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II. Teil
Untersuchung der Flache in der Parameter-Darstellung.

I. Kapitel.
Parameterdarstellung der Flache. Die Kurve
der parabolischen Punkte.

§ 8. Die Parameterdarstellung.

Am einfachsten werden die Ausdriicke fir die Parameter-
darstellung der Fliche, wenn man die Krimmungslinien als Pa-
rameterkurven einfithrt und sich auf die in § 7 gefundenen
Eigenschaften derselben stiitzt.

o Eine durch die z-Achse gelegte
Ebene, die mit der xz-Ebene den
Winkel u bildet, schneidet die Fliache
in einem Meridiankreis vom Radius
r und vom Mittelpunkt K (Fig. 5),
der auf der Kurve

1? = a?cos?u -+ b’sin?u
Fig. 5 (nach Gl. II) liegt, und die Kugel

vom Mittelpunkt M auf der z-Achse
und vom Radius v (die auf der Fliche eine Kriimmungslinie der
zweiten Schar ausschneidet) in einem Kreis. Beide Kreise

schneiden sich nach § 7 orthogonal in einem Punkte P der
Flache. Es ist somit '

A\ BPM ~ A APK
Hieraus ergibt sich
AK:r=BM:v
WVE = Zir=v—1z:v
2y
P - v2

Liegt A zwischen O und K, so folgt:

/ 41ty
A0:OK—KA:—_.-1'-—VI-2__ el
CEND:

. 2rv?

24y




— 22 —

Aber auch wenn A ausserhalb OK liegt, gilt dasselbe. Es wird
also

y = ———sinu ~ XVL

2r3v
2 |- v2

wobei r = \/acos?u -}- b?sin?u.

Dies sind die Koordinaten eines Flichenpunktes in der Para-
meterdarstellung. Die Parameterlinien u = const und v = const
sind die erste und zweite Schar von Kriimmungslinien; u ist der
Winkel der Meridianebene gegen die xz-Ebene, v der Radius
der verinderlichen Kugel, die zu der zweiten Schar von Kriim-
mungslinien gehort.

Um die Fundamentalgréssen aufzustellen, ist es vorteilhaft,
diese Gleichungen auf die Form

VZ . VZ . 2r’v
X = —— cosu y=-—sinu Z=— XVlIa.
r r r? 4 v?
- zu bringen. Wir berechnen zunichst:
i 0z 4c2vd .
—=——-————— sinucosu
du (r2 4 v2)? )
Jr e? .
— =———sinucosu
du r

wobel ¢2 = a2 — b2, Ferner:

éx v { ( : 6z) 81‘1
— =—1!r(—zsinu 4| cosu-— ) —zcosu - —
du 1r? ou, duf
0 . d . d
. . zcosu—{—smu--rE —zsmu-—li,
cu r? du du
sodass

R 2 2
E=S(g§)=%{r2z2 + r? (-5—3-) -+ z? (il-.-)‘—-—-‘?rzﬂ--a—%-

u Ju du du
0z\2
+(52):

’



Setzt man d1e Werte (1) ein und vereinfacht, so ergibt sich

4vit?

r2 (r2 +v2)2
wo t die Bedeutung (X) hat:

t =\/atcos?u + bésin’u.

. 8 2 — v?
Weiter i1st: —z-: r(r ')
av (r2 4 v2)?
dx  4rdv
e ——cosu
ov (r2 + v2)?
B_X— 43v

dv (124 v2)?

und hieraus findet man:

212 813 v3

T du 2 ~+ v2
oder ausgerechnet :

F=0.

2
o-s(i2)-
ov

A=+VEG—F=

Schliesslich wird
4rt

(12 -v2)?
4rv2

@y

und

GERD;

)
or
du
3
(4)

Die Richtungscosinuse der Flichennormalen ergeben sich

am einfachsten aus den Formeln VIII, in denen

4y
f=x"ty o T
x2 4_2 rv?
Va' s+ by’ =2 ure Al
zu setzen ist. Dann wird '
202 a2 (3 2
cosa____cosu.2r v: —a® (r! + v
r? - v?
: 2 92 __h2 (r2 2
cOsp,ﬁ____smu_er b (1.' ~+ v?)
t r? 4 v2
2r3v
CosS y = ——

t (2 4 v2)

VIII a.
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sodass die Gleichung der Tangentialebene die Form annimmt:
X{2r2v?—a?(r2+4v2)}cosu+ Y {2r2v2—b? (r? 4 v?)}sin u
+Z -2r3v=21r3v2. ' (5)

Da wir die Kriimmungslinien als Parameterkurven emge-
fiihrt haben, so muss die Fundamentalgrosse 2. Ordnung:

ducv

2 )
D'=S(cosa- itk ):0 (6)

sein und es gelten dann die Formeln von Rodrigues, von denen
wir nur die beiden

decosy Dz dcosy D" adz
du E du dv G dv

herausgreifen, weil sie sich zur Berechnung der beiden Fundamen-
talgrossen 2. Ordnung:

; 2
D=S(cos‘f"?—x> D”SS(GOSa-§—§>

o u’ v

am besten eignen. Aus (VIIIa) folgt namlich durch Differentiation:

d cos y 2cirv

e sinucos uiaZb?(r? 4 v2)— 212 v2
611 t3 (r2+V2)2 { ( + ) }

decosy 2r° 1r?—v?
ov t (12 4 v2)
Fiihrt man diese Werte in den Formeln von Rodrigues
ein, so wird

2v?

D:"t—rfr2+v2? {2t v2 —a?b? (12 + v2) |
| (7)
o 4r -
t (2 4v2)

Wir stellen hier die gefundenen fundamentalen Grossen
zusammen:



2rv? - 2rv? . 2r2v \
= _———c¢osu y= sinu  z=
r2 4 v? _ r2 }v? r? 4 v?
| 4 42 2
Ee= 4'Vt_2 D=___.~2V 2{2t2v2—a?b2(r2—|—v2)}
r’(r2-v?) rt(r2+4 v2)
F=0 D=0
1 5
G:——éﬂ‘—z— | § 4r :
@F+vF @)
4rvit
N=—""5 X VII.
(2 +v)
ey 2r?v
'=\/DD"' —D"?=—_"""__\/2{2t2v2—a? b (12} v?
A=y vl @)
ds’=Eduw+ 2Fdudv4}Gdvi=
e .(v4t2du2—i—1'4dv2
(1-2—|—v2)2 r
1?2 = a? cos® u -} b? sin® u

t2 =a* cos? u | b*sin®u

Fur die Hauptkrimmungsradien bestehen, weil F =0 und
D" =0, die Formeln :

