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I. Abschnitt.

§ 1. Klassifizierung der Reihen.

In der genannten Arbeit teilt Köstler die eigentlichen
Entwicklungen nach Bessel'schen Funktionen ganz allgemein in
folgende drei Typen ein:

1. Entwicklungen erster Klasse:

Reihenentwicklungen mit gleichbleibendem Parameter und
veränderlichem Argument, dessen Änderung sich nach einem durch
die Laufzahl l beherrschten Gesetz vollzieht.

Ihre allgemeine Form ist:

F(x)=2ZAAf ptoOO)]

2. Entwicklungen zweiter Klasse:

Reihenentwicklungen mit gleichbleibendem Argument und
veränderlichem Parameter, dessen Änderung sich nach einem
durch die Laufzahl l beherrschten Gesetz vollzieht.

Ihre allgemeine Form ist:

F(x)=2^Aif pW))J

3. Entwicklungen dritter Klasse:

Reihenentwicklungen mit veränderlichem Argument und
veränderlichem Parameter, deren Änderungen sich jeweilen nach
einem durch die Laufzahl l beherrschten Gesetz vollziehen.

Ihre allgemeine Form ist:

F (x) -XV; A, f [jV«)1
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Die Entwicklungen der zweiten Klasse im besonderen lassen sich
wieder in zwei Gruppen trennen, nämlich:

a. Entwicklungen nach einfachen J-FunMionen. Sie werden
nach Niels Nielsen als Neumann'sche Reihen erster Art bezeichnet
und sind im Allgemeinen von der Form:

2V±ll A,J (x)

v±2X
* A,J(x)2

Sie wird besonders zur Darstellung von einfachen analytischen
Funktionen, vorteilhaft verwendbar, wie in der genannten Schrift
von W. Köstler ausführlich gezeigt wird.
b. Entwicklungen nach einfachen Produkten von J-Funktionen.
Sie werden nach Niels Nielsen als Neumann'schen Reihen zweiter
Art bezeichnet und sind im allgemeinen von der Form:

_-_ V±>. f*±k
2* AAJ(x).J(x)

V±l fl±).

2* aJ(x). J(x)

speziell ^A AAJ(x) J (x)

n A, [jw]
Die zwei letztgenannten Arten der Entwicklung geben verhältnismässig

einfache Darstellungen und sie sollen im Folgenden
eingehend untersucht werden.

§ 2. Erste Methode von Carl Neumann.
Die von Carl Neumann3 angegebene Methode ist in vielen

Teilen analog der von Köstler zitierten zweiten Methode zur
Entwicklung nach einfachen J-Funktionen.. Die Methode sei hier
soweit ausgeführt, als sie für die folgenden Untersuchungen von
Bedeutung ist.



An die Spitze der genannten Abhandlung stellt C. Neumann
den Satz:

„Versteht man unter n eine der Zahlen 0, 1, 2, 3,.... oo,
so kann die Potenz x2n in eine nach Quadraten von
Bessel'schen Funktionen fortschreitende Reihe
entwickelt werden, welche gültig bleibt für jeden endlichen
Wert von x".

Definiert man nach F. W. Besselu, Carl Neumann,2,
Hermann Hankel13 die allgemeine Bessel'sche Funktion durch
die Gleichung:

^ li)
JW-=2M-D\,rV+x+Tj

0

wo n jede beliebige reelle, ganze, positive Zahl sein kann, dann
hat die Enwicklung der Potenz x2n nach einfachen Bessel'schen
Funktionen die Form:

0 2 4 6

x2n a0 J (x) -f- «2 J (x) -[- «4 J (x) -\- «6 J (x) -4- in inf.

Die nach Quadraten derselben Bessel'schen Funktion
fortschreitende Entwicklung lautet dann:

x2D=ffnyî {a° ^ (X)J2+ "2 ^ {x)^+ ai ^ {x^++¦ • •in inf]

Die Koeffizienten der letzteren Entwicklung sind also proportional

mit denen der ersteren, nämlich von diesen nur verschieden
n!n!durch den gemeinschaftlichen Faktor

Nun sind die Entwicklungen von x°, x2, x4 nach
Bessel'schen Funktionen gegeben durch:

1 J (x) -f- 2 ^Sl J (x)

i
CO 2)

x2= 2*2A (2a)2-j(x)
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2A
X1 2-^1 {2 if [{2 if — 22] J(x)

2

co 2

2 -^A (2 if [(2 A)2 - 22] [(2 if - 42] J (x)
3

CO 2 À.

x8 2 ¦ 'Si (2 >1)2 [(2/)3 - 22] [(2lf — 42] [(2if—62] J (x)
4

co
x2" 2 -^?-1 (2 l? [(2 -1)2 — 22] [(2 *)2 — 41

n

[(2 if — (2 n — 2)2] • j\x)

Hieraus ergeben sich nach dem oben zitierten Neumann'schen
Satz die Entwicklungen dieser Potenzen nach den Quadraten
der J-Funktionen zu:

\
o 00 x

l=[j(x)]2+2*2*[J(x)]2
i

CO

i.2.^(2^)2[j(x)]:
i

1-2 n ^, _2r,^2 ^ X o2
x*

3-4
2

6_ 1-23
X ~ 4-5-6

2 -^ (2 ^)2[(2 X)2 — 22] ¦ [J (x)]
2

oo
• 2 -^ (2A)2 [(2A)2 - 22] [(2 if— 42] • [j(x)]2

1-2-3-4|| • 2 2-M2 A)2 [(2 If- 22] [(2 A)2 - 42] [(2 if -
- 62] • [J (x)]2

n!n!
x¦'"

CO

2D=
(2n3T '22^ (2^[(2^2-22][(2^)2-42] • • • •

[(2^)2-(2n-2)2].[j(x)]2

(1.)
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Nachdem die Entwicklungen für die geraden Potenzen

gegeben sind, ist es möglich, die Entwicklung einer geraden
Funktion herzuleiten. Ebenda beweist C. Neumann mit jeder
wünschbaren Strenge, dass jede Funktion f (x), welche eindeutig,
stetig und gerade ist in einem Gebiet, das vollständig innerhalb
eines Kreises um den Nullpunkt mit dem Radius R liegt, in eine
Reihe entwickelt werden kann von der Form:

CO ^

t^)=^l k*[JW]2 (2)
0

welche gültig ist für alle der Bedingung | x | -< R entsprechenden

Werte von x. Um nun mit Hilfe der vorhin hergeleiteten
Entwicklungen für die geraden Potenzen von x eine einfache
Methode zur Bestimmung der Entwicklungskoefizienten kA zu
erhalten, stellt man vorerst eine gerade Funktion durch ein

gewisses Integral dar.
Auf der x-Ebene sei um den Punkt x — 0 ein Kreis mit

dem Radius R beschrieben. Ferner sei f(x) eine gegebene
Funktion, welche eindeutig, stetig und gerade ist, solange | x | <C R
ist. Das Verhalten der Funktion auf der Peripherie des Kreises,
d. h. für | x | R, wird als unbekannt betrachtet. Sei ferner
x —c ein beliebiger Punkt innerhalb der Kreisfläche (R), d. h.

