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Eduard Jordi.

Ueber Reihenentwicklungen nach Quadraten und
Produkten von Bessel’schen Funktionen.

Einleitung.

In einer sehr bemerkenswerten Schrift hat W. Kastler' die
Reihenentwicklung nach Bessel’schen Zylinderfunktionen unter-
sucht und bedeutend erweitert. Er weist daselbst mit Recht auf
ihre vielfache Verwendung sowohl in der reinen Mathematik als
auch ganz besonders in der theoretischen Physik hin® wie dies
u. a. besonders von E. Lommel®, N. Nielsen* und H. Weber® getan
worden ist. W. Kostler gibt in der genannten Schrift erst eine
Einteilung der Reihenentwicklungen genannter Art und behandelt
dann besonders die Entwicklungen nach sog. Neumanwn’schen
Reihen erster Art, d. h. nach Reihen, die nach einfachen
Bessel’schen Funktionen fortschreiten. Diese Art von Reihen
ist wohl die am meisten verwendete, weshalb denn auch die
Methoden zu ihrer Herleitung am zahlreichsten und vollkommen-
sten ausgebildet sind.

Von mehreren Autoren: N. Nielsen®, E. Lommel”, Carl
Neumamn® ist auf die Moglichkeit der Darstellung von Potenz-
reihen nach sogenannten Neumann’'schen Reihen zweiter Art
hingewiesen worden, d. h. nach Reihen, die nach Quadraten oder
Produkten von Bessel’schen Funktionen fortschreiten. Sie spielen
jedoch nach N. Nielsen in der Theorie der Zylinderfunktionen
keine so wichtige Rolle wie die der ersten Art, ebenso ist ihre
Verwendung in der reinen und angewandten Mathematik unseres
Wissens keine so ausgedehnte, weshalb denn auch die Methoden zu
ihrer Herleitung zum Teil nur angedeutet sind von Carl Neumann®?,
von NViels Nielsen®, oder nur Resultate von geringer Allgemeinheit
veroffentlicht sind von E. Lommel’, Hansen® und Gegenbaur®,

Wir haben nun in der vorliegenden Schrift versucht, die
bestehenden Methoden auf die bekannten Potenzreihen anzu-
wenden, die nach den verschiedenen Methoden erhaltenen Resultate
miteinander zu vergleichen und im besonderen auch die Parallelen
zu ziehen zwischen den Entwicklungen nach Neumann’schen Reihen
erster und zweiter Art.

Die Zahlen im Text weisen auf das am Schluss beigefiigte
Literaturverzeichnis hin. 1



I. Abschnitt.

§ 1. Klassifizierung der Reihen.

In der genannten Arbeit teilt Kostler die eigentlichen Ent-
wicklungen nach Bessel’schen Funktionen ganz allgemein in fol-
gende drei Typen ein: |

1. Entwicklungen erster Klasse:

Reihenentwicklungen mit gleichbleibendem Parameter und
veranderlichem Argument, dessen Anderung sich nach einem durch
die Laufzahl A beherrschten Gesetz vollzieht.

Thre allgemeine Form ist:

Feo=S4, f [3 (92 (9) J

2. Entwicklungen zweiter Klasse:

Reihenentwicklungen mit gleichbleibendem Argument und
veranderlichem Parameter, dessen Anderung sich nach einem
durch die Laufzahl 1 beherrschten Gesetz vollzieht.

Ihre allgemeine Form ist:

F)= A, f [‘?((p (x) ]

3. Entwicklungen dritter Klasse:

Reihenentwicklungen mit verinderlichem Argument und
verinderlichem Parameter, deren Anderungen sich jeweilen nach
einem durch die Laufzahl A beherrschten Gesetz vollziehen.

Thre allgemeine Form 1st:
a-,

F(x) =V 4, f[J" 0 (x))] |
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Die Entwicklungen der zweiten Klasse im besonderen lassen sich
wieder in zwei Gruppen trennen, namlich:

a. Entwicklungen nach einfachen J-Funktionen. Sie werden
nach Niels Nielsen als Nenmann’sche Rethen erster Art bezeichnet
und sind im Allgemeinen von der Form:

v+a

_21 AT (x)

v+21
21 AT (x)

Sie wird besonders zur Darstellung von einfachen analytischen
Funktionen, vorteilhaft verwendbar, wie in der genannten Schrift
von W. Kostler ausfiihrlich gezeigt wird.

b. Entwicklungen nach einfachen Produkten von J-Funktionen.
Sie werden nach Niels Nielsen als Neumann’schen Reihen zweiter
Art bezeichnet und sind im allgemeinen von der Form:

v+l uti
2;1 A J(x)-J(x)
vl uti

2 T2
2& A J(x) T (x)
A At
speziell 21 A d(x) !(LX)

Sia o]

Die zwel letztgenannten Arten der Entwicklung geben verhiltnis-
miissig einfache Darstellungen und sie sollen im Folgenden ein-
gehend untersucht werden. '

§ 2. Erste Methode von Carl Neumann.

Die von Carl Neumann® angegebene Methode ist in vielen
Teilen analog der von Kostler zitierten zweiten Methode zur
Entwicklung nach einfachen J-Funktionen.. Die Methode sei hier
soweit ausgefiihrt, als sie fiir die folgenden Untersuchungen von
Bedeutung ist. '
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An die Spitze der genannten Abhandlung stellt C. Neumann
den Satz:
_ sversteht man unter n eine der Zahlen 0,1,2,3,.... oo,
so kann die Potenz x?" in eine nach Quadraten von
Bessel’schen Funktionen fortschreitende Reihe ent-
wickelt werden, welche gilltig bleibt fiir jeden endlichen
Wert von x“

Definiert man nach F. W. Bessel'!, Carl Neumann '?,
Hermanwn Hankel'® die allgemeine Bessel’sche Funktion durch

die Gleichung:
5

J(X)—'zl TTaFiED

wo n jede beliebige reelle, ganze, positive Zahl sein kann, dann
hat die Enwicklung der Potenz x2® nach einfachen Bessel’schen
Funktionen die Form:

x2"=a0?](x)—|—az.2](x)—|—a4j(x)—]—a;;f](x)—|—.... in inf.

Die nach Quadraten derselben Bessel’schen Funktion fort-
schreitende Entwicklung lautet dann:

{ao Boltellol talleol++.. inf.}

n!n!
(2n)!

Die Koeffizienten der letzteren Entwicklung sind also propor-
tional mit denen der ersteren, ndmlich von diesen nur verschieden
n!n!

(2m)!
Nun sind die Entwicklungen von x° x2, x*.... nach
Bessel’schen Funktionen gegeben durch:

x2n=

durch den gemeinschaftlichen Faktor

1=J(x) 42 -Sx ?'(x)

oo - . 2
X = 2:- %1 (24)-J(x)
-
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_ 2 .fn e [e—2] T

2 -21 227 [(21)° — ‘2“’] [(2 1) — 47] ?]l(x)

= 2 SA @ v [en’ -2 [en’ — £y —6] I x

= 2 .Sa @221 —2][@ 1) —47....

(@) —@n—2].J )

Hieraus ergeben sich nach dem oben zitierten Neumann’schen

Satz die Entwicklungen dieser Potenzen nach den Quadraten
der J-Funktionen zu:

1=[F @42 -El B

XZ

8

inz

X :12 2,1 @21 — 27 [2n)? *4][(21) S

)

1 ~ o4 2
= 3 2(2&) [ (x)]
12 . 8 s o2 (4P
- oy 2 @)@ —2% - [J(x)]
- . (L.
— 1_5 N @) [2n _?llen—e. Fub |“

5.6

&) [

ey —2 (@ —47. .

[(@4"— (@0 —2)]. [J(X)} )
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Nachdem die Eniwicklungen fiir die geraden Potenzen
gegeben sind, ist es moglich, die Entwicklung einer geraden
Funktion herzuleiten. Ebenda beweist C, Neumann mit jeder
wiinschbaren Strenge, dass jede Funktion f (x), welche eindeutig,
stetig und gerade ist in einem Gebiet, das vollstindig innerhalb
eines Kreises um den Nullpunkt mit dem Radius R liegt, in eine
Reihe entwickelt werden kann von der Form:

)=k [T @)
0

welche giiltig ist fur alle der Bedingung |x| <R entsprechen-
den Werte von x. Um nun mit Hilfe der vorhin hergeleiteten
Entwicklungen fir die geraden Potenzen von x eine einfache
Methode zur Bestimmung der Entwicklungskoefizienten k; zu
erhalten, stellt man vorerst eine gerade Funktion durch ein
gewisses Integral dar.

Auf der x-Ebene sei um den Punkt x =0 ein Kreis mit
dem Radius R beschrieben. Ferner sei f(x) eine gegebene
Funktion, welche eindeutig, stetig und gerade ist, solange |x | <<R
ist. Das Verhalten der Funktion auf der Peripherie des Kreises,
d. h. fir |x|=R, wird als unbekannt betrachtet. Sei ferner
x =c ein beliebiger Punkt innerhalb der Kreisfliche (R), d. h.
fir den c¢|<Cr<CR ist. Dann lasst sich nach dem bekannten
Satz von Cauchy der Wert der gegebenen Funkiion f(x) im
Punkte ¢ darstellen durch:

= [ 125

217 () X—¢

die Integration erstreckt in positivem Sinne iiber die Peripherie
der Kreisfliche (r). Diese Formel muss gelten fiir jeden andern
innerhalb der Kreisfliche (r) gelegenen Punkt, also auch z. B.
fir den Punkt — ¢, also:

1 dx
f(—e)= - f(x
(=) 217 f(l) ()x—l—c
Durch Addition der beiden letzten Formeln folgt sofort:

f@+(—g_ 1 [ g xd

2 217 (r) X% — ¢?
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Zufolge der Voraussetzung, dass f(x) eine gerade Funktion sein
soll, ist f(c) = f(c); daher
1 £ (x) - x-dx

217z J (r) x? —¢?’

(3.)

£ (c) =

Damit ist jede gerade Funktion f(c), die endlich, stetig und
gerade bleibt fiir jeden der Bedingung | x| <R gentigenden Wert
von X, durch ein Integral von der Form der Gleichung (3.

dargestellt. ~
Vermoge der bisherigen Resultate gelingt es nun, den Neu-
mann’schen Ausdruck . e (y3 — xz)_l in die gewiinschte
—_— X ¥

Entwicklung zu bringen. Seien x und y zwel beliebige, komplexe
Grossen, y moge als fest, x als veranderlich betrachtet werden.

Der Ausdruck

1
B (4)
y? —x
stellt allsdann eine Funktion von x dar, welche eindeutig, stetig
und gerade ist, solange x der Bedingung geniigt |x | <|y| Dann
besteht nach dem oben zitierten Neumann’schen Satz eine Ent-

wicklung von der Form:

1 —Zz K [T @l 6

die giltig ist fir jedes beliebige, der Bedingung |x|<C|y| ent-

sprechende x. Die Koeffizienten k, der Entwicklung werden

abhingig sein vom Parameter 1 und von y. Sie seien bezeichnet

mit ¢, 2% (y), wo =1, g=¢,=g;=..... =1 T =]
In dieser Schreibweise wird die Entwicklung (5.) zu:

Ny 2 ) Dl (52)

oder

=2 P2 2 0 Fel. 6b)
1
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Es sei hier an die Analogie der ebenfalls von C. Neumann'?
gegebenen Methode zur Entwicklung nach einfachen J-Funktionen
erinnert. Der Weg ist folgender: Der Neumann’sche Ausdruck

i |
y—X

wird in Reihe entwickelt von der Form:

L 6 (¥) J (x)4-2 -EA (_)5 (y) 3 (=) (6.)

y—x

i
wo die darin auftretende Funktion O (y) definiert ist durch die
Formel:

n

o

2
. n (n—A—1)1 /2\"HE
o= ;= (5) 62)

0

nach der von J. H. Graf!* gegebenen Formulierung.

Um die in den Formeln (5a) und (5b) auftretenden unbe-
kannten Funktionen ©* (y) zu bestimmen, beachte man, dass ver-
moge der Bedingung |x|<C|y| der Ausdruck (4.) entwickelt
werden kann in der Form:

1

y2 . X?.

x2

y4

4 6
zyiz_|_ +%+§‘g++.... in inf. (7)

multipliziert man

1= [JO (x)]2~-|— 2 -?.:l [f (X)]B

: 1 ~— 2 /. 2

= ~— 2.9 (247 I (x

Xt = = 2 @2 [ ()]

d— L2, .ix @@ n — 2] [F @)

3-4 -
: .11 1 .
der Rethe nach mit —; --; —; ..... und addiert, dann er-
vyt oy

hialt man links den Ausdruck (7.). Rechts dagegen kommt:



Ll 20l +2 el +2 [+
y ¥y y g
S 22wl ot el o 4 2 et
y 2y 2y

1.2 2 202, 2 1.2 2 S
7'?'12 4[J(X)] +§.—;"y—6‘126[3(x)]+

2.3 2

y

3
- 82.6° [T ()] ...
Addiert man die Vertikalen, denselben Parametern der
J-Funktion enthaltenden Kolonnen, so erhilt man eine Reihe,

A
deren Koeffizienten mit £2(y) bezeichnet sein sollen, von der Form:

I 22 T OF 22 @ T ] +22° 0 Tl +
g . i
120 T@] b Ay SO T ... it (8)

d. h. die Koeffizienten sind identisch mit den Koeffizienten in
den Entwicklungen (5a.) und (5b.). Man hat demnach als Defini-
tionsformel dieser von C. Neumann eingefithrten 2-Funktion in
der allgemeinen Darstellung:

;42m3+1.2_gxﬁu2nﬁu2ﬂ_
2 y* 3.4 ys

ﬁm=%+ +

2 2 p) s 2 (9')
1-2-3 @ [2n)°' —2°] [(@4)° — 4]

P = 15 T

Die Q-Funktion ist demnach eine ganze rationale Funktion

vonl2 ganz entsprechend der durch Formel (6a.) definierten

O (y)-Funktion, die bei den Entwicklungen nach einfachen J-Funk-
tionen dieselbe Rolle spielt, wie die £-Funktion fur die Ent-
wicklungen zweiter Art. Zwecks vorteilhafterer Verwendung der
O-Funktion bei den spiteren Anwendungen, geben wir nach-
stehend eine allgemeine Summenformel. Der allgemeine Summand
der Formel (9.) lautet:
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el @21 —27[24)° — 4°][@ 1)° — 6°].... [(24)°— 2»—2)']

2)! y2v+2
ol VR 172 A —37.. .. [A— (v — 1]
@) y2rt?

2w.vhﬂ(l—v+dﬂk—w+2 J(A—1)-A-A (A4
2 FD0F2 ... Gtr—2 Gtr—1)

2y +4-2
y+

1 =22p‘v!v!'l-(£+v—1)!
y2v+2 2»)! (A —»)!

woraus die allgemeine Summenformel lautet:
vl A-A+r—1! 1 0 1
Q=D 2?7. 22 2 (y)== (10.
(mjg o g e YW= 10)

| Daraus ergeben sich fiir einige Werte von 4 die folgenden
nummerischen Werte fir die Q-Funktion:

1
siz"(y)::-E
y
1, 2
Q=5+
oy
2 . 1,8 82
Q (Y)——“;z“‘F;-F—G
. 1 192 1152
ﬁm_7+ +
y v (11)
1 640 9216 . 73728
o )=+ 2 +— B
s y‘ ¥y ¥
1 1600 40320 737280 , 7372800
9()-——2+ + —+t—t—=
y y y y*
1 72 3360 129024 . 3981312 88473600
9()=}§ F 5 T 5 ~+ §10 + e ~f-
1061683200
+

u. s. W. -y /
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Diese gefundenen Resultate notieren wir in folgendem Satz:
Der aus irgend zwei komplexen Grossen x und y

gebildete Bruch

kann unter Anwendung der
yi— X2

Bessel’schen Funktionen sowie gewisser anderer Funk-
tionen Ql (Y)? die durch die Formeln (9), (10), (11.) def1-
niert sind, in folgende Reihe entwickelt werden.

y—xz

ﬂzk & 2 () [T (12)

Die Entwicklung ist giiltig fiir jedes der Bedingung
|x|<<|y| entsprechende Wertsystem von x und y.

Um eine allgemeine Methode zur Bestimmung der Koeffi-
zienten zu erhalten, beachte man, dass nach Formel (3.) jede
gerade Funktion f(x) dargestellt werden kann durch:

i) - | f(y) L4 (13)
21w ) ()

a9

yz___xu

indem man in Formel (3.) x gegen y und ¢ gegen x vertauscht.
Dabei 1st |x| <r <R und die Integration erstreckt in positivem
Sinn lings der Kreisperipherie (r). Es sei nun |y|==r, d.h. es
sei y ein Punkt der Kreislinie (r). Dann ist |x|<C|y| und der

in (13.) auftretende Ausdruck

kann nach Satz (12.) in
y2 — x?
folgende Reihe entwickelt werden:

= ——x2 —2’1 e L (y)[J )]
N, el ()

€
wo k; :4—-[‘ f(y) & (y)-y-dy
21 ) ()

)

Der Integrationsweg des zur Bestimmung der Koeffizienten
kA dienenden Integrals (14.) ist, irgendwelcher Deformationen
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fahig, ohne dass der Wert des Integrals sich &andert, solange
die Peripherie (r) nicht mit den Randpunkten R, fir welche das
Verhalten der Funktion als unbekannt vorausgesetzt worden ist,
noch mit dem Mittelpunkt der Kreisfliche in unmittelbare Be-
rithrung kommt,

Nun i1st der Bruch

. — eine gerade Funktion von x.
¥y —%

Man kann somit jede beliebige gerade Funktion f(x) nach der
durch (14.) dargestellten Weise in Reihe entwickeln. Diese
Resultate notieren wir in dem folgenden Satz:

,Stellt R eine reelle, endliche Konstante und f(x)
eine gegebene Funktion dar, welche eindeutig, stetig
* und gerade 1st, so lange |x| <R bleibt, dann existiert
jederzeit eine Entwicklung:

f(x)=k, [3 ®)[+k, [5 )]+ k, [5 (N + k, [3 (9] .... ininf
oder | (15.)

oQ

A
(= & [Tl woly =2 f [(5)- 4 (9)-y-dx

1
0

welche giltig ist fir jeden der Bedingung |x | <R ent-
sprechenden Wert von x. Die Integration ist zu er-
strecken lings irgend einer Kreislinie (r), deren Mittel-
punkt in x=0 liegt und deren Radius r <R ist.

Dabei ist gg=1; ¢ =meo=e3=.... =g =... =2.

~ Analog lasst sich eine Funktion f(x) behandeln, welche ein-
deutig, stetig und gerade ist auf einer ringformigen Fliche, die
begrenzt ist von zwei konzentrischen um den Punkt x =0 be-
schriebenen Kreisen (Laurent’scher Kranz). Sind R, <R zwei
reelle Konstanten und stellt f (x) eine gegebene Funktion dar,
welche eindeutig, stetig und gerade ist, so lange R, <|x|<R
bleibt, dann existiert jeder Zeit eine Entwicklung von der Form:

1 y-dy 1 y-dy
f(x)= . f . f(y) 2"’
(x) 217 f(R) ) y? —x? +2iﬂ‘ f(Rl) y) x? — y?
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Fir | x| <|y| gilt nach obigem die konvergente Reihen-
entwicklung:

1
y2 — x2

:21 g, S (y¥) [JA (X)]2

fir |y |<<[x| gilt analog

1 ~ N Ao o2
= a2 @)
K=Y
0
Demnach liasst sich die den oben genannten Bedingungen
geniigende, willkiirliche Funktion f(x) darstellen durch:

f(x)zz%z ',{'(R){‘?‘]L & 2 (y) [f(X)]zlf(y)-y-dy

N f{Rl)\Zl 6 @ Tel 1)y-dy.