E G
Ql —_— B 92 e D”_.
Setzt man fir E, D, G, D"’ ihre Werte nach (XVII), so wird
2 18 v2
a= r{2t2 vi— a?b?(r® -} V‘Z)}
X VIIL
t
=~ —— — — 11
T

wie aus (XI) folgt, d. h." der eine Hauptkrimmungsradius
{¢,) 1st immer gleich dem Radius der erzeugenden Kugel.')
Fiir die hochsten und tiefsten Punkte der Fliche (x = - a,

y=0, z=+a) ist u=0 und v=+-a, somit

) Das Resultat gilt allgemein fiir Enveloppenflichen von Kugeln.
Vergl. A. Enneper: Bemerkungen iiber die Enveloppe einer Kugelfiiche.
Nachr. d. kgl. Ges. d. Wissenschaften und d. G. A. Univ. Gottingen 1873,
p. 219.
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Ql‘:——u— 92=-—-—a.

Fir die Sattelpunkte (x =20, y= +b, z=-4b) wird u=90°,
v=-+b, und

0, ==

sl

%%

0, = —b.

Das negative Vorzeichen gibt an, dass die Normale nach
der Seite der Flache hin gerichtet ist, auf der der Mittelpunkt
liegt.

Das Krimmungsmass

K= 1 :DD =1 wird
0, 0 EG — F?

2
= ; : 2t2vz—a?b? (2 4+v?)} XIX.

und die mittlere Krimmung
D"+GD— 2F D’ _+_
£ 0

K=

H =

berechnet sich zu

2t3 {4 t2 vZ — a2b? (r2-4-v2)}. XX.

§ 9. Die Kurve der parabolischen Punkte.

Die zyklische Flache ist in irgend einem Punkte elliptisch
oder hyperbolisch gekrimmt, je nachdem K =0, d.h. (nach XIX)
je nachdem
2t2v2 = a?b?(r? 4 v?)
abr
\/ 212 — a?h? o
Sie 1st in den Punkten parabolisch gekrimmt, in denen k=0,
also

abr
P — 2
7 v \/2 tzl.— azb'-’ ( )
Setzt man diesen Wert. in der Parameterdarstellung (XVI) der

Flache ein, .so erhdlt man die Kurve der parabolischen
Punkte in der Parameterdarstellung:




¥ == Kiihai XXL

7 — ?E\/gtz — aZh3.

Diese Kurve trennt die elliptischen von den hyperbolischen
Punkten der Fliche. Da v fur den Nullpunkt gleigh null ist
und fiir die Punkte eines Meridians bis zum Aquator bestindig
zunimmt, so folgt aus (1): Die Kurve der parabolischen
Punkte teilt die Flache derart, dass das den Null-
punkt enthaltende Flichenstick die hyperbolischen,
das ihn ausschliessende Stiick die elliptischen Punkte
enthélt. |
Fir den Schnittpunkt mit der xy-Ebene (z = 0) ergibt sich

aus XXI: :

a’h?

2

t2 =

und hieraus:

: a  [2a? —b? b /a2 =32
B *\/z—(“-m conn =1\ e
ab\/3
\/2 (a® I b?)

Die Koordinaten der 4 Spurpunkte der Kurve der parabo-
lischen Punkte sind also:

ab?
x =+ e + b—2)V3(a2 —21?)
—~——\/3(2aZ — b?). @
s = c(a2 + b?)

Sie sind nur reell, wenn a > b\/2. Diese Durchstosspunkte haben
fir den Aquator die Bedeutung von Wendepunkten, und ihre
Koordinaten stimmen mit den in (V) gefundenen iiberein. Ist
a = b\/2, so wird x=0, y =4 2h, d. h. die Kurve kreuzt die
y-Achse.

e
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Die Projektion der Kurve der 'pa'rabolischen Punkte auf die
xy-Ebene ergibt sich durch Elimination von u aus den beiden
ersten Gleichungen XXI, die auch geschrieben werden konnen:

In entsprechender Weise ergeben sich die Projektionen auf die
beiden andern Koordinatenebenen. Man erhilt so:
Projektion auf die xy-Ebene: '

(atx? |- bty?)? = atbi(a?x? |} b?y?). XXII.
Projektion auf die xz-Ebene: | ,
{(at — b4)x? — b*z? P = atb?(8¢2x? — b%z?).  XXIIL
Projektion auf die yz-Ebene: | ' '
y? {b2y?(a? — 2b2) 4 a2b222 ) {(at — bt)y? 4 atz?
— afh4(a’z? } 3c?y?)?(2a%? — b?). XXIV.
Ist‘insbesondere_azb\/ﬁ, so werden diese Gleichungen:
Projektion auf die xy-Ebene:

(4x? -} y2)? = 4b?(2x% 4 y?). XXTIIa.
Projektion auf die xz-Ebene: : '
(3x% — 22) (3% — 22 — 4b%) =0. XXII1a.

Projektion auf die yz-Ebene: -
b2yz(3y? - 422)2 = 2/8(222 + 3y?).  XXIVa.

Durch Nachpriifung der Ableitung zeigt sich, dass der zweite
Faktor der Gl. XXIIIa unmoglich 0 sein kann, so dass die Pro-
jektion der Kurve der parabohischen Punkte auf die xz-Ebene
die Gleichung

z=x\3 XXIIIb.
besitzt. Die Kurve der parabolischen Punkte wird also fiir diese
Flache durch eine gegen die xy-Ebene unter 60° geneigte, durch
die y-Achse gehende Ebene ausgeschnitten.