für den c|<r<R ist. Dann lässt sich nach dem bekannten
Satz von Cauchy der Wert der gegebenen Funklion f(x) im
Punkte c darstellen durch:

f(c) -^* f f(x) —2 i TT J (r) X — c

die Integration erstreckt in positivem Sinne über die Peripherie
der Kreisfläche (r). Diese Formel muss gelten für jeden andern
innerhalb der Kreisfläche (r) gelegenen Punkt, also auch z. B.
für den Punkt — c, also:

f(_c)=J-- f f (x)-Ì5-
2 i n J (l) x -\- c

Durch Addition der beiden letzten Formeln folgt sofort:
f (c) + f (— c) 1 f x • dxf fwJ W2 i 7i J (r) x2
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Zufolge der Voraussetzung, dass f (x) eine gerade Funktion sein

soll, ist f (c) f (c) ; daher

f(c)=-L*/' f(x).^-^. (3.)
2 i 7t J (r) x2 — c2

Damit ist jede gerade Funktion f (c), die endlich, stetig und
gerade bleibt für jeden der Bedingung | x | < R genügenden Wert
von x, durch ein Integral von der Form der Gleichung (3.)

dargestellt.
Vermöge der bisherigen Resultate gelingt es nun, den Neu-

mann'schen Ausdruck (y2 — x2)-
1 in die gewünschte

y2 — x2

Entwicklung zu bringen. Seien x und y zwei beliebige, komplexe
Grössen, y möge als fest, x als veränderlich betrachtet werden.
Der Ausdruck

y- —x2

stellt allsdann eine Funktion von x dar, welche eindeutig, stetig
und gerade ist, solange x der Bedingung genügt | x | < | y |. Dann
besteht nach dem oben zitierten Neumann'schen Satz eine
Entwicklung von der Form:

y2

1 ^0 X

-±—^l^[j{x)f (5.)

die gültig ist für jedes beliebige, der Bedingung | x | <C | y |

entsprechende x. Die Koeffizienten k; der Entwicklung werden
abhängig sein vom Parameter l und von y. Sie seien bezeichnet
mit £A & (y), wo e0 1, £l =¦ e2 e$ -= -= eA 2.

In dieser Schreibweise wird die Entwicklung (5.) zu:

y2

1 COi-XV* ex ß'-(y)-[j(x)]2 (5a.)

oder

y2:

0 X

-=ß°.(y) [J(x)]2+ 2 2* & (y) • [3 (*)f- (5b.)
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Es sei hier an die Analogie der ebenfalls von C. Neumann "
gegebenen Methode zur Entwicklung nach einfachen J-Funktionen
erinnert. Der Weg ist folgender: Der Neumann'sche Ausdruck

wird in Reihe entwickelt von der Form:
y—x

-±- b(y)J{x)-\-2-yX 0(y)J(x) (6.)
V — X *mà

X

wo die darin auftretende Funktion O (y) definiert ist durch die
Formel :

^j|xXrX(r~2' «ea.,

nach der von J. H. Graf1* gegebenen Formulierung.
Um die in den Formeln (5 a) und (5 b) auftretenden

unbekannten Funktionen £2 (y) zu bestimmen, beachte man, dass

vermöge der Bedingung | x | < | y | der Ausdruck (4.) entwickelt
werden kann in der Form:

1

y2 — x2

1

y2

v2 V^ Y^

y4 y6 y8
in inf. (7.)

multipliziert man

0 X

l-=[j(x)]2+2-2'1 [J«]'
i

|. 2-2X2 A)2[J(x)f
1

• 2 -VA (2 Â)2[(2 if - 22] [J (x)f

2

1-2
3-4

2

der Reihe nach mit —; --; —; und addiert, dann er-
y2 y4 y6

hält man links den Ausdruck (7.). Rechts dagegen kommt:



9 —

A[XXX XX2y2 y- y2 XX+...y2

i.!.22.[j(x)]2 +ll42[j(x)]2
2 y4

L WJ '
2 y4 XXX)f+....2 y4

L».l.iii.4'[W+L|.4.«.tf[iW+....3-4 y6 3-4 y6

^•A.32.62[J(x)]2X...
4-5-6 y8

L wj-r
Addiert man die Vertikalen, denselben Parametern der

J-Funktion enthaltenden Kolonnen, so erhält man eine Reihe,
x

deren Koeffizienten mit ß (y) bezeichnet sein sollen, von der Form :

if (y) [J (x)]2 -f 2ß* (y) [j (x)]2 + 2ß2 (y) [j (x)]2 -f 2Ü3 (y) [j (x)f +
+ 2ß4(y) [J(x)32 + ....-\-ex Qk(j) [J(x)f+ • -. inf. (8.)

d. h. die Koeffizienten sind identisch mit den Koeffizienten in
den Entwicklungen (5a.) und (5b.). Man hat demnach als
Definitionsformel dieser von C. Neumann eingeführten ß-Funktion in
der allgemeinen Darstellung:

nifr^1 |
K2 *)' Lg (2^)2[(2A)2-22]

y
y2 2 y4 3-4 y6 r

(9.)
1-2-3 (2 lf [(2 Kf — 22] [(2 À)2 — 42]

4-5-6 y«

Die ß-Funktion ist demnach eine ganze rationale Funktion

von—ganz entsprechend der durch Formel (6 a.) definierten
y2

n
O (y)-Funktion, die bei den Entwicklungen nach einfachen J-Funk-
tionen dieselbe Rolle spielt, wie die ß-Funktion für die
Entwicklungen zweiter Art. Zwecks vorteilhafterer Verwendung der
ß-Funktion bei den späteren Anwendungen, geben wir
nachstehend eine allgemeine Summenformel. Der allgemeine Summand
der Formel (9.) lautet:
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vivi (2lf[{2lf — 22] [{2lf - 42J [(2 if - 62].... [(2lf— (2 v—2)2]

(2„)! y2»- + 2

_v\vl 22vl2[l2-l2][l2-22][l2-32].... [^_(„_i)2]
(2v)! y2r+2

o2„ rivi (l-y-\-l)(*—v-\-2)....(l—l)-l-l(l-{
(2,)! + l)(A+ 2).... (X + v—2)-(À + *v—1

y2v+ 2

T 1 ~| o2* vìvi À-(il+ 1—1)!
[y2v+2J - {2v)l (l-v)l

woraus die allgemeine Summenformel lautet:

_ (2v)! (A — »)! y2"+2 y2

Daraus ergeben sich für einige Werte von l die folgenden
nummerischen Werte für die ß-Funktion:

ß0(y)-4
y2

^(y)=4 + 4
y2 y4

û(XX+7
'/(XXXX11?y2 y4 y6 y8

_4, 1 32 640 9216 73728
ß (y)= 2 + ,* + e + j» + 10y2 y4 y6 y8 y10

(11.)

