
Zeitschrift: Mitteilungen der Naturforschenden Gesellschaft Bern

Herausgeber: Naturforschende Gesellschaft Bern

Band: - (1913)

Artikel: Ueber eine zyklische Fläche vierter Ordnung

Autor: Fischer, Arthur

DOI: https://doi.org/10.5169/seals-319235

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-319235
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Arthur Fischer.

Ueber eine zyklische Fläche vierter
Ordnung.

Eine Kugel von veränderlichem Radius bewege sich so,
dass ihr Zentrum auf einer festen Ellipse fortschreitet und ihre
Fläche durch den Mittelpunkt der Ellipse geht. Die Umhüllende
dieser einfach unendlichen Schar von Kugeln '), die als solche

zu den zyklischen Flächen gehört, ist Gegenstand vorliegender

Arbeit.

I. Teil.

Untersuchung der Fläche in rechtwinkligen und
Polarkoordinaten.

§ 1. Aufstellung der Flächengleichung in rechtwinkligen
Koordinaten.

Die Ellipse, auf welcher sämtliche Kugelmittelpunkte liegen,
bezeichnen wir als Leitellipse. Wir legen sie in die xy-Ebene
eines räumlichen cartesischen Koordinatensystems derart, dass

ihre Gleichung
,2 2 2 2 2 i 2 (t\bx-f-ay=aD '"

wird, wo a und b die Halbachsen der Ellipse bedeuten.
Sind £, »j, £ die Koordinaten irgend eines Punktes einer

bestimmten Kugel der Schar, deren Radius 1 und deren Mittelpunkt

(x, y) auf der Leitellipse liegt, so gilt für ihn die Kugel-
gleichung

(i--x)2 + 0,-y)2 + CXl2,

]) Lecornu bezeichnet die Enveloppenflächen von Kugeln al
„Perisphär en". Die vorliegende Fläche gehört nach seiner Klassifikation
zu den Perisphären 2. Gattung.
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die sich, weil die Kugel durch den Mittelpunkt 0 geht, auf

i=X2 + ^2HX-2(X-Hy)=o (2)
reduziert.

Lässt man denKugelmittelpunkt die ganze Ellipse durchlaufen,
x und y also alle nach Gleichung (1) möglichen Werte annehmen,
so stellt die Gleichung (2) die einfach unendliche Schar von
Kugeln dar. Indem man x und y als Parameter auffasst und
zwar x als unabhängigen und y als abhängigen, ergibt sich die
Gleichung der Enveloppe aller Kugeln durch Elimination der
Parameter x und y aus den Gleichungen

{=-0, *-f=o
dx

und aus Gl. (1). Die zweite Bedingung lautet in unserm Falle

+ -'¥ -dx
oder, wenn man den aus (1) sich ergebenden Wert

dy_ b x
dx a y

einsetzt :

— a y t — b x 7j 0. (3)
dx

Durch Elimination der parametrischen Koordinaten x, y des

Kugelmittelpunktes aus den Gleichungen (1), (2) und (3) ergibt
sich:

f+rf+i? -2\fai?-\-b2ri2 0

oder, wenn wir i, tj, t durch x, y, z ersetzen :

(x2 + y2+z2)2=4(a2x2 + bV). I-

Dies ist die gesuchte Gleichung der Enveloppenfläche.
1st die Leitkurve speziell ein Kreis, also b a, so reduziert

sie sich auf:

(x2-fy2 + z3)2=4a2(x2fy2). Ia.
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Die Fläche wird, weil der Radius der erzeugenden Kugel
konstant ist, zu einer Kanalfläche oder Röhrenfläche, die aus dem
Torus hervorgeht, wenn dessen innerer Radius verschwindet.

Diskussion der Flächengleichung. Die Enveloppen-
fläche ist von der vierten Ordnung. Sie ist, wie man leicht sieht,
in Bezug auf alle drei Koordinatenebenen symmetrisch.

Die homogen gemachte Flächengleichung heisst:

F (x2 + y2 + z2)-4 w2 (a2 x2 + b2 y2) 0. Ib.

Der Schnitt mit der unendlich fernen Ebene w 0 ergibt sich zu

(x2 +y2+z2)2=0, (4)

d. h. der Richtungskegel ist ein imaginärer Kreiskegel. Die
Fläche ist somit geschlossen und liegt ganz im Endlichen. Die
Gleichung (4) stellt aber auch den unendlich fernen Kugelkreis

dar, d. h. die Enveloppenfläche geht durch den unendlich
fernen imaginären Kugelkreis. Diese Tatsache kann man sich
dadurch erklären, dass jede Kugel durch den unendlich fernen
imaginären Kugelkreis geht, also auch die Enveloppe aller Kugeln.

Der „Mittelpunkt" der Fläche, d.h. der Ursprung x 0,

y 0, z 0, erfüllt die Flächengleichung und ist ein Doppelpunkt.

Die Gleichung seines Knotenkegels ist
2 2 i 2 2 na x -j~ b y =0.

Dieser zerfällt in die beiden zur xz-Ebene symmetrischen
imaginären Ebenen

a
y + — ix,- b

welche Tangentialebenen im Nullpunkt sind. Beide
Ebenengleichungen sind für x 0, y 0 erfüllt; die beiden imaginären
Tangentialebenen schneiden sich also in der z-Achse, welche
Knoten kante der Fläche im Mittelpunkt ist. Sie schneidet die
Fläche in 4 zusammenfallenden Punkten. Der Nullpunkt ist
deshalb ein biplanarer Doppelpunkt mit zwei konjugiert
imaginären Tangentialebenen und reeller Knotenkante.

Es fragt sich, ob ausser dem Mittelpunkt noch andere
Punkte Doppelpunkte seien. Damit ein Punkt Doppelpunkt sei,
muss er die Bedingungsgleichungen
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F. — (x2 + y2 + z2)x — 2a2w2x 0
dx

F2 ^=(x2-f y2+z2)y-2b2w2y 0
dy

F3 ^=(x2-f y2 + z2)z =0
o z

t- S F 2 2 2\2 nF4 —- (x -f- y -f z) w =0
ÖW

erfüllen, und das tun nur der Nullpunkt x O, y 0, z 0,

w 1 und die Punkte des unendlich fernen imaginären
Kugelkreises: der Mittelpunkt und die Punkte des imaginären
Kugelkreises sind die einzigen Doppelpunkte der
Fläche. Der imaginäre Kugelkreis ist eine Doppelkurve der
Fläche.

§ 2. Schnitte mit Ebenen durch die z-Achse.

Durch die z-Achse legen wir eine beliebige Ebene, die mit
der x-Achse den veränderlichen Winkel <p einschliesse. Um eine
einfache Gleichung für die Schnittfigur zu erhalten, machen wir
diese Ebene vermittelst der Transformationsgleichungen

x x'cosç> — y'&axtp

y x'sinç> -}- y'cos^
z =z'

zur neuen x'z'-Ebene. Die transformierte Flächengleichung :

(x'2 + y'2 -f z'2)2 4a2(x'cosy> — y'sin?)2

-j- 4 b2 (x'siny -j- y'costp)

liefert für den Schnitt der Fläche mit der x'z'-Ebene y' — 0 die
Gleichung

x'2 ~f- y'2 ± 2 V/a2cos'V + b2sinV - x',

die zwei kongruente Kreise darstellt, deren Peripherien den
Nullpunkt enthalten und deren Zentren auf der positiven und negativen

x'-Achse im Abstand

Va cos2^ -f- b2sin2y II.



vom Nullpunkt liegen. Jede Ebene durch die z-Achse
schneidet die Fläche in zwei kongruenten Kreisen, deren
Radien durch (II) gegeben sind; wir nennen sie Meridiankreise.

