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Eduard Jordi.

Ueber Reihenentwicklungen nach Quadraten und

Produkten von Bessel'schen Funktionen.

Einleitung.
In einer sehr bemerkenswerten Schrift hat W. Köstler * die

Reihenentwicklung nach Bessel'schen Zylinderfunktionen untersucht

und bedeutend erweitert. Er weist daselbst mit Recht auf
ihre vielfache Verwendung sowohl in der reinen Mathematik als
auch ganz besonders in der theoretischen Physik hin2, wie dies

u. a. besonders von E. Lommel3, N. Nielsen* und H. Weber6 getan
worden ist. W. Köstler gibt in der genannten Schrift erst eine

Einteilung der Reihenentwicklungen genannter Art und behandelt
dann besonders die Entwicklungen nach sog. Neumann'sehen
Reihen erster Art, d. h. nach Reihen, die nach einfachen
Bessel'schen Funktionen fortschreiten. Diese Art von Reihen
ist wohl die am meisten verwendete, weshalb denn auch die
Methoden zu ihrer Herleitung am zahlreichsten und vollkommensten

ausgebildet sind.
Von mehreren Autoren: N. Nielsen*, E. LommeV, Carl

Neumann8 ist auf die Möglichkeit der Darstellung von Potenzreihen

nach sogenannten Neumann'sehen Reihen zweiter Art
hingewiesen worden, d. h. nach Reihen, die nach Quadraten oder
Produkten von Bessel'schen Funktionen fortschreiten. Sie spielen
jedoch nach N. Nielsen in der Theorie der Zylinderfunktionen
keine so wichtige Rolle wie die der ersten Art, ebenso ist ihre
Verwendung in der reinen und angewandten Mathematik unseres
Wissens keine so ausgedehnte, weshalb denn auch die Methoden zu
ihrer Herleitung zum Teil nur angedeutet sind von Carl Neumann8,
von Niels Nielsen6, oder nur Resultate von geringer Allgemeinheit
veröffentlicht sind von E. LommeV, Hansen9 und Gegenbaur10.

Wir haben nun in der vorliegenden Schrift versucht, die
bestehenden Methoden auf die bekannten Potenzreihen
anzuwenden, die nach den verschiedenen Methoden erhaltenen Resultate
miteinander zu vergleichen und im besonderen auch die Parallelen
zu ziehen zwischen den Entwicklungen nach Neumann'schen Reihen
erster und zweiter Art.

Die Zahlen im Text weisen auf das am Schluss beigefügte
Literaturverzeichnis hin. 1



I. Abschnitt.

§ 1. Klassifizierung der Reihen.

In der genannten Arbeit teilt Köstler die eigentlichen
Entwicklungen nach Bessel'schen Funktionen ganz allgemein in
folgende drei Typen ein:

1. Entwicklungen erster Klasse:

Reihenentwicklungen mit gleichbleibendem Parameter und
veränderlichem Argument, dessen Änderung sich nach einem durch
die Laufzahl l beherrschten Gesetz vollzieht.

Ihre allgemeine Form ist:

F(x)=2ZAAf ptoOO)]

2. Entwicklungen zweiter Klasse:

Reihenentwicklungen mit gleichbleibendem Argument und
veränderlichem Parameter, dessen Änderung sich nach einem
durch die Laufzahl l beherrschten Gesetz vollzieht.

Ihre allgemeine Form ist:

F(x)=2^Aif pW))J

3. Entwicklungen dritter Klasse:

Reihenentwicklungen mit veränderlichem Argument und
veränderlichem Parameter, deren Änderungen sich jeweilen nach
einem durch die Laufzahl l beherrschten Gesetz vollziehen.

Ihre allgemeine Form ist:

F (x) -XV; A, f [jV«)1
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Die Entwicklungen der zweiten Klasse im besonderen lassen sich
wieder in zwei Gruppen trennen, nämlich:

a. Entwicklungen nach einfachen J-FunMionen. Sie werden
nach Niels Nielsen als Neumann'sche Reihen erster Art bezeichnet
und sind im Allgemeinen von der Form:

2V±ll A,J (x)

v±2X
* A,J(x)2

Sie wird besonders zur Darstellung von einfachen analytischen
Funktionen, vorteilhaft verwendbar, wie in der genannten Schrift
von W. Köstler ausführlich gezeigt wird.
b. Entwicklungen nach einfachen Produkten von J-Funktionen.
Sie werden nach Niels Nielsen als Neumann'schen Reihen zweiter
Art bezeichnet und sind im allgemeinen von der Form:

_-_ V±>. f*±k
2* AAJ(x).J(x)

V±l fl±).

2* aJ(x). J(x)

speziell ^A AAJ(x) J (x)

n A, [jw]
Die zwei letztgenannten Arten der Entwicklung geben verhältnismässig

einfache Darstellungen und sie sollen im Folgenden
eingehend untersucht werden.

§ 2. Erste Methode von Carl Neumann.
Die von Carl Neumann3 angegebene Methode ist in vielen

Teilen analog der von Köstler zitierten zweiten Methode zur
Entwicklung nach einfachen J-Funktionen.. Die Methode sei hier
soweit ausgeführt, als sie für die folgenden Untersuchungen von
Bedeutung ist.



An die Spitze der genannten Abhandlung stellt C. Neumann
den Satz:

„Versteht man unter n eine der Zahlen 0, 1, 2, 3,.... oo,
so kann die Potenz x2n in eine nach Quadraten von
Bessel'schen Funktionen fortschreitende Reihe
entwickelt werden, welche gültig bleibt für jeden endlichen
Wert von x".

Definiert man nach F. W. Besselu, Carl Neumann,2,
Hermann Hankel13 die allgemeine Bessel'sche Funktion durch
die Gleichung:

^ li)
JW-=2M-D\,rV+x+Tj

0

wo n jede beliebige reelle, ganze, positive Zahl sein kann, dann
hat die Enwicklung der Potenz x2n nach einfachen Bessel'schen
Funktionen die Form:

0 2 4 6

x2n a0 J (x) -f- «2 J (x) -[- «4 J (x) -\- «6 J (x) -4- in inf.

Die nach Quadraten derselben Bessel'schen Funktion
fortschreitende Entwicklung lautet dann:

x2D=ffnyî {a° ^ (X)J2+ "2 ^ {x)^+ ai ^ {x^++¦ • •in inf]

Die Koeffizienten der letzteren Entwicklung sind also proportional

mit denen der ersteren, nämlich von diesen nur verschieden
n!n!durch den gemeinschaftlichen Faktor

Nun sind die Entwicklungen von x°, x2, x4 nach
Bessel'schen Funktionen gegeben durch:

1 J (x) -f- 2 ^Sl J (x)

i
CO 2)

x2= 2*2A (2a)2-j(x)
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2A
X1 2-^1 {2 if [{2 if — 22] J(x)

2

co 2

2 -^A (2 if [(2 A)2 - 22] [(2 if - 42] J (x)
3

CO 2 À.

x8 2 ¦ 'Si (2 >1)2 [(2/)3 - 22] [(2lf — 42] [(2if—62] J (x)
4

co
x2" 2 -^?-1 (2 l? [(2 -1)2 — 22] [(2 *)2 — 41

n

[(2 if — (2 n — 2)2] • j\x)

Hieraus ergeben sich nach dem oben zitierten Neumann'schen
Satz die Entwicklungen dieser Potenzen nach den Quadraten
der J-Funktionen zu:

\
o 00 x

l=[j(x)]2+2*2*[J(x)]2
i

CO

i.2.^(2^)2[j(x)]:
i

1-2 n ^, _2r,^2 ^ X o2
x*

3-4
2

6_ 1-23
X ~ 4-5-6

2 -^ (2 ^)2[(2 X)2 — 22] ¦ [J (x)]
2

oo
• 2 -^ (2A)2 [(2A)2 - 22] [(2 if— 42] • [j(x)]2

1-2-3-4|| • 2 2-M2 A)2 [(2 If- 22] [(2 A)2 - 42] [(2 if -
- 62] • [J (x)]2

n!n!
x¦'"

CO

2D=
(2n3T '22^ (2^[(2^2-22][(2^)2-42] • • • •

[(2^)2-(2n-2)2].[j(x)]2

(1.)
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Nachdem die Entwicklungen für die geraden Potenzen

gegeben sind, ist es möglich, die Entwicklung einer geraden
Funktion herzuleiten. Ebenda beweist C. Neumann mit jeder
wünschbaren Strenge, dass jede Funktion f (x), welche eindeutig,
stetig und gerade ist in einem Gebiet, das vollständig innerhalb
eines Kreises um den Nullpunkt mit dem Radius R liegt, in eine
Reihe entwickelt werden kann von der Form:

CO ^

t^)=^l k*[JW]2 (2)
0

welche gültig ist für alle der Bedingung | x | -< R entsprechenden

Werte von x. Um nun mit Hilfe der vorhin hergeleiteten
Entwicklungen für die geraden Potenzen von x eine einfache
Methode zur Bestimmung der Entwicklungskoefizienten kA zu
erhalten, stellt man vorerst eine gerade Funktion durch ein

gewisses Integral dar.
Auf der x-Ebene sei um den Punkt x — 0 ein Kreis mit

dem Radius R beschrieben. Ferner sei f(x) eine gegebene
Funktion, welche eindeutig, stetig und gerade ist, solange | x | <C R
ist. Das Verhalten der Funktion auf der Peripherie des Kreises,
d. h. für | x | R, wird als unbekannt betrachtet. Sei ferner
x —c ein beliebiger Punkt innerhalb der Kreisfläche (R), d. h.

für den c|<r<R ist. Dann lässt sich nach dem bekannten
Satz von Cauchy der Wert der gegebenen Funklion f(x) im
Punkte c darstellen durch:

f(c) -^* f f(x) —2 i TT J (r) X — c

die Integration erstreckt in positivem Sinne über die Peripherie
der Kreisfläche (r). Diese Formel muss gelten für jeden andern
innerhalb der Kreisfläche (r) gelegenen Punkt, also auch z. B.
für den Punkt — c, also:

f(_c)=J-- f f (x)-Ì5-
2 i n J (l) x -\- c

Durch Addition der beiden letzten Formeln folgt sofort:
f (c) + f (— c) 1 f x • dxf fwJ W2 i 7i J (r) x2
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Zufolge der Voraussetzung, dass f (x) eine gerade Funktion sein

soll, ist f (c) f (c) ; daher

f(c)=-L*/' f(x).^-^. (3.)
2 i 7t J (r) x2 — c2

Damit ist jede gerade Funktion f (c), die endlich, stetig und
gerade bleibt für jeden der Bedingung | x | < R genügenden Wert
von x, durch ein Integral von der Form der Gleichung (3.)

dargestellt.
Vermöge der bisherigen Resultate gelingt es nun, den Neu-

mann'schen Ausdruck (y2 — x2)-
1 in die gewünschte

y2 — x2

Entwicklung zu bringen. Seien x und y zwei beliebige, komplexe
Grössen, y möge als fest, x als veränderlich betrachtet werden.
Der Ausdruck

y- —x2

stellt allsdann eine Funktion von x dar, welche eindeutig, stetig
und gerade ist, solange x der Bedingung genügt | x | < | y |. Dann
besteht nach dem oben zitierten Neumann'schen Satz eine
Entwicklung von der Form:

y2

1 ^0 X

-±—^l^[j{x)f (5.)

die gültig ist für jedes beliebige, der Bedingung | x | <C | y |

entsprechende x. Die Koeffizienten k; der Entwicklung werden
abhängig sein vom Parameter l und von y. Sie seien bezeichnet
mit £A & (y), wo e0 1, £l =¦ e2 e$ -= -= eA 2.

In dieser Schreibweise wird die Entwicklung (5.) zu:

y2

1 COi-XV* ex ß'-(y)-[j(x)]2 (5a.)

oder

y2:

0 X

-=ß°.(y) [J(x)]2+ 2 2* & (y) • [3 (*)f- (5b.)



— 8 —

Es sei hier an die Analogie der ebenfalls von C. Neumann "
gegebenen Methode zur Entwicklung nach einfachen J-Funktionen
erinnert. Der Weg ist folgender: Der Neumann'sche Ausdruck

wird in Reihe entwickelt von der Form:
y—x

-±- b(y)J{x)-\-2-yX 0(y)J(x) (6.)
V — X *mà

X

wo die darin auftretende Funktion O (y) definiert ist durch die
Formel :

^j|xXrX(r~2' «ea.,

nach der von J. H. Graf1* gegebenen Formulierung.
Um die in den Formeln (5 a) und (5 b) auftretenden

unbekannten Funktionen £2 (y) zu bestimmen, beachte man, dass

vermöge der Bedingung | x | < | y | der Ausdruck (4.) entwickelt
werden kann in der Form:

1

y2 — x2

1

y2

v2 V^ Y^

y4 y6 y8
in inf. (7.)

multipliziert man

0 X

l-=[j(x)]2+2-2'1 [J«]'
i

|. 2-2X2 A)2[J(x)f
1

• 2 -VA (2 Â)2[(2 if - 22] [J (x)f

2

1-2
3-4

2

der Reihe nach mit —; --; —; und addiert, dann er-
y2 y4 y6

hält man links den Ausdruck (7.). Rechts dagegen kommt:
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A[XXX XX2y2 y- y2 XX+...y2

i.!.22.[j(x)]2 +ll42[j(x)]2
2 y4

L WJ '
2 y4 XXX)f+....2 y4

L».l.iii.4'[W+L|.4.«.tf[iW+....3-4 y6 3-4 y6

^•A.32.62[J(x)]2X...
4-5-6 y8

L wj-r
Addiert man die Vertikalen, denselben Parametern der

J-Funktion enthaltenden Kolonnen, so erhält man eine Reihe,
x

deren Koeffizienten mit ß (y) bezeichnet sein sollen, von der Form :

if (y) [J (x)]2 -f 2ß* (y) [j (x)]2 + 2ß2 (y) [j (x)]2 -f 2Ü3 (y) [j (x)f +
+ 2ß4(y) [J(x)32 + ....-\-ex Qk(j) [J(x)f+ • -. inf. (8.)

d. h. die Koeffizienten sind identisch mit den Koeffizienten in
den Entwicklungen (5a.) und (5b.). Man hat demnach als
Definitionsformel dieser von C. Neumann eingeführten ß-Funktion in
der allgemeinen Darstellung:

nifr^1 |
K2 *)' Lg (2^)2[(2A)2-22]

y
y2 2 y4 3-4 y6 r

(9.)
1-2-3 (2 lf [(2 Kf — 22] [(2 À)2 — 42]

4-5-6 y«

Die ß-Funktion ist demnach eine ganze rationale Funktion

von—ganz entsprechend der durch Formel (6 a.) definierten
y2

n
O (y)-Funktion, die bei den Entwicklungen nach einfachen J-Funk-
tionen dieselbe Rolle spielt, wie die ß-Funktion für die
Entwicklungen zweiter Art. Zwecks vorteilhafterer Verwendung der
ß-Funktion bei den späteren Anwendungen, geben wir
nachstehend eine allgemeine Summenformel. Der allgemeine Summand
der Formel (9.) lautet:
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vivi (2lf[{2lf — 22] [{2lf - 42J [(2 if - 62].... [(2lf— (2 v—2)2]

(2„)! y2»- + 2

_v\vl 22vl2[l2-l2][l2-22][l2-32].... [^_(„_i)2]
(2v)! y2r+2

o2„ rivi (l-y-\-l)(*—v-\-2)....(l—l)-l-l(l-{
(2,)! + l)(A+ 2).... (X + v—2)-(À + *v—1

y2v+ 2

T 1 ~| o2* vìvi À-(il+ 1—1)!
[y2v+2J - {2v)l (l-v)l

woraus die allgemeine Summenformel lautet:

_ (2v)! (A — »)! y2"+2 y2

Daraus ergeben sich für einige Werte von l die folgenden
nummerischen Werte für die ß-Funktion:

ß0(y)-4
y2

^(y)=4 + 4
y2 y4

û(XX+7
'/(XXXX11?y2 y4 y6 y8

_4, 1 32 640 9216 73728
ß (y)= 2 + ,* + e + j» + 10y2 y4 y6 y8 y10

(11.)

_b, v 1 ,50, 1600 40320 737280 7372800
ß (y)= + •

y2 y4 y6 y8 y10 y12

„s 1 72 3360 129024 3981312 88473600
"' *' y2 y4 y6 y8 y10 y12

1061683200

u. s. w. y14
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Diese gefundenen Resultate notieren wir in folgendem Satz:
Der aus irgend zwei komplexen Grössen x und y

gebildete Bruch — kann unter Anwendung der
y-_x2

Bessel'schen Funktionen sowie gewisser anderer
Funktionen ßA(y), die durch die Formeln (9.), (10.), (11.)
definiert sind, in folgende Reihe entwickelt werden.

y2
-L-^=2* «; a* (y) [JWf (12.)

Die Entwicklung ist gültig für jedes der Bedingung
| x | ¦< | y | entsprechende Wertsystem von x und y.

Um eine allgemeine Methode zur Bestimmung der
Koeffizienten zu erhalten, beachte man, dass nach Formel (3.) jede
gerade Funktion f(x) dargestellt werden kann durch:

fXX-X-i f(y)4^r (is-)
Ì1 « J « y2

indem man in Formel (3.) x gegen y und c gegen x vertauscht.
Dabei ist | x | < r <. R und die Integration erstreckt in positivem
Sinn längs der Kreisperipherie (r). Es sei nun | y | — r, d. h. es
sei y ein Punkt der Kreislinie (r). Dann ist | x | < | y | und der

in (13.) auftretende Ausdruck kann nach Satz (12.) in
y2 — x2

folgende Reihe entwickelt werden:

1
CO ^

-2—r=2Xs^/(y)[J(x)]2
•t 0

co

=2*k;. tj(x)i2
0

wok;. =r?--f f(y)^(y)-ydy2i^ J (v) i

Der Integrationsweg des zur Bestimmung der Koeffizienten
kyl dienenden Integrals (14.) ist, irgendwelcher Deformationen

(14.)
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fähig, ohne dass der Wert des Integrals sich ändert, solange
die Peripherie (r) nicht mit den Randpunkten R, für welche das

Verhalten der Funktion als unbekannt vorausgesetzt worden ist,
noch mit dem Mittelpunkt der Kreisfläche in unmittelbare
Berührung kommt.

Nun ist der Bruch eine gerade Funktion von x.
y2 x2

Man kann somit jede beliebige gerade Funktion f (x) nach der
durch (14.) dargestellten Weise in Reihe entwickeln. Diese
Resultate notieren wir in dem folgenden Satz:

„Stellt R eine reelle, endliche Konstante und f(x)
eine gegebene Funktion dar, welche eindeutig, stetig
und gerade ist, so lange | x | <C R bleibt, dann existiert
jederzeit eine Entwicklung:

f(x) k0 [J(x)]2+kt[J(x)]°+k2 [J(x)]2+ka[J(x)]X.. in inf.

oder (15.)

00 x ff(x)X§A k, [j(x)],wok,=-X- f(y).ß*(y).y-dx^ 217T ,/ (r)

welche gültig ist für jeden der Bedingung | x | <[ R
entsprechenden Wert von x. Die Integration ist zu
erstrecken längs irgend einer Kreislinie (r), deren Mittelpunkt

in x 0 liegt und deren Radius r <; R ist.

Dabei ist £0 1; «i «2 £3 • • • • — e^ -=2.

