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Arthur Fischer.

Ueber eine zyklische Fliche vierter
Ordnung.

Eine Kugel von verinderlichem Radius bewege sich so,
dass ihr Zentrum auf einer festen Ellipse fortschreitet und ihre
Fliche durch den Mittelpunkt der Ellipse geht. Die Umbhiillende
dieser einfach unendlichen Schar von Kugeln?!), die als solche

zu den zyklischen Flachen gehort, ist Gegenstand vorliegen-
der Arbeit.

I. Teil.

Untersuchung der Fliche in rechtwinkligen und
Polarkoordinaten.

§ 1. Aufstellung der Flachengleichung in rechtwinkligen
Koordinaten.

Die Ellipse, auf welcher simtliche Kugelmittelpunkte liegen,
bezeichnen wir als Leitellipse. Wir legen sie in die xy-Ebene
eines riumlichen cartesischen Koordinatensystems derart, dass
thre Gleichung _

| b’ x* 4 &’y =a’ b’ (1)
wird, wo a und b die Halbachsen der Ellipse bedeuten.

Sind &, %, { die Koordinaten irgend eines Punktes einer
bestimmten Kugel der Schar, deren Radius 1 und deren Mittel-
punkt (x,y) auf der Leitellipse liegt, so gilt fiir ihn die Kugel-

gleichung »
E—x+@—y)+T="

n Lecornu bezeichnet die Enveloppenflichen von Kugeln al®
~Perisphiaren® Die vorliegende Fliche gehort nach seiner Klassifikation
zu den Perisphiren 2. Gattung.
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die sich, weil die Kugel durch den Mittelpunkt O geht, auf
f=E 47 0 —2@Ex+9y) =0 )

reduziert.

Lisst man den Kugelmittelpunkt die ganze Ellipse durchlaufen,
x und y also alle nach Gleichung (1) moglichen Werte annehmen,
so stellt die Gleichung (2) die einfach unendliche Schar von
- Kugeln dar. Indem man x und y als Parameter auffasst und
zwar X als unabhingigen und y als abhingigen, ergibt sich die
Gleichung der Enveloppe aller Kugeln durch Elimination dex
Parameter x und y aus den Gleichungen

d f

f=0, —=0
dx
und aus Gl (1). Die zweite Bedingung lautet in unserm Falle _
dy —0
dx
oder, wenn man den aus (1) sich ergebenden Wert
d__y o b x
dx a’y
einsetzt:
df:azyg—bzxnr_u. (3)

dx

Durch Elimination der parametrischen Koordinaten x, y des

Kugelmittelpunktes aus den Gleichungen (1), (2) und (3) ergibt
sich:

Fp 2 -2V T EF =0

oder, wenn wir & 7, { durch x, y, z ersetzen:

3.2 : c
(v + 2°) =4(a’* 4 b’ y). 1.
Dies ist die gesuchte Gleichung der Enveloppenflache.
Ist die Leitkurve speziell ein Kreis, also b=a, so reduziert

sie sich auf:

(x* 4y + z2)2: 42’ (x* ). Ia.
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Die Fliche wird, weil der Radius der erzeugenden Kugel kon-
stant ist, zu einer Kanalfliche oder Rohrenfliche, die aus dem
Torus hervorgeht, wenn dessen innerer Radius verschwindet.
Diskussion der Flichengleichung. Die Enveloppen- -
fiiche 1st von der vierten Ordnung. Sie ist, wie man leicht sieht,
in Bezug auf alle drei Koordinatenebenen symmetrisch.
Die homogen gemachte Flichengleichung heisst:

F=(x*4+7v"+ ) — 4w (a2 x> L b2 y?) =0, Ib.
Der Schnitt mit der unendlich fernen Ebene w = 0 ergibt sich zu
(< ¥ 7 =0, @)

d. h. der Richtungskegel ist ein imaginidrer Kreiskegel. Die
Flache ist somit geschlossen und liegt ganz im Endlichen. Die
Gleichung (4) stellt aber auch den unendlich fernen Kugel-
kreis dar, d. h. die Enveloppenfliche geht durch den unendlich
fernen imaginiren Kugelkreis. Diese Tatsache kann man sich
dadurch erkliren, dass jede Kugel durch den unendlich fernen
imaginidren Kugelkreis geht, also auch die Enveloppe aller Kugeln.