Die Fläche enthält also eine einfach unendliche Schar
von Kreisen, d. h. sie ist eine zyklische Fläche.

Führt man vermittelst

x y 2 2.2cosy>=—, sinf — -, r x -\- y
v r

wieder rechtwinklige Koordinaten ein, so ergibt sich für die
durch (II) dargestellte Kurve der Mittelpunkte aller
Meridiankreise die Gleichung

/ 2 'A2 2 2 2 2 tt(x" + j'f ar -r- b2y", IIa.
die eine der Leitellipse umschriebene Booth'sche elliptische
Lemniskate darstellt. Sie ist die Pedale der Ellipse in Bezug
auf ihren Mittelpunkt und berührt diese nur in deren Scheiteln ;

also sind diese Berührungspunkte die einzigen Mittelpunkte von
Meridiankreisen, die auf der Ellipse liegen. Die Radien der zu
ihnen gehörenden Meridiankreise der xz- und yz-Ebene sind also

gleich den Radien der Kugeln, die ihre Mittelpunkte in jenen
Scheiteln haben, nämlich r' — a und r" b. Diese den Werten
tp 0° und tp — 90° entsprechenden Radien bilden zugleich das

Maximum und Minimum für r. Bezeichnen wir jene durch die
xz- und yz-Ebene ausgeschnittenen Kreise als ersten bezw.
zweiten Hauptmeridian, so können wir sagen:

Die Radien des ersten und zweiten Hauptmeri-
dians bilden die Extremwerte aller Meridianhalbmesser
und haben die Länge der grossen bezw. kleinen Halbachse

der Leitellipse.
Für den Fall, dass b a wird, fällt die Kurve der

Mittelpunkte sämtlicher Meridiankreise mit dem Leitkreis zusammen.

§ 3. Schnitt der Fläche mit der xy-Ebene.

Die Schnittkurve der Fläche mit der xy-Ebene, der «Äquator»,

hat die Gleichung

(x2 + y2)2=4(a2x2-f-b2y2). III.
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Sie ist eine Booth'sche elliptische Lemniskate, die zu einer
Ellipse mit den Halbachsen 2 a und 2 b gehört. Sie ist zu den
Koordinatenachsen symmetrisch und besteht aus einem geschlos -

senen Blatt um den Nullpunkt; dieser ist ein isolierter
Doppelpunkt oder konjugierter Punkt der Kurve.

Da jede Kugel auf der xy-Ebene einen Kreis ausschneidet,
so ist, wie sich übrigens auch direkt zeigen lässt, die Schnittkurve

die Enveloppe aller durch den Nullpunkt gehender Kreise,
deren Mittelpunkte auf der Ellipse

,2 2 i 2 2 2, 2bx fay a b

liegen. Diese Eigenschaft lässt sich besonder? gut verwenden
zur Konstruktion der Kurve.

Andererseits ist die Äquatorkurve auch der geometrische
Ort der Fusspunkte der Perpendikel vom Nullpunkt auf alle
Tangenten an die Ellipse von den doppelten Halbachsen:

b2x2-|- a2y2 — 4a2b2, IV.
wie leicht nachzuweisen ist, d.h. sie ist die Fusspunktskurve
oder Pedale dieser letztern Ellipse in Bezug auf ihren Mittelpunkt

als Pol.

Führt man in Gl. (III) mit Hilfe von

x Qcostp
'

y — Qsinip

Polarkoordinaten ein, so wird die Polargleichung des Aequators

q -= 4(a"cos"f -f- b sin~^>) 4r~. lila.
Hieraus ergibt sich die folgende Konstruktion für die

Kurve. ') Man konstruiere
(Fig. 1) um den Mittelpunkt
C zwei Kreise mit den Radien
2 a und 2 b und ziehe einen
beliebigen Strahl unter dem
Winkel tp gegen die Hauptachse,

der die beiden Kreise
in den Punkten A und B
schneidet. Zieht man durch A

A

P.

2a
Fig. 1

') Schlömilch: Uebungsbuch zum Studium der höheren Analysis,
I, S. 106.



eine Senkrechte und durch B eine Parallele zur Hauptachse,
deren Schnittpunkt Q sei, so ist CQ p der gesuchte Radiusvektor,

der nur noch auf CA abzutragen ist. — Der Beweis

ergibt sich aus /\ BQD, in welchem

BD BE 2bsiny CD 2acos^
ist, somit

CPXCQ2 q2 4(a2cosV + bWf«) 4r2.

Für die höchsten und tiefsten Punkte der Kurve ergeben
sich die Koordinaten

X^±i\/X2b2 v=X^2,
c c

wenn c die lineare Exzentrizität der Leitellipse bedeutet. Sie

fallen für a b\/2 mit den Scheiteln der kleinen Achse der

Ellipse (IV) zusammen.

Für die Koordinaten der vier Wendepunkte findet man

x _L-^_N/3(a2_2b2) +_X^v/3(2?Xb2Tv.
c(a2+ b2)

J -c(a2 +b2)
Sie sind nur reell, wenn a > h\j2. Für a b\/2 fallen sie in
die Scheitel der kleinen Achse der Ellipse (IV).

Die Fusspunkt-Eigenschaft des Aequators lässt sich sofort
für die Fläche verallgemeinern. Ein beliebiger Meridiankreis
(Fig. 2) vom Mittelpunkt C treffe den Aequator im Punkte Q.
Ist dann P irgend ein Punkt dieses Meridiankreises, so ist
<£ QPO 90°. Die in Q zu OQ senkrechte Gerade t ist eine

Tangente an die Ellipse (IV). Legt man durch sie alle möglichen
Ebenen und fällt von 0 aus auf jede ein Lot, so liegen alle
Fusspunkte dieser Lote auf dem Meridiankreis OPQ. Hieraus
ergibt sich :

Legt man durch alle Tangenten der Ellipse von
den Halbachsen 2a und 2b alle möglichen Ebenen und
fällt Perpendikel vom Mittelpunkt der Ellipse auf jede
derselben, so ist der Ort der Fusspunkte die betrachtete

zyklische Fläche vierter Ordnung.
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+x

C\r

c9

Fig. 2.

§ 4. Schnitte parallel der xy-Ebene.
Durch eine zur xy-Ebene parallele Ebene von der

Gleichung z s const, wird die Fläche in der in Bezug auf den

jeweiligen Nullpunkt zentrisch symmetrischen Kurve
(x2 + y2 + s2)2=4(a2x24-b2y2) (1)

geschnitten, die, wie aus der etwas umgeformten Gleichung

(x2 + y2 + s2 — 2 b2)2 4(c2x2 — b2 s2 + b4) (2)

ersichtlich ist, zu den spirischen Linien des Perseus gehört.
Sie ist eine bizirkulare C4 und besitzt als solche zwei
ausserordentliche Brennpunkte, deren Orthogonalprojektionen auf die

xy-Ebene sich mit den Brennpunkten der Leitellipse decken.

Zieht man vom Nullpunkt aus beliebige Strahlen durch
die Kurve, so hat das Produkt der auf jedem dieser Strahlen
vom Nullpunkt aus gemessenen Radienvektoren den konstanten
Wert s4 (Potenz).