217

(= o ool o1 [ @ t)-y-ay+

217

6 2@ g [ B0l 1050

o0

(=S & B+ wm & a6
0

0

wo ;
. ___& . A ) V.
=k [ fmtwoyay |
. 3 - . (16a)
. 1(y)-y-dy.
. ] @y O 1)y dy

.
# 217




P . NP

Die Methode, nach welcher man zu dieser allgemeinen
Darstellung kommt, ist ganz analog der durch (13.) und (14.)
gegebenen und zudem in hohem Masse iibereinstimmend mit der
von Graf und Gubler' gegebenen allgemeinen Herleitung einer
Methode zur Entwicklung nach einfachen J-Funktionen. Ist
némlich die Funktion f(x) in einem Laurent’schen Kranz definiert,
dann gilt fir R, <|x|<<R

1 d 1 d
fx)=-—">"| fy)—L- [' f y
) 2izx J ®) my—x l_2in J By (Y)X—)_f

Nun ist nach (6.)

1
y—X

0o 0 . 1 !
:O(y)J(x)—!~22A. oy I [x|<]yl
1

1

X—Y

0 0 o0 . )..
=0@IW+2 B 00T [yl</x

Daher ist auch den oben genannten Bedingungen geniigende,
willkiirliche Funktion f(x) darstellbar durch:

)=k, 594 0, 6 )
0

wo k ——”“-f O EE)-d
P % Sy YT
el A
= 1 Tidbleg-d
= .[ ®) (y)f(y)-dy

woraus die vollkommene Analogie ersichtlich ist.

Man erkennt unschwer die vielfache Verwendbarkeit dieser
Methode. Es sind ihr nur Grenzen gesetzt durch die mogliche .
oder unmogliche Losung der Integralausdriicke, die zur Bestimmung
der konstanten Koeffizienten dienen. Sie wird ferner dadurch
beschrinkt, dass die prinzipielle Bedingung erfillt sein muss,
d. h. dass f(x) eine gerade Funktion sein soll. Bei der ent-
sprechenden Methode zur Entwicklung nach Neumann’schen
Reihen erster Art hat man nur die erstere Beschrinkung, indem
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die zu entwickelnden Funktionen gerade oder ungerade sein
kénnen. Es sei speziell nochmals hervorgehoben, dass diese
Reihenentwicklungen fiir gerade Funktionen nach Quadraten,
d.h. nach Produkten Bessel’scher Funktionen desselben Parameters
fortschreiten. Nach emem spater zu betrachtenden Postulat von
E. Lommel® koénnen auch ungerade Funktionen in Reihen ent-
wickelt werden, die nach Quadraten von Bessel’schen Funktionen
fortschreiten, deren Parameter aber gemischte Zahlen sind, wihrend
in den Formeln (15.) A nur ganzzahlige, positive Werte annehmen
kann.

Noch auf einen Punkt mochten wir aufmerksam machen,
der in gewissem Widerspruch steht zu einer spiater zu besprechen-
den Forderung. Die Neumann’sche Entwicklungsmethode gibt
konvergente Reihen fiir alle Werte von x, die der Bedingung
geniigen: |x| <R, wo R eine reelle, positive, endliche Grosse
ist. In einer von Niels Nielsen gegebenen Methode, die zu genau
denselben Reihenentwicklungen fithrt wie die Neumann’sche
Methode, wird mit jeder wiinschbaren Strenge bewiesen, dass
die nach den Quadraten und Produkten Bessel’scher Funktionen
fortschreitenden Reihen in demselben Bereich konvergent sind,
wie die, die entwickelte Funktion darstellende Potenzreihe. Fir
die Entwicklung des trigonometrischen Cosinus hitte man dem-
nach, da seine Potenzreihenentwicklung konvergent ist fiir alle
Werte — oo <{x<(Coo; |x|<Coo, ebenfalls eine konvergente
Reihenentwicklung nach Neumann’schen Reihen II. Art fir alle
Werte |x| < oo, was mit der Neumann’schen Forderung, dass
R endlich sein soll, nicht so ohne weileres vereinbar ist. Den
Grund dieser Unstimmigkeit haben wir bis jetzt nicht ermittelt,

Im iibrigen wird diese erste, von Carl Neumann gegebene
Methode immer dann zu einem Resultat fihren, wenn die zu
entwickelnde gerade Funktion f (x) in eine Potenzreihe entwickelt
werden kann. Dadurch werden die zur Bestimmung der Ent-
wicklungskoeffizienten k; dienenden Integralausdriicke leicht
losbar. Zur Anwendung und weiteren Erlauterung der Methode
geben wir im folgendenden Paragraphen die Entwicklungen fiir
einige gerade Funtionen.
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§ 3. Anwendungen.
1. Aufstellung der Reihe fiir 1.
Nach (15.) ist dann zu setzen: f(x) =x° =1
somit: f(y)=y’=1
Daher hat map

f(x-—lzzl k; J(X)] wo k; = l;t.f(r)gl(y).y.dy.

Die Integration ist in rechtliufigem Sinn lings einer Kreis-
peripherie um den Nullpunkt zu erstrecken, was wir jetzt und
in allen folgenden Untersuchungen durch f{ andeuten. Unter
Beniitzung der in (11.) gegebenen Summenausdriicke fiir Q* (y)
hat man sofort:

1 1
ky= fﬂ (y)-y-dy= f;-y-dytl.

217 2_—

2 ! 2
k____il_.rgl I _;_.J { _}. dy =2
o (y)-y-dy . y2+y4 ydy

. 2 (1,8 &
k. —-2 . | @Piv).-v.d :_.[{_ 2 } dy=2,
= f Wy-dy=g [ S S yay=
Analog bestimmen sich k,=k,=k =k —=....=k; =....=2.

Unter Beniitzung der allgemeinen Summenformel fiir er(y)
(10.) leitet sich der allgemeine Koeffizient leicht ab.

927 vl A-(A4r—1)1 1
(2)! (A —)! y2v+a

l e

v -dv.
217 , )

Um das Integral auszuwerten, hat man vom Integranden
denjenigen Summanden zu entnehmen, der die Potenz y—1=1
liefert. Alle andern Potenzen von y geben zu diesem Cauchy’schen
Integral keinen Beitrag. Man erkennt sofort, dass man diesen
Summanden erhilt durch die Setzung — 2y —2-4+1 =—1;
y=0.

Dann ist der Koeffizient von 1, also [l] =1,
y ¥



— 17 —

Diese Bestimmungen enthalten keine Beschrinkung fiir die
Laufzahl A, welche, wie urspriinglich definiert worden ist, alle
ganzzahligen positiven Werte von 0 bis oo durchlaufen kann.
Daher werden auch alle k; auftreten, und sie sind allgemein

bestimmt durch:

e s [y B By =1,
217 y

Man hat daher die Entwicklung:
1=+ 2 Fel+2@f+2 Felt. .. innt

= [f @) + 2.51 [.f ®)] gltig fir |x| < R. 17.)

2, Aufstellung der Reihen fiir die geraden Potenzen.
Reihe fiir x2. f(x)=2x2% f(y)=1y?

o0 A 9
daher ist f(x) =x? =21 k, [J@],
‘ 0

€ _
k; =2—.1—' P (y)y-dy
17T
Man findet im besonderen:

k0'=f?°_. 2 (y) .y3.dy_—_.i. (v};.y?dy-_—_-o,
217 Yy

2 1 £
k= .| @ .d “_'ﬂ—|—-3-d -
1 9ix { ¥ y y 21z ) |ly? ' v ey

L8

2
k, = 2 'fﬂg(Y)'Ya'dY=§;;‘

217w
JIE R

im allgemelnen

vyl Ad—11 1

. . o

217;,] 2 @) —yt gz 0T
2
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die allgemeine Potenz im Integranden ist y—2Y—2+2  Die einzig

in betracht fallende Potenz 1 erhiilt man durch dieSetzung — 2»—

y
—2+43=-—1, »=1. Es wird dann:

. - Al |
LY 2‘l Ll B 217 ~woraus dann
y 2 A—1)!

k, =~ . fQAZE-dy=(2L)2.
21 y

1 . . )
In der Bestimmung des Koeffizienten von — sind keinerlei

Beschrinkungen fiir die Laufzahl 1 enthalten. Sie kann somit
alle ganzzahligen, positiven Werte von 1 bis oo durchlaufen.
Man hat demnach die Entwicklung:

=4 [T+ 16 [T +36 [T+ 64 [T+ .. ininf.

s 1 ,
x2 =Ez @12 -[J ()], giltig fir [x|<<R. (18)
: |

Ganz entsprechend werden die Reihen fir die folgénden
geraden Potenzen von x hergeleitet.

Reihe fir die allgemeine gerade Potenz x?».

Man hat zu setzen f(x) =x*; f(y)=y*"

f(x) = x2» =S1 | k, [J ()
0

wo k)»-:"éi' Ql(y).ygn'f'l.dy_
, 7T

[ 8

Lo v Yl AQAy=D! 1
ST f > @y G gt W
0

3 .
2 2y vIVIA(A 4 r—1)!
S i 2 . - . —21/--2+21'1+1.d .
gim @) (h—)! fy ¥
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Die Potenz y—!findet man durch die Setzung 2n + 1 —2» —
—2=—1,v=n.

Es fallen alle Koeffizienten des Integrals weg mit Ausnahme
des einzigen, in welchem man n=v setzt. Es wird daher:

n!n! 2-A+n-—1)!
2 mn)! (A —m)!

k; = 2.2,

Aus dieser Bestimmungsgleichung fiir k; geht hervor, dass
A=n sein muss, indem fir 2 <<n der Nenner unendlich gross
wird, die entspr. Koeffizienten also verschwinden. Daraus ergibt
sich die Entwicklung fir die allgemeine Potenz x?" zu:

(2 )' 7., ...2[(2;?1 —q |
—(2vn—(2)]'[J G g9)
— e Sy RO Sl xi <R

n

Nach den bei der Herleitung der Methode gemachten Vor-
aussetzungen sollen diese Reihenentwicklungen konvergent sein
fiir jedes der Bedingung |x|<{R geniigende x, wenn R eine
reelle, endliche Konstante bedeutet. .Dass zufolge dieser Be-
dingung die gefundenen Reihen wirklich konvergent sind, soll
gezeigt werden, dadurch, dass fir alle Reihen ein bestimmter
Grenzwert

lim (2ot | g
existiert. Damit ist dann gleichzeitig nachgewiesen, dass die
Reihen unbedingt konvergieren.

Der allgemeine Term der Formel (19.) lautet, abgesehen
von dem fir ein und dieselbe Potenz konstanten Faktor 22»+1.
! 1] folgendermassen
(2 n)!
' A-(A+n—1)

(A — n)!

[Fwl
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Die durch die unendliche Reihe

(_)n-]—ZH
J(x)—g" Y TararD

definierte Bessel’sche Funktion ist in dieser Darstellung absolut
konvergent fir jeden endlichen Wert von x. Nach einer von
J. J. Schonholzer '® gegebenen Formel bestimmt sich das Produkt
zweier Bessel’scher Funktionen durch die Formel:

F-Te=S 1y Lfetbt2utl

Fatu+)rbt+ptl)

x\*+b+2e
3
I(a+b+p+1)lg!

was wegen der absoluten Konvergenz jeder einzelnen unendlichen

(20))

Reihe von Ja (x) und 3 (x) wieder eine absolut konvergente Ent-
wicklung ist fiir jeden endlichen Wert von x. Da es sich oben
um das Quadrat einer Bessel’schen Funktlon handelt, wo also
a=—b =21 ist, so wird die Formel zu:

J — — 1 r2i+2u+1)
el :5”( Y ratu ) TotutD)

2142
)
T@itut1) ul

was unter der Annahme, dass die Laufzahl x nur positive ganz-
zahlige Werte durchlaufen soll, auch geschrieben werden kann:

| ( )21+21"'

SR S @r42u) \2/ (20a.)
J(x)] = — 1) . ;

) :%‘( N G @AL A
Sowohl in der Summenformel fir J (x) als auch in der

Summenformel fiir [J (x)] 1st der erste Summand; d. h. wenn
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u =0 ist, der grosste. D)a man es hier und dort mit unendlichen
Reihen zu tun hat, die bei wechselndem Vorzeichen monoton ab-
nehmen, so ist offenbar der absolute Betrag des ersten Summanden
grosser als der absolute Betrag der Summe aller Summanden.
Wenn man daher bei den folgenden Konvergenzuntersuchungen
den absoluten Betrag des ersten Summanden in Rechnung bringt,
so fihrt man einen zu grossen Wert ein, indem eben:

[ E 22 ) E 21421
Al AL - A+ A+ C14u)! p!

A 7
Setzt man den Wert links statt [J (x)]‘a in der allgemeinen
Form der Formel (19.) ein, dann kommt:

- 21
A +n—1! (E)
A—mn)! A

m <<

x\24+2
<@t (é)
A—n41)! @A+ @+ 1)!

analog n; 41

x\?
my (& +1n) (é)
n  (A-—n--1) 2.(A41)

was fiir gegeniiber n einigermassen grosse 1 zu

Demnach:

N4 x? - ;
1 fi <R wird.
o g S rixI<E ‘

Unter der Bedingung, dass |x|<<R, wo R eine reelle,
endliche, positive Zahl sei, was unbedingt notwendig
ist fir die Konvergenz der die Bessel’sche Funktion
definierenden unendlichen Reihe, sind die in (17.) bis
(19.) hergeleiteten unendlichen Reihen unbedingt kon-
vergent. '
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3. Aufstellung der Reihen fiir die geraden trigonometrischen Funktionen.

Reihe fir cos (x).

f (x) = cos (x); f(y) = cos (y)

cos (x) = Z}, k; J(x)] ; wo k; =

176

/COS(Y)-Q‘(y)-y-dy-

Das Integral liasst sich am einfachsten auswerten, wenn
man fiir cos(y) seine Potenzreithenentwicklung einsetzt:

ST ST AU ATID AU _ TR s
cos(N=1—3+ - —gtg—t- mﬂJVu( 1)

(2 u)!
Dann wird:
ko — 4 [[{_ _y_ y__y Y + _},Qa v.d
T { 5 4 + (y)-y-dy

Do

>i,v av vl A-(A4r—1! 1
]_04 22)! sqll B

2# (— 1" (2/1«)'. -dy.

2175

Man erhilt 1m einzelnen:

=gt [P 1T T — Ly ay=

kl‘z;iln f!)(y{ _y +i, _§+—....}ydy=
:%-fg‘“'(y)-{.1—%+%—%!+—-....} -dy:—l‘g

h=ot [Pl1- T4 X T4t yay

48
1-3-5




im allgemeinen:

ky = — -fﬂ‘(y)cosy-y-dy

217

P} :
2 "2 227} ’V! 1’! A(A“'_v—"l)! 1
= — s 'll L] . %
217 ] - (22! (A —)! y2rrd

2}( )‘"(gg' y-dy

Die allgemeine Potenz im Integranden ist y2P+1”2”'—9.
Von allen Gliedern geben nur die einen Beitrag zum Integral,
die die Potenz y—! enthalten. Man erhilt diese Potenz durch

die Setzung 2u +1—2r —2=—1; u=w.

vl (A y—1)!
22! 2! (4 —)!

Dann wird [l] =(—1)".2%
y
und daher auch

1 “
. ! ! . cfecogy sy 1YY
k;ﬁ—':zv (_1)1;_2,:;;_{,1.(2 viv. .}v (l —v 1),k0=]
0

v)! (2 »)! (A —)!

Demnach lautet die Entwicklung fiir cos (x):

)l

cos (x) = [3 (X)]2 —}-Sl 22 [f (x)]2 -zv (—1)”. 2%

0

vyl (A4r—1)!
ey G XI<B

oder cos (x) = [f (x)]2 -+ 2 -il k, . [j (x)]2 (21.)

' 1
N, (19 vivl A (@A 4r—1!
"kl_Z e 29! (29)! (A — )!
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Nach Ausmittelung einiger numerischer Werte fir k;
erhilt man: :

cos (x) = [JO (x)]z—ll—o [} (x)] —i% [3(X)]2+
146 & 5520 B g
+m'[~](x)] +1'3_5.7_9[J(X)] -----

Die Reihe zur Bestimmung der Entwicklungskoeffizienten
k; ist eine endliche, von selbst abbrechende Reihe mit alter-
nierendem Vorzeichen. Die einzelnen Summanden werden mit
zunehmenden Werten der Laufzahl » grosser, um bei einem
bestimmten Werte » ein Maximum zu erreichen und nachher
wieder abzunehmen. Wir behaupten, dass bei geraden A der

Summand der grosste wird, fir den man » ersetzt durch —2-; bei
-1

ungeraden 1 jedoch der, in welchem man » ersetzt durch

Dabei soll es sich jedesmal nur um den absoluten Wert handeln.

Wir betrachten den ersten Fall: 1 gerade; A=2n, wo
n=0,1,2,38,4,..... Der allgemeine, absolut genommene Term
der Summenformel fiir k, lautet:

92V . v! »! .A-(}v+v—1)!
@)l @) G—

Setze vzj:
-2

Setze L=—2n:

on n!n! .2n-(3n——1)!_22]n n!

%_ ——— 2n-(3n —1)! (A)
(2n)! (2n)! n! (2n)! (2n)!
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Den unmittelbar vorausgehenden Term erhilt man durch

die Setzung :

) A—2

Y= — — 1 = —
| 2 2

dann kommt '

O G L G L L s

G-ara=—ar , i=2),

Setze A =2n ) i}
gm—2 (=)' @m—1! 2n-@En—2)!

2n —2)! @n—2)! (n 4 1)! (B).

Den unmittelbar nachfolgenden Summand erhélt man durch
die Setzung:

vt gyt
dann wird i i
) p
e i i
- *+2) @24 2! {x-l—tg}!
Setze A =—2n | 2

gtz (4 1)! (n41)! 2n-@8n)! ©)
@n+2)! 2n+2)! (@—1)! ;

Der Quotient aus (C.) und (A.)) wird, wenn man fir 2n
wieder A setzt, zu:

C 3.2
4) 4-@+41y
was fiir alle Werte von 4 kleiner als eins ist; daherist |A |[>[C]|.

Der Quotient aus (B) und (A) w1rd wenn man fir 2n
wieder 4 setzt:

(B)_4G—D (=1 4y 15 <
A) (+2@r—2)
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Es ist nun interessant, dass diese letztere Ungleichung von
der Grosse der Laufzahl A abhéngig ist, wiihrend die Bedingungs-
gleichung fiir die Unglelchung |A|> ! C| fir jedes 4 gilt. Mit
andern Worten:

Welches auch der Wert von 4 sei, unter allen Umstinden
sind in der Summenformel fir k; alle Summanden, deren Lauf-

zahl » > = ist, kleiner als der Summand, fir den v———é 1st.