Analog lässt sich eine Funktion f (x) behandeln, welche
eindeutig, stetig und gerade ist auf einer ringförmigen Fläche, die

begrenzt ist von zwei konzentrischen um den Punkt x 0
beschriebenen Kreisen (Laurent'scher Kranz). Sind Rt <; R zwei
reelle Konstanten und stellt f (x) eine gegebene Funktion dar,
welche eindeutig, stetig und gerade ist, so lange R1 < | x | < R
bleibt, dann existiert jeder Zeit eine Entwicklung von der Form:

f(x) —-f f(y) y dy +—• f f(y)2i« J (R) y2 —x2 2Ì7t J (RJ

dy
x' — Y
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Für I x X I y I gilt nach obigem die konvergente
Reihenentwicklung:

1
CO ^VA e,Q*(y)[j(x)f

y2 — x2 <—

für | y | •< I x | gilt analog

1 °° x

—i—^2* «;.-^(x)[J(y)f
y 0

Demnach lässt sich die den oben genannten Bedingungen
genügende, willkürliche Funktion f(x) darstellen durch:

n co I

f(x) ^~ • l2a e>- qXW tJ(x)f f(y)*ydy2itt J (R)(^J J

.| st
I OO -,

+F-- I m,"2* *>• ßHx)[J(y)]2-f(y)ydy-
*J **¦ I n

OO
1 /*

t(x)=yi ek [J(x)] --X- •fìi(y).f(y)-ydy +--J 2l7T J (R)

+^ «, ß* (x)--1- • [J(y)]2-f'(y)-y dy

X ,2

f(x)=2^ ^ [JW] +2*' ^ ß"(x) (16.)

wo

Un .)_ (R)
(y) •f (y) • y •d y

p^ir-- im JJ(y)]2-f(y)-y-dy
2l7T J (Ri)

(16a.)
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Die Methode, nach welcher man zu dieser allgemeinen

Darstellung kommt, ist ganz analog der durch (13.) und (14.)
gegebenen und zudem in hohem Masse übereinstimmend mit der
von Graf und Gubleru gegebenen allgemeinen Herleitung einer
Methode zur Entwicklung nach einfachen J-Funktionen. Ist
nämlich die Funktion f (x) in einem Laurent'schen Kranz definiert,
dann gilt für R1 < | x | < R

f(x) -L-f f(y)^LfJ_.f f
2i7r J (R) y — x 2Jti J (Rt)

Nun ist nach (6.)

1 0 0 °° X l
O (y) J (x) + 2Va 0 (y) J (x)

y—x _j

i \ dy(y)—^

x|<|y|
i

CO-l_ o(x)J(y) +2.VA 0(x)J(y) |y|<|x|
x — y ^JJ i

Daher ist auch den oben genannten Bedingungen genügende,
willkürliche Funktion f (x) darstellbar durch:

f(x)=2*|kJl J(x) + ^ O(x)

wo k, =^A.-|>(R^0(y)f(y)-dy2Ì7C

i*x=~- f J(y)f(y)*dy2i^r J (R)

woraus die vollkommene Analogie ersichtlich ist.

Man erkennt unschwer die vielfache Verwendbarkeit dieser
Methode. Es sind ihr nur Grenzen gesetzt durch die mögliche
oder unmögliche Lösung der Integralausdrücke, die zur Bestimmung
der konstanten Koeffizienten dienen. Sie wird ferner dadurch
beschränkt, dass die prinzipielle Bedingung erfüllt sein muss,
d. h. dass f (x) eine gerade Funktion sein soll. Bei der
entsprechenden Methode zur Entwicklung nach Neumann'schen
Reihen erster Art hat man nur die erstere Beschränkung, indem
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die zu entwickelnden Funktionen gerade oder ungerade sein
können. Es sei speziell nochmals hervorgehoben, dass diese

Reihenentwicklungen für gerade Funktionen nach Quadraten,
d.h. nach Produkten Bessel'scher Funktionen desselben Parameters
fortschreiten. Nach einem später zu betrachtenden Postulat von
E. Lommel* können auch ungerade Funktionen in Reihen
entwickelt werden, die nach Quadraten von Bessel'schen Funktionen
fortschreiten, deren Parameter aber gemischte Zahlen sind, während
in den Formeln (15.) I nur ganzzahlige, positive Werte annehmen
kann.

Noch auf einen Punkt möchten wir aufmerksam machen,
der in gewissem Widerspruch steht zu einer später zu besprechenden

Forderung. Die Neumann'sche Entwicklungsmethode gibt
konvergente Reihen für alle Werte von x, die der Bedingung
genügen: | x | < R, wo R eine reelle, positive, endliche Grösse
ist. In einer von Niels Nielsen gegebenen Methode, die zu genau
denselben Reihenentwicklungen führt wie die Neumann'sche
Methode, wird mit jeder wünschbaren Strenge bewiesen, dass
die nach den Quadraten und Produkten Bessel'scher Funktionen
fortschreitenden Reihen in demselben Bereich konvergent sind,
wie die, die entwickelte Funktion darstellende Potenzreihe. Für
die Entwicklung des trigonometrischen Cosinus hätte man
demnach, da seine Potenzreihenentwicklung konvergent ist für alle
Werte —oo-<x<;oo* | x | •< ©o, ebenfalls eine konvergente
Reihenentwicklung nach Neumann'schen Reihen II. Art für alle
Werte | x | < oo, was mit der Neumann'schen Forderung, dass

R endlich sein soll, nicht so ohne weiteres vereinbar ist. Den
Grund dieser Unstimmigkeit haben wir bis jetzt nicht ermittelt.

Im übrigen wird diese erste, von Carl Neumann gegebene
Methode immer dann zu einem Resultat führen, wenn die zu
entwickelnde gerade Funktion f (x) in eine Potenzreihe entwickelt
werden kann. Dadurch werden die zur Bestimmung der
Entwicklungskoeffizienten k; dienenden Integralausdrücke leicht
lösbar. Zur Anwendung und weiteren Erläuterung der Methode
geben wir im folgendenden Paragraphen die Entwicklungen für
einige gerade Funtionen.
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§ 3. Anwendungen.
1. Aufstellung der Reihe für 1.

Nach (15.) ist dann zu setzen : f (x) x° — 1

somit: f (y) y° 1

Daher hat man

CO n
f(x) l=Nl kx [J(x)f, wo k, -^- ß;(y)-ydy.

— 2itt J (r)

Die Integration ist in rechtläufigem Sinn längs einer
Kreisperipherie um den Nullpunkt zu erstrecken, was wir jetzt und
in allen folgenden Untersuchungen durch / andeuten. Unter
Benützung der in (11.) gegebenen Summenausdrücke für ß* (y)
hat man sofort:

«o^.fß^y)-y-dy -L. fJ_-y-dy-^1.
iTZ J 2\7t J y2

0 2

tl=^.^,y,.y.d^^.j"{l+lj.yay=2.

Analog bestimmen sich k3=k4=k6=k6= =k^ 2.

Unter Benützung der allgemeinen Summenformel für ß* (y)
(10.) leitet sich der allgemeine Koeffizient leicht ab.

1 2\7t J — (2v)! (l — v)l y2"+2
J J

Um das Integral auszuwerten, hat man vom Integranden

denjenigen Summanden zu entnehmen, der die Potenz y—1 —

y
liefert. Alle andern Potenzen von y geben zu diesem Cauchy'schen
Integral keinen Beitrag. Man erkennt sofort, dass man diesen
Summanden erhält durch die Setzung — 2v — 2+1 — — 1;
v 0.

Dann ist der Koeffizient von —, also 1 — 1 1.-, also -
y LyJ



- 17 —

Diese Bestimmungen enthalten keine Beschränkung für die
Laufzahl l, welche, wie ursprünglich definiert worden ist, alle
ganzzahligen positiven Werte von 0 bis oo durchlaufen kann.
Daher werden auch alle k^ auftreten, und sie sind allgemein
bestimmt durch:

k^JXp^e, =2;ko l.
2\7t J y

Man hat daher die Entwicklung:

1 [J (x)]*+ 2 [J (x)]2+ 2 [J (x)]2+ 2 [J(x)f+ in inf.

[J (x)]2 + 2 2* [J (x)f güitig für | x | < R. (17.)

i
2. Aufstellung der Reihen für die geraden Potenzen.

Reihe für x2. f (x) x2; f (y) y2

co A

daher ist f (x) =-= x2 =2* k>i [J(X)L
o

kA=-^-./V(y)-y3.dy
2\rt J

Man findet im besonderen:

k0 -^.rß0(y).y3.dy J-.r-L.y8-dy 0.
2irr J 2\7t J ya

k1 X- - (V (y) - y3- dy ±- - /U + A) -y3-dy=4.
2\7t J 2i7t J (y2 y4)

k2 ^-.fß2(y).y3.dy ^-.

im allgemeinen:

k/-=Ji_.f.^ 22y^i-^+y-1!--J--y3-dy1 2Ì7i J —J (2v)! (l — v)l y2"+2
J
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die allgemeine Potenz im Integranden ist y-av—2+3^ T)ie einzig

in betracht fallende Potenz - erhält man durch die Setzung — 2v—
y

— 2 + 3 — 1, v 1. Es wird dann :

[SM 2 l2, woraus dann
2 (l— 1)!

k, =-X- f2A2±.dy (2A)
2\7t .1 yy

In der Bestimmung des Koeffizienten von - smd keinerlei

Beschränkungen für die Laufzahl l enthalten. Sie kann somit
alle ganzzahligen, positiven Werte von 1 bis oo durchlaufen.
Man hat demnach die Entwicklung:

x2 4 [J (x)]2 + 16 [J (x)]2 + 36 [J (x)]2 + 64 [J (x)]2+ in inf.

oo
x2 =^2 (2^)2• [J(x)]2, gültig für |x|<R. (18.)

Ganz entsprechend werden die Reihen für die folgenden
geraden Potenzen von x hergeleitet.

Reihe für die allgemeine gerade Potenz x2n.

Man hat zu setzen f(x) x2n; f(y) y2n

oo

f(x)=x2>-=2* MJ(X)]2
0

k* ^* fß*(y)y2n+1dy.

X.f<J„ 22y-^^-MJ±J'=l)!._l_ .V2n+l.dy
Ì7t J — (2»>)! (À — v)l y2"+2 *'

xif/!^(H^i!r 2v,2W1,dyin 4* (2v)l(l-v)l J '

X
2

wo

2Ì7f
0
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Die Potenz y_1 findet man durch die Setzung 2n + l — 2v —
— 2 — 1, v n.

Es fallen alle Koeffizienten des Integrals weg mit Ausnahme
des einzigen, in welchem man n »> setzt. Es wird daher:

k _o 22n n!n! l-(l + n-l)l
X

(2n)! ß — n)!

Aus dieser Bestimmungsgleichung für k^ geht hervor, dass
,1 ^ n sein muss, indem für l < n der Nenner unendlich gross
wird, die entspr. Koeffizienten also verschwinden. Daraus ergibt
sich die Entwicklung für die allgemeine Potenz x2n zu:

n! n!
x2n

(2 n]Ì 2 "2* (2 X)2 [(21)2~^ [{U)2~
"

-(2n-(2)2]-[J(x)]2
(19.)

oon!n! 22n+1 ^ l - (l + n - 1)! rj(x)]2.|x|<R
(2n)! g (À-n)!

Nach den bei der Herleitung der Methode gemachten
Voraussetzungen sollen diese Reihenentwicklungen konvergent sein
für jedes der Bedingung | x | < R genügende x, wenn R eine

reelle, endliche Konstante bedeutet. Dass zufolge dieser
Bedingung die gefundenen Reihen wirklich konvergent sind, soll
gezeigt werden, dadurch, dass für alle Reihen ein bestimmter
Grenzwert

limi^±iJ<l
|n„ |

existiert. Damit ist dann gleichzeitig nachgewiesen, dass die
Reihen unbedingt konvergieren.

Der allgemeine Term der Formel (19.) lautet, abgesehen
von dem für ein und dieselbe Potenz konstanten Faktor 23n+1 •

n!n!
tolgendermassen :

(2n)!

•fJW]¦À-fl + n — 1)! ri.

(A-n)!
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Die durch die unendliche Reihe

j(x)=2^ (-^
X\ ^ r

ul r(n + /i + l)
definierte Bessel'sche Funktion ist in dieser Darstellung absolut
konvergent für jeden endlichen Wert von x. Nach einer von
J. J. Schönholzer15 gegebenen Formel bestimmt sich das Produkt
zweier Bessel'scher Funktionen durch die Formel:

j(x)-j(x)=^ (-ir ^(H-b+2^+1)
r(a+M + i)r(b+Ai + i)

a + b + 2f*

(I)
r(a+b+ M+l)!M!

was wegen der absoluten Konvergenz jeder einzelnen unendlichen
a b

Reihe von J (x) und J (x) wieder eine absolut konvergente
Entwicklung ist für jeden endlichen Wert von x. Da es sich oben

um das Quadrat einer Bessel'schen Funktion handelt, wo also
a b -= l ist, so wird die Formel zu:

/ oo

[j(x)]2=2^<-i)'t r(2/ + 2^ + i)
r(À+M.fl).r(À+/t+l)'

2* +2^

(i)
r(2i + u-T-i)-ui

was unter der Annahme, dass die Laufzahl fi nur positive
ganzzahlige Werte durchlaufen soll, auch geschrieben werden kann:

/x\2k+2fl

(2^ + 2M)! \2/ (20a.)2 cxj

[j(x)]2=2^ (-^ (l+rfl (J+fi)! (2A + /u)!M!

Sowohl in der Summenformel für J (x) als auch in der
r i- -i2

Summenformel für [J(x)J ist der erste Summand; d. h. wenn
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fi 0 ist, der grösste. Da man es hier und dort mit unendlichen
Reihen zu tun hat, die bei wechselndem Vorzeichen monoton
abnehmen, so ist offenbar der absolute Betrag des ersten Summanden

grösser als der absolute Betrag der Summe aller Summanden.
Wenn man daher bei den folgenden Konvergenzuntersuchungen
den absoluten Betrag des ersten Summanden in Rechnung bringt,
so führt man einen zu grossen Wert ein, indem eben:

3i

Uli > « f. t*» + 2,)l

21+ 2/*

{l + u)iß + u)i (2^ + ^)!^!

Setzt man den Wert links statt [J(x)] in der allgemeinen
Form der Formel (19.) ein, dann kommt:

nA< l{l + n — 1)!

2i

XI 11

analog

Demnach :

n>i+i <

2A+2

(A-n)!.

(A + l)X + n)!

(l — n + 1)! (A + l)! (Â + 1)!

;2

oxa-1 ß + n)

n, -(^-n + 1) l-(l+l)
was für gegenüber n einigermassen grosse l zu

IU4-1

nA 4-A(À + l)< < 1 für | x I < R wird.

Unter der Bedingung, dass |x|-<R, wo R eine reelle,
endliche, positive Zahl sei, was unbedingt notwendig
ist für die Konvergenz der die Bessel'sche Funktion
definierenden unendlichen Reihe, sind die in (17.) bis
(19.) hergeleiteten unendlichen Reihen unbedingt
konvergent.
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3. Aufstellung der Reihen für die geraden trigonometrischen Funktionen.

Reihe für cos (x).

f (x) cos (x) ; f (y) cos (y)

2

cos (x) "VA kk [J (x)] ; wo kA -^
aJ 2l

0

/
£X_

7C

cos (y) • £? (y) • y ¦ d y.

Das Integral lässt sich am einfachsten auswerten, wenn
man für cos(y) seine Potenzreihenentwicklung einsetzt:

cos(y) : " ~ '5(y)=i_Z--i_y__y_-i_JL_-|-...inf. x^ (__i)^
2! 4! 6! 8! äkf (2u)l

Dann wird :

k^ =-X. ni_z! + y!_y!+y!_ + ...XA(y).y.dy* 2Ï7Z }\ 2X4! 6X8! J u; y y

2\7t'J ZI "
(2v)! (* — *)! 'y2X2

.^ (_lf ._l!^.y.dy.^ V ' (2u)l J 7

«0
ko -

Man erhält im einzelnen:
2 174 ,,6

i/r 7 UM 2! 41 6! r J ' *

kx x_. /'ßi(y)(i_y!_(_y!_y6+_....)ydy=o
2Ì7T y X 2!

'

4! 6! \3 3

k2 -2-./ß2(y)-(l-^ +y4-^+-....|ydy=-^2Ì7Z J J' 1 2! 4! 6! J7 J 3

k3 —• /"ß3(y)(l- l!+ l!-l!+y!— _(_...)y.dy
2Ì7T J X 2! 4! 6! 8! T

48

1-3-5
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im allgemeinen:

kx -*r- • / ßA (y) cos y • y • dy

2 /'V,, 22" vl vl M^X" —1)-. 1

»«' y .-Zi* (2 y)! (A — v)! y2"+2

•Vp (_i; -Z^L.y.dy
-AT 7

12u)!
7 J

Die allgemeine Potenz im Integranden ist y2p+i-2y-2.
Von allen Gliedern geben nur die einen Beitrag zum Integral,
die die Potenz y_1 enthalten. Man erhält diese Potenz durch
die Setzung 2jU + l — 2v — 2 — 1;. u v.

Dann wird |"±1 (- 1)" - 22* - -±±- -
M* + *--l)!

LyJ (2y)!(2y)! (A-y)!
und daher auch

ki==^„ (_!)". 22"+1 iiy!__.A.(À + .-l)!
4 Äl (2y)! (2v)! (A--y)!(2y)! (2v)! (A, — v)l

Demnach lautet die Entwicklung für cos (x) :

cos (x) [J(x)f +2^ 21 - [J(x)f -2" (-1)" * 22"

AA dzbxi)! |X,<R.
(2v)! (2y)! (À — y)!

o °° i

oder cos (x) [J (x)]2 + 2 -*Sl k;. - [j (x)f (21.)

k, XSV (-if22y v!v!
_J (2y)! (2 y

Ivi A-(A+y-l)!
(2 y)! (2 y)! (À —y)!
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Nach Ausmittelung einiger numerischer Werte für k/
erhält man:

coS(x) [](X)]a--W-.[Ì(x)f--4-.[j3(x)f +
1 • ö 1 • ö • o

1-3-5-7 1-3-5-7-9

Die Reihe zur Bestimmung der Entwicklungskoeffizienten
ka ist eine endliche, von selbst abbrechende Reihe mit
alternierendem Vorzeichen. Die einzelnen Summanden werden mit
zunehmenden Werten der Laufzahl v grösser, um bei einem
bestimmten Werte v ein Maximum zu erreichen und nachher
wieder abzunehmen. Wir behaupten, dass bei geraden A der

À
Summand der grösste wird, für den man y ersetzt durch — ; bei

Li

l 1
ungeraden A jedoch der, in welchem man v ersetzt durch

a
Dabei soll es sich jedesmal nur um den absoluten Wert handeln.

Wir betrachten den ersten Fall: A gerade; A 2n, wo
n =-= 0,1, 2, 3,4, Der allgemeine, absolut genommene Term
der Summenformel für k>i. lautet:

„2v vi vi A • (A + y — 1)!

Setze y — :

2

2;*

(2 y)! (2 y)! (-î —y)!

(|H|> xxH:
2/ V 27 2

Setze A 2n:

22n_n!n!_.2n-(3n-l)! 22n __n!_2n
(2n)!(2n)! n! (2n)!(2n)! ' v '
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Den unmittelbar vorausgehenden Term erhält man durch
die Setzung

_A j^-2V==2 ~~
2

dann kommt

(*-2)! (A-2)! [ A-2j,

Setze A 2 n

22n-2 (n-l)!(n-l)! 2n-(3n-2)!
(2n -2)! (2d- 2)! (n + 1)!

Den unmittelbar nachfolgenden Summand erhält man durch
die Setzung:

A A + 2
y h 1

2 2
dann wird

/Ì + 2x^m h- 1
_ \ 9 / \ 9 / I 9

2
(A + 2)! (A + 2)! h_i+2

Setze A 2 n

|*-X2!>

22n+2 (n + 1)! (n+1)! 2n-(3n)!
(2n + 2)! (2n + 2)! (n — 1)!

Der Quotient aus (C.) und (A.) wird, wenn man für 2n
wieder A setzt, zu:

(C) _ 3 - A2

(A)~4-(A + 1)2

was für alle Werte von A kleiner als eins ist; daher ist | A | > | C |.

Der Quotient aus (B) und (A) wird, wenn man für 2n
wieder X setzt:

(g)=4(*-l)(»-l)
(A) (A + 2)(3A —2)

' ' ' '
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Es ist nun interessant, dass diese letztere Ungleichung von

der Grösse der Laufzahl A abhängig ist, während die Bedingungsgleichung

für die Ungleichung | A | > | C | für jedes A gilt. Mit
andern Worten:

Welches auch der Wert von A sei, unter allen Umständen
sind in der Summenformel für k^ alle Summanden, deren Lauf-

A A
zahl y >• — ist, kleiner als der Summand, für den v — ist.