Führt man vermittelst
X pcosf, psinyj
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Polarkoordinaten ein, so wird die Gleichung (1):
/ 2 | 2\2 2/ 2 2 2 • 2 -.

(q -\-s 4 q (a cos -97 -f- b sm tp),

woraus sich ergibt

2 • 2

+ \/2r2 ~2 + 2rV/?s i-ürv r

wo aXs" tp -\- h'srn tp r" gesetzt ist.

1. Fall: Ist s < b, so wird p immer reell, also werden
auch alle vier Schnittpunkte eines Strahles durch den Nullpunkt
mit der Kurve reell, d. h.

Alle Ebenen z << b schneiden die Fläche in zwei
getrennten, reellen Kurven, die den Nullpunkt um-
schliessen (Fig. 31), Kurve a).

2. F a 11 : Ist s — b, so reduziert sich Gl. (2) auf

l 1 \2 1 2 2
(x ± c) + y a

welche zwei Kreise vom Radius a darstellt, deren Mittelpunkte
in den beiden Brennpunkten liegen:

Die Ebenen z + b schneiden aus der Fläche je
zwei Kreise aus, die sich in der yz-Ebene kreuzen (Fig. 3,
Kurve b).

3. Fall. Ist a>s>b,
so werden nicht alle
Radienvektoren reell. Die beiden
Kurven haben kein Flächenstück

gemeinsam und schneiden

die y-Achse nicht.
Für die vom Nullpunkt

an die Kurve gelegte
Tangente müssen die
Radienvektoren gleich gross sein.

ee

Fig. 3.

Hieraus ergibt sich der Richtungs-
koeffizient dieser Tangente nach Gl. (2)

tgtp + /aa —
Vs2^-7

.2 — S2

') Ueber die Konstruktion der spirischen Linien vergi. Teixeira..
Arch. d. Math. (3), 11 (1907), S. 64.
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Uebersteigt der Richtungskoeffizient des Strahls diese Grösse,
so werden die Schnittpunkte imaginär, d. h.

Für alle Ebenen a >¦ z > b besteht der Schnitt mit
der Fläche aus zwei getrennten, reellen Kurven, die
den Nullpunkt nicht umgeben und von denen jede zur
x-Achse symmetrisch ist (Fig. 3, Kurven c und d).

§ 5. Tangentialebene und Normale.

Schreibt man die Flächengleichung in der Form

F (x2 + y2 4- z2)2 — 4(a2 x2 + b2y2) 0

und setzt zur Abkürzung

R2 X24-y2+Z2, VI.

so werden die partiellen Ableitungen von F :

Fx 4(R2 — 2 a2)x Fy 4(R2 — 2b2)y Fz 4R2z,

und die Gleichung der Tangentialebene
(X - x)Fx + (Y - y)Fy + (Z - z)F2 0,

wo X, Y, Z die laufenden Koordinaten, x, y, z die Koordinaten
des Berührungspunktes bedeuten, nimmt die Form an:

2a2 x(X -4- x) + 2b2y(Y 4- y)

(x2 + y2 -f- z2)(Xx 4- Yy + Zz). VII.
In allen Punkten des Schnittes der Fläche mit den

Koordinatenebenen steht die Tangentialebene auf der betr.
Koordinatenebene senkrecht, wie sich aus Symmetriegründen oder auch
durch die folgende Rechnung ergibt: Für die xz-Ebene z. B. ist

v 0. Die Gleichung der Tangentialebene in den Punkten der
Schnittkurve auf der xz-Ebene ist also:

2a2x(X -f x) (x2 + z2)(Xx 4- Zz).

Diese Ebene steht auf der xz-Ebene senkrecht.
Die Tangentialebenen in den höchsten bezw. tiefsten Punkten

der Fläche, für die x 4a, y —0, z a bezw. x—4 a, y 0,
z — a ist, haben die Gleichungen

Z 4a.
Sie sind Doppeltangentialebenen.
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Ebenso sind die zu den Berührungspunkten x 0, y 4 b,

z b bezw. x 0, y + b, z — b gehörenden Tangentialebenen

von der Gleichung
z ±b

Doppeltangentialebenen. Ihr Schnitt mit der Fläche ist bereits
in § 4 diskutiert worden.

Die Richtungskosinuse der Fläche.nnormalen:
Fx Fy Fz

COSO —, COS.Ï —, cos/ — —,k k k

k ^fT+fT+F? 8 \JaV+X?
ist, werden:

R2 — 2a2
cos a ,._ x

2v/a4x2 4- b4y2
R2 — 2 b2

T7TTTcos/? —r- y VIII.
2v/a4x2 4 b4y2

R2
cosy —= z,

2\/a4x2 4 b4y2
sodass die Doppelgleichung der-Normalen im Punkte (x, y, z)
der Fläche die Form

X-x Y-y Z-z
(R2 —2a2)x (R2 — 2b2) y R2z

annimmt.
Für den Schnittpunkt der Normalen mit der xy-Ebene

findet man hieraus mit Benützung der Flächengleichung:

X _ a"x y
p2 y n V

2(a2x2 4- b2y2)
' 2(a2x2 4 b2y2)

'

Bildet man den Ausdruck b2 X2 4- a2 Y2, so ergibt sich,
dass die Koordinaten der Schnittpunkte der Flächennormalen
im Punkte (x, y, z) mit der xy-Ebene durch die Gleichung

b2X2 4 a2Y2 a2b2

verbunden sind. Sie ist vom Punkte (x, y, z) unabhängig und
gilt also, wenn X und Y als veränderlich aufgefasst werden, für
jede beliebige Normale. Wir ersehen hieraus, dass der Ort
der Schnittpunkte aller Flächennormalen mit der
Aequatorebene die Leitellipse ist.
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Fassen wir insbesondere die Normalen der Fläche längs
der Meridiankreise ins Auge, so ist für diese y mx zu setzen.
In diesem Falle werden die Koordinaten der Spurpunkte nach (1) :

q2 D IH
X const, Y -= — const, (2)

Va24-b2m2 \/a2 4- b2m2

d. h. die Flächennormalen längs eines Meridiankreises
schneiden sich alle in einem Punkte der Leitellipse,
sie bilden einen Kreiskegel.

Es bleibt noch zu zeigen, dass dieser Kegel ein gerader
Kreiskegel ist. Für die Koordinaten des zum Meridiankreis

y mx gehörenden Mittelpunktes ergibt sich

y/a2 4-b3mä' _mV/a24-b2m2
X, (3)

1 4- m2 ' » 1 4- m2 '

Die Verbindungsgerade dieses Kreismittelpunktes mit dem Spur
punkte (2) ergibt den Richtungskoeffizienten

m,
m

Fig. 4.

la ÖS2 X24-Y2
aJ4-b2m2 +

Die Achse des

Kreiskegels steht
also senkrecht
zur Basis, dem
Meridiankreis.

Die Länge
der Erzeugenden

dieses
Kreiskegels ist gleich
dem Radius 1 der

erzeugenden
Kugel, deren

Mittelpunkt im
Spurpunkt S liegt
(Fig. 4) und es

ist

u* 2
b m

2 i i 2 2
a 4- b m
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oder, wenn m — tgtp gesetzt wird:

\fa-cos-tp 4- b4sin2^

s/ai-cos-f 4" b2sin2#>

Setzen wir zur Abkürzung

t ya4cos2^ 4- b4sin2^ X.

und berücksichtigen Gl. II, so wird

t 1 • r. XI.

§ 6. Kubatur und Komplanation.