Die Kurve der parabolischen Punkte kann auch als Schnitt

der Hessiana mit der zyklischen Fliche aufgefasst werden. Die
Gleichung der Hessiana oder Kernfléche:



Fll F12 F13 F14

H— F2l F.‘3 F23 F24 — 0
F3l F32 F33 F34 ,
F4l F42 F43 _F44

wo F das homogen gemachte Gleichungspolynom der zyklischen
Flache bedeutet, wird

R? —2a% 4 2x? 2xy 2xz 2a’x

2xy R? —-2b?+2y? 2yz 2b%y

2xz 2yz R?>4-222 0 =
4a’x 4b%y 0 — (a%x® 4 b?y?)

oder ausgerechnet und nach Potenzen geordnet:

R (a2x® 4 b?y?) - 2R @R%a%x® — b2y%) + 2¢* <Py -
+-22°(a*x* 4 b'y")} — 42°b(R? 4- 22°) (27" - b’y%) =0, XXV.
St R=x*fy' 2
- Diese Gleichung der Hessiana ist, wie die Theorie verlangt, vomy

- 8. Grade. Die Kernfliche liegt ganz im Endlichen. Der Null-
punkt ist ein isolierter vierfacher Punkt der Fliche. Die Glei-
chungen der Schnittkurven der Kernfliche mit den Koordinaten-
ebenen sind:
xy-Ebene: (x° 4+ v (a’x* 4 b’y%) 4+ 2¢°(a’x* — bPy* 4 3¢ Xy

—4a°b°@° x4 b'y’) =0.

xz:Ebene: (x* 4 2°)° 4 2(x° + ) | A(x* + 2°) 4- 2a%2*}

— 4a°b*(x* } 382°) =0.
yzEbene: (y° + 29 — 2(y° + 2°) | (y* + 2°) — 2b%2* |

— 4a°b%(y° + 872°) =0.
Sie stellen einfache, geschlossene Kurven dar. Zu der Fliche
gehort, wie sich durch Nullsetzen der von diesen Gleichungen
abgespaltenen Faktoren ergibt, auch die z-Achse.

Der Schnitt dieser Hessiana mit der zyklischen Fliche, die
Kurve der parabolischen Punkte, ist von der Ordnung 32. Ihre
Projektion auf die xy-Ebene wird durch Elimination von z aus
(I) und (XXV) erhalten. Das Resultat der Elimination ist die
bereits gefundene Gleichung XXII:

(atx® 1 b'y)? = a*bt(a2x® - by,



Der Nullpunkt ist ein isolierter Doppelpunkt der Kurve. Fir

die Schnittpunkte mit dem Strahl y = mx findet man die Koor-

.dinaten: .
2h\VZ LM, @bmV@ T

X= at } b*m? y=ct a' + bim? -
wenn man vom Nullpunkt selber absieht. Man sieht hieraus,
dass jeder durch den Nullpunkt gehende Halbstrahl die Kurve
ausser dem Nullpunkt nur noch in einem Punkt schneidet,
dessen Koordinaten stets reell und endlich sind; die Kurve be-
steht daher aus einem geschlossenen Blatt um 0.

Die Abschnitte der Kurve auf der x-Achse («¢) und der .
y-Achse (8) berechnen sich aus den letzten Formeln fir m = o,
m = oo, Bestimmt man ferner aus der Flichengleichung I das
dazu gehorige z, so bekommt man:

2 # AR

x-Achse: x=a=% y=0 z:i%\/%?—b?
;

y-Achse: x=0-" yzﬁz% z:i%\/2b2—32

Die Ausdriicke ¢ und g lassen sich sehr leicht konstruieren. Wir
untersuchen die Projektion der Kurve fiir folgende Spezialfille :

1) a<< b\/i Die Abschnitte « und g auf den Koordinaten-
Achsen werden

a>a> g f<<2b.

Fir den Grenzfall a—b wird e=a, 8 =a und die Projektion
v der Kurve der parabolischen Punkte
""""" AT wird ein Kreis vom Radius a (Leit-

P kreis).
Ty R\ Sehen wir von diesemn Grenz-
\/\—/ / fall ab, so erhalten wir eine ovale
- A Kurve mit zwei Einbuchtungen in
G ST N der y-Achse. Die ganze Kurve liegt
Fig. 6. innerhalb der Schnittkurve der

Fliche mit der xy-Ebene (Aequator)
und ist symmetrisch zu den Koordinatenachsen (Fig. 6).



e, Bl —

9) a=>b\/2. Die Achsenabschnitte werden
g =1 % =4 2b.

Die Kurve der parabolischen Punkte geht also, wie bereits S. 27
konstatiert wurde, durch die Punkte der y-Achse, in welchen die
zyklische Fliche die y-Achse schneidet (Fig. 7).

3) a>by2. In diesem Falle ist

¢ < % 8> 2bh.

Alle Schnittpunkte mit der y-Achse liegen ausserhalb der Fliache
und konnen daher nicht realisiert werden. Die Kurve durch-
schneidet den Aquator in 4 reellen Punkten (Fig. 8).

Fig. 7. Fig. 8.

Hieraus und aus der Diskussion der Spurpunkte (S. 27) er-
gibt sich in den drei Fillen fiir die Kurve der parabolischen
Punkte selber folgender Verlauf:

1) a<b\{/2. Die Raumkurve besteht aus zwei getrennten,
geschlossenen Ziigen, die zur xy-Ebene symmetrisch liegen.

2) a=>bV/2. Die Raumkurve zerfillt in zwei ebene Kurven,
die sich in der y-Achse kreuzen, und deren Ebenen ‘gegen die
Aequatorebene unter 60° geneigt sind.

3) a>b\/2. Die beiden Ziige der Raumkurve werden durch
die y z-Ebene getrennt und liegen zu dieser symmetrisch. Sie
durchschneiden den Aequator je in zwei Punkten.

Anschliessend an diese Untersuchungén sollen noch die
Kreispunkte betrachtet werden. Soll ein Punkt der Flache
ein Kreispunkt oder Nabelpunkt sein, so muss die Bedingung

E:F:G=D:D":D"”
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oder weil F=0,D'=0

| E:G=D:D"
erfilllt sein. Durch Einsetzen der Werte kommt man dadurch
auf die Bedingung

: 12 4 v =0,
die, weil r nie 0 wird, fir reelle Flichenpunkte nie erfiillt wird;
d. h. die zyklische Fliche hat keine reellen Kreispunkte.
Lasst man auch imaginire Werte zu, so entsprechen der eben
aufgestellten Bedingung (nach XVI) Punkte der Fliche, deren
Koordinaten unendlich gross sind. Diese Punkte bilden in ihrer
Gesamtheit nach S. 31 den unendlich fernen Kugelkreis,
welcher somit eine Kurve sphiarischer Krimmung (Nabel-
linie) der zyklischen Fliche ist.

Il. Kapitel.
Die Zentraﬂéiche.

§ 10. Die Gleichungen der Zentrafliche in Parameterform
und in rechtwinkligen Koordinaten.

