 1152
ﬁm_7+ +
y v (11)
1 640 9216 . 73728
o )=+ 2 +— B
s y‘ ¥y ¥
1 1600 40320 737280 , 7372800
9()-——2+ + —+t—t—=
y y y y*
1 72 3360 129024 . 3981312 88473600
9()=}§ F 5 T 5 ~+ §10 + e ~f-
1061683200
+

u. s. W. -y /
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Diese gefundenen Resultate notieren wir in folgendem Satz:
Der aus irgend zwei komplexen Grossen x und y

gebildete Bruch

kann unter Anwendung der
yi— X2

Bessel’schen Funktionen sowie gewisser anderer Funk-
tionen Ql (Y)? die durch die Formeln (9), (10), (11.) def1-
niert sind, in folgende Reihe entwickelt werden.

y—xz

ﬂzk & 2 () [T (12)

Die Entwicklung ist giiltig fiir jedes der Bedingung
|x|<<|y| entsprechende Wertsystem von x und y.

Um eine allgemeine Methode zur Bestimmung der Koeffi-
zienten zu erhalten, beachte man, dass nach Formel (3.) jede
gerade Funktion f(x) dargestellt werden kann durch:

i) - | f(y) L4 (13)
21w ) ()

a9

yz___xu

indem man in Formel (3.) x gegen y und ¢ gegen x vertauscht.
Dabei 1st |x| <r <R und die Integration erstreckt in positivem
Sinn lings der Kreisperipherie (r). Es sei nun |y|==r, d.h. es
sei y ein Punkt der Kreislinie (r). Dann ist |x|<C|y| und der

in (13.) auftretende Ausdruck

kann nach Satz (12.) in
y2 — x?
folgende Reihe entwickelt werden:

= ——x2 —2’1 e L (y)[J )]
N, el ()

€
wo k; :4—-[‘ f(y) & (y)-y-dy
21 ) ()

)

Der Integrationsweg des zur Bestimmung der Koeffizienten
kA dienenden Integrals (14.) ist, irgendwelcher Deformationen
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fahig, ohne dass der Wert des Integrals sich &andert, solange
die Peripherie (r) nicht mit den Randpunkten R, fir welche das
Verhalten der Funktion als unbekannt vorausgesetzt worden ist,
noch mit dem Mittelpunkt der Kreisfliche in unmittelbare Be-
rithrung kommt,

Nun i1st der Bruch

. — eine gerade Funktion von x.
¥y —%

Man kann somit jede beliebige gerade Funktion f(x) nach der
durch (14.) dargestellten Weise in Reihe entwickeln. Diese
Resultate notieren wir in dem folgenden Satz:

,Stellt R eine reelle, endliche Konstante und f(x)
eine gegebene Funktion dar, welche eindeutig, stetig
* und gerade 1st, so lange |x| <R bleibt, dann existiert
jederzeit eine Entwicklung:

f(x)=k, [3 ®)[+k, [5 )]+ k, [5 (N + k, [3 (9] .... ininf
oder | (15.)

oQ

A
(= & [Tl woly =2 f [(5)- 4 (9)-y-dx

1
0

welche giltig ist fir jeden der Bedingung |x | <R ent-
sprechenden Wert von x. Die Integration ist zu er-
strecken lings irgend einer Kreislinie (r), deren Mittel-
punkt in x=0 liegt und deren Radius r <R ist.

Dabei ist gg=1; ¢ =meo=e3=.... =g =... =2.

~ Analog lasst sich eine Funktion f(x) behandeln, welche ein-
deutig, stetig und gerade ist auf einer ringformigen Fliche, die
begrenzt ist von zwei konzentrischen um den Punkt x =0 be-
schriebenen Kreisen (Laurent’scher Kranz). Sind R, <R zwei
reelle Konstanten und stellt f (x) eine gegebene Funktion dar,
welche eindeutig, stetig und gerade ist, so lange R, <|x|<R
bleibt, dann existiert jeder Zeit eine Entwicklung von der Form:

1 y-dy 1 y-dy
f(x)= . f . f(y) 2"’
(x) 217 f(R) ) y? —x? +2iﬂ‘ f(Rl) y) x? — y?
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Fir | x| <|y| gilt nach obigem die konvergente Reihen-
entwicklung:

1
y2 — x2

:21 g, S (y¥) [JA (X)]2

fir |y |<<[x| gilt analog

1 ~ N Ao o2
= a2 @)
K=Y
0
Demnach liasst sich die den oben genannten Bedingungen
geniigende, willkiirliche Funktion f(x) darstellen durch:

f(x)zz%z ',{'(R){‘?‘]L & 2 (y) [f(X)]zlf(y)-y-dy

N f{Rl)\Zl 6 @ Tel 1)y-dy.

