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Arthur Fischer.

Ueber eine zyklische Fläche vierter
Ordnung.

Eine Kugel von veränderlichem Radius bewege sich so,
dass ihr Zentrum auf einer festen Ellipse fortschreitet und ihre
Fläche durch den Mittelpunkt der Ellipse geht. Die Umhüllende
dieser einfach unendlichen Schar von Kugeln '), die als solche

zu den zyklischen Flächen gehört, ist Gegenstand vorliegender

Arbeit.

I. Teil.

Untersuchung der Fläche in rechtwinkligen und
Polarkoordinaten.

§ 1. Aufstellung der Flächengleichung in rechtwinkligen
Koordinaten.

Die Ellipse, auf welcher sämtliche Kugelmittelpunkte liegen,
bezeichnen wir als Leitellipse. Wir legen sie in die xy-Ebene
eines räumlichen cartesischen Koordinatensystems derart, dass

ihre Gleichung
,2 2 2 2 2 i 2 (t\bx-f-ay=aD '"

wird, wo a und b die Halbachsen der Ellipse bedeuten.
Sind £, »j, £ die Koordinaten irgend eines Punktes einer

bestimmten Kugel der Schar, deren Radius 1 und deren Mittelpunkt

(x, y) auf der Leitellipse liegt, so gilt für ihn die Kugel-
gleichung

(i--x)2 + 0,-y)2 + CXl2,

]) Lecornu bezeichnet die Enveloppenflächen von Kugeln al
„Perisphär en". Die vorliegende Fläche gehört nach seiner Klassifikation
zu den Perisphären 2. Gattung.
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die sich, weil die Kugel durch den Mittelpunkt 0 geht, auf

i=X2 + ^2HX-2(X-Hy)=o (2)
reduziert.

Lässt man denKugelmittelpunkt die ganze Ellipse durchlaufen,
x und y also alle nach Gleichung (1) möglichen Werte annehmen,
so stellt die Gleichung (2) die einfach unendliche Schar von
Kugeln dar. Indem man x und y als Parameter auffasst und
zwar x als unabhängigen und y als abhängigen, ergibt sich die
Gleichung der Enveloppe aller Kugeln durch Elimination der
Parameter x und y aus den Gleichungen

{=-0, *-f=o
dx

und aus Gl. (1). Die zweite Bedingung lautet in unserm Falle

+ -'¥ -dx
oder, wenn man den aus (1) sich ergebenden Wert

dy_ b x
dx a y

einsetzt :

— a y t — b x 7j 0. (3)
dx

Durch Elimination der parametrischen Koordinaten x, y des

Kugelmittelpunktes aus den Gleichungen (1), (2) und (3) ergibt
sich:

f+rf+i? -2\fai?-\-b2ri2 0

oder, wenn wir i, tj, t durch x, y, z ersetzen :

(x2 + y2+z2)2=4(a2x2 + bV). I-

Dies ist die gesuchte Gleichung der Enveloppenfläche.
1st die Leitkurve speziell ein Kreis, also b a, so reduziert

sie sich auf:

(x2-fy2 + z3)2=4a2(x2fy2). Ia.
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Die Fläche wird, weil der Radius der erzeugenden Kugel
konstant ist, zu einer Kanalfläche oder Röhrenfläche, die aus dem
Torus hervorgeht, wenn dessen innerer Radius verschwindet.

Diskussion der Flächengleichung. Die Enveloppen-
fläche ist von der vierten Ordnung. Sie ist, wie man leicht sieht,
in Bezug auf alle drei Koordinatenebenen symmetrisch.

Die homogen gemachte Flächengleichung heisst:

F (x2 + y2 + z2)-4 w2 (a2 x2 + b2 y2) 0. Ib.

Der Schnitt mit der unendlich fernen Ebene w 0 ergibt sich zu

(x2 +y2+z2)2=0, (4)

d. h. der Richtungskegel ist ein imaginärer Kreiskegel. Die
Fläche ist somit geschlossen und liegt ganz im Endlichen. Die
Gleichung (4) stellt aber auch den unendlich fernen Kugelkreis

dar, d. h. die Enveloppenfläche geht durch den unendlich
fernen imaginären Kugelkreis. Diese Tatsache kann man sich
dadurch erklären, dass jede Kugel durch den unendlich fernen
imaginären Kugelkreis geht, also auch die Enveloppe aller Kugeln.