Der ,Mittelpunkt“ der Fliche, d. h. der Ursprung x =0,
y =0, z=0, erfullt die Flichengleichung und ist ein Doppel-
punkt. Die Gleichung seines Knotenkegels ist

2_2 2 2
ax 4+ by =0.
Dieser zerfallt in die beiden zur xz-Ebene symmetrischen ima-
giniren Ebenen

a .
y:_—{:_lxa
b

welche Tangentialebenen im Nullpunkt sind. Beide Ebenen-
gleichungen sind fiur x = 0, y = 0 erfiillt; die beiden imaginiren
Tangentialebenen schneiden sich also in der z-Achse, welche
Knotenkante der Fliche im Mittelpunkt ist. Sie schneidet die
Fliche in 4 zusammenfallenden Punkten. Der Nullpunkt ist
deshalb ein biplanarer Doppelpunkt mit zwei konjugiert
imaginéren Tangentialebenen und reeller Knotenkante.

Es fragt sich, ob ausser dem Mittelpunkt noch andere
Punkte Doppelpunkte seien. Damit ein Punkt Doppelpunkt sei,
muss er die Bedingungsgleichungen



Flzg—ljz (x* 4 V4 2)x —22°w'x =0

X

F2=gE= &+ y 4 )y — 26wy =0

| y

F,=2 4y + &) —0
0z .

F=08 = (& ¥ o —0
w

erfillen, und das tun nur der Nullpunkt x =0, y =0,z =0,
w = 1 und die Punkte des unendlich fernen imaginiren Kugel-
kreises: der Mittelpunkt und die Punkte des imaginiren
Kugelkreises sind die einzigen Doppelpunkte der

Fliache. Der imaginire Kugelkreis ist eme Doppelkurve der
Fliche.

§ 2. Schnitte mit Ebenen durch die z-Achse.
Durch die z-Achse legen wir eine beliebige Ebene, die mit

der x-Achse den veranderlichen Winkel ¢ einschliesse. Um eine
einfache Gleichung fiir die Schnittfigur zu erhalten, machen wir
diese Ebene vermittelst der Transformationsgleichungen
| x = x'cos¢ — y'sin¢

y = x'sing -}- y'cosg

% ==g
zur neuen x'z’-Ebene. Die transformierte Fliachengleichung:

(2”2 4 4 2?) = 4a’(x'cos¢ — y'sin @)’
+ 4b® (x'sing + y’cosg)

liefert fir den Schnitt der Fliche mit der x’z’-Ebene y' = 0 die
Gleichung ‘

x? fy? =+ 2\/a,zcosz<p + bsin’p - x/,

die zwei kongruente Kreise darstellt, deren Peripherien den Null-
punkt enthalten und deren Zentren auf der posutlven und nega-
tiven x'-Achse im Abstand

r = Va’cos’p + bsin’yp IL.
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vom Nullpunkt hegen. Jede Ebene durch die z-Achse
schneidet die Fliche in zwel kongruenten Kreisen, deren
Radien durch (II) gegeben sind; wir nennen sie Meridian-
kreise. Die Fliche enthilt also eine einfach unendliche Schar
von Kreisen, d. h. sie ist eine zyklische Flache.

Fihrt man vermittelst

cosp ==, sing=7, r=x4y
7 r |
wieder rechtwinklige Koordinaten ein, so ergibt sich fir die
durch (II) dargestellte Kurve der Mittelpunkte aller Meri- .

diankreise die Gleichung |
(x* -+ ¥ = a’x" + by, - ITa.

die eine der Leitellipse umschriebene Booth’sche elliptische
Lemniskate darstellt. Sie ist die Pedale der Ellipse in Bezug
auf ihren Mittelpunkt und beriihrt diese nur in deren Scheiteln;
also sind diese Berithrungspunkte die einzigen Mittelpunkte von
Meridiankreisen, die auf der Ellipse liegen. Die Radien der zu
ihnen gehorenden Meridiankreise der xz- und yz-Ebene sind also
gleich den Radien der Kugeln, die ihre Mittelpunkte in jenen.
Scheiteln haben, nimlich r’ == a und '’ = b. Diese den Werten
¢ = 0%°und ¢ = 90° entsprechenden Radien bilden zugleich das
Maximum und Minimum fiir r.  Bezeichnen wir jene durch die
xz- und yz-Ebene ausgeschnittenen Kreise als ersten bezw.
zwelten Hauptmeridian, so konnen wir sagen:

Die Radien des ersten und zweiten Hauptmeri-
dians bilden die Extremwerte aller Meridianhalbmesser
und haben die Linge der grossen bezw., kleinen Halb-
achse der Leitellipse.

