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II. Teil.

Untersuchung der Fläche in der Parameter-Darstellung.

I. Kapitel.

Parameterdarstellung der Fläche. Die Kurve
der parabolischen Punkte.

§ 8. Die Parameterdarstellung.

Am einfachsten werden die Ausdrücke für die
Parameterdarstellung der Fläche, wenn man die Krümmungslinien als
Parameterkurven einführt und sich auf die in § 7 gefundenen
Eigenschaften derselben stützt.

Eine durch die z-Achse gelegte
Ebene, die mit der xz-Ebene den

Winkel u bildet, schneidet die Fläche
in einem Meridiankreis vom Radius

r und vom Mittelpunkt K (Fig. 5),
der auf der Kurve

r2 a2cos2u 4- b2sin2u

(nach Gl. II) liegt, und die Kugel
vom Mittelpunkt M auf der z-Achse

und vom Radius v (die auf der Fläche eine Krümmungslinie der
zweiten Schar ausschneidet) in einem Kreis. Beide Kreise
schneiden sich nach § 7 orthogonal in einem Punkte P der
Fläche. Es ist somit

A BPM ~ A APK
Hieraus ergibt sich

AK : r BM : v

V r2 — z2 : r v — z : v

2r2v
z

r2 4- v2

Liegt A zwischen 0 und K, so folgt:

Fig. 5.

AO OK — KA r — » /-a _
4r4v4,r2

2rv2

r24-v2

V"* (r2 + v2)2
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Aber auch wenn A ausserhalb OK liegt, gilt dasselbe. Es wird
also

2rv2
2

cosu
r24 v

2rv2
y sm u XVI.

r2 4- v2

2r2v

r24-v2
wobei r= ya2cos2u 4- b2sin2u.

Dies sind die Koordinaten eines Flächenpunktes in der
Parameterdarstellung. Die Parameterlinien u const und v const
sind die erste und zweite Schar von Krümmungslinien; u ist der
Winkel der Meridianebene gegen die xz-Ebene, v der Radius
der veränderlichen Kugel, die zu der zweiten Schar von
Krümmungslinien gehört.

Um die Fundamentalgrössen aufzustellen, ist es vorteilhaft,
diese Gleichungen auf die Form

vz vz 2r2v
x — cosu y — smu z Xvla.

r r r2 4- v2

zu bringen. Wir berechnen zunächst:
dz 4c2v3

sin u cosu
da (r2 4- v2)2

dr c2
— smu cosu
du r

wobei c2 a2 — b2. Ferner:
dx v | / dz\ dr)
— =— { r — zsinu 4- cosu • — — zcosu 1

du r2 1 \ du/ du)

dy v i [ dz\ dr)
—— — {r( zcosu-j-smu • - —zsinu-—\,du r2 { \ du/ du)

sodass

E sf^V=^(r2z24r2^y+Z2^V-2rzil^
\du/ r* l \du/ \du/ du du

'dz''2

(1)

HtJ
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Setzt man die Werte (1) ein und vereinfacht, so ergibt sich
4v4''t2

E (2)
r2(r2+v2)2

wo t die Bedeutung (X) hat:

Weiter ist:

t \/a4cos2u 4" b4sin2u.

dz_2r2(r2 —v2)
dv~~ (r24-v2)2
dx éi^v
d v (r2 4- v2)2

dy 4r3v
dv"- (r2 + v2)2

und hieraus findet man:

cosu

smu

s/dxdx\_dz 2r2 8 r3 Vs dr
\d u d v/ d u r2 4- v2 (r2 + v2)3 d u

oder ausgerechnet
F 0.

Schliesslich wird

G-S(dx)2- 4r4

(3)

(4)
\d v/ (r2 4-v2)2

und

A-+\/EG F2-.41'' ,-t.(r2+v')2
Die Richtungscosinuse der Flächennormalen ergeben sich

am einfachsten aus den Formeln VIII, in denen

>2 „2 _2 _2 4 r2 V2R=x|yfz r2 -4-v2

V/aX24-b4y2=214-.t
zu setzen ist. Dann wird

cos u 2 r2 v2 — a2 (r2 4 v2)
cos a •

t r24-v2
sin u 2 r2 v2 — b2 (r2 + v2) TrTTTcos ß ' Vin a.

t r2 4- v2

2r3v
cos y' t (r2 + v2)
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sodass die Gleichung der Tangentialebene die Form annimmt:

X {2 r2 v2 — a2 (r2 -f v2)} cos u 4- Y J2 r2 v2 — b2 (r2 4- v2)} sin u

4-Z-2r3v 2r3v2. (5)

Da wir die Krümmungslinien als Parameterkurven eingeführt

haben, so muss die Fundamentalgrösse 2. Ordnung:

D' — S (cosa ¦
d2x \ o (6)

V d u d v/ W

sein und es gelten dann die Formeln von Rodrigues, von denen

wir nur die beiden

d cos y _
D ô z d cos y__ D" d z

du
~~

E du dv
~~

G dv

herausgreifen, weil sie sich zur Berechnung der beiden Fundamen-
talgrössen 2. Ordnung:

D sfcos«-— I)" s(coBa-—)
V du2/ V dv2/

am besten eignen. Aus (Villa) folgt nämlich durch Differentiation:

d cos y 2 c2 r v
5- sm u cos u a2 b2 (r2 4- v2 — 2 t2 vJ

du t3(r24-v2)2 ivi; i

d cos y 2 r3 r2 — v2

d v t (r2 4- v2)2

Führt man diese Werte in den Formeln von Rodrigues
ein, so wird

D ^—9 {212 v2 — a2 b2 (r2 + v2)}
tr(r2+v2)2' t

4rBD"= —
t(r2_|_v2)

Wir stellen hier die gefundenen fundamentalen Grössen

zusammen :
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2rv2 2rv2 2 r2 v
¦ cos u y sm u

J.2 _j_ v2 J.2 _|_ v2 J.2 _|_ v2

4v4t2 2v2 i sE= D — ô 2t2v2— a2b'(r24-v2)
r2(r24-v2)2 rt(r24-v2)2t ~ "

F 0 D' 0

G= 4H
„ D"=- 4r5

(r24-v2)2 t(r24-v2)2
4rv2t

A^(r2+v2)2
xvn.