2 .2Was die zweite Ungleichung | A ] > | B | anbetrifft, so kann
L>

man sich leicht überzeugen, dass der Quotient — nur bis und
A

mit A 10 kleiner als eins ist. Für A =10 erhält man:

(6)^4^9^.27
(A) 12-28 28

'

Für A 12

(B)=4.11.11=121
(A) 14-34 119

d. h. bis zur Laufzahl A 10 wachsen die Glieder der Summe

bis zum Glied mit der Laufzahl v —, welches Glied grösser

ist als alle vorhergehenden und grösser ist als alle nachfolgenden.
A

Für A >> 10 ist nicht mehr das Glied, für welches v — ist, das
2

1 1 A

grösste. Wir setzen jetzt v — 2 ; dann wird der
Li Li

allgemeine, absolut genommene Term:

22n_4 (n-2)! (n-2)!
_
2n-(3n-3)!

(2n—4)! (2n-4)! (n + 2)!

Bildet man den Quotienten aus (B) und (Bi), dann kommt

(Bi)=4(A — 3)(A — 3)

(B)~~(A+4)(3A-4)

Für alle Werte von A ist das Glied Bi, für welches v
2

ist, kleiner als das unmittelbar nachfolgende Glied B, für welches
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^ 2
y ist. Diese Ungleichung |B|>|Bi| geht bis zu A=30;

man erhält für:

A 30:^=i^Ll2l Z29<i;|B|>|B1|
(B) 34-86 731

' '

für A=32: (gi)^ ¦ 29 - 29 =,841
(B) 36-92 828

d. h. bis zu der Laufzahl A 30 ist in der Summenformel für
A — 2

k; das Glied, für welches v ist, grösser als alle vor-
Li

angehenden Glieder, und was aus dem obigen folgt, grösser als

alle nachfolgenden Glieder für 12 <f 2 n <f 30, wo statt A 2 n

gesetzt ist.
Für A > 30 trifft dies nicht mehr zu.

Wir setzen v 1 dann wird der allge-
2 2

meine, absolut genommene Term:

22n-6 (n-3)!(n-3)! 2n-(3n-4)!
(2n —6)! (2n —6)!* (n + 3)!

IDer Quotient aus (B2) und (Bi) wird dann, wenn n —

gesetzt wird:
(Ba) 4-(A-5)-(A—5)
(Bi)_(A + 6)-(3A-6)

Für alle Werte von À ist das Glied B2, für welches

ist, kleiner als das unmittelbar nachfolgende Glied Bi,
2

1 A

für welches y= ist. Diese Ungleichung geht bis zu A 50;
LI

man erhält für:

,n (Ba) 4-45-45 135^, Inl^iniA 50: -—- <1; d.h. Bi > B2
(Bi) 56 144 256

1 1 1 1

M (B2) 4 - 47 - 47 2209 ^ _ ^ ufur A 52: v—- >1; d. h. B2 > BJ
(Bi) 58 ¦ 150 2175

d. h. in der Summenformel für k^ ist das Glied, für welches
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A —4
gesetzt wird, bis zur Laufzahl X 50 grösser als alle

vorangehenden Glieder, und für alle Werte von A ------ 2 n, für
die 32 <J 2 n ^ 50 ist, ist dieses Glied gleichzeitig grösser als
alle nachfolgenden.

Wir setzen v 1 Der allgemeine, ab-
2 2 *

solut genommene Term wird dann:

22„-8 (n —4)1 (n-4)1 2n-(3n-5)!
(2n-8)! (2n -8)l" (n + 4)!

(Bs)

Der Quotient aus dem Gliede B3 und dem unmittelbar

nachfolgenden B2 wird dann, wenn statt n wieder — gesetzt wird :

(B3)_4-(A-7)(A-7)
(B2) (A+8)(3A-8)

Für alle Werte von À ist das Glied B3, für welches

ist, kleiner als das unmittelbar nachfolgende Glied B2,
2i j a

für welches y ist. Diese Ungleichheit besteht bis zu

A------68; man erhält für:

À 68: (Ba) 4161_,61==3721
(B2) 76 • 196 3724

' ' '

^^(52)^4^63.63^3969
(B3) 78-202 3939

d. h. in der Summenformel für k/ ist das Glied, für welches

v gesetzt wird, bis zur Laufzahl A 68 grösser als alle
Li

vorangehenden Glieder, und gleichzeitig für alle Werte von
A 2 n, für die 52 <; 2 n <f 68 ist, ist dieses Glied grösser als
alle nachfolgenden.

Das nächste Intervall geht von 70 <^ 2 n <; 86.

das folgende 88 <; 2 n ^ 102.

u. s. w. 104 ^ 2 n <: 118.
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Wir betrachten nunmehr den zweiten Fall: A ungerade,

A=2n+1, n 0,1,2,3. Der allgemeine, absolut genommene
Term der Summenformel für k; wird dann; wenn man wie

l jangegeben y ersetzt durch zu:

2

(j,_l)! (A-l)! f A-1K

Setze A 2 n + 1 :

22„ n!n! (2n + l)-(3n)!
(2n)!(2n)! (n + 1)!

Das unmittelbar vorausgebende Glied der Reihe erhält man,

2 2
wenn man v 1 setzt. Dann wird der absolut

genommene Term:

,_,(X3KXX1XjXm<
(A_3)!(A-3)! | A-31,

Setze A=2n + 1:

22n_2 (n-l)!(n-l)! (2 n + 1) • (3n - 1)! x

(2n —2)!(2n-2)! (n + 2)!

Das unmittelbar nachfolgende Glied der Reihe erhält man
^ -[ ^ -[

durch die Setzung v (- 1 ; dann wird dieser
Term: 2 2

(A + 1)!(A+1)! (A A + ll,
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Setze A 2n + 1:

22n+2 (n H)!(n + 1)! (2 n + 1) ¦ (3 n + 1)! u

(2n+2)! (2n + 2)! n!

Man bildet den Quotienten:

(C1) (A + 1)-(3A-1)
(A1) 4 A2

Dieser Quotient ist für alle Werte von A 2 n + 1, wo
n 0,1, 2,3 kleiner als eins, mit Ausnahme für A l, n =0,
wo er zu eins wird. Mit andern Worten:

Für alle Werte von A 2 n + 1 ist in der Summenformel

für k) das Glied, in welchem v ersetzt ist durch kleinerx 2
als alle vorangehenden. Man bildet nunmehr den Quotienten:

(B1)==4(A-2)(A-2)
(A1) (A + 3)-3(A-l)

Der Quotient ist für alle A 2 n + 1 kleiner als eins bis
zu A 19; man erhält für A 19:

(B1) 4-17-17 289 |Ai|^iRi|
(A1) 22-54 297

für A 21:

(B^ i^9X9_361 IBMXIAM
(A1) 24-60 360

d. h. für alle ungeraden Zahlen 3 <; 2 n + 1 <jj 19, ist das Glied
in der Summenformel für k^, in welchen y ersetzt ist durch
1 j

grösser als alle vorangehenden und, wie oben gezeigt wurde,
a

gleichzeitig grösser als alle nachfolgenden. Für A 2n + l>>19
gilt dies nicht mehr.

Wir setzen y 1 ; dann wird der allge-
2 2

meine Term absolut genommen:

Â_t fXKXv Ì++X--K
(A-5)!(A-5)! [x A — 5,
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setze für A — 2 n + 1 :

02„-4 (n-2)! (n-2)! (2 n + 1)- {3 n--2)!
(2n —4)! (2n-4)! (n + 3)!

Man bilde den Quotienten:

(Bi) 4-(A-4)(A-4)

(Bl)

(B1) (A + 5) • (3 A — 5)

Für A 39 erhält man:

(Bi) 4-35-35 175 IrII^i-rii(Br)^l4XT2"=m<1',B|>|Bl1
Für A 41 erhält man :

(Bi) 4 - 37 • 37 1369 |Ri|^|Ri|/trü — — ^>i; di > t>
(B1) 46-118 1357

' ' '

d. h. für alle Werte von A 2 n + 1, n 1, 2, 3, 4 ist das
^ 3

Glied, in welchem die Laufzahl v ersetzt ist durch y= 2
grösser als alle vorangehenden und alle nachfolgenden Glieder,
wenn A, resp. n im Intervall 21 <jj 2 n + 1 <; 39 liegt.

Das folgende Intervall wird: 41<^2n + 1^57.
Das folgende Intervall wird 59 <Ü 2 n + 1 <J 77.

das nächste wird 79 <J 2 n + 1 <^ 95.

u. s. w.
Die gefundenen Resultate sollen kurz zusammengestellt

werden.

1. A gerade, A 2 n.
__ 2

Für 0 <; 2 n <; 10 ist das Glied mit v — das grösste
LI

„ 12^2n^30 „ „ „ „
v--=X~2

32 < 2 n < 50

52 ^ 2 n ^ 68

2

A —4
2

A —6
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3 Q

Für 70 <; 2 n <; 86 ist das Glied mit v das grösste
Li

„ 88^2n^l02 „ „ „ „ v —-^ „
Li

„ 104^2n^ll8 „ „ „ „ y==-^— „

2. A ungerade, A 2n + 1.

Für 3 <[ 2 n +1 <[ 19 ist das Glied mit y das grösste

21^2n + 1^39 „ „

41^2n+1^57 „ „

59^2n + 1^77 „ „

79^2n+1^95 „ „

97^2n+1^115 „ „

117^2n + 1^133 „ „

A —3
2

A-5
2

A-7
2

A —9
2

A — 11

2

A- 13

Die Anzahl der Werte, die A in den verschiedenen
Intervallen annehmen kann, sind für
gerade A resp. 5, 10, 10, 9, 9, 8, 8, 6, 6

ungerade A resp. 9, 10, 9,10,9, 10, 9, 10, 9.
Für die geraden A hat man nicht die periodische

Regelmässigkeit, wie für die ungeraden A, indem erstere in der Folge
wieder viel grössere Intervalle zeigen.

Wenn man nun zur Untersuchung der Konvergenz der
Reihe (21.) zurückkehrt, denn zu diesem Zwecke ist die Summenformel

für kj etwas genauer/betrachtet worden, so fragt es sich,
welchen Wert man in der Formel:

k -sM-ir-a"- vlvï 'Mt + '-w
k/ 2i (2v)l (2y)! ß — v)l
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dem y erteilen muss, um in der Konvergenzbetrachtung der Reihe:

o °° j
cos(x) [J(x)]2+2-2^ k, [J(x)f

i
keinen zu kleinen Wert einzuführen. Unserer Ansicht nach kann
hier nicht genau gesagt werden, für einen unendlich grossen
Wert von A habe man, um in k; das grösste Glied herauszunehmen,

für y den oder jenen Wert einzusetzen, sondern es

kann sich nur um eine angenäherte Schätzung für sehr grosse
Werte von A handeln. Man kommt mit der Setzung für gerade A:

A—1000 A-1001
y== tur ungerade A: v jeden fall schon zu

LI L.

sehr grossen Werten der Laufzahl A. Im ersteren Fall wird
dann der allgemeine Term von k^ zu:

/A—1000 \ fk- 1000\

(-1)"
-1000

lcoo ï r
k-lk-i-

(A —1000)! (A —1000)!
A—1000 lt

I 1000|,
2

'

Setze für A 2 n, so wird, da

(- l)n-600 (-l)n
(n —500)! (n— 500)!(- 1)D * 2,2n - 1000 2n • (3n-501!

(2n—1000)! (2 n —1000)! (n + 500)!

Dieser Wert ist für das sehr grosse gerade A der grösste
von allen Summanden der Summenformel für k^. Da diese
wechselndes Vorzeichen hat, ist der obige Wert absolut genommen
gleichzeitig grösser als der absolute Wert der ganzen Summe.
Für diesen sehr grossen Wert A 2 n wird dann der zugehörige
grösste Wert des Quadrates der ïf-Funktion, also von

[J(x)], zu:

xV
2

UV.

2n

(2n)! (2n)!
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1 i2
Das Produkt k^ • [J(x)J für A 2n wird dann:

I r1 i2| I r2n n2 I

|k,-[j(x)] |=|k2n-[j(x)] |<

< O2n-iooo (n —500)! (n —500)1 2n-(3n—501)! \2
u • •

2n

(2n —1000)! (2n —1000)! (n + 500)! (2n)!(2n)!

Analog wird für ungerades A : A 2 n + 1 :

r2n+l

<

I r^-t-1 -Cl i I r"* ' - Vil
I ki+1 • [ J (x)] | |k2n+1[ J(x)] |<

22a-iooo. (n —500)! (n - 500)
_
(2n+l) - (3n—500)!

_

(2n-1000)!(2n—1000)!* (n + 500)!

x\2n+x
27

(2 n + 1)! (2 n + 1)!

Der Quotient wird dann:

l X1 l2-Xi*[ J(x)]

k* * [J(x)]2
<

(3n-500)(| (3 A — 1003) • x

(n + 501)(2n + l) -2n 2A-(A+1) - (A + 1002)

Für A 400 erhält man annähernd einen Quotienten von
1:2.106. Da die absoluten Werte untersucht worden sind, so
ist die Reihe:

o °° 1

cos(x) [J(x)]2+2-2^ ki *[J(x)]2

wo
oo

2x-ir-22,/
y! y! A • (A + y — 1)1

(2y)!(2y);ì! (k-v)\

auf Grund dieser angenäherten Schätzung absolut konvergent
für alle endlichen Werte von x.
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Im Anschluss an diese Beweisführung möchten wir nicht
unterlassen zuzugeben, dass sie weit entfernt davon ist, einen

streng gültigen Beweis zu erbringen und rein empirischen Charakters
ist. Da wir bis jetzt nicht Mittel und Wege gefunden haben,
einen solchen zu leisten, behalten wir uns vor, darauf
zurückzukommen.

Reihe für den hyperpolischen Cosinus, cof (x).

f(x) cof(x); f(y) cof(y)

OO -,

cof(x)=2A X[J(X)]2> wokA -=
0

-5X/V(y).cof(y).ydy.
2 171* J

Bekanntlich ist der hyperbolische Cosinus definiert durch:

cof(y) i(ey + e-y)--2( (2ju):

Die Koefizienten bestimmen sich ganz analog wie beim
trigonometrischen Cosinus, so dass wir uns auf die Bestimmung
des allgemeinen Koefizienten k^ beschränken können.

K=^-- [&(j)™\(y)-ydy
2\7t J

\l7t J —
22V vi vi A(A+y-l)! 1

(2y); (k-v)\ y2"+2

oo

•>V^X.y.dy

Mit Ausnahme des hier fehlenden Faktors (— 1) hat man
genau den obigen Fall, daher wird:

kk=2k.yv22*. Vlvl •(A + i,-1)!;ko=l._ (2y)! (2y)! (k — v)l
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Man erhält dann die Reihe:

cof(x)-
0 o

[J(x)]
CO

i

* [J(x)]2 |x|<R.

0 °°
[j(x)]2+2^2A-

i
[jW:-2* 22;

0

v v (A + y-
(22.)

-1)!

(2y)!(2y)! - (A — y

cof(x)
r ° i2
[J(X)] +'3ri(x)]24 38

1-3
[J2(x)f+j

588 -[J3(x)]2 +.-3-5
6121

1-3-5-
-[J(x)f+.
7

inf.

Die Konvergenz der Reihe lässt sich ähnlich wie oben
nachweisen.

Damit sind die geraden Funktionen, die in Potenzreihe
entwickelt werden können erschöpft, und man betrachtet im
folgenden eine neue Methode zur Entwicklung von ungeraden
Funktionen.



II. Abschnitt.

§ 1. Zweite Methode von Carl Neumann.

In derselben Abhandlung gibt Carl Neumann16) eine Methode

zur Entwicklung ungerader Funktionen in Reihen, die nach
Produkten von Bessel'schen Funktionen fortschreiten. Er beweist
daselbst eingangs den Satz:

„Ebenso wie die Entwicklung

y2

1 c"° X

^=2^JJ(x)]2^(y) (23.)

gültig ist für jedes beliebige, der Bedingung | x | <C| y |

entsprechende Wertsystem von x und y; ebenso gilt
gleiches auch von allen denjenigen Entwicklungen, die
aus dieser hervorgehen durch (beliebig oft wiederholtes)
Differenzieren nach x und y'.

Daraus folgt, dass die in (15.) erhaltenen Entwicklungen
ohne Beeinträchtigung ihres Gültigkeitsgebietes beliebig oft nach
x differentiert werden können. Setzt man abkürzend

[J(x)]=Qi; ßA(x)=ß*
dann lässt sich die Entwicklung (23.) folgendermassen darstellen

1 Q° Q°-\- 2 Q1 ß1 + 2 Q2 ß2 + 2 Q3 ß9+
y2 "**- x2

+ 2 Q4 ß4 + + inf. (24-)

Durch Differentiation nach x erhält man:

2 .ß° dQ° 2ßl dQl 2 ß2 dQ2
- _ | | _ (_

(y x xdx x x x dx
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Nun ist

2 if dQ3

x d x

\X

+ + ...inf.

dx 2 A

ferner
dQ°
dx

x Q° + A-Q2+A-Q4 + A-Q6HX-
1-3 3-5 5-7

l^i--Ql+—-Q3+—QB + —-Q7+ +2^ X-4 ^^4-6 6-8 ^^^

(25.)

(26.)

Setzt man diese Werte in (27.) ein und ordnet, dann kommt:

(y2 - x2)2 a°H°+ïXxXQ'+
5-7

Q64X-

+ ß°
2 2-4

Q8
4-6
2 ^7

Q6 +

+6-8-Q+ +

+ ß,iQ-Q obQ-Q4 nBQ4-Q'

+ ßflQ'-Q2

ß

ß4

-+

/(27.)

\-sr

Q6
i ß^5~Q7 |....

Andererseits erhält man durch Differentiation der Gleichung
(24.) nach y:

2

(y2 - x2)2

Q° dßu _2 Q^d_ß; _2Q2dß2
y dy

_2Q!dß3
y dy

y dy y dy

—... inf.
(28.)

In den Formeln (27.) und (28.) hat man zwei Entwicklungen
2

für denselben Ausdruck
(y2 - x2)2

-. Beide schreiten fort nach
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Q-Funktionen. Nach dem Descartes'schen Prinzip müssen die
Koeffizienten von Q-Funktionen desselben Parameters einzeln
einander gleich sein. Daraus folgt sofort:

-*^=ßl-ß0
y dy

_2 d ß1 ß2 ß1

y' dy ~2 1

2 dß2 ß3 ß1 2
q0

y dy 3 1 1-3
2 dß3_ß4 ß2 2

y dy _ 4 2 2-4
ß°

2 dßn ßn+1 ßn
+ 7—^; r:-**,o

y dy n + 1 n-1 (n -f- 1) (n -1)
Diese Formeln können mit Ausnahme der beiden ersten

zusammengefasst werden in eine einzige. Vertauscht man den
Parameter n mit A, dann hat man die Relationen:

_2dßV) 2ßi(y)__2ß0(x)
y dy

2dßl(y)=ß2(y) ßVy)

y dy 2 1

2d ß;(y)_ ßA+1 (y) ß^1 (y) 2 ß°(y)

(29.)

y dy A + l A-l (A + 1)(A-1)

Diese Ableitungen sind nicht unmittelbar von Belang für
die Herleitung der gesuchten Entwicklungsmethode. Doch geben
sie eine wichtige Eigenschaft der im ersten Abschnitt eingeführten
ß-Funktionen, die in ihrer Art ähnlich ist den Differentialeigen-

n
schaffen der O-Funktion in der Theorie der Bessel'schen Funk-

n
tionen. Man hat in (6a.) die O-Funktion definiert durch:
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5w-2»s-

40

(n —A —1)! /2\» + i-"
A! \y

Sie genügt der Differentialrelation:
o

n+1 n —1 A Q (v\
0(y)-0(y) +2^pXo.dy

Wie leicht einzusehen, kann man der ß^-Funktion auch die
Form geben:

<£i 4 (2A)! (n-A)!. Vy/

so dass man auch darin eine gewisse Analogie hat. Nach der
Art ihrer Entstehung spielt die ßu-Funktion für die Neumann'schen

n
Reihen zweiter Art genau dieselbe Rolle wie die O-Funktion
für die Neumann'schen Reihen erster Art.

Mit Hülfe des Satzes (23.) lässt sich nun nachweisen, dass

jede gerade Funktion f(x) in demselben Masse wie nach den

rl i2 dP r;- l2
[J(x)J auch nach den [J(X)J entwickelt werden kann, wo p

dxp
eine beliebig gegebene gerade Zahl sein kann, dass ferner
Gleiches auch gilt von jeder ungeraden Funktion f (x),
nur mit dem Unterschied, dass in diesem Fall unter p
eine beliebig gegebene ungerade Zahl zu verstehen ist.
Setzt man nun p 1, dann hat man offenbar den kürzesten
Weg, um aus den Resultaten für die Entwicklung gerader
Funktionen Methoden zur Entwicklung ungerader Funktionen
herzuleiten.