Der „Mittelpunkt" der Fläche, d.h. der Ursprung x 0,

y 0, z 0, erfüllt die Flächengleichung und ist ein Doppelpunkt.

Die Gleichung seines Knotenkegels ist
2 2 i 2 2 na x -j~ b y =0.

Dieser zerfällt in die beiden zur xz-Ebene symmetrischen
imaginären Ebenen

a
y + — ix,- b

welche Tangentialebenen im Nullpunkt sind. Beide
Ebenengleichungen sind für x 0, y 0 erfüllt; die beiden imaginären
Tangentialebenen schneiden sich also in der z-Achse, welche
Knoten kante der Fläche im Mittelpunkt ist. Sie schneidet die
Fläche in 4 zusammenfallenden Punkten. Der Nullpunkt ist
deshalb ein biplanarer Doppelpunkt mit zwei konjugiert
imaginären Tangentialebenen und reeller Knotenkante.

Es fragt sich, ob ausser dem Mittelpunkt noch andere
Punkte Doppelpunkte seien. Damit ein Punkt Doppelpunkt sei,
muss er die Bedingungsgleichungen
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F. — (x2 + y2 + z2)x — 2a2w2x 0
dx

F2 ^=(x2-f y2+z2)y-2b2w2y 0
dy

F3 ^=(x2-f y2 + z2)z =0
o z

t- S F 2 2 2\2 nF4 —- (x -f- y -f z) w =0
ÖW

erfüllen, und das tun nur der Nullpunkt x O, y 0, z 0,

w 1 und die Punkte des unendlich fernen imaginären
Kugelkreises: der Mittelpunkt und die Punkte des imaginären
Kugelkreises sind die einzigen Doppelpunkte der
Fläche. Der imaginäre Kugelkreis ist eine Doppelkurve der
Fläche.

§ 2. Schnitte mit Ebenen durch die z-Achse.

Durch die z-Achse legen wir eine beliebige Ebene, die mit
der x-Achse den veränderlichen Winkel <p einschliesse. Um eine
einfache Gleichung für die Schnittfigur zu erhalten, machen wir
diese Ebene vermittelst der Transformationsgleichungen

x x'cosç> — y'&axtp

y x'sinç> -}- y'cos^
z =z'

zur neuen x'z'-Ebene. Die transformierte Flächengleichung :

(x'2 + y'2 -f z'2)2 4a2(x'cosy> — y'sin?)2

-j- 4 b2 (x'siny -j- y'costp)

liefert für den Schnitt der Fläche mit der x'z'-Ebene y' — 0 die
Gleichung

x'2 ~f- y'2 ± 2 V/a2cos'V + b2sinV - x',

die zwei kongruente Kreise darstellt, deren Peripherien den
Nullpunkt enthalten und deren Zentren auf der positiven und negativen

x'-Achse im Abstand

Va cos2^ -f- b2sin2y II.



vom Nullpunkt liegen. Jede Ebene durch die z-Achse
schneidet die Fläche in zwei kongruenten Kreisen, deren
Radien durch (II) gegeben sind; wir nennen sie Meridiankreise.

Die Fläche enthält also eine einfach unendliche Schar
von Kreisen, d. h. sie ist eine zyklische Fläche.

Führt man vermittelst

x y 2 2.2cosy>=—, sinf — -, r x -\- y
v r

wieder rechtwinklige Koordinaten ein, so ergibt sich für die
durch (II) dargestellte Kurve der Mittelpunkte aller
Meridiankreise die Gleichung

/ 2 'A2 2 2 2 2 tt(x" + j'f ar -r- b2y", IIa.
die eine der Leitellipse umschriebene Booth'sche elliptische
Lemniskate darstellt. Sie ist die Pedale der Ellipse in Bezug
auf ihren Mittelpunkt und berührt diese nur in deren Scheiteln ;

also sind diese Berührungspunkte die einzigen Mittelpunkte von
Meridiankreisen, die auf der Ellipse liegen. Die Radien der zu
ihnen gehörenden Meridiankreise der xz- und yz-Ebene sind also

gleich den Radien der Kugeln, die ihre Mittelpunkte in jenen
Scheiteln haben, nämlich r' — a und r" b. Diese den Werten
tp 0° und tp — 90° entsprechenden Radien bilden zugleich das

Maximum und Minimum für r. Bezeichnen wir jene durch die
xz- und yz-Ebene ausgeschnittenen Kreise als ersten bezw.
zweiten Hauptmeridian, so können wir sagen:

Die Radien des ersten und zweiten Hauptmeri-
dians bilden die Extremwerte aller Meridianhalbmesser
und haben die Länge der grossen bezw. kleinen Halbachse

der Leitellipse.
Für den Fall, dass b a wird, fällt die Kurve der

Mittelpunkte sämtlicher Meridiankreise mit dem Leitkreis zusammen.