A=\/DB"--D'2^ 2r2 \ \/2{2t2v2-a2b2(r24-v2)}
t (r2 4"v

ds2=Edu24 2Fdudv4-Gdv3=
4 / v4 t2

—j Xdu2 4-r4dv^
(r24-v2)2\ r2

'

1-2 — a2 cos2 u .|_ lj2 gjn2 u
t2 a4 cos2 u-f b4 sin2 u /

Für die Hauptkrümmungsradien bestehen, weil F 0 und
D' 0, die Formeln

_E __G_<
Pi— D ?2—"D„--

Setzt man für E, D, G, D" ihre Werte nach (XVII), so wird

^JV2
Ql ~~

r | 2 t2 v2 — a2 b2 (r2 + v2)}
tl \ r )\ XVIn

r
wie aus (XI) folgt, d.h.* der eine Hauptkrümmungsradius
{q2) ist immer gleich dem Radius der erzeugenden Kugel.1)

Für die höchsten und tiefsten Punkte der Fläche (x + a,

y 0, z + a) ist u 0 und v + a, somit

') Das Resultat gilt allgemein für Enveloppenflächen von Kugeln.
Vergi. A. Enneper: Bemerkungen über die Enveloppe einer Kugelfläehe.
Nachr. d. kgl. Ges. d. Wissenschaften und d. G. A. Univ. Göttingen 1873,

p. 219.
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c2

Für die Sattelpunkte (x 0, y ±b, z + b) wird u 90°r
v + b, und

di"-~i ft — b-
C2

Das negative Vorzeichen gibt an, dass die Normale nach
der Seite der Fläche hin gerichtet ist, auf der der Mittelpunkt
liegt.

Das Krümmungsmass
1 DD"-D'2K wird

?i Q2 E G — F2

K —— (2t2v2-a2b2(r24-v2)} XIX.
2 t4 v2

und die mittlere Krümmung

EDX&D-2FD' _
1 1

"" _ A2
~~

9i 92

berechnet sich zu

H —{4t2v2 —a2b2(r24-v2)}. XX.
2t3v2

'

§ 9. Die Kurve der parabolischen Punkte.

Die zyklische Fläche ist in irgend einem Punkte elliptisch
oder hyperbolisch gekrümmt, je nachdem K ^ 0, d. h. (nach XIX)
je nachdem

2t2v2 *•$ a2b2(r2 4- v2)

^ abr
V<\/2t2 — a2b2'

Sie ist in den Punkten parabolisch gekrümmt, in denen k 0,
also

T= abr_
\/2t2— a2b2

Setzt man diesen Wert in der Parameterdarstellung (XVI) der
Fläche ein, so erhält man die Kurve der parabolischen
Punkte in der Parameterdarstellung:
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a2b2r
x cosu

t2

a2b2r
y ——- sinu XXLJ

t2

z ^\/2t2 —a2ba.
t

Diese Kurve trennt die elliptischen von den hyperbolischen
Punkten der Fläche. Da v für den Nullpunkt gleich null ist
und für die Punkte eines Meridians bis zum Äquator beständig
zunimmt, so folgt aus (1): Die Kurve der parabolischen
Punkte teilt die Fläche derart, dass das den
Nullpunkt enthaltende Flächenstück die hyperbolischen,
das ihn ausschliessende Stück die elliptischen Punkte
enthält.

Für den Schnittpunkt mit der xy-Ebene (z 0) ergibt sich
aus XXI:

t2=a^
2

und hieraus:

_„ „ 2b2sinu.-- ¦- ¦ ' -""¦"— ' ¦ '
a Xa2 — b2 b /

¦ H 1 / —— —- cos u -\ v / ¦— c V2(a24-b2) -cV:
_ ab\/3_r~ V/2(aa4-b2)'

2(a24-

Die Koordinaten der 4 Spurpunkte der Kurve der parabolischen

Punkte sind also :

x _|_ z±t—y/3(a2 — 2 b2)— c(a2 4- b2)v

a2b (3>

y =H — \J3(2a2 — b2).J - c(a24-b2)V
V

Sie sind nur reell, wenn a > b \/2. Diese Durchstosspunkte haben
für den Äquator die Bedeutung von Wendepunkten, und ihre
Koordinaten stimmen mit den in (V) gefundenen überein. Ist
a b \J2, so wird x 0, y + 2b, d. h. die Kurve kreuzt die
y-Achse.
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Die Projektion der Kurve der parabolischen Punkte auf die

xy-Ebene ergibt sich durch Elimination von u aus den beiden
ersten Gleichungen XXI, die auch geschrieben werden können:

x-a2b2Vg+gtgÜ
a4 4- bHg2!!

y a2b2yXEEj?SXtgu.
a4 4- b4tg2u

In entsprechender Weise ergeben sich die Projektionen auf die
beiden andern Koordinatenebenen. Man erhält so:
Projektion auf die xy-Ebene:

(a4x2 4 b4y2)2 a4b4(a2x2 4- b2y2). XXII.
Projektion auf die xz-Ebene:

{(a4 — b4)x2 — b4z2 }2= a4b4(3c2x2 — b2z2). XXIII.
Projektion auf die yz-Ebene:

y2 {b2y2(a2 — 2 b2) 4- a2b2z2}{(a4 — b4)y2 4- a*za }4

a«b4(a2z2 4- 3c2y2)2(2a2 — b2). XXIV.
1st insbesondere a by^2, so werden diese Gleichungen:
Projektion auf die xy-Ebene:

(4x2 4 y2)2 4b2(2x2 4- y2). XXIIa.
Projektion auf die xz-Ebene :

(3x2 — z2) (3x2 — z2 — 4b2) 0. XXIIIa.
Projektion auf die yz-Ebene:

b2yz(3y2 f 4z2)2 2 y/3(2z2 4- 3y2). XXIVa.
Durch Nachprüfung der Ableitung zeigt sich, dass der zweite
Faktor der Gl. XXIII a unmöglich 0 sein kann, so dass die
Projektion der Kurve der parabolischen Punkte auf die xz-Ebene
die Gleichung

z xv/3" XXIIIb.

besitzt. Die Kurve der parabolischen Punkte wird also für diese

Fläche durch eine gegen die xy-Ebene unter 60' geneigte, durch
die y-Achse gehende Ebene ausgeschnitten.