Was die zweite Ungleichung | A | > | B| anbetrifft, so kann
man sich leicht iiberzeugen, dass der Quotient E nur bis und
mit A =10 kleiner als eins ist. Fiir A= 10 erhilt man:

(B) 4-9.9 27
- =21 <1;|A|>|B
&) 12.28 28 | 41>]B]

Fiir 4 — 12
(B) 4-11.11 121

— — 1; |B|>|A
(A)  14.34 Fig =" L [B]latls

d. h. bis zur Laufzahl 2= 10 wachsen die Glieder der Summe

bis zum Glied mit der Laufzahl » = —;, welches Glied grosser
ist als-alle vorhergehenden und grésser ist als alle nachfolgenden.
Fir 4 > 10 1st nicht mehr das Glied, fir welches vzg 1st, das

grosste. Wir setzen jetzt v= g—2 I}%}* dann wird der

allgemeine, absolut genommene Term:

g —1 (n—2)! (n — 2)! .2n-(3n——3)!

@n—4)! @n—4)! (04 2)! (B1)

Bildet man den Quotienten aus (B) und (B;), dann kommt -

(B) _4(A—38)(A—3)
B G-+HE1—9)

Fur alle Werte von 4 ist das Glied B;, fir welches » =}3——;—%

ist, kleiner als das unmittelbar nachfolgende Glied B, fiir welches-
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ist. Diese Ungleichung |B| > |B:| geht bis zu A=230;

Yy =

man erhalt fiir:

(B:) 4-27.27 729

(B) 34.8 731

139, (B)_4-29-29 841
" (B) 36.92 828

d. h. bis zu der Laufzahl 4 =380 1st il'_l. der Summenformel fiir

2 = 30: <1; [B[>]|Bi].

fir

> 1By >[B]

ky das Glisd, T weldhes y»—-—2 iut, grosser sz allo vor

angehenden Glieder, und was aus dem obigen folgt, grosser als
alle nachfolgenden Glieder fiir 12==2n =30, wo statt 1 2n
gesetzt 1st.
Fir 2 > 30 trifft dies nicht mehr zu.
: AL—4 L—6 i
Wir setzen v:T— 1 = dann wird der allge-

meine, absolut genommene Term:
g2 —6 MmM—3)! (n—3)! 2n-(3n—4)!
2n—6)! 2n—6)! (n43)!

Der Quotient aus (B3) und (B;) wird dann, wenn n= A
gesetzt wird: 2

(B

(B) _4-(—5)-(A—b)
(B) (A46)-(82—6)

Fir alle Werte von 4 ist das Glied B, fir welches
L—6 '

ist, kleiner als das unmittelbar nachfolgende Glied B;,

Yy =

fiir welches »—

ist. Diese Ungleichung geht bis zu 1 = 50;

man erhalt fir:

(B)) 4-45-45 135
50: o) _ 1; d.h |By|>|B
(B 56.144 256 B >[5l

Bt o B (B2)  4-47 .47 2209
" (By) 58-150 2175

d. h. in der Summenformel fir k; ist das Glied, fiir welches

A=

~1; d. h. |By|> | B
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v=14;;4: gesetzt wird, bis zur Laufzahl 2 =250 grosser als alle

vorangehenden Glieder, und fiir alle Werte von A=2n, fir
die 32=2n=50 ist, ist dieses Glied gleichzeitig grosser als
alle nachfolgenden.

Wir setzen v = h—6_ 1= % Der allgemeine, ab-
solut genommene Term wird dann:
gn—8 m—4H! n—4H! 2n-@EBn—H)!
Z2n—8)! 2n - 8)! (n + 4)!

(Bs)

Der Quotient aus dem Gliede Bs und dem unmittelbar
nachfolgenden B; wird dann, wenn statt n wiederé gesetzt wird:
(Bo) _4-(.—7) —1)

(B:) (A+8)((B1—-8)

Fir alle Werte von 4 ist das Glied Bs, fir welches
A—8 |

ist, kleiner als das unmittelbar nachfolgende Glied B2,

b8 ist. - Diese Ungleichheit besteht bis 2

Y=

A=68; man erhilt fir:
(Bs) 4-61-61_ 3721
B) 76-196 3724

(B;)__4-63-63 _-3969
(Bs) 78-202 3939

A = 68:

<1; [B2| > | Bs]

A="70:

>1; |Bs| > B

d. h. in der Summenformel fiir k; ist das Glied, fiir welches

v-_—~£———2——6 gesetzt wird, bis zur Laufzahl 1 = 68 grosser als alle

vorangehenden Glieder, und gleichzeitig fiir alle Werte von
A=2n, fiur die 52 = 2n =68 ist, ist dieses Glied grosser als
alle nachfolgenden.
Das nachste Intervall geht von 70 =2n <86
das folgende 88=2n==102.
u. 5. w. 104 =2n = 118.
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Wir betrachten nunmehr den zweiten Fall: 4 ungerade,
A=2n-+1, n=0,1,2,3... Derallgemeine, absolut genommene
Term der Summenformel fir k;, wird dann; wenn man wie

—1

angegeben » ersetzt durch Zu:

L e

(h—1)! A — 1)! {1_1;21‘}!

Setze 2z=2n 4 1:

o2n n!n! (2n+1)-(3n)
(2n)! (2 n)! (n - 1)!

Das unmittelbar vorausgehende Glied der Reihe erhilt man,

n—1 A—38
wenn man ¥ — ——— —1 =

Q")

setzt. Dann wird der absolut

genommene Term:

21“3(’1'2‘3)!(3“; 3)! '2,.{2.—!—)—"—;—3—1}!
(L —3)! (A — 3)! -{1_2_1;2-_3}!

Setze A=2n -}-1:

gan—3 —D!'@—1)! @n41)-Bn—1)!
@n—2)!(2n—2)! (n 4+ 2)!

(B

Das unmittelbar nachfolgende Glied der Reihe erhilt man

durch die Setzung » A=l +1 =l—_§-—1; dann wird dieser

Term: 2

o EEPER) 2
41! a+ 1) { _ Lﬂ}z

2
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Setze A=2n-1: |
goir @ EDIO D! @01 @o b D!
2n+42)! (2n -+ 2)! n! '
’Man bildet den Quotienten:
) @+1-@r—1)

(AH) 422
Dieser Quotient ist fir alle Werte von 4=2n 41, wo
n=0,1,2,3.... kleiner als eins, mit Ausnahme fir 1=1, n =0,

wo er zu eins wird. Mit andern Worten:

Fir alle Werte von A =—=2n -1 1st in der Summenformel

A4+1
2

, kleiner

fir k, das Glied, in welchem » ersetzt ist durch

als alle vorangehenden. Man bildet nunmehr den Quotienten:
(B) 4(2—2)(21—2)
(A) (+43)-302—1)

‘Der Quotient ist fir alle A=2n 41 kleiner als eins bis
zu A=19; man erhilt fir 1=19:
(B) 4-17-17 289 . :
. = == <1; |A'|>|B
(AY) 22.54 297 |4%> 18"
fir A =21:
(B)Y 4-19.19 361 i {
= == >1; |B A
| (AH)  24-.60 360 IB7[>[47]
d. h. fir alle ungeraden Zahlen 3 =2n 4 1= 19, ist das Glied

in der Summenformel fiir k;, in welchen » ersetzt ist durch

%—_—%, grosser als alle vorangehenden und, wie oben gezeigt wurde,

gleichzeitig grosser als alle nachfolgenden. Fir 2=2n-}1>19
gilt dies nicht mehr. ' ‘
Wir setzen ,,_—_;‘_';’__ 1=A_5

; dann wird der allge-

meine Term absolut genommen:

N G L G L e

(A —B)! (A — 5)! { A“5}!

11— 22

2



setze fir A =2n 4 1:

m-t M—2)!M0—2)! @n-+41)-{3n—2}! .
2 ‘2n—4)! 2n — 4)! (n -+ 3)! (B)

Man bilde den Quotienten:

(B) 4-A—4) (A—4)
(B") (A +5)-@B82—5)
Fir =239 erhilt man:

BY) 4.85.35 175
EB%: 44?1120=17Z<1; 51> (B

Fir 2 =41 erhilt man:
(Bi) 4-87.37 1369
(B") 46.118 1357

d. h. fir alle Werte von A=2n-41, n=1,2,3,4..., 1st das

Glied, in welchem die Laufzahl » ersetzt ist durch w-='t——3,

>1; |Bl|>|B'|

grosser als alle vorangehenden und alle machfolgenden Glieder,
wenn A, resp. n im Intervall 21 = 2n | 1= 39 liegt.
Das folgende Intervall wird: 41 =2 n 4 1 = 57.
Das folgende Intervall wird 59 =2 n 4 1 =177.
das nichste wird 79=2n 4 1= 95.
U. S. W. ‘

Die gefundenen Resultate sollen kurz zusammengestellt
werden.

1. 2 gerade, A =2n.

Fir 0=2nZ=10 istdas Glied mit vzg das grosste
” 12?2!1?30 " » ” " ""—%——g y ”
” 32=2n=50 n n " ” ”:}‘::é " ”
2
A—6

n n
2
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das grosste

Fir 70=2n=286 istdasGlied mit »="—

, s8Z2n=l02, , , v_—=’"";1” C,

. 14=20=118 , , , y=l_212 o

2. 2 ungerade, A=2n- 1.

Fir 8=2n+41=19 istdas Glied mit v:,}—-—Tl das grosste

— — A—3

n 2122n+1<39 n on n on ”:—2_' " n
— — A—5H

» 41Z=2n4-1257 , y w 1’=T ” ”
_ I h—7

n 59=2n+1277 , , n n "=_2"_ " ”
_ _ e A—9

y 9Z2n4-1=29% , g v————2—- 4 n
. _ A—11

n 9=2n+4+1=2115 , , n 9 V= 9 n )
A— 13

WrZ2nHIZ188 , , ., r=T—

2

Die Anzahl der Werte, die 4 in den verschiedenen Inter-
vallen annehmen kann, sind fir
gerade 1 resp. 5,10,10,9,9, 8, 8, 6,6
ungerade 4 resp. 9, 10, 9,10, 9, 10, 9, 10, 9.

Fir die geraden A hat man nicht die periodische Regel-
missigkeit, wie fiir die ungeraden A, indem erstere in der Fo]ge

wieder viel grossere Intervalle zeigen.
Wenn man nun zur Untersuchung der Konvergenz der

Reihe (21.) zuriickkehrt, denn zu diesem Zwecke ist die Summen-
formel fiir k; etwas genauer-betrachtet worden, so fragt es sich,

welchen Wert man in der Formel:
i 1 ! . —1)!
e v (—1) 22 vyl A-(24r—1)!
= @) @9)! @—»)!
0
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dem » erteilen muss, um in der Konvergenzbetrachtung der Reihe:

cos (x) == [J(x) 1 9. ZA k, [Jx)

keinen zu kleinen Wert einzufiihren. Unserer Ansicht nach kann
hier nicht genau gesagt werden, fir emnen unendlich grossen
Wert von A4 habe man, um 1n k; das grdsste Glied herauszu-
nehmen, fir » den oder jenen Wert einzusetzen, sondern es
kann sich nur um eine angeniiherte Schitzung fiir sehr grosse

Werte von 4 handeln. Man kommt mit der Setzung fiir gerade 4:

r~_—}3~?—;%), fiir ungerade A: wz% jeden Fall schon zu

sehr grossen Werten der Laufzahl 2. Im ersteren Fall wird
dann der allgemeine Term von k; zu:

’/1—51000)' (11 — 100())'
1—10(‘0 gh— 1000 ( 9 ) 9 ’

(—1) - :
(4 — 1000)! (2 — 1000)!
1] g 1000 ),
L e J
[, 2—1000),
R 2 }

Setze fir 1= 2n, so wird, da
(__ 1)H-500: (_ 1)1’!
o . g2 = 100 (m —500)! (n — 500)! 2n - (3n— 501!
(2n—1000)! (2n—1000)! (n - 500)!

Dieser Wert ist fir das sehr grosse gerade A der grosste
von allen Summanden der Summenformel fiir k;. Da diese
wechselndes Vorzeichen hat, ist der obige Wert absolut genommen
gleichzeitig grosser als der absolute Wert der ganzen Summe.

Fir diesen sehr grossen Wert 1 =2n wird dann der zugehorige
grosste Wert des Quadrates der J-Funktion, also von

& G)

il 2oy @)

Py

T, =
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Das Produkt k, - [J(x)]° fir 1=2n wird dann:

kBl =k, Tef|<

X 2n
om0 _(n—500)! (n—500)!  2n-(3n—501)! (E)

= (2n—1000)! (2n—1000)!  (n--500)!  (2n)! (2n)!!

Analog wird fir ungerades i: 1=2n - 1:

2n4-1

j__)kz +1 J(X)]g

920—1000 (n — 500)! (n — 500)! . (2n+1) - (3n—>500) ! .
(21— 1000)! (2n—1000)! (@ - 500)!

| (§)2n+1
@n+1)! @n-+1)!

Der Quotient wird dann:

/.+1

' ' k,1+1

. |
o (Tl (3 iy
(n1501) @n 1) -2n 24-(A-|-1)-(141002)

|k ool

Fiir 41=—400 erhilt man annihernd einen Quotienten von
1:2.10°. Da die absoluten Werte untersucht worden sind, so
1st die Rethe:

cos (X) = [j) (x)]2+ 2 -21 ..kA . [j (Xﬂ2

r ! A-(A4»—1)!
WO klﬂz = 1) (2,, (21’J' (4 —»)!

auf Grund dieser angeniherten Schitzung absolut konvergent
fir alle endlichen Werte von x.
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Im Anschluss an diese Beweisfilhrung maochten wir nicht
unterlassen zuzugeben, dass sie weit entfernt davon ist, einen
streng giiltigen Beweis zu erbringen und rein empirischen Charakters
ist. Da wir bis jetzt nicht Mittel und Wege gefunden haben,
einen solchen zu leisten, behalten wir uns vor, darauf zurtick-
zukommen.

Reihe fiir den hyperpolischen Cosinus. cof (x).
£ (x) = cof (x); (y)=cof(y)

cof (x) = 2,1 k; J(x , wo k; =

=5 f!’l(y) cof (y) -y - dy.

Bekanntlich ist der hyperbolische Cosinus definiert durch:
y2
(22!

Die Koefizienten bestimmen sich ganz analog wie beim
trigonometrischen Cosinus, so dass wir uns auf die Bestimmung
des allgemeinen Koefizienten k; beschrinken konnen.

i) = (0 +e) =Sy

k;‘=.‘—8.—‘~-f9"(y)007(y) y-dy
217

!
_ 2 2” 221;_1’!1!!.1(7(.-]—--1»«“-1)! 1
(27); (A —)! y-“’+2

217
Eﬂ (2#)'

Mit Ausnahme des hier fehlenden Faktors (— 1) hat man
genau den obigen Fall, daher wird:

i ;
oyl — 1M
k;=21-2v22”- LTI U i L)
- @) (27! (A—)!
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Man erhialt dann die Reihe:

cof (9) == [T -+, - Fel . kI<k
0 2 CZ% ; 4 2 "1 2y .
x)] +;/. 21 [J(x)] '?_}J" ¥, o)

. r!y! ﬁ.(;l“"”""l)!
@ 22! - (2 —2)!

cof 1) =)'+ 8 [0l - [Tl + 222w +
6121 . s p
+ii§-5-7[J(x)]—|_“' inf,

Die Konvergenz der Reihe lasst sich #hnlich wie aoben
nachweiseun,

Damit sind die geraden Funktionen, die i Potenzreihe
entwickelt werden konnen erschopft, und man betrachtet im
folgenden eine neue Methode zur Entwicklung von ungeraden
Funktionen.



II. Abschnitt.

§ 1. Zweite Methode von Carl Neumann.

In derselben Abhandlung gibt Carl Neumann ®) eine Methode
zur Entwicklung ungerader Funktionen in Reihen, die nach
Produkten von Bessel’schen Funktionen fortschreiten. Er beweist
daselbst eingangs den Satz:

,,Ebeﬁso wie die Entwicklung

y-2___ x2

d =22 e, [f(x)f 2 (y) (23.)

giltig ist fiir jedes beliebige, der Bedingung |x|<|y]|
entsprechende Wertsystem von x und y; ebenso gilt
gleiches auch von allen denjenigen Entwicklungen, die
aus dieser hervorgehen durch (beliebig oft wiederholtes)
Differenzieren nach x und y: -

Daraus folgt, dass die in (15.) erhaltenen Entwicklungen
ohne Beeintrichtigung ihres Giiltigkeitsgebietes beliebig oft nach
x differentiert werden konnen. Setzt man abkiirzend

o =@ o x)= o

dann lasst sich die Entwicklung (23.) folgendermassen darstellen

Qo 2Q 02 P2 QP
y* — X
+2Q* 2+ +.... inf. (24.)
Durch Differentiation nach x erhilt man: |
2 9" dQ®, 20" dQt, 29 4dQ?
— Q + dQ + dQ +

(372"’}(2)2 _X—'dX X X X dx



p22AQ L %)
¥ dx
Nun 1st
i 2 dQ x 0 aa ]
fernoer _
dQ _ I o002 o020 2 ot 2 oo :
T R o L TrmeY v, AR 1

— e P
Setzt man diese Werte in (27.) ein und ordnet, dann kommt:
= g O ‘
| = Qe
+ @@ @
—|—;‘73-Q74++.... (27.)

0 2 : 2 4 4 6
N :Q +Q3Q———‘;Q +95Q—”; CATI

Q' —Q | QP—Q | QP—Q
L gE = R LN L
2 4 6 )

Andererseits erhialt man durch Differentiation der Gleichung
(24.) nach y: | '

2 _ Q49 , Q40

2

(y2 — x2)’ y dy -y dy y dy
3 3

_oQde
y dy

In den Formeln (27.) und (28.) hat man zwei Entwicklungen

fir denselben Ausdruck ————-. Beide schreiten fort nach
(v — x%)

(28.)
— ... Inf.
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Q-Funktionen. Nach dem Descartes’schen Prinzip miissen die
Koeffizienten von Q-Funktionen desselben Parameters einzeln
einander gleich sein. Daraus folgt sofort:

0
_HdE g g

ydy

—— b — T o

3 1
2dd @ o 2y

y dy 3

_g.dga_p;"_ﬁz .]_m o
y dy 4 2 2.4

_ 24 o p““1+ 2 L
y dy n+1 n—1 (@m+41)@m—1)

Diese Formeln konnen mit Ausnahme der beiden ersten
zusammengefasst werden in eine einzige. Vertauscht man den
Parameter n mit 4, dann hat man die Relationen:

249 5 gy —2 0 ()
y dy
_2d9'(y_ 2y _ 20) (29))
y dy 2 1
d2(y)_ 2y 27y L 290
~y dy A1 i—1  (A+4+1)(A—1) J

Diese Ableitungen sind nicht unmittelbar von Belang fir
die Herleitung der gesuchten Entwicklungsmethode. Doch geben
sie eine wichtige Eigenschaft der im ersten Abschnitt eingefithrten
N-Funktionen, die in ihrer Art dhnlich ist den Differentialeigen-

schaften der E)-Funktion in der Theorie der Bessel’schen Funk-
tionen. Man hat in (6a.) die O-Funktion definiert durch:
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n+1
<3

2 J, I (n—x-—l)!(z)n+l—u
Oy)= $i=- =
v) Z ey

Sie geniigt der Differentialrelation:
0

n n

51(3’)— —}y)JrZ%ﬂ:O-
y

Wie leicht einzusehen, kann man der Q*Funktion auch die
Form geben:

oy N, 0 AlAl (n41—1)!
9(y)——014 @) (@—2! (

2)2“- 2
Y,

so dass man auch darin eine gewisse Analogie hat. Nach der
Art ihrer Entstehung spielt die 2°-Funktion fiir die Neumann’schen

Reihen zweiter Art genau dieselbe Rolle wie die 0-Funktion
fir die Neumann’schen Reihen erster Art,

Mit Hilfe des Satzes (23.) liasst sich nun nachweisen, dass
jede gerade Funktion f(x) in demselben Masse wie nach den

c p
[j (x)]z auch nach den L =
X
eine beliebig gegebene gerade Zahl sein kann, dass ferner
Gleiches auch gilt von jeder ungeraden Funktion f(x),
nur mit dem Unterschied, dass in diesem Fall unter p
eine beliebig gegebene ungerade Zahl zu verstehen ist.
Setzt man nun p=1, dann hat man offenbar den kiirzesten
Weg, um aus den Resultaten fir die Entwicklung gerader
Funktionen Methoden zur Entwicklung ungerader Funktionen
herzuleiten.