§ 3. Schnitt der Fläche mit der xy-Ebene.

Die Schnittkurve der Fläche mit der xy-Ebene, der «Äquator»,

hat die Gleichung

(x2 + y2)2=4(a2x2-f-b2y2). III.
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Sie ist eine Booth'sche elliptische Lemniskate, die zu einer
Ellipse mit den Halbachsen 2 a und 2 b gehört. Sie ist zu den
Koordinatenachsen symmetrisch und besteht aus einem geschlos -

senen Blatt um den Nullpunkt; dieser ist ein isolierter
Doppelpunkt oder konjugierter Punkt der Kurve.

Da jede Kugel auf der xy-Ebene einen Kreis ausschneidet,
so ist, wie sich übrigens auch direkt zeigen lässt, die Schnittkurve

die Enveloppe aller durch den Nullpunkt gehender Kreise,
deren Mittelpunkte auf der Ellipse

,2 2 i 2 2 2, 2bx fay a b

liegen. Diese Eigenschaft lässt sich besonder? gut verwenden
zur Konstruktion der Kurve.

Andererseits ist die Äquatorkurve auch der geometrische
Ort der Fusspunkte der Perpendikel vom Nullpunkt auf alle
Tangenten an die Ellipse von den doppelten Halbachsen:

b2x2-|- a2y2 — 4a2b2, IV.
wie leicht nachzuweisen ist, d.h. sie ist die Fusspunktskurve
oder Pedale dieser letztern Ellipse in Bezug auf ihren Mittelpunkt

als Pol.

Führt man in Gl. (III) mit Hilfe von

x Qcostp
'

y — Qsinip

Polarkoordinaten ein, so wird die Polargleichung des Aequators

q -= 4(a"cos"f -f- b sin~^>) 4r~. lila.
Hieraus ergibt sich die folgende Konstruktion für die

Kurve. ') Man konstruiere
(Fig. 1) um den Mittelpunkt
C zwei Kreise mit den Radien
2 a und 2 b und ziehe einen
beliebigen Strahl unter dem
Winkel tp gegen die Hauptachse,

der die beiden Kreise
in den Punkten A und B
schneidet. Zieht man durch A

A

P.

2a
Fig. 1

') Schlömilch: Uebungsbuch zum Studium der höheren Analysis,
I, S. 106.



eine Senkrechte und durch B eine Parallele zur Hauptachse,
deren Schnittpunkt Q sei, so ist CQ p der gesuchte Radiusvektor,

der nur noch auf CA abzutragen ist. — Der Beweis

ergibt sich aus /\ BQD, in welchem

BD BE 2bsiny CD 2acos^
ist, somit

CPXCQ2 q2 4(a2cosV + bWf«) 4r2.

Für die höchsten und tiefsten Punkte der Kurve ergeben
sich die Koordinaten

X^±i\/X2b2 v=X^2,
c c

wenn c die lineare Exzentrizität der Leitellipse bedeutet. Sie

fallen für a b\/2 mit den Scheiteln der kleinen Achse der

Ellipse (IV) zusammen.

Für die Koordinaten der vier Wendepunkte findet man

x _L-^_N/3(a2_2b2) +_X^v/3(2?Xb2Tv.
c(a2+ b2)

J -c(a2 +b2)
Sie sind nur reell, wenn a > h\j2. Für a b\/2 fallen sie in
die Scheitel der kleinen Achse der Ellipse (IV).

Die Fusspunkt-Eigenschaft des Aequators lässt sich sofort
für die Fläche verallgemeinern. Ein beliebiger Meridiankreis
(Fig. 2) vom Mittelpunkt C treffe den Aequator im Punkte Q.
Ist dann P irgend ein Punkt dieses Meridiankreises, so ist
<£ QPO 90°. Die in Q zu OQ senkrechte Gerade t ist eine

Tangente an die Ellipse (IV). Legt man durch sie alle möglichen
Ebenen und fällt von 0 aus auf jede ein Lot, so liegen alle
Fusspunkte dieser Lote auf dem Meridiankreis OPQ. Hieraus
ergibt sich :

Legt man durch alle Tangenten der Ellipse von
den Halbachsen 2a und 2b alle möglichen Ebenen und
fällt Perpendikel vom Mittelpunkt der Ellipse auf jede
derselben, so ist der Ort der Fusspunkte die betrachtete

zyklische Fläche vierter Ordnung.
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+x

C\r

c9

Fig. 2.