_b, v 1 ,50, 1600 40320 737280 7372800
ß (y)= + •

y2 y4 y6 y8 y10 y12

„s 1 72 3360 129024 3981312 88473600
"' *' y2 y4 y6 y8 y10 y12

1061683200

u. s. w. y14
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Diese gefundenen Resultate notieren wir in folgendem Satz:
Der aus irgend zwei komplexen Grössen x und y

gebildete Bruch — kann unter Anwendung der
y-_x2

Bessel'schen Funktionen sowie gewisser anderer
Funktionen ßA(y), die durch die Formeln (9.), (10.), (11.)
definiert sind, in folgende Reihe entwickelt werden.

y2
-L-^=2* «; a* (y) [JWf (12.)

Die Entwicklung ist gültig für jedes der Bedingung
| x | ¦< | y | entsprechende Wertsystem von x und y.

Um eine allgemeine Methode zur Bestimmung der
Koeffizienten zu erhalten, beachte man, dass nach Formel (3.) jede
gerade Funktion f(x) dargestellt werden kann durch:

fXX-X-i f(y)4^r (is-)
Ì1 « J « y2

indem man in Formel (3.) x gegen y und c gegen x vertauscht.
Dabei ist | x | < r <. R und die Integration erstreckt in positivem
Sinn längs der Kreisperipherie (r). Es sei nun | y | — r, d. h. es
sei y ein Punkt der Kreislinie (r). Dann ist | x | < | y | und der

in (13.) auftretende Ausdruck kann nach Satz (12.) in
y2 — x2

folgende Reihe entwickelt werden:

1
CO ^

-2—r=2Xs^/(y)[J(x)]2
•t 0

co

=2*k;. tj(x)i2
0

wok;. =r?--f f(y)^(y)-ydy2i^ J (v) i

Der Integrationsweg des zur Bestimmung der Koeffizienten
kyl dienenden Integrals (14.) ist, irgendwelcher Deformationen

(14.)
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fähig, ohne dass der Wert des Integrals sich ändert, solange
die Peripherie (r) nicht mit den Randpunkten R, für welche das

Verhalten der Funktion als unbekannt vorausgesetzt worden ist,
noch mit dem Mittelpunkt der Kreisfläche in unmittelbare
Berührung kommt.

Nun ist der Bruch eine gerade Funktion von x.
y2 x2

Man kann somit jede beliebige gerade Funktion f (x) nach der
durch (14.) dargestellten Weise in Reihe entwickeln. Diese
Resultate notieren wir in dem folgenden Satz:

„Stellt R eine reelle, endliche Konstante und f(x)
eine gegebene Funktion dar, welche eindeutig, stetig
und gerade ist, so lange | x | <C R bleibt, dann existiert
jederzeit eine Entwicklung:

f(x) k0 [J(x)]2+kt[J(x)]°+k2 [J(x)]2+ka[J(x)]X.. in inf.

oder (15.)

00 x ff(x)X§A k, [j(x)],wok,=-X- f(y).ß*(y).y-dx^ 217T ,/ (r)

welche gültig ist für jeden der Bedingung | x | <[ R
entsprechenden Wert von x. Die Integration ist zu
erstrecken längs irgend einer Kreislinie (r), deren Mittelpunkt

in x 0 liegt und deren Radius r <; R ist.

Dabei ist £0 1; «i «2 £3 • • • • — e^ -=2.

Analog lässt sich eine Funktion f (x) behandeln, welche
eindeutig, stetig und gerade ist auf einer ringförmigen Fläche, die

begrenzt ist von zwei konzentrischen um den Punkt x 0
beschriebenen Kreisen (Laurent'scher Kranz). Sind Rt <; R zwei
reelle Konstanten und stellt f (x) eine gegebene Funktion dar,
welche eindeutig, stetig und gerade ist, so lange R1 < | x | < R
bleibt, dann existiert jeder Zeit eine Entwicklung von der Form:

f(x) —-f f(y) y dy +—• f f(y)2i« J (R) y2 —x2 2Ì7t J (RJ

dy
x' — Y
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Für I x X I y I gilt nach obigem die konvergente
Reihenentwicklung:

1
CO ^VA e,Q*(y)[j(x)f

y2 — x2 <—

für | y | •< I x | gilt analog

1 °° x

—i—^2* «;.-^(x)[J(y)f
y 0

Demnach lässt sich die den oben genannten Bedingungen
genügende, willkürliche Funktion f(x) darstellen durch:

n co I

f(x) ^~ • l2a e>- qXW tJ(x)f f(y)*ydy2itt J (R)(^J J

.| st
I OO -,

+F-- I m,"2* *>• ßHx)[J(y)]2-f(y)ydy-
*J **¦ I n

OO
1 /*

t(x)=yi ek [J(x)] --X- •fìi(y).f(y)-ydy +--J 2l7T J (R)

+^ «, ß* (x)--1- • [J(y)]2-f'(y)-y dy

X ,2

f(x)=2^ ^ [JW] +2*' ^ ß"(x) (16.)

wo

Un .)_ (R)
(y) •f (y) • y •d y

p^ir-- im JJ(y)]2-f(y)-y-dy
2l7T J (Ri)

(16a.)
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Die Methode, nach welcher man zu dieser allgemeinen

Darstellung kommt, ist ganz analog der durch (13.) und (14.)
gegebenen und zudem in hohem Masse übereinstimmend mit der
von Graf und Gubleru gegebenen allgemeinen Herleitung einer
Methode zur Entwicklung nach einfachen J-Funktionen. Ist
nämlich die Funktion f (x) in einem Laurent'schen Kranz definiert,
dann gilt für R1 < | x | < R

f(x) -L-f f(y)^LfJ_.f f
2i7r J (R) y — x 2Jti J (Rt)

Nun ist nach (6.)

1 0 0 °° X l
O (y) J (x) + 2Va 0 (y) J (x)

y—x _j

i \ dy(y)—^

x|<|y|
i

CO-l_ o(x)J(y) +2.VA 0(x)J(y) |y|<|x|
x — y ^JJ i

Daher ist auch den oben genannten Bedingungen genügende,
willkürliche Funktion f (x) darstellbar durch:

f(x)=2*|kJl J(x) + ^ O(x)

wo k, =^A.-|>(R^0(y)f(y)-dy2Ì7C

i*x=~- f J(y)f(y)*dy2i^r J (R)

woraus die vollkommene Analogie ersichtlich ist.