Um den Punkt x=0 einer x-Ebene sei ein Kreis beschrieben
mit dem Radius R. Ferner sei eine Funktion f (x) gegeben,
welche eindeutig, stetig und ungerade ist innerhalb dieser Kreisfläche

und definiert ist für alle | x | < R. Dann ist offenbar
die Funktion

T(x)=ff(x)dx
o7
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wo der Integrationsweg auf das Innere des Definitionsbereiches
beschränkt gedacht ist, stetig, eindeutig und gerade, solange | x | <^R
bleibt. Sie ist daher nach Satz (15.) entwickelbar in eine nach

r i- -|2
den [J(x)J fortschreitende Reihe von der Form:

<P (x) k0 [J(x)j + k, [J(X)] + k2 [J(X)]J +
+ k3[j(x)]2 + + inf. (30.)

Diese Reihe ist gültig für jeden der Bedingung | x | <C R
entsprechenden Wert von x. Zufolge des Satzes (23.) kann diese

Reihe, unbeschadet ihres Gültigkeitsgebietes nach x differentiert
werden. Man erhält somit die Reihe:

d m fxì ° d ° l d x 2 a 2

5-2-£! 2k0J —J+-2M-J f 2k2J —J +dx dx dx dx

+ 2k3J — J + + inf. (3L)
dx

wo abkürzend J statt J(x) gesetzt ist. Diese Entwicklung ist unter
denselben Bedingungen gültig. Nun ist aber ohne weiteres
ersichtlich, dass

d<jp(x)

dx
f(x)

Ferner ist nach bekannten Differentialeigenschaften der
Bessel'schen Funktionen :

d ° x

f-J(x)=-J(x)dx

±J(x) -\ J(x)-J(x) ; /=1,2,3,.. ..oo.
dx 2

Führt man diese Relationen in (31.) ein, dann kommt:

01 10 2 213f (x) — 2 k0 J J + kx J (J — J) + k2 J (J — J) +
3 2 4 •

(QO \
+ k3J(J-J) + + inf. Köo)

oder was dasselbe ist
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f (x) (kt - 2 k„) J (x) J (x) + (k2 - k,) j (x) J (x) +

2 3 3 4 t33")

+ (k3 - k2) J(x) J(x) + (k4- k3) J(X) J(X)+ + ¦ inf.

Dieses Resultat notieren wir in folgendem Satz:

„Ist f(x) eine beliebige, gegebene Funktion, welche
eindeutig, stetig und ungerade ist, solange | x | << R
bleibt, dann ist sie immer darstellbar durch eine nach
den Produkten

J (x) J (x), J (x) J (x), J (x) J (x), J (x) J (x)... (34>

fortschreitende Entwicklung, die gültig ist für jeden
der Bedingung |x|<<R genügenden Wert von x".

Man bezeichnet abkürzend

d r* i2 -*• X1 1 + 1 1 *
f-[J(x)] =J(x)| J(x)-J(x))=J2(x); A=l,2,3,....oo. (35.)
dx

Deferentiert man nun die in den Gleichungen (1.) gegebenen
Entwicklungen für die geraden Potenzen von x, dann erhält man
unter Benützung des obigen Symboles:

o t ^--*4 x

0 - J (x) J (x) +"^A n (x)

2
— • x
2

i
oo1 ^1 >¦

-2* (2A)2-JT(S

i

oo

ÌX- H2" (2^)2[(2^-2-1-iT(x)

6 1-2-3
• x6=

2

oo

V(86.)

^ 2A (2^)2[(2A)2-22][(2A)2-4a] • n(x)
2 4-5

3

8
_,

1 • 2^4 <^; (2 lf U2 „f gsn [(2 p2
2 5-6

x
\2 pX

X^|2A (2A)2[(2A)2-22][(2A)

-42][(2A)2-62]/I(x)j
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Für den Fall | x | <C\ y |, wo x und y komplexe Variable

sind, gilt identisch:

XY "V" Y" Y? Y"
1

1
1 1 1- + int.

y2— x2 y2 y* y6 y8 y10

Auf der rechten Seite setzt man für die Potenzen von x
die Entwicklungen aus (36) ein. Man erhält dann:

y2 X2

1 1 ^S '¦

-. -.2.2m»)'-%)+
i
oofn-2-5 (2A)2[(2A)2-23]-77(x)

4 4y4 éimi

2-3 1

5-6 6 y'

2-3-4 1

- • 2 • yk (2A)2[(2A)2—22][(2A)2—42-77(x)
6 ^mA

6-7-8 8y8
• 2 -V-1 (2^)2 [(2 A)2—22] [(2A)2 -

•42][(2A)2—62]-77(x)

+
+ in inf.

x
Ordnet man nach den 77 (x), dann erhält man eine

Entwicklung von der Form:

y- — x--
:2-2^(y)^(x) (37.)

Die neu eingeführte Funktion P (y) ist dabei definiert durch
die von Carl Neumann gegebene Formel:

pr ^_1(2>1)2 i 1-2(2A)2[(2A)2 —22] 1-2-3
2 2 y2 3 • 4 4 y4

(2 A)2 [(2 kf— 22] [(2 A)2 — 42]

6y6

' 4-5-6

+ + fin.
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Zur bequemeren Verwendung bei den Anwendungen haben
x

wir die P (y) Funktion wieder durch eine endliche Summe
dargestellt. Der allgemeine Summand lautet:

vivi (2 kf [(2 kf - 22] [(2 kf-42] [(2 kf — (2 v — 2)2\

(2y)!
'

2yy2"

__
vi vi 22"_1(A — y + 1) (A - y + 2) (A — 2) (A - 1) A ¦

(2 y)! -, A • (A + 1) (A + 2) (A + y — 2) (A + y — 1)

v.y2v

J_ vivi o2v_! A (A+y-1)! 1

(2 y)! y (A —y)! y2"

Die Laufzahl v nimmt alle Werte von 1 bis A; daher lautet
nun die Summenformel:

P (y) =y, 22"-1 ^± l-
- (1±XXI! J_ r38

— (2y)! y (A -y)! y2"

Dies kann auch geschrieben werden :

» n (A —1)1 (A- 1)! (n+A-1)! /2\2*
P(y) =2* 4

' " (22-1)! (nXXX
• "J (38a.)

i
In dieser letztern Schreibweise tritt die Analogie mit der

ßn-Funktion am besten hervor.
Mit Rücksicht auf die Definitionsformel (35.) der 77-Funktion

kann die Entwicklung (37.) als eine nach Produkten von J-Funk-
tionen fortschreitende Reihe betrachtet werden.

In der Gleichung (3.) hat man für eine gerade Funktion
die Integraldarstellung gefunden:

f(x) -+-- f f(y) Jr^ |y[<R; |x|<r<R.2\n J r y2 — x2

die Integration erstreckt längs einer um den Punkt y 0
beschriebenen, den Punkt y x umschliessenden Kreisperipherie.
Setzt man f(y) als eine ungerade, für alle Werte |y |<R definierte,
endliche und stetige Funktion voraus, dann erhält man analog
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f(x)=-L. f f(y)-4^ (39.)
2i7c ./ y y- -x-

die Integration wieder erstreckt über eine, den Punkt y x
umschliessende Kreisperipherie aus dem Nullpunkt. Nun ist
nach (37.):

oo

-^T=y* 2-P(y)-77(x) |x|<|y|y — X" éimd

daher auch:

f(x) 2Âk/-/7(x)> wo k, X-- jiI(y).P(y)-dy (40.)

Wir notieren diese Resultate in folgendem Satz:

Jede beliebige Funktion f (x), die eindeutig, stetig
und ungerade ist für jeden der Bedingung |x|<^R
genügenden Wert von x, lässt sich in eine von der Form:

f(x)=S>A k -77(x), wo k, -^X f f(y)-P(y)-dy
étmi 2171 J r

(40.)

entwickeln, die zufolge der Definitionsformel (35.) der
/7-Funktion betrachtet werden kann als eine Entwicklung,

die nach Produkten von J-Funktionen fortschreitet.
Die Reihe ist gültig für jeden der Bedingung |x|<R
genügenden Wert von x, wenn R eine reelle, endliche
Konstante ist.

Ist die beliebige Funktion f (x) nicht definiert für das

Gebiet einer vollständigen Kreisfläche, sondern nur für ein
Ringgebiet (Laurent'scher Kranz) d. h. für alle Werte von x, die der

Bedingung Rx <C I x | <C R, wo Ri << R, genügen, dann findet man
analog dem entsprechenden Fall für die geraden Funktionen
eine Reihe, die nach 77- und P-Funktionen fortschreitet von
der Form:
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00 c x /» /
f(x)="VA-i-77(x)- f(y)-P(y)dy +-ÄJ 2l/r J (R)

+|X^w-.f<R,)t(ï)-Aw'dj'
oder kürzer:

OO >l OO /
f (x)=2* k. « (x) +2* W • p W

1

wo ki--^-. f f(y)-P(y)-dy (41.)
<£L

/*/=— • f f(y)-#(y)dy
_ 2i/r ./ (Ri) _ _

'

Der obige Fall (40.) tritt als Spezialfall dieser letzteren
Entwicklung auf, wenn die Entwicklungskoeffizienten f<;
verschwinden, was für jede Funktion f (x) der Fall ist, die innerhalb
eines um den Nullpunkt mit dem Radius R beschriebenen
Kreisgebietes, also für |xl<<r<<R eindeutig und stetig ist. Mit
andern Worten:

Ist der Nullpunkt zugänglich, so kann die Entwicklung von
f (x) nur Potenzen mit positivem Exponenten enthalten, und da
x

J (x) auch nur solche enthält, muss in diesem Fall das
Kreisintegral

77(y)f(y)-dyJ R

notwendig verschwinden, also auch ui 0 sein. Der
Entwicklungskoeffizient k^ dagegen kann dann nicht gleich Null sein, weil
X

P (y) eine Reihe ist, die nach wachsenden negativen Potenzen
fortschreitet, die also das Integral nicht verschwinden lassen,
wenn sie sich teilweise mit dem positiven Potenzen von f (y) zum

Integranden — ergänzen.
y
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Lässt sich die gegebene, ungerade Funktion f (x) nur in
eine nach wachsenden negativen Potenzen des Argumentes
fortschreitende Potenzreihe entwickeln, dann verschwindet umgekehrt
das Integral

X'W-dyf >

./ (R)

damit wird auch k^ zu Null, und man erhält eine Entwicklung
x

die nur nach P (x)-Funktionen fortschreitet.
Weist endlich die Potenzreihenentwicklung der gegebenen

ungeraden Funktion f (x) sowohl positive und negative Potenzen
auf, dann verschwinden die k^ und u^ nur teilweise, und man
erhält eine nach 77- und P-Funktionen fortschreitende Entwicklung.

Die für die gegebene, ungerade Funktion f (x) möglichen
drei Fälle können natürlich auch bei einer geraden Funktion
tp (x) eintreten. Es gelten dann hinsichtlich der gesuchten
Entwicklung die den obigen entsprechenden Bedingungen, nämlich:

Enthält die Potenzreihenentwicklung der gegebenen geraden
Funktion tp (x) nur positive Potenzen, dann schreitet die gesuchte
Neumann'sche Reihe zweiter Art nur fort nach den Quadraten
der J-Funktion, d. h. in der Formel (16 a.) verschwinden alle
Koeffizienten ux.

Enthält die Potenzreihenentwicklung der gegebenen geraden
Funktion tp (x) nur negative Potenzen, dann schreitet die gesuchte
Entwicklung nur fort nach Ii} -Funktionen, d. h. alle kx ver.
schwinden.

Enthält endlich die Potenzreihenentwicklung der gegebenen
geraden Funktion <p(x) sowohl negative als auch positive Potenzen,
ist sie also definiert für einen Laurent'schen Kranz, dann
verschwinden weder alle ui noch alle k^ ; die gesuchte Entwicklung

X
2

schreitet daher fort nach den [J (x)] und Ù. (x).
Um auch für diese zweite Neumann'sche Methode eine

kurze Charakteristik zu geben, heben wir hervor, dass sie die
erste Methode dahin ergänzt, dass unter Anwendung beider
Methoden gerade und ungerade Funktionen in Neumann'sche
Reihen II. Art entwickelt werden können. Aber selbst unter
gleichzeitiger Anwendung beider Methoden ist es nicht möglich,
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Funktionen, deren Potenzreihen nach geraden und ungeraden
Potenzen des Arguments fortschreiten, in Neumann'sche Reihen
zweiter Art zu entwickeln. In dieser Hinsicht ist die Möglichkeit

der Entwicklung nach Reihen erster Art viel allgemeiner,
indem von der zu entwickelnden Funktion nur verlangt wird, dass

sie durch eine konvergente Potenzreihe dargestellt werden kann.
Im übrigen ist diese zweite Neumann'sche Methode anwendbar

auf alle ungeraden Funktionen, die in eine konvergente
Potenzreihe enwickelt werden können. Denn dadurch werden
die zur Bestimmung der Entwicklungskoeffizienten k; und ux
entstehenden Integralausdrücke leicht integrierbar. In
Anwendung des Verfahrens geben wir nachstehend die Entwicklungen
einiger ungerader Funktionen.

§ 2. Aufstellung der Reihen für die ungeraden Potenzen von x.

Es sei vorerst aufmerksam gemacht auf die durch Differentiation

der Entwicklung für 1, d. h. von

,20 oo x

l [j(x)f + 22* [J«I
i

erhaltene Identität

oi ~ ;.

0 — J (x) J (x) +>?A n(x)
i

0 ~ — J(x) J(x) + J(x) J(x) - J(x) J(x) + J(x) J(x) —1-_ +.. inf.

1. Aufstellung der Reihe für x.

f(x) x; f(y) y
oo

X

1

00 X s f X

2* k, • 77(x); k, — -J f (y) p (y) d y.

Man erhält im einzelnen:

^XfXy-dXX^.2\tc J 2\7t J y
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k2 ^-./P(y).y.dy -2-r{4+4)y.dy^8.2i-T J 2i7t J |y2 y*J

2i7t J 2itt ,/ |y2

.48, 192
+-H—- -ydy i8.

y4 y6

2itt J 2i?r ,/ [y2

+^ + ...}y-dy 32.

im allgemeinen:

k^-2-. rX^—i^.i.ü+^X^^.y'-dy.* 2i?r J — (2v)l y (A —y)! y2"
J J

Die allgemeine Potenz im Integranden ist y_2r+1. Um für
dieses Cauchy'sche Integral überhaupt einen von Null verschiedenen

Wert zu erhalten, muss die Potenz y~1 — sein und diese er-
y

hält man durch die Setzung — 2 v + 1 — 1; y 1. Dann wird

im Integranden der Koeffizient von — — A2 und daher:
y LyJ

k;=^--A2- fdr 2A2.
2i^ J y

Dadurch wird nun die Entwicklung für x zu:

x 2 ?Z(x) + 8 77 (x) + 18 J7(x) + 32 77(x) + 50 77(x) + + inf.

OO j oo

=2^ 2A2/7(x) X2-A (2A)2Jf(x) (42.)

In dieser Darstellung hat man jedoch nur eine mittelbar
nach Produkten von J-Funktionen fortschreitende Reihe. Um

4
i '¦-
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eine auch unmittelbar nach Produkten von J-Funktionen
fortschreitende Reihe zu erhalten, bildet man nach (33.) die
Koeffizienten

a1 (k1— 2ko) 2; a2 (ka — ki) =6; a3 (k3 - k2) 10

a4 (k4 — k3) 14

allgemein

ai (ki — kA_i) 2{A2— (A— l)2j=2(2A — 1)

Die unmittelbar nach Produkten von J-Funktionen
fortschreitende Reihe erhält demnach die Form:

x 2 ¦ J (x) J (x) + 6 - J (x) J (x) + 10 J (x) J (x) +

+ 14 J (x) J (x) + 18 J (x) • J (x) + + inf.

00 /—i ;
2 .y?. (2 A — 1) • J (x) - J (x) gültig für | x |< R.

Wir leiten noch die Formel für die allgemeine ungerade
Potenz ab. Es sei

f(x) x2»X f(y) y2°-i
Wir definieren die ungerade Potenz aus dem Grund mit

x2n-i un(j nicht wie sonst üblich mit x2n+1, um unter dem

Integralzeichen des zur Bestimmung von k;. auszuwertenden Integrals

überhaupt die Potenz y- * — zu erhalten. Jede andere
y

Potenz gibt zu jenem Cauchy'schen Integral keinen Beitrag.
Man hat also:

x2n- =yk ki n(x)? wo ki —- - f f (y) ¦ P (y) • d y«J 2l7T J
x

Setzt man für P (y) die Summenformel, so kommt:

-?_ .yv 22"-1 J^L A. (i+iXLJH. fy2n-i±.dY
\iu — (2v)\ v (A —y)! ./ V2y
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Die Potenz - y~1 erhält man durch die Setzung 2n

y
— 1 — 2 y — 1 ; n y.

Dann wird im Integranden der Koeffizient von — zu :

y
,2n_i n!n! A (A +n-1)!S 2'

(2n)! n (A - n)!

woraus sich sofort ki bestimmt zu:

n (an)!
~(2n-2)2j

und daher erhält man für x2u_1:

x2„-i 1 "Xi .yk {2lf [(2 A)2 - 22] [(2 A)2-42J [....] [(2 A)2-
n (2n)! «¦¦m

,2, *,_, (43.)
— (2n — 2fJ-77(x)

Man bildet wie früher:

n i x 02n+i n!n!, (A + n — 1)
ai (ki-ki_0 2 + •—— (2 A — 1) - ^— -X-

(2n)! (A — n)!
und daher

x2„-i 22n n!n! ^ (2 ^ _ ^ (l+_rl__-Jìì t jjx). j (x) (44.)
(2n)! — (A — n)!

Um die Konvergenz der in (42.) bis (44.) hergeleiteten
Formeln nachzuweisen, zeigt man, wie im ersten Abschnitt, dass

die Bedingungen
I "* + ![<!

|iU |

von einem beliebigen, endlichen A an erfüllt sind, so wie ferner

lim Injt + i!
A oo I

UÀ I
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Den für ein und dieselbe Potenz konstanten Faktor

22n n! n!
'

(2n)!

lässt man dabei ausser acht. Nach der Formel von J. J. Schön-
holzer wird, wenn man in

J(x) .iW-y»(-ir. ,XXr(a + b+ 2^ + 1)

für a setzt A— 1, für b setzt A

i).r(b + ^ + i)

2/__
r(a + b + M + l)

J(x).J(x)=2r* (-1/
/x\2i+2/i-l

_ w
^!r(A+/i)-r(A+u+i) r(2A + M)

r(2A +2/i)

oder statt der Gammafunktionen die Fakultäten gesetzt, indem
man festsetzt, das u nur alle ganzen, positiven Zahlen
durchlaufen soll, was für A a priori Bedingung ist,

/x\2i+ 2fi-l
'-1 ; — (2A + 2/X-1)! U/

V!(A+^-l)!(A+ju)!*(2A+jW-l)!J(x)J(x)=2," (-if
Genau in derselben Weise wie für [j(x)] kann man hier

schliessen, dass der absolute Betrag des ersten Summanden

grösser ist als der absolute Betrag der Summe aller einzelnen
Summanden. Es ist daher das allgemeine Glied n;+i der
allgemeinen ungeraden Potenz:

/x\2;.+i
(A + n)!

ni + i|<(2A + l)
ebenso

ni!<(2A-l)

(A-n-f-1) A!(A+1)!

(A + n-1)!
xX2i .-1

2,

(A-n)! (A— 1)! A!
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Daher

|nj + il<(2A+l) (A + n)

\nx\ (21 — 1) (A —n + 1) 4-A+A+l)
Für im Vergleich zu n einigermassen grosse A konvergieren

der erste und der zweite Bruch rechts jeder für sich

gegen 1. Unter der a priori gemachten Voraussetzung, dass
| x | < R, wo R eine reelle, endliche Konstante ist, kann leicht
ein A gefunden werden, für welches der Quotient rechts kleiner
als 1 ist. Daraus ist auch ersichtlich, dass für lim (A oo) der
Quotient zu Null wird. Die durch die Formeln (42.) bis (44.)
dargestellten Neumann'schen Reihen zweiter Art für die
ungeraden Potenzen von x sind also unbedingt konvergent für alle
endlichen Werte des Argumentes x.