§ 4. Schnitte parallel der xy-Ebene.
Durch eine zur xy-Ebene parallele Ebene von der

Gleichung z s const, wird die Fläche in der in Bezug auf den

jeweiligen Nullpunkt zentrisch symmetrischen Kurve
(x2 + y2 + s2)2=4(a2x24-b2y2) (1)

geschnitten, die, wie aus der etwas umgeformten Gleichung

(x2 + y2 + s2 — 2 b2)2 4(c2x2 — b2 s2 + b4) (2)

ersichtlich ist, zu den spirischen Linien des Perseus gehört.
Sie ist eine bizirkulare C4 und besitzt als solche zwei
ausserordentliche Brennpunkte, deren Orthogonalprojektionen auf die

xy-Ebene sich mit den Brennpunkten der Leitellipse decken.

Zieht man vom Nullpunkt aus beliebige Strahlen durch
die Kurve, so hat das Produkt der auf jedem dieser Strahlen
vom Nullpunkt aus gemessenen Radienvektoren den konstanten
Wert s4 (Potenz).

Führt man vermittelst
X pcosf, psinyj
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Polarkoordinaten ein, so wird die Gleichung (1):
/ 2 | 2\2 2/ 2 2 2 • 2 -.

(q -\-s 4 q (a cos -97 -f- b sm tp),

woraus sich ergibt

2 • 2

+ \/2r2 ~2 + 2rV/?s i-ürv r

wo aXs" tp -\- h'srn tp r" gesetzt ist.

1. Fall: Ist s < b, so wird p immer reell, also werden
auch alle vier Schnittpunkte eines Strahles durch den Nullpunkt
mit der Kurve reell, d. h.

Alle Ebenen z << b schneiden die Fläche in zwei
getrennten, reellen Kurven, die den Nullpunkt um-
schliessen (Fig. 31), Kurve a).

2. F a 11 : Ist s — b, so reduziert sich Gl. (2) auf

l 1 \2 1 2 2
(x ± c) + y a

welche zwei Kreise vom Radius a darstellt, deren Mittelpunkte
in den beiden Brennpunkten liegen:

Die Ebenen z + b schneiden aus der Fläche je
zwei Kreise aus, die sich in der yz-Ebene kreuzen (Fig. 3,
Kurve b).

3. Fall. Ist a>s>b,
so werden nicht alle
Radienvektoren reell. Die beiden
Kurven haben kein Flächenstück

gemeinsam und schneiden

die y-Achse nicht.
Für die vom Nullpunkt

an die Kurve gelegte
Tangente müssen die
Radienvektoren gleich gross sein.

ee

Fig. 3.

Hieraus ergibt sich der Richtungs-
koeffizient dieser Tangente nach Gl. (2)

tgtp + /aa —
Vs2^-7

.2 — S2

') Ueber die Konstruktion der spirischen Linien vergi. Teixeira..
Arch. d. Math. (3), 11 (1907), S. 64.
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Uebersteigt der Richtungskoeffizient des Strahls diese Grösse,
so werden die Schnittpunkte imaginär, d. h.

Für alle Ebenen a >¦ z > b besteht der Schnitt mit
der Fläche aus zwei getrennten, reellen Kurven, die
den Nullpunkt nicht umgeben und von denen jede zur
x-Achse symmetrisch ist (Fig. 3, Kurven c und d).

§ 5. Tangentialebene und Normale.

Schreibt man die Flächengleichung in der Form

F (x2 + y2 4- z2)2 — 4(a2 x2 + b2y2) 0

und setzt zur Abkürzung

R2 X24-y2+Z2, VI.

so werden die partiellen Ableitungen von F :

Fx 4(R2 — 2 a2)x Fy 4(R2 — 2b2)y Fz 4R2z,

und die Gleichung der Tangentialebene
(X - x)Fx + (Y - y)Fy + (Z - z)F2 0,

wo X, Y, Z die laufenden Koordinaten, x, y, z die Koordinaten
des Berührungspunktes bedeuten, nimmt die Form an:

2a2 x(X -4- x) + 2b2y(Y 4- y)

(x2 + y2 -f- z2)(Xx 4- Yy + Zz). VII.
In allen Punkten des Schnittes der Fläche mit den

Koordinatenebenen steht die Tangentialebene auf der betr.
Koordinatenebene senkrecht, wie sich aus Symmetriegründen oder auch
durch die folgende Rechnung ergibt: Für die xz-Ebene z. B. ist

v 0. Die Gleichung der Tangentialebene in den Punkten der
Schnittkurve auf der xz-Ebene ist also:

2a2x(X -f x) (x2 + z2)(Xx 4- Zz).