Fir den Fall, dass b = a wird, fallt die Kurve der Mittel-
punkte simtlicher Meridiankreise mit dem Leitkreis zusammen.

§ 3. Schnitt der Flache mit der xy-Ebene.

Die Schnittkurve der Fliche mit der xy-Ebene, der <« Aqua-
tor», hat die Gleichung

x" 4+ v = 4(@’x* - b’y)). I11.
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Sie ist eine Booth’sche elliptische Lemniskate, die zu einer
Ellipse mit den Halbachsen 2a und 2b gehort. Sie ist zu den
Koordinatenachsen symmetrisch und besteht aus einem geschlos-
senen Blatt um den Nullpunkt; dieser ist ein isolierter
Doppelpunkt oder konjugierter Punkt der Kurve,

Da jede Kugel auf der xy-Ebene einen Kreis ausschneidet,
so ist, wie sich wbrigens auch direkt zeigen lasst, die Schnitt-
kurve die Enveloppe aller durch den Nullpunkt gehender Kreise,
deren Mittelpunkte auf der Ellipse

bis? o aly = ot
liegen. Diese Eigenschaft liasst sich besonders gut verwenden
zur Konstruktion der Kurve. :
Andererseits ist die Aquatorkurve auch der geometrische
Ort der Fusspunkte der Perpendikel vom Nullpunkt auf alle
Tangenten an die Ellpse von den doppelten Halbachsen:

b’x® 4 a’y’ = 4a’b’%, 1V.
wie leicht nachzuweisen ist, d. h. sie 1st die Fusspunktskurve
oder Pedale dieser letztern Ellipse in Bezug auf ihren Mittel-
punkt als Pol. ‘
Fiithrt man in Gl. (ITI) mit Hilfe von

X == pCOS¢ y == gSing
Polarkoordinaten ein, so wird die Polargleichung des Aequators
o) = 4(a’cos’ ¢ + bsin’e) = 41°. Ila.

Hieraus ergibt sich die folgende Konstruktion fir die
Kurve.) Man konstruiere
A (Fig. 1) um den Mittelpunkt

C zwel Kreise mit den Radien
2L 2a und 2b und ziehe einen

Q beliebigen Strahl unter dem |
2b Y g Winkel ¢ gegen die Haupt-
— achse, der die beiden Kreise
2a 'C E D in den Punkten A und B
Fig. 1. schneidet. Zieht man durch A

') Schlémileh: Uebungsbuch zum Studium der hoheren Analysis,
I, S. 106.
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eine Senkrechte und durch B emne Parallele zur Hauptachse,
deren Schnittpunkt Q sei, so ist CQ = ¢ der gesuchte Radius-
vektor, der nur noch auf CA abzutragen ist. — Der Beweis

ergibt sich aus /\ BQD, in welchem
BD = BE = 2bsing CD = 2acos¢
ist, somit
CP’=CQ’ = ¢° = 4(a’cos’¢ + bsin’y) —- 4r°,
Fir die hochsten und tiefsten Punkte der Kurve ergeben
sich die Koordinaten
ML T .
¢ ¢
wenn ¢ die lineare Exzentrizitit der Leitellipse bedeutet. Sie
fallen fir a = b\/2 mit den Scheiteln der kleinen Achse der
Elhpse (1V) zusammen.
Fiir die Koordinaten der vier Wendepunkte findet man

2 — 2
s *ab V3 — 21, y:i——a—b—\/S(Qa——b)V
c(a’ + bY) c(a’+b
Sie sind nur reell, wenn a > by/2. Fir a = b\/ 2 fallen sie 1
die Scheitel der kleinen Achse der Ellipse (IV).

2

, Die Fusspunkt-Eigenschaft des Aequators lasst sich sofort
fir die Fliache verallgemeinern. Ein beliebiger Meridiankreis
(Fig. 2) vom Mittelpunkt C treffe den Aequator im Punkte Q.
Ist dann P irgend ein Punkt dieses Meridiankreises, so ist
<] QPO = 90°. Die in Q zu OQ senkrechte (Gerade t ist eine
Tangente an die Ellipse (IV). Legt man durch sie alle moglichen
Ebenen und fillt von O aus auf jede ein Lot, so liegen alle Fuss-
punkte dieser Lote auf dem Meridiankreis OPQ. Hieraus er-
gibt sich:

Legt man durch alle Tangenten- der Ellipse von
den Halbachsen 2a und 2b alle moglichen Ebenen und
fallt Perpendikel vom Mittelpunkt der Ellipse auf jede
derselben, so i1st der Ort der Fusspunkte die betrach-
tete zyvklische Fliache vierter Ordnung.
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§ 4 Schnitte parallel der xy-Ebene.