§ 3. Vergleich zwischen den für die geraden und ungeraden
Potenzen von x geltenden Neumann'schen Reihen

erster und zweiter Art.

Die Reihen erster Art für die geraden Potenzen, die wir
der oben zitierten Schrift von W. Köstler entnehmen, sind die
folgenden:

o ~ nl J(x) + 2-2* J(x)
i

oo
X2= 2 2* (2A)2J(x)

i
oo

2 .yi (2 A)2 [(2 A)2 — 22] - J (x)
2

oo
2 .yi (2 A)2 [(2 A)2 — 22] [(2 A)2 - 42] j"(x)
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f-
2;.

in= 2-2^ (2 A)2 [(2 A)2 — 22][(2 A)2-42][ ][(2A)2

_(2n-2)2]-J(x)
Die Reihen zweiter Art für die geraden Potenzen sind:

0 °° ;

l fj(x)]2 + 2-2^ [J(x)f
1

i-2-2^ (2A)2-[J(x)J
2

1

1 O ^^ }

é= —- ¦ 2 2^ (2 tf W- 22] • [J (x)]2

6 1-2-3 „^, ,„„ar,„„a -211,^2 ri, .2X6 :

4-5-6
3

2 2* (2 tf [(2A)2- 22] [(2A)2-4k] - [j (x)f

n! n!
x- -4; • 2 -VA (2 A)2[(2A)'2-22] [(2A)2-42J [ ][(2 Af¬

in)! *«
„•211 _

(2n)

-(2n-2)2J[j(x)]
>¦ ^

Man erkennt sofort die grosse Analogie zwischen den beiden

Entwicklungen. Die Entwicklungskoeffizienten der Reihen zweiter
Art sind proportional den entsprechenden der ersten Art. Der

n! n!
Proportionalitätsfaktor ist jeweilen Bei den Reihen ersterF J

(2 n)!
Art kommen nur Bessel'sche Funktionen mit geraden Parametern

vor, während bei denjenigen zweiter Art gerade und ungerade
Parameter auftreten.

Die Reihen erster Art für die ungeraden Potenzen sind:

2X + 1

2~yi (2A + l)J(x)
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-.2/.+ 1

x3 2-2^ (2A + 1)[(2A + 1)2 —l2] J(x)
i
oo

X5 2 •yI (2 A + 1) [(2 A + l)2 — l2] [(2 A +1)2 — 32]' Y"(x)
,-,2^ + 1

x7 2 • y A (2 A +1) • [(2 A + l)2— l2] [(2 A +1)2— 32] [{21+1)2 —
2^ + 1

52] J(x)

x2n+i=2-2^ (2i+J)[(2H'lf-l2J[ ][(2A + 1)2-
n ?n 2* + 1

-(2n-l)2]-J(x)
Die Reihen zweiter Art sind in der ersten Schreibweise:

1 1 -A - x

2 2

x°
1 1

X'

4 3

1 1

6 4

1 1

• 2 • yi (2 A)2 • J7 (x)

i

~ x

¦ 2 ¦ >A (2 A)2 [(2 A)2 — 22] ¦ 77 (x)

8 5

2-3\ • 2 .yI (2 A)2 [(2 A)2- 22] [(2 A)2 — 42] ¦ 77 (x)
5-6

2-3-4^X^ • 2 .yÀ (2 A)2 • [(2A)2- 22] [(2 A)2— 42] [(2 A)2-

-62]-77(x)

1 n!n!
x2n " '=x îxvi •2 -2À (2 A)21(2 ^2 - 2'3 K2 A)2-2n (2n)! ^J

¦42][ ][(2A)2-(2n-2)2]-77(x).
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Durch Vergleich mit den Reihen zweiter Art für die geraden

Potenzen erkennt man sofort, dass die Reihen für die ungeraden
Potenzen kurzweg durch Differentiation der geraden Potenzen

;.

erhalten werden können, wenn man das Symbol 77 (x) einführt.
Man erhält zwar dabei nur eine mittelbar nach Produkten
fortschreitende Reihe. Will man die unmittelbar nach Produkten
x-i x
J J fortschreitenden Reihen haben, so hat man die

Koeffizienten &x zu bilden aus a^ =(ki —ki_i). Die Reihen werden
dann:

¦i-l x
X

X'

X2l X11 ' Xï<X)
1

-xi -2* rinrk (2 V2 ^ ^-^ •J«ji w
d • 4 —^ / • (/. -+-1)

1^3 yÀ (2A-1)
_

2 r 2 _ ^ j-
2 _4-5-6 -J A-(A + 2) l ' vK ' JLV '

-42] J(x)-J(x)

7 1-2-3-4 °°
2* ^=^-(2^-f(2^)2-22][(2A)2-5-6-7-8 — A-(A -3) x-i x

— 42][(2A)2 —62] J(x).J(x)

¦ ^zlyx (2l-V (2A)2[(2A)2-22][(2A)2-
(2n)!^l A(A + n— 1) ' LV ' J LV X(2n)!^J A(A + n—1)

-42][ ][(2A)2- (2n - 2ffJ(x) J(x).

Wie leicht zu kontrollieren ist, lassen sich die Reihen erster
Art für die ungeraden Potenzen auch folgendermassen schreiben :

oo 21 + 1

x 2-^A (2A + 1) J(x)
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2JL + 1

X3 2 .yi (2A + 1) -22-.A-(A + l)-J(x)
i

oo
X5 2 .yi (2 A + 1) • 22 A(A +1) • 22 (A — 1) ¦ (A+2)'-*J(x)

2A+ 1

oo
x'7 2 2^ (2A + 1)-22A(A +1) 22(A — 1)(A + 2)22(A-

3 2;.+i
-2)(A+3)-J(x)

X2n+1 2 .yi (2 A + 1) • 22 A (A +1) 22 (A — 1) (A +

+ 2) 22(A-n + l)(A + n)-J(x)

Für die entsprechenden Potenzen nach Reihen zweiter Art
steht uns unbenommen, unter Berücksichtigung der dadurch
bedingten Veränderung der untern Grenze statt der Laufzahl A

die Laufzahl A +1 zu setzen. Man erhält dann:

1 V?(2A + 1) 02 1X2 kiJti..2^.22.(Hif.I(Ä—'(* + i)

oo1 „2 'ü, m,
» tt!i-22-2X2A + 1).J(x)J(x)

o

t3 k^.VJA (2A + 1) -22(A + 1)222[(A + 1)2-

3-4â (A + 1) ¦ (A + 2)
x x+il2].J(x).J(x)

1-1.yi (2^ + 1)
.22-(A + l)2-22-A-(A+ 2).

3-4 — (A + l)(A + 2)
'

J(x).J(x)
(* + lW+ 2>

i ,-X
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oo1-2 p ^i o x x+i
—•22-2M2^ + 1)-22-(A+1)-A-J(x)-J(x)

i

X5 Œ LU .^ (2A + 1) 22 (A + 1}2 22 [(A + 1)2 _4-5-6 <£i (A+l)(A + 3) ^
i i+1

— I2] 22 [(A +1)2 — 22] • J (x) • J(x)

oo

.kll_l.yÀ (2A + 1) .2\l + 1f.22l.(l + 2)
4-5-6 —J (A + l)-(A + 3)

'

2 '
^2 i /+l
2'(A-l)-(A+3)-J(x)-J(x)

1-2-3
4

oo
Xlf.22 -*Va (2A + 1)-22A(A+1)-22(A — 1) (A + 2) ¦

-5-6 tmmi
2 ;. ;. +1

-J(x)J(x)

r2n-x<„-. «lu1 <^ (2A + 1)
22(A + l)2 22[(A + l)2-

(2n)!^J (A + l)-(A + n)
'

- I3] 22 [(A + l)2 - (n - l)2] - J (x) J(x)

oo^l.yi _JM+_1i__.22(A + l)2-22/.(A +
(2n)! -J (A + l)-(A + n) ^

n— 1

;. x+i
+ 2) 22 (A - n + 2) (A + n) • J (x) J(x)

i n

-^•222M2A + 1)-22A(A + 1)22(A-1)(A +
*¦ '" n —1

;. x+x
+ 2) 22[A +n-l1]-[A—(n —1) + 1]-J(x)-J(x)

Denkt man sich auch hier die allgemeine ungerade Potenz
durch x2n+1 definiert wie oben, setzt man also n statt (n — 1),

dann wird die letzte Reihe:
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X2n+i (îHX+>±l)]. 22Va (2 A + 1) 22 A (A + 1) 22(A-
(2n + 2i! —

(n + 1)! (n + 1)! ^
(2n + 2)!

u

;. ;.+i
•>2

— 1) (A + 2).... 2" (A — n + 1) (A + n) J (x) J (x)

Vergleicht man jetzt die Entwicklungen nach Reihen erster
und zweiter Art, so erkennt man die Proportionalität der
Entwicklungskoeffizienten, wobei der Proportionalitätsfaktor

2 (n + 1)! (n + 1)!

(2 n + 2)

ist. Damit ist die Behauptung, die Carl Neumann in der
genannten Abhandlung ausgesprochen hat, dass nämlich die
Entwicklungskoeffizienten der Reihen bis auf den Proportionalitätsfaktor

mit einander übereinstimmen, auch für die ungeraden
Potenzen nachgewiesen. Bedeutend einfacher ist die dritte Schreibweise

für die Reihen der ungeraden Potenzen:

-•22-2^ (2A + 1)-J(x)-J(x)
o

1-2 „4 ^n, ,«, « (A + 1)! k. s;X
- 24 - 2X2 A + 1) - ^tX j (x) .j (x)

3-4 4J ' {l - 1)

lllll 26 • VA (2 A + 1) -
(A+2)!

- J(x) ?J(x)
4-5-6 ä (A - 2)

i2n+i (^+X!(nJ-lI!.22n+2.V ])-.(±t^!J\x)^x)
(2n + 2)! — l ^ (A-n)!
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§ 4. Herleitung der Reihen für die ungeraden trigono¬
metrischen und zyklometrischen Funktionen.

1. Die Reihe für sin (x).

f (x) sin (x); f (y) sin (y)

sin
OO i

(x)=2* ki7I(x); wo ki
2i.

7 f(y)-P(y)-dy.

Die zur Bestimmung von ki dienenden Integrale lassen
sich wieder am bequemsten auswerten, wenn man für sin (y)
seine Potenzreihenentwicklung einsetzt. Es ist allgemein :

tt3 ttO tt7 y9
sin(y)=y-^ +^-^+J-+ ...inf.=

(2,1-1!)

wo man wieder, abweichend vom üblichen Gebrauch, die Summenformel

wie angegeben schreibt, und nicht

5i„y=2« •-'»'X
2(" + l

+1)!
um im Integranden überhaupt die Potenz y—1=— zu erhalten.

y
Die Bestimmung der Entwicklungskoeffizienten ergibt nun im
einzelnen :

2 /" l
ki rr- • / sin (y) • P (y) - d y2l7T J

-2-./'jy-J+Ü- + ..Ui)dy 2
2i7r J T 3!^5! Ily2| '

k2 -2--/'sin(y).P(y).dy
2l7T J
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k3
2

k-2

2_./'.(y_z!+z!_y!+_..J(A+Al.dy=_ii* J Y sXö! ?X liy2Vj y
1

?-. f.Sm(y).P(y).dy
ITC J

J_.ny_y!ii!_iXi!_+ 1/».+«+
2iw J r 3! 5! 7! 91 J| y2 y4

y« J 1-3.5
2 r 4

7- • / sin(y)-P(y)-dy
ITT J

,192) 3 78

2

— -/*(y-^+^-IÎ+^-^+- U- +iiw J r 3! 5! 7! 9! 11! "j| y2

160 1536 92161 64
H 7-\ 7" H r- "dy:

y4 yB y8 1-3-5-7

im allgemeinen:

m 1
2i,r J ^J (2/i-l)!

vVvl A (l-r-v—1)! 1_

[2v)( v' (A — v)! 'y2"' y'

Die in Betracht fallende Potenz — erhält man, da die all-
y

gemeine Potenz im Integranden y2A*-i-2" ist, durch die Setzung

2fi — 1 — 2 j> — 1, also v u. Dann wird der Koeffizient

von — im Integranden:
y

[3- v_i 02v-i vi vi A (A + i>—1)!(- I)"-1 2
(2v)! v (A-»)l(2v— 1)!

woraus dann:
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k. ^v (_iX1 • 22" ^ ±

-
(A + l;~1)!

;-

— (2r)!(2v— 1)! v (l — v)l

Man erhält demgemäss eine erste Form der Entwicklung:

1 16 2 78 3

sin(x) 2-77(x)+-X-/7(x)+~^-/7(x) +
1 • ö 1 • d -o

64 4

-f ^X_./7(X) + + inf.
1-3-5-7

=yx yv{-Dv-i.22v "'"' ''

(2v)!(2v-l)! v
(4o.)

- (üxXi'. h(x)
(l-v)l

Um die unmittelbar nach Produkten von J-Funktionen
fortschreitende Reihe zu erhalten, bildet man die Koeffizienten:

ai=(ki — 2ko)=2; a3 (k2- ki) — ;
ö

/iii 2 nil 482
a3=(k3—k2) ——; a4=(k4 —k3)=

1-3-5 1-3-5-7
allgemein a; k; — k; _ x).

Nun ist

ki=^ (_x^22".^xl.^.-^ixiLÌlL_-^ (2r)! v (A — v)!(2v — 1)!
i

X- 1

ki_1=^. r_iY"-io2vXXXX (A + v-2)!¦y? (-1}
1

dann wird

ai (k;. - ki_i) =yv (- IX1 - 2

(2v)! v (A — v— l)!(2y —1)!

VI Vi

{2v)l{2v — \)l v
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[A-(A+i> — 1)! (A+»'-2)!(A — 1)!
1 ß-v)l (A — v — 1)

+

¦ w-i 02A Xj! A-(2A-1)!
"*"

(2 A — 1)!(2A)! A

Der Term in der Klammer kann reduziert werden zu:

A(A + y-l!)_(A + r — 2)1 (A — 1)! l-{l + v — 2)l(i, +v-l)_
(l — v)l

' (l-v — l)l .(A — v — 1)!(A — v)

(A —1)(A + * —2)?
(A — v — 1)!

_(ü,+y— 2)! |A-(A + v-l)
(A-,-1)!

(A + i>—2)!

X+X-f*-1'l (A — v)

-v - (2 A — 1)
(A -

Ferner ist

iyi-i22,i A!A! A(2A-1)! ^-i^j A!A!

(2A —1)!(2A)! A (2 A)

Nach diesen Reduktionen wird:

x -i fl Vi
ai (ki - ki_i =yv (- 1)"-l 22v —'- (2A-1) -V

-—
V ' (2v-l)U2v)V '

(A+r-2)! i_loSi A!A!

(A — r)! (2A)!

Der letzte Term kann ebenfalls unter das Summenzeichen

genommen werden, sodass man für den Entwicklungskoeffizienten
ai der unmittelbar nach Produkten von Bessel'schen Funktionen
fortschreitenden Reihe die einfache Formel hat:

H=yv (-i)"-1^2"—^—(2A-i)-(*+*-2)!^J (2v— 1)! (2v)! (l-v)l
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Die Reihe selber wird dann:

Ol If) 1 2 O 2 3

sin(x) 2J(x).J(x) + -^-J(x)-J(x)-—|—-J(x)-J(x)

482 3 4

J(x)J(x) + -| inf.
1-3-5.7

x-i
-.y* (2A-l).J(x).J(x)2" (-l)"-1-22"-
*rj ^ (45a-)

»! »! (A + y —2)!
(2y— 1)! (2y)! (A - y)!

Um die Konvergenz der obigen Reihe nachzuweisen, bildet
man entsprechend dem bisherigen Verfahren den Quotienten

Inx-iI
I m

und weist nach, dass er von einem beliebigen, endlichen A kleiner
wird als eins. Die zur Berechnung der Entwicklungskoeffizienten
ai dienenden, endlichen Reihen haben bei wechselndem
Vorzeichen Summenglieder, die wachsen bis zu einem bestimmten
Wert der Laufzahl v, um nachher wieder abzunehmen. Wir
führen eine Untersuchung durch, die derjenigen bei der Cosinusreihe

entspricht. Man hat wieder in zwei Fällen zu unterscheiden,
1) A gerade, A 2n, 2) A ungerade, A 2n + 1. Die
Untersuchung des ersten Falles wird dann:

1. Fall: A 2 n. Der allgemeine, absolut genommene Term
der Reihe für ai-.

a^yv (-îr1^—vAii—(2A-i).(Â+i'--^-^ (2y—l)!(2y)! ß — v)l

wird:
y'yl (A4-j> — 2V2v v_ili (2 ;. _ i) il^LZ th

' (2y—1)1(2 y)! (A-y)!



— 65 —

A
Man setze darin y —; dann kommt:

(1-1)1 II' j, __*J,

oder A 2n gesetzt:

n!n! ia ^(3n —2)!22n (4n — 1)- '- (A.)
(2n-l)!(2n)! n!

Das unmittelbar nachfolgende Glied erhält man durch die
Setzung :

l i A+2
v - + 1 :

2 2

dann wird der allgemeine Term absolut genommen:

M + ^+_2_2i!
2^+2,V i J \ I J .(2A-1)

(A + l)!(A + 2)! \x A + 2,,

für A 2 n gesetzt:

22n+2. (o+ DKO + 1)!
(4n _ 1} (Bn^ (C<)

(2n + l)!(2n + 2)! (n— 1)!

Das unmittelbar vorangehende Glied erhält man durch die

Setzung:
_A_ A-2V~

2
~~

2

dann wird der allgemeine Term absolut genommen:

a_-2WA-^y, h+^2_2J!
2*-o 2 m 2 ; i z 2 L

(A-3)!(A-2)! \ A-2|,

oder für A 2 n gesetzt:
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22„-2. (n-1)1 (n-l)l (3n-3)!
(2n-3)!(2n —2)! (n +1)!

Bildet man den Quotienten aus (A) und (B), so wird dieser:

(B) 4-(A-2) -(A-l)-(A-l)
(A)" A-(A + 2)-(3A —4)

Der Quotient aus (C) und (A) wird:

(C)
__

(A f 2) (3 A — 2)

(A)_ 4(A + 1)2

(Cl
Wie leicht zu kontrollieren ist, der Quotient —- für alle

(A)
Werte von A 2n, n l, 2,3,4 kleiner als eins, d. h.

für alle Werte A ist | A | > | C |. In der Summenformel für aA

ist demnach das Glied, in welchem die Laufzahl v ersetzt ist
A

durch v —, grösser als alle folgenden Glieder. Der Quotient
LI

aus (B) und (A) ist für alle Werte von A 2 n, die innerhalb
2 <J 2 n <Ü 16 liegen, kleiner als eins. Man erhält für A 16

(B)=4-14.15- 15^175 h
(A) 16-18-44 176

d. h. In der Summenformel für ai ist das Glied, in welchem

die Laufzahl y ersetzt ist durch y —, grösser als alle

nachfolgenden Glieder für alle Werte von A 2 n, und gleichzeitig
grösser als alle vorangehenden Glieder für alle Werte von A,

die im Intervall 2 <^ 2 n <Ü 16 liegen.

Man setzt nunmehr y= 1 : dann wird der
2 2

allgemeine, absolut genommene Term:

(XXXV XX-21!
2À— s - y x - J— (2 A — 1) -

(A-5)!(A-4)! f A-4),
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Setze A 2 n

22D-4 (n-2)! (n-2)! (3„-4)1
(2n —5)!(2n-4)! (n + 2)!

V

Der Quotient aus Bi und B wird dann:

rh —
4 -(A—4)-(A —3)2

B ~3-(A+4)-(A —2)2

Der Quotient ist kleiner als eins für alle Werte von A 2 n,
die im Intervall 18<[2n<;34 liegen. Man erhält für A 34:

B | > I BiBi 4-30-31 • 31 9610 ^ i
B 3-38-31 ¦32 9728

für A 36

Bi 4 - 32 • 33 •

B 3 • 40 - 34 •

33 11616^ 1— > 1; d. h,
34 11560

Im Intervall 18 <; 2 n <; 34 ist demnach in der Reihe für
ai das Glied, für welches die Laufzahl v ersetzt ist durch

y absolut genommen das grösste.