Man erkennt unschwer die vielfache Verwendbarkeit dieser
Methode. Es sind ihr nur Grenzen gesetzt durch die mögliche
oder unmögliche Lösung der Integralausdrücke, die zur Bestimmung
der konstanten Koeffizienten dienen. Sie wird ferner dadurch
beschränkt, dass die prinzipielle Bedingung erfüllt sein muss,
d. h. dass f (x) eine gerade Funktion sein soll. Bei der
entsprechenden Methode zur Entwicklung nach Neumann'schen
Reihen erster Art hat man nur die erstere Beschränkung, indem
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die zu entwickelnden Funktionen gerade oder ungerade sein
können. Es sei speziell nochmals hervorgehoben, dass diese

Reihenentwicklungen für gerade Funktionen nach Quadraten,
d.h. nach Produkten Bessel'scher Funktionen desselben Parameters
fortschreiten. Nach einem später zu betrachtenden Postulat von
E. Lommel* können auch ungerade Funktionen in Reihen
entwickelt werden, die nach Quadraten von Bessel'schen Funktionen
fortschreiten, deren Parameter aber gemischte Zahlen sind, während
in den Formeln (15.) I nur ganzzahlige, positive Werte annehmen
kann.

Noch auf einen Punkt möchten wir aufmerksam machen,
der in gewissem Widerspruch steht zu einer später zu besprechenden

Forderung. Die Neumann'sche Entwicklungsmethode gibt
konvergente Reihen für alle Werte von x, die der Bedingung
genügen: | x | < R, wo R eine reelle, positive, endliche Grösse
ist. In einer von Niels Nielsen gegebenen Methode, die zu genau
denselben Reihenentwicklungen führt wie die Neumann'sche
Methode, wird mit jeder wünschbaren Strenge bewiesen, dass
die nach den Quadraten und Produkten Bessel'scher Funktionen
fortschreitenden Reihen in demselben Bereich konvergent sind,
wie die, die entwickelte Funktion darstellende Potenzreihe. Für
die Entwicklung des trigonometrischen Cosinus hätte man
demnach, da seine Potenzreihenentwicklung konvergent ist für alle
Werte —oo-<x<;oo* | x | •< ©o, ebenfalls eine konvergente
Reihenentwicklung nach Neumann'schen Reihen II. Art für alle
Werte | x | < oo, was mit der Neumann'schen Forderung, dass

R endlich sein soll, nicht so ohne weiteres vereinbar ist. Den
Grund dieser Unstimmigkeit haben wir bis jetzt nicht ermittelt.

Im übrigen wird diese erste, von Carl Neumann gegebene
Methode immer dann zu einem Resultat führen, wenn die zu
entwickelnde gerade Funktion f (x) in eine Potenzreihe entwickelt
werden kann. Dadurch werden die zur Bestimmung der
Entwicklungskoeffizienten k; dienenden Integralausdrücke leicht
lösbar. Zur Anwendung und weiteren Erläuterung der Methode
geben wir im folgendenden Paragraphen die Entwicklungen für
einige gerade Funtionen.
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§ 3. Anwendungen.
1. Aufstellung der Reihe für 1.

Nach (15.) ist dann zu setzen : f (x) x° — 1

somit: f (y) y° 1

Daher hat man

CO n
f(x) l=Nl kx [J(x)f, wo k, -^- ß;(y)-ydy.

— 2itt J (r)

Die Integration ist in rechtläufigem Sinn längs einer
Kreisperipherie um den Nullpunkt zu erstrecken, was wir jetzt und
in allen folgenden Untersuchungen durch / andeuten. Unter
Benützung der in (11.) gegebenen Summenausdrücke für ß* (y)
hat man sofort:

«o^.fß^y)-y-dy -L. fJ_-y-dy-^1.
iTZ J 2\7t J y2

0 2

tl=^.^,y,.y.d^^.j"{l+lj.yay=2.

Analog bestimmen sich k3=k4=k6=k6= =k^ 2.

Unter Benützung der allgemeinen Summenformel für ß* (y)
(10.) leitet sich der allgemeine Koeffizient leicht ab.

1 2\7t J — (2v)! (l — v)l y2"+2
J J

Um das Integral auszuwerten, hat man vom Integranden

denjenigen Summanden zu entnehmen, der die Potenz y—1 —

y
liefert. Alle andern Potenzen von y geben zu diesem Cauchy'schen
Integral keinen Beitrag. Man erkennt sofort, dass man diesen
Summanden erhält durch die Setzung — 2v — 2+1 — — 1;
v 0.

Dann ist der Koeffizient von —, also 1 — 1 1.-, also -
y LyJ
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Diese Bestimmungen enthalten keine Beschränkung für die
Laufzahl l, welche, wie ursprünglich definiert worden ist, alle
ganzzahligen positiven Werte von 0 bis oo durchlaufen kann.
Daher werden auch alle k^ auftreten, und sie sind allgemein
bestimmt durch:

k^JXp^e, =2;ko l.
2\7t J y

Man hat daher die Entwicklung:

1 [J (x)]*+ 2 [J (x)]2+ 2 [J (x)]2+ 2 [J(x)f+ in inf.

[J (x)]2 + 2 2* [J (x)f güitig für | x | < R. (17.)

i
2. Aufstellung der Reihen für die geraden Potenzen.

Reihe für x2. f (x) x2; f (y) y2

co A

daher ist f (x) =-= x2 =2* k>i [J(X)L
o

kA=-^-./V(y)-y3.dy
2\rt J

Man findet im besonderen:

k0 -^.rß0(y).y3.dy J-.r-L.y8-dy 0.
2irr J 2\7t J ya

k1 X- - (V (y) - y3- dy ±- - /U + A) -y3-dy=4.
2\7t J 2i7t J (y2 y4)

k2 ^-.fß2(y).y3.dy ^-.

im allgemeinen:

k/-=Ji_.f.^ 22y^i-^+y-1!--J--y3-dy1 2Ì7i J —J (2v)! (l — v)l y2"+2
J
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die allgemeine Potenz im Integranden ist y-av—2+3^ T)ie einzig

in betracht fallende Potenz - erhält man durch die Setzung — 2v—
y

— 2 + 3 — 1, v 1. Es wird dann :

[SM 2 l2, woraus dann
2 (l— 1)!

k, =-X- f2A2±.dy (2A)
2\7t .1 yy

In der Bestimmung des Koeffizienten von - smd keinerlei

Beschränkungen für die Laufzahl l enthalten. Sie kann somit
alle ganzzahligen, positiven Werte von 1 bis oo durchlaufen.
Man hat demnach die Entwicklung:

x2 4 [J (x)]2 + 16 [J (x)]2 + 36 [J (x)]2 + 64 [J (x)]2+ in inf.

oo
x2 =^2 (2^)2• [J(x)]2, gültig für |x|<R. (18.)

Ganz entsprechend werden die Reihen für die folgenden
geraden Potenzen von x hergeleitet.