Um das Volumen des von der Fläche begrenzten Körpers
und dessen Oberfläche zu ermitteln, führen wir räumliche
Polarkoordinaten q OP, tp 4. xOQ, » 21 QOP (Fig. 2) ein
(wobei p eine von lila verschiedene Bedeutung hat). Von diesen
sind aber nur zwei, z. B. tp und d- als unabhängig zu betrachten.
Für q ergibt sich aus der Figur 2:

q 2rcos#, (1)

wo r ya2cos2^> 4- b2sin2y.
Das Volumen des Körpers ist gleich dem achtfachen

Volumen des in einem Oktanten liegenden Teils des Körpers, alsox)

W2 -nh rQ
V 8 / / / p2cos#dpd#dy>.

o ô fr

Führt man die Integration nach p und # aus und berücksichtigt
die Gl. (1), so wird

Wa
V 4tt i y(a2cos2^ 4- b2sm-<p)-d<p,

was sich auch schreiben lässt:

*/2

'/ ^4 a3 TT j V(l — e2 sin2 tp)3 dtp

/ c2 a2 J)2 \
wo e2 —

\ a2 a2 /
oder in der bekannten Schreibweise:

') Serret: Differential- und Integralrechnung Nr. 604.
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W
V 4a37T i J3tpdtp.

o

Unsere Aufgabe ist zunächst, das unbestimmte Integral

J f S tpdtp

auf elliptische Normalintegrale zu reduzieren. Wir schreiben zu
diesem Zwecke:

j m —e8sin»a Çdy _ 2g2 Çsitftp ^
fain-tp+ e X d ?•

Nun ist bekanntlich

f^ F(e,y)

das elliptische Normalintegral I. Art und

f^df^l{F(e^)_E(e,y)],
J Jtf e2 -

wo E(e,f) das elliptische Normalintegral II. Art bedeutet. Aus
der Rekursionsformel:

/>gin> (m-2)(l4-e2) m-^j" J Jtf (m —l)e2 m~2 (m —l)e2 m~4

t sinm—3ycosyj/y

(m— l)e2~
ergibt sich weiter

fsirttp 2(14-e2),^, ,-,,., 1 „,]~jfà(P== -L8^~tP(e,9)""E(e'v)>"g7 F(e'T)

siny cos y^/y
sodass jetzt 3e2

J - F(e,y) - 2 { F(e,f) - E(e,y)} 4 2 - LtfL { F(e,y) - E(e,y)}

— F(e,y) 4 —- sinycosyj/y
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wird, oder nach vorgenommener Reduktion:

J =¦ fjs ydy - 1 M F(e,y) 4 i
,/ o a c

2 a24-b2 _,.¦Z^E(e,y)

a2 ^2
-| sin y cos y _/ y.3 a2

Das bestimmte Integral zwischen den Grenzen o und X wird

X2 1

J== j M 3^î-b2K42(a24b2)E},

wo K und E die vollständigen elliptischen Normalintegrale I.
und II. Art bedeuten. Also ist das Volumen der ganzen
zyklischen Fläche

V — &7Z { 2(a2 4 b2) E - b2K }. XII.
ö

Die.Formel muss natürlich auch gelten, wenn b 0, d.h.
wenn die Ellipse sich auf die Strecke 2 a reduziert. Dadurch
bekommen wir ein Mittel an die Hand, die Formel XII. zu

prüfen. Ist nämlich b 0, so wird e 1, also E l und

4 <*

V 2- —aV

also gleich dem Volumen zweier Kugeln vom Radius a. In der
Tat zerfällt unter der Annahme b 0 der Körper in zwei
getrennte, sich berührende Kugeln vom Radius a.

Für den Fall, dass b a ist, vereinfacht sich die Formel
XII auf

V 2a37r2. XHa.

Ans der Komplanationsformel für eine in räumlichen
Polarkoordinaten gegebene Fläche : ')

') Serret, 1. c., Nr. 601.
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ergibt sich, weil in unserm Falle nach Gl. (1)

oo - c2 sina<cos <r
—- — 2 cos# • - -
ôff r

— =• — 2rsin# ist:
33

°=*//tcos23dyd#.

Die ganze Oberfläche ist gleich der achtfachen Oberfläche eines
in einem Oktanten liegenden Teiles, also

W2 W«
0 32 I tdy | cos23d#.

0 0

r,nk
8azr I \/l—k2sin2ydy

o

w a* — b4
wenn k^

a4

gesetzt wird. Die Oberfläche der ganzen zyklischen Fläche wird
also :

0 8a27rE, XIII.
wo E das vollständige elliptische Normalintegral II. Art vom

Modul -~ y/a4 — b4 vorstellt.
a

Für b 0 reduziert sich die Formel, wie erforderlich, auf

0 2-4aX,
d. h. auf die Oberfläche zweier Kugeln vom Radius a.

Ist b a, so wird die Formel:

0 4a27r2. XIII a.
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§ 7. Die Krümmungslinien.

Die Differentialgleichung der Krümmungslinien:

dx dF. F
dy
dz

dFy
dF

Fy
F

0

dx
dy
dz

x(R — 2 a2)

y(R2-2b2)
j2

0.

wird für die vorliegende zyklische Fläche

xd(R2)4-(R2 —2a2)dx
yd(R2)4(R2 —2b2)dv
zd(R2)4-R2dz zR*

Sie lässt sich mit Benutzung der Flächengleichung auf die Form

(xdy — ydx) { 2xzdx + 2yzdy 4 (z2 — x2 — y2) dz } 0

bringen.
Die Differentialgleichungen der beiden Scharen von

Krümmungslinien sind also:

xdy - ydx 0 (1)

2 xzdx + 2 yzdy 4- (z2 — x2 — y2) dz 0. (2)

Die Integration von Gl. (1) ergibt

y kx. XIV.
Dies ist die Gleichung eines Ebenenbüschels durch die z-Achse,
das die Fläche nach § 2 in den erzeugenden Meridiankreisen
schneidet. Wir finden also: Die erste Schar der
Krümmungslinien ist eben und wird durch die Meridiankreise

dargestellt.1)
Die Gl. (2) ist eine totale Differentialgleichung von der

allgemeinen Form

Pdx4Qdy + Rdz 0.

Eine solche kann leicht integriert werden,2) wenn die Bedingung

'ÔQ ÔR\ nfdR ôP\ D/ôP dQ
'aydz -X(ô x d z

R ——dx
0

') Dieser Satz kann für jede Einhüllende einer einfach unendlichen
Kugelschar verallgemeinert werden. Enz. d. Math. III. D. 5. 4 p. 278.

*) .1. H. Graf : Differentialgleichungen, p. 104.

2
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erfüllt ist. Dies ist, wie sich leicht nachrechnen lässt, für die
vorliegende Differentialgleichung (2) der Fall. Um die Integration

auszuführen, nehme man z als konstant an, also:

xdx4-ydy 0,

integriere und ersetze die auftretende Integrationskonstante durch
eine willkürliche Funktion von z:

x2 + y2 y(z). (3)

Durch totale Differentation folgt hieraus:

2xdx42ydy ^dz 0.
d z

Vergleicht man diese mit (2), so ergibt sich
d cc

— z —^- z2 — (x2 4- y2 — z2 — y (z)
d z

und durch Integration dieser Differentialgleichung:
y(z) -z24-2Cz,

wo C eine arbiträre Konstante ist. Setzt man diesen Wert in (3)
ein, so heisst die integrierte Gleichung (2):

x24-y24-z2 — 2Cz 0. XV.
Dies ist die Gleichung einer Kugel, die durch den

Nullpunkt geht und deren Mittelpunkt auf der z-Achse im Abstand
C von 0 liegt. Da C willkürlich ist, so folgt: Die zweite
Schar von Krümmungslinien wird durch Kugeln
ausgeschnitten, deren Mittelpunkte in der z-Achse
liegen und die durch den Nullpunkt gehen.