217

(= o ool o1 [ @ t)-y-ay+

217

6 2@ g [ B0l 1050

o0

(=S & B+ wm & a6
0

0

wo ;
. ___& . A ) V.
=k [ fmtwoyay |
. 3 - . (16a)
. 1(y)-y-dy.
. ] @y O 1)y dy

.
# 217




P . NP

Die Methode, nach welcher man zu dieser allgemeinen
Darstellung kommt, ist ganz analog der durch (13.) und (14.)
gegebenen und zudem in hohem Masse iibereinstimmend mit der
von Graf und Gubler' gegebenen allgemeinen Herleitung einer
Methode zur Entwicklung nach einfachen J-Funktionen. Ist
némlich die Funktion f(x) in einem Laurent’schen Kranz definiert,
dann gilt fir R, <|x|<<R

1 d 1 d
fx)=-—">"| fy)—L- [' f y
) 2izx J ®) my—x l_2in J By (Y)X—)_f

Nun ist nach (6.)

1
y—X

0o 0 . 1 !
:O(y)J(x)—!~22A. oy I [x|<]yl
1

1

X—Y

0 0 o0 . )..
=0@IW+2 B 00T [yl</x

Daher ist auch den oben genannten Bedingungen geniigende,
willkiirliche Funktion f(x) darstellbar durch:

)=k, 594 0, 6 )
0

wo k ——”“-f O EE)-d
P % Sy YT
el A
= 1 Tidbleg-d
= .[ ®) (y)f(y)-dy

woraus die vollkommene Analogie ersichtlich ist.

Man erkennt unschwer die vielfache Verwendbarkeit dieser
Methode. Es sind ihr nur Grenzen gesetzt durch die mogliche .
oder unmogliche Losung der Integralausdriicke, die zur Bestimmung
der konstanten Koeffizienten dienen. Sie wird ferner dadurch
beschrinkt, dass die prinzipielle Bedingung erfillt sein muss,
d. h. dass f(x) eine gerade Funktion sein soll. Bei der ent-
sprechenden Methode zur Entwicklung nach Neumann’schen
Reihen erster Art hat man nur die erstere Beschrinkung, indem
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die zu entwickelnden Funktionen gerade oder ungerade sein
kénnen. Es sei speziell nochmals hervorgehoben, dass diese
Reihenentwicklungen fiir gerade Funktionen nach Quadraten,
d.h. nach Produkten Bessel’scher Funktionen desselben Parameters
fortschreiten. Nach emem spater zu betrachtenden Postulat von
E. Lommel® koénnen auch ungerade Funktionen in Reihen ent-
wickelt werden, die nach Quadraten von Bessel’schen Funktionen
fortschreiten, deren Parameter aber gemischte Zahlen sind, wihrend
in den Formeln (15.) A nur ganzzahlige, positive Werte annehmen
kann.

Noch auf einen Punkt mochten wir aufmerksam machen,
der in gewissem Widerspruch steht zu einer spiater zu besprechen-
den Forderung. Die Neumann’sche Entwicklungsmethode gibt
konvergente Reihen fiir alle Werte von x, die der Bedingung
geniigen: |x| <R, wo R eine reelle, positive, endliche Grosse
ist. In einer von Niels Nielsen gegebenen Methode, die zu genau
denselben Reihenentwicklungen fithrt wie die Neumann’sche
Methode, wird mit jeder wiinschbaren Strenge bewiesen, dass
die nach den Quadraten und Produkten Bessel’scher Funktionen
fortschreitenden Reihen in demselben Bereich konvergent sind,
wie die, die entwickelte Funktion darstellende Potenzreihe. Fir
die Entwicklung des trigonometrischen Cosinus hitte man dem-
nach, da seine Potenzreihenentwicklung konvergent ist fiir alle
Werte — oo <{x<(Coo; |x|<Coo, ebenfalls eine konvergente
Reihenentwicklung nach Neumann’schen Reihen II. Art fir alle
Werte |x| < oo, was mit der Neumann’schen Forderung, dass
R endlich sein soll, nicht so ohne weileres vereinbar ist. Den
Grund dieser Unstimmigkeit haben wir bis jetzt nicht ermittelt,

Im iibrigen wird diese erste, von Carl Neumann gegebene
Methode immer dann zu einem Resultat fihren, wenn die zu
entwickelnde gerade Funktion f (x) in eine Potenzreihe entwickelt
werden kann. Dadurch werden die zur Bestimmung der Ent-
wicklungskoeffizienten k; dienenden Integralausdriicke leicht
losbar. Zur Anwendung und weiteren Erlauterung der Methode
geben wir im folgendenden Paragraphen die Entwicklungen fiir
einige gerade Funtionen.
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§ 3. Anwendungen.
1. Aufstellung der Reihe fiir 1.
Nach (15.) ist dann zu setzen: f(x) =x° =1
somit: f(y)=y’=1
Daher hat map

f(x-—lzzl k; J(X)] wo k; = l;t.f(r)gl(y).y.dy.

Die Integration ist in rechtliufigem Sinn lings einer Kreis-
peripherie um den Nullpunkt zu erstrecken, was wir jetzt und
in allen folgenden Untersuchungen durch f{ andeuten. Unter
Beniitzung der in (11.) gegebenen Summenausdriicke fiir Q* (y)
hat man sofort:

1 1
ky= fﬂ (y)-y-dy= f;-y-dytl.