Durch eine zur xy-Ebene parallele Ebene von der Glei-
chung z = s = const. wird die Fliche in der in Bezug auf den
jeweiligen Nullpunkt zentrisch symmetrischen Kurve

(" 4y + 8 =4@"x" 4- by (1)
geschnitten, die, wie aus der etwas umgeformten Gleichung
£+ y* + §F — 20 = 4(’x* — b*s® 4 b (2)

ersichtlich ist, zu den spirischen Linien des Perseus gehort.
Sie ist eine bizirkulare C, und besitzt als solche zwei ausser-
ordentliche Brennpunkte, deren Orthogonalprojektionen auf die
xy-Ebene sich mit den Brennpunkten der Leitellipse decken.

Zieht man vom Nullpunkt aus beliebige Strahlen durch
die Kurve, so hat das Produkt der auf jedem dieser Strahlen
vom Nullpunkt aus gemessenen Radienvektoren den konstanten
Wert s* (Potenz).

Fihrt man vermittelst

X = pCos¢, y = esing



2z ) mex |
Polarkoordinaten ein, so wird die Gleichung (1):
(08 + ) = 4 o’(a’cos’¢ + bsin’¢),
woraus sich ergibt
T Vort — ¢ + 21'\/?‘?:;2,

wo a’cos’ ¢ 4 b’sin® ¢ = 1’ gesetat ist.

1. Fall: Ist s <<b, so wird ¢ immer reell, also werden
auch alle vier Schnittpunkte eines Strahles durch den Nullpunkt
mit der Kurve reell, d. h.

Alle Ebenen z <b schneiden die Flache in zwei
getrennten, reellen Kurven, die den Nullpunkt um-
schliessen (Fig. 3'), Kurve a).

2. Fall: Ist s = b, so reduziert sich Gl. (2) auf
(x teof +y =a’

welche zwei Kreise vom Radius a darstellt, deren Mittelpunkte
m den beiden Brennpunkten liegen:

Die Ebenen z=-+b schneiden aus der Fliche je
zwel Kreise aus, die sich in der yz-Ebene kreuzen (Fig. 3,
Kurve b).

3. Fall. Ist a> s> b, v
so werden nicht alle Radien-
vektoren reell. Die beiden
Kurven haben kein Flichen- . N x
stiick gemeinsam und schnei- : -/
den die y-Achse nicht.

Fir die vom Nullpunkt
an die Kurve gelegte Tan-
gente miissen die Radien-
vektoren gleich gross sein. Hieraus ergibt sich der Richtungs-
koeffizient dieser Tangente nach Gl. (2)

a2 — g2 Sz
LS \/ —h
') Ueber die Konstruktlon der spirischen Linien vergl. Telxeu a..
Arch. d. Math. (3), 11 (1907), S

&

Fig. 3.
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Uebersteigt der Richtungskoeffizient des Strahls diese Grosse,
s0 werden die Schnittpunkte imaginir, d. h.

Fiir alle Ebenen a>z > b besteht der Schnitt mit
der Fliche aus zweil getrennten, reellen Kurven, die
den Nullpunkt nicht umgeben und von denen jede zur
x-Achse symmetrisch ist (Fig. 3, Kurven ¢ und d).

§ 5. Tangentialebene und Normale.
Schreibt man die Flachengleichung in der Form

F— (@ + ¥ + 2P — 4@ x* + by) = 0

und setzt zur Abkirzung
2:X2+y2+z27 . VL

s0 werden die partiellen Ableitungen von F':
F,=4[R’'—2a’)x F =4R —2b)y F,=4R%
und die Gleichung der Tangentialebene
(X —x)F, + (¥ —yF, +(Z—29F, =0,

wo X, Y, Z die laufenden Koordinaten, x, y, z die Koordinaten
des Berthrungspunktes bedeuten, nimmt die Form an:
22° x(X 4 x) + 2’y (Y - y)
= (x2 + y* + 22)(Xx + Yy 4 Zz). VII.