Um die Projektion der zweiten Schar von Krümmungslinien

auf die y z-Ebene zu finden, eliminieren wir aus (XV) und
aus der Flächengleichung (I) x und erhalten die Schar von
Kegelschnitten :

2 0a2C a24-C2 2y1 li z zJ.
c2 c2

Es ist dies die Gleichung einer Schar von Ellipsen, deren
Halbachsen

a2C b,= a2C

a2 + C2 cVl^TC2"
sind und deren Scheitel im Nullpunkte liegen, mit der y-Achse
als Scheiteltangente.
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In analoger Weise ergibt sich für die Projektion auf die
x z-Ebene die Gleichung

2b2C b24-C2
X2 z -j ¦ z2,

c2 c2

welche bei veränderlichem C eine Schar von Hyperbeln
darstellt, deren Scheitel im Ursprung liegen.

Es ist klar, dass weder im einen, noch im andern Falle
die ganze Kurve in Betracht fällt. Wir können deshalb sagen:
Die Projektionen der zweiten Schar von
Krümmungslinien auf die yz-Ebene sind Ellipsenbogen,
auf die xz-Ebene Hyperbelbogen.

Für die Projektion auf die x y-Ebene findet man

C4(x24y2)2 + 2C2(x24-y2-2C2)(a2x24b2y2).
'

+(a2x2-r-b2y2)2 0.

Die Projektion der zweiten Schar der Krümmungslinien
auf die xy-Ebene ist eine Schar von Kurven

vierten Grades.
Es ist weiter von Interesse, den Winkel, unter dem sich

die Kugeln und die Fläche schneiden, zu untersuchen. Zunächst

gilt der Satz von Joachimsthal : Liegt eine Krümmungslinie einer
Fläche auf einer Kugel, dann schneidet sich die Kugel mit der
Fläche längs der ganzen Krümmungslinie unter konstantem
Winkel. Wir brauchen also für jede Krümmungslinie der zweiten
Schar den Winkel nur in einem Punkte derselben zu bestimmen,
dann ist er längs der ganzen Krümmungslinie gleich gross. Diese
Bestimmung nehmen wir für die Punkte des in der x z-Ebene

liegenden Meridians vor. Da dieser Kreis die y-Achse im
Nullpunkt berührt, der Schnittkreis der Kugel mit der x z-Ebene
aber die x-Achse im Nullpunkt tangiert, so schneiden sich beide
Kreise im Nullpunkt und somit auch im zweiten Schnitlpunkt,
dem Flächenpunkt, rechtwinklig, wie auch analytisch leicht
nachzuweisen ist. Und weil die Tangentialebenen längs dieses Meridians

auf der xz-Ebene senkrecht stehen, so schliessen auch
sie einen rechten Winkel ein. Dieser Winkel ist von der Grösse
C unabhängig und bleibt also für alle Krümmungslinien der
zweiten Schar derselbe. Mit Berücksichtigung des Satzes von
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Joachimsthal folgt hieraus : Die Kugeln, auf denen die
zweite Schar von Krümmungslinien liegt,
durchschneiden die Fläch e überall rechtwinklig1).

Da die Tangentialebenen der Fläche in den sämtlichen
Punkten einer Krümmungslinie der zweiten Schar auf den
Tangentialebenen in denselben Punkten an die zugehörige Kugel
senkrecht stehen, so gehen sie alle durch den Mittelpunkt dieser
Kugel.' Umgekehrt ergibt sich also: Die Gesamtheit aller
von einem festön Punkte der z-Achse aus an die
Fläche gelegter Tangentialebenen berührt die
Fläche längs einer Krümmung s li nie der zweiten
Schar. Der Beweis lässt sich übrigens auch analytisch sofort
führen. Für den Punkt X 0, Y 0, Z C der z-Achse werden
die Gleichungen der Tangentialebenen nach (VII):

2(a2x24-b2y2) (xXy2 + z2)-Cz
oder mit Benützung der Flächengleichung:

x2 4- y2 4- z2 2 C z.

Die Berührungspunkte unterliegen also dieser Bedingung, die

genau mit der Gl. XV der zweiten Schar von Krümmungslinien
übereinstimmt.

Aus der Tatsache, dass der Kugelradius die Fläche berührt,
nicht aber schneidet, ergibt sich eine einfache Konstruktion der
Krümmungslinien der zweiten Schar: Man befestige einen Faden
in irgend einem Punkte der z-Achse, wähle seine Länge gleich
seiner Entfernung vom Nullpunkt und verbinde sein Ende mit
der Spitze eines Bleistifts. Bewegt man die Bleistiftspitze bei

gespanntem Faden auf der Fläche, so beschreibt sie eine
Krümmungslinie.

') Dieser Satz lässt sich auch aus den allgemeinen Untersuchungen
von Bonnet [Journal de l'école polyt. 20 (1853) p. 117] folgern: Ist für
eine Fläche das System der einen Krümmungslinien eben und gehen ihre
Ebenen durch ein und dieselbe Gerade, so liegen die Krümmungslinien
der andern Schar auf Kugeln, welche die Fläche senkrecht schneiden, und
deren Mittelpunkte in jener Geraden liegen.
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II. Teil.

Untersuchung der Fläche in der Parameter-Darstellung.

I. Kapitel.

Parameterdarstellung der Fläche. Die Kurve
der parabolischen Punkte.

§ 8. Die Parameterdarstellung.

Am einfachsten werden die Ausdrücke für die
Parameterdarstellung der Fläche, wenn man die Krümmungslinien als
Parameterkurven einführt und sich auf die in § 7 gefundenen
Eigenschaften derselben stützt.

Eine durch die z-Achse gelegte
Ebene, die mit der xz-Ebene den

Winkel u bildet, schneidet die Fläche
in einem Meridiankreis vom Radius

r und vom Mittelpunkt K (Fig. 5),
der auf der Kurve

r2 a2cos2u 4- b2sin2u

(nach Gl. II) liegt, und die Kugel
vom Mittelpunkt M auf der z-Achse

und vom Radius v (die auf der Fläche eine Krümmungslinie der
zweiten Schar ausschneidet) in einem Kreis. Beide Kreise
schneiden sich nach § 7 orthogonal in einem Punkte P der
Fläche. Es ist somit

A BPM ~ A APK
Hieraus ergibt sich

AK : r BM : v

V r2 — z2 : r v — z : v

2r2v
z

r2 4- v2

Liegt A zwischen 0 und K, so folgt:

Fig. 5.

AO OK — KA r — » /-a _
4r4v4,r2

2rv2

r24-v2

V"* (r2 + v2)2
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Aber auch wenn A ausserhalb OK liegt, gilt dasselbe. Es wird
also

2rv2
2

cosu
r24 v

2rv2
y sm u XVI.

r2 4- v2

2r2v

r24-v2
wobei r= ya2cos2u 4- b2sin2u.

Dies sind die Koordinaten eines Flächenpunktes in der
Parameterdarstellung. Die Parameterlinien u const und v const
sind die erste und zweite Schar von Krümmungslinien; u ist der
Winkel der Meridianebene gegen die xz-Ebene, v der Radius
der veränderlichen Kugel, die zu der zweiten Schar von
Krümmungslinien gehört.