Die Kurve der parabobschen Punkte kann auch als Schnitt
der Hessiana mit der zyklischen Fläche aufgefasst werden. Die
Gleichung der Hessiana oder Kernfläche:
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H

F* îi FJ'12 FA 13
FX 14

Fr21 F
22

Fr23 Fr24

FX31 F
32

Fx33 F*34

Fx41 Fx42 F Fx44

o,

0<

wo F das homogen gemachte Gleichungspolynom der zyklischen
Fläche bedeutet, wird

R2 —2a2 + 2x2 2xy 2xz 2a2x
2xy R2-2b242y2 2yz 2b2y
2xz 2yz

"

R24-2z2 0
4a2x 4b2y 0 -(a2x24b2y2)

oder ausgerechnet und nach Potenzen geordnet:

R6(a2x2 + b2y2) 4- 2R2[c2R2(a2x2 - b2y2) + 2 c4x2y2 -f-

+ 2z2(a4x2 4- b4y2)} - 4a2b2(R2 + 2z2)(a2x2 4- b2y2) 0, XXV..

R2 2 i 2 i 2
x fy-fz,

Diese Gleichung der Hessiana ist, wie die Theorie verlangt, vom
8. Grade. Die Kernfläche liegt ganz im Endlichen. Der
Nullpunkt ist ein isolierter vierfacher Punkt der Fläche. Die
Gleichungen der Schnittkurven der Kernfläche mit den Koordinatenebenen

sind:

xy-Ebene : (x2 + y2)2(a2x2 + b2y2) 4 2c2(a2x4— bay* 4 3c2x2y2)

— 4a2b2(a2x24-b2y2) 0.

xz-Ebene: (x2 4- zf-\- 2(x2 + z2) { c2(x2 4- z2) + 2a2z2

-4a2b2(x24-3z2)=0.
yz-Ebene : (y2 4 z2)3 - 2(y2 4- z2) { c2(y2 + z2) — 2b2z2 }

-4a2b2(y24-3z2) 0.
Sie stellen einfache, geschlossene Kurven dar. Zu der Fläche
gehört, wie sich durch Nullsetzen der von diesen Gleichungen
abgespaltenen Faktoren ergibt, auch die z-Achse.

Der Schnitt dieser Hessiana mit der zyklischen Fläche, die
Kurve der parabolischen Punkte, ist von der Ordnung 32. Ihre
Projektion auf die xy-Ebene wird durch Elimination von z aus
(I) und (XXV) erhalten. Das Resultat der Elimination ist die
bereits gefundene Gleichung XXn:

4 2 i ri 212 4i 4/ 2 2 i i 2 2i(a x 4' b y l a b (a x 4" " y
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Der Nullpunkt ist ein isolierter Doppelpunkt der Kurve. Für
die Schnittpunkte mit dem Strahl y mx findet man die
Koordinaten :

a2b2 \Ja? + h2ü?
_

a2b2my/a2 + b2m2
x~ ± a44-b4m2 y — ± a4 + b4m2

wenn man vom Nullpunkt selber absieht. Man sieht hieraus,
dass jeder durch den Nullpunkt gehende Halbstrahl die Kurve
ausser dem Nullpunkt nur noch in einem Punkt schneidet,
dessen Koordinaten stets reell und endlich sind; die Kurve
besteht daher aus einem geschlossenen Blatt um 0.

Die Abschnitte der Kurve auf der x-Achse (a) und der
y-Achse (ß) berechnen sich aus den letzten Formeln für m o,
m oo. Bestimmt man ferner aus der Flächengleichung I das

dazu gehörige z, so bekommt man:

x-Achse: x « — y 0 z 4- — V^a2 — b2
a J — a

2
a a

y-Achse: x 0 y |9 -g- z ±^\j2h2 —

Die Ausdrücke « und ß lassen sich sehr leicht konstruieren. Wir
untersuchen die Projektion der Kurve für folgende Spezialfälle :

1) a < b \J2- Die Abschnitte a und ß auf den Koordinaten-
Achsen werden

a>«>^ /?<2b.
Li

Für den Grenzfall a b wird a a, ß — a und die Projektion
der Kurve der parabolischen Punkte
wird ein Kreis vom Radius a (Leit-

\ kreis).
4 r Sehen wir von diesem Grenz-
/ fall ab, so erhalten wir eine ovale

Kurve mit zwei Einbuchtungen in
der y-Achse. Die ganze Kurve liegt

„. „ innerhalb der Schnittkurve der
Fig. 6

Fläche mit der xy-Ebene (Aequator)
und ist symmetrisch zu den Koordinatenachsen (Fig. 6).
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2) a b\/2. Die Achsenabschnitte werden

+ fJ ±2b.
Die Kurve der parabolischen Punkte geht also, wie bereits S. 27

konstatiert wurde, durch die Punkte der y-Achse, in welchen die

zyklische Fläche die y-Achse schneidet (Fig. 7).

3) a>bv/2. In diesem Falle ist

«<- tf>2b.
2

Alle Schnittpunkte mit der y-Achse liegen ausserhalb der Fläche
und können daher nicht realisiert werden. Die Kurve
durchschneidet den Äquator in 4 reellen Punkten (Fig. 8).

" »

Fig. 7. Fig. 8.

Hieraus und aus der Diskussion der Spurpunkte (S. 27)
ergibt sich in den drei Fällen für die Kurve der parabolischen
Punkte selber folgender Verlauf:

1.) a <C b \/2. Die Raumkurve besteht aus zwei getrennten,
geschlossenen Zügen, die zur xy-Ebene symmetrisch liegen.

2) a b \J2. Die Raumkurve zerfällt in zwei ebene Kurven,
die sich in der y-Achse kreuzen, und deren Ebenen gegen die

Aequatorebene unter 60° geneigt sind.

3) a > b y 2. Die beiden Züge der Raumkurve werden durch
die yz-Ebene getrennt und liegen zu dieser symmetrisch. Sie
durchschneiden den Aequator je in zwei Punkten.

Anschliessend an diese Untersuchungen sollen noch die

Kreispunkte betrachtet werden. Soll ein Punkt der Fläche
ein Kreispunkt oder Nabelpunkt sein, so muss die Bedingung

E:F:G D:D':D"
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oder weil F 0, D' 0

E:G D:D"
erfüllt sein. Durch Einsetzen der Werte kommt man dadurch
auf die Bedingung

1-2 4. v2 0,

die, weil r nie 0 wird, für reelle Flächenpunkte nie erfüllt wird;
d. h. die zyklische Fläche hat keine reellen Kreispunkte.
Lässt man auch imaginäre Werte zu, so entsprechen der eben

aufgestellten Bedingung (nach XVI) Punkte der Fläche, deren
Koordinaten unendlich gross sind. Diese Punkte bilden in ihrer
Gesamtheit nach S. 31 den unendlich fernen Kugelkreis,
welcher somit eine Kurve sphärischer Krümmung (Nabellinie)

der zyklischen Fläche ist.