217 2_—

2 ! 2
k____il_.rgl I _;_.J { _}. dy =2
o (y)-y-dy . y2+y4 ydy

. 2 (1,8 &
k. —-2 . | @Piv).-v.d :_.[{_ 2 } dy=2,
= f Wy-dy=g [ S S yay=
Analog bestimmen sich k,=k,=k =k —=....=k; =....=2.

Unter Beniitzung der allgemeinen Summenformel fiir er(y)
(10.) leitet sich der allgemeine Koeffizient leicht ab.

927 vl A-(A4r—1)1 1
(2)! (A —)! y2v+a

l e

v -dv.
217 , )

Um das Integral auszuwerten, hat man vom Integranden
denjenigen Summanden zu entnehmen, der die Potenz y—1=1
liefert. Alle andern Potenzen von y geben zu diesem Cauchy’schen
Integral keinen Beitrag. Man erkennt sofort, dass man diesen
Summanden erhilt durch die Setzung — 2y —2-4+1 =—1;
y=0.

Dann ist der Koeffizient von 1, also [l] =1,
y ¥
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Diese Bestimmungen enthalten keine Beschrinkung fiir die
Laufzahl A, welche, wie urspriinglich definiert worden ist, alle
ganzzahligen positiven Werte von 0 bis oo durchlaufen kann.
Daher werden auch alle k; auftreten, und sie sind allgemein

bestimmt durch:

e s [y B By =1,
217 y

Man hat daher die Entwicklung:
1=+ 2 Fel+2@f+2 Felt. .. innt

= [f @) + 2.51 [.f ®)] gltig fir |x| < R. 17.)

2, Aufstellung der Reihen fiir die geraden Potenzen.
Reihe fiir x2. f(x)=2x2% f(y)=1y?

o0 A 9
daher ist f(x) =x? =21 k, [J@],
‘ 0

€ _
k; =2—.1—' P (y)y-dy
17T
Man findet im besonderen:

k0'=f?°_. 2 (y) .y3.dy_—_.i. (v};.y?dy-_—_-o,
217 Yy

2 1 £
k= .| @ .d “_'ﬂ—|—-3-d -
1 9ix { ¥ y y 21z ) |ly? ' v ey

L8

2
k, = 2 'fﬂg(Y)'Ya'dY=§;;‘

217w
JIE R

im allgemelnen

vyl Ad—11 1

. . o

217;,] 2 @) —yt gz 0T
2
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die allgemeine Potenz im Integranden ist y—2Y—2+2  Die einzig

in betracht fallende Potenz 1 erhiilt man durch dieSetzung — 2»—

y
—2+43=-—1, »=1. Es wird dann:

. - Al |
LY 2‘l Ll B 217 ~woraus dann
y 2 A—1)!

k, =~ . fQAZE-dy=(2L)2.
21 y

1 . . )
In der Bestimmung des Koeffizienten von — sind keinerlei

Beschrinkungen fiir die Laufzahl 1 enthalten. Sie kann somit
alle ganzzahligen, positiven Werte von 1 bis oo durchlaufen.
Man hat demnach die Entwicklung:

=4 [T+ 16 [T +36 [T+ 64 [T+ .. ininf.

s 1 ,
x2 =Ez @12 -[J ()], giltig fir [x|<<R. (18)
: |

Ganz entsprechend werden die Reihen fir die folgénden
geraden Potenzen von x hergeleitet.

Reihe fir die allgemeine gerade Potenz x?».

Man hat zu setzen f(x) =x*; f(y)=y*"

f(x) = x2» =S1 | k, [J ()
0

wo k)»-:"éi' Ql(y).ygn'f'l.dy_
, 7T

[ 8

Lo v Yl AQAy=D! 1
ST f > @y G gt W
0

3 .
2 2y vIVIA(A 4 r—1)!
S i 2 . - . —21/--2+21'1+1.d .
gim @) (h—)! fy ¥
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Die Potenz y—!findet man durch die Setzung 2n + 1 —2» —
—2=—1,v=n.

Es fallen alle Koeffizienten des Integrals weg mit Ausnahme
des einzigen, in welchem man n=v setzt. Es wird daher:

n!n! 2-A+n-—1)!
2 mn)! (A —m)!

k; = 2.2,

Aus dieser Bestimmungsgleichung fiir k; geht hervor, dass
A=n sein muss, indem fir 2 <<n der Nenner unendlich gross
wird, die entspr. Koeffizienten also verschwinden. Daraus ergibt
sich die Entwicklung fir die allgemeine Potenz x?" zu:

(2 )' 7., ...2[(2;?1 —q |
—(2vn—(2)]'[J G g9)
— e Sy RO Sl xi <R

n

Nach den bei der Herleitung der Methode gemachten Vor-
aussetzungen sollen diese Reihenentwicklungen konvergent sein
fiir jedes der Bedingung |x|<{R geniigende x, wenn R eine
reelle, endliche Konstante bedeutet. .Dass zufolge dieser Be-
dingung die gefundenen Reihen wirklich konvergent sind, soll
gezeigt werden, dadurch, dass fir alle Reihen ein bestimmter
Grenzwert

lim (2ot | g
existiert. Damit ist dann gleichzeitig nachgewiesen, dass die
Reihen unbedingt konvergieren.