Diese Ebene steht auf der xz-Ebene senkrecht.
Die Tangentialebenen in den höchsten bezw. tiefsten Punkten

der Fläche, für die x 4a, y —0, z a bezw. x—4 a, y 0,
z — a ist, haben die Gleichungen

Z 4a.
Sie sind Doppeltangentialebenen.



- 11 -
Ebenso sind die zu den Berührungspunkten x 0, y 4 b,

z b bezw. x 0, y + b, z — b gehörenden Tangentialebenen

von der Gleichung
z ±b

Doppeltangentialebenen. Ihr Schnitt mit der Fläche ist bereits
in § 4 diskutiert worden.

Die Richtungskosinuse der Fläche.nnormalen:
Fx Fy Fz

COSO —, COS.Ï —, cos/ — —,k k k

k ^fT+fT+F? 8 \JaV+X?
ist, werden:

R2 — 2a2
cos a ,._ x

2v/a4x2 4- b4y2
R2 — 2 b2

T7TTTcos/? —r- y VIII.
2v/a4x2 4 b4y2

R2
cosy —= z,

2\/a4x2 4 b4y2
sodass die Doppelgleichung der-Normalen im Punkte (x, y, z)
der Fläche die Form

X-x Y-y Z-z
(R2 —2a2)x (R2 — 2b2) y R2z

annimmt.
Für den Schnittpunkt der Normalen mit der xy-Ebene

findet man hieraus mit Benützung der Flächengleichung:

X _ a"x y
p2 y n V

2(a2x2 4- b2y2)
' 2(a2x2 4 b2y2)

'

Bildet man den Ausdruck b2 X2 4- a2 Y2, so ergibt sich,
dass die Koordinaten der Schnittpunkte der Flächennormalen
im Punkte (x, y, z) mit der xy-Ebene durch die Gleichung

b2X2 4 a2Y2 a2b2

verbunden sind. Sie ist vom Punkte (x, y, z) unabhängig und
gilt also, wenn X und Y als veränderlich aufgefasst werden, für
jede beliebige Normale. Wir ersehen hieraus, dass der Ort
der Schnittpunkte aller Flächennormalen mit der
Aequatorebene die Leitellipse ist.
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Fassen wir insbesondere die Normalen der Fläche längs
der Meridiankreise ins Auge, so ist für diese y mx zu setzen.
In diesem Falle werden die Koordinaten der Spurpunkte nach (1) :

q2 D IH
X const, Y -= — const, (2)

Va24-b2m2 \/a2 4- b2m2

d. h. die Flächennormalen längs eines Meridiankreises
schneiden sich alle in einem Punkte der Leitellipse,
sie bilden einen Kreiskegel.

Es bleibt noch zu zeigen, dass dieser Kegel ein gerader
Kreiskegel ist. Für die Koordinaten des zum Meridiankreis

y mx gehörenden Mittelpunktes ergibt sich

y/a2 4-b3mä' _mV/a24-b2m2
X, (3)

1 4- m2 ' » 1 4- m2 '

Die Verbindungsgerade dieses Kreismittelpunktes mit dem Spur
punkte (2) ergibt den Richtungskoeffizienten

m,
m

Fig. 4.

la ÖS2 X24-Y2
aJ4-b2m2 +

Die Achse des

Kreiskegels steht
also senkrecht
zur Basis, dem
Meridiankreis.

Die Länge
der Erzeugenden

dieses
Kreiskegels ist gleich
dem Radius 1 der

erzeugenden
Kugel, deren

Mittelpunkt im
Spurpunkt S liegt
(Fig. 4) und es

ist

u* 2
b m

2 i i 2 2
a 4- b m
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oder, wenn m — tgtp gesetzt wird:

\fa-cos-tp 4- b4sin2^

s/ai-cos-f 4" b2sin2#>

Setzen wir zur Abkürzung

t ya4cos2^ 4- b4sin2^ X.

und berücksichtigen Gl. II, so wird

t 1 • r. XI.