II. Kapitel.

Die Zentrafläche.

§ 10. Die Gleichungen der Zentrafläche in Parameterform
und in rechtwinkligen Koordinaten.

Aus dem früher gefundenen Resultat (XVIII), dass der eine
Hauptkrümmungsradius in jedem Flächenpunkt der Grösse und
Richtung nach mit dem Radius der durch ihn gehenden
erzeugenden Kugel übereinstimmt, folgt, dass der Ort der Endpunkte
dieser ersten Hauptkrümmungsradien mit dem Ort der
Mittelpunkte der umhüllten Kugeln zusammenfällt, d.h. der den
Meridiankreisen entsprechende erste Mantel der Zentrafläche

wird durch die Leitellipse dargestellt.1)
Sind «, ß, y die Richtungswinkel der Flächennormalen, so

wird der zweite Mantel der Zentrafläche durch die Gleichungen
dargestellt :

x x14" c°s «, y y14" Ql cos ß, z z^ 4 «?! cos y,

wo xv yv zt die Koordinaten eines Punktes der zyklischen Fläche

und x, y, z die laufenden Koordinaten der Zentrafläche sind

') Die Verallgemeinerung dieses Satzes heisst: Von den beiden
Mänteln der Zentrafläche einer Enveloppenfläche, die eine einfach unendliche

Schar von Kugeln umhüllt, reduziert sich der den Kreisen entsprechende

auf die Kurve der Mittelpunkte der umhüllten Kugeln. — Monge:
Applications. 5e éd. laöO p. 376.
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und Ql den einen Hauptkrümmungsradius darstellt. Setzt man
hierin die Werte aus den Formeln XVI, Vili a und XVIII ein,
so ergibt sich

x

Dabei ist
In gleicher Weise ergeben sich die Werte für y und z. Wir
erhalten also folgende Parameterdarstellung für den zweiten
Mantel der Zentrafläche:

2 a4

o 2 2 /,22 a v cos u (t —-b2 r2)

r[2tV-
t2-bV=

2.2/ 2 i-a b (r 4"
2 2 2

a c cos u.

v2)]

X
[2t2v2-a2b2(r24v2)]

o i 4 2 2 -3üb c v sin u
y=- r[2t2v2-a2b2(r24v2)]

XXVI.

o 2, 2 22a b r v

o 2 2 21 2 / 2 i 2^2 t v —a b (r 4~v J

Um aus ihnen die Gleichungen für rechtwinklige Koordinaten

zu erhalten, sind u und v zu eliminieren. Durch Division
der ersten und zweiten Formel ergibt sich zunächst:

yIst u const, so ist auch — const; den Parameterlinien
x

u const, d. h. den Meridiankreisen, entsprechen somit die Schnittkurven,

die Ebenen durch die z-Achse aus dem Kegel der
Normalen längs des Kreises ausschneiden. Wir stossen damit schon
auf das erste wichtige Resultat: Alle durch die z-Achse ge-
legtenEbenen schneiden den zweiten Mantel der Zentrafläche

in Kegelschnitten, die durch den Nullpunkt gehen, und:
Die Endpunkte der zweiten Hauptkrümmungsradien

längs der Meridiankreise der zyklischen Fläche liegen auf
einem Kegelschnitt, dessen Ebene durch die z-Achse
geht. Ueber die Art der Kegelschnitte können wir aber
vorläufig noch nichts aussagen.

Aus der ersten und dritten Gleichung XXVI folgt durch
Division :

3
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x a2 c2 cos3 u
,2 3

z b r
v

b4 2
X ± 2

3-V.4 4 2 / 2 i i2. 2 Va c z a 4- b tg u)

Setzen wir für tgu den Wert aus (1) ein, so ergibt sich
nach einiger Umrechnung folgende erste Beziehung für v:

3 _

V a b

Eine weitere Gleichung für v können wir aus der zweiten

Gleichung XXVI finden, wenn wir in dieser den Wert (1) für
tg u substituieren. Durch Auflösung nach v2 folgt zunächst

v
2,23

2 a b r y
(2t2-a2b2)ry4-2b4c2sin3u

und hieraus mit Benützung von (1):

/ T

2 2 i 2
v =a by-

VW®)' (3>

[^-tf+w-yg]^-^-« ac2^

Diese zweite Gleichung für v kombinieren wir nun mit (2).
Es wird, wenn zugleich Zähler und Nenner der rechten Seite

3

mit V^bx erweitert und die ganze Gleichung mit

V/bX24-v/a2y2
dividiert wird:

VÎ

VV'b2x24-v/a2y2

/ P4 72
3 /_ C Z

=y[(2a2-b2)v/b2x2+(2b2-a2)vya2y2]v(2a2-b2) V7b2x24-(2b2- a2)^ a2 y2JV \/b2xa4\/a2y2-2abc2
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Durch längere Umformung erhält man hieraus die gesuchte

Gleichung des zweiten Mantels der Zentrafläche:

[c4(x24-y2 + Z2)-(v7a4x2+V>b4y2)3]2

-4 a2 b2 c4 (v'bV + \/7?f= 0.

XXVII.

Sie ist für den Nullpunkt erfüllt. Dieser ist also ein Punkt
der Fläche.

§ 11. Schnitte der Zentrafläche mit Ebenen durch die z-Achse.

Der Schnitt der xz-Ebene mit der Zentrafläche hat die
Gleichung /2i 2N.2 2 4 2 0 Ä 2 2 na 4- c J b x — c z 4z^aD c x 0.

Es sind dies die Scheitelgleichungen zweier kongruenter
Kegelschnitte, die durch die Transformation

n P.2

X x' + -

a2 4-c2
auf die Mittelpunktsgleichung

2 / 2 2\ 2 4 2 a2 b C4
b (a 4"c)x ~~ c z —

a2 -j-c2
gebracht werden. Der Schnitt mit der xz-Ebene besteht also

aus zwei kongruenten, durch den Nullpunkt gehenden Hyperbeln,
deren imaginäre Achsen der z-Aehse parallel sind, deren
Mittelpunkte im Abstand

ac2

a2 4- c2

vom Nullpunkt liegen und deren Halbachsen

A1 X^<a Bi: ab
a2-f-c2 2 \Ja.2 + c2

sind. Die lineare Exzentrizität ist

Cx
a2_|_c2

und der Abstand der Brennpunkte vom Nullpunkt ist:
l2a b

a -f- c
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Die eine Hyperbel hat also den rechts liegenden, die andere
den links liegenden Scheitel der grossen Achse der Leitellipse
zum einen Brennpunkt. Die Richtungskoeffizienten der Asymptoten

sind

Al c"

Die Hyperbeln degenerieren nur für den Fall, dass die
Leitellipse ein Kreis ist (c 0) in die doppelt gelegte z-Achse und
für den Fall, dass sich die Ellipse auf ihre grosse Achse reduziert
(b 0), in die doppelt gelegte x-Achse.