Der allgemeine Term der Formel (19.) lautet, abgesehen
von dem fir ein und dieselbe Potenz konstanten Faktor 22»+1.
! 1] folgendermassen
(2 n)!
' A-(A+n—1)

(A — n)!

[Fwl
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Die durch die unendliche Reihe

(_)n-]—ZH
J(x)—g" Y TararD

definierte Bessel’sche Funktion ist in dieser Darstellung absolut
konvergent fir jeden endlichen Wert von x. Nach einer von
J. J. Schonholzer '® gegebenen Formel bestimmt sich das Produkt
zweier Bessel’scher Funktionen durch die Formel:

F-Te=S 1y Lfetbt2utl

Fatu+)rbt+ptl)

x\*+b+2e
3
I(a+b+p+1)lg!

was wegen der absoluten Konvergenz jeder einzelnen unendlichen

(20))

Reihe von Ja (x) und 3 (x) wieder eine absolut konvergente Ent-
wicklung ist fiir jeden endlichen Wert von x. Da es sich oben
um das Quadrat einer Bessel’schen Funktlon handelt, wo also
a=—b =21 ist, so wird die Formel zu:

J — — 1 r2i+2u+1)
el :5”( Y ratu ) TotutD)

2142
)
T@itut1) ul

was unter der Annahme, dass die Laufzahl x nur positive ganz-
zahlige Werte durchlaufen soll, auch geschrieben werden kann:

| ( )21+21"'

SR S @r42u) \2/ (20a.)
J(x)] = — 1) . ;

) :%‘( N G @AL A
Sowohl in der Summenformel fir J (x) als auch in der

Summenformel fiir [J (x)] 1st der erste Summand; d. h. wenn
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u =0 ist, der grosste. D)a man es hier und dort mit unendlichen
Reihen zu tun hat, die bei wechselndem Vorzeichen monoton ab-
nehmen, so ist offenbar der absolute Betrag des ersten Summanden
grosser als der absolute Betrag der Summe aller Summanden.
Wenn man daher bei den folgenden Konvergenzuntersuchungen
den absoluten Betrag des ersten Summanden in Rechnung bringt,
so fihrt man einen zu grossen Wert ein, indem eben:

[ E 22 ) E 21421
Al AL - A+ A+ C14u)! p!

A 7
Setzt man den Wert links statt [J (x)]‘a in der allgemeinen
Form der Formel (19.) ein, dann kommt:

- 21
A +n—1! (E)
A—mn)! A

m <<

x\24+2
<@t (é)
A—n41)! @A+ @+ 1)!

analog n; 41

x\?
my (& +1n) (é)
n  (A-—n--1) 2.(A41)

was fiir gegeniiber n einigermassen grosse 1 zu

Demnach:

N4 x? - ;
1 fi <R wird.
o g S rixI<E ‘

Unter der Bedingung, dass |x|<<R, wo R eine reelle,
endliche, positive Zahl sei, was unbedingt notwendig
ist fir die Konvergenz der die Bessel’sche Funktion
definierenden unendlichen Reihe, sind die in (17.) bis
(19.) hergeleiteten unendlichen Reihen unbedingt kon-
vergent. '
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3. Aufstellung der Reihen fiir die geraden trigonometrischen Funktionen.

Reihe fir cos (x).

f (x) = cos (x); f(y) = cos (y)

cos (x) = Z}, k; J(x)] ; wo k; =

176

/COS(Y)-Q‘(y)-y-dy-

Das Integral liasst sich am einfachsten auswerten, wenn
man fiir cos(y) seine Potenzreithenentwicklung einsetzt:

ST ST AU ATID AU _ TR s
cos(N=1—3+ - —gtg—t- mﬂJVu( 1)

(2 u)!
Dann wird:
ko — 4 [[{_ _y_ y__y Y + _},Qa v.d
T { 5 4 + (y)-y-dy

Do

>i,v av vl A-(A4r—1! 1
]_04 22)! sqll B

2# (— 1" (2/1«)'. -dy.

2175

Man erhilt 1m einzelnen:

=gt [P 1T T — Ly ay=

kl‘z;iln f!)(y{ _y +i, _§+—....}ydy=
:%-fg‘“'(y)-{.1—%+%—%!+—-....} -dy:—l‘g

h=ot [Pl1- T4 X T4t yay

48
1-3-5




im allgemeinen:

ky = — -fﬂ‘(y)cosy-y-dy

217

P} :
2 "2 227} ’V! 1’! A(A“'_v—"l)! 1
= — s 'll L] . %
217 ] - (22! (A —)! y2rrd

2}( )‘"(gg' y-dy

Die allgemeine Potenz im Integranden ist y2P+1”2”'—9.
Von allen Gliedern geben nur die einen Beitrag zum Integral,
die die Potenz y—! enthalten. Man erhilt diese Potenz durch

die Setzung 2u +1—2r —2=—1; u=w.

vl (A y—1)!
22! 2! (4 —)!