§ 6. Kubatur und Komplanation.

Um das Volumen des von der Fläche begrenzten Körpers
und dessen Oberfläche zu ermitteln, führen wir räumliche
Polarkoordinaten q OP, tp 4. xOQ, » 21 QOP (Fig. 2) ein
(wobei p eine von lila verschiedene Bedeutung hat). Von diesen
sind aber nur zwei, z. B. tp und d- als unabhängig zu betrachten.
Für q ergibt sich aus der Figur 2:

q 2rcos#, (1)

wo r ya2cos2^> 4- b2sin2y.
Das Volumen des Körpers ist gleich dem achtfachen

Volumen des in einem Oktanten liegenden Teils des Körpers, alsox)

W2 -nh rQ
V 8 / / / p2cos#dpd#dy>.

o ô fr

Führt man die Integration nach p und # aus und berücksichtigt
die Gl. (1), so wird

Wa
V 4tt i y(a2cos2^ 4- b2sm-<p)-d<p,

was sich auch schreiben lässt:

*/2

'/ ^4 a3 TT j V(l — e2 sin2 tp)3 dtp

/ c2 a2 J)2 \
wo e2 —

\ a2 a2 /
oder in der bekannten Schreibweise:

') Serret: Differential- und Integralrechnung Nr. 604.
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W
V 4a37T i J3tpdtp.

o

Unsere Aufgabe ist zunächst, das unbestimmte Integral

J f S tpdtp

auf elliptische Normalintegrale zu reduzieren. Wir schreiben zu
diesem Zwecke:

j m —e8sin»a Çdy _ 2g2 Çsitftp ^
fain-tp+ e X d ?•

Nun ist bekanntlich

f^ F(e,y)

das elliptische Normalintegral I. Art und

f^df^l{F(e^)_E(e,y)],
J Jtf e2 -

wo E(e,f) das elliptische Normalintegral II. Art bedeutet. Aus
der Rekursionsformel:

/>gin> (m-2)(l4-e2) m-^j" J Jtf (m —l)e2 m~2 (m —l)e2 m~4

t sinm—3ycosyj/y

(m— l)e2~
ergibt sich weiter

fsirttp 2(14-e2),^, ,-,,., 1 „,]~jfà(P== -L8^~tP(e,9)""E(e'v)>"g7 F(e'T)

siny cos y^/y
sodass jetzt 3e2

J - F(e,y) - 2 { F(e,f) - E(e,y)} 4 2 - LtfL { F(e,y) - E(e,y)}

— F(e,y) 4 —- sinycosyj/y
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wird, oder nach vorgenommener Reduktion:

J =¦ fjs ydy - 1 M F(e,y) 4 i
,/ o a c

2 a24-b2 _,.¦Z^E(e,y)

a2 ^2
-| sin y cos y _/ y.3 a2

Das bestimmte Integral zwischen den Grenzen o und X wird

X2 1

J== j M 3^î-b2K42(a24b2)E},

wo K und E die vollständigen elliptischen Normalintegrale I.
und II. Art bedeuten. Also ist das Volumen der ganzen
zyklischen Fläche

V — &7Z { 2(a2 4 b2) E - b2K }. XII.
ö

Die.Formel muss natürlich auch gelten, wenn b 0, d.h.
wenn die Ellipse sich auf die Strecke 2 a reduziert. Dadurch
bekommen wir ein Mittel an die Hand, die Formel XII. zu

prüfen. Ist nämlich b 0, so wird e 1, also E l und

4 <*

V 2- —aV

also gleich dem Volumen zweier Kugeln vom Radius a. In der
Tat zerfällt unter der Annahme b 0 der Körper in zwei
getrennte, sich berührende Kugeln vom Radius a.

Für den Fall, dass b a ist, vereinfacht sich die Formel
XII auf

V 2a37r2. XHa.

Ans der Komplanationsformel für eine in räumlichen
Polarkoordinaten gegebene Fläche : ')

') Serret, 1. c., Nr. 601.
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ergibt sich, weil in unserm Falle nach Gl. (1)

oo - c2 sina<cos <r
—- — 2 cos# • - -
ôff r

— =• — 2rsin# ist:
33

°=*//tcos23dyd#.

Die ganze Oberfläche ist gleich der achtfachen Oberfläche eines
in einem Oktanten liegenden Teiles, also

W2 W«
0 32 I tdy | cos23d#.