Um den Punkt x=0 einer x-Ebene sei ein Kreis beschrieben
mit dem Radius R. Ferner sei eine Funktion f(x) gegeben,
welche eindeutig, stetig und ungerade ist innerhalb dieser Kreis-
fliche und definiert 1st fiir alle |x|</R. Dann ist offenbar

die Funktion

)
L] (x)]2 entwickelt werden kann, wo p

X

¢(x):[f(x)dx
b
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wo der Integrationsweg auf das Innere des Definitionsbereiches be-
schrinkt gedacht ist, stetig, eindeutig und gerade, solange | x| <R
bleibt. Sie ist daher nach Satz (15.) entwickelbar in eine nach

A
den [J (x)]g fortschreitende Reihe von der Form:

® () =k [F ] -+ [T+, [T +

+ [l + & ik (30)

Diese Reihe ist giiltig fiir jeden der Bedingung | x| < R
entsprechenden Wert von x. Zufolge des Satzes (23.) kann diese
Reihe, unbeschadet ihres Giiltigkeitsgebietes nach x differentiert
werden. Man erhilt somit die Reihe:

G0 _op g9y oK gdyparsd
dx dx dx

2
J 4
dx +

3 3 )
+2k3Ja(-i;J—i—+.. int. (31

wo abkiirzend J statt J(x) gesetzt ist. Diese Entwicklung ist unter
denselben Bedingungen giltig. Nun i1st aber ohne weiteres
ersichtlich, dass

Ferner 1st nach bekannten Differentialeigenschaften der
Bessel’schen Funktionen:

(—i(—j;}(x)m—j(x)

d 4 { (A=t @i
iJ(X)z——{ J(xX)—J(x)}; 1=1,2,3,.... 00
dx 2

Fihrt man diese Relationen in (31.) ein, dann kommt:
01 10 2 2 1 3
f(x)=—2k JJ 4k JT—I+kIJIT—J)+
3 2 4 '
+kJ(J—J)+ 4 ... inf.

oder was dasselbe ist

(82.)



f(x) = (k, — 2 k) J () J (x)+ (kz-—k,)j(x)i(x) L

2 3 3 4 (33)
+ {ks ~ kg)J(X)J(X)+(k4_kg)J(X)J(x)_'_ I 4

Dieses Resultat notieren wir in folgendem Satz:

,Ist f(x) eine beliebige, gegebene Funktion, welche
eindeutig, stetig und ungerade ist, solange |[x| <R
bleibt, dann ist sie immer darstellbar durch eine nach
den Produkten

0o 1 1 2 3 3 3 4 4
JTOIE, I®I, T, I@I©... 64
fortschreitende Entwicklung, die giiltig ist fiir jeden
der Bedingung |x|< R geniigenden Wert von x“.
Man bezeichnet abkiirzend

‘1}-{ [.f’(x)T:f(x) ll".fj(x) —l}%x)} =11l'(x); 1=1,283,....00. (3b.)

Deferentiert man nun die in den Gleichungen (1.) gegebenen
Entwicklungen fiir die geraden Potenzen von x, dann erhilt man
unter Beniitzung des obigen Symboles:

e — T (&) ) +§z 11(x)
g.xz %2’1 @1 1)
%-x3— l—fﬁz (@ 92_22].1‘1@;) 36)
g-x5= » i—?—ﬁ i L @il —2)[eaf— 2] 11
g_.,g: %%%ia @ )2[e i — 2@ ,1)2—i
— #][@ )" -6 (x) |
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Fir den Fall |x|<{|y|, wo x und y komplexe Variable
sind, gilt identisch: :

=% oW P F 4. ok
' ¥ oy

Auf der rechten Seite setzt man fiir die Potenzen von x
die Entwicklungen aus (36.) ein. Man erhilt dann:

yzjx; :%-—;-2 2}. @1 H(x) +
1-2 1 2
+3—Z —y— 21 (01) (21)”2] H(X)
1-2.3 1 ".oo 2 2 o2 o 2.'l
6 ey 2 Zum) (@2 —2°][(22)°—4° - I (x)
1.2.8.4
+5.6.7-,8'8y 22“2'1) @' —2]les ~
— &)@ —6) - II(x)
*_ _________________
+ 1n 1nf

Ordnet man nach den II(x), dann erhilt man eine Ent-
wicklung von der Form:

X [Sac] A A
- =32 .Zz P (y) IT () (87.)

: !
Die neu eingefiithrte Funktion P (y) ist dabei definiert durch
die von Carl Neumann gegebene Formel:

) 2
bt

1-2@0°[2)°—27  1-2-
2 2y? +3-4 4 y* +4 5.
eyey—27y —47]

6y + 4+ ... fin.
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Zur bequemeren Verwendung bei den Anwendungen haben
!
wir die P (y) Funktion wieder durch eine endliche Summe dar-

gestellt, Der allgemeine Summand lautet:

vl @[ -2 (24" —47..... [(24)°—@v—2)]
(2 »)! 2y .y
_ o 2P~y (A — v 2)..... A—2)(A—1)4-
-4+ DA +2.... G Fr—2AFrv—1)
v - y2¥
L et LI
(2 »)! v (A—)! i

Die Laufzahl » nimmt alle Werte von 1 bis 4; daher lautet
nun die Summenformel:

A
4 vyl A (Ar—1) 1
P(y)—Sw 2”7t 22 2. : (38
) —I1 2 » @ - y27 99)

Dies kann auch geschrieben werden :

"on {l—l)' (A — 1)! (n+1—1)' 2\24
P(Y)—Sl 21— 1)! (m— 2)! (—> (38a.)

4

In dleser letztern Schreibweise trltt die Analogie mit der
O"-Funktion am besten hervor.

Mit Riicksicht auf die Definitionsformel (35.) der II-Funktion
kann die Entwicklung (37.) als eine nach Produkten von J-Funk-
tionen fortschreitende Reihe betrachtet werden.

In der Gleichung (3.) hat man fiir eine gerade Funktion
die Integraldarstellung gefunden:

2 __ g2

1 » .d
f(x) = . [ fy) - 1Y |y(<R; |x|<r<R
21w [ r y

die Integration erstreckt lings einer um den Punkt y =0 be-
schriebenen, den Punkt y = x umschliessenden Kreisperipherie.
Setzt man f(y) als eine ungerade, fiir alle Werte |y|< R definierte,
endliche und .stetige Funktion voraus, dann erhilt man analog



* ,
L. ’ fy) 247
r

f(x) = — . = (39.)
217 y? — x¢ _

die Integration wieder erstreckt tber eine, den Punkt y=x

umschliessende Kreisperipherie aus dem Nullpunkt. Nun ist
nach (37.):

X

=N 2 Py I [x]<]y]

y? — x?

daher auch:

¢

. s 2 1 . i
H0 =Nk 100, wo k= [ () P)-dy @0)
,
1

Wir notieren diese Resultate in folgendem Satz:

Jede beliebige Funktion f(x), die eindeutig, stetig
und ungerade ist fur jeden der Bedingung |x|< R ge-
niigenden Wert von x, ldsst sich in eine von der Form:

217¢

OO ) & A
@ =Nik @, wo k=3 [ )Py @0)

entwickeln, die zufolge der Definitionsformel (35.) der
II-Funktion betrachtet werden kann als eine Entwick-
lung, die nach Produkten von J-Funktionen fortschreitet.
Die Reihe ist gultig fir jeden der Bedingung |x|<ZR
genigenden Wert von x, wenn R eine reelle, endliche
Konstante ist.

Ist die beliebige Funktion f (x) nicht definiert fir das
Gebiet einer vollstindigen Kreisfliche, sondern nur fiir ein Ring-
gebiet (Laurent’scher Kranz) d. h. fir alle Werte von x, die der
Bedingung R, << | x| << R, wo R; <R, geniigen, dann findet man
analog dem entsprechenden Fall fiir die geraden Funktionen
eine Reihe, die nach II- und P-Funktionen fortschreitet von
der Form:



f(x)=

3
; 217

oder kiirzer:

y)
f(y)-P(y)dy+
R)

| i(y)-I(y)-dy

o0 1 oG i
f(x)=2& k -7 (x) + 3w P(x)

| K= f f().]_g().d
wo 1T ®) ¥ y)-dy (41)

Hy =

f NI (- dy

2175

Der obige Fall (40.) tritt als Spezialfall dieser letzteren
Entwicklung auf, wenn .die Entwicklungskoeffizienten ; ver-
schwinden, was fir jede Funktion f (x) der Fall ist, die innerhalb
eines um den Nullpunkt mit dem Radius R beschriebenen Kreis-
gebietes, also fir |x|<r< R eindeutig und stetig ist. Mit
. andern Worten: '

Ist der Nullpunkt zuginglich, so kann die Entwicklung von
f (x) nur Potenzen mit positivem Exponenten enthalten, und da

J (x) auch nur solche enthilt, muss in diesem Fall das Kreis-
integral

2
j;HWHW%dY

notwendig verschwinden, also auch u; =0 sein. Der Entwick-
1ungskoeif1z1ent k, dagegen kann dann nicht gleich Null sein, weil

P (y) eine Reihe ist, die nach wachsenden negativen Potenzen
fortschreitet, die also das Integral nicht verschwinden lassen,

wenn sle sich teilweise mit dem positiven Potenzen von f(y) zum

Integranden dy erginzen.
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Lasst sich die gegebene, ungerade Funktion f(x) nur in
eine nach wachsenden negativen Potenzen des Argumentes fort-
schreitende Potenzreihe entwickeln, dann verschwindet umgekehrt
das Integral

A
P(y)f(y)-dy
.{(R) (y)f(y)-dy

damit wird auch k; zu Null, und man erhilt eine Entwicklung
i
die nur nach P (x)-Funktionen fortschreitet.

Weist endlich die Potenzreihenentwicklung der gegebenen
ungeraden Funktion f(x) sowohl positive und negative Potenzen
auf, dann verschwinden die k; und y; nur teilweise, und man
erhilt eine nach 7/-und P-Funkfionen fortschreitende Entwicklung.

Die fir die gegebene, ungerade Funktion f (x) moglichen
drer Falle konnen natiirlich auch bei einer geraden Funktion
¢ (x) eintreten. Es gelten dann hinsichtlich der gesuchten Ent-
wicklung die den obigen entsprechenden Bedingungen, namlich:

Enthilt die Potenzreihenentwicklung der gegebenen geraden
Funktion ¢(x) nur positive Potenzen, dann schreitet die gesuchte

Neumann’sche Reihe zweiter Art nur fort nach den Quadraten
~ der J-Funktion, d. h. in der Formel (16a.) verschwinden alle
Koeffizienten u;. '

Enthalt die Potenzreihenentwicklung der gegebenen geraden
Funktion ¢ (x) nur negative Potenzen, dann schreitet die gesuchte
Entwicklung nur fort nach £2-Funktionen, d. h. alle k; ver.
schwinden. ‘

Enthilt endlich die Potenzreihenentwicklung der gegebenen
geraden Funktion ¢(x) sowohl negative als auch positive Potenzen,
ist sie also definiert fir einen Laurent’schen Kranz, dann ver-
schwinden weder alle yx; noch alle k;; die gesuchte Entwicklung

A 9
schreitet daher fort nach den [J (x)] und ©* (x).

Um auch fiir diese zweite Neumann’sche Methode eine
kurze Charakteristik zu geben, heben wir hervor, dass sie die
erste Methode dahin erginzt, dass unter Anwendung beider
Methoden gerade und ungerade Funktionen in Neumann’sche
Reihen II. Art entwickeit werden konnen. Aber selbst unter
gleichzeitiger Anwendung beider Methoden ist es nicht moglich,
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Funktionen, deren Potenzreihen nach geraden und ungeraden
Potenzen des Arguments fortschreiten, in Neumann’'sche Reihen
zweiter Art zu entwickeln. In dieser Hinsicht 1st die Moglich-
keit der Entwicklung nach Reihen erster Art viel allgemeiner,
indem von der zu entwickelnden Funktion nur verlangt wird, dass
sie durch eme konvergente Potenzreihe dargestellt werden kann.

Im ibrigen 1st diese zweite Neumann’sche Methode anwend-
bar auf alle ungeraden Funktionen, die in eine konvergente
Potenzreihe enwickelt werden konnen. Denn dadurch werden
die zur Bestimmung der Entwicklungskoeffizienten k; und u;
entstehenden Integralausdriicke leicht integrierbar. In An-
wendung des Verfahrens geben wir nachstehend die Entwicklungen
einiger ungerader Funktionen.

§ 2. Auistellung der Reihen fiir die ungeraden Potenzen von x.

Es sei vorerst aufmerksam gemacht auf die durch Differen-
tiation der Entwicklung fir 1, d. h. von '

0 9 ac A 2
1—1[J (" + 22/1 [J (x)]

erhaltene Identitit

' 0 1 G

0=—J(xJ(x) +EA 11(x)
1

0 1 0 1 1 2 1 2
=—JX)JE)+IF) I —I(x)IEx) +I(x)J(x) —+— .. inf.
1. Aufstellung der Reihe fiir x.

f(x)=x; f(y)=y

s 2 &g A
X=zl k; - II (x); ki'—_—ﬂ‘ff(y)-P(y)-dy.
1 ‘ '

[ 8

Man erhilt im einzelnen:

2 . 2 d
ks . {'P(y).y.dyzz__. {'ﬁyl’zz_

217 17T



y2
2 9
k= P g ] W i o]
48 | 192)
4= L dy=18
vty d
4 2 16
k,=-—.|P redy=—
1= 5 f‘ y)-y-dy=g f{y

— — —— —— — e s e —— o — s e e e e e e e

1m allgemeinen:

2 vl 4 A4»—1! 1 \
— gv—1 ¥ V. A o % s W
& 2171: fz @»! v (A—2»)!  y2¥ ol

—2y41

Die allgemeine Potenz im Integranden ist y Um fir
dieses Cauchy’sche Integral iberhaupt einen von Null verschiedenen

Wert zu erhalten, muss die Potenz y—1== sein und diese er-
y
hilt man durch die Setzung —2v 4+ 1=—1; »=1. Dann wird
1m Integranden der Koeffizient von 1 [1] — 4% und daher:
‘ y LY |
k,ﬁz—?---f- f‘b’zzﬁ
21n Jy

Dadurch wird nun die Entwicklung fir x zu:

x=2 1(x) 48 T1(x) + 18 TT(x) + 32 T1(x) 450 1(x) + + . . int

__9%-2')' _l.oo g}v.x
_2}. 2001 (x) = ZA @ 2)? 11 (x) (42)

L

In dieser Darstellung hat man jedoch nur eine mittelbar
nach Produkten von J-Funktionen fortschreitende Reihe. Um
4

P

[
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eine auch unmittelbar nach Produkten von J-Funktionen fort-
schreitende Reihe zu erhalten, bildet man nach (33.) die Koeffi-
zlenten
alz(kl ——-21{0):2, az:(kz-*—kﬂ:ﬁ; aai(kg e kz)mlo
allgemein
=y —k_1)=2{"—@1—1)|=2@2Q2—1)

Die unmittelbar nach Produkten von J-Funktionen fort-

schreitende Reihe erhilt demnach die Form:

x—2.3(x)T(x)-F6-J ()T () +107 ()T (x)+

4147 ()T (%) + 187 (x) - J (x) + + int.

e i—1 d;
o 2/ @r—1)-J(x) - J(x) giltig fir |x|<<R.

1

Wir leiten noch die Formel fiir die allgemeine ungerade
Potenz ab. Es sei

(x) = x5 £ (y) =y

Wir definieren die ungerade Potenz aus dem Grund mit
x22—1 und nicht wie sonst iblich mit x?2+! um unter dem
Integralzeichen des zur Bestimmung von k; auszuwertenden Inte-

grals iiberhaupt die Potenz y=!= > 2zu erhalten. Jede andere

Potenz gibt zu jenem Cauchy’schen Integral keinen Beitrag.
Man hat also:

o0 A i
XV : 2 L
xtr-l="8% k) - II(x), wo k;=—- (| £(y):-P(y)-d
? 2 1 (x), PR f (¥)-P(y)-dy
i
Setzt man far P (y) die Summenformel, so kommt:

A

ptol 2 —_— !
k, = 2 'S” g2v—1 ¥V i (A4 1)_. {‘yzn‘li-dy
21 7L ld (2 ]}) ,’ Y (2‘, —_ ‘y)! | },’21/

— .
L ¥
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Die Potenz }ﬂ:y—l‘ erhilt man durch die Setzung 2n —
y

—1—2r=—1;n=
~ Dann wird im Integranden der Koeffizient von 4 zZu:

y
1 _22n>_1.n!n!.il__(l+n—1)!
y 2n)! n (A — n)!

woraus sich sofort k; bestimmt zu:

1 n!n!

n (2n).

@[y —27][@n’ -4 [...... ] [@r)* —

und daher erhidlt man fir x2»—1;

xen—t— 1 0100 Va @ilen —2l[@nr—a|[... | [en—
n (2n)! X "
—@n—gp|.fiy )
Man bildet wie frither:
2nt1 n!n! (}»—I'-H—“ 1)
a;=(k;—k;_)=2"" @5 ),( 1)- !
und daher
1 e DN R (L4+n—1)it
S 2 21 21—1)- rp—r T(x)-T(x) (44)

Um die Konvergenz der in (42.) bis (44.) hergeleiteten
Formeln nachzuweisen, zeigt man, wie im ersten Abschmtt, dass
die Bedingungen

]nl+1‘<1
|0y |

von einem beliebigen, endlichen i an erfiillt sind, so wie ferner

lim  [npgil

A = oo |n4|
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Den fiir ein und dieselbe Potenz konstanten Faktor
22,1.n! n!
(2 n)!

lisst man dabel ausser acht. Nach der Formel von J. J. Schon-
holzer wird, wenn man in

_ TFa+b+2u+t1) _
W T@tput1)-To+tutl)

x\a+b42u
(2)

‘Taf+btpu+t1)

/x\2A+20—1
r@i 424 _2)

MTG+WYF@+M+D rei+u
oder statt der GGammafunktionen die Fakultiten gesetzt, indem

man festsetzt, das u nur alle ganzen, positiven Zahlen durch-
laufen soll, was fiir 1 a priori Bedingung ist,

S 3w =S 1"
0

fir a setzt A — 1, fur b setzt 4

T3 :Su(

(_)2k+wt 1
i—1 1 oo _ '

T =Ny (— 1. @r+2p—1! \2

() J (x) =" ( b e e T

Genau in derselben Weise wie fiir [J‘1 (x)]2 kann man hier
schliessen, dass der absolute Betrag des ersten Summanden
grosser ist als der absolute Betrag der Summe aller einzelnen
Summanden. Es ist daher das allgemeine Glied n; ; der all-

gemeinen ungeraden Potenz:
' | rx\22+1
orn |(3)

(A—n+1) 21+ 1)

2—1
(A 4n— 1)! l(z)
A—n)! (A—1)! 1!