Reihe für die allgemeine gerade Potenz x2n.

Man hat zu setzen f(x) x2n; f(y) y2n

oo

f(x)=x2>-=2* MJ(X)]2
0

k* ^* fß*(y)y2n+1dy.

X.f<J„ 22y-^^-MJ±J'=l)!._l_ .V2n+l.dy
Ì7t J — (2»>)! (À — v)l y2"+2 *'

xif/!^(H^i!r 2v,2W1,dyin 4* (2v)l(l-v)l J '

X
2

wo

2Ì7f
0
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Die Potenz y_1 findet man durch die Setzung 2n + l — 2v —
— 2 — 1, v n.

Es fallen alle Koeffizienten des Integrals weg mit Ausnahme
des einzigen, in welchem man n »> setzt. Es wird daher:

k _o 22n n!n! l-(l + n-l)l
X

(2n)! ß — n)!

Aus dieser Bestimmungsgleichung für k^ geht hervor, dass
,1 ^ n sein muss, indem für l < n der Nenner unendlich gross
wird, die entspr. Koeffizienten also verschwinden. Daraus ergibt
sich die Entwicklung für die allgemeine Potenz x2n zu:

n! n!
x2n

(2 n]Ì 2 "2* (2 X)2 [(21)2~^ [{U)2~
"

-(2n-(2)2]-[J(x)]2
(19.)

oon!n! 22n+1 ^ l - (l + n - 1)! rj(x)]2.|x|<R
(2n)! g (À-n)!

Nach den bei der Herleitung der Methode gemachten
Voraussetzungen sollen diese Reihenentwicklungen konvergent sein
für jedes der Bedingung | x | < R genügende x, wenn R eine

reelle, endliche Konstante bedeutet. Dass zufolge dieser
Bedingung die gefundenen Reihen wirklich konvergent sind, soll
gezeigt werden, dadurch, dass für alle Reihen ein bestimmter
Grenzwert

limi^±iJ<l
|n„ |

existiert. Damit ist dann gleichzeitig nachgewiesen, dass die
Reihen unbedingt konvergieren.

Der allgemeine Term der Formel (19.) lautet, abgesehen
von dem für ein und dieselbe Potenz konstanten Faktor 23n+1 •

n!n!
tolgendermassen :

(2n)!

•fJW]¦À-fl + n — 1)! ri.

(A-n)!
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Die durch die unendliche Reihe

j(x)=2^ (-^
X\ ^ r

ul r(n + /i + l)
definierte Bessel'sche Funktion ist in dieser Darstellung absolut
konvergent für jeden endlichen Wert von x. Nach einer von
J. J. Schönholzer15 gegebenen Formel bestimmt sich das Produkt
zweier Bessel'scher Funktionen durch die Formel:

j(x)-j(x)=^ (-ir ^(H-b+2^+1)
r(a+M + i)r(b+Ai + i)

a + b + 2f*

(I)
r(a+b+ M+l)!M!

was wegen der absoluten Konvergenz jeder einzelnen unendlichen
a b

Reihe von J (x) und J (x) wieder eine absolut konvergente
Entwicklung ist für jeden endlichen Wert von x. Da es sich oben

um das Quadrat einer Bessel'schen Funktion handelt, wo also
a b -= l ist, so wird die Formel zu:

/ oo

[j(x)]2=2^<-i)'t r(2/ + 2^ + i)
r(À+M.fl).r(À+/t+l)'

2* +2^

(i)
r(2i + u-T-i)-ui

was unter der Annahme, dass die Laufzahl fi nur positive
ganzzahlige Werte durchlaufen soll, auch geschrieben werden kann:

/x\2k+2fl

(2^ + 2M)! \2/ (20a.)2 cxj

[j(x)]2=2^ (-^ (l+rfl (J+fi)! (2A + /u)!M!

Sowohl in der Summenformel für J (x) als auch in der
r i- -i2

Summenformel für [J(x)J ist der erste Summand; d. h. wenn
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fi 0 ist, der grösste. Da man es hier und dort mit unendlichen
Reihen zu tun hat, die bei wechselndem Vorzeichen monoton
abnehmen, so ist offenbar der absolute Betrag des ersten Summanden

grösser als der absolute Betrag der Summe aller Summanden.
Wenn man daher bei den folgenden Konvergenzuntersuchungen
den absoluten Betrag des ersten Summanden in Rechnung bringt,
so führt man einen zu grossen Wert ein, indem eben:

3i

Uli > « f. t*» + 2,)l

21+ 2/*

{l + u)iß + u)i (2^ + ^)!^!

Setzt man den Wert links statt [J(x)] in der allgemeinen
Form der Formel (19.) ein, dann kommt:

nA< l{l + n — 1)!

2i

XI 11

analog

Demnach :

n>i+i <

2A+2

(A-n)!.

(A + l)X + n)!

(l — n + 1)! (A + l)! (Â + 1)!

;2

oxa-1 ß + n)

n, -(^-n + 1) l-(l+l)
was für gegenüber n einigermassen grosse l zu

IU4-1

nA 4-A(À + l)< < 1 für | x I < R wird.

Unter der Bedingung, dass |x|-<R, wo R eine reelle,
endliche, positive Zahl sei, was unbedingt notwendig
ist für die Konvergenz der die Bessel'sche Funktion
definierenden unendlichen Reihe, sind die in (17.) bis
(19.) hergeleiteten unendlichen Reihen unbedingt
konvergent.
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3. Aufstellung der Reihen für die geraden trigonometrischen Funktionen.

Reihe für cos (x).

f (x) cos (x) ; f (y) cos (y)

2

cos (x) "VA kk [J (x)] ; wo kA -^
aJ 2l

0

/
£X_

7C

cos (y) • £? (y) • y ¦ d y.

Das Integral lässt sich am einfachsten auswerten, wenn
man für cos(y) seine Potenzreihenentwicklung einsetzt:

cos(y) : " ~ '5(y)=i_Z--i_y__y_-i_JL_-|-...inf. x^ (__i)^
2! 4! 6! 8! äkf (2u)l

Dann wird :

k^ =-X. ni_z! + y!_y!+y!_ + ...XA(y).y.dy* 2Ï7Z }\ 2X4! 6X8! J u; y y

2\7t'J ZI "
(2v)! (* — *)! 'y2X2

.^ (_lf ._l!^.y.dy.^ V ' (2u)l J 7

«0
ko -

Man erhält im einzelnen:
2 174 ,,6

i/r 7 UM 2! 41 6! r J ' *

kx x_. /'ßi(y)(i_y!_(_y!_y6+_....)ydy=o
2Ì7T y X 2!