0 0

r,nk
8azr I \/l—k2sin2ydy

o

w a* — b4
wenn k^

a4

gesetzt wird. Die Oberfläche der ganzen zyklischen Fläche wird
also :

0 8a27rE, XIII.
wo E das vollständige elliptische Normalintegral II. Art vom

Modul -~ y/a4 — b4 vorstellt.
a

Für b 0 reduziert sich die Formel, wie erforderlich, auf

0 2-4aX,
d. h. auf die Oberfläche zweier Kugeln vom Radius a.

Ist b a, so wird die Formel:

0 4a27r2. XIII a.
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§ 7. Die Krümmungslinien.

Die Differentialgleichung der Krümmungslinien:

dx dF. F
dy
dz

dFy
dF

Fy
F

0

dx
dy
dz

x(R — 2 a2)

y(R2-2b2)
j2

0.

wird für die vorliegende zyklische Fläche

xd(R2)4-(R2 —2a2)dx
yd(R2)4(R2 —2b2)dv
zd(R2)4-R2dz zR*

Sie lässt sich mit Benutzung der Flächengleichung auf die Form

(xdy — ydx) { 2xzdx + 2yzdy 4 (z2 — x2 — y2) dz } 0

bringen.
Die Differentialgleichungen der beiden Scharen von

Krümmungslinien sind also:

xdy - ydx 0 (1)

2 xzdx + 2 yzdy 4- (z2 — x2 — y2) dz 0. (2)

Die Integration von Gl. (1) ergibt

y kx. XIV.
Dies ist die Gleichung eines Ebenenbüschels durch die z-Achse,
das die Fläche nach § 2 in den erzeugenden Meridiankreisen
schneidet. Wir finden also: Die erste Schar der
Krümmungslinien ist eben und wird durch die Meridiankreise

dargestellt.1)
Die Gl. (2) ist eine totale Differentialgleichung von der

allgemeinen Form

Pdx4Qdy + Rdz 0.

Eine solche kann leicht integriert werden,2) wenn die Bedingung

'ÔQ ÔR\ nfdR ôP\ D/ôP dQ
'aydz -X(ô x d z

R ——dx
0

') Dieser Satz kann für jede Einhüllende einer einfach unendlichen
Kugelschar verallgemeinert werden. Enz. d. Math. III. D. 5. 4 p. 278.

*) .1. H. Graf : Differentialgleichungen, p. 104.

2
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erfüllt ist. Dies ist, wie sich leicht nachrechnen lässt, für die
vorliegende Differentialgleichung (2) der Fall. Um die Integration

auszuführen, nehme man z als konstant an, also:

xdx4-ydy 0,

integriere und ersetze die auftretende Integrationskonstante durch
eine willkürliche Funktion von z:

x2 + y2 y(z). (3)

Durch totale Differentation folgt hieraus:

2xdx42ydy ^dz 0.
d z

Vergleicht man diese mit (2), so ergibt sich
d cc

— z —^- z2 — (x2 4- y2 — z2 — y (z)
d z

und durch Integration dieser Differentialgleichung:
y(z) -z24-2Cz,

wo C eine arbiträre Konstante ist. Setzt man diesen Wert in (3)
ein, so heisst die integrierte Gleichung (2):

x24-y24-z2 — 2Cz 0. XV.
Dies ist die Gleichung einer Kugel, die durch den

Nullpunkt geht und deren Mittelpunkt auf der z-Achse im Abstand
C von 0 liegt. Da C willkürlich ist, so folgt: Die zweite
Schar von Krümmungslinien wird durch Kugeln
ausgeschnitten, deren Mittelpunkte in der z-Achse
liegen und die durch den Nullpunkt gehen.

Um die Projektion der zweiten Schar von Krümmungslinien

auf die y z-Ebene zu finden, eliminieren wir aus (XV) und
aus der Flächengleichung (I) x und erhalten die Schar von
Kegelschnitten :

2 0a2C a24-C2 2y1 li z zJ.
c2 c2

Es ist dies die Gleichung einer Schar von Ellipsen, deren
Halbachsen

a2C b,= a2C

a2 + C2 cVl^TC2"
sind und deren Scheitel im Nullpunkte liegen, mit der y-Achse
als Scheiteltangente.
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In analoger Weise ergibt sich für die Projektion auf die
x z-Ebene die Gleichung

2b2C b24-C2
X2 z -j ¦ z2,

c2 c2

welche bei veränderlichem C eine Schar von Hyperbeln
darstellt, deren Scheitel im Ursprung liegen.