Setzt man y -, dann wird der Quotient aus dem
LI

Glied (B2) und dem nächstfolgendem (Bi):

(B2)_ 4-(A —6)(A—5)2

(Bi) (A + 6)-(A —4)(3A —8)

Für alle Werte von A 2 n im Intervall 36 <; 2 n <J 60 ist
das Glied das grösste, in welchem die Laufzahl v ersetzt ist

durch y Eine weitergehende, diesbezügliche Unter-
u

suchung bietet nichts wesentlich Neues. Es genügt, die Abhängigkeit

der Laufzahl v des grössten Gliedes von der Grösse der
Laufzahl A nachgewiesen zu haben.

Man betrachtet nunmehr den zweiten Fall, wo A ungerade ist.
2. A ungerade, A 2n + 1.
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Der allgemeine absolut genommene Term aus der Reihe für ai:

22y v\v\ m XA + y-2)!
(2y — 1)! (2y)! (A — y)!

wird, wenn man darin y ersetzt durch v zu :

2

(i±i).(i±i). {^+X-2J!2i+i.LXJXx.(2Ji_i)i A >

A!(A + 1)!

Setze A 2n + 1:

A-i+i
2

22n+2 (n + 1)! (n+1)! ^ (3n)!
(2 n + 1)! (2n + 2)! n!

Das unmittelbar vorangehende Glied erhält man durch die
Setzung

_A+1 2_A—1
2

dann wird der allgemeine Term:

22» SÜÜ 4n(3n~1)! (tf)
(2n —l)!(2n)! (n + 1)!

v ;

Das unmittelbar nachfolgende Glied erhält man durch die

Setzung
A+l A+3

V r- 1
2 2

dann wird der allgemeine Term:

22n+, (n4 2)!(n + 2)! ln(3n-l)!
(2n + 3)! (2n + 4)! (n — 1)!

^ ;

Der Quotient aus (A1) und (C1) wird:

C1 ^l. (A + 4) (3A + 4)
A1 4 ¦ (A + 2) • (A + 3)2

Wie man sich leicht überzeugt, ist dieser Quotient für alle

Werte von A 2 n kleiner als eins; d. h. | A11 >-1 C11.
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Der Quotient aus (B1) und (A1) wird:

B1^ 4(A + 1)2

A1_~3-(A + 2)2

Dieser Quotient ist kleiner als eins für die Werte A 1,

A 3 und A 5, d. h. für diese Werte ist (A^^B1).
Zusammenfassend kann man sagen:

Für alle Werte von A 2n + 1, n 0, 1, 2, 3 oo, ist
in der Reihe zur Bestimmung der Koeffizienten ai das Glied,

A +1in welchem die Laufzahl v ersetzt ist durch y —^—, grösser

als alle nachfolgenden Glieder. Im Intervall l<|;2n + l<^5
ist dieses Glied gleichzeitig grösser als alle vorangehenden.

Der-Quotient aus dem Gliede B'i, in welchem y ersetzt ist
3 q

durch y und dem Glied B1, in welchem y ersetzt ist
2

durch y wird nun:
2

B\ 4-(A —2)-(A —l)2
B1

~~
A-(A+4)-(3A — 2)

Dieser Quotient ist kleiner als eins bis und mit A =23;
^ ^

d. h. das Glied B in welchem v ersetzt ist durch y= ist

_ 2
für alle Werte von A 2 n + 1 im Intervall 7 < 2 n + 1 < 23,

grösser als alle vorangehenden und alle nachfolgenden Glieder.
Entsprechend gestalten sich die weiteren Untersuchungen, die
nichts wesentlich Neues bringen. Wenn wir nun die Konvergenz

der Reihe (45a.) für sin(x) nachweisen wollen, so gehen
wir gleich vor wie beim Konvergenzbeweis der Reihe für cos (x).
Wir denken uns in der Summenformel für ai wiederum v ersetzt

durch y womit man jedenfalls ziemlich grosse gerade

Werte von A erreicht und entsprechend mit v wird

man grosse ungerade Werte von A erreichen; setzt man überall
für A 2 n resp. A 2 n + 1, dann wird im ersten Fall v —

(n — 500), im zweiten Fall v (n — 500).
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Dann wird der allgemeine Term ai a2n absolut genommen:

22n-iooo (n —500)! (n-500)!
# (4n_ (3n - 502)!

(2n —999)! (2 n - 1000)! (n + 500)!

also

X-i X

Nimmt man den grössten Term des Produktes J (x) J (x),

-'XV2X + 1

2

dazu, dann ist

X.-1 x

aA • J (x) J (x) <

A!(A + 1)!

22n - looo J"-500)'(°-500)' (4 n _ 1)
(2n-1001) (2 n —1000)!

/x\4n+l
(3n—502)! { 2)
(n + 500) (2n)! (2 n + 1)!

Analog für ungerades A 2 n \- 1.

X X + l
aA+iJ(x)J(x) < 22n-iooo (n-500)!(n-500)! 4n

(2n —1001) (2 n —1000)!

.<x\4n + 2

2,(3n— 501)!

(n + 501)! (2 n + 1)! (2n + 2)!

Der Quotient wird dann :

X X + l
a;.+i J(x)- J(x)

X-i X

ai J (x) J (x)

< n • (3 n — 501) • x
(n + 501) (2n + 1) (n + l)(4n — 1)

(A—1)(3A— 1005). x<
A (A + 1) (2 A — 1) • (A + 1001)

Für A — 400 erhält man angenähert den Wert der Quotienten
zu: 1:2,5-10°
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Die Reihe

x-i
sin x =^yA ai • J (x) • J (x)

wo

&x=yv (_r'2» ^L_^.(2A-l)(AÌXZ2i!_ (2y—l)!(2y)! (A —y)!

ist demnach absolut konvergent für alle endlichen Werte von x.

2. Aufstellung der Reihe für tg (x).

f(x) tg(x); f(y) tg(y)

tg(x)=2* h-n(x), wo ki —-| tg(y)P(y)-dy
i *

Auf relativ einfache Art erhält man die einzelnen
Entwicklungskoeffizienten ki, wenn man ausgeht von der Darstellung
von tg (y) durch die Potenzreihe. Es gilt:

tg(y)=y + 3y2 + 3^'y6 +F^y7 + F^7^'y9 +

+ 21382 yn + + ..inf.1

32 • 52 • 7 • 9 • 11

gültig für — ^- < x < + — ¦

Die einzelnen Koeffizienten k; bestimmen sich nun:

t2=j-.j.tg(y).j(y,dy=^-.jjy+ìy.+

T3-5 ' r ilfVf ' 1-8
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r2-ftg(y)-P(y)dy -2-- r.(y + ìyS+^.y5-h
2i7Tt/ 2i7t J \ 3 3-5

17 _ | f 9 48 192) 1518
y7 + --- -+-+— -dy3-5-7 J y2 y4 y6 1 1-3-5

Daraus bildet man die Reihe:
1 40 2 1fi18 3

tg(x) 2ll(x) +—-JI(x) + -^--J7(x) +
_

' 1.8 1-3-5

162016 * 45867250 *
-\ /7(x) -A n(x) + + inf.

1-3-5-7 1-3-5-7-9
oder

oi 34 2 131e 2 3

tg(x) 2-J(x)J(x)+^J(x)J(x)+-l^.J(x)J(x) +
1 • o 1 • o • o

152390 « «
'

44409106 * «

¦ J(x)-J(x)-| J(x)J(x) ++ ..mf.
1-3-5-7 1-3-5-7-9

(46.)

Um jedoch eine allgemeine Darstellung zu erhalten, geht
man aus von der Entwicklung für tg(y) vermittelst Bernoulli'scher
Zahlen. Man hat nämlich:

OO 9r—1

tg(y)=2r2-(2--l)-B,.|^
gültig für —^ <y< + ^

Dabei bedeutet Br die r.te Bernoulli'sche Zahl, die sich
bestimmt aus:

Br (-l),-1(2r)!C2r
und für die Bestimmung der Konstanten Cr gilt die Rekursions-
formel :

^Sn — 0, mit Ausnahme von Co 1.
<—J n!
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Im besonderen sind die Werte der ersten fünf von J.
Bernoulli berechneten B-Zahlen die folgenden:

i — : ß2 —; 03 —; ±54 —; r>5 —
6 30 42' 30 66

Um den allgemeinen Koeffizienten ki zu bestimmen, geht
man aus von:

x

k.
\i7t j 4*

,„_i vivi A (A+y—1)!
(2y) (A-y)! y2>

2r —1

yT 22r(22r-l)Br X dy
-— (2r)!

J

Die allgemeine Potenz im Integranden ist y2'-!- 2V um

die einzig in Betracht kommende Potenz - y-1 zu erhalten,
y

setzt man 2r — 1 — 2y l, r y. Dann wird der Koeffizient
von y_1 im Integranden zu:

2y-i 02y tcfiv22v (22v — 1)-la"?'
woraus dann

ki=2"2X(22"-l)

vivi A (A+y —1)!

(2y)!(2y)! v (k — v)l

vivi k (A+y-1)!
(2y)!(2y)! v (k — v)l

und daher

tg(x)=ykkx-n(x)

(47)

wo ki durch die obige Formel bestimmt ist.
Man bildet ferner:

ax (kA — ki_i)

k =^„ 24y (22y _ vìvi A
_
(A+y-1)!

—- (2y)!(2y)! y (k — v)l
Dy
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i-1 .-¦> - y!y! A—1 A + y —2)!

ki,^^2"^-1^ • Bt,
(2y)!(2y!) v (A-y-1)!

a>i (ki —ki_i)

JSv 24)'(22y-l) y!y!-.l-B, {*(* + "-!)!_
_ (2y)!(2y)! y \ (A - y)

(A-l)(A + y-2)!|
(A-y-1)! I

+ 2X22A-1)- UU -(2A-l)!Bi^ (2A)!(2A)!
v

fA(A + y-l)!_ (A- 1) (A + y- 2)!) m_ „ (A + y- 2)!
I (A—y)! (A —y —1)! J (A-y)!

a;=N?y2^(22"-l)XX!__(2A-l).öi+X-J)i.Bv
-— (2y)!(2y)! (A —y)!

+ 2U - (2n- 1) - ——— (2 A- 1)! Bi^ V

(2A)!(2A)!

Der letzte Term kann ebenfalls unter das Summenzeichen

gesetzt werden. Daher wird nun:

ajl^2^(22y-l)-X^-(2A-l)(À+y-2)!-B,4 —J (2y)!(2y)! (i —*)!

Die gesuchte Entwicklung nimmt schliesslich die Form an :

oo X—1X
}"

tg(x)=2A (2A-l)-J(x)J(x)-2" 24"(221,-1).
i i

.^lll_(k+v-2)l
(2y)!(2y)! (k — v)l

In der Formel (47a.) ist die sogenannte innere Summe der
folgende Ausdruck:
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2"2°-(22"-l) y\V\ (k-\-v — 2)!

(2y)!(2y)! (k — v)l
Bj,

Es sind A-Summanden, die alle positiv. Im Gegensatz zu
den innern Summen bei der Reihe für sin (x) und cos (x) ist
hier der letzte Summand, d. h. wenn k v gesetzt wird, der
grösste, was bei den letzteren nicht zutrifft. Gibt man y den
Wert A, so ist dieser letzte Summand der grösste und dann ist
offenbar:

%?„ 2X(22"-1)XXX_ (A + "-2)!
_ (2y)!(2y)!

dv <C A

(2y)!(2y)! (A — v)l

1 (2A)!(2A)! |

x-i x
Nimmt man den grössten Term des Produktes J (x) • J (x)

dazu, also :

•X\2A-1

dann wird:
A!(A-1)!

/l-l x

B.X ¦ J (X) • J (x) <A.24i(22,_l)A_J2A-2)!/xy^1
(2A)! (2 A)! \2/

B;

Das unmittelbar nachfolgende Glied in der Reihe (47 a.)
wird analog:

1 >¦

ax+i J (x
X + l
)J(X) <24i+a.(22i+i,-l).

(A + 1)2-(2A)! (An+l B
(2 A+ 2)! (2 A+ 2)! \2/ * + 1

Der Quotient:
X X + l

*x+i ¦ J(x)-J(x) _2-(23A + 2-l)(A + l)2- (2A--1)

-
X-l X

*x J (x) J (x)
^ (22^-l)(2A + l)2A3

Eh+i
• X2

B,
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Der Quotient
2.(22A+2—1)

(22* — 1)

kann ohne grossen Fehler gleich 8 gesetzt werden, der dadurch

bedingte Fehler nimmt mit wechselndem A ab. Macht man für
x ausserdem zur Bedingung, dass -l^x^Tl, dann ist der
Quotient

8-(A+l)2-(2A-l) Bj+1 x2
(2A+lfAs Bi

für alle Werte von A kleiner als eins womit die Konvergenz der
Reihe (47 a.) für tg (x) ' nachgewiesen ist.

3. Aufstellung der Reihe für cotg (x).

Diese Funktion ist im Nullpunkt unstetig. Sie ist definiert
für das Gebiet eines Kreisringes, und daher hat man die
allgemeine Formel (41.) anzuwenden, also

oo i i
cotg (x) =2^ ki n(x) +2^ M • P (x)

1 1

worin ki -+-- rf(y)-P(y)-dy
2l7T J

ux ^--fî(y)-H{y).dy
217! J

Die Unstetigkeit der Funktion im Nullpunkt erkennt man
übrigens aus der Potenzreihenentwicklung, indem

11 1, 2
y „ • y3 s

y 3 32-5 33-5-7
1

cotg (y) -y — -2~- • y3 — - - • y5 —

32-52-7
oder

y7 inf.

1 °° 'r —1--N?r 22r-Br-yX—. gültig für -7T<x< + tc
v ^tm (2 ri!
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Setzt man, wie aus der Bestimmungsformel für die
Bernoulli'sehen Zahlen Br für r o direkt hervorgeht, Bo — 1,

so kann man die Potenzreihe auch schreiben:

OO 9r_1 °° oP q

cotg(y)==_^r2--Bry!l^ _^r2-2.Br_1-^^J *mi (2r)! ^—i (2r—2)!

Zur Bestimmung des allgemeinen Koeffizienten k,v hat man
demnach:

k^X-- fcotg(y)-P(y)-dy
2l7T J

2 p^ 22„_i _y!^!_ A (A +y-1)!
_ J_

2Ì7r'J^" (2 y)! "y' (A—y)!
'

y2"
'

^r 22r-2Br_i -i^-|-f (2r-2)!j dy

Die einzig in Betracht fallende Potenz y_1 — erhält man,
y

weil die allgemeine Potenz im Integranden y2r-s-2y jstj durcn
die Setzung 2r — 3 — 2v — 1, r y + l. Dann wird im

Integranden der Koeffizient von — zu:
y

^— >y 22v 22v~1 ¦ Bv - vl—
-
l

-
-(À+y~ 1)!

[yj 2l ¦

(2y)!(2y)! v (A-y)!

woraus sofort

^ --= ~ >," * • "ykl -N\2--B, *!"! MH-'-U«
(2y)!(2y)! y (A —y)!

Wie ersichtlich, ist diese Bestimmungsformel dieselbe, wie
die oben bei der Entwicklung für tg (x) erhaltene, bis auf den

hier fehlenden Faktor (2 — l).
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Die Potenzreihenentwicklung für cotg (y) enthält nur ein
einziges Glied, das erste, das eine negative Potenz aufweist.
Man kann daher Umgang nehmen von der Bestimmung des all
gemeinen Koeffizienten /jx und sich beschränken auf die Aus-

x

mittelung dieses einen Koeffizienten. Die Funktion /7(y) ist
nach (35.) definiert durch die Formel:

X X \ x—i x + i I x-i x x x + i
i7(y) J(y)i J(y)-J(y)i J(y)-J(y)-J(y)-J(y)

Die Funktion f(y) ist hier -. Demnach wird nun:
y

9 f 1 X1 l ' * * + 1 1

^=2iVj 1 J(y)-J(y)-JM-J(y)j-dy
o />|l-i /. o f -i X X+l

rf--|i-J(y)-J(y)-dy--^--/ --J(y)J(y)-dy2\n J y 2i7t J y

Nach der schon öfters zitierten Formel von J. J. Schönholzer

r(a + b + 2M + l)J(x)J(x)=2'lt (-^p (a + M+l)-r(b+^+l)
y\a + b + 2^

wird nunmehr:

x-i x

J(y)J(y)=2^ (_1)'
0

i X + i x'
J(y)-J(y)=2M (-^'r

r (2 A + 2 p)

î r(a + b + ^i + 1)

/y\2X + 2/n-—l

r(A+//)-r(A+yM+i) jtt!r(2A + fO

y. r(2A + 2^ + 2)

r(A + u + i)- rß + u-r- 2)

/j\2X+2fi+l
V2/

^!T(2A + ^ + 2)
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Diese Werte in die Bestimmungsformel für ux eingesetzt,
dann wird das erste Integral:

« _ _A_ 'V (-1* T(2A + 2,i)

bl~2i^'^ j '
2^+2^.r(k + u).ul'

1

r(A + ^ + i)-r(2A + ^)
fy^+^-'-dy

Die Laufzahlen A und u nehmen nur ganzzahlige, positive
Werte an. Aus der Art des Exponenten ist daher zu ersehen,
dass die Potenz y_1 nicht auftreten kann, weshalb dieses

Cauchy'sche Integral den Wert Null hat. Si 0. Für das
zweite Integral erhält man:

~ 2_ ^, r r(2A + 2M + 2)
2 ' 2i*'^ l ] 22*+2«+2-r(A+M + l)X'

- -. f y2W dy.
r(A + M + 2)-r(2A + i« + 2) J

Aus gleichen Gründen wie oben muss S2 0 sein. Nach
diesen Resultaten ist also ux 0. Nun würde diese weder mit
der entsprechenden Formel bei den Neumann'schen Reihen
I. Art in Analogie stehen, wie dies bei allen übrigen, bisherigen
Entwicklung der Fall war, noch ist anzunehmen, dass die
Entwicklung für cotg (x) lauter negative Summanden enthalten kann,
wodurch sie eine sehr beschränkte Gültigkeit hätte. Es steht
nun gar nichts im Wege, die gesuchte Entwicklung erst mit dem
zweiten Glied zu beginnen und das erste unverändert zu belassen.
Die Richtigkeit dieses Vorgehens wird dadurch bestätigt, dass,

wenn man das fragliche Glied — nach einer später zu behandeln -
y

den Methode von Nielsen, in eine Neumann'sche Reihe II. Art

entwickelt, man zu der Identität — — kommt. Die Entwick-
y y

lung für cotg(x) lautet demnach:
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1 °° * 1

cotg(x) =--yX kx. 27(x)
X 4mJ XX 4Md X

1

-Xa 4 2iv vlv]
- B, • i • (^+V-1)! • A(x)

~- ^J (2y)!(2y)! y (A - y)!

1 2 i 136 2 2818 «

==-_-.//(x)-iC5.n(x)--r_-./r(x)-
44384 «

— ,2 ca „ • gW •• inf-
3-5-7

Man bildet ferner ai k; — ki _ v

K — (2y)!(2y)! v (k — v)l

(48.)

2l\2iv.^^-.±-^V-lìl.Bv-2
(2v)U2v)l v (k — v)l

|4„ vivi A (A + y-1)! _n o4i

kl kl (2k- 1)! _ax
(2 A)! (2 A)!

ki 1 _Ny2---XlzL_.kzl(yiL^2)!.B,
— (2y)!(2y)! y (A — y +1)

A-l
aA^k>l- ki_! —^y-24''.Av vivi B„(A(A + y — 1)!

1
(2y)!(2y)! v { (k - v)l

q — 1).(A+y—2)!| 2ixklkl (2A-1)! B
(A —r — 1) (2y)! (2 A)!

X-l
iX-yv 2iv - -^^!-(2A-l)^+y-2)!

- B,- 2
— (2y)!(2y)! (k — v)l

kl kl (2 k - 1)!
(2A)î' (2 A)!

' ;'
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-2-2'
vi v\ l(A + y-2)!

(2y)!(2y)! (k — v)l

Die endgültige Entwicklung wird dann:

oo X — lXtg(x) =^-2X2Â-1) • J(x) - J(x)-2" 24"

vivi (A + y-2)!
(2y)!(2y)! (A — y)!

• Bv

1 2 « \ 1061. 2 1866

-_-.J(x)J(x)-irJ(x)J(x)-F-i-y
; (48a.)

J(x)J(x)
30294

3-5-7
J (x) J (x) inf.