Um die Fundamentalgrössen aufzustellen, ist es vorteilhaft,
diese Gleichungen auf die Form

vz vz 2r2v
x — cosu y — smu z Xvla.

r r r2 4- v2

zu bringen. Wir berechnen zunächst:
dz 4c2v3

sin u cosu
da (r2 4- v2)2

dr c2
— smu cosu
du r

wobei c2 a2 — b2. Ferner:
dx v | / dz\ dr)
— =— { r — zsinu 4- cosu • — — zcosu 1

du r2 1 \ du/ du)

dy v i [ dz\ dr)
—— — {r( zcosu-j-smu • - —zsinu-—\,du r2 { \ du/ du)

sodass

E sf^V=^(r2z24r2^y+Z2^V-2rzil^
\du/ r* l \du/ \du/ du du

'dz''2

(1)

HtJ
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Setzt man die Werte (1) ein und vereinfacht, so ergibt sich
4v4''t2

E (2)
r2(r2+v2)2

wo t die Bedeutung (X) hat:

Weiter ist:

t \/a4cos2u 4" b4sin2u.

dz_2r2(r2 —v2)
dv~~ (r24-v2)2
dx éi^v
d v (r2 4- v2)2

dy 4r3v
dv"- (r2 + v2)2

und hieraus findet man:

cosu

smu

s/dxdx\_dz 2r2 8 r3 Vs dr
\d u d v/ d u r2 4- v2 (r2 + v2)3 d u

oder ausgerechnet
F 0.

Schliesslich wird

G-S(dx)2- 4r4

(3)

(4)
\d v/ (r2 4-v2)2

und

A-+\/EG F2-.41'' ,-t.(r2+v')2
Die Richtungscosinuse der Flächennormalen ergeben sich

am einfachsten aus den Formeln VIII, in denen

>2 „2 _2 _2 4 r2 V2R=x|yfz r2 -4-v2

V/aX24-b4y2=214-.t
zu setzen ist. Dann wird

cos u 2 r2 v2 — a2 (r2 4 v2)
cos a •

t r24-v2
sin u 2 r2 v2 — b2 (r2 + v2) TrTTTcos ß ' Vin a.

t r2 4- v2

2r3v
cos y' t (r2 + v2)



— 24 —

sodass die Gleichung der Tangentialebene die Form annimmt:

X {2 r2 v2 — a2 (r2 -f v2)} cos u 4- Y J2 r2 v2 — b2 (r2 4- v2)} sin u

4-Z-2r3v 2r3v2. (5)

Da wir die Krümmungslinien als Parameterkurven eingeführt

haben, so muss die Fundamentalgrösse 2. Ordnung:

D' — S (cosa ¦
d2x \ o (6)

V d u d v/ W

sein und es gelten dann die Formeln von Rodrigues, von denen

wir nur die beiden

d cos y _
D ô z d cos y__ D" d z

du
~~

E du dv
~~

G dv

herausgreifen, weil sie sich zur Berechnung der beiden Fundamen-
talgrössen 2. Ordnung:

D sfcos«-— I)" s(coBa-—)
V du2/ V dv2/

am besten eignen. Aus (Villa) folgt nämlich durch Differentiation:

d cos y 2 c2 r v
5- sm u cos u a2 b2 (r2 4- v2 — 2 t2 vJ

du t3(r24-v2)2 ivi; i

d cos y 2 r3 r2 — v2

d v t (r2 4- v2)2

Führt man diese Werte in den Formeln von Rodrigues
ein, so wird

D ^—9 {212 v2 — a2 b2 (r2 + v2)}
tr(r2+v2)2' t

4rBD"= —
t(r2_|_v2)

Wir stellen hier die gefundenen fundamentalen Grössen

zusammen :
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2rv2 2rv2 2 r2 v
¦ cos u y sm u

J.2 _j_ v2 J.2 _|_ v2 J.2 _|_ v2

4v4t2 2v2 i sE= D — ô 2t2v2— a2b'(r24-v2)
r2(r24-v2)2 rt(r24-v2)2t ~ "

F 0 D' 0

G= 4H
„ D"=- 4r5

(r24-v2)2 t(r24-v2)2
4rv2t

A^(r2+v2)2
xvn.

A=\/DB"--D'2^ 2r2 \ \/2{2t2v2-a2b2(r24-v2)}
t (r2 4"v

ds2=Edu24 2Fdudv4-Gdv3=
4 / v4 t2

—j Xdu2 4-r4dv^
(r24-v2)2\ r2

'

1-2 — a2 cos2 u .|_ lj2 gjn2 u
t2 a4 cos2 u-f b4 sin2 u /

Für die Hauptkrümmungsradien bestehen, weil F 0 und
D' 0, die Formeln

_E __G_<
Pi— D ?2—"D„--

Setzt man für E, D, G, D" ihre Werte nach (XVII), so wird

^JV2
Ql ~~

r | 2 t2 v2 — a2 b2 (r2 + v2)}
tl \ r )\ XVIn

r
wie aus (XI) folgt, d.h.* der eine Hauptkrümmungsradius
{q2) ist immer gleich dem Radius der erzeugenden Kugel.1)

Für die höchsten und tiefsten Punkte der Fläche (x + a,

y 0, z + a) ist u 0 und v + a, somit

') Das Resultat gilt allgemein für Enveloppenflächen von Kugeln.
Vergi. A. Enneper: Bemerkungen über die Enveloppe einer Kugelfläehe.
Nachr. d. kgl. Ges. d. Wissenschaften und d. G. A. Univ. Göttingen 1873,

p. 219.
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c2

Für die Sattelpunkte (x 0, y ±b, z + b) wird u 90°r
v + b, und

di"-~i ft — b-
C2

Das negative Vorzeichen gibt an, dass die Normale nach
der Seite der Fläche hin gerichtet ist, auf der der Mittelpunkt
liegt.

Das Krümmungsmass
1 DD"-D'2K wird

?i Q2 E G — F2

K —— (2t2v2-a2b2(r24-v2)} XIX.
2 t4 v2

und die mittlere Krümmung

EDX&D-2FD' _
1 1

"" _ A2
~~

9i 92

berechnet sich zu

H —{4t2v2 —a2b2(r24-v2)}. XX.
2t3v2

'

§ 9. Die Kurve der parabolischen Punkte.

Die zyklische Fläche ist in irgend einem Punkte elliptisch
oder hyperbolisch gekrümmt, je nachdem K ^ 0, d. h. (nach XIX)
je nachdem

2t2v2 *•$ a2b2(r2 4- v2)

^ abr
V<\/2t2 — a2b2'

Sie ist in den Punkten parabolisch gekrümmt, in denen k 0,
also

T= abr_
\/2t2— a2b2

Setzt man diesen Wert in der Parameterdarstellung (XVI) der
Fläche ein, so erhält man die Kurve der parabolischen
Punkte in der Parameterdarstellung:



— 27 —

a2b2r
x cosu

t2

a2b2r
y ——- sinu XXLJ

t2

z ^\/2t2 —a2ba.
t

Diese Kurve trennt die elliptischen von den hyperbolischen
Punkten der Fläche. Da v für den Nullpunkt gleich null ist
und für die Punkte eines Meridians bis zum Äquator beständig
zunimmt, so folgt aus (1): Die Kurve der parabolischen
Punkte teilt die Fläche derart, dass das den
Nullpunkt enthaltende Flächenstück die hyperbolischen,
das ihn ausschliessende Stück die elliptischen Punkte
enthält.