Jede dieser beiden Hyperbeln ist der Ort der Endpunkte
der zweiten Hauptkrümmungsradien längs eines der beiden in
der xz-Ebene liegenden Meridiankreise, und zwar gehört zum
rechts liegenden Kreis die rechts liegende Hyperbel. Die Flächen-
Normalen längs eines solchen Kreises sind jedoch nicht Tangenten
der zugehörigen Hyperbel, weil die aufeinanderfolgenden zweiten
Krümmungshalbmesser längs einer Krümmungslinie der ersten
Schar sich nicht im zweiten Krümmungsmittelpunkt schneiden. Für
die hier auftretende Hyperbel ist das sehr deutlich ersichtlich. Alle
Normalen längs des Kreises schneiden sich nämlich nach § 5 im
Scheitel der grossen Achse der Leitellipse. Dieser ist also der
konstante Krümmungsmittelpunkt aller ersten Hauptkrümmungsradien
längs des Kreises. Er ist aber auch Brennpunkt der Hyperbel, und
weil alle Flächennormalen durch ihn gehen, so können sie nicht
Tangenten der Hyperbel sein. Die Parallelen zu den Asymptoten
durch den Brennpunkt der Hyperbel treffen den Kreis in
parabolischen Punkten. Solcher Schnittpunkte sind, wenn wir
nur einen Kreis der xz-Ebene in Betracht ziehen, vier möglich,
aber zwei davon sind ungültig, weil nach § 9 die Abszisse X

eines parabolischen Punktes der xz-Ebene die Grösse a nicht
überschreiten darf. Allfällige Schnittpunkte der Parallelen zur
Asymptote mit dem zweiten Kreis sind deshalb nicht zu zählen,
weil die Normalen in ihnen durch den andern Brennpunkt der
Hyperbel gehen. — Dadurch kommen wir im Einklang mit den
früheren Untersuchungen zum Resultat, dass in jedem Quadrantep
der xz-Ebene nur ein parabolischer Punkt liegt.

Für den Schnitt der yz-Ebene mit der Zentrafläche lautet
die Gleichung:
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2a2b b2 c±x^y + —X2yi:4
c c

Sie stellt zwei kongruente Kegelschnitte dar, und zwar
sind es

Ellipsen, wenn a > b \/2

Hyperbeln „ a <^ b \/ 2

Parabeln „ a b \/2.
Die y-Achse ist Hauptachse der Kegelschnitte.

Im ersten Falle sind alle Krümmungsradien endlich, die
Fläche weist längs der Meridiankreise in der yz-Ebene keine

parabolischen Punkte auf. Im zweiten Falle gilt dasselbe wie
für den Schnitt mit der xz-Ebene, und im dritten Falle liegt
für beide Parabeln der unendlich ferne Punkt in der y-Achse.
Seine Verbindungsgerade mit dem Kreismittelpunkt trifft die
Fläche in den Punkten x — 0, y + 2 b, z 0, welche die
einzigen parabolischen Punkte der yz-Ebene sind. Alle drei Fälle
decken sich vollständig mit den Resultaten in § 9.

Eine beliebige Ebene durch die z-Achse von der

Gleichung y mx schneidet die Zentrafläche in einer Kurve,
deren Projektion auf die xz-Ebene die Gleichung

c4[x2 (1 4 nr) + z2] - x2 (VV +V,b4X2)3

+ 2 a b c2 x y (y' b2 4- \/ a2 m2

hat. Sie ist von der Form
M x2 4 N z2 4- P x 0

und stellt also zwei kongruente, durch den Nullpunkt gehende
Kegelschnitte dar, deren Hauptachsen mit der Spur der Schnitt-
ebene auf der xy-Ebene zusammenfallen. Auch diese Eigenschaft
haben wir schon früher (S. 33) kennen gelernt.

Die Kegelschnitte können Ellipsen, Hyperbeln oder Parabeln

sein, wenn a >> b \, 2. Sie sind, ausgenommen der Schnitt mit
der yz-Ebene, nur Hyperbeln, wenn a bv/2, und überhaupt
nur Hyperbeln, wenn a<b\/2.
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§ 12. Die Schnittkurve der Zentrafläche mit der xy-Ebene.
Die Schnittkurve mit der xy-Ebene ergibt sich aus (XXVII)

für z 0:

[c4(x24y2x(vW+^)T
4 a2 b2 c4 (vVx2 f y/ a2?)! ^™'

Will man die Gleichung in rationaler Form haben, so geht
man wie folgt vor: Die linke Seite lässt sich, wie sich leicht
nachrechnen lässt und wie aus S. 34 gefolgert wird, identisch
schreiben :

| (a2 -h- c2) VW + (b2 - c2) v/a2?]2 [VW 4- OaVÌ i

sodass die Gleichung der Kurve in

[(a2 4- c2) fo? 4- (b2- c2) Ç/aV]2 [VV? 4- V^aVJ m
4a2b2c4 l '

8 3_

und V/b2x24v/a2y2 0

oder b2 x2 4" a2 y2 0, zerfällt.
Der der letzten Gleichung entsprechende Kurvenzweig reduziert

sich auf den Nullpunkt,
Rechnet man die linke Seite von (1) aus und fasst in

passender Weise zusammen, so wird

3 y/72XxV [b2 (a2 4- c2) \/bV + a2(b2 - c2) \f~7y~2]

-4a2b2c4-b2(a24c2)x2-a2(b2-c2)y2.
Diese Gleichung erhebt man in die dritte Potenz:

27 a2b2x2y2{b6(a24c2)3b2x24-a6(b2 - c2)3 a2y2

4-3a2b2(a24-c2)(b2-c2)\/a2b2x2y2[b2(a24c2VbTx2

4-a2(b2-c2)v/"a27]l {4a2b2c4-b2(a24c2)x2-a2(b2-c2)yf
und ersetzt den Ausdruck in der eckigen Klammer durch den
Wert in der vorangehenden Gleichung. Dann wird die gesuchte
rationale Gleichung der Schnittkurve mit der xy-Ebene:

27a2b2x2y2{b4(a24c2)2[b4(a24-e2)-a2(b2-c2)]x2

+ a4(b2 - c2)2 [a4 (b2- c3)- b2(a24- c2)] y2



— 39 —

4-4a4b4c4(a2 + c2)(b2-c2)}

{4a2b2cXb2(a24c2)x2 - a2(b2- c2)y2}3. XXVIIIa.
Die Kurve ist also vom 6. Grade. Ihre Schnittpunkte mit den
Koordinatenachsen sind, abgesehen vom Nullpunkt:

2ac2
a2 + c2

2bc2

x-Achse: x H 5—;—n-, je dreifach
o û _1_ n& ' "

y-Achse: y ±b2_c2>
Während die Abschnitte auf der x-Achse immer endlich und
kleiner als a sind, werden die Abschnitte auf der y-Achse für
den Fall b c (a b\/2) unendlich gross.