Für die Untersuchung der Konvergenz kann man sich aus
den Hinweis beschränken, dass die inneren Summen für a; in der

Entwicklung für tg (x) und cotg (x) übereinstimmen bis auf den

Faktor (22v—l), der bei der letztern fehlt. Daraus darf man
schliessen, dass die Reihe für cotg (x) ebenso konvergent ist wie
die Reihe für tg (x) für alle Werte von — 1 <X <; +1.

Nach dem bisherigen Verfahren leiten sich auch die folgenden

ungeraden Funktionen ab:

Mit arc sin (x) erhält man :

arc sin (x)=2;i 2 A ¦ 77 (x) .yv
i

XX-i)i
md (2y-l)2(A-y)!

l QO 2 ¦ qio 3

: 2 - 77(x) + -^r ¦ 77 (x) + -^— - 77(x) +1-3 1 -3-5
117872 4

-i n(x) + + inf.
1-3-5-7

(49.)
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Man bildet wie früher ai (ki — ki _ i) ; dann wird

OO i_ j i
c sin (x) =yi 2 (2 A — 1) • J (x) • J (x) •

i

y (A + y-2)1
(2y — l)a

'
(k—v)l

(49a.)

Es ist evident, dass in der innern Summe

x

yv—x— f2y —
(A-f-y —2)!

^J (2r-l)' (k-v)l
der letzte Term der grösste ist, d. h. wenn v k gesetzt wird
Dann ist:

(A + y — 2) <
A2

(2y —l)2 (k — v)l ^(2A —l)2
(2A —2)!

Daher auch

Ebenso

x-i x

ax- J(x)- J(x)

x X + l
a* + iJ(x)J(x)

<
2A2

<

(21-1)

(A + l)2

x'X-i
(2A —2)!- \2y

(A — 1)! kl

/X\2A+1

(21 + 1)
(21)! (Î)'

A! (A + 1)!

Der Quotient:
;. x + i

ai + iJ(x)J(x) ^(A + 1)-(2A —l)2x2
x-i x

ax J (x) J (x)

<
(2A + 1)-A -2

Dieser Quotient ist unter der Bedingung, dass — 1 < x <
<C +1 sei, für alle Werte von A kleiner als eins, womit die
Konvergenz der Reihe (49a.) nachgewiesen ist.
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Mit arctg(x) erhält man:

+ t \ ^O-i ^ / i\y-i o2y ^!"'
arctg(x)=- >/ >y (—1) 28W ~- -—

V

(2y-l)(2y)!(2y- l)(2y)!
(50.)

A (A+^-J)! à
v (A -y)!

Man bildet: ai (ki— ki_x); dann wird:

oo ; _ i ;
;-

tg (x) =2A (2 * - 1) • J (x) • J(x) -2" (- i)""1

_ 22J/ y!y!
_
(A+y-2)f

(2 y -l)-(2y)!
'

(A-y)!

Die Reihe ist absolut konvergent für — tXx<X
Setzt man im besondern für x 1, dann wird

arc tg 1 —
4

daher

OO X —lX7t 4 .yxm (2 k - 1) • J (1) • J (1) •

1 (51.)

2" (-l)"^2" y!y! (A + y —2)!

(2y—l)-(2y)! (A — y)!
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§ 5. Vergleich der Entwicklungen für die trigonometrischen
und zyklometrischen Funktionen nach Reihen I. und II. Art.

Die Reihen I. Art lauten nach der Schrift von Köstler:

00 2X 0 °° 21

(x) =2X-1); • «2 x-J (x) J (x) + 2 • 2X-1)" • J (x)cos

sin (x)
00

0

l)"$2i+ l
2/ + 1

J(x) 2

00

0

-1)A
2;.+i
•J(x)

tg(x):
00

-4=2»
0

(2A + 1)2 ;.+i
¦ J (X) -

X
X

0

42* (4X1.
(2y+l)-(y+l)-(2y)!

+ 1

-y)!

1 °° 2i + l
cotg (x) i -4 -2^ (2 A + 1) - J(x) -

' 42v (l + y)!B
7>'"

(y + l)-(2y+l)(2y)! (A —y)!
"+1

0

00 x

are sin W 2 .V. (2 X + 1) '% V. _-!M_. fch*W —
' ~ (2y + l)-y!y! (k-v)\

arctg(x) 22^ (SA + l^x) -^ XD" ¦ 22* (^+ g!_y);

„ r Z .^Ai.V-r iM'o»r (^ + -)!
:8-2^ (2A+1)-J(1)-2X-1)"22

(2y + l)(A-y)!
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Die Reihen II. Art lauten, wie sie oben hergeleitet wurden :

cos (x)
rn i2[J(x)]+2

oo

2^-[J(x)T
1 i

-IX 22"

vi vi (A + y-
(A-

(x)-J(x)

-1)!
y)!

i
-1)"sin (x) -

(2v)l

oo

=2* C2*"
i

(2y)!

X-
-1)J —i

¦ 22v vi vi (A + y—2)!
(2y-l)!(2y)! (A —y)!

tg(x)=2A (2A-1)-J(x)-J(x)-
i

.yv 42*(4" - 1)
vlvl ittjLZzJm B,

—- (2y)!(2y)! (A — y)!

cotg (x) - —2^ (21 - 1) • J (x) • J (x) •

X
1

-V,42"-X^ d + y-gll.B,
— (2y)! (2y)! (A - y)!

arc sin (x)
oo

2-^1
—1

(2 A
A-i

-l)-J(x) • J(x) .yv v

-J (2,

- (A + y-
v — \f.(l-

2)!

-y)!

arc tg (x)
oo

-2»
1

(2A-
A-i

-l)-J(x). J(x)
i

^y-i22y.

y Ivi :A + y

(A-
-2)!

-y)!(2 y — l)-(2y)!
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/-1 x

42X21-1)^(1)^11)2" t-1)"-1
1 l

02y vivi
(2y-l)-(2y)!

(A + y - 2)

(A-y)!
Als auffallendste Verschiedenheit in den Entwicklungskoeffizienten

der Reihen erster und zweiter Art erkennt man sofort
V ' V'

den Faktor —¦'—-. Er spielt bei diesen Reihen dieselbe Rolle
(2y)!

n1 n'wie der Faktor bei den Entwicklungen für die geraden
(2n)!

und ungeraden Potenzen, der dort geradezu als Proportionalitätsfaktor

zwischen den Entwicklungskoeffizienten der Reihen erster
und zweiter Art bezeichnet worden ist. Wegen dieses Faktors
\l\ y 1

— kann die innere Summe bei den Entwicklungen für sm (x)
(2 y)
und cos (x) nicht vereinfacht werden, wie dies bei den Reihen
erster Art von Köstler in so eleganter Weise getan worden ist.

Bedeutend mehr Analogie als diese zwei ersten Entwicklungen

zeigen alle folgenden. Setzt man in den Reihen zweiter
Art statt der Laufzahl A die neue A + 1, was ohne weiteres
gestattet ist, wenn die dadurch bedingte Veränderung der untern
Grenze berücksichtigt wird; definiert man ferner die ungeraden
Funktionen in der üblichen Art, d. h. durch den Exponenten
2y + l statt 2 y—1, setzt man also in der innern Summe die
Laufzahl y + 1 statt v, dann werden die Reihen, abgesehen von
den beiden ersten:

oo A l+l
tg(x) 4-NA (2A+l)-J(x)J(x)-

2y^{^l __^IVI L_(XlXli.BV+l
(2y)! (2y)! (2y+l)2 (k — v)l

1 «©. ,„, Ì, *4X ^ .2V Vivi
cotg (x) i-42* (2*+ 1) • J M • J(x) 2" **'

** «T1 (2y)!(2y)!
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(A + y)!

(gy+lr ß—v)l
By+i

arc sin (x) 2 -^1(2 A +1) - J (x) "j (x) -2" ^ •

o o v " r '
vivi (2v)l (A + y)

'
(2y)!

'
vl vl (A —y)!

oo A i+1
*

are tg (x) 2 2* (21+1) • J (x) • J (x) -2" (- lf ¦

0 0

22„ + l)!(y + l)! (A + y)!

(2y + l)-(2y+2)! (k - v)l

Abgesehen vom Faktor —'-—- stimmen die innern Summen
(2y)!

für tg (x) und cotg (x) nach Reihen erster und zweiter Art überein,

nur dass bei den letztem statt steht. Für
(2y + l) y + 1

die arc sin (x) Entwicklung hat man Analogie bis auf den Quotienten

bei den letzteren, für arc tg (x) bis auf — Sieht
2y+l

V

2(2y + l)
man iedoch —— als Proportionalitätsfaktor an, dann

(2 y+ 2)! r
hat man bei tg (x) und cotg (x) völlige Uebereinstimmung bis

auf den Faktor 2, bei arc sin (x) bis auf den Faktor — una" bei
LI

arc tg (x) völlige Uebereinstimmung.
Im grossen Ganzen kann man die Behauptung, die Carl

Neumann hinsichtlich der Reihenentwicklungen erster und zweiter
Art für die geraden Potenzen aufgestellt und bewiesen hat, dass

nämlich die Entwicklungskoeffizienten der Reihen erster und
zweiter Art proportional seien, auch auf die andern entwickelten
Funktionen ausdehnen. Für die ungeraden Potenzen ist dies
früher schon nachgewiesen worden. Auch für die trigonometrischen
und zyklonometrischen Funktionen hat man in der Regel mit
Ausnahme der Reihen für sin (x) und cos (x) bestätigt gefunden.



III. Abschnitt.

§ 1. Die Methode von Niels Nielsen.

Wohl die allgemeinste Methode zur Entwicklung analytischer
Funktionen nach Neumann'schen Reihen zweiter Art hat Niels
Nielsen" in seiner Abhandlung „Sur le produit de deux
fonctions cylindriques" gegeben. Sie wird nicht nur
vorzüglich geeignet sein, die im I. und II. Abschnitt aufgestellten
Reihen zu verifizieren, sondern sie wird gleichzeitig die Möglichkeit

bieten, auch ungerade Funktionen nach Quadraten von
Bessel'schen Funktionen zu entwickeln. Von E. Lommells ist
erstmals von einer solchen Möglichkeit gesprochen worden. In
der genannten Abhandlung hat er einige vereinzelte, diesbezügliche

Resultate veröffentlicht. In der nun zu betrachtenden
Methode gibt aber N. Nielsen zuerst einen allgemein gültigen
Modus zur Herleitung solcher Reihen. Wir führen die Methode
soweit notwendig an und verweisen bezüglich Einzelheiten auf
die genannte Abhandlung.

Nielsen beweist daselbst den Satz:

„Une série de puissances ^^ bv x2v, qui est une fonction

paire de x, peut être développée en série de la forme:

2s b, x2^ Q 2s a? • J W • J W (52.)
0 0

où f.i et y désignent deux constantes quelconques, les négatifs
entiers exclus. Ce développement est valable à l'intérieur du
cercle de convergence de la série de puissances et les coefficients
ap sont déterminés par la formule:
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X+X2p)2m fi + y + 2m+l
(P - m)! (53.>

,2m i u
•B(/4 + m + l, y + m + l)-r(,t( + y + p+m)-2'm-bm

Den Konstanten u und y kann man also jeden beliebigen
Wert erteilen.

Setzt man z.B. y — u, dann wird die Formel (52.) zu:

s+M ç—fi

2s bff x2^=2e a?-J(x) J(x) (54.>

Die Formel (53.) zur Bestimmung der Koeffizienten aff wird
unter Berücksichtigung der entsprechenden Werte der beiden
Euler'schen Integrale B und r zu:

a»> —
2p - u • 7t I bo

sin (ft 7t) p

V

+2
(p+n)

n ^-"/(1'-^
(P + n)

2)(22-

-//)(32-t<2) (n2-t,2)22n-bn

ao X ' bo
sm (tv u)

In Formel (54.) setze man it 0, dann wird :

oo oo i. .-»2sbx2?=2sa-fiwf

(66.).

(56.)-

Der Bruch ¦—- • 2 p wird für i« 0 zu :

sin (u tc)

lim un o lim «_ „ _[\ ~. /p= ^ LI VI U 7t
u=Qsm(u7t) /* 0

U7Z-
(U7t) (U7t)

3! 5! -+ ••
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Um 2p
1

a*=0 r 1_(MXL4_(AfX4_
3! 5!

2p.

Daher wird auch ap= 2p
bo ,<1 (P + n)!fS? (p-n)!(2n)!(p + n)

¦l2-22-32-42...n2-22n-bn

Setzt man darin A statt p und v statt n, so wird

vivi A (A + y)!
• b«ai 2bo + 2,SV22*XX.-AX

Sp (2y)! (A-y)!(A + y)

2"^^y+i.^XL.1(1+^-1)!.b
(2y)! (A - y)!

(57.)

Wir notieren diese Resultate in folgendem Satz:

oo

„Eine Potenzreihe ^^A bi x2À, die eine gerade Funk-

_
o

tion von x ist, kann in eine Reihe von der Form:

oo i
2*a- fj(x)]2 (58>

0

entwickelt werden. Diese Entwicklung ist gültig im
Innern des Konvergenzkreises der Potenzreihe und die
Koeffizienten ai bestimmen sich durch die Formel:

ai yv 22"+1 - *lL - A -
(* +*-!)' - b, (59.)-J (2y)! (A-y)!

ao bo

Dabei sind die bv die Koeffizienten von x2n in der
Potenzreihenentwicklung."
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Ein Vergleich mit der in Formel (10.) gegebenen Definition

für die Funktion if (y) zeigt eine völlige Uebereinstimmung bis
auf den Faktor 2 b„. Aber gerade dieser Faktor tritt bei jeder
Bestimmung der dortigen Entwicklungskoeffizienten ki jeweilen
zu der Definitionsformel von if' (y), sodass man Gleichheit der
Definitionsformeln der Entwicklungskoeffizienten ki dort und ai
hier hat. Streng genommen ist also diese neuere Methode von
Nielsen nicht verschieden von der älteren von C. Neumann
gegebenen Methode. Wir glaubten jedoch trotzdem von einer
neuen Methode sprechen zu dürfen, weil sie viel allgemeiner ist
und infolgedessen auch eine bedeutend vielseitigere Anwendung
erwarten lässt. Nach dieser von vorneherein festgestellten
Uebereinstimmung können wir uns auf die Bestimmung des allgemeinen
Koeffizienten ax beschränken.

1. Die geraden Potenzen von x.

Es sei

b0 1 ; bi b2 bi =0.
Dann ist

2*biX2* l
o

Daher ist
oo

ai=^y f+'.^.i-(i + >-1)!b>; ao bo^ (2y)! (k-v)l

alle bv mit Ausnahme von b0 1 sind null. In der Formel für
ai tritt daher immer nur der erste Summand auf, sodass man
hat a0 1 ; ai 2. Dann erhält man

o °° X

l [j(x)]+2-2^[J(x)f (60.)
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Der Vollständigkeit halber sei hier noch an eine dritte
Methode zur Entwicklung von 1 in die nach Quadraten der
Bessel'schen Funktionen fortschreitende Reihe erinnert, die von
E. LommeV9 gegeben ist und daselbst nachgeschlagen werden
kann. Das Resultat ist aber, wie schon oben erwähnt wurde,
erstmals von Hansen9 gegeben worden.

Indem wir in der Anwendung der Methode von Nielsen
weiterfahren, wollen wir sie nur noch auf die allgemeine gerade
Potenz ausdehnen. Es sei zu dem Ende

bo bi b2 bn -1 0; bn 1 ;

bn + i bn + 2 bi 0.

Dann ist
oo

yi bix2* x2n

0

oo i
X2«=2>! ai[j(x)]2

0

X

ai yv 22v+l^- - A -
C + y-l>' - bv^ (2y)! (A-y)!

In dieser Summe verschwinden jeweilen alle einzelnen
Summanden, mit Ausnahme von dem, indem v n ist.

Dieser wird

a;=22n+inXlA.(A±JX_X
(2n)l (1 — n)!

Daher wird nun

X2n 22n + l "Ini Ä ^
(X + U - 1)! jvj ]. ^ }

(2 n) —J (A — n)

2. Die Reihen für cos (x) und coj (x).

oo 2, oo 1
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Daher wird nun:

oo i
«os (x) =y* &x • [J(x)j ;..

0

ai =^y 22^ *± - A - <*+ZZl1)». ^— (2y)! (A — y)!
o

XS?v (-1)" • 22v+i- vlvl i ¦ (1±V-1V-
— (2y)! (2y)l (l — v)l(2y)!(2y)l" (À-*)!

ao bo 1.

Daher wird

o °° i
cos (x) [J (x)]2+2* 21-[j(x)]2-

i
*

(62
w 22v vlvl

A -
(A +*-l)!2"(-1)" (2y)!(2y)! (A — v)l

oo „ c-o

cof(x)='Vl^—=N^A bi -x2*, wo bi ——_ (2A)! -J '
(2A)!

Die Herleitung ist dieselbe wie oben abgesehen vom Faktor
(— 1) ; daher wird

,i o°o -a
cof(x) [j(x)]+2^ 2A-[j(x)r

1

;. (63.)

2v o2y v±ZÏ (A + y-1)!
o

*
(2y)! (2y)! (A - y)!

Ein Vergleich mit den entsprechenden im ersten Abschnitt
aufgestellten Formeln zeigt die völlige Uebereinstimmung der

Entwicklungen.
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§ 2. Methode für ungerade Funktionen.

Man setzt in der Formel (54.):

^^ /x\-ia-e £S. u + g v+g
2sbx2?=u) -2^xj<x)j(x)

0 0

1 — u statt y. Dann wird

S+ß ç + i- ß

S b^x2^1^6 VJ(x)J(x)

_ TT ^ (1 — U)
a« —;— — Do

sin (^ zr)

ai (2A + l)-XiiXJl^2b0+2n(l2-,i2)(22-
sin (n7t) \ 1 ««-J

/A + n
2\/Q2 2\ /2 2\ \A— n/ 1 o2« + l u— u)(3—n)....(n—fi). -(n + 1 — u)-2 ^ - ba

(2n + l)
Setzt man hier u 0, dann wird _ ft —;—-— 1, daher

u — 0 sin 7t /.i
ao bo

ai
(2A+l)(2b0 +^n22n+1 »**L rL±rl M±j2ll

'
I —- (2n)! 2n+ l (A — n)!

Setzt man die Laufzahl v statt n, dann wird

ai =yv 22*+1^- - ±±*L (2A + 1) (A±iì!.bv; a0 b0^ (2y)! (2y + l) ^ '(A-y)!

Wir notieren diese Resultate in folgendem Satz:

oo
„Eine Potenzreihe, ^^A b,ix2i+1, welche eine unge-

o
-

¦

rade Funktion von x ist, kann in eine Reihe von der Form
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; x x+i
A ai-J(x)-J(x) (64.)

entwickelt werden, welche gültig ist im Innern des
Konvergenzkreises der Potenzreihe. Die Koeffizienten
ai bestimmen sich durch die Formel

ai =^y 22"+l *± lü (2 A - 1) (A±^-!. b„; ao b0 (65.)
— (2y)! 2y + l (A —y)!

V

Die by sind darin die Entwicklungskoeffizienten der
Potenzreihe."

Um nun aber Uebereinstimmung mit den im II. Abschnitt
hergeleiteten Entwicklungen für die ungeraden Funktionen zu
erhalten, beachte man, dass in der allgemeinen Summenformel
x-i x
J (x) J (x) das Produkt der Bessel'schen Funktionen ist und

x x+i
nicht wie hier J (x) • J (x). Das ist offenbar gleichbedeutend
damit, dass der Entwicklungkoeffizient ai dort identisch ist mit
dem Koeffizienten ai_i hier. Man ersetze nun in (64.) und (65.)
A durch A — 1 und nenne den neuen Entwicklungskoeffizienten ai.
Ferner hat man früher überall die ungeraden Funktionen in
der allgemeinen Darstellung durch die Potenz (2 y — 1)
charakterisiert und nicht wie oben durch die Potenz (2 v + 1). Man
ersetze daher (v + 1) durch (v — 1). Dann formuliert man den
Satz (64.) wie folgt:

oo

„Eine Potenzreihe, ^-A bi_i x2A_1, welche eine un-
i

gerade Funktion von x ist, kann in eine Reihe
entwickelt werden von der Form

oo ^_t ^

yizxJ(x).J(x) (66.)