'

4! 6! \3 3

k2 -2-./ß2(y)-(l-^ +y4-^+-....|ydy=-^2Ì7Z J J' 1 2! 4! 6! J7 J 3

k3 —• /"ß3(y)(l- l!+ l!-l!+y!— _(_...)y.dy
2Ì7T J X 2! 4! 6! 8! T

48

1-3-5
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im allgemeinen:

kx -*r- • / ßA (y) cos y • y • dy

2 /'V,, 22" vl vl M^X" —1)-. 1

»«' y .-Zi* (2 y)! (A — v)! y2"+2

•Vp (_i; -Z^L.y.dy
-AT 7

12u)!
7 J

Die allgemeine Potenz im Integranden ist y2p+i-2y-2.
Von allen Gliedern geben nur die einen Beitrag zum Integral,
die die Potenz y_1 enthalten. Man erhält diese Potenz durch
die Setzung 2jU + l — 2v — 2 — 1;. u v.

Dann wird |"±1 (- 1)" - 22* - -±±- -
M* + *--l)!

LyJ (2y)!(2y)! (A-y)!
und daher auch

ki==^„ (_!)". 22"+1 iiy!__.A.(À + .-l)!
4 Äl (2y)! (2v)! (A--y)!(2y)! (2v)! (A, — v)l

Demnach lautet die Entwicklung für cos (x) :

cos (x) [J(x)f +2^ 21 - [J(x)f -2" (-1)" * 22"

AA dzbxi)! |X,<R.
(2v)! (2y)! (À — y)!

o °° i

oder cos (x) [J (x)]2 + 2 -*Sl k;. - [j (x)f (21.)

k, XSV (-if22y v!v!
_J (2y)! (2 y

Ivi A-(A+y-l)!
(2 y)! (2 y)! (À —y)!
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Nach Ausmittelung einiger numerischer Werte für k/
erhält man:

coS(x) [](X)]a--W-.[Ì(x)f--4-.[j3(x)f +
1 • ö 1 • ö • o

1-3-5-7 1-3-5-7-9

Die Reihe zur Bestimmung der Entwicklungskoeffizienten
ka ist eine endliche, von selbst abbrechende Reihe mit
alternierendem Vorzeichen. Die einzelnen Summanden werden mit
zunehmenden Werten der Laufzahl v grösser, um bei einem
bestimmten Werte v ein Maximum zu erreichen und nachher
wieder abzunehmen. Wir behaupten, dass bei geraden A der

À
Summand der grösste wird, für den man y ersetzt durch — ; bei

Li

l 1
ungeraden A jedoch der, in welchem man v ersetzt durch

a
Dabei soll es sich jedesmal nur um den absoluten Wert handeln.

Wir betrachten den ersten Fall: A gerade; A 2n, wo
n =-= 0,1, 2, 3,4, Der allgemeine, absolut genommene Term
der Summenformel für k>i. lautet:

„2v vi vi A • (A + y — 1)!

Setze y — :

2

2;*

(2 y)! (2 y)! (-î —y)!

(|H|> xxH:
2/ V 27 2

Setze A 2n:

22n_n!n!_.2n-(3n-l)! 22n __n!_2n
(2n)!(2n)! n! (2n)!(2n)! ' v '
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Den unmittelbar vorausgehenden Term erhält man durch
die Setzung

_A j^-2V==2 ~~
2

dann kommt

(*-2)! (A-2)! [ A-2j,

Setze A 2 n

22n-2 (n-l)!(n-l)! 2n-(3n-2)!
(2n -2)! (2d- 2)! (n + 1)!

Den unmittelbar nachfolgenden Summand erhält man durch
die Setzung:

A A + 2
y h 1

2 2
dann wird

/Ì + 2x^m h- 1
_ \ 9 / \ 9 / I 9

2
(A + 2)! (A + 2)! h_i+2

Setze A 2 n

|*-X2!>

22n+2 (n + 1)! (n+1)! 2n-(3n)!
(2n + 2)! (2n + 2)! (n — 1)!

Der Quotient aus (C.) und (A.) wird, wenn man für 2n
wieder A setzt, zu:

(C) _ 3 - A2

(A)~4-(A + 1)2

was für alle Werte von A kleiner als eins ist; daher ist | A | > | C |.

Der Quotient aus (B) und (A) wird, wenn man für 2n
wieder X setzt:

(g)=4(*-l)(»-l)
(A) (A + 2)(3A —2)

' ' ' '
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Es ist nun interessant, dass diese letztere Ungleichung von

der Grösse der Laufzahl A abhängig ist, während die Bedingungsgleichung

für die Ungleichung | A | > | C | für jedes A gilt. Mit
andern Worten:

Welches auch der Wert von A sei, unter allen Umständen
sind in der Summenformel für k^ alle Summanden, deren Lauf-

A A
zahl y >• — ist, kleiner als der Summand, für den v — ist.

2 .2Was die zweite Ungleichung | A ] > | B | anbetrifft, so kann
L>

man sich leicht überzeugen, dass der Quotient — nur bis und
A

mit A 10 kleiner als eins ist. Für A =10 erhält man:

(6)^4^9^.27
(A) 12-28 28

'

Für A 12

(B)=4.11.11=121
(A) 14-34 119

d. h. bis zur Laufzahl A 10 wachsen die Glieder der Summe

bis zum Glied mit der Laufzahl v —, welches Glied grösser

ist als alle vorhergehenden und grösser ist als alle nachfolgenden.
A

Für A >> 10 ist nicht mehr das Glied, für welches v — ist, das
2

1 1 A

grösste. Wir setzen jetzt v — 2 ; dann wird der
Li Li

allgemeine, absolut genommene Term:

22n_4 (n-2)! (n-2)!
_
2n-(3n-3)!

(2n—4)! (2n-4)! (n + 2)!

Bildet man den Quotienten aus (B) und (Bi), dann kommt

(Bi)=4(A — 3)(A — 3)

(B)~~(A+4)(3A-4)

Für alle Werte von A ist das Glied Bi, für welches v
2

ist, kleiner als das unmittelbar nachfolgende Glied B, für welches
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^ 2
y ist. Diese Ungleichung |B|>|Bi| geht bis zu A=30;

man erhält für:

A 30:^=i^Ll2l Z29<i;|B|>|B1|
(B) 34-86 731

' '

für A=32: (gi)^ ¦ 29 - 29 =,841
(B) 36-92 828

d. h. bis zu der Laufzahl A 30 ist in der Summenformel für
A — 2

k; das Glied, für welches v ist, grösser als alle vor-
Li

angehenden Glieder, und was aus dem obigen folgt, grösser als

alle nachfolgenden Glieder für 12 <f 2 n <f 30, wo statt A 2 n

gesetzt ist.
Für A > 30 trifft dies nicht mehr zu.

Wir setzen v 1 dann wird der allge-
2 2

meine, absolut genommene Term:

22n-6 (n-3)!(n-3)! 2n-(3n-4)!
(2n —6)! (2n —6)!* (n + 3)!