In allen Punkten des Schnittes der Fliche mit den Koor-
dinatenebenen steht die Tangentialebene auf der betr. Koordi-
natenebene senkrecht, wie sich aus Symmetriegriinden oder auch
durch die folgende Rechnung ergibt: Fir die xz-Ebene z. B. ist
v =0. Die Gleichung der Tangentialebene in den Punkten der
Schnittkurve auf der xz-Ebene ist also:

2a?x(X + x) = (x* 4 22)(Xx + Z2).
Diese Ebene steht auf der xz-Ebene senkrecht.

Die Tangentialebenen in den hochsten bezw. tiefsten Punkten
der Flache, fir die x=-+a, y=0, z=a bezw. x=1a, y=0,
z = — a 1st, haben die Glelchungen

# =~ T,
Ste sind Doppeltangentialebenen.
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Ebenso sind die zu den Beriihrungspunkten x =0, y = +b,
z=">b bezw. x =0, y = + b, z =— b gehorenden Tangential-
ebenen von der Gleichung '

' z=-4+Db
Doppeltangentialebenen. JIhr Schnitt mit der Fliche ist bereits

in § 4 diskutiert worden.
Die Richtungskosinuse der Flichennormalen:

cosa = IL cospp = —— COSy = —2
: o k ! I k ’ 4 ke ’
wo ke VR R — 8V T
1st, werden:
R? — 222
cosu = x
2\/alx? | bty?
2 __ 9phe
cos =5 y VIIL
2\/&41{2 -+ bty?
R2
cosy = z,

z
2\/a4x2 + biy?
sodass die Doppelgleichung der- Normalen 1m Punkte (x, y, z)
der Fliche die Form

X—x Y-y _Z—: IX.

annimmt.
Fiir den Schnittpunkt der Normalen mit der xy-Ebene

findet man hieraus mit Beniitzung der Fkichengleichung:

a’ x . b?y ;
2(a’x” -+ b’y?)’ Y= 2(a’x” + b’y’) W

Bildet man den Ausdruck b?X? - a?Y?, so ergibt sich,
dass die Koordinaten der Schnittpunkte der Flichennormalen
im Punkte (x, y, z) mit der xy-Ebene durch die Gleichung

: b2X® + 2V — alb?

verbunden sind. Sie i1st vom Punkte (X, y, z) unabhingig und
gilt also, wenn X und Y als verinderlich aufgefasst werden, fir
jede beliebige Normale. Wir ersehen hieraus, dass der Ort
der Schnittpunkte aller Fliachennormalen mit der
Aequatorebene die Leitellipse ist.

X =
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Fassen wir insbesondere die Normalen der Fliache lings
der Meridiankreise ins Auge, so ist fiir diese y = mx zu setzen.
In diesem Falle werden die Koordinaten der Spurpunkte nach (1) :

o 2
X e ,__f_._‘ — const, Y = li_ = const, (2)

Va? + b?m? \/32{_,_ bZm?2
d. h. die Fliachennormalen lings eines Meridiankreises
schneiden sich alle in einem Punkte der Leitellipse,
sie bilden einen Kreiskegel.

Es bleibt noch zu zeigen, dass dieser Kegel ein gerader
Kreiskegel ist. Fir die Koordinaten des zum DMeridiankreis
y = mx gehorenden Mittelpunktes ergibt sich

a2 1 b2m2 a2 | h2m2
X____\/a —f—bm’ Y"__m\/a—]—bm. 3)
! 14 m? . 1+ m?
Die Verbindungsgerade dieses Kreismittelpunktes mit dem Spur-
punkte (2) ergibt den Richtungskoeffizienten

Die Achse des
Kreiskegelssteht
also  senkrecht
zur Basis, dem
Mendiankreis.
Die Liénge
der Erzeugenden
dieses Kreis-
kegels 1st gleich
dem Radius 1 der
erzeugenden
Kugel, deren
Mittelpunkt 1im

SpurpunktShegt
(Fig. 4) und es
Fig. 4. ist
4 42
12— 05?2 — x? A a - b'm s
+ az + b2 mZ + aZ + b2m2



oder, wenn m == tg¢ gesetzt wird:
|— Vatcos?g -+ btsin?¢

~ \alcosty | blsinte
Setzen wir zur Abkirzung

t = V/atcos?¢ }- bisin?¢ X.
und beriicksichtigen Gl. II, so wird
t=1-r. XI.

§ 6. Kubatur und Komplanation.