Diese ist gültig im Innern des Konvergenzkreises der
Potenzreihe und die Koeffizienten &x bestimmen sich
durch die Formel:
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a^ =2* 22V^xr &l- x> ¦xx • **-; a° -b<> (67-)
«J (2y)! (A — y)!

Die br_i sind darin die Entwicklungskoeffizienten der
Potenzreihe.

Im II. Abschnitt hat man von Fall zu Fall den Entwdck-

lungskoeffizienten ai bestimmt nach der Formel &x — (kx — ki_t).
Vergleicht man eine der daselbst gefundenen Formeln für a.x

mit (67.), so erkennt man die völlige Uebereinstimmung derselben
bis auf den Faktor 2br-i, der dort schon dabei ist, d. h. in der
der betreffenden Funktion charakteristischen Form und hier erst
noch durch eben diese Form ersetzt werden muss.

Es seien auch hier einige der schon oben hergeleiteten
Entwicklungen nach diesem abgekürzten Verfahren bestimmt.

1. Die ungeraden Potenzen von x.

Es sei bo 1, bi b2 bi 0;

dann ist
oo

2^bi„]x2'"1 x.

i
%^3 X\ riX "V? cfivvlvl (A + y —2)!x= >A a; J(x) • J (x); a; >y 2 (2k — 1) -—-. '—

^ xv) v 7, ;. ^ (2j/)! (A__^;

a;. 2-(2A-l).
00 ;-i x

X : 2 .y% (2 A — 1) - J (x) J (x) (68.)

Es sei für die allgemeine, ungerade Potenz:

bi b2 b3 • • • =b„_i 0 bn =1, bn+i b;=... 0;
1 n ; also ist

x-i x

l bi x2^-1=x2n~1; x2n-1 =^A ai-J(x)J(x)
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ai=^y 22v ^(2k-l)^±^*hhvZk (2y)!V (A-y)!

22nn!_n! (A+n-2)!
(2n)! (A —n)!

woraus nunmehr:

X2n-i_£l£l 22n^ {2A-l)-(A+-n-^^.J X)J(X) (69.)
(2n)! — (A —n)!

V ; V

2. Die trigonometrischen Funktionen.

Man hat den sin(x) definiert durch die Potenzreihe

°2. „2)1-1 ~ ivl-lA ^Jl k.„2i-lk t A'sm
s

à
1

(x) XVA (—If'1 — =Vl bi x2*Xb;
—

V

(2 A — 1)! —
;-

(21-1)!

Daraus bestimmt sich nun:

00 x-i x

X

ax ]
1

X

(x) 2X aX(x)J(x);
i

N'y22y^^-(2A-l).(;i + ),-2)!by
— (2y!) (A —y)!

a1=y (-I)-1 lhJ_\ 22^2A-l)XtXT.
émà (2v— 1)1 (2v)\ (l — v

und daher

(2 v— 1)1(2»)! (A —y)!

oo i— 1 X |
sin(x)=^?A (2 A — 1) - J (x) J (x)^y (- lf"1 22v —W -—

V ; W —^ V

(2y-l)!(2y)!
(A + y - 2)!

• VxX üü?

Für tg(x) hat man mit Benützung von Bernoulli'schen
Zahlen folgende Potenzreihe:

7
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2A-1 °°

(2k)tg(x)=2^22^(22^-l)Bi.^— =2lbi-x2^1
i

wo b; 22M2'^-l)-^-;-

(21)!
Daher

OO i— 1 ;

tg(x)=2* aiJ(x) J(x)
i

"!"! ,«, ii (l+"-2)!„ai= >'y *•"- iîi-' — i; (21—1) •- Bv/' (2y)!(2y)! (l — v)l
:yv 42"(22"-l) "•"• -(21-1)
— (2y)!(2y)!

woraus dann
xOO A -1 /I

tg(x)=2^ (2 A — 1) • J (x) J (x) >y 42v(22v —1)

vivi (A + y—2)! D (71.)

(2y)!(2y)! (A —y)!

Für cotg (x) hat man die Potenzreihe :

1 °° 21— 1

cotg(x) i-2^22;Bi^—x mJ (2/)!
Es wird dann

1 °° x-1 x

cotg(x)= Nla;.-J(x)J(x)
x —J

1

<2v y!y! ,0, ^(A+y-2)!
aÂ ^V -

i
und daher

a, XS?v 42"^Xi— (2A - 1)l '" - B,,
_- (2y)!(2y)! (A —y)!

; oo i_i i
cotg (x) - -2* (2 A - 1) • J (x) J (x)2" £V

X
1

vl vl (k-\-v — 2)! (72.)

(2y)! (2y)! (T-v)l
' "
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Den arc sin (x) hat man definiert durch :

oo

arc sin (x) > A(x)=2

Dann wird

(2A -2)! x2'--1

22A-2(A-1)!(A —1)1
'
21—1

arc sin (x)=2^ai-/'j(x)J(x)

(73.)

aj 2-> v r(21-l).te^—- (2y-l)2 (1 —r)!

und folglich

oo i — 1 j
arc sin (x) 2 2* (2 A — 1) • J (x) j (x) •

i

"Vv-XX_ (* + y-2)!
'-ÉJ (2y-l)2 (A-y)!

Für arc tg (x) hat man

arctg(x)=2* (-^"'yXI
i

Dann wird sofort

CT, *¦ ~1 A

arc f ' ""*' "tg(x)=2^(22-i)-j(x)j(x)-

.y 1}y-i *Xj (A+y —2)!

— (2y —l)-(2y)! (A — y)!

(74.)
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§ 3. Methode zur Entwicklung ungerader Funktionen in
Reihen, die nach Quadraten Bessel'scher Funktionen fort¬

schreiten, deren Parameter gemischte Zahlen sind.

Man setzt in Formel (52.)

^^ „ /x\~i"-"^ P + sr + s

2sbsx =(1) 2^as'J(x)J(x)
o • 0

für y 1 — li. Dann wird

°° ^, ç+ft ff+l-l"
2^'bcX2^+1 2sa?-J(x)J(x)

0 0

7tu(l — fi)
ao —:— — • Oo

sm (u 7t)

ai (2A + l)-X^Xm^.2bo+,5y (l2-,<2)(22-
sin (u 7t) { 1 **m

2\ (2 2\ -, \ (k-\-v)l 02V+ 1 v
1

— u (y — u • (v + 1 — Li) À -bv)
(1—y)!(2y)!(2y + l) I

lDarin setze man weiter u — — ; dann wird :

2

>k biX2^1:
OO ; I 1/.,

2^ ai-['^(x)f

a;. (21 + l)X bo+2" (i _!_,)! X_l
(k—v)l (2y)! (2y+l) \ 4

22_ IV 3a- X. -
Yy2 - -Ì 22"+1 b„.

4

(21 + l)-^-jbo+,S'y ^+^
2| —¦ (A —y)! (2y)!(2y + l)

(2 y)! (2 y)!
r(2y+l)bvu y! y!
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* k V?.. (2y)!(l + y)!

=<-+Xi^2" #^KX
0 '

Wir fassen diese Resultate in folgenden Satz zusammen:

oo

„Eine Potenzreihe ^VA bi x2^+1, die eine ungerade
°.

Funktion von x ist, kann in eine Reihe von der Form:

Ä pi-rVi l2Niai [ J(x)] (75.)

entwickelt werden, die gültig ist für denselben Bereich,
für den die Potenzreihe definiert ist. Die
Entwicklungskoeffizienten ai bestimmen sich einschliesslich ao

aus der Formel:
x

mi i -i\7C ^ (2y)! + ")! u inK \a;. (21 +1) - - 2^ ^r^ *

{7X^
• b» (?5a->

Die bv sind darin die Entwicklungskoeffizienten der
Potenzreihe".

Darin ist J (x) nach der von J. H. Graf10 gegebenen Formel
definiert durch

*+'/% I^Z~ *? (MX* / 1 V' (,,11 »« Ì
J (x) V / • > y -—!—— — cos (1 + 1 — y) xw \Xx ^| v!(l — y)!\2x/ T 2 J

und darin ist

cos ] (1 + 1 — y) x l + sin (x), für 1+1 — y 1 (mod 4)
' 2 ' oder A + 1 — v 3 (mod 4)

+ cos (x), für A + 1 — y 0 (mod 4)

oder A + 1 — y 2 (mod 4)
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In Anwendung dieses Verfahrens und zur weiteren Erläuterung
der Methode seien im folgenden einige ungerade Funktionen
entwickelt.

1. Reihen für die ungeraden Potenzen.

Man setze b0 l; bi 0 A 4= 0

oo

Dann ist NAbiX2>+1 x
—o

^ rHI/2 i2

=2^ ai-[ J(x)]

—(W2ri&ki-m+
(2A + 1)-|
7t

a0
2

Daher wird:

TZ r'/' n2 ir. ^^1 r* + 'l» ,2
x -Xj(x)] + XVa(2A + 1)-[ J(x)] (76.)

0_

X['W+!Xr+Tt il LI

i 5r5(2i m2 i 7r'(Xi2 i i -f (76a-}
+ 2LJ(x)J +-[J(x)J + + inf.

In dieser letzteren Darstellung stimmt die Formel genau
überein mit der von E. Lommel20 auf ganz anderem Weg
hergeleiteten Entwicklung.

Um noch die Formel für die allgemeine ungerade Potenz
herzuleiten, setzt man bn 1 bi 0 A =|= n. Dann ist

oo

yi bix2;-i-1 x2n+1
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x Ä M1h -C2

:n+1-=21 a^t J(x)]

ai tt <2'+1,-2'XX(2 y)! (k + v)l

(A-y)!
bv

Dann wird

X2n +1=7T-

toit il (2n)! (A + n)!
ai rt- (2A + 1) - 2n+1;—- ¦ x

J y! y! (/ — n)

n +1n!n! — (A-n)!
L V U

x2n+X. (2n)!
7~ 02n + ¦iL_V»pi+i)

n! n! <£J

(A + n)! ^l; 2

(A-n)!L

(77.)

2. Reihen für die trigonometrischen Funktionen.

Man definiert hier sin (x) durch

oo 2/1 + 1 °°
in (x) =Na (— 1)* X XVa b x2;.+iW —

V

(2A + 1)! —-
sin

Dann wird

wo b.;. (-ir
(2A+1)!

X7>^T1 r T" '* n2

Sin(x)=2^ aj J(x)]
o

ai « (2A +1)2" ^y+T^^,
•

p—y,
• by

=x2i+i)2^(-ir2^T^^(2y)J (A + y)!

(2y+l)! (A —y)!

ao:



- 104 —

Damit erhält man:

sin (x) „ -"Si (21 +1) [%)f.yv^-tl^ itti»W —
V L J

— 22v+1y!y!(2y + l)! (A — y)L

• / i » r'(2/ ii2 vJ>n rw il2 i
23 X ,i2sin(x)=-LJ(x)J +-— [J(x)J +— 7t-[J(x)\ +2 4 16

+^..[W+^3[J(x)]2+.-inf.
64

J ^256 ~

=a_i[W+f[W+|5[W+
Tt 2 4 16

+»iî(1)r+»[W++-w
64 256

(78.)

gültig für — oo <^ x << + oo

Analog leitet man ab mit

tg (x) =Sl 4^ (4*+l - 1) Bi+i X^ * < x < *
V

— (2 A+ 2)! 2 2

tg(x)_^wo,, „ x;(x
TT

2^(21+ 1) -[ J(x)]2

* v+l W
¦> ^1-1) Ü^-Bv+1
— vi (y + 1)! (2 y + 1) (A—y)! +

1 %^ 1+1 x2'l + 1

mit cotg(x) >H" • Bi+i 7r<C x < + tt
x -— (2A + 2)!

cotg(x)_ i__2A(2A + l).["j;x)]2

(80.)

7t TT ¦ X *mm
0

X

•2-
0

y!

Bv+1

(y + 1)! (2 y

(A + y)!

+ 1) (A-y)!
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mit arc sin (x) — > A -y—-— • 1 <r x <" + 1^ 4' A! A! (2A + 1)

arCsin(x)=^A(2A + l)-[;jjx)]2-

A .V, 1 f (2y)! I2(A+y)!
2 "äi" 2y + 1 [ 4" vl vl J (A—y)!

(81.)

mit arc tg (x) =2" (-1)' f^V\ -1^x^ + 1.

o '

Tt *mm
0

1 \v( ir x (2y)!
4" y! y!

+ ")!
2 —J

V *' 2y + lo ' (A-y)!

(82.)

Als Konvergenzbereich hat man nach dem Nielsen'schen Satz
jeweilen den Konvergenzbereich der entsprechenden Potenzreihenentwicklung.

§ 4. Entwicklung einer Reihe mit negativen Potenzen.

Man ersetzt nach dem Vorgehen von N. Nielsen21 in der
Formel:

x\i«+y
^ -^(^+mx+xa-ix^x)7;x).

J> + l)-r(y+l) -ÉJ (n+v)o

u durch u — n; ferner y durch —u — n, wobei n eine ganze,
positive Zahl sein soll. Die Formel wird dann nach entsprechender
Reduktion :
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- \22-2n
sin jU7t/ ^Ci i \X n—A,2n

n — u) ^J n V 1r(n +Xr(n-X 0 (84
n-A+'i* n-A-'|s A—n+»|, ;-n—'!. I

J (x) • J (x) — J (x) • J (x) J

Darin darf u jeden beliebigen Wert annehmen mit

Ausnahme der negativen ganzen Zahlen. Setzt man in (87.) u ~
LI

dann erhält man weiter:

1 X2~Jn Vw ni (n-^) (2n)!2 r>— 2n "~ _' /xi2. yx (_i)i. (x=
(n+V.i-rfn —Vi) — nx2n r(n + V»)-r(n —V») äJ n A! (2n —1)!

I n-/. f >/„ n -;.- >/j A-n+y, A-n->/2 I (85
-i J(x) • J(x)-J(x) J(x)f

Nun ist

r(n + v2)=----~....k--Vr(V+; 2 2 2 \ 2 ¦

1 • 2 • 3 • 4 (2 n — 1) • 2 n ,-• \J7tn!22n

-n!2--V?r

r(n-V3) k|.|..../n-|V(n-X^(1A)
2 2 2 \ 2/ V 2.

1 -2-3-4.. (2 n - 3) • (2 n - 2)

(n —1)!2
(2n —2)!

"(n — 1)!22

¦V-/c

'TT

Daraus wird

it2 ¦ 2~2n 3t*. 2~2n • n! 22n • (n- 1)! 22n-2

r(n + »/i) • r(n — Vt) ~ (2 n) (2 n — 2) yc

n!(n-l)! _2n_2 22p-1n!n!,0
— -2 • 7t (2 n — 1) • rr

(2n)!(2n-2)! (2n)!(2n)!
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Mit Berücksichtigung dieser Reduktionen wird die Formel (85.)

1o2n— 1 ¦¦2 n! n!
x2n (2n)!(2n)

n-A (2n)!

-^.<2n-1).„.2^-l)'n)! (2n)! —J

n-A+'/a n-A—'/a A-n+'/a A-n-1,';
A!(2n-A)!j J (x) J (x) - J (x) • J(x)

2m-ix(n-l)!(n-l)! 2n_2
" *

(2n-2)!

(n ^ |n-A+'/2 n-A-'/a A-n+Vz A-n-'/s

(86.)

A!(2n-A)!j J (x) ¦ J (x) — J (x) • J(x)

Man hat in der Formel (86.) vorerst eine Entwicklung für
die negativen geraden Potenzen. Die Reihe ist zum wesentlichen
Unterschied gegenüber der Reihe für positive gerade Potenzen
erstmals eine. endliche Reihe und ferner eine nach Produkten
der Bessel'schen Funktion fortschreitende Reihe. Zur Prüfung
auf ihre Richtigkeit führt man den folgenden Identitätsnachweis

durch:
Die Zahl n kann jede beliebige, ganze, positive Zahl sein,

also auch n l. Dann reduziert sich die Formel (86.) zu:

^ |{j(x)J(x)-J(x)J(x)|

Nun ist nach J. H. Graf20

m+V\ /~2~ Vi (m + 1)! / 1 V¦+7» IT <S ('
cos \ (m +1 — A)-

(m —1)1 \2x! { 2

V ^x ^J A!(m —A)!
o v '

-) sin j(m + l — l)^ — x

T(5=(-ix/2 ^ (m+^!

i y
2x
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in Sonderheit

'h X2~ -V» ITJ (x) V / sin (x) ; J (x) V / — • cos (x)V^-x \ 7tx

Demnach bestimmen sich:

/JL V3 (A + l)! (\
o

J « \1- -Ì!' "^^ • f-Y «o-1 (2 + D ^v \ vcx ^ A!(l —1)! V2x7 T ^ X

V^|- cos (x) -|— sin x

V» /~2~
J (x) V / — • sin xV /tx

'(2, 3A 2 sin2 xJ (x) • J (x) — • sin x • cos x
7ZX \ x

"fo -V^SX^X* j «2 - », f - x
Il (1—1)1 \2x/ { 2

i sin x H cos x s

7tX { x

si-

'') -> 2 |cos2x
J (x) • J (x) • \ 1- sin x cos x

TtX \ x

î7? /"2"
J (x) V / — COS X*' 7TX

,'A 3/a -'A -3A

- j J (x) J(x) — j'(x) j'(xj -•(- (sin2 x + cos2 x) 1 —
2 J x x J x2

q. e. d.

Für die ungeraden negativen Potenzen erhält man,
von derselben Formel ausgehend:

f n 122-2n-1
1 Lsin u 7t]

x2n+i
—

r(n-j-u)- r(n — u + 1)
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•2
0

1 (-1)
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i (2 n — 2 1 + 1) (2 n + 1)

(2 n + 1) l!(2n + l-A)!
i^+n—A —|tt+n—A+l ,«—n+A—1 —,«-n+A 1

i J(x) J(x) +J(x) J(x)|

Setzt man hierin wieder «=—, dann wird:
2

20-2a —1
1 7t Li

2m-d

X2n + l F(n _|_ yä) r(n _|_ l#/t)

a(2n-2A+l)(2n)!
A!(2n-A + 1)! \" ' "X

unter analogen Reduktionen wie oben, erhält man die endgültige
Formel :

1 22n"1n!n!
x2n+i (2n)!

^.U lf (2n-2A + l) | »-HV. -n+i-^^
(87'j

2M 1] A!(2n-A-fl)!l[ J™ l J(x)J

In Formel (87.) hat man eine Entwicklung für die ungeraden
negativen Potenzen, die nach Quadraten Bessel'scher Funktionen
fortschreitet. Auch hier ist Bedingung, dass n nur ganzzahlige,
positive Werte annehmen kann. Setzt man n 0, so hat man
wieder den Identitätsnachweis für die Formel (87.) indem

i=|{XfXW)
i2x[

X |

n f 2 -2 i
2

— \ sir X -|
2 | /r x 7t :

_1

X

Nachdem nun die Summenformeln für die geraden und
¦ungeraden Potenzen aufgestellt sind, ist es nicht schwierig, aus
ihnen die Entwicklungen für Potenzreihen, die entweder nach

negativen geraden oder negativen ungeraden Potenzen des Argu-
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mentes fortschreiten, aufzustellen. Durch Addition der Produkte
Bessel'scher Funktionen mit jeweilen gleichen Parametern erhält
man, wenn die zu entwickelnde, gerade Funktion die Potenzreihe

hat:
oo

f(x)X^l b;.x-2
1

für dieselbe eine nach Produkten von Bessel'schen Funktionen
fortschreitende Reihe von der Form:

>n bn x-2n n .yn a„i J (x) J (x) - J (x) J (x) f l00-)

1

0

-If

1

22 1 + 2A--2(n+A-
(2n

-1)1 (n

+ 21
+1-
-2)

1)!

•b„
l!(2n + l)!

n + l

Die Reihe (88.) ist für denselben Bereich definiert, für den die
Potenzreihe definiert ist.

Ganz analog erhält man für Potenzreihen, die nach
ungeraden negativen Potenzen des Argumentes fortschreiten, eine

Entwicklung von der Form:

00 - OO | n_|_l/2 _n_l/.> "i

2n bnx-2°-i /C2n an j[ J(x)f+[ J(x)]2}

(89.)

0 0

a„
0

-lf 2211 + 2A--i(n +
(2

l)!(n +
n + 21)

A)!

(2 n + 1)
Dn + /A! (2n + 2A+1)!

definiert für denselben Bereich wie die ursprüngliche Potenzreihe.
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