Zur weitern Untersuchung dieser Schnittpunkte ist es
notwendig, den einen oder andern zum Nullpunkt zu machen, also
die Transformation

— ' 2ac2
x —x +a2+c2

vorzunehmen. Dadurch verschwindet das konstante Glied auf
der rechten Seite und die Kurvengleichung erhält die Form:

(X + a^2)2(Ax2+ Bx + Cy2+D)y-(Ex2 + Fx + G^2)S

Der Schnittpunkt ist also in beiden Fällen ein Doppelpunkt und
die Tangenten in ihm werden:

2ac2
a2 + c2/ B?=° also:

y 0 doppelt.
Die zwei Schnittpunkte mit der x-Achse sind also Spitzen, mit
der x-Achse als gemeinschaftlicher Spitzentangente.

Ganz in gleicher Weise lässt sich zeigen, dass die beiden

Schnittpunkte der Kurve mit der y-Achse Spitzen sind mit der
y-Achse als gemeinschaftlicher Spitzentangente, und zwar gilt
dieses Resultat in allen Fällen, wenn b c bezw. a b y/2 ist.

Um die Richtungen der Asymptoten zu finden, geht
man besser von Gl. XXVIII aus, indem man in ihr die Glieder
höchsten Grades:

3 3
c4 (xa 4- y2) — (s/äFx2 4 VbX2)8 0 (2)

setzt. Führt man zur Abkürzung
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3

'g =1 (3)

y
ein, wo — fi den Richtungskoeffizienten der Asymptoten

bedeutet, so verwandelt sich (2) in

¦-3, 3b2 XlT.2 3b 3/^-T-, b2(a2+c2)Xr772 sTVab < + -2 2Va b ; + al n
2

0.
a(b — c b — c a Ib — cl

Diese kubische Gleichung bringen wir vermittelst der Substitution
b2 3,

$ *l — -fi* 2^vab2
a(b — c

auf die reduzierte Form:

3 3bc4 Vjft- 2bV _
¦ti TT V a b t) H s- 0.'

a2(b2 — c2)2
'

a2(b2 — c2)3

Die Diskriminante dieser kubischen Gleichung wird null und die
Wurzeln sind

™ xa(b" — c

1a 1l»
C"

2r\/ab2,

sodass
a(b" — cJ)

3
__

e _2a2—b2 /b2^
Sl ~ a2 — 2 b2 V a2

3

_
j\T_

^2 — =3 — y a2
•

Hieraus ergeben sich die Richtungskoeffizienten der Asymptoten:

_ ,b. /72a2-b2 X3

'Wl _ ± a V U2 - 2b2/ (4)
b

a
Von den 6 Asymptotenrichtungen sind also 4 imaginär (die
paarweise zusammenfallen) und zwei reell. Aber auch diese sind
nur so lange reell, als a>b\/2. Für a bv/2 wird ^ ~,
die Asymptote ist der y-Achse parallel. Dieser Fall entspricht
in der yz-Ebene der Parabel. Ist a > b \J2, so sind zwei
Asymptotenrichtungen reell.
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Die Gleichungen der Asymptoten selbst können nicht
nach der allgemeinen Theorie bestimmt werden, weil zwei
Richtungen zusammenfallen. Wir gelangen aber zu ihnen, wenn wir
die Asymptoten der Kurve als Normalen in den Wendepunkten
der Äquatorkurve der F4 auffassen.

Durch Differentiation der Kurvengleichung
/ 2 i 212 t 2 2 i i 2 2-,
(x 4-y) =4(a x 4-b y)

findet man für den Richtungskoeffizienten der Normalen:

y x2 + y2 - 2b2
m — —

x x2 4" y2 — 2 a2

Setzt man hierin die Koordinaten der Wendepunkte nach den
Formeln (V) ein, so findet man

b //2a2-W
m ±âVla^2b2/

wie in (4). Diese Methode führt bedeutend rascher zum Ziele,
aber wir erhalten nur die reellen Asymptoten, so lange uns die
Koordinaten der imaginären Wendepunkte unbekannt sind.

Die Gleichungen der Normalen in den Wendepunkten oder
der Asymptoten werden jetzt

y — y1 m(x — x\.
Setzt man für x1,yl die Koordinaten der Wendepunkte ein, so
erhält man 4 reelle Asymptoten, die paarweise parallel sind.
Ihre Gleichungen sind :

a(a2 — 2b2) \fsf^-~2~W- y 4- b(2a2 — b2)\/2a2 —b2- x

+ abc \f3i2a2 — b2)^2 — 2b2)

a(a2 — 2b2) V/ä^r2b2"- y — b(2a2 — b2) ^2aT=&~- x

4 abc V'3(2a2 —b2)(a2—2b2).
Ist speziell a b \/2, so wird x 0, d. h. die Asymptoten fallen
mit der y-Achse zusammen.

Die Abschnitte der Asymptoten auf den Koordinatenachsen
sind

(x-Achse) «, — \/3(a2 — 2b2) wo a > b \/2X 2a2 — b2

<y-Achse) ß1=
b° \/3(2a2-b2),

a2 — 2 bJ

XXIX.
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während die Koordinaten der Spitzen dem absoluten Werte nach
(S. 39)
< uu ^

2ac2
(x-Achse) ' a

(y-Achse) /*2

2a2 — b2

2bc2

a2 — 2b3
sind. Es ist leicht einzusehen, dass stets

»i < »a ßi> ßr
Die Kurve, die zugleich Evolute der Fusspunktskurve

der Leitellipse ist, hat in den drei Fällen a < b\j2, a b\2t
a>by2 die in den Figuren 9, 10, 11 gezeichnete Gestalt.