[0 41 [<@241)-

ebenso

Im | <<(24—1)-



Dﬁher
| !n‘;+1\<(21+l), (A+mn} x?
| C@i—1) (h—nt1) & GF1)

Fir im Vergleich zu n einigermassen grosse i konver-
gieren der erste und der zweite Bruch rechts jeder fiir sich
gegen 1. Unter der a priori gemachten Voraussetzung, dass
|x| < R, wo R eine reelle, endliche Konstante ist, kann leicht
ein A gefunden werden, fir welches der Quotient rechts kleiner
als 1 ist. Daraus ist auch ersichtlich, dass fiir lim (1= oo) der
Quotient zu Null wird. Die durch die Formeln (42.) bis (44.)
dargestellten Neumann’schen Reihen zweiter Art fir die unge-
raden Potenzen von x-sind also unbedingt konvergent fiir alle
endlichen Werte des Argumentes x.

§ 3. Vergleich zwischen den fiir die geraden und ungeraden
Potenzen von x geltenden Neumann’schen Reihen
erster und zweiter Art.

Die Reihen erster Art fir die geraden Potenzen, die wir
der oben ztierten Schrift von W. Kostler entnehmen, sind die
folgenden:

o0

1=J(x) 42 Y 1)

x? = 2 -Sx 2 1) .zll(x)
X4 = ) .iz 247 21 —2. ,2Il(x)

x8 = 2 -ia 21)°[(2 1) —2°}[(2 1)* — 47 2Jl(x)

— — e — — — — e m— — e e e e e — o—— — —
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X208 = 2.8 242 )—2[2r—4]..... 122y —
> -
—(2n—2)"] - J (%)
Die Rethen zweiter Art fir die geraden Potenzen sind:
0 2 ~ LI
=@l 4232 ]
2 1.5, iz et Jwf
2 1
we L2 za e [en'—2] . [fel
o 1:2:8 RS 2 Bl
x—4@62§HMMWEMW)]DM
x3n = (2n)' 21 @ A en*—2 [en*—4*[.... J[@ 1’ —

i
—(@2n— 2’| [J(x)]

Man erkennt sofort die grosse Analogie zwischen den beiden
Entwicklungen. Die Entwicklungskoeffizienten der Reihen zweiter

Art sind proportional den entsprechenden der ersten Art. Der
n!

I !. Bei den Reihen erster
(2n)!

Art kommen nur Bessel’sche Funktionen mit geraden Parametern

vor, wihrend bei denjenigen zweiter Art gerade und ungerade

Parameter auftreten.

Die Reihen erster Art fur die ungeraden Potenzen sind:

Froportionalitatsfaktor ist jeweilen

X :2-51 @i41)7 (x)
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o0

x3=9. 2/1 @h+1)[@i4+17—17 7 (x)

1

' e 5 " 2441
B =2. 31 @r+n[@r +1) =1 (@241 —3] T(x)
2 .

o

=231 @4+1)-[@2+ 1= 1] [@4+1)— 37 [@r 1) —
3 2441

— 52] J (%)

—_— — — — — e —— — e s e e e ——e — — e

Xgn+1:2.21 @24+D[@r+1y7—1*[.....][(@14+1)°—
- 2241

—@n— 1] I (x)

Die Reihen zweiter Art sind in der ersten Schreibweise:

0 A
x:l.l.z-zx 2 A)° - II(x)
1

i1 2 S ;

X ﬂ L@ AN —2° I(x)

51 1:2.3 0 S 2 ot 0% (018 4%]. IT(x

= e 2 ? L@y @y —27 (@) —4]- T (x)

7__1_.1.2.3.4‘_“.00’ 9 1\2. (9712 _ 92 2 42 2

e v h 2 24 A @y [@2)° —2°][@2) 4][(2&)}
— 6] 11 (x)

2n-—1_._i —

mgnmn), 2& @i 1 2][(21)
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Durch Vergleich mit den Reihen zweiter Art fiir die geraden
Potenzen erkennt man sofort, dass die Reihen fir die ungeraden

Potenzen kurzweg durch Differentiation der geraden Potenzen
2

erhalten werden konnen, wenn man das Symbol II (x) einfiihrt.
Man erhilt zwar dabel nur eine mittelbar nach Produkten
fortschreitende Reihe. Will man die unmittelbar nach Produkten

A—1 A
J J fortschreitenden Reihen haben, so hat man die Koeffi-

~ zienten a; zu bilden aus a; = (k; —k;_1). Die Reihen werden
dann:

< =-;- .iz (2’“; D e Teim

1-2 Y, @A—1) 2
= 2 @ 1) [2 1) _2] J(x)

- L-(L+1)
5___1-2-3.°% @i—1) _
LN ;A R @2 —2Y[@ ) — 1
7w
12834, @A—1) 902 o2 2
XM= o e 2y (@27 —27][(2 2)

— e —6]T®-I®

— — — — — o — . e e mmww ameee mmmm e e e e e

o MININY, (24— 1) 2T 12 of o 18
xP—1= _ZL el (@ 1 —27[2 &)

— [ ][en — @n — 277 T (x) 3(x).

Wie leicht zu kontrollieren ist, lassen sich die Reihen erster
Art fir die ungeraden Potenzen auch folgendermassen schreiben:

X =2 .Ex @22 + 1)“5&)
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w=2"31@1+1) (1) T )
1

x5 =2 -21 @L+1)-21041)- L A—1)-(+2) I ()

2

X1=2. EA @i+1)- 2250 41) 22(1—1)(x+2)23(1-—
90+

— e e S —— e— v e e e e st e e S e e ——— ——

x2n+1=29 -ia @r-+1)-2220+1)2°0—1) (4 +
) 12)...... 2 ( —n+1) (b4 n)- I (x)

Fir die entsprechenden Potenzen nach Reihen zweiter Art
steht uns unbenommen, unter Beriicksichtigung der dadurch
bedingten Verinderung der untern Grenze statt der Laufzahl 4
die Laufzahl 241 zu setzen. Man erhilt dann:

oo

1 Q@i+
22@_{_1) 28 (A1) J(x)J(x)

& ]

924 1)- 5 ()3 (x)

I.\Dlr—t

2 (
x3=£-§%‘l BAED 91y 2 [ 417 —

3.4 A+1) - (42 |
—12]»3(1:)-‘;{(1}:)

_12Ny, @A+ 2. 92.7. .

5 2 BT 2. (A1) 22 1-(A+2)

Y] A—1 7
- J (x)-J (x)
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|b—-‘
| ro

=2 2 @rA+1)-22 (A +1)-2- J(x)- J(x

1-2.3 8, (2241) 3 § . 0
= . N 2°A 1) - 2% (A 4-1) —
2(A+1)(A+3) A+ 1) [(+)

— ]2 (41— 27 ) T

n

_1-2:3 N, @1+1) L2 1. 20 (D).
D ot e Ty et

o i A1
22 —1)-(A4-8)- T (x)- I (x)

= .22 2@ @i-+1)- 22)(1+1) PA—1)(h42)-

A+1

T T

—_— e re— e— — e e s awn —rw e o e it e ot o —— e

enmr MO, @41 2 0271 L 112
e Gt G CTUEEAD
41

—1%..... 22[(x+1)2-(n_1)2]-3(x)'J(x)_
n!n! 2441) 5 § b
g T T2 Ny SO et I - 2R [ -
(2m)! 21 (A +1)- (2 +n) - -
A A1
+2)..... 22 (A —n-+42) (A4 n)-J (x) I(x)

— n'n 2 2 _
o) 221 @L14+1)-2204+1)22A—1)( +

A A1

+2)... P4 n—17A—@—1)F1]-J (x) - J(x)

Denkt man sich auch hier die allgemeine ungerade Potenz
durch x22+1 definiert wie oben, setzt man also n statt (n — 1),
dann wird-: die letzte Reihe:
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X2n+1:(n+ D' (n 4 1)!.
(2n+ 2)!

2221 @L+1D22A R+ 1) 20—

— 1A +2).. 2(’»—ﬂ+1)(ﬂ+n)3(X)j}EX)

Vergleicht man jetzt die Entwicklungen nach Reihen erster
und zweiter Art, so erkennt man die Proportionalitit der Ent-
wicklungskoeffizienten, wobei der Proportionalititsfaktor

9. (n-+1)! (n+41)!
2n+ 2)!

ist. Damit ist die Behauptung, die Carl Neumann in der ge-
nannten Abhandlung ausgesprochen hat, dass nimlich die Ent-
wicklungskoeffizienten der Reihen bis auf den Proportionalitits-
faktor mit einander iibereinstimmen, auch fir die ungeraden
Potenzen nachgewiesen. Bedeutend einfacher ist die dritte Schreib-
weise fiir die Reihen der ungeraden Potenzen:

% i 2141) 5(x )f;l(x)

__2 R Py 4
== szu) 1_1)‘J()J(x)
gl VA2 6 OOA (22+1).“+ 2)!-3(;;)-}'3(})

4.5.6 2 " (1—2)

A41

2n 1_(n+1)'(n+1)' 2n--2 'v (l‘l—ll 2
o R N (21+1)( I

n
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§ 4. Herleitung der Reihen fiir die ungeraden trigono-
metrischen und zyklometrischen Funktionen. '

1. Die Reihe fiir sin (x).
f (x) =sin (x); f(y) =sin (y)

sin(x):il klﬁ(x); WO k,_:i.
= 217

-ff(y)-f’(y)-dy-

Die - zur Bestimmung von k; dienenden Integrale lassen
sich wieder am bequemsten auswerten, wenn man fir sin (y)
seine Potenzreihenentwicklung einsetzt. Es ist allgemein:

3 7 9
Sin(y)———y—%-!—f—i}—%—‘-{—%—'——l—... inf, =
=% 28 =1
— SR Nl S A
2‘“ A T

wo man wieder, abweichend vom iiblichen Gebrauch, die Summen-
formel wie angegeben schreibt, und nicht

um im Integranden iiberhaupt die Potenz y“*1=—1— zu erhalten.
v

Die Bestimmung der Entwicklungskoeffizienten ergibt nun im
einzelnen :

2 ] o1
m=f~fmw»mwdy
217

gl

2
mzﬁwfmwrmwdy
217
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2 Y, Yy ¥ 1{4 81 16
— B NP IO
Hire { FTRETE TS My Ty =13
— [sin@ P )-ay
21
_2?2 [, ¥,y _y y_ [9 48
Qiﬂ:_/ T T T T }[2+y4+
192 78
g L
yﬁ} y 1-3-5
ke = [ sin (¢ Py} - dy
2171:
_ 2 Y,y ¥y oy _ ¥y | [16
%1t {y st it T A]{y2+
160 . 1536 . 9216 64
+P R Bl ay =

y oy oy [T 18T

1m allgemeinen:

2171: ‘leu (=1 (21’:;)! '-21/ 2

y! vl .&‘(},-{—v—l)!. 1 .
@Z»! » .(}.'—1/)! y2?

dy.

Die in Betracht fallende Potenz 1 erhalt fnan, da die all-

Yy
gemeine Potenz im Integranden y2#—1-2# ist, durch die Setzung
2u—1—2y=—1, also v=px. Daon wird der Koeffizient

von — im Integranden:
y

[1]—(—1)" i I T ok s L
2»)! » A—9!2r—1)!

woraus dann:



A

N, (1. o, v! ! A (A Fr—1)!
k"_E( D ey U—!

1

Man erhilt demgemiss eine erste Form der Entwicklung:

. L 16 2 8 3
sm(x)ﬂ—Z-H(x)+1—.—é-‘11(x)—|—1.3-5-11(x)+
64 : . -
—}—m-ﬂ(x)—}——f—...mt
o pl
. y (—1)7 1. 927, vl ! &
—El 2 (=12 2y)! 2y — 1)! » )
1 L (45.)
b1t gy
(A —»)!

Um die unmittelbar nach Produkten von J-Funktionen fort-
schreitende Reihe zu erhalten, bildet man die Koeffizienten:

1
a; == (k1 —2ko) =2; as = (ks — ki) :—O;
2 482
(ks — o) = — 2 Ak — k) 282
3=(k3 2) 1-3.5 4 (4 3) {.3.5.7
allgemein a,=(k; —k;_y).
Nun 1st
A
! ! _ 1
k) :S}, (—1y et X AP _('H‘” 1)!
o 2v)! v A—n! 2 —1)!
A-1 , ’
k). 1:2,‘} (_1)1’—-12277’! V'}u"l (A,—I—y—-Z)Y
_ : (2v)! v A—r—1I2v — 1)!
dann wird
y! p! 1

i—1
a; == (k; — ky—1) = v (— 1) 2% T
) == (K; 1) 21 =1 @2y -—-1)! »
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5 Yy — 1 1’—*2. —'1!
[A-A4r—1)! (A4 ) (% )_I_

RS (—v—1
e g2a AL - @i—1!
=T 21— 1! @2 1

Der Term in der Klammer kann reduziert werden zu:

Aadr—1) @A+r—QA—D!_ - A+r—2Atr—1)

!

(A — »)! A —v—1)! (A= =11 {AL—)
A=A +r—2)
(A —»—1)!
:(ﬂ\,—l—v— 2)!.{1-(14—1;—1)_(&_1)}
(A—v —1)! A —)
=v.(2z,—1)-”“+”_2)!
(A — »)!
Ferner ist
(— 1)1_122,1 A Al . A2 A 1)!:(__1)1—1_22)._ ALA!
(24 —1)! (2A)! A (2 4!
Nach diesen Reduktionen wird:
Ak b 1 e v!y!
a; = (k; — k1) —_—Zw (—1y~'2 — (2,’)!(2)._1).
A+ »— 2)! 1.1 22 AlAL
. =1 2
(L —)! +=1) (2 4)!

Der letzte Term kann ebenfalls unter das Summenzeichen
genommen werden, sodass man fir den Entwicklungskoeffizienten
a; der unmittelbar nach Produkten von Bessel’schen Funktionen
fortschreitenden Reile die einfache Formel hat:

' 2 .
—N), (-t v!ly! 4y A4y —2)!
31—2 (—1) 2 & 1)1 (21,)1(2}’ 1) T
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Die Reihe selber wird dann:

) 0 t 10 1 2 C2 3
sm(x)—2J(x)-J(X)+E-J(x)-J(x)fl.3.5-J(x)-J(x)—
-—r;?%?j(X)f(X)-{—-'—— '—_..7. inf.

CH A—1 A 4 :
:21 @i—1)-J(x)-J(x) -2'» (— 1'%,
1 1 (4ba.)

2! (v —2)!
2»—1)! (2)! (A —»)!

Um die Konvergenz der obigen Reihe nachzuweisen, bildet
man entsprechend dem bisherigen Verfahren den Quotienten

und weist nach, dass er von einem beliebigen, endlichen A kleiner
wird als eins. Die zur Berechnung der Entwicklungskoeffizienten
a; dienenden, endlichen Reihen haben bei wechselndem Vor-
zeichen Summenglieder, die wachsen bis zu einem bestimmten
Wert der Laufzahl », um nachher wieder abzunehmen. Wir
fihren eine Untersuchung durch, die derjenigen bei der Cosinus-
reihe entspricht. Man hat wieder in zwei Fillen zu unterscheiden,
1) i gerade, A=2n, 2) A ungerade, A=2n-41. Die Unter-
suchung des ersten Falles wird dann:

1. Fall: A= 2n. Der allgemeine, absolut genommene Term
der Reihe fir a;:

A
=192y v vl . ‘(Z.—l—v—2)!
al:zy =0 e e ) I

wird:
r!y! '(2)._1)(R,+w——2)!
2y —1)! (2 »)! (A —»)!

221’



— 65 —

Man setze darin v=—-—;—; dann kommt:

GG, L)
21.2__'2__'(21_.1). 2 _
(A —1)! ! {;‘__'E}!
2
oder A=2n gesetzt:
n!n! (3n—2)!
o, 4n—1)——= A.
2 En—nEn Y T (&)
Das unmittelbar nachfolgende Glied erhilt man durch die
Setzung:
A 42
_— 1 _ —
=y tiT

dann wird der allgemeine Term absolut genommen:

O AP Lo
arniatar ){ “Hﬁb
2

tir A =2n gesetzt:
22n+2 (Il i 3 1)!(H+1)' (411——-1)-(311_1)' (C)
"2n+1)!2n -+ 2) (n— 1)! )

Das unmittelbar vorangehende (lied erhalt man durch die
Setzung:

,,=£__ 1 __;}“_f_z
2 2
dann wird der allgemeine Term absolut genommen:
(l—Z)I(A—Z)! {l+}‘;2—2}7
gi-2. ) 2/ \ 2 J (95 q.
(A—3) @ —2)! ‘ {1—”‘"2}'
[

oder fiir 1= 2n gesetzt:



WO

g2n—2 o—1)!(n—1)! (4n—1) (3n—3)!

(2n —38)!(2n — 2)! o (B.)

Bildet man den Quotienten aus (A) und (B), so wird dieser:

B) 4-2—2 -(L—1)-(A—1)
@A)  2-A+2-Br—4

Der Quotient aus (C) und (A) wird:

(C) (2 (82—2)
4 4@ty
| (©)

Wie leicht zu kontrollieren 1st, der Quotient A fir alle

Werte von A=2n, n=1,2,3,4..... kleiner als eins, d. h.
fur alle Werte 4 ist [A|>|C|. In der Summenformel fir a,
ist demnach das Glied, in welchem die Laufzahl » ersetzt ist

durch v=%, grosser als alle folgenden Glieder. Der Quotient

aus (B) und (A) ist fir alle Werte von A=2n, die innerhalb
2=Z2n=16 liegen, kleiner als eins. Man erhalt fir 2 =16

(B) 4-14-15-15 175
= = 1; d. h. |A B
(A) 16 - 18 - 44 176< (A1>[B]

d. h. In der Summenformel fir a; ist das Glied, in welchem

die Laufzahl » ersetzt ist durch v:%, grosser als alle nach-

folgenden Glieder fiir alle Werte von 41 =2n, und gleichzeitig
grosser als alle vorangehenden Glieder fir alle Werte von A,
die im Intervall 2=2n =16 liegen.