Dann wird [l] =(—1)".2%
y
und daher auch

1 “
. ! ! . cfecogy sy 1YY
k;ﬁ—':zv (_1)1;_2,:;;_{,1.(2 viv. .}v (l —v 1),k0=]
0

v)! (2 »)! (A —)!

Demnach lautet die Entwicklung fiir cos (x):

)l

cos (x) = [3 (X)]2 —}-Sl 22 [f (x)]2 -zv (—1)”. 2%

0

vyl (A4r—1)!
ey G XI<B

oder cos (x) = [f (x)]2 -+ 2 -il k, . [j (x)]2 (21.)

' 1
N, (19 vivl A (@A 4r—1!
"kl_Z e 29! (29)! (A — )!
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Nach Ausmittelung einiger numerischer Werte fir k;
erhilt man: :

cos (x) = [JO (x)]z—ll—o [} (x)] —i% [3(X)]2+
146 & 5520 B g
+m'[~](x)] +1'3_5.7_9[J(X)] -----

Die Reihe zur Bestimmung der Entwicklungskoeffizienten
k; ist eine endliche, von selbst abbrechende Reihe mit alter-
nierendem Vorzeichen. Die einzelnen Summanden werden mit
zunehmenden Werten der Laufzahl » grosser, um bei einem
bestimmten Werte » ein Maximum zu erreichen und nachher
wieder abzunehmen. Wir behaupten, dass bei geraden A der

Summand der grosste wird, fir den man » ersetzt durch —2-; bei
-1

ungeraden 1 jedoch der, in welchem man » ersetzt durch

Dabei soll es sich jedesmal nur um den absoluten Wert handeln.

Wir betrachten den ersten Fall: 1 gerade; A=2n, wo
n=0,1,2,38,4,..... Der allgemeine, absolut genommene Term
der Summenformel fiir k, lautet:

92V . v! »! .A-(}v+v—1)!
@)l @) G—

Setze vzj:
-2

Setze L=—2n:

on n!n! .2n-(3n——1)!_22]n n!

%_ ——— 2n-(3n —1)! (A)
(2n)! (2n)! n! (2n)! (2n)!
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Den unmittelbar vorausgehenden Term erhilt man durch

die Setzung :

) A—2

Y= — — 1 = —
| 2 2

dann kommt '

O G L G L L s

G-ara=—ar , i=2),

Setze A =2n ) i}
gm—2 (=)' @m—1! 2n-@En—2)!

2n —2)! @n—2)! (n 4 1)! (B).

Den unmittelbar nachfolgenden Summand erhélt man durch
die Setzung:

vt gyt
dann wird i i
) p
e i i
- *+2) @24 2! {x-l—tg}!
Setze A =—2n | 2

gtz (4 1)! (n41)! 2n-@8n)! ©)
@n+2)! 2n+2)! (@—1)! ;

Der Quotient aus (C.) und (A.)) wird, wenn man fir 2n
wieder A setzt, zu:

C 3.2
4) 4-@+41y
was fiir alle Werte von 4 kleiner als eins ist; daherist |A |[>[C]|.

Der Quotient aus (B) und (A) w1rd wenn man fir 2n
wieder 4 setzt:

(B)_4G—D (=1 4y 15 <
A) (+2@r—2)
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Es ist nun interessant, dass diese letztere Ungleichung von
der Grosse der Laufzahl A abhéngig ist, wiihrend die Bedingungs-
gleichung fiir die Unglelchung |A|> ! C| fir jedes 4 gilt. Mit
andern Worten:

Welches auch der Wert von 4 sei, unter allen Umstinden
sind in der Summenformel fir k; alle Summanden, deren Lauf-

zahl » > = ist, kleiner als der Summand, fir den v———é 1st.

Was die zweite Ungleichung | A | > | B| anbetrifft, so kann
man sich leicht iiberzeugen, dass der Quotient E nur bis und
mit A =10 kleiner als eins ist. Fiir A= 10 erhilt man:

(B) 4-9.9 27
- =21 <1;|A|>|B
&) 12.28 28 | 41>]B]

Fiir 4 — 12
(B) 4-11.11 121

— — 1; |B|>|A
(A)  14.34 Fig =" L [B]latls

d. h. bis zur Laufzahl 2= 10 wachsen die Glieder der Summe

bis zum Glied mit der Laufzahl » = —;, welches Glied grosser
ist als-alle vorhergehenden und grésser ist als alle nachfolgenden.
Fir 4 > 10 1st nicht mehr das Glied, fir welches vzg 1st, das

grosste. Wir setzen jetzt v= g—2 I}%}* dann wird der

allgemeine, absolut genommene Term:

g —1 (n—2)! (n — 2)! .2n-(3n——3)!