Aus dem friher gefundenen Resultat (XVIII), dass der eine
 Hauptkriimmungsradius in jedem Flichenpunkt der Grosse und
Richtung nach mit dem Radius der durch ihn gehenden erzeu-
genden Kugel dbereinstimmt, folgt, dass der Ort der Endpunkte
dieser erstem Hauptkrimmungsradien mit dem Ort der Mittel-
~ punkte der umbhillten Kugeln zusammenfillt, d.h. der den
Meridiankreisen entsprechende erste Mantel der Zentra-
flache wird durch die Leitellipse dargestellt.!)

Sind «, 3, y die Richtungswinkel der Flichennormalen, so
wird der zweite Mantel der Zentrafliche durch die Gleichungen
- dargestellt: '

X=X 19 C0s«, Y=Y, +ocos3 z=1z -+ o cosy,
wo X, ¥,,% die Koordinaten eines Punktes der zyklischen Fliche
und x, y, z die laufenden Koordinaten der Zentrafliiche sind

') Die Verallgemeinerung dieses Satzes heisst: Von den beiden
Miinteln der Zentrafliche einer Enveloppenfliche, die eine einfach unend-
liche Schar von Kugeln umhiillt, reduziert sich der den Kreisen entspre-
chende auf die Kurve der Mittelpunkte der umhiillten Kugeln. — Monge:
Applications. 5° éd.-1850 p. 376.



und ¢, den einen Hauptkrimmungsradius darstellt. Setzt man
hierin die Werte aus den Formeln XVI, VIIIa und XVIII ein,
so ergibt sich

2 8% v* cos u (t* — b? r%)

r[2t' v — 2b2(r2—|—v2)]

Dabe1 1st t?— b’ r’ =a® ¢ cos® u.

In gleicher Weise ergeben sich die Werte fir y und z. Wir
erhalten also folgende Parameterdarstellung fir den zweiten
Mantel der Zentrafliche:

X ==

2 at c? v2 cos® u

X = — 5
r[2tzvzwa‘b2(r2+v2)}
2b* c?v?sin® u : |
y=— 2 9 2,2/(.2 2 XXVI.
r|2t°v' — a’b’ (r* 4 v¥)
- 2a%b*r?y
. =

2¢*v —a’b’ (i --}—vg).

Um aus ihnen die Gleichungen fiir rechtwinklige Koordi-
naten zu erhalten, sind u und v zu eliminieren. Durch Division
der ersten und zweiten Formel ergibt sich zuniichst:

(1)

tgu—

Ist u = const, so 1st auch — const: den Parameterlinien
X

u = const, d. h. den Meridiankreisen, entsprechen somit die Schnitt-
kurven, die Ebenen durch die z-Achse aus dem Kegel der Nor-.
malen lings des Kreises ausschneiden. Wir stossen damit schon
" auf das erste wichtige Resultat: Alle durch die z-Achse ge-
legten Ebenen schneiden den zweiten Mantel der Zentra-
flache in Kegelschnitten, die durch den Nullpunkt gehen, und:

Die Endpunkte der zweiten Hauptkrimmungsradien
langsder Meridiankreise der zyklischen Fliche liegen auf
einem Kegelschnitt, dessen Ebene durch die z-Achse
geht. Ueber die Art der Kegelschnitte konnen wir aber vor-
laufig noch nichts aussagen.

Aus der ersten und dritten Gleichung XXVI folgt durch
Division:

3



X
@ —_—— o 5 . v
at ¢t 27 (a4 b’tg’ u)’
Setzen wir fiir tgu den Wert aus (1) ein, so ergibt sich
nach einiger Umrechnung folgende erste Beziehung fiir v:
3 3 ’ 43
U ¢z
\/b2 X2 +\/a2 Yy :\/a—zl;g Vz. (2)
Eine- weitere Gleichung fiir v konnen wir aus der zweiten

Gleichung XXVI finden, wenn wir in dieser den Wert (1) fur
tg u substituieren. Durch Auflésung nach v2 folgt zunichst

o = a’b’r’y
(21; —a’b)ry4-2b*Psin’ u

und hieraus mit Beniitzung von (1):

\/( +\/b2x2) 3)
[2az—b2+(2b2— 2)\/%22-_%_;] y\/1+:/?;§ — 2ac2~§

Diese zweite Gleichung fir v kombinieren wir nun mit (2).
Bs wird, wenn zugleich Zihler und Nenner der rechten Seite
3

v’ =a’ b’y

mit \/bx erweitert und die ganze Gleichung mit

Vi ey

dividiert wird:

\/\2}'02'1&"+\78t2 Y=

ctz2 .

_\/[(Za b)Y (b ady 2]\/\7b3i2+\7a2y2-—-2abc“’

/
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Durch lingere Umformung erhilt man hieraus die gesuchte
Gleichung des zweiten Mantels der Zentrafliche:

[ty — (Va1 y) |
—4a’b* ¢t (\7sz:2 -4 \3/ a’ y2)3: 0.

Sie 1st fiir den Nullpunkt erfiillt, Dieser ist also ein Punkt
der Flache.

XXVIL

§ 11. Schnitte der Zentrafliche mit Ebenen durch die z-Achse.
Der Schmtt der xz-Ebene mit der Zentrafliche hat die
Gleichung |
(32—|— )b’ x*—¢' z2i2a b’ ¢’ x =0.
Es sind dies die Scheitelgleichungen zweier kongruenter
Kegelschnitte, die durch die Transformation

, — ac?
X—X -} ——
32 _I__ (32
“auf die Mittelpunktsgleichung
b’ (a’4-¢°) x* — ¢* 2’ =Z e
el

gebracht werden. Der Schnitt mit der xz-Ebene besteht also
aus zwel kongruenten, durch den Nullpunkt gehenden Hyperbeln,
deren imaginire Achsen der z-Achse parallel sind, deren Mittel-
punkte im Abstand

ac?
+ -
a2l e
vom Nullpunkt liegen und deren Halbachsen
A ac? <8 B ab

1

T atfer 2 TV e
sind. Die lineare Exzentrizitat ist
C,—_ 2
~ a2 4-¢? 2
aund der Abstand der Brennpunkte vom Nullpunkt ist:

' , ' ab’
A +C=a Al—clz“m_
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Die eine Hyperbel hat also den rechts liegenden, die andere
den links liegenden Scheitel der grossen Achse der Leitellipse
zam einen Brennpunkt. Die Richtungskoeffizienten der Asymp-
toten sind
Bl
A

Die Hyperbeln degenerieren nur fiir den Fall, dass die Leit-
ellipse ein Kreis ist (¢c=0) in die doppelt gelegte z-Achse und
fir den Fall, dass sich die Ellipse auf ihre grosse Achse reduziert
(b =0), in die doppelt gelegte x-Achse.