Um das Volumen des von der Fliche begrenzten Korpers
und dessen Oberfliche zu ermitteln, fihren wir riumliche Polar-
koordinaten ¢ = OP, ¢ = 2 x0Q, %= 2 QOP (Fig. 2) ein
{wobei ¢ eine von IIla verschiedene Bedeutung hat). Von diesen
sind aber nur zwei, z. B. ¢ und 4 als unabhingig zu betrachten.
Fiir o ergibt sich aus der Figur 2: .

0 = 2rcos-, 8y

wo r =\/a’cos?p | bgsirﬂga: _
- Das Volumen des Korpers ist gleich dem achtfachen Vo-
lumen des in einem Oktanten liegenden Teils des Korpers, also?)

Ay ATfe A0
V= f J {‘ggcosf}dgd{}dgp.
3 o §
Fihrt man die Integration nach ¢ und 9 aus und beriicksichtigt
die GL (1), so wird

ﬂf/2
V=4n f V(afcos?y | bsinZe)idy,
64

was sich auch schreiben lisst:

[y
¥ == 4_a3nf V(1 — e?sin2¢)d¢
5

2

p— = ) oder in der bekannten Schreibweise:
a a

) Serret: Differential- und Integralrechnung Nr. 604.



Unsere Aufgabe ist zuniichst, das unbestimmte Integral

J = leagodgo

auf elliptische Normalintegrale zu reduzieren. Wir schreiben zu
diesem Zwecke:

e B GV B et
J'_f(l esmcp) fdgo 902 ’ﬂlidgp
J Ay

sin*¢
o [irg,
A

de
| —~ =F(e,q
fw e, )

L ¥4

das elliptische Normalintegral I. Art und

Nun ist bekanntlich

sin’ g 1 ‘ '
—Iff dp ez { F(ea‘P) — E(e,(p)' }1

wo Ef(e,¢) daé elliptische Normalintegral II. Art bedeutet. Aus
der Rekursionsformel:

J — ‘Sin™egp dp = (m — 2)(1 4 €?) 3 _ m—3 3
" A (m — 1)e? "2 (m—1)e ™!
+ sin™~3¢pcosy 4 ¢

(m — 1)e?
ergibt sich weiter

sin 2(1 + ) 1
[5Eae = ) (Fo #) —E(e,9) ) — 5 Fleyg)

+ sing cos g A ¢
sodass jetzt ‘ 3e? ’
' 1 e?
J =F(e,9) — 2| F(e,¢) — E(e,q) } +2- g (F(e7) —E(eq)}

e? e .
=5 F(e,¢) + 5 singcosg ./ ¢
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wird, oder nach vorgenommener Reduktion:

2
J == f'zfg pdgp = — 1k F(e,q) 4

3 a2

2 a4 b?
3 a2

E(e,q)

aZ — b?

-+ sin ¢ cos o 4 .

a?
Das bestimmte Integral zwischen den Grenzen o und %/, wird

/s

» (2
J— J Ppdp=gy | — WK 426+ H)E],
(

wo K und E die vollstindigen elliptischen Normalintegrale 1.
und II. Art bedeuten. Also ist das Volumen der ganzen zykli-
schen Flache

V-—_-——%aﬁ{Z(f—l—bZ)E— b’K |. XII.

Die.Formel muss natiirlich auch gelten, wenn b = 0, d. h.
wenn die Ellipse sich auf die Strecke 2a reduziert. Dadurch
bekommen wir ein Mittel an die Hand, die Formel XII. zu
priifen. Ist namlich b =0, so wird e=1, also E=1 und

also gleich dem Volumen zweier Kugeln vom Radius a. In der
Tat zerfallt unter der Annahme b =0 der Korper in zwel ge-
trennte, sich berithrende Kugeln vom Radius a.

. Fir den Fall, dass b =a 1st, veremnfacht sich die Formel
XII auf

V = 2afx2. | ~ XHa.

Aus der Komplanationsformel fiir eine in rdumlichen Polar-
koordinaten gegebene Fliche:?') '

) Serret, 1. ¢, Nr. 601.
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o= [T e

ergibt sich, weil in unserm Falle nach GI. .(1)

8 2g1 /] f
90 90ey. SSIMgCOBY
8(}“ r

do

— — 2rsinJd

09
{fe= 4f ftcos‘z&dqu&.