Für den Schnittpunkt mit der xy-Ebene (z 0) ergibt sich
aus XXI:

t2=a^
2

und hieraus:

_„ „ 2b2sinu.-- ¦- ¦ ' -""¦"— ' ¦ '
a Xa2 — b2 b /

¦ H 1 / —— —- cos u -\ v / ¦— c V2(a24-b2) -cV:
_ ab\/3_r~ V/2(aa4-b2)'

2(a24-

Die Koordinaten der 4 Spurpunkte der Kurve der parabolischen

Punkte sind also :

x _|_ z±t—y/3(a2 — 2 b2)— c(a2 4- b2)v

a2b (3>

y =H — \J3(2a2 — b2).J - c(a24-b2)V
V

Sie sind nur reell, wenn a > b \/2. Diese Durchstosspunkte haben
für den Äquator die Bedeutung von Wendepunkten, und ihre
Koordinaten stimmen mit den in (V) gefundenen überein. Ist
a b \J2, so wird x 0, y + 2b, d. h. die Kurve kreuzt die
y-Achse.
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Die Projektion der Kurve der parabolischen Punkte auf die

xy-Ebene ergibt sich durch Elimination von u aus den beiden
ersten Gleichungen XXI, die auch geschrieben werden können:

x-a2b2Vg+gtgÜ
a4 4- bHg2!!

y a2b2yXEEj?SXtgu.
a4 4- b4tg2u

In entsprechender Weise ergeben sich die Projektionen auf die
beiden andern Koordinatenebenen. Man erhält so:
Projektion auf die xy-Ebene:

(a4x2 4 b4y2)2 a4b4(a2x2 4- b2y2). XXII.
Projektion auf die xz-Ebene:

{(a4 — b4)x2 — b4z2 }2= a4b4(3c2x2 — b2z2). XXIII.
Projektion auf die yz-Ebene:

y2 {b2y2(a2 — 2 b2) 4- a2b2z2}{(a4 — b4)y2 4- a*za }4

a«b4(a2z2 4- 3c2y2)2(2a2 — b2). XXIV.
1st insbesondere a by^2, so werden diese Gleichungen:
Projektion auf die xy-Ebene:

(4x2 4 y2)2 4b2(2x2 4- y2). XXIIa.
Projektion auf die xz-Ebene :

(3x2 — z2) (3x2 — z2 — 4b2) 0. XXIIIa.
Projektion auf die yz-Ebene:

b2yz(3y2 f 4z2)2 2 y/3(2z2 4- 3y2). XXIVa.
Durch Nachprüfung der Ableitung zeigt sich, dass der zweite
Faktor der Gl. XXIII a unmöglich 0 sein kann, so dass die
Projektion der Kurve der parabolischen Punkte auf die xz-Ebene
die Gleichung

z xv/3" XXIIIb.

besitzt. Die Kurve der parabolischen Punkte wird also für diese

Fläche durch eine gegen die xy-Ebene unter 60' geneigte, durch
die y-Achse gehende Ebene ausgeschnitten.

Die Kurve der parabobschen Punkte kann auch als Schnitt
der Hessiana mit der zyklischen Fläche aufgefasst werden. Die
Gleichung der Hessiana oder Kernfläche:
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H

F* îi FJ'12 FA 13
FX 14

Fr21 F
22

Fr23 Fr24

FX31 F
32

Fx33 F*34

Fx41 Fx42 F Fx44

o,

0<

wo F das homogen gemachte Gleichungspolynom der zyklischen
Fläche bedeutet, wird

R2 —2a2 + 2x2 2xy 2xz 2a2x
2xy R2-2b242y2 2yz 2b2y
2xz 2yz

"

R24-2z2 0
4a2x 4b2y 0 -(a2x24b2y2)

oder ausgerechnet und nach Potenzen geordnet:

R6(a2x2 + b2y2) 4- 2R2[c2R2(a2x2 - b2y2) + 2 c4x2y2 -f-

+ 2z2(a4x2 4- b4y2)} - 4a2b2(R2 + 2z2)(a2x2 4- b2y2) 0, XXV..

R2 2 i 2 i 2
x fy-fz,

Diese Gleichung der Hessiana ist, wie die Theorie verlangt, vom
8. Grade. Die Kernfläche liegt ganz im Endlichen. Der
Nullpunkt ist ein isolierter vierfacher Punkt der Fläche. Die
Gleichungen der Schnittkurven der Kernfläche mit den Koordinatenebenen

sind:

xy-Ebene : (x2 + y2)2(a2x2 + b2y2) 4 2c2(a2x4— bay* 4 3c2x2y2)

— 4a2b2(a2x24-b2y2) 0.

xz-Ebene: (x2 4- zf-\- 2(x2 + z2) { c2(x2 4- z2) + 2a2z2

-4a2b2(x24-3z2)=0.
yz-Ebene : (y2 4 z2)3 - 2(y2 4- z2) { c2(y2 + z2) — 2b2z2 }

-4a2b2(y24-3z2) 0.
Sie stellen einfache, geschlossene Kurven dar. Zu der Fläche
gehört, wie sich durch Nullsetzen der von diesen Gleichungen
abgespaltenen Faktoren ergibt, auch die z-Achse.

Der Schnitt dieser Hessiana mit der zyklischen Fläche, die
Kurve der parabolischen Punkte, ist von der Ordnung 32. Ihre
Projektion auf die xy-Ebene wird durch Elimination von z aus
(I) und (XXV) erhalten. Das Resultat der Elimination ist die
bereits gefundene Gleichung XXn:

4 2 i ri 212 4i 4/ 2 2 i i 2 2i(a x 4' b y l a b (a x 4" " y
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Der Nullpunkt ist ein isolierter Doppelpunkt der Kurve. Für
die Schnittpunkte mit dem Strahl y mx findet man die
Koordinaten :

a2b2 \Ja? + h2ü?
_

a2b2my/a2 + b2m2
x~ ± a44-b4m2 y — ± a4 + b4m2

wenn man vom Nullpunkt selber absieht. Man sieht hieraus,
dass jeder durch den Nullpunkt gehende Halbstrahl die Kurve
ausser dem Nullpunkt nur noch in einem Punkt schneidet,
dessen Koordinaten stets reell und endlich sind; die Kurve
besteht daher aus einem geschlossenen Blatt um 0.

Die Abschnitte der Kurve auf der x-Achse (a) und der
y-Achse (ß) berechnen sich aus den letzten Formeln für m o,
m oo. Bestimmt man ferner aus der Flächengleichung I das

dazu gehörige z, so bekommt man:

x-Achse: x « — y 0 z 4- — V^a2 — b2
a J — a

2
a a

y-Achse: x 0 y |9 -g- z ±^\j2h2 —

Die Ausdrücke « und ß lassen sich sehr leicht konstruieren. Wir
untersuchen die Projektion der Kurve für folgende Spezialfälle :

1) a < b \J2- Die Abschnitte a und ß auf den Koordinaten-
Achsen werden

a>«>^ /?<2b.
Li

Für den Grenzfall a b wird a a, ß — a und die Projektion
der Kurve der parabolischen Punkte
wird ein Kreis vom Radius a (Leit-

\ kreis).
4 r Sehen wir von diesem Grenz-
/ fall ab, so erhalten wir eine ovale

Kurve mit zwei Einbuchtungen in
der y-Achse. Die ganze Kurve liegt

„. „ innerhalb der Schnittkurve der
Fig. 6

Fläche mit der xy-Ebene (Aequator)
und ist symmetrisch zu den Koordinatenachsen (Fig. 6).
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2) a b\/2. Die Achsenabschnitte werden

+ fJ ±2b.
Die Kurve der parabolischen Punkte geht also, wie bereits S. 27

konstatiert wurde, durch die Punkte der y-Achse, in welchen die

zyklische Fläche die y-Achse schneidet (Fig. 7).