- Jede dieser beiden Hyperbeln ist der Ort der Endpunkte
der zweiten Hauptkrimmungsradien lings eines der beiden in
der xz-Ebene liegenden Meridiankreise, und zwar gehort zum -
rechts liegenden Kreis die rechts liegende Hyperbel. Die Flichen-
Normalen lings eines solchen Kreises sind jedoch nicht Tangenten
der zugehorigen Hyperbel, weil die aufeinanderfolgenden zweiten
Krimmungshalbmesser lings einer Krimmungslinie der ersten
Schar sich nicht im zweiten Krimmungsmittelpunkt schneiden. Fir
die hier auftretende Hyperbel ist das sehr deutlich ersichtlich. Alle
Normalen lings des Kreises schneiden sich nimlich nach § 5 im
Scheitel der grossen Achse der Leitellipse. Dieser ist also der kon-
stante Kriimmungsmittelpunkt aller ersten Hauptkriimmungsradien
lings des Kreises. Er ist aber auch Brennpunkt der Hyperbel, und
weil alle Flachennormalen durch ihn gehen, so konnen sie nicht
Tangenten der Hyperbel sein. Die Parallelen zu den Asymptoten
durch den Brennpunkt der Hyperbel treffen den Kreis in para-
bolischen Punkten. Solcher Schnittpunkte sind, wenn wir
nur einen Kreis der xz-Ebene in Betracht ziehen, vier moglich,
aber zwel davon sind ungiltig, weil nach § 9 die Ahszisse x
eines parabolischen Punktes der xz-Ebene die Grosse a nicht
iiberschreiten darf. Allfillige Schnittpunkte der Parallelen zur
Asymptote mit dem zweiten Kreis sind deshalb nicht zu zéhlen,
weil die Normalen in ihnen durch den andern Brennpunkt der
Hyperbel gehen. — Dadurch kommen wir im Einklang mit den
fritheren Untersuchungen zum Resultat, dass in jedem Quadrantep
der xz-Ebene nur ein parabolischer Punkt liegt.

Fir den Schnitt der yz-Ebene mit der Zentrafliche lautet
die Gleichung:

+ = DT e



b? __ ¢°
2a’ bv+ 4£a-)2"
c

Sie stellt zwei kongruente Kegelschnitte dar, und zwar
sind es

i

C

Ellipsen, wenn a > b\/2
Hyperbeln , a~ b\2
Parabeln , a=b V2.

D1e ‘v-Achse ist Hauptachse der Kegelschnitte.

Im ersten Falle sind alle Krimmungsradien endlich, die
Flache weist lings der Meridiankreise in der yz-Ebene keine
parabolischen Punkte auf. Im zweiten Falle gilt dasselbe wie
fir den Schnitt mit der xz-Ebene, und im dritten Falle liegt
fiir beide Parabeln der unendlich ferne Punkt in der y-Achse.
Seine Verbindungsgerade mit dem Kreismittelpunkt trifft die
Fliche in den Punkten x==0, y=+42b, z =0, welche die ein-
zigen parabolischen Punkte der yz-Ebene sind. Alle drei Fille
decken sich vollstindig mit den Resultaten in § 9.

. Eine beliebige Ebene durch die z-Achse von der
Gleichung y =m x schneidet die Zentrafliche in einer Kurve,
deren Projektion auf die xz-Ebene die Gleichung

J 2(1—}—m)—l—41——x(\/a \/bm)3

. 3 3_ __\3
=-4-2abc’x \/(Vlb“)—f—\/au3 mz)

hat. Sie ist von der Form

und stellt also zwei kongruente, durch den Nullpunkt gehende
Kegelschnitte dar, deren Hauptachsen mit der Spur der Schnitt-
ebene auf der xy-Ebene zusammenfallen. Auch diese Eigenschaft
haben - wir schon frither (S. 33) kennen gelernt.

' .Die Kegelschnitte konnen Ellipsen, Hyperbeln oder Parabeln
sein, wenn a>b\/2, Sie sind, ausgenommen der Schnitt mit
der yz-Ebene, nur Hyperbeln, wenn a="hb\/2, und tiberhaupt
nur Hypelbeln wenn a < b\/2.
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§ 12. Die Schnittkurve der Zentraﬂﬁcﬁe mit der xy-Ebene.

Die Schnittkurve mit der xy-Ebene ergibt sich aus (XXVII)
fir z=0:

[ et (xP -+ yz)- _ (\:} S _I_& x y2)3]2
—4a' b ¢ (\71';2—1-1_2 + \?vaﬁ;é)?

Will man die Gleichung in rationaler Form haben, so geht
man wie folgt vor: Die linke Seite lisst sich, wie sich leicht
nachrechnen lisst und wie aus S. 34 gefolgert wird, identisch
schreiben :

} : S . N— 320 3224
|2+ A V'x* + (0 — ) Valy ] Vb’ Vel

sodass die Gleichung der Kurve in

[+ VR =+(b_02)\/a 7y [ +\7a2y"'_ 1)

XXVIIL

=4 a b2 4
und \/b2 =] \/a ==
oder b? x2 +a?y? = O zerfallt.

Der der letzten Gleichung entsprechende Kurvenzweig redu-
ziert sich auf den Nullpunkt.

Rechnet man die linke Seite von (1) aus und fasst in
passender Weise zusammen, so wird

3 3
3\/a b x2 2[b —}—02)\/32;3—f—az(b2-~cz)\/a2y2
. =4a bzc4—b2(az—}—cg)xz—ag(b?—cz) V.
Diese G‘rleichung erhebt man in die dritte Potenz:
7 b’ y? (a +c) b2 x° }—as(b —c)3a2y2

+ a’ (bz—c)\/a ]}_- 4a bzc4~—b2(a, + ') x° —ag(bg—cg) i
und ersetzt den Ausdruck in der eckigen Klammer durch den
Wert in der vorangehenden Gleichung. Dann wird die gesuchte
rationale Gleichung der Schnittkurve mit der xy-Ebene:

27 2 b” x° y? {b* (a® 4 ¢®)*[b* (a® + ¢°) — a®(b® — )| x°
+ a0 — ) [a* (b2 — &) — bi(a2 D] ¥°
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—|—4 a' b*¢* (2’ 4 ¢°) (b° — &%)}
={4a’ b’ c'—b*(a’+ ) x* — a?(b*— ) y*}’. XXVIIIa.
Die Kurve ist also vom 6. Grade. Ihre Schnittpunkte mit den
Koordinatenachsen sind, abgesehen vom Nullpunkt:

2

x-Achse: X ===} —22%_9—2-, je dreifach
2bc?

y-Achse: ==} P2 cczv » »

Wihrend die Abschnitte auf der x-Achse immer endlich und
kleiner als a sind, werden die Abschnitte auf der y-Achse fiir

den Fall b—=c (a = b\/2) unendlich gross.