@n—4)! @n—4)! (04 2)! (B1)

Bildet man den Quotienten aus (B) und (B;), dann kommt -

(B) _4(A—38)(A—3)
B G-+HE1—9)

Fur alle Werte von 4 ist das Glied B;, fir welches » =}3——;—%

ist, kleiner als das unmittelbar nachfolgende Glied B, fiir welches-
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ist. Diese Ungleichung |B| > |B:| geht bis zu A=230;

Yy =

man erhalt fiir:

(B:) 4-27.27 729

(B) 34.8 731

139, (B)_4-29-29 841
" (B) 36.92 828

d. h. bis zu der Laufzahl 4 =380 1st il'_l. der Summenformel fiir

2 = 30: <1; [B[>]|Bi].

fir

> 1By >[B]

ky das Glisd, T weldhes y»—-—2 iut, grosser sz allo vor

angehenden Glieder, und was aus dem obigen folgt, grosser als
alle nachfolgenden Glieder fiir 12==2n =30, wo statt 1 2n
gesetzt 1st.
Fir 2 > 30 trifft dies nicht mehr zu.
: AL—4 L—6 i
Wir setzen v:T— 1 = dann wird der allge-

meine, absolut genommene Term:
g2 —6 MmM—3)! (n—3)! 2n-(3n—4)!
2n—6)! 2n—6)! (n43)!

Der Quotient aus (B3) und (B;) wird dann, wenn n= A
gesetzt wird: 2

(B

(B) _4-(—5)-(A—b)
(B) (A46)-(82—6)

Fir alle Werte von 4 ist das Glied B, fir welches
L—6 '

ist, kleiner als das unmittelbar nachfolgende Glied B;,

Yy =

fiir welches »—

ist. Diese Ungleichung geht bis zu 1 = 50;

man erhalt fir:

(B)) 4-45-45 135
50: o) _ 1; d.h |By|>|B
(B 56.144 256 B >[5l

Bt o B (B2)  4-47 .47 2209
" (By) 58-150 2175

d. h. in der Summenformel fir k; ist das Glied, fiir welches

A=

~1; d. h. |By|> | B
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v=14;;4: gesetzt wird, bis zur Laufzahl 2 =250 grosser als alle

vorangehenden Glieder, und fiir alle Werte von A=2n, fir
die 32=2n=50 ist, ist dieses Glied gleichzeitig grosser als
alle nachfolgenden.

Wir setzen v = h—6_ 1= % Der allgemeine, ab-
solut genommene Term wird dann:
gn—8 m—4H! n—4H! 2n-@EBn—H)!
Z2n—8)! 2n - 8)! (n + 4)!

(Bs)

Der Quotient aus dem Gliede Bs und dem unmittelbar
nachfolgenden B; wird dann, wenn statt n wiederé gesetzt wird:
(Bo) _4-(.—7) —1)

(B:) (A+8)((B1—-8)

Fir alle Werte von 4 ist das Glied Bs, fir welches
A—8 |

ist, kleiner als das unmittelbar nachfolgende Glied B2,

b8 ist. - Diese Ungleichheit besteht bis 2

Y=

A=68; man erhilt fir:
(Bs) 4-61-61_ 3721
B) 76-196 3724

(B;)__4-63-63 _-3969
(Bs) 78-202 3939

A = 68:

<1; [B2| > | Bs]

A="70:

>1; |Bs| > B

d. h. in der Summenformel fiir k; ist das Glied, fiir welches

v-_—~£———2——6 gesetzt wird, bis zur Laufzahl 1 = 68 grosser als alle

vorangehenden Glieder, und gleichzeitig fiir alle Werte von
A=2n, fiur die 52 = 2n =68 ist, ist dieses Glied grosser als
alle nachfolgenden.
Das nachste Intervall geht von 70 =2n <86
das folgende 88=2n==102.
u. 5. w. 104 =2n = 118.
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Wir betrachten nunmehr den zweiten Fall: 4 ungerade,
A=2n-+1, n=0,1,2,3... Derallgemeine, absolut genommene
Term der Summenformel fir k;, wird dann; wenn man wie

—1

angegeben » ersetzt durch Zu:

L e

(h—1)! A — 1)! {1_1;21‘}!

Setze 2z=2n 4 1:

o2n n!n! (2n+1)-(3n)
(2n)! (2 n)! (n - 1)!

Das unmittelbar vorausgehende Glied der Reihe erhilt man,

n—1 A—38
wenn man ¥ — ——— —1 =

Q")

setzt. Dann wird der absolut

genommene Term:

21“3(’1'2‘3)!(3“; 3)! '2,.{2.—!—)—"—;—3—1}!
(L —3)! (A — 3)! -{1_2_1;2-_3}!

Setze A=2n -}-1:

gan—3 —D!'@—1)! @n41)-Bn—1)!
@n—2)!(2n—2)! (n 4+ 2)!