A—2 1 =%é; dann wird der

Man setzt nunmehr » ==
allgemeine, absolut genommene Term:

(S, )

21—4 . 2 = . g ]

(h—5)1 (L — 4)! @4=10- { A—4,




Setze A=2n
sa s (01—2)!(n—2)! (3n — 4)!
2 enmren—g Y o ®

Der Quotient aus B; und B wird dann:

B 4-(A—4)-(A—3)°
B 3-A4+4).2—2)

Der Quotient ist kleiner als eins fiir alle Werte von A=2n,
die im Intervall 18=2n = 34 liegen. Man erhilt fur 1 =34:

_131:4-30-31-31:9610<1;d-h.|B|>_‘B1|
B 3.88-31.32 9728
fir A= 36
_31_4-32-33-33*11616
B 3.40-34-34 11560

>1; d.h |B|>|B|

Im Intervall 18 =2 n =34 1ist demnach in der Reihe fir

a; das Glied, fir welches die Laufzahl » ersetzt ist durch
-

, absolut genommen das grosste.

Setzt man v=}%i, dann wird der Quotient aus dem

Glied (B:) und dem nichstfolgendem (B;):

(Bz)__ 4-(A—6)(A—5)’
(B1) “+6)-21—4)(B1—8)

Yy =

Fiir alle Werte von 2 =2n im Intervall 36 = 2n =60 1st
das Glied das grosste, in welchem die Laufzahl » ersetzt ist
durch v:&:é:—g Eine weitergehende, diesbeziighche Unter-
suchung bietet nichts wesentlich Neues. Es geniigt, die Abhéngig-
keit der Laufzahl » des grossten Gliedes von der Grosse der
Laufzahl 2 nachgewiesen zu haben.

Man betrachtet nunmehr den zweiten Fall, wo 1 ungerade ist.

2. 1 ungerade, A=2n + 1.
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Der allgemeine absolut genommene Term aus der Reihe fiir a;:

9?¥ v! vl (21_1)(1—1—'»—2)!
2y —1)! (29)! (A —)!
wird, wenn man darin » ersetzt durch v=l -12_ 1 zZu:
(l“l"l)!(}u—l—l)! {l—l—}“—l—Z}!
gi+1, \ 2 2 .(21—1) 2
Al (A 4 1) {l_l—{-l}’
5 [
Setze A—2n - 1: |
g2n+2 4D+ 1! 4 - (3n)! (A1)
E2n4+1)! 2n+2)! n!

Das unmittelbar vorangehende Glied erhilt man durch die

Setzung
1’=)L~|—1 A—1

2 2

dann wird der allgemeine Term:
g2n n!n! 411(3n—1)_!
(2n —1)! (2 n)! (n+41)!

Das unmittelbar nachfolgende Glied erhilt man durch die

Setzung
v:__iizl__'_lzl—l—?»

(BY)

2
dann wird der allgemeine Term: |
gnts (0 + 2)! (n 4 2)! 4q 80—
2n—+3)! @n4 4! (n —1)!
Der Quotient aus (A') und (C') wird:
C'_2-(A+44)(82+4)
AY 404248
Wie man sich leicht iiberzeugt, ist dieser Quotient fiir alle
Werte von 4= 2n kleiner als eins; d. h. |A'|>|C'|.

(ch




P L) "

Der Quotient aus (B') und (A') wird:
B! 43417
A" 3.(4-2°
Dieser Quotient ist kleiner als eins fiir die Werte A =1,
A=3 und A=>5, d. h. fir diese Werte ist |A'|>|B'|. Zu-
sammenfassend kann man sagen: '
Fiir alle Werte von A =2n-+4+1, n=0,1,2,3.... oo, ist
in der Reihe zur Bestimmung der Koeffizienten a, das Glied,

L1

in welchem die Laufzahl » ersetzt ist durch » = g grosser

als alle nachfolgenden Glieder. Im Intervall 1=2n 415
ist dieses Glied gleichzeitig grosser als alle vorangehenden.

Der: Quotient aus dem Gliede B’;, in welchem » ersetzt ist
A—3

durch » = , und dem Glied B', in welchem » ersetzt ist

A— :
durch »= 5 wird nun:

15;1_4-(1—2)-@——1?
B'  1-(A4-4)-(81—2)

Dieser Quotient ist kleiner als eins bis und mit 1= 23;
d. h. das Glied B', in welchem » ersetzt ist durch v-:;L l

fir alle Werte von 2=2n 41 im Intervall 7=2n -} 1= 23,
grosser als alle vorangehenden und alle nachfolgenden Glieder.
Entsprechend gestalten sich die weiteren Untersuchungen, die
nichts wesentlich Neues bringen. Wenn wir nun die Konver-
genz der Reihe (45a.) fiir sin(x) nachweisen wollen, so gehen
wir gleich vor wie beim Konvergenzbeweis der Reihe fiir cos(x).

Wir denken uns in der Summenformel fir a, wiederum » ersetzt

durch »= }’—_2—1@, womit man jedenfalls ziemlich grosse gerade

A — 1001 wird

, 1st

Werte von 4 erreicht und entsprechend mit » =

man gfosse ungerade Werte von 1 erreichen; setzt man tberall
fir 4=2n resp. A=2n-4 1, dann wird im ersten Fall »=
= (n — 500), 1m zweiten Fall » = (n — 500).
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Dann wird der allgemeine Term a, = a, absolut genommen:

2211__1000 (Il——‘ 500)' (I] — 500)' . (411_ 1) . (31'1 = 502)!
20— 999)! (21 — 1000)! (0 4- 500)!

A—1
Nimmt man den grossten Term des Produktes J (*{)J (x),

‘x\2241
(5)

A1 1)1

also

dazu, dann 1st

(0 —500)! (0 —500)! (\ .
(2n — 1001) (2n — 1000)! -

' x\4n+1
(3n—502)! (é)

(n+500) (2n)! (2n + 1)!

2n — 1000

ay -7 (@F ) \<

Analog fir ungerades A =2n {- 1.

| i A+41 ) — 500)! (n — 500)!
a3 () T | < | oo =20 B =D

(2n—1001)! (2n — 1006)!

(8n— 501)! (}—;)4"“ 1

(m+501)! @n }1)! @n + 2)! ‘

Der Quotient wird dann:

A1
la”'lJ(X) J () n-(3n—>501)-x
o T @THMEeFDEDEn—1)

(. —1) (34— 1005) - x
L(h41)(24—1) - (24 1001)

Fiir 4 = 400 erhilt man angenihert den Wert der Quotienten
zu: 1:2,5 - 10°




Die Reihe
smx——zl a; lsl(x) J (x)
WO
} ,
v—1g2¥ vyl A+»—2)!
m=>y (=1 i@y YT

1

ist demnach absolut konvergent fiir alle endlichen Werte von x.

2. Aufstellung der Reilhe fiir tg (x).
f(x)=tg(x); f(y)=1tg(y)

A
x)—zz b 11w, wolu=2 (5@ P o) -dy

[ ¥

Auf relativ einfache Art erhilt man die einzelnen Entwick-
lungskoeffizienten k;, wenn man ausgeht von der Darstellung
von tg (y) durch die Potenzreihe. Es gilt:

1 .. 2 17 62
1 — g ), & 8 7 g
sM=y+t ¥t Ve oVt g VT
1382 .
. .. Inf
+32_52_7.9_11 e AL
giltig fir ——%<x<+—§-

Die einzelnen Koeffizienten k; bestimmen sich nun:

2 1 2 1 ., 1
ki=— [ tg(y) P(y)-dy——— {y+—.y —|—...}-—dy=2
217 217 3 y?

k2=§-iz;-f'tg(y)-lz?(y)dy=§i2—n-f{ +1y3+
+§3_2—'5"Y5+---}:%+:} dy_£
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k‘:i t ().f)()d __g_[‘l _,_l 3_|__2_. B o]
3 e gy yay PP y 3Y 3.5 y

[} [ %

b g Tt o] (e =

192} 1518
1-3-5

Daraus: bildet man die Reihe:

tg(x)=°ﬁ(x)+r 1518 3 ,

162016 ¢ 45867250 .
162016 5 I ... int
Tis5.7 t@O+ g 579 T@++.. in

oder (46.)

tg (x)=2- J(x)J(x)+—5( SHORS —1§¥8— J(x) 3 ()4

152390 3 4 44409106 ¢ 5 .
e i () J(x)J .. inf
+1.3.5_7 (x) (X)—I—1.3_5.7_9 (x)J(x) +-+..in

Um jedoch eine allgemeine Darstellung zu erhalten, geht

man aus von der Entwicklung fiir tg(y) vermittelst Bernoulli’scher
Zahlen. Man hat namlich:

)——Er 92T (2%T 1) B.-

—1

(2 r)!

giltig fir —§<y< +E

Dabei bedeutet B, die r.t* Bernoulli’sche Zahl, die sich
bestimmt aus: |
B, =(—1)"" 21)! Ca,
und far die Bestimmung der Konstanten C, gilt die Rekursions-
formel:

r

En e _' - 0, mit Ausnahme von Co=1.
n!

1



car T e
Im besonderen sind die Werte der ersten fiinf von J, Ber-
noulli berechneten B-Zahlen die folgenden:
1 1 1 1 5.

B —_— B —_— e B m——; B —_— —
' T30 " 42 T 30 " 66

Um den allgemeinen Koeffizienten k; zu bestimmen, geht
man aus von:

A
. I ! et T3 |
klz_?._.fz,, gir—i 2wt A WUdr—Dl 1
' 1
o0

217 2! » (A—0)! b

2r—1
21‘ S | - S i’ B
- 2r)!

Die allgemeine Potenz im Integranden ist y?r—1—2”; um

die einzig in Betracht kommende Potenz 1=y‘1 zu erhalten,

setzt man 2r —1-—2»=1, r=» Dann wird der Koeffizient
von y—! im Integranden zu:

i
1 29 —1 2y 2y »!y! A (}»—i*'v_].)!
“l=3r2 277 (2 —-1) — =
ly] 21 ( ) 22y » @A—)!

woraus dann
A

N, 2*V.(92v _1). vl 4 (A4»—1)!
klﬁz Sl @@y »  @A—»!

und daher b (47)

= A
tg (x) = 4 by 11(x)

wo k; durch die obige Formel bestimmt ist.
Man bildet ferner:
C Ay = (k}, - kg—l)
i .
! —1)!
kl: 5 241;'(221,_1) v! ! A (l—l—lf 1).
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A - — — 9\
) B 11’ 24v(22y_1) vivl  A—1 14»—2)! B,
A—L== 2 (2v)! (2v') v (l—v——ﬂ'
1

ap=(k; —k; 1)
_“S o7 (937 _ v v! 1-B,, {l(l-{—v—-l)!_
(21})!(21})' v (A — »)!
_(l-l)(l+v———2)!}

(A —r—1)!
(gl gy, MM
2442 @2 e B
{l(ﬂ.—l—v—l)‘ (1—1)(x+v—2)} . @i_1). B2 — 2!
(h— ) —r—1)! ( — )
A—1
T L BN e - 18
a;__1 27 1)(2v)z(2r)!(m D=y P
i

@iy DB

Der letzte Term kann ebenfalls unter das Summenzeichen
gesetzt werden. Daher wird nun:

y)
_N), 97(92Y _1). ! ! (l—{-—v 2)! '
al—>1-| FHEF"—1) e T AT (A —2)! By

e u (87 e T 5

Die gesuchte Entwicklung nimmt schliesslich die Form an:

oo ol A
tg (x) :21 21—1) -lJ(x)jl(x) *2” 9tV (927

vl (1—|—v—2)!,Bv (47a.)
29)!1(27)! (A—9)!

In der Formel (47a.) ist die sogenannte innere Summe der
~ folgende Ausdruck:



i
21} 241/.(227_1). v!yl ()‘+v_2)TBv
2»)!2»)! A—)!

Es sind A-Summanden, die alle positiv. Im Gegensatz zu
den innern Summen bei der Reihe fiir sin (x) und cos (x) ist
hier der letzte Summand, d. h. wenn 1=+v gesetzt wird, der
grosste, was bei den letzteren nicht zutrifft. Gibt man » den
Wert 4, so ist dieser letzte Summand der grosste und dann ist

offenbar
]

9t? . (92V _ 1 v! vl (l—l—v-—2)!.B i
2” ( )(212)!(21;)! TR

gt (i MRy

1

| @nren
Rl 2
Nimmt man den grossten Term des Produktes J (x)-J (x)
dazu, also:
‘x\22—1
&)
Al(A—1)!
dann wird:
A-1 A-(24--2)! a4~
X J R o ] o _—.—( ) .B
J(x)- (X)< (2 )(21) rent \2 A

Das unmittelbar nachfolgende Glied in der Reihe (47a.)
wird analog

LA+l
31+1 J(x)J(x)

4P @yr o x\P B
@2i+2)!@2+2) ( ) s
Der Quotient:

LA A41 _
]am J(x)- J(Xl 2. (284+2_1) (1 + 1) (2A—1)

0,9 (7 () (-1 @i+

< 241"‘2 (2al+2 1) .

-

‘Bi+1
B,

. x2
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Der Quotient :
| 2.(224+2__1)

(22).__1)

kann ohne grossen Fehler gleich 8 gesetzt werden, der dadurch
bedingte Fehler nimmt mit wechselndem A ab. Macht man fir
x ausserdem zur Bedingung, dass — 1= xZ +— 1, dann ist der
Quotient

8- (h+17-@1—1) Byyi _,

@21 4-1)°4° B;
fir alle Werte von A kleiner als eins womit die Konvergenz der
Reihe (47a.) fir tg (x) nachgewiesen ist.

3. Aufstellung der Reihe fiir cotg (x).

Diese Funktion ist im Nullpunkt unstetig. Sie ist definiert
fir das Gebiet eines Kreisringes, und daher hat man die all-
gemeine Formel (41.) anzuwenden, also

e A i
cotg (x) =2 ky 11 (x) + i - P (x)
1 1

. 2 :
worln kl:ﬂ' f(y)-P(y)-dy

z i
ﬁuzz.-f}W%HWMdY
17T

Die Unstetigkeit der Funktion im Nullpunkt erkennt man
iibrigens aus der Potenzreihenentwicklung, indem

‘ 1 1 1
cot, e s P e e NP . vh —
B =173 g s T T F s
1 ;
g VT inf.

oder

1 N 2r Y?r—l .Yl =
=-—3r 2 .B;: . giltig fir —
y Z @n! giltig u? R T
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Setzt man, wie aus der Bestimmungsformel fur die Ber-
noulli’schen Zahlen B; fiir r= o0 direkt hervorgeht, By = — 1,
s0 kann man die Potenzreihe auch schreiben:

o0

Zr 1 2r—3
cot. — — N1 2"-B r2°°"2.B,_ ¥y
g (y) 2 (21)* 21 ‘@r—2)!

Zur Bestimmung des allgemeinen Koeffizienten k, hat man
demnach:

9 |
k) =—— -] cotg(y)-P(y)-dy

217

fz g2v—1 ! »! .&.(l—[—v—l)!. 1
21n @y » @A—)! ¥

iir 9" —?B, _, (212_'_—%_!}.dy

1

Die einzig in Betracht fallende Potenz y—! _1 erhalt man,

. Y, .
weil die allgemeine Potenz im Integranden y2r—3-2% ist, durch
die Setzung 2r —3—2y=--1, r=»+4 1. Dann wird im

Integranden der Koeffizient von 1 AV
h 3

A
1 2v 27 —1 v! ! (Z,-J‘—y--—l)T
=y 2°7 2 By - 2
[Y] 2 (@)! (2v)7 y  (A—)!

woraus sofort

Eent@n! v (h—a)!

Wie ersichtlich, ist diese Bestimmungsformel dieselbe, wie
die oben bei der Entwicklung fir tg (x) erhaltene, bis auf den
hier fehlenden Faktor (2% — 1).
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Die Potenzreihenentwicklung fir cotg(y) enthilt nur ein
einziges Glied, das erste, das eine negative Potenz aufweist.
Man kann daher Umgang nehmen von der Bestimmung des all
gemeinen Koeffizienten u; und sich beschrinken auf die Aus-

mittelung dieses einen Koeffizienten. Die Funktion I7(y) ist
nach (35.) definiert durch die Formel:

i A A—1 A+1 A—1 A i it1
II(y)=J(y) { J(Y)—J(y)}=J(y)-J(y) —J(y)- I (y)

Die Funktion f(y) ist hier } Demnach wird nun:

9 1 A—1 I i A+1
py=—" —{J(Y)'J(Y)—J(Y)'J(Y)}'d
21 y
9 1),—1 s 9 1 A1
= J(y) - JW)dy———%-]n—AHw J(y)-dy
2iz )y 2iz J ¥y

Nach der schon ofters zitierten Formel von J. J. Schénholzer

a b “‘x’ e ra+b+4+2u-41) _

y)a+b+2y
(3

.,u!T(a—{-b-{*,u -+ 1)

wird nunmehr:

(z 244204 —1
A—1 1 _—9% i r2i+42u) _ 2)
J(Y)J(Y)—ZH ( 1) FA+pwp)-T'A+p+1) w!' T 2144

;_ A+1 -F(21+2M+2)
J ——Sc — 1. '
J()-J(y)=du (— 1 TA+utl) - TGh+u+ 2

‘y\ 2i 420 +1
()

W T@L4u+2)
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Diese Werte in die Bestimmungsformel fir y; eingesetzt,
dann wird das erste Integral:

2 e T'@i+2u)
< PP M — 1. .
' 2in :;5“ (=1 224+2u—1 . ()4 p) - u!

_ 1 ) fy“+2p—2°dy
ra+ut1)-r@itu,

' Die Laufzahlen 1 und 4 nehmen nur ganzzahlige, positive
Werte an. Aus der Art des Exponenten ist daher zu ersehen,
dass die Potenz y—' nicht auftreten kann, weshalb dieses
Cauchy’sche Integral den Wert Null hat. S;=0. Fir das
zweite Integral erhilt man:

2 F2i42ut-9)
Sp—— . — 1 ,

: 1 : | 2h420
rm+u+m-r@»+p+m.fy dy

Aus gleichen Griinden wie oben muss S; =0 sein. Nach
diesen Resultaten ist also y; =0. Nun wiirde diese weder mit
der entsprechenden Formel bei den Neumann’schen Reihen
I. Art in Analogie stehen, wie dies bei allen iibrigen, bisherigen
Entwicklung der Fall war, noch ist anzunehmen, dass die Ent-
wicklung fiir cotg (x) lauter negative Summanden enthalten kann,
wodurch sie eine sehr beschrinkte Giiltigkeit hitte. Es steht
nun gar nichts im Wege, die gesuchte Entwicklung erst mit dem
zweiten Glied zu beginnen und das erste unverdndert zu belassen.
Die Richtigkeit dieses Vorgehens wird dadurch bestitigt, dass,

wenn man das fragliche Glied 1 nach einer spater zu behandeln -
den Methode von Nielsen, in eine Neumann’sche Reihe II. Art
entwickelt, man zu der Identitit 1———1 kommt. Die Entwick-

y
lung fiir cotg (x) lautet demnach:



o A
cotg (x) = %“2}‘ k, . H(x)_——i—
1
, ¥l A Ay —1)1
N\, AL - W b il ik LI, | 1
2 2’ et >y a—a @ |
(48.)
2 3
=1 2 18 g 2818 1x—
x 3 3.5 . 5
44384 b .
——3?:3?—7"1](}{)_— okl lnf.

Man bildet ferner a; ==k; —k; _,.

N APV AT N e st LIS
= 2 2 @120 v (A—)!
___2 y! vl i.@—l—v"—l)!.B

— 41.
(21, @y v (A—w)! .