Zur weitern Untersuchung dieser Schnittpunkte ist es not-
wendig, den einen oder andern zum Nullpunkt zu machen, also
die Transformation

x=x' 4—&2_[_02

vorzunehmen. Dadurch verschwindet das konstante Glied auf
der rechten Seite und die Kurvengleichung erhalt die Form:

2 2 3
(x+ - j‘r" ) (AX 4 Bx 4 Cy 4 D)y'=(BEx* 4 Fx+ Gy)
Der Schnittpunkt ist also in beiden Fillen ein Doppelpunkt und
die Tangenten in ihm werden:

(_Z;ac32)2Dy2=0 also:
a Hc )

y =0 doppelt.
Die zwei Schnittpunkte mit der x-Achse sind also Spitzen, mlt'
der x-Achse als gemeinschaftlicher Spitzentangente.
Ganz in gleicher Weise lasst sich zeigen, dass die beiden
Schnittpunkte der Kurve mit der y-Achse Spitzen sind mit der
y-Achse als gemeinschaftlicher Spitzentangente und zwar gilt

dieses Resultat in allen Fillen, wenn b—c bezw. a_ =k V2 ist.

Um die Richtungen der Asymptoten zu ﬁnden, geht
man besser von Gl. XXVIII aus, indem man in ibr die Glieder
hochsten Grades:

ct (x* 4 y?) — (i/a4 x2 4 E)\‘/134 y2)’=0 (2)

setzt. Fiithrt man zur Abkiirzung
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3

Y
\/X2 B (3)

ein, wo %z_lu den Richtungskoeffizienten der Asymptoten be-

deutet, so verwandelt sich (2) in .
3 b2 ’ ] 3b ° h? (a2 4-c?)

By 00 \ap @ - st =0,

’+3(b2—02)\ +b2—c\/ +aQ(b3_cz) |

Diese kubische Gleichung bringen wir vermittelst der Substitution

\/a b?

g:’]‘——

aw—c
auf die reduzierte Form:
. 3bct 2b*c’
iy — YT V *b q 4—“‘55—2"—2 = 0.
a*( %) a?( c?)’

Die Diskriminante dieser kubischen Gleichung wird null und die
Wurzeln sind

2¢? ¢
= — ab?
i1 a,(b?'— 02) \/
c? y .
Np == Ny == (b2 2) Vab?,
a(b> — ¢
sodass
3
22— /P
17 g2 %h? \ a?
3
I

Hieraus ergeben sich die Richtungskoeffizienten der Asymptoten:
‘b / a2 __ bz)s
= i— a \/ (az — 2b? 4)

b .
= ptg = + = 1.
a

Von den 6 Asymptotenrichtungen sind also 4 imaginir (die paar-
weise zusammenfallen) und zwei reell. Aber auch diese sind
nur so lange reell, als a>b{/2. Fir a=b\/2 wird g4, = oo,
die Asymptote ist der y-Achse parallel. Dieser Fall entspricht
in der yz-Ebene der Parabel. Ist a > b\/2 so sind zwei Asymp-
totenrichtungen reell.
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Die Gleichungen der Asymptoten selbst kénnen nicht
nach der allgemeinen Theorie bestimmt werden, weil zwei Rich-
tungen zusammenfallen. Wir gelangen aber zu ithnen, wenn wir
die Asymptoten der Kurve als Normalen in den Wendepunkten
der Aquatorkurve der F, auffassen.

Durch Differentiation der Kurvengleichung

(¢ +yP = 45"+ by
findet man fiir den Richtungskoeffizienten der Normalen:
y x| yt—2b
_ x x4 y% - 2a2
Setzt man hierin die Koordinaten der Wendepunkte nach den
Formeln (V) em, so findet man |

b / ( 2a? — b%\?

m:i—zf\/ \a? — 2b2)
wie 1n (4). Diese Methode fithrt bedeutend rascher zum Zle]e _
aber wir erhalten nur die reellen Asymptoten, so lange uns die
Koordinaten der imaginiren Wendepunkte unbekannt sind.

Die Gleichungen der Normalen in den Wendepunkten oder

der Asymptoten werden jetzt

y—y,=mE—x)
Setzt man ftir x,,y, die Koordinaten der Wendepunkte ein, so
‘erhidlt man 4 reelle Asymptoten, die paarweise parallel sind.
Thre Gleichungen sind:

a(a? — 2b?) Va2 — 2b2. y 4 b(2a% — b2)\/2a7 — b2 x
= -}-abc {/8(2a7 — b?)(a? — 21?)

a(a? — 2b?) Va? — 2b%- y — b(2a2 — b2)\/2a? — b2
=} abc V/3(2a2 — b?)(a?— 2b?).

Ist speziell a=—b\/2, so wird x=0, d h. die Asymptoten fallen

mit der y-Achse zusammen.
Die Abschnitte der Asymptoten auf den Koordinatenachsen

n — -

XXIX.

sind
(x-Achse) €, == SYCRET \/.‘:’»(a2 — 2b?) wo a>b\/2
{y-Achse) B, = ~—~b—— V3 (2a? — b?),

a? — 2hb?



wihrend die Koordinaten der Spitzen dem absoluten Werte nach
(S. 39)

2ac?
(x-Aehse) tty == 247 — 17
2bc?
-Achse 3 == -
(y ) | b= o
sind. Es ist leicht emnzusehen, dass stets
@ <oy 3y > Py

Die Kurve, die zugleich Evolute der Fusspunktskurve
der Leitellipse ist, hat in den drei Fallen a<b\2 a=h\2,
a>b\/2 die in den Figuren 9, 10, 11 gezeichnete Gestalt.