Die ganze Oberfliche ist gleich der achtfachen Oberfliche eines
m einem Oktanten liegenden Teiles, also

A7 /2 7y
0=32 ] tde f cos’3d 9.
0 &

/o |
= 8327tf VI —k%sinpdg
0

o ol ht
wenn k2 — 2 »—mb

ist:

a4

gesetzt wird. Die Oberfliche der ganzen zyklischen Fliche wird
also:

0= 8a’=E,

XIILL
wo E das vdllstiindige elliptische Normalintegral II. Art vom

Modul = {/af — B vorstellt.
5 .

Fir b =0 reduziert sich die Formel, wie erforderlich, auf
0=2-4a%n,

d. h. auf die Oberfliche zweier Kugeln vom Radius a.
Ist b=a, so wird die Formel:

0=—=4a2~2. XIIT a.



§ 7. Die Kriimmungslinien.

Die Differentialgleichung der Kriimmungslinien:
4 oan R
dy dF, ¥, = 0
{ dz dF, F, ’

wird fir die vorliegende zyklische Flache :
1 dx  xd(R) 4 (R*—2a%)dx  x(R*—2a° ) .
Cdy  yd(R) 4+ R —2bhdy  y(B'—2b) | =0
l dz  zd (R} 4 R%dz zR?
Sie lasst sich mit Benutzung der Flachengleichung auf die Form
(xdy — ydx) { 2xzdx +- 2yzdy + (z° — x* — y¥)dz} =0
bringen.

Die Differentialgleichungen der beiden Scharen von Kriim-
mungslinien sind also:

xdy —ydx =0 | (1)

2xzdx 4 2yzdy + (2 — x* — y))dz =0. (2)

Die Integration von Gl. (1) ergibt |
y = kx. XIV.

' Dles ist die Gleichung eines Ebenenbiischels durch die z-Achse,
das die Fliche nach § 2 in den erzeugenden Merldlankrelsen
schneidet. Wir finden also: Die erste Schar der Krim-
mungslinien i1st eben und wird durch die Meridian-
kreise dargestellt.?)

Die Gl. (2) ist eine totale Differentialgleichung von der.
allgemeinen Form

Pdx4+Qdy+Rdz=0.

Eine solche kann leicht integriert werden,*) wenn die Bedingung

(-2 o (2 229

) Dieser Satz kann fiir jede Einhiillende einer einfach unendlichen
Kugelschar verallgemeinert werden. Enz. d. Math. III. D. 5. 4 p. 278,
7 J. H. Graf: Differentialgleichungen, p. 104.
2
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erfillt ist. Dies ist, wie sich leicht nachrechnen lisst, fiir die
vorliegende Differentialgleichung (2) der Fall. Um die Integra-
tion auszufithren, nehme man z als konstant an, also:

xdx+4ydy=0,
integriere und ersetze die auftretende Integrationskonstante durch
eine willkiirliche Funktion von z:

X+ y =9 (3)

Durch totale Differentation folgt hieraus:

2xdx + 2ydy—-é—-dz::0
Vergleicht man diese mit (2), so ergibt sich
—1 @ty =2 —g ()
Z
und durch Integration dieser Differentialgleichung:
P— p(z)y=—22}+2C3z
wo C eine arbitrire Konstante ist. Setzt man diesen Wert in (3)
e, so heisst die integrierte Gleichung (2):
x24y2+22—-2Cz==0. XV.

Dies 1st die Gleichung emmer Kugel, die durch den Null-
punki geht und deren Mittelpunkt auf der z-Achse im Abstand
C von O liegt. Da C willkirlich ist, so folgt: Die zweite
Schar von Krimmungslinien wird durch Kugeln
ausgeschnitten, deren Mittelpunkte in der z-Achse
liegen und die durch den Nullpunkt gehen.

Um die Projektion der zweiten Schar von Krimmungs-
linien auf die y z-Ebene zu finden, eliminieren wir aus (XV) und
aus der Fliachengleichung (I) x und erhalten die Schar von
Kegelschnitten:

a2 C az (%

ze,

Es ist dies die Gleichung einer Schar von Ellipsen, deren
Halbachsen

,_ a0 b — a2 C

a0 cVa FC
sind und deren Scheitel 1m Nullpunkte hegen, mit der. y-Achse
als Scheiteltangente.
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In analoger Weise ergibt sich fiir die Projektion auf die
x z-Ebene die Gleichung

o 2P0, BiC

¢? c? :
welche bei verinderlichem C eine Schar von Hyperbeln dar-
stellt, deren Scheitel im Ursprung liegen.