A @i— 11
en @y P

i1
kl_l__—_vy 947 . vl .l——l(ﬂ.—l—v—2)!.By
_ é—l @@y »r (@A—r+1)

R ) v'v'__ B, Z(l-—}-v—*—l)!_
n=h-k= 2 (2v)'(2v v{ 4 —)!
_O=1-0Fr—2)Y) i dld @2— D!
(A—»—1) } @»! @y

:-—2 ( )(1—{_1’ 2) B _241.
mwww A—w»!

A (21 — 1)
. . . B,
@) (2! '
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_”_2 _@i—nttr=3 g
(21' (2V)' (A—»)!

Die endgiiltige Entwicklung wird dann:

A—1

cotg (x) = ——21 @i—1)-J(x)- J(x) 21; gl

vl _(l+v—2)!'B
2»)!(2»! (A —)!

(48a.)

—

1 2 9 106 ! 1866
— 2 Wi wIm— g
-j(x)j(x) e i(x)j(x)——— .. Inf,

$2.52.7

Fir die Untersuchung der Konvergenz kann man sich aus
den Hinweis beschrinken, dass die inneren Summen fiir a, in der
Entwicklung fir tg (x) und cotg (x) tibereinstimmen bis auf den
Faktor (2°Y —1), der bei der letztern fehlt. Daraus darf man
schliessen, dass die Reihe fiir cotg (x) ebenso konvergent ist wie
die Reihe fir tg (x) fur alle Werte von — 1 =2x = 1.

Nach dem bisherigen Verfahren leiten sich auch die folgen-
den ungeraden Funktionen ab:

Mit arc sin (x) erhalt man:

| r SlnX—— X (Z‘I—v—l)l W
aresim (x) 2”; H()E @v — 12 (h—)!

—2 W+ 22 )+ 2 T+ @9)
117872 4
+i_"é—ﬁ nE)++..
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Man bildet wie frither al == (k; — k; —1); dann wird:

A—1

arc sin (x) mzl 221 —1)- J (%) - J (x) -

(49a.)

'ﬁ” v =2
2y —1°  (A—)!

Es ist evident, dass in der innern Summe

) v (A +r—2)!
@2v—1)° (A—»)!

der letzte Term der grosste ist, d. h. wenn » =1 gesetzt wird
Dann ist:
i

N, r G tr—2)! g
;V (2v—1)2 A— ! <(2)~_1)2 (21— 2)!

212 (_)_;‘2}.—1
(21—2)!. 2) |

Daher auch

al-li(lx)-}(x) <

(22—1) (2 — 1)! !
Ebenso
7%\ 2A41
L oagr | A1) (3)
- L@y \2
e T T

Der Quotient:

). A41
a;419 X)}(X)I<(x+1) (21—1)3:{‘*‘
29 (3 () @ity

Dieser Quotient ist unter der Bedingung, dass —1 <{x <
<+ 1 sei, fir alle Werte von A kleiner als eins, womit die
Konvergenz der Reihe (49a.) nachgewiesen ist.




— 83 —

Mit arc tg (x) erhialt man:

/)
o0
U Y—1 2% y!v!
t i ! ’ _1 2 .
arc tg (x) ;/ ll 13 B 1) Bl
(50.)
— 1! A
N G 1)'.11(X)
v (A —»)!
Man bildet: a; = (k; — k; _,); dann wird:
arctg (x) = ®1 22 —-1)-J(x)-J(x)- »» (—1) " .
1 ' 1 )
.22,,‘ vyl (At =2)

2v —1)- (29! (2 — »)!

Die Reihe ist absolut konvergent fir — f?x? 1.

Setzt man im besondern fir x =1, dann wird

via
arctgl — —
EL=

daher

o =4 .ia_ @i—1).31 T

(51.)

1 @Cr—1)- 29! (A—»)
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§ 5. Vergleich der Entwicklungen fiir die trigonometrischen
und zyklometrischen Funktionen nach Reihen I. und I Art.

Die Reihen I. Art lauten nach der Schrift von Kostler:

cos (x) —_~§z (—1) ey d () =T (x) -2 - iz T
0 1

- 0 2441 hiay 2)41
sin (x) =EA (- 1) 2,41 J(X) 22-2‘1 (—1)*- T (x)
0 0

tg (xii =4 ~il 214 l)L)-)j{-(lx) .

3

L 42 (g (A4 )! By
2 ( )(2v+1)-(v-+1)-(2v)! (A—»)!

0

1 o 22+1
— - —4.9%1 (21 LI (x) -
cotg (x) = _ 25( +1)-J(x)

i

: 2 421} ()‘—I_w)' ‘.v+1
= 1)@+ 1) @9 G—»

Y }.. -¥).
are sin (x) =2 2 Wikl J(X) 2 (2v 4 (2 ) <! v!.((ﬂ.iv));

(2r4-1)-(A—»)!

N Fa 4 : () Y
are tg(x):Z-zl (2A+1).]f(x) .2,, (— 1) 92 . (& 4!
0 0

v)!
=8 \l @i+ 1.9 2 v (—1) 2"(2,,_:_13(1)__,,);




Die Reihen II. Art lauten, wie sie oben hergeleitet wurden:

00 ' " A .
cos () =T 0l +2 1 2- T @IS (172

A U e e U
(29)! (22)! (A — 2)!

oo _ p
sin (x) =21 @21— l)lJ %X) - j(x) -21! (—1)” .

9% v! ! ) (A -+»— 2)!
2y — 1)1 (2)! (A — »)!

tg (x) =ia @r—1) T (x)- J(x) -

A
N), 274 _ vyl _(&+v—2)!_
2 M 1)(2 @) (A—)! Br

cotg (x) = i ","il @11 T(x) I -

A
N, 42v v! ! .(Z,-f-v—mZ)!.B
2 2y @2» @& —w

1

v

=2 S @1 1) T d S 2 Gy =)
arc sin (x) — 2 > (4-—=1)-J(x)- I (x) 2”(21;_1)2-(1_@!

o0 . i A
arc tg (x) :21 (24—1) .lJ tx)'_J(X) _21, - 1)1/~—122v_ _

- !yl (A 4r —2)!
2»—1) - (2! r(}v—if)!
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o0 i, A
n=4.21 @i—1) T I -21} (—1)y ',

.92V vl -(/1 + v — 2)!
2y —1)-(2»)! *— !

Als auffallendste Verschiedenheit in den Entwicklungskoeffi-
zienten der Reihen erster und zweiter Art erkennt man sofort

1 !
den Faktor l’é'-—g;. Er spielt bei diesen Reihen dieselbe Rolle
V).
|

wie der Faktor — bei den Entwicklungen fiir die geraden

, 2n)!
und ungeraden f(’ote)nzen, der dort geradezu als Proportionalitits-
faktor zwischen den Entwicklungskoeffizienten der Reihen erster
ur:d zweiter Art bezeichnet worden ist. Wegen dieses Faktors
v!v!
(2 v)!
und cos (x) nicht vereinfacht werden, wie dies bei den Reihen
erster Art von Kostler in so eleganter Weise getan worden ist.
Bedeutend mehr Analogie als diese zwei ersten Entwick-
lungen zeigen alle folgenden. Setzt man in den Reihen zweiter
Art statt der Laufzahl 2 die neue 1 -} 1, was ohne weiteres ge-
stattet ist, wenn die dadurch bedingte Verinderung der untern
Grenze beriicksichtigt wird; definiert man ferner die ungeraden
Funktionen in der iblichen Art, d. h. durch den Exponenten
2v 41 statt 2» — 1, setzt man also in der innern Summe die
Laufzahl » 4 1 statt », dann werden die Reihen, abgesehen von
den beiden ersten: '

kann die innere Summe bei den Entwicklungen fir sm (x)

ts(=4-B1 @i+1)- Fod T () -

A

N, 427 (47+1 vly! ' 1 (2 - 1')!.BV
2 | ( Vagen @iy gy
oo A
1 4. Jom. N, er_vvt
cotg (x) =~ 421 @2ir+1)-J(x)-J(x) ‘o"“l CBIEET
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1 (4
2y 1) (2—9)!

o i !
- arc sin (x)-——Z-EJL 22-+-1) - 3(3;).,—}’_(;() .2,, _(Zi——{—ll)g
0 0

v+1

vl (2] (A A !
2v)! 2! (A —)!

[ea) A
are tg () =2- B @2+1) 59 T S (— 17
0 0

ey DI+ @A )
@r+1D-2v42)! @— !

1!
v.v . . @
Abgesehen vom Faktor stimmen die innern Summen

(2 »)!
fir tg (x) und cotg (x) nach Reihen erster und zweiter Art iber-
ein, nur dass bei den letztern statt steht. Fir
(2v +-1) v

die arcsin (x) Entwicklung hat man Analogie bis auf den Quotienten

3 bei den letzteren, fiir arctg (x) bis auf —-—'d_—}— Sieht
2v++1 212v+1)
_ ' !
man jedoch v+ D64 Dt als Proportionalitatsfaktor an, dann
2»+2)!

hat man bei tg(x) und cotg (x) vollige Uebereinstimmung bis

~ auf den Faktor 2, bei arcsin (x) bis auf den Faktor 9 und bei

arc tg (x) vollige Uebereinstimmung.

Im grossen Ganzen kann man die Behauptung, die Carl
Neumann hinsichtlich der Reihenentwicklungen erster und zweiter
Art fir die geraden Potenzen aufgestellt und bewiesen hat, dass
nimlich die Entwicklungskoeffizienten der Reihen erster und
zweiter Art proportional seien, auch aul die andern entwickelten
Funktionen ausdehnen. Fiir die ungeraden Potenzen ist dies
frither schon nachgewiesen worden. Auch fiir die trigonometrischen
und zyklonometrischen Funktionen hat man in der Regel mit
Ausnahme der Reihen fir sin (x) und cos(x) bestitigt gefunden.



III. Abschnitt.

§ 1. Die Methode von Niels Nielsen.

Wohl die allgemeinste Methode zur Entwicklung analytischer
Funktionen nach Neumann’schen Reihen zweiter Art hat Niels
Nielsen'” in seiner Abhandlung ,Sur le produit de deux
fonctions cylindriques“ gegeben. Sie wird nicht nur vor-
ziiglich geeignet sein, die im I. und II. Abschnitt aufgestellten
Reihen zu verifizieren, sondern sie wird gleichzeitig die Moglich-
keit bieten, auch ungerade Funktionen nach Quadraten von
Bessel’'schen Funktionen zu entwickeln. Von E. Lommel'® ist
erstmals von einer solchen Moglichkeit gesprochen worden. In
der genannten Abhandlung hat er einige vereinzelte, diesbeziig-
liche Resultate veroffentlicht. In der nun zu betrachtenden
Methode gibt aber N. Nielsen zuerst einen allgemein giiltigen
Modus zur Herleitung solcher Reithen. Wir fithren die Methode
soweit notwendig an und verweisen beziglich Einzelheiten auf
die genannte Abhandlung.

Nielsen beweist daselbst den Satz:
,Une série de puissances S by x2%, qui est une fonction

paire de x, peut étre developpee en série de la forme:

2l Y wts  vig
N b, xev= (’_2‘) ) "-Eg a, J(x)-J (%) (52.)

0 0

ou u et » désignent deux constantes quelconques, les négatifs
entiers exclus. Ce développement est valable a l'intérieur du
cercle de convergence de la série de puissances et les coefficients
a, sont déterminés par la formule:



- P—m! (53.)

[

Bu+m+1, v4m+41)- I'u+»+p+4m)-2° by

Den Konstanten g und » kann man also jeden beliebigen
Wert erteilen. :

Setzt man z. B. v=—pu, dann wird die Formel (52.) zu:
2o e cHpu s—p |
¢ b, x¥¥="%¢ a: - J(x) J (x) (54.) -
-~ =

Die Formel (53.) zur Bestimmung der Koeffizienten a. wird
unter Beriicksichtigung der entsprechenden Werte der beiden
Euler’schen Integrale B und I' zu:

3

5 " . P + 1'1)
s 4ap-p- ) bo p ELLUAY G L 22 __
TN Pl
) | (55.)
— ,ug) (38— w)..o... (n®— ;42) 2 _big
. T u .
= sin (7r ) bo )

In Formel (54.) setze man ¢ =20, dann wird:

N b x5 =Ne & [Ff (56
0 0 :

-2p wird fir =0 zu:

Der Bruch

sin (y 7T)

lim 47 o, lim 1
1 ==0gin (u 7




lim - 1
p=0 (un) | (un)*
1 3! T 5! T
= 2

her wi o BN (p+n)!
Daher wird auch a,= 2p - lmp——l—Zn PNy :

212.92.8%.42. . n?. 2. b,

Setzt man darin 4 statt p und » statt n, so wird

A
v '! ! l(l‘*"“”)!
=2by {-2 %y 227 1 by
B =2bo 2” 20! A—n! (G +9)

A
19! 1
221} 22y+1. yivi l(l—-l—v 1).'b-y
. 29! (G- )

(57.)

Wir notieren diese Resultate in folgendem Satz:

o0 5
,Eine Potenzreihe 21 b; x24, die eine gerade Funk-
0

tion von x 1st, kann i1n eine Reihe von der Form:

ix a [f @) (58.)

entwickelt werden. Diese Entwicklung 1st giltig im
Innern des Konvergenzkreises der Potenzreihe und die
Koeffizienten a; bestimmen sich durch die Formel:

A A
. 2y +1 r! ! ' .(l—l—v-———l)!_
aj; = OEv 2 —-——(2 )1 2 Ty by (59.)

ap = by

Dabei sind die by die Koeffizienten von x2* in der Potenz-
reihenentwicklung.”
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Ein Vergleich mit der in Formel (10.) gegebenen Definition
fir die Funktion ©* (y) zeigt eine vollige Uebereinstimmung bis
auf den Faktor 2b,. Aber gerade dieser Faktor tritt bei jeder
Bestimmung der dortigen Entwicklungskoeffizienten k; jeweilen
zu der Definitionsformel von £* (y), sodass man Gleichheit der
Definitionsformeln der Entwicklungskoeffizienten k; dort und a;
hier hat. Streng genommen ist also diese neuere Methode von
Nielsen nicht verschieden von der élteren von C. Neumann ge-
gebenen Methode. Wir glaubten jedoch trotzdem von einer
neuen Methode sprechen zu diirfen, weil sie viel allgemeiner ist
und infolgedessen auch eine bedeutend vielseitigere Anwendung
erwarten liasst. Nach dieser von vorneherein festgestellten Ueber-
einstimmung konnen wir uns auf die Bestimmung des allgemeinen
Koeffizienten a, beschrinken.

1. Die geraden Potenzen von x.

Es sel
bg==1; bi=bs=.z::s =bh; = =0
Dann 1ist
o0
21 b, x22 =1
‘ 0
Daher 1st

1= o [f

i
f 5 — 1)
al:z” 221’4—1.&.}‘.(]‘—#” 1).by; a():bo
. (2! (A—)!
alle by mit Ausnahme von b, :-_1 sind null. In der Formel fiir
a; tritt daher immer nur der erste Summand auf, sodass man
hat ap = 1; a; =2. Dann erhilt man

o0

1=l 2% U ol (60)

1
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Der Vollstindigkeit halber sei hier noch an eine dritte
Methode zur Entwicklung von 1 in die nach Quadraten der
Bessel’schen Funktionen fortschreitende Reihe erinnert, die von
E. Lommel'® gegeben ist und daselbst nachgeschlagen werden
kann. Das Resultat ist aber, wie schon oben erwihnt wurde,
erstmals von Hansen® gegeben worden. )

Indem wir in der Anwendung der Methode von Nielsen
weiterfahren, wollen wir sie nur noch auf die allgemeine gerade
Potenz ausdehnen. Es sei zu dem Ende

b0=b1-—_—b2:...:bn__1:0; bn:].;
bot1 =bnpa=....=h; =0.

O
E:l b; x?4 = x2®
- .

oo ¢l )
xgnz\jl az [J(x)]

O

e 92V +1 v'v’ .}.(lﬁ—v—l)!-b
4 2 @) A —)!

Dann 1ist

14

In dieser Summe verschwinden jeweilen alle einzelnen
Summanden, mit Ausnahme von dem, indem v = n ist.
Dieser wird

2n-41 n!n! l.(l—i—n —_ 1)1
(2 n)! (A — n)!

aj =2

Daher wird nun

x2n — 92n 11]'1] . (}‘—l—n 4 - i
2n _ 92n+ 2! 2 (l—-n)' [J(x)] (61.)

2. Die Reihen fiir cos (x) uﬁd cof (x).

cos () = Vi (— 1 - X _24 by - ¥, wo by — (— 1)} L
, 0

@n @t



Daher wird nun:

€os (X) mi). a; - [Jl (x)]g;._

A
DR e !
3»122” g1 vty Ay 1)"'0,,
- (2)! (A —2»)!

l 5
___,zv (— 1) - 277+ v!y! 1.()4_'_,,__1)!
- (2 2)! (2 2)! (A —»)!

30=b0=1.

Daher wird

cos (x) == [j) (x)]2~|—2}u 22 - [Jl1 (x)]2 :

; (62)

.2’, (— 1y - 227 v!v! l'(}«—|—v-—1)!
(2! (2y)! (A —»)!

0

o0 X2A 58] 1
=N\ =N b; - x2% wo b; =
cof (x) Z 20 2 1 X244 wo b, 2n!

Die Herleitung ist dieselbe wie oben abgesehen vom Faktor
(— 1)*; daher wird

0 2 e LI,
cof (1) = [J (0] + > 24- [T )]
) : (63)

N), o2 vl ! (Atr—1)!
2 (2)! (@ »)! (4—)!

0

Ein Vergleich mit den entsprechenden im ersten Abschnitt
aufgestellten Formeln zeigt die vollige Uebereinstimmung der
Entwicklungen. ‘
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§ 2. Methode fiir ungerade Funktionen.
Man setzt in der Formel (54.):

o0 (o =]
x\ - & -v tts v+g
¢ b, x2§:(—> S s, I® T )
=0l
1 — p statt ». Dann wird

Lo +u g4+1—

e b, x2€+1~Sg a; - d (x) J (x)

0

a = ”#(l—ﬂ")b

sin (u 7r)

— p[l—u in 2 %192
a =24+ 1)- smw){ 1 2bo+2 (1P — ) (2
i)
2 2 2 2 2
— @) (=) ... (0" — )(2 1)

Setzt man hier =0, dann wird lim _n‘u =1, daher
=0 gin 7 [ \

(1= )2, )

ao = by

Sk
3«1:(21+1){2b0 +2n22n+1 n!n! n4}1 _(l—l—n)!}
1

2n)! 2n+1 (A — n)!

Setzt man die Laufzahl » statt n, dann wird

oy41 Vil (»+1) ) (A 4! _
a‘—g 2 2»)! @r+1) @A1) oy B e =bo

Wir notieren diese Resultate in folgendem Satz:

,Eine Potenzreihe, El b, x22+1, welche eine unge-

rade Funktion von x 1st, kann in eine Reihe von der Form
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i A+1

il a; - J(x)-J(x) (64.)
0

entwickelt werden,‘ welche giiltig ist im Innern des
Konvergenzkreises der Potenzreihe. Die Koeffizienten
a; bestimmen sich durch die Formel

A
1yt 1 () |
a; = g1l v 1o, +b,; ag=h, (65.)
: 2” @t 2, 1100 T gy B =t

Die b, sind darin die Entwicklungskoeffizienten der
Potenzreihe.”