Y

do S . X 0 S x

Fig. 9. Fig. 10.

Fig. 11.
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§ 13. Diskussion der Zentrafldche.

Gestiitzt auf die gemachten Untersuchungen ist es moglich,.
eine Vorstellung von der Zentrafliche zu erhalten. Den ersten
Mantel, der in die Leitellipse ausartet, schliessen wir von einer
weitern Betrachtung aus und beschrinken uns auf den zweiten

Mantel. Da dieser seine Gestalt #ndert, je nachdem aéb\/z—

ist, so miissen wir die drei Fille getrennt behandeln. In allen
Fallen sind die Schnitte durch die z-Achse Kegelschnitte.

1. Fall: a < by2. (Fig. 13). Wir fassen zunichst die
Schnitte mit den Koordinaten-
ebenen ins Auge. A, B (Fig. 12)
seien die parabolischen Punkte

in der xz-Ebene; C, D dieje- - . i
nigen in der yz-Ebene. Denken -
- wir uns einen Punkt auf dem \

einen, rechts von der z-Achse :
liegenden Meridian-Kreis der [ _* \—//

F, in der xz-Ebene wandernd 7 8 v
von S, bis A, so beschreibt )

der Endpunkt des zugehorigen Fig. 12.
zweiten =~ Hauptkrammungs-

™~
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radius den unendlichen Hyperbelbogen S, A, (Fig. 13). Wandert der
Punkt weiter von A nach O, so schreitet der Kriimmungsmittel-
punkt auf der Hyperbel von A, (im Unendlichen) nach O. Dem
Weg von O, bis B entspricht der unendliche Bogen OB, und
-dem letzten Stick BS, der unendliche Ast B,S,. Ganz ent-
sprechendes gilt fiir den zweiten, zu diesem kongruenten Meri-
diankreis der xz-Ebene. Ihm ist die zweite Hyperbel der xz-
Ebene zugeordnet. Durchwandert ein Punkt beide Kreise, was
ohne Sprung moglich ist, so muss auch der zugehorige Krim-
mungsmittelpunkt die beiden Hyperbeln ohne Sprung durchlaufen
koénnen. | : :
Dasselbe lisst sich sagen fiir die yz-Ebene und uberhaupt
“fiir je de durch die z-Achse gelegte Ebene. Die Zentrafliche lisst

kA

Fig. 14.

sich 1hrer Gestalt nach am besten vergleichen mit der Fliche,
die von emer durch den Nullpunkt gehenden Hyperbel, deren
Scheiteltangente die z-Achse ist, bei der Drehung um die z-Achse
beschrieben wird. Nimmt man an dieser Fliche die durch die
aufgestellten Eigenschaften erforderlichen Verinderungen vor,
so gelangt man zu einem ziemlich klaren Bild der Flache. Diese
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scheint demnach aus zwei Minteln zu bestehen; aber die eben:
gemachten kinematischen Betrachtungen zeigen, dass diese im.
Unendlichen in gleicher Weise zusammenhingen, wie die vier
Aste zweier kongruenter Schnitthyperbeln. 2
2. Fall: a=b\/2. (Fig. 14.) Die Fliche hat im wesent--
lichen dieselbe Gestalt wie im 1. Fall, nur ist hier der Schnitt
mit der yz-Ebene eine Parabel. Die Hailfte dieser Koordinaten-
ebene, die die positive y-Achse enthilt, weist daher auch nur:
einen einzigen parabolischen Punkt auf (in §,). |

| 3. Fall: a>by2. (Fig. 15) Um eine Anschauung von
der Fliche zu bekommen, denken wir sie uns durch die yz- Ebene=

Fig. 15.

“entzweigeschnitten. Dann entstehen auf der positiven Seite-
dieser Ebene zwei Mintel. Der Mantel I enthilt die Kurven
G, S, K, und A S, B,, der Mantel II die Kurven H, S, und
J, S,, sowie die beideni Ellipsen S, O und S, O und die Hyperbel
-E,OF,. Beide Mintel schneiden sich im Endlichen nicht. Auf
der negativen Seite der yz-Ebene sei der zu I symmetrische
Mantel mit III, der zu Il symmetrische mit IV bezeichnet. Lings.
der yz-Ebene hidngen II und IV zusammen und im Unendlichen



emerseits I und IV und anderseits 1I und III. Die Fliche ist
also einfach zusammenhingend; denn geht man z. B. von I aus,
so kann man ohne Sprung nach IV, von da nach II und von
II nach III gelangen.

Zum Schlusse suchen wir noch die den Parameterkurven
entsprechenden Kurven der Krimmungsmittelpunkte, 7°, und I,

Fir die Kriimmungslinien u= const (Meridiankreise) wird
I, auf einen Punkt der Leitellipse reduziert. I, ist ein Kegel-
bchmtt dessen Kbene durch die z-Achse geht (S. 33).

Fur die Krummungshmen v =const =k 1st I dle Leit-
“ellipse. I, ist der Schnitt der aus Gl (2) § 10 sich fur v=k
ergebenden Flache

die sich rational schreiben lasst:
o5 5 s c4k2z2
(b x2 4 a?y? — T
mit der F,, also der Schnitt eines Kegels 6. Or,dnung, dessen
Spitze 1n O bhegt, mit der zyklischen Fliche.

3
) = 27¢tk2x2y?z2

III. Kapitel:
Konforme Abbildung.

§ 14. Einfithrung isothermer Parameter.
In XVII ergab sich fir das Linienelement\'der Flache:

4
d52 = (1.2 _I_ v2)2 ( r“ dll2 + ﬁdvg)
Dasselbe lisst sich auch schreiben
4 1
def o= v (L e _dz). 1).
S (ra+vz)2 (rﬁ +v4 V‘, ,.“(.)