Fig. 9. Fig. 10.

Fig. 11.
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§ 13. Diskussion der Zentrafläche.
Gestützt auf die gemachten Untersuchungen ist es möglich,

eine Vorstellung von der Zentrafläche zu erhalten. Den ersten
Mantel, der in die Leitellipse ausartet, schliessen wir von einer
weitern Betrachtung aus und beschränken uns auf den zweiten

Mantel. Da dieser seine Gestalt ändert, je nachdem a b\/2
ist, so müssen wir die drei Fälle getrennt behandeln. In allen
Fällen sind die Schnitte durch die z-Achse Kegelschnitte.

1. Fall: a<b\/27 (Fig. 13). Wir fassen zunächst die
Schnitte mit den Koordinatenebenen

ins Auge. A, B (Fig. 12)
seien die parabolischen Punkte
in der xz-Ebene; C, D
diejenigen in der yz-Ebene. Denken
wir uns einen Punkt auf dem
einen, rechts von der z-Achse

liegenden Meridian-Kreis der
F4 in der xz-Ebene wandernd
von Sx bis A, so beschreibt
der Endpunkt des zugehörigen
zweiten Hauptkrümmungs-

Fig. 12.

¦•v

Fig. 13.
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radius den unendlichen Hyperbelbogen Sx A1 (Fig. 13). Wandert der
Punkt weiter von A nach O, so schreitet der Kriimmungsmittel-
punkt auf der Hyperbel von A2 (im Unendbchen) nach O. Dem

Weg von O, bis B entspricht der unendliche Bogen OBx und
dem letzten Stück BS, der unendliche Ast B2Sr Ganz

entsprechendes gilt für den zweiten, zu diesem kongruenten
Meridiankreis der xz-Ebene. Ihm ist die zweite Hyperbel der xz-
Ebene zugeordnet. Durchwandert ein Punkt beide Kreise, was
ohne Sprung möglich ist, so muss auch der zugehörige
Krümmungsmittelpunkt die beiden Hyperbeln ohne Sprung durchlaufen
können.

Dasselbe lässt sich sagen für die yz-Ebene und überhaupt
ifür je de durch die z-Achse gelegte Ebene. Die Zentrafläche lässt

Fig. 14.

sich ihrer Gestalt nach am besten vergleichen mit der Fläche,
die von einer durch den Nullpunkt gehenden Hyperbel, deren
Scheiteltangente die z-Achse ist, bei der Drehung um die z-Achse
beschrieben wird. Nimmt man an dieser Fläche die durch die

aufgestellten Eigenschaften erforderlichen Veränderungen vor,
so gelangt man zu einem ziemlich klaren Bild der Fläche. Diese
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scheint demnach aus zwei Mänteln zu bestehen; aber die eben>

gemachten kinematischen Betrachtungen zeigen,. dass diese im
Unendlichen in gleicher Weise zusammenhängen, wie die vier
Äste zweier kongruenter Schnitthyperbeln.

2. Fall: a b\/2. (Fig. 14.) Die Fläche hat im wesentlichen

dieselbe Gestalt wie im 1. Fall, nur ist hier der Schnitt
mit der yz-Ebene eine Parabel. Die Hälfte dieser Koordinatenebene,

die die positive y-Achse enthält, weist daher auch nur
einen einzigen parabolischen Punkt auf (in S4).

3. F a 11 : a > b \j2. (Fig. 15.) Um eine Anschauung von
der Fläche zu bekommen, denken wir sie uns durch die yz-Ebene-

/•//

¦z?

¦s, '¦.<*

Fig. 15.

entzweigeschnitten. Dann entstehen auf der positiven Seite-
dieser Ebene zwei Mäntel. Der Mantel I enthält die Kurven
Gl Sj Kt und Aj S1 Bv der Mantel II die Kurven Ht Ss und
J2 S4, sowie die beiden Ellipsen S3 0 und S4 0 und die Hyperbel

•E^Fg. Beide Mäntel schneiden sich im Endlichen nicht. Auf"
der negativen Seite der yz-Ebene sei der zu 1 symmetrische
Mantel mit III, der zu II symmetrische mit IV bezeichnet. Längs
der yz-Ebene hängen II und IV zusammen und im Unendlichen»
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einerseits I und IV und anderseits II und III. Die Fläche ist
also einfach zusammenhängend; denn geht man z. B. von I aus,
so kann man ohne Sprung nach IV, von da nach II und von
II nach III gelangen.

Zum Schlüsse suchen wir noch die den Parameterkurven
entsprechenden Kurven der Krümmungsmittelpunkte, 1\ und r2.

Für die Krümmungslinien u const (Meridiankreise) wird
Tj auf einen Punkt der Leitellipse reduziert. r2 ist ein
Kegelschnitt, dessen Ebene durch die z-Achse geht (S. 33).

Für die Krümmungslinien v const — k ist rx die
Leitellipse. r2 ist der Schnitt der aus Gl. (2) § 10 sich für v k

ergebenden Fläche

vX^XWw-
die sich rational schreiben lässt:

r41j272 \3
b2x2 4- a2y2 —

a a
27c4k2x2y2z2

mit der F4, also der Schnitt eines Kegels 6. Osdnung, dessen

Spitze in 0 hegt, mit der zyklischen Fläche.

III. Kapitel:
Konforme Abbildung.

§ 14. Einführung isothermer Parameter.
In XVII ergab sich für das Linienelement der Fläche:

4 /v4t2
ds2 (— du2 + rwY

(r2 4- v2)2 V r2 ;
st sich auch schreiben

ds2 — .r4 v4 (— du2 4- — dv2 V
(r2 4- v2)2 V r6 v4 /

Dasselbe lässt sich auch schreiben

(1)

Indem nun in der Klammer der Koeffizient von du2 eine reine
Funktion von u ist und ebenso der Koeffizient von dv2 eine reine
Funktion von v, so ist es möglich, durch die Substitution

du, — du
1

r8

dv, — dv
1

V2
¦
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eine Einteilung der Fläche in unendlich kleine Quadrate
herzustellen. Setzt man die Werte für u und v, die sich aus

t du
.3

dv --L (2)

V

ergeben, im Ausdruck (1) für das Linienelement ein, so wird der
Faktor vor der Klammer eine Funktion von ux und v., also

d s2 <Z> (ui, Vl) (du? 4- dv?). (3)