Es 1st klar, dass weder im einen, noch im andern Falle
die ganze Kurve in Betracht fillt. Wir konnen deshalb sagen:
Die Projektionen der zweiten Schar von Krim-
"mungslinien auf die yz-Ebene sind Ellipsenbogen,
auf die xz-Ebene Hyperbelbogen.

?

Fir die Projektion auf die x y-Ebene findet man
c (x2+y2)2—[—202'(xz—1—y2-——20,2) (a2x2 1- b2y2).
+ @+ yz)z == 0
Die Projektion der zweiten Schar der Krimmungs-

linien auf die xy-Ebene ist eine. Schar von Kurven
vierten Grades.

Es ist weiter von Interesse, den Winkel, unter dem sich
die Kugeln und die Fliche schneiden, zu untersuchen. Zunichst
gilt der Satz von Joachimsthal: Liegt eine Krimmungslinie einer
Flache auf emmer Kugel, dann schneidet sich die Kugel mit der
Fliche langs der ganzen Kriimmungslinie unter konstantem
Winkel. Wir brauchen also fir jede Krimmungslinie der zweiten
Schar den Winkel nur in einem Punkte derselben zu bestimmen,
dann ist er lings der ganzen Kriimmungslinie gleich gross. Diese
Bestimmung nehmen wir fir die Punkte des in der x z-Ebene
liegenden Meridians vor. Da dieser Kreis die y-Achse im Null-
punkt berithrt, der Schnittkreis der Kugel mit der xz-Ebene
aber die x-Achse im Nullpunkt tangiert, so schneiden sich beide
Kreise im Nullpunkt und somit auch im zweiten Schnittpunkt,
dem Flichenpunkt, rechtwinklig, wie auch analytisch leicht nach-
zuweisen 1st. Und weil die Tangentialebenen lings dieses Meri-
dians auf der xz-Ebene senkrecht stehen, so schliessen auch
sie einen rechten Winkel ein. Dieser Winkel ist von der Grosse
C unabhingig und bleibt also fiir alle Krimmungslinien der
zweiten Schar derselbe. Mit Beriicksichtigung des Satzes von
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Joachimsthal folgt hieraus: Die Kugeln, auf denen die
zweite Schar von Krimmungslinien liegt, durch-
schneiden die Flach e aberall rechtwinklig?).

Da die Tangentialebenen der Fliche in den simtlichen
Punkten einer Krimmungslinie der zweiten Schar auf den Tan-
gentialebenen in denselben Punkten an die zugehorige Kugel
senkrecht stehen, so gehen sie alle durch den Mittelpunkt dieser.
Kugel.: Umgekehrt ergibt sich also: Die Gesamtheit aller
von einem festen Punkte der z-Achse aus an die
Fliache gelegter Tangentialebenen berihrt die
Fliache lings einer Krimmungslinie der zweiten
Schar. Der Beweis lisst sich iibrigens auch analytisch sofort:
fithren. Fiir den Punkt X =0, Y =0, Z = C der z-Achse werden
die Gleichungen der Tangentialebenen nach (VII):

2(a’ x> b’ yg)z(xz—f-yz—]—z?)-Cz
oder mit Beniitzung der Flichengleichung:
24 y242Z=2Cz,
Die Berithrungspunkte unterliegen also dieser Bedingung, die
genau mit der Gl. XV der zweiten Schar von Kriimmungslinien
iiberemstimmt.

Aus der Tatsache, dass der Kugelradius die Fliche beriihrt,
nicht aber schneidet, ergibt sich eine einfache Konstruktion der
Krimmungslinien der zweiten Schar: Man befestige einen Faden
in irgend einem Punkte der z-Achse, wihle seine Linge gleich
seiner Entfernung vom Nullpunkt und verbinde sein Ende mit
der Spitze eines Bleistifts. Bewegt man die Bleistiftspitze bei
gespanntem Faden auf der Fliche, so beschreibt sie eine
Krimmungslinie.

) Dieser Satz lisst sich auch aus den allgemeinen Untersuchungen
von Bonnet [Journal de I'école polyt. 20 (1853) p. 117] folgern: Ist fiir
eine Flache das System der einen Kriimmungslinien eben und gehen ihre
Ebenen durch ein und dieselbe Gerade, so liegen die Kriimmungslinien
der andern Schar auf Kugeln, welche die Fliche senkrecht schneiden, und
deren Mittelpunkte in jener Geraden liegen.
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