IDer Quotient aus (B2) und (Bi) wird dann, wenn n —

gesetzt wird:
(Ba) 4-(A-5)-(A—5)
(Bi)_(A + 6)-(3A-6)

Für alle Werte von À ist das Glied B2, für welches

ist, kleiner als das unmittelbar nachfolgende Glied Bi,
2

1 A

für welches y= ist. Diese Ungleichung geht bis zu A 50;
LI

man erhält für:

,n (Ba) 4-45-45 135^, Inl^iniA 50: -—- <1; d.h. Bi > B2
(Bi) 56 144 256

1 1 1 1

M (B2) 4 - 47 - 47 2209 ^ _ ^ ufur A 52: v—- >1; d. h. B2 > BJ
(Bi) 58 ¦ 150 2175

d. h. in der Summenformel für k^ ist das Glied, für welches
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A —4
gesetzt wird, bis zur Laufzahl X 50 grösser als alle

vorangehenden Glieder, und für alle Werte von A ------ 2 n, für
die 32 <J 2 n ^ 50 ist, ist dieses Glied gleichzeitig grösser als
alle nachfolgenden.

Wir setzen v 1 Der allgemeine, ab-
2 2 *

solut genommene Term wird dann:

22„-8 (n —4)1 (n-4)1 2n-(3n-5)!
(2n-8)! (2n -8)l" (n + 4)!

(Bs)

Der Quotient aus dem Gliede B3 und dem unmittelbar

nachfolgenden B2 wird dann, wenn statt n wieder — gesetzt wird :

(B3)_4-(A-7)(A-7)
(B2) (A+8)(3A-8)

Für alle Werte von À ist das Glied B3, für welches

ist, kleiner als das unmittelbar nachfolgende Glied B2,
2i j a

für welches y ist. Diese Ungleichheit besteht bis zu

A------68; man erhält für:

À 68: (Ba) 4161_,61==3721
(B2) 76 • 196 3724

' ' '

^^(52)^4^63.63^3969
(B3) 78-202 3939

d. h. in der Summenformel für k/ ist das Glied, für welches

v gesetzt wird, bis zur Laufzahl A 68 grösser als alle
Li

vorangehenden Glieder, und gleichzeitig für alle Werte von
A 2 n, für die 52 <; 2 n <f 68 ist, ist dieses Glied grösser als
alle nachfolgenden.

Das nächste Intervall geht von 70 <^ 2 n <; 86.

das folgende 88 <; 2 n ^ 102.

u. s. w. 104 ^ 2 n <: 118.
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Wir betrachten nunmehr den zweiten Fall: A ungerade,

A=2n+1, n 0,1,2,3. Der allgemeine, absolut genommene
Term der Summenformel für k; wird dann; wenn man wie

l jangegeben y ersetzt durch zu:

2

(j,_l)! (A-l)! f A-1K

Setze A 2 n + 1 :

22„ n!n! (2n + l)-(3n)!
(2n)!(2n)! (n + 1)!

Das unmittelbar vorausgebende Glied der Reihe erhält man,

2 2
wenn man v 1 setzt. Dann wird der absolut

genommene Term:

,_,(X3KXX1XjXm<
(A_3)!(A-3)! | A-31,

Setze A=2n + 1:

22n_2 (n-l)!(n-l)! (2 n + 1) • (3n - 1)! x

(2n —2)!(2n-2)! (n + 2)!

Das unmittelbar nachfolgende Glied der Reihe erhält man
^ -[ ^ -[

durch die Setzung v (- 1 ; dann wird dieser
Term: 2 2

(A + 1)!(A+1)! (A A + ll,
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Setze A 2n + 1:

22n+2 (n H)!(n + 1)! (2 n + 1) ¦ (3 n + 1)! u

(2n+2)! (2n + 2)! n!

Man bildet den Quotienten:

(C1) (A + 1)-(3A-1)
(A1) 4 A2

Dieser Quotient ist für alle Werte von A 2 n + 1, wo
n 0,1, 2,3 kleiner als eins, mit Ausnahme für A l, n =0,
wo er zu eins wird. Mit andern Worten:

Für alle Werte von A 2 n + 1 ist in der Summenformel

für k) das Glied, in welchem v ersetzt ist durch kleinerx 2
als alle vorangehenden. Man bildet nunmehr den Quotienten:

(B1)==4(A-2)(A-2)
(A1) (A + 3)-3(A-l)

Der Quotient ist für alle A 2 n + 1 kleiner als eins bis
zu A 19; man erhält für A 19:

(B1) 4-17-17 289 |Ai|^iRi|
(A1) 22-54 297

für A 21:

(B^ i^9X9_361 IBMXIAM
(A1) 24-60 360

d. h. für alle ungeraden Zahlen 3 <; 2 n + 1 <jj 19, ist das Glied
in der Summenformel für k^, in welchen y ersetzt ist durch
1 j

grösser als alle vorangehenden und, wie oben gezeigt wurde,
a

gleichzeitig grösser als alle nachfolgenden. Für A 2n + l>>19
gilt dies nicht mehr.

Wir setzen y 1 ; dann wird der allge-
2 2

meine Term absolut genommen:

Â_t fXKXv Ì++X--K
(A-5)!(A-5)! [x A — 5,
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setze für A — 2 n + 1 :

02„-4 (n-2)! (n-2)! (2 n + 1)- {3 n--2)!
(2n —4)! (2n-4)! (n + 3)!

Man bilde den Quotienten:

(Bi) 4-(A-4)(A-4)

(Bl)

(B1) (A + 5) • (3 A — 5)

Für A 39 erhält man:

(Bi) 4-35-35 175 IrII^i-rii(Br)^l4XT2"=m<1',B|>|Bl1
Für A 41 erhält man :

(Bi) 4 - 37 • 37 1369 |Ri|^|Ri|/trü — — ^>i; di > t>
(B1) 46-118 1357

' ' '

d. h. für alle Werte von A 2 n + 1, n 1, 2, 3, 4 ist das
^ 3

Glied, in welchem die Laufzahl v ersetzt ist durch y= 2
grösser als alle vorangehenden und alle nachfolgenden Glieder,
wenn A, resp. n im Intervall 21 <jj 2 n + 1 <; 39 liegt.

Das folgende Intervall wird: 41<^2n + 1^57.
Das folgende Intervall wird 59 <Ü 2 n + 1 <J 77.

das nächste wird 79 <J 2 n + 1 <^ 95.

u. s. w.
Die gefundenen Resultate sollen kurz zusammengestellt

werden.