Es handelt sich nun darum, das noch nicht berechnete Integral
für Uj in (2) auszumitteln. Dieses wird, wenn man für t und r
die Werte aus (XVTI) einsetzt:

C / a4 cos2 u
J V (a2 cos2 u

j- b4 sin2 u
4- b2 sin2 u)3

a4 4- b4 tg2 u du
(a2 4- b2 tg2 uy cos2 u

Vermittelst der Substitution
a2 1

tgU TXt^
lässt sich dasselbe auf die Form bringen:

d tpui=-ab./Vpa2 cos2 tp 4- b2 sin2 tp)3
' -b2

a2

gesetzt wird, wo e <4 :

b2 c2
oder wenn r, -5- e2

Ul==-èJv
d. «jp

\J (1 — e2 sin2 cp)3

oder in der üblichen Schreibweise:

Ul 93 A 3

Nach bekannten Formeln findet man hieraus durch Einführung
des elliptischen Normalintegrals II. Art E (e, go):

1 „ e2 sin op cos cp
u _ E(e|V)4 _Jt Z.

b b /\q>
Die neuen (thermischen) Parameter uv vt drücken sich also fol-
gendermassen durch die alten aus:
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1 _. e2 sin tp cos tp

u1 --E(e,fJf.) + - r L
b b A*/1

1
v

V

/a2 1
wo tp are tg — • -—

\b2 tg u

§ 15. Konforme Abbildung der Fläche auf einen ebenen Streifen

und auf die Fläche eines Kreises.

Eine konforme Abbildung einer Fläche auf eine Ebene wird
dadurch erzielt, dass man die thermischen Parameter der Fläche
als rechtwinklige Punktkoordinaten in der Ebene deutet.1) Sind

x, y die rechtwinkligen Koordinaten des Punktes in der Ebene,
der das Bild des Punktes (uv vx) der Fläche ist, so ist also

zu setzen:
1 „ e2 sin tp cos tr

x u1 --k E(e,g») + -—ï- L

b b /\tp
1 XXXI.

y vi=~v'
wo wiederum tp sich aus

a2 1

b tgu
bestimmt. Durch diese Formeln wird die konforme Abbildung
vermittelt. Für verschiedene Werte von u ergeben sich die
folgenden Werte, in denen E das vollständige elliptische Normalintegral

II. Art:

E

bedeutet :

-*(*t)

') G. Schef fers: Anwendung der Diff. und Int. Rechnung auf
Geometrie. II. Bd. p. 71.
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u tg«? <f x

0° co
2

-Ie
b

90° 0 rt 0

180° — oo
3 je
~2~ b

270° 0 2 TV *E
b

360° oo
5/r

2
*E
b

Für alle folgenden Werte von u nimmt x periodisch zu, und

zwar für je 90° um -r- E.

Für v 0 wird y + °°
„ v + oo wird y 0.

Die Fläche ist also
konform abgebildet aufeinen

zur y-Achse parallelen Strei-
4

fen von der Breite — E
b

(Fig. 16). Der Mittelpunkt
der Fläche (v 0) wird in
den unendlich fernen Punkt
der y-Achse abgebildet, der
Aequator (v oo) in die
x-Achse.

Der ersten Schar von
Krümmungslinien
(Meridiankreise) entsprechen
Parallele zur y-Achse, der
zweiten Schar Parallele zur
x-Achse.

Es bietet nun keine Schwierigkeiten, diesen Streifen — und
damit also auch die Fläche — konform auf das Innere des Ein-

4

y

A B D C A
i£ 0 i£ iE iE

O" 90" U-. w 70° i(ß°

Fig. 16.
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heitskreises abzubilden. Legen wir der Ebene des Kreises das

Koordinatensystem t\ zu Grunde, so vermittelt die Funktion*)

S + in-l j*W> XXXII.
XiXi

wo E wieder das vollständige elliptische Normalintegral IL Art
bedeutet, die gewünschte Abbildung. Hieraus wird

+ n— 1 ~^y byr
—^ 5" e cos — X (1)(ij+lf + i?2 4E

_ 5ü
2 « 4E y bfC

5 5- e sin — x. (2)
(£4-l)a + ij 4E

Durch Elimination von x aus (1) und (2) resultiert die Gleichung
b?r

2 0,l+e 2E y
2 -, n

1—e 2E y

die einen Kreis darstellt, dessen Mittelpunkt im Abstand
hn

1 J_ p~ 2ÌT y

P ^^T^- (3)

1—e 2E
3

vom Ursprung auf der £-Achse liegt und dessen Radius

r
2e 4E r

1 ~"b7T

1 —e 2E y

ist. Für v const, wird y const, und damit p und rt const.;
d. h. der zweiten Schar von Krümmungslinien auf der
Fläche entsprechen Kreise, deren Mittelpunkte auf
der £-Achse liegen.

Durch Elimination von y aus (1) und (2) folgt die
Gleichung

i + n — 2 n cotg -X x — i o,

die wiederum einen Kreis darstellt, diesmal vom Radius

') A. R. Forsyth: Theory of Functions of a complex Variable,
p. 508.

W. F. Osgood: Lehrbuch der Funktionentheorie I, p. 402.



- 51

sin
b n

Sein Zentrum liegt im Abstand
b/f

q cotg — x
4E

auf der >j-Achse.
Hieraus findet man

-q2 l.
Die Strecken r2, q und 1 bilden also ein rechtwinkliges Dreieck,
r0 und q sind variabel, aber die Kathete 1 bleibt fest. Alle
Kreise, welche der obigen Gleichung entsprechen, gehen also
durch den festen Punkt, der im Abstand 1 auf der S-Achse liegt
— und ebenso durch den symmetrischen Punkt der negativen
i'-Achse.

Für u const, wird x const, und somit q und r,, const.,
d. h. der ersten Schar von Krümmungslinien (den
Meridiankreisen) entspricht im Bilde ein Kreisbüschel durch
zwei feste Punkte, dessen Achse mit der ij-Achse
zusammenfällt.

Das gegenseitige Entsprechen von Kurven ergibt sich aus

folgenden zwei Tabellen:

u X i q 1'2

0°
i ~bE -i \J2

90° o 0 1

180°
b + 1 \f*

270° 2E
b

CO oo

360° 3-E
b

1

— 1 \/2 1
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V y P ri

0

oo

4" co

0

±1
-f- oo

0

oo

Die Figur 17 (sie ist der Anschaulichkeit wegen um 90°

gedreht) stellt die konform abgebildete Fläche dar.

Fig. 17.
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