Indem nun in der Klammer der Koeffizient von du?eine reine
Funktion von u ist und ebenso der Koeffizient von dv? eine reine
Funktion von v, so ist-es moglich, durch die Substitution

du, = — du



s, M =

eine Einteilung der Fliche in unendlich kleine Quadrate herzu-
stellen. Setzt man die Werte fiir u und v, die sich aus

u, = —-1-3-- du
1 8
| ] . 2
m [Lavmt ®
J V2 v S

ergeben, im Ausdruck (1) fir das Linienelement ein, so wird der

Faktor vor der Klammer eine Funktion von u, und v,, also

d s® = @ (uy, vy) (duf —{—dv?) - 3)
Es handelt sich nun darum, das noch nicht berechnete Integral
fur u, in (2) auszumitteln. Dieses wird, wenn man fir ¢t und r

die Werte aus (XVII) einsetzt:
u __f /a* cos® u -t b* sin u

(a-‘ cos? u -} b? sin? u)?

zf\/ at }-b*tgZu du
(a® -} b? tg?u)® cos?u
Vermittelst der Substitution

L
b tg¢
lasst sich dasselbe auf die Form bringen:

tgu=

== f V(a2 cos2 P —|— b? sin? )3

oder wenn _——:——li = % = e?
a a
gesetzt wird, wo e <1:
1y e 1 S
17 a2 ]V (1 —e?sin? )P
oder in der iblichen Schreibweise:
ne 2 iwfp‘

Nach bekannten Formeln ﬁndet man hieraus durch Emiuhrung
des elliptischen Normalmtegrals II. Art E (e, ¢):

e? sin ¢ cos
1-——-—E(, H— SIn@peosg

Die neuen (thermlschen) Parameter u,, v, driicken sich also fol-
gendermassen durch die alten aus:
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e* sin ¢ cos ¢

u = —~~E(e,[)—{-— Ao
v =t XXX,
v
WO \*-arct a’—2 i)
| L . <b2 tgu

§ 15. Konforme Abbildung der Fldche auf einen ebenen Streifen
und auf die Fliche eines Kreises.

Eine konforme Abbildung einer Fliche auf eine Ebene wird
dadurch erzielt, dass man die thermischen Parameter der Fliche
als rechtwinklige Punktkoordinaten in der Ebene deutet.!) Sind
x, y die rechtwinkligen Koordinaten des Punktes in der Ebene,
der das Bild des Punktes (u, v,) der Fliache ist, so ist also
zu setzen:

g = = ﬁE(e fP)+*qu)cos¢
Ag¢
1 XXXI.
y:‘rl:—;a :
wo wiederum ¢ sich aus
1 v 2 e e
=7 b? tgu

bestimmt. Durch diese Formeln wird die konforme Abbildung
vermittelt. Fir verschiedene Werte von u ergeben sich die
folgenden Werte, in denen E das vollstindige elliptische Norma]

integral II. Art:
E=E (e, ]—5)
2

bedeutet:

) G. Scheffers: Anwendung der Diff. und Int. Rechnung auf I;eo
metrie. Il. Bd. p. 71. -



u tgg 72 X
0° oo 2 _1 E

2 b

90° 0 7T 0

180° — o0 % }_ E
2 b

2700 0 2. 2g
b

360° o0 dn 35
2 | b

Fiar alle folgenden Werte von u nimmt x periodisch zu, und

zwar fir je 90° um -l—E

b

¥

Fir v=0wird y =4 o<
w V- oo wird y=0.

Die Fliche 1st also

konform abgebildet auf einen

zur y-Achse parallelen Strei-

fen von der Breite é E

(Fig. 16). Der Mittelpunkt BE
der Fliche (v =0) wird in
den unendlich fernen Punkt

ZE

£

der y-Achse abgebildet, der

Aequator (v = oo) in die

x-Achse. ,
Der ersten Schar von

Krimmungslinien  (Meri-
diankreise) entsprechen Pa- w00
rallele zur y-Achse, der

zweiten Schar Parallele zur
x-Achse.

u-180°

Fig. 16.

v-270°

u-360°

Es bietet nun keine Schwierigkeiten, diesen Streifen — und
damit also auch die Fliche — konform auf das Innere des Ein-

4
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heitskreises abzubilden. Legen wir der Ebene des Kreises das
Koordinatensystem &, % zu Grunde, so vermittelt die Funktion?)

¢ 1 i)
s il 4% XXXIL
S+in+1
wo E wieder das vollstindige elliptische Normalintegral 1I. Art
bedeutet, die gewiinschte Abbildung. Hieraus wird

.92 2* -y ]
.§H+n2 12 e cosMx (1)
E+1)" 4+ 4E
b
— I J i
K _—e " sin Mx (2)
E+1° 4o 4E

Durch Elimination von x aus (1) und (2) resultiert die Gleichung

b
14 e 2B
§2_25 b7t +n2_1: ’
l—e 2E
die einen Kreis darstellt, dessen Mittelpunkt im Abstand
bn
14e 28’7
p—L1te = ®
1—e 2E°
vom Ursprung auf der -§-Achse liegt und dessen Radius
b
2e iE 7
L b
1—e 2E’

ist. Fur v =const. wird y = const. und damit p und r, const.;

d. h. der zweiten Schar von Krimmungslinien auf der .

Fliche entsprechen Kreise, deren Mittelpunkte auf
der &-Achse liegen.

Durch Elmination von y aus (1) und (2) folgt die Glei-
chung

bz
§2—|—n2—2ncotgﬁx—1=0,

die wiederum einen Kreis darstellt, diesmal vom Radius

Y A. R. Forsyth: Theory of Functions of a complex Variable,
p. 508. ;
W. F. Osgood: Lehrbuch der Funktionentheorie I, p. 402.



Sein Zentrum liegt im Abstand
q = cot, b—” X
*1E

auf der n-Achse.
Hieraus findet man

o 1 2
ry —q =1.

Die Strecken r,, q und 1 bilden also ein rechiwinkliges Dreieck,
r, und q sind variabel, aber die Kathete 1 bleibt fest. Alle
Kreise, welche der obigen Gleichung entsprechen, gehen also
durch den festen Punkt, der im Abstand 1 auf der &-Achse liegt
— und ebenso durch den symmetrischen Punkt der negativen
S-Achse.

Fiar u = const. wird x = const. und somit q und r, const.,
d. h. der ersten Schar von Kriimmungslinien (den Meri-
diankreisen) entspricht im Bilde ein Kreisbiischel durch
zwel feste Punkte, dessen Achse mit der x4-Achse zu-
sammenfallt.

Das gegenseitige Entsprechen von Kurven ergibt sich aus
folgenden zwei Tabellen:

u X q Iz
0 —l E _ )

0 v 1 V2
90° 0 0 1
1 _

180° | BE +1 \/2
700 | %E - -

| _

360° %E —1 V2




v Y p T
—

0 —+ o0 +1 0

oo 0 —_too oo

Die Figur 17 (sie 1st der Anschaulichkeit wegen um 90°
gedreht) stellt die konform abgebildete Fliche dar.

X

Fig. 17.
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