Es ist klar, dass weder im einen, noch im andern Falle
die ganze Kurve in Betracht fällt. Wir können deshalb sagen:
Die Projektionen der zweiten Schar von
Krümmungslinien auf die yz-Ebene sind Ellipsenbogen,
auf die xz-Ebene Hyperbelbogen.

Für die Projektion auf die x y-Ebene findet man

C4(x24y2)2 + 2C2(x24-y2-2C2)(a2x24b2y2).
'

+(a2x2-r-b2y2)2 0.

Die Projektion der zweiten Schar der Krümmungslinien
auf die xy-Ebene ist eine Schar von Kurven

vierten Grades.
Es ist weiter von Interesse, den Winkel, unter dem sich

die Kugeln und die Fläche schneiden, zu untersuchen. Zunächst

gilt der Satz von Joachimsthal : Liegt eine Krümmungslinie einer
Fläche auf einer Kugel, dann schneidet sich die Kugel mit der
Fläche längs der ganzen Krümmungslinie unter konstantem
Winkel. Wir brauchen also für jede Krümmungslinie der zweiten
Schar den Winkel nur in einem Punkte derselben zu bestimmen,
dann ist er längs der ganzen Krümmungslinie gleich gross. Diese
Bestimmung nehmen wir für die Punkte des in der x z-Ebene

liegenden Meridians vor. Da dieser Kreis die y-Achse im
Nullpunkt berührt, der Schnittkreis der Kugel mit der x z-Ebene
aber die x-Achse im Nullpunkt tangiert, so schneiden sich beide
Kreise im Nullpunkt und somit auch im zweiten Schnitlpunkt,
dem Flächenpunkt, rechtwinklig, wie auch analytisch leicht
nachzuweisen ist. Und weil die Tangentialebenen längs dieses Meridians

auf der xz-Ebene senkrecht stehen, so schliessen auch
sie einen rechten Winkel ein. Dieser Winkel ist von der Grösse
C unabhängig und bleibt also für alle Krümmungslinien der
zweiten Schar derselbe. Mit Berücksichtigung des Satzes von
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Joachimsthal folgt hieraus : Die Kugeln, auf denen die
zweite Schar von Krümmungslinien liegt,
durchschneiden die Fläch e überall rechtwinklig1).

Da die Tangentialebenen der Fläche in den sämtlichen
Punkten einer Krümmungslinie der zweiten Schar auf den
Tangentialebenen in denselben Punkten an die zugehörige Kugel
senkrecht stehen, so gehen sie alle durch den Mittelpunkt dieser
Kugel.' Umgekehrt ergibt sich also: Die Gesamtheit aller
von einem festön Punkte der z-Achse aus an die
Fläche gelegter Tangentialebenen berührt die
Fläche längs einer Krümmung s li nie der zweiten
Schar. Der Beweis lässt sich übrigens auch analytisch sofort
führen. Für den Punkt X 0, Y 0, Z C der z-Achse werden
die Gleichungen der Tangentialebenen nach (VII):

2(a2x24-b2y2) (xXy2 + z2)-Cz
oder mit Benützung der Flächengleichung:

x2 4- y2 4- z2 2 C z.

Die Berührungspunkte unterliegen also dieser Bedingung, die

genau mit der Gl. XV der zweiten Schar von Krümmungslinien
übereinstimmt.

Aus der Tatsache, dass der Kugelradius die Fläche berührt,
nicht aber schneidet, ergibt sich eine einfache Konstruktion der
Krümmungslinien der zweiten Schar: Man befestige einen Faden
in irgend einem Punkte der z-Achse, wähle seine Länge gleich
seiner Entfernung vom Nullpunkt und verbinde sein Ende mit
der Spitze eines Bleistifts. Bewegt man die Bleistiftspitze bei

gespanntem Faden auf der Fläche, so beschreibt sie eine
Krümmungslinie.

') Dieser Satz lässt sich auch aus den allgemeinen Untersuchungen
von Bonnet [Journal de l'école polyt. 20 (1853) p. 117] folgern: Ist für
eine Fläche das System der einen Krümmungslinien eben und gehen ihre
Ebenen durch ein und dieselbe Gerade, so liegen die Krümmungslinien
der andern Schar auf Kugeln, welche die Fläche senkrecht schneiden, und
deren Mittelpunkte in jener Geraden liegen.
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