(B

Das unmittelbar nachfolgende Glied der Reihe erhilt man

durch die Setzung » A=l +1 =l—_§-—1; dann wird dieser

Term: 2

o EEPER) 2
41! a+ 1) { _ Lﬂ}z

2
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Setze A=2n-1: |
goir @ EDIO D! @01 @o b D!
2n+42)! (2n -+ 2)! n! '
’Man bildet den Quotienten:
) @+1-@r—1)

(AH) 422
Dieser Quotient ist fir alle Werte von 4=2n 41, wo
n=0,1,2,3.... kleiner als eins, mit Ausnahme fir 1=1, n =0,

wo er zu eins wird. Mit andern Worten:

Fir alle Werte von A =—=2n -1 1st in der Summenformel

A4+1
2

, kleiner

fir k, das Glied, in welchem » ersetzt ist durch

als alle vorangehenden. Man bildet nunmehr den Quotienten:
(B) 4(2—2)(21—2)
(A) (+43)-302—1)

‘Der Quotient ist fir alle A=2n 41 kleiner als eins bis
zu A=19; man erhilt fir 1=19:
(B) 4-17-17 289 . :
. = == <1; |A'|>|B
(AY) 22.54 297 |4%> 18"
fir A =21:
(B)Y 4-19.19 361 i {
= == >1; |B A
| (AH)  24-.60 360 IB7[>[47]
d. h. fir alle ungeraden Zahlen 3 =2n 4 1= 19, ist das Glied

in der Summenformel fiir k;, in welchen » ersetzt ist durch

%—_—%, grosser als alle vorangehenden und, wie oben gezeigt wurde,

gleichzeitig grosser als alle nachfolgenden. Fir 2=2n-}1>19
gilt dies nicht mehr. ' ‘
Wir setzen ,,_—_;‘_';’__ 1=A_5

; dann wird der allge-

meine Term absolut genommen:

N G L G L e

(A —B)! (A — 5)! { A“5}!

11— 22

2



setze fir A =2n 4 1:

m-t M—2)!M0—2)! @n-+41)-{3n—2}! .
2 ‘2n—4)! 2n — 4)! (n -+ 3)! (B)

Man bilde den Quotienten:

(B) 4-A—4) (A—4)
(B") (A +5)-@B82—5)
Fir =239 erhilt man:

BY) 4.85.35 175
EB%: 44?1120=17Z<1; 51> (B

Fir 2 =41 erhilt man:
(Bi) 4-87.37 1369
(B") 46.118 1357

d. h. fir alle Werte von A=2n-41, n=1,2,3,4..., 1st das

Glied, in welchem die Laufzahl » ersetzt ist durch w-='t——3,

>1; |Bl|>|B'|

grosser als alle vorangehenden und alle machfolgenden Glieder,
wenn A, resp. n im Intervall 21 = 2n | 1= 39 liegt.
Das folgende Intervall wird: 41 =2 n 4 1 = 57.
Das folgende Intervall wird 59 =2 n 4 1 =177.
das nichste wird 79=2n 4 1= 95.
U. S. W. ‘

Die gefundenen Resultate sollen kurz zusammengestellt
werden.

1. 2 gerade, A =2n.

Fir 0=2nZ=10 istdas Glied mit vzg das grosste
” 12?2!1?30 " » ” " ""—%——g y ”
” 32=2n=50 n n " ” ”:}‘::é " ”
2
A—6

n n
2
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das grosste

Fir 70=2n=286 istdasGlied mit »="—

, s8Z2n=l02, , , v_—=’"";1” C,

. 14=20=118 , , , y=l_212 o

2. 2 ungerade, A=2n- 1.

Fir 8=2n+41=19 istdas Glied mit v:,}—-—Tl das grosste

— — A—3

n 2122n+1<39 n on n on ”:—2_' " n
— — A—5H

» 41Z=2n4-1257 , y w 1’=T ” ”
_ I h—7

n 59=2n+1277 , , n n "=_2"_ " ”
_ _ e A—9

y 9Z2n4-1=29% , g v————2—- 4 n
. _ A—11

n 9=2n+4+1=2115 , , n 9 V= 9 n )
A— 13

WrZ2nHIZ188 , , ., r=T—

2

Die Anzahl der Werte, die 4 in den verschiedenen Inter-
vallen annehmen kann, sind fir
gerade 1 resp. 5,10,10,9,9, 8, 8, 6,6
ungerade 4 resp. 9, 10, 9,10, 9, 10, 9, 10, 9.

Fir die geraden A hat man nicht die periodische Regel-
missigkeit, wie fiir die ungeraden A, indem erstere in der Fo]ge

wieder viel grossere Intervalle zeigen.
Wenn man nun zur Untersuchung der Konvergenz der

Reihe (21.) zuriickkehrt, denn zu diesem Zwecke ist die Summen-
formel fiir k; etwas genauer-betrachtet worden, so fragt es sich,

welchen Wert man in der Formel:
i 1 ! . —1)!
e v (—1) 22 vyl A-(24r—1)!
= @) @9)! @—»)!
0