1. A gerade, A 2 n.
__ 2

Für 0 <; 2 n <; 10 ist das Glied mit v — das grösste
LI

„ 12^2n^30 „ „ „ „
v--=X~2

32 < 2 n < 50

52 ^ 2 n ^ 68

2

A —4
2

A —6
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3 Q

Für 70 <; 2 n <; 86 ist das Glied mit v das grösste
Li

„ 88^2n^l02 „ „ „ „ v —-^ „
Li

„ 104^2n^ll8 „ „ „ „ y==-^— „

2. A ungerade, A 2n + 1.

Für 3 <[ 2 n +1 <[ 19 ist das Glied mit y das grösste

21^2n + 1^39 „ „

41^2n+1^57 „ „

59^2n + 1^77 „ „

79^2n+1^95 „ „

97^2n+1^115 „ „

117^2n + 1^133 „ „

A —3
2

A-5
2

A-7
2

A —9
2

A — 11

2

A- 13

Die Anzahl der Werte, die A in den verschiedenen
Intervallen annehmen kann, sind für
gerade A resp. 5, 10, 10, 9, 9, 8, 8, 6, 6

ungerade A resp. 9, 10, 9,10,9, 10, 9, 10, 9.
Für die geraden A hat man nicht die periodische

Regelmässigkeit, wie für die ungeraden A, indem erstere in der Folge
wieder viel grössere Intervalle zeigen.

Wenn man nun zur Untersuchung der Konvergenz der
Reihe (21.) zurückkehrt, denn zu diesem Zwecke ist die Summenformel

für kj etwas genauer/betrachtet worden, so fragt es sich,
welchen Wert man in der Formel:

k -sM-ir-a"- vlvï 'Mt + '-w
k/ 2i (2v)l (2y)! ß — v)l
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dem y erteilen muss, um in der Konvergenzbetrachtung der Reihe:

o °° j
cos(x) [J(x)]2+2-2^ k, [J(x)f

i
keinen zu kleinen Wert einzuführen. Unserer Ansicht nach kann
hier nicht genau gesagt werden, für einen unendlich grossen
Wert von A habe man, um in k; das grösste Glied herauszunehmen,

für y den oder jenen Wert einzusetzen, sondern es

kann sich nur um eine angenäherte Schätzung für sehr grosse
Werte von A handeln. Man kommt mit der Setzung für gerade A:

A—1000 A-1001
y== tur ungerade A: v jeden fall schon zu

LI L.

sehr grossen Werten der Laufzahl A. Im ersteren Fall wird
dann der allgemeine Term von k^ zu:

/A—1000 \ fk- 1000\

(-1)"
-1000

lcoo ï r
k-lk-i-

(A —1000)! (A —1000)!
A—1000 lt

I 1000|,
2

'

Setze für A 2 n, so wird, da

(- l)n-600 (-l)n
(n —500)! (n— 500)!(- 1)D * 2,2n - 1000 2n • (3n-501!

(2n—1000)! (2 n —1000)! (n + 500)!

Dieser Wert ist für das sehr grosse gerade A der grösste
von allen Summanden der Summenformel für k^. Da diese
wechselndes Vorzeichen hat, ist der obige Wert absolut genommen
gleichzeitig grösser als der absolute Wert der ganzen Summe.
Für diesen sehr grossen Wert A 2 n wird dann der zugehörige
grösste Wert des Quadrates der ïf-Funktion, also von

[J(x)], zu:

xV
2

UV.

2n

(2n)! (2n)!
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1 i2
Das Produkt k^ • [J(x)J für A 2n wird dann:

I r1 i2| I r2n n2 I

|k,-[j(x)] |=|k2n-[j(x)] |<

< O2n-iooo (n —500)! (n —500)1 2n-(3n—501)! \2
u • •

2n

(2n —1000)! (2n —1000)! (n + 500)! (2n)!(2n)!

Analog wird für ungerades A : A 2 n + 1 :

r2n+l

<

I r^-t-1 -Cl i I r"* ' - Vil
I ki+1 • [ J (x)] | |k2n+1[ J(x)] |<

22a-iooo. (n —500)! (n - 500)
_
(2n+l) - (3n—500)!

_

(2n-1000)!(2n—1000)!* (n + 500)!

x\2n+x
27

(2 n + 1)! (2 n + 1)!

Der Quotient wird dann:

l X1 l2-Xi*[ J(x)]

k* * [J(x)]2
<

(3n-500)(| (3 A — 1003) • x

(n + 501)(2n + l) -2n 2A-(A+1) - (A + 1002)

Für A 400 erhält man annähernd einen Quotienten von
1:2.106. Da die absoluten Werte untersucht worden sind, so
ist die Reihe:

o °° 1

cos(x) [J(x)]2+2-2^ ki *[J(x)]2

wo
oo

2x-ir-22,/
y! y! A • (A + y — 1)1

(2y)!(2y);ì! (k-v)\

auf Grund dieser angenäherten Schätzung absolut konvergent
für alle endlichen Werte von x.
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Im Anschluss an diese Beweisführung möchten wir nicht
unterlassen zuzugeben, dass sie weit entfernt davon ist, einen

streng gültigen Beweis zu erbringen und rein empirischen Charakters
ist. Da wir bis jetzt nicht Mittel und Wege gefunden haben,
einen solchen zu leisten, behalten wir uns vor, darauf
zurückzukommen.

Reihe für den hyperpolischen Cosinus, cof (x).

f(x) cof(x); f(y) cof(y)

OO -,

cof(x)=2A X[J(X)]2> wokA -=
0

-5X/V(y).cof(y).ydy.
2 171* J

Bekanntlich ist der hyperbolische Cosinus definiert durch:

cof(y) i(ey + e-y)--2( (2ju):

Die Koefizienten bestimmen sich ganz analog wie beim
trigonometrischen Cosinus, so dass wir uns auf die Bestimmung
des allgemeinen Koefizienten k^ beschränken können.

K=^-- [&(j)™\(y)-ydy
2\7t J

\l7t J —
22V vi vi A(A+y-l)! 1

(2y); (k-v)\ y2"+2

oo

•>V^X.y.dy

Mit Ausnahme des hier fehlenden Faktors (— 1) hat man
genau den obigen Fall, daher wird:

kk=2k.yv22*. Vlvl •(A + i,-1)!;ko=l._ (2y)! (2y)! (k — v)l
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Man erhält dann die Reihe:

cof(x)-
0 o

[J(x)]
CO

i

* [J(x)]2 |x|<R.

0 °°
[j(x)]2+2^2A-

i
[jW:-2* 22;

0

v v (A + y-
(22.)

-1)!

(2y)!(2y)! - (A — y

cof(x)
r ° i2
[J(X)] +'3ri(x)]24 38

1-3
[J2(x)f+j

588 -[J3(x)]2 +.-3-5
6121

1-3-5-
-[J(x)f+.
7

inf.

Die Konvergenz der Reihe lässt sich ähnlich wie oben
nachweisen.

Damit sind die geraden Funktionen, die in Potenzreihe
entwickelt werden können erschöpft, und man betrachtet im
folgenden eine neue Methode zur Entwicklung von ungeraden
Funktionen.
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