Um nun aber Uebereinstimmung mit den im II. Abschnitt
hergeleiteten Entwicklungen fiir die ungeraden Funktionen zu
- erhalten, beachte man, dass in der allgemeinen Summenformel

i=1 i :
J(x)J (x) das Produkt der Bessel’schen Funktionen ist und
i

nicht wie hier J (x) -ljl(x). Das ist offenbar gleichbedeutend
damit, dass der Entwicklungkoeffizient a; dort identisch ist mit
dem Koeffizienten a;_; hier. Man ersetze nun in (64.) und (65.)
4 durch 4 — 1 und nenne den neuen Entwicklungskoeffizienten a;.
Ferner hat man frither iberall die ungeraden Funktionen in
der allgemeinen Darstellung durch die Potenz (2 » — 1) charak-
terisiert und nicht wie oben durch die Potenz (2» + 1). Man
ersetze daher (»-4 1) durch (»—1). Dann formuliert man den
Satz (64.) wie folgt:

- )
,Eine Potenzreihe, El b;—1 x?#~1 welche eine un-
1

gerade Funktion von x ist, kann in eine Reihe ent-
wickelt werden von der Form

s K], i
21 2, J (x) - J (x) (66.)

Diese ist giiltig im Innern des Konvergenzkreises der
Potenzrethe und die Koeffizienten a; bestimmen sich
durch die Formel:
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21;1/ v! A4+»—2)!
= ; 21L—1)- cby_1; ap =1 67.
a4 = @) ) ( — )" v—1; Qo % (67.)

Die b, _; sind darin die Entwicklungskoeffizienten der
Potenzreihe.

Im II. Abschnitt hat man von Fall zu Fall den Entwick-
lungskoeffizienten a, bestimmt nach der Formel a; = (k, —k, _,).
Vergleicht man eine der daselbst gefundenen Formeln fir a;
mit (67.), so erkennt man die véllige Uebereinstimmung derselben
bis auf den Faktor 2b, _;, der dort schon dabei ist, d. h. in der
der betreffenden Funktion charakteristischen Form und hier erst
noch durch eben diese Form ersetzt werden muss.

Es seien auch hier einige der schon oben hergeleiteten
Entwicklungen nach diesem abgekiirzten Verfahren bestimmt,

1. Die ungeraden Potenzen von x.

Es sei bp=1, by =by=...=b;=...=0;
~-dann 1ist |
22 b,m}x'”l = X.
= —
—\) T a, =Sy e2v 179, Gt
x 2 300 )5 2= > @ AT

1

a,=2-(241—1).

x=2 .iz, @2 —1)'7 (%7 (68.)

Es sei fir die allgemeine, ungerade Potenz:
Ybi”“‘bz b3 . -===bn__1:‘0 bnzl, bn+1=...b;_:...:O;
/23 n; also ist ‘

i—1 ’

o0
. 21 b, x?*1=x""1; xgn*‘ -—Sl a; - J () J(x);
1 ~ |



! —_— !
al__s 92V vyl @i— 1)(},—}—1! 2).bv

=y (i—)!
a __anﬂ( )(l+n_2)!
T e (1 — n)!
woraus nunmehr:
2n—-1:n!n! 2noo.. (,1_|_n 2)1.
* (2n)! 2 2" (dd— (t—n)! J(X)J(x) (69.)

2. Die trigonometrischen Funktionen.

Man hat den sin(x) definiert durch die Potenzreihe

2} 11
— _qp-r X _ 2]—1 [==1)
sin (x) Sl( 1) 2i—1)! l blx b, = @i_1)!
Daraus bestimmt sich nun:
sin (x) =El ajitx) j(x);
21;1’1/ _().—f-v—'Z)!
%"252 (M) D=
. . ) (Y1 r! ! (2 -F»—2)!
%"25( Y @%—nummz —1 (L —»)!
und daher
EN
sm@._:SAm/—_n J g:S - @%wU!@ﬂ!
4y —2)!
(—)! (70,

Fir tg(x) hat man mit Beniitzung von Bernoulli’schen
Zahlen folgende Potenzreihe:

0
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o0 ' 211 OO
_ ), 92i(021 X Y B 1
tg(x)_—Zl i 2%4(9 1) B, Y 21 A by -x

B,
@)

wo b, =22%%(2¢2—1).
Daher

£ i—1 i
tg (x) =21 a; J (x) J (x)
1

N gty M gp g G =2ty
a’**zm (2" —1 @0t @t ! VT

woraus dann
)

tg (x) ziz 241—1) -Ajtx) 5 (X)Ev 427 (2°Y —-1)

1

v! ! _(1—}—-1}—-2)!.B (71.)
@) 29! (h—2)! ?

Fur cotg (x) hat man die Potenzreihe:

Ze Fa—1
cotg (x) = 1-—21 gt > P
X - 2 7)!

Es wird dann

29 cas |
cotg (x) 1 N a; - J (x)J (x)
1
A : )
g ! b4 v — 2)!
- 27" gy . B,
“ 2” e @ TR
und daher
. 1 O_.%, A1 A —)_1 2y
cotg (x) _;-2/, 21 -1)-J (X)J(X)Zv 4
1 1
vivl (v —2)! g (72.)

14

29! 29! (4 —)!
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Den arcsin (x) hat man definiert durch:

. 24 —2)! 22—
arc sin (x) :2}, 5T .
- 2° A—-—DI'A—1! 22 —1

Dann wird

i—1

arc sin (x) —21 a; - J(X)jj( )

—2.N, ¥ 911 Gtr—2
=2 2 2y — 1) (84— (A —»)!

und folglich

arc sin x)—2 22 1—1 x)J(X)

2 (73.)
'2” v (A+» — 2)!
- (2 y—1Y (A —)!
Fiar arctg (x) hat man
}&2},—-1
t — 8 (—1)y
are tg (x 2 =0 o
Dann wird sofort
i
arc tg (x) _2) @1—1)-T(x) 7 (x)-
L (74.)

U p! ! _(,24_,,_2)!
2 L= 2r—1)-2»! @A—»)!
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§ 3. Methode zur Entwicklung ungerader Funktiohen in
Reihen, die nach Quadraten Bessel’scher Funktionen fort-
schreiten, deren Parameter gemischte Zahlen sind.

Man setzt in Formel (52.)

S e (X\ErD A
29‘ bs x°¢ = (‘2‘) ZQ ac - J (x) J (x)
0 0

fir y=1— . Dann wird

o9 2 otp stl-p
Eg bg X2§+1=.- QagJ(X)J(X)
0 0
oy e FOL— 1)
sin (u 7r)

sin (u 7z 1

a;=@21+41). 24 )'{1“‘“.21004-21; (17— ™) (F —

(24! _22v+1_b1’[
1—)! (29! (2v4-1) l

g N A ;
Darin setze man weiter y=—2—; dann wird:

o0 o0 A-f1/s
21 b, x21+1:21 a; - | ) )
0 0

: (i) a1
e +2"(z—v>z (;;)r @v+1) (1 B Z)

(22~—— 1) (32* 1) .. .(v'? — 1) gEefd by
4 4 4

—.112)....(vz—luz)-(v—}—l—u)-(

a;_:(21+1)’-2‘-.

. ,
= 22. ]_ --7—5. Vv (,1_}-—1’)! :
(2 2)! (2 »)! l
T & ED
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i
L T N\, 2! (24!
= (21+41) = bo + IE 2

ol (A—)!

A
@iy TN, @0 (4
=@i+1) 2 Zv 2Vl vl (A—w)! b

Wir fassen diese Resultate in folgenden Satz zusammen:

o0
,Hine Potenzreihe 2& b; x24+1 die eine ungerade
' 0

Funktion von x ist, kann in eine Reihe von der Form:

o0 AYs g
N [ I @)

0

entwickelt werden, die giiltig ist fiir denselben Bereich,
fir den die Potenzreihe definiert ist. Die Entwick-
lungskoeffizienten a; bestimmen sich einschliesslich a,
aus der Formel:

i
_ N, 20 G9!
a=@L+1)7 20 & peih b, (75a.)

Die b, sind darin die Entwicklungskoeffizienten der

Potenzreihe“.
At
Darin ist J (x) nach der von J. H. Graf?® gegebenen Formel

deﬁniert durch
At Y2 /79 & (A 4-»)! 1 \» [ 7T
L —_— A41w=p)s —
T =\ 7= 2” v!(l—v)!(QX) cos {1 =275 X}
und darin 1st
_— {(z+1-—v)7§‘—x}=isin(x), fir 2 4+1—»=1 (mod 4)
oder 24+ 1—»=23 (mod 4)

=+ cos (x), fuir A4 1 —»=0 (mod 4)
oder 44+ 1—»=2 (mod 4)
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In Anwendung dieses Verfahrens und zur weiteren Erlauterung
der Methode seien im folgenden einige ungerade Funktionen
entwickelt.

1. Reihen fiir die ungeraden Potenzen.

Man setze bo—=1; b, =0 2540

Dann 1st 21 b; X2t =x
J+‘/2
X——EA a; - J(x)
25! ()
D e I
k12
(24-+1) =
B pmee
"o
Daher wird:
‘ 7T i A =15 2
x=5[J(x ?z @it+1-[Jm]  (76)

el + S +

o 2 o 76a.)
+2 0 ool + T ool +4- o

In dieser letzteren Darstellung stimmt die Formel genau
iiberein mit der von E. Lommel® auf ganz anderem Weg her-
geleiteten Entwicklung.

Um noch die Formel fir die allgemeine ungerade Potenz
herzuleiten, setzt man b,=1 b; =0 234=n. Dann ist

o0
2:1 by x24+1 = x2n+1
0



o0 1_4_1/2
X201 =" az [ J(X)]2
0

L (49!
ay = (214 1) 2 22”:})' Gt

! (A—w)!
o 20! (4t
a, = 7T (21’{'1) 22n+1 1’!11! (A—Il)'
Dann wird

bl . 22n(;‘in) >l @1+1)- (lfn))" [Hl'(’x)]?
7.
xintl  @n)! N, @44 1)- lJrn)’[H'zx)z "

s Sianen L

2. Reihen fiir die trigonometrischen Funktionen.

Man definiert hier sin (x) durch

a 2441
sin (x) =21 (— 1) wx—v__Z; b, x24+1;

- 24+ 1)! -
2
WO b;,-_—-:———(— 1)
b i 2i4+ 1)!
ann wir
O l+l/9
sin(x)== 34 az| J (x)]2
0
l g
(9 N\ 22! @A+ )
* (2 +1)AOJV 22V 11 (A —»)! b
(2)! (A »)!

A
i A 2 vV {— 3
7z ( l—l—l)g (=1 221/+1y!,,!(2,,+ ! (A—»)!

a 7T
0 — —
2
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Damit erhilt man:

o0 ’ l‘i‘l/ﬂ A - L v . :
o= Shn 0T Sl
0 0 ;

A % T
sin () = [T’ +27 [T +52 - [Jol' +
74 (L2 1937
+671-7v[J(X)] —I—%G[J( )] 4.
78)
WO el 42 el +f3[J(x)] + 1)
g 9 %y
Jr-(—Z-:[J( ) +%[J( )| + 4. .inf
giltig fir — oo < x <7+ o0
Analog leitet man ab mit
:oo Mg+t 1) B, x24+1 7 7
tg (x) 214 (4 1) B, airE 3~ <3
tg (X) & . s g
== —ZA @i+1 [T -
79.
5, @r—n oy g )
2 oD@y 1) (h—)! Bagx
mit cotg (x) = %{“2}“ 471 . B 4, (2};2:12)1 —alx<+m
cotg(x) 1 N Atz oo
e Zx(mn-[;r(x)]-
2 (80.)
S Byyr (4!
v! (v 4 1)! 2'»-—{—1) (A—»)!
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o0

N, _@H | =
4 204 2A4-1)

mit arc sin (x) =

+ 'f2

}a @it1-[IE] -

arc sm (x)

it

1 ’%y 1 [ @) POt
2 % 2v+1[4yv!v!] (A—)!

%2141

O
mit arc tg (x) = »v (—1)*

(8L

-1=2xZ2 4+ 1

a“’—tgm—-Ez et i)

) (82.)

1N, gy, L @)l G
2( 1)

2 201 4" »19! (A—)!

Als Konvergenzbereich hat man nach dem Nielsen’schen Satz.
Jewcilen den Konvergenzbereich der entsprechenden Potenzreihen-
entwicklung.

§ 4 Entwicklung einer Reihe mit negativen Potenzen.

Man ersetzt nach dem Vorgehen von N. Nielsen?®' in der
Formel:

( ):“-l—v , ‘

- oo , g p+i o v+l
Flu+1)-Tr+1) o (u +») A

u durch u—n; ferner » durch — u—n, wobei n eine ganze,

positive Zahl sein soll. Die Formel wird dann nach entsprechender-
Reduktion:
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1 (smf:uc) 2 nAl) =4
x F(n—l—y I'(n — w) 2( ) ( )

n—H—’: n—)—: A—n+4t: j—n—1s
70 Te ST m" T

(84.)

Darin darf u jeden beliebigen Wert annehmen mit Aus-

2 §

nahme der negativen ganzen Zahlen. Setzt man in (87.) ,u=1
dann erhilt man weiter:
2 9—2n n—1 o '
}: 715, 2 -Sl(—l)l-(n A)_‘ 2n)!
x*n -+ Ys) - I'(n— 1) —O-I n Al (2n—2)!
{n—i-{-l/z n-)—'/s i-n4'fy i—n—l/g} (85)
J(x) - J(x)—J(x) J(x)
Nun ist
1 3 5 1
-t Yoy==.>.2 o (n=2) T ()=
=g S g (=) TR
1-2.83-4....2n—1)-2n —
- n!2*" Vs
LRI
n!2® v
1 3 5 f 3\ 1
I'n—1tp)==.—-— ....(n——)-(n———)-l“ —
(n — */2) 5 55 "y 5 ('/2)
_1-2-3-4. (2n—3)-(2n— 2) \/—
(1’1—1)’ 2311—2
_ (2n—2)! -
(=112 i
Daraus wird
.27 - AR PR 19t (n— )17
I'(n+ Ye)- T'(n — Ys) 2n)! (2n— 2)! s B
n!m—1! e 2" 'nin!

T 2n)!2n - 2! = gmrea Cr T
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Mit Beriicksichtigung dieser Reduktionen wird die Formel (85.)

1 2" 'n!n! g
<5 (2n)! (2n)! @R—Tjew: X4 (~ 1)

n—l (QH)! - ]+/2 n—Ji— 1/2 /—n+12/ i
n M2n—A I JE—J(x - J(x)}

n—1

__ (o “(“ ];1)’_(,112)—! Dt 21 (—1)*.
(86.)
(n—4)

{n—l+1/2 n—)—1/s J—ntlfp i,_-n—lfg}

MEn—N] J®)-JTE) —JT® -JE

Man hat in der Formel (86.) vorerst eine Entwicklung fiir
die negativen geraden Potenzen. Die Reihe ist zum wesentlichen
Unterschied gegeniiber der Reihe fir positive gerade Potenzen
erstmals eine. endliche Reithe und ferner eine nach Produkten
der Bessel’schen Funktion fortschreitende Reihe. Zir Priifung
auf ihre Richtigkeit fuhrt man den folgenden Identititsnach-
~ weis durch:

Die Zahl n kann jede beliebige, ganze, positive Zahl sein,
also auch n=1. Dann reduziert sich die Formel (86.) zu:

N

1 J(x)J(x LK

2

X

Nun ist nach J. H. Graf?®
mf]l(/;i) —\/ 2 (m+ A (iy cos {(m ft—t ]
7ZTX AV (m — A)! \2x, 2 |

T (@ 4!
)= (1" \/nx 2 M(m—A!

. (iy sin {(m I A)g—x}

/
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in Sonderheit

2 9 : s
J(x)=\/ﬂ2-X-sm X); l{x \/— cos(x)

Demnach bestimmen sich:

S/ Z 3 (Al 2

=\/;£-{-—'cos(x) +—}1;sinx}

/s 2

J(x) = — "SInx
/2 e 2 [sin?x .
J(x)-J(x)zﬁx-l - —smx-cosx}

FomES G = o)

—1/y — B/ i
J (x)-J (x) = ﬂi{ : ‘LOSZ X | sinx cos x }
2 =2 —3/ Y
{ﬂﬂﬂﬂ—JmJ@ﬁ_l{E@mx+m§gtzi
X | X J x2
q- e. d.

Fir die ungeraden negativen Potenzen erhilt man,
von derselben Formel ausgehend:

7T 22——211—1
1 sin u 7z .

X2t Tadp)- Ta—p+1)
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.2“_1)1(211—214_1)_ @n+4+1!
' @n41) 21 (2n41— 1)

!lu 4n—i —p4n—3A41 Y—nti—1 --u—n+)}

J® I +Ix  IE

Setzt man hierin wieder y=%, dann wird:

0

.1 g D
2t Tt s) - L)
.ﬁl(a-l)l(zn_”Jrl)@“)! e
- AM@n— i 4+1) |

unter analogen Reduktionen wie oben, erhilt man die endgiiltige
Formel:

1 2" 'n!n!
X+l (@2n)!
= A —21 + 1) n—A+4+/y o —n4- l—-‘/: (87)
2 (=1 l'(2n———l+1)‘ [ T —1 | J(x)]

In Formel (87.) hat man eine Entwicklung fiir die ungeraden
negativen Potenzen, die nach Quadraten Bessel’scher Funktionen
fortschreitet. Auch hier ist Bedingung, dass n nur ganzzahlige,
positive Werte annehmen kann. Setzt man n==0, so hat man
wieder den Identitiatsnachweis fir die Formel (87.) indem

p..n.

Lol (Feof +[If |
g{ﬁqm?x—}—wxcos?x}

Nachdem nun die Summenformeln fir die geraden und
ungeraden Potenzen aufgestellt sind, ist es nicht schwierig, aus
ihnen die Entwicklungen fiir Potenzreihen, die entweder nach
negativen geraden oder negativen ungeraden Potenzen des Argu-
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mentes fortschreiten, anfzustellen. Durch Addition der Produkte
Bessel’scher Funktionen mit jeweilen gleichen Parametern erhilt
man, wenn die zu entwickelnde, gerade Funktion die Potenz-
reihe hat:

OO
_——El b, x—2
1

far diese].be eine nach Produkten von Bessel’schen Funktionen
fortschreitende Reihe von der Form:

Cac 2l ntl/z n=1/z  —aitlfs —n-1fp
En by X~ 28 == -En an{ Jx)JIE—JIx Jx| 63

1

N gy geatri—e @FHA—=D! @i—1)!
a“_E” e @n+2i—2)!

. SR, 3
A@n-a!

Die Reihe (88.) ist fiir denselben Bereich definiert, fiir den die
Potenzreihe definiert ist.

Ganz analog erhialt man fur Potenzreihen, die nach unge-
raden negativen Potenzen des Argumentes fortschreiten, eine
Entwicklung von der Form:

o0 © 00 n+1/3 —n—1/y ,
N by i N e | [+ TG ] |

0 y

_N) L gmtm—1(@ D! (@A ) (89.)
a“—; (=12 2n -4 2 1)!
(2n-f-1)

‘ 'bn ]
M@n+ 2141

definiert fir denselben Bereich wie die urspriingliche Potenzreihe.
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