— 33 —

dem » erteilen muss, um in der Konvergenzbetrachtung der Reihe:

cos (x) == [J(x) 1 9. ZA k, [Jx)

keinen zu kleinen Wert einzufiihren. Unserer Ansicht nach kann
hier nicht genau gesagt werden, fir emnen unendlich grossen
Wert von A4 habe man, um 1n k; das grdsste Glied herauszu-
nehmen, fir » den oder jenen Wert einzusetzen, sondern es
kann sich nur um eine angeniiherte Schitzung fiir sehr grosse

Werte von 4 handeln. Man kommt mit der Setzung fiir gerade 4:

r~_—}3~?—;%), fiir ungerade A: wz% jeden Fall schon zu

sehr grossen Werten der Laufzahl 2. Im ersteren Fall wird
dann der allgemeine Term von k; zu:

’/1—51000)' (11 — 100())'
1—10(‘0 gh— 1000 ( 9 ) 9 ’

(—1) - :
(4 — 1000)! (2 — 1000)!
1] g 1000 ),
L e J
[, 2—1000),
R 2 }

Setze fir 1= 2n, so wird, da
(__ 1)H-500: (_ 1)1’!
o . g2 = 100 (m —500)! (n — 500)! 2n - (3n— 501!
(2n—1000)! (2n—1000)! (n - 500)!

Dieser Wert ist fir das sehr grosse gerade A der grosste
von allen Summanden der Summenformel fiir k;. Da diese
wechselndes Vorzeichen hat, ist der obige Wert absolut genommen
gleichzeitig grosser als der absolute Wert der ganzen Summe.

Fir diesen sehr grossen Wert 1 =2n wird dann der zugehorige
grosste Wert des Quadrates der J-Funktion, also von

& G)

il 2oy @)

Py

T, =
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Das Produkt k, - [J(x)]° fir 1=2n wird dann:

kBl =k, Tef|<

X 2n
om0 _(n—500)! (n—500)!  2n-(3n—501)! (E)

= (2n—1000)! (2n—1000)!  (n--500)!  (2n)! (2n)!!

Analog wird fir ungerades i: 1=2n - 1:

2n4-1

j__)kz +1 J(X)]g

920—1000 (n — 500)! (n — 500)! . (2n+1) - (3n—>500) ! .
(21— 1000)! (2n—1000)! (@ - 500)!

| (§)2n+1
@n+1)! @n-+1)!

Der Quotient wird dann:

/.+1

' ' k,1+1

. |
o (Tl (3 iy
(n1501) @n 1) -2n 24-(A-|-1)-(141002)

|k ool

Fiir 41=—400 erhilt man annihernd einen Quotienten von
1:2.10°. Da die absoluten Werte untersucht worden sind, so
1st die Rethe:

cos (X) = [j) (x)]2+ 2 -21 ..kA . [j (Xﬂ2

r ! A-(A4»—1)!
WO klﬂz = 1) (2,, (21’J' (4 —»)!

auf Grund dieser angeniherten Schitzung absolut konvergent
fir alle endlichen Werte von x.
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Im Anschluss an diese Beweisfilhrung maochten wir nicht
unterlassen zuzugeben, dass sie weit entfernt davon ist, einen
streng giiltigen Beweis zu erbringen und rein empirischen Charakters
ist. Da wir bis jetzt nicht Mittel und Wege gefunden haben,
einen solchen zu leisten, behalten wir uns vor, darauf zurtick-
zukommen.

Reihe fiir den hyperpolischen Cosinus. cof (x).
£ (x) = cof (x); (y)=cof(y)

cof (x) = 2,1 k; J(x , wo k; =

=5 f!’l(y) cof (y) -y - dy.

Bekanntlich ist der hyperbolische Cosinus definiert durch:
y2
(22!

Die Koefizienten bestimmen sich ganz analog wie beim
trigonometrischen Cosinus, so dass wir uns auf die Bestimmung
des allgemeinen Koefizienten k; beschrinken konnen.

i) = (0 +e) =Sy

k;‘=.‘—8.—‘~-f9"(y)007(y) y-dy
217

!
_ 2 2” 221;_1’!1!!.1(7(.-]—--1»«“-1)! 1
(27); (A —)! y-“’+2

217
Eﬂ (2#)'

Mit Ausnahme des hier fehlenden Faktors (— 1) hat man
genau den obigen Fall, daher wird:

i ;
oyl — 1M
k;=21-2v22”- LTI U i L)
- @) (27! (A—)!




— 36 —

Man erhialt dann die Reihe:

cof (9) == [T -+, - Fel . kI<k
0 2 CZ% ; 4 2 "1 2y .
x)] +;/. 21 [J(x)] '?_}J" ¥, o)

. r!y! ﬁ.(;l“"”""l)!
@ 22! - (2 —2)!

cof 1) =)'+ 8 [0l - [Tl + 222w +
6121 . s p
+ii§-5-7[J(x)]—|_“' inf,

Die Konvergenz der Reihe lasst sich #hnlich wie aoben
nachweiseun,

Damit sind die geraden Funktionen, die i Potenzreihe
entwickelt werden konnen erschopft, und man betrachtet im
folgenden eine neue Methode zur Entwicklung von ungeraden
Funktionen.
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