3) a>bv/2. In diesem Falle ist

«<- tf>2b.
2

Alle Schnittpunkte mit der y-Achse liegen ausserhalb der Fläche
und können daher nicht realisiert werden. Die Kurve
durchschneidet den Äquator in 4 reellen Punkten (Fig. 8).

" »

Fig. 7. Fig. 8.

Hieraus und aus der Diskussion der Spurpunkte (S. 27)
ergibt sich in den drei Fällen für die Kurve der parabolischen
Punkte selber folgender Verlauf:

1.) a <C b \/2. Die Raumkurve besteht aus zwei getrennten,
geschlossenen Zügen, die zur xy-Ebene symmetrisch liegen.

2) a b \J2. Die Raumkurve zerfällt in zwei ebene Kurven,
die sich in der y-Achse kreuzen, und deren Ebenen gegen die

Aequatorebene unter 60° geneigt sind.

3) a > b y 2. Die beiden Züge der Raumkurve werden durch
die yz-Ebene getrennt und liegen zu dieser symmetrisch. Sie
durchschneiden den Aequator je in zwei Punkten.

Anschliessend an diese Untersuchungen sollen noch die

Kreispunkte betrachtet werden. Soll ein Punkt der Fläche
ein Kreispunkt oder Nabelpunkt sein, so muss die Bedingung

E:F:G D:D':D"
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oder weil F 0, D' 0

E:G D:D"
erfüllt sein. Durch Einsetzen der Werte kommt man dadurch
auf die Bedingung

1-2 4. v2 0,

die, weil r nie 0 wird, für reelle Flächenpunkte nie erfüllt wird;
d. h. die zyklische Fläche hat keine reellen Kreispunkte.
Lässt man auch imaginäre Werte zu, so entsprechen der eben

aufgestellten Bedingung (nach XVI) Punkte der Fläche, deren
Koordinaten unendlich gross sind. Diese Punkte bilden in ihrer
Gesamtheit nach S. 31 den unendlich fernen Kugelkreis,
welcher somit eine Kurve sphärischer Krümmung (Nabellinie)

der zyklischen Fläche ist.

II. Kapitel.

Die Zentrafläche.

§ 10. Die Gleichungen der Zentrafläche in Parameterform
und in rechtwinkligen Koordinaten.

Aus dem früher gefundenen Resultat (XVIII), dass der eine
Hauptkrümmungsradius in jedem Flächenpunkt der Grösse und
Richtung nach mit dem Radius der durch ihn gehenden
erzeugenden Kugel übereinstimmt, folgt, dass der Ort der Endpunkte
dieser ersten Hauptkrümmungsradien mit dem Ort der
Mittelpunkte der umhüllten Kugeln zusammenfällt, d.h. der den
Meridiankreisen entsprechende erste Mantel der Zentrafläche

wird durch die Leitellipse dargestellt.1)
Sind «, ß, y die Richtungswinkel der Flächennormalen, so

wird der zweite Mantel der Zentrafläche durch die Gleichungen
dargestellt :

x x14" c°s «, y y14" Ql cos ß, z z^ 4 «?! cos y,

wo xv yv zt die Koordinaten eines Punktes der zyklischen Fläche

und x, y, z die laufenden Koordinaten der Zentrafläche sind

') Die Verallgemeinerung dieses Satzes heisst: Von den beiden
Mänteln der Zentrafläche einer Enveloppenfläche, die eine einfach unendliche

Schar von Kugeln umhüllt, reduziert sich der den Kreisen entsprechende

auf die Kurve der Mittelpunkte der umhüllten Kugeln. — Monge:
Applications. 5e éd. laöO p. 376.
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und Ql den einen Hauptkrümmungsradius darstellt. Setzt man
hierin die Werte aus den Formeln XVI, Vili a und XVIII ein,
so ergibt sich

x

Dabei ist
In gleicher Weise ergeben sich die Werte für y und z. Wir
erhalten also folgende Parameterdarstellung für den zweiten
Mantel der Zentrafläche:

2 a4

o 2 2 /,22 a v cos u (t —-b2 r2)

r[2tV-
t2-bV=

2.2/ 2 i-a b (r 4"
2 2 2

a c cos u.

v2)]

X
[2t2v2-a2b2(r24v2)]

o i 4 2 2 -3üb c v sin u
y=- r[2t2v2-a2b2(r24v2)]

XXVI.

o 2, 2 22a b r v

o 2 2 21 2 / 2 i 2^2 t v —a b (r 4~v J

Um aus ihnen die Gleichungen für rechtwinklige Koordinaten

zu erhalten, sind u und v zu eliminieren. Durch Division
der ersten und zweiten Formel ergibt sich zunächst:

yIst u const, so ist auch — const; den Parameterlinien
x

u const, d. h. den Meridiankreisen, entsprechen somit die Schnittkurven,

die Ebenen durch die z-Achse aus dem Kegel der
Normalen längs des Kreises ausschneiden. Wir stossen damit schon
auf das erste wichtige Resultat: Alle durch die z-Achse ge-
legtenEbenen schneiden den zweiten Mantel der Zentrafläche

in Kegelschnitten, die durch den Nullpunkt gehen, und:
Die Endpunkte der zweiten Hauptkrümmungsradien

längs der Meridiankreise der zyklischen Fläche liegen auf
einem Kegelschnitt, dessen Ebene durch die z-Achse
geht. Ueber die Art der Kegelschnitte können wir aber
vorläufig noch nichts aussagen.

Aus der ersten und dritten Gleichung XXVI folgt durch
Division :

3
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x a2 c2 cos3 u
,2 3

z b r
v

b4 2
X ± 2

3-V.4 4 2 / 2 i i2. 2 Va c z a 4- b tg u)

Setzen wir für tgu den Wert aus (1) ein, so ergibt sich
nach einiger Umrechnung folgende erste Beziehung für v:

3 _

V a b

Eine weitere Gleichung für v können wir aus der zweiten

Gleichung XXVI finden, wenn wir in dieser den Wert (1) für
tg u substituieren. Durch Auflösung nach v2 folgt zunächst

v
2,23

2 a b r y
(2t2-a2b2)ry4-2b4c2sin3u

und hieraus mit Benützung von (1):

/ T

2 2 i 2
v =a by-

VW®)' (3>

[^-tf+w-yg]^-^-« ac2^

Diese zweite Gleichung für v kombinieren wir nun mit (2).
Es wird, wenn zugleich Zähler und Nenner der rechten Seite

3

mit V^bx erweitert und die ganze Gleichung mit

V/bX24-v/a2y2
dividiert wird:

VÎ

VV'b2x24-v/a2y2

/ P4 72
3 /_ C Z

=y[(2a2-b2)v/b2x2+(2b2-a2)vya2y2]v(2a2-b2) V7b2x24-(2b2- a2)^ a2 y2JV \/b2xa4\/a2y2-2abc2
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Durch längere Umformung erhält man hieraus die gesuchte

Gleichung des zweiten Mantels der Zentrafläche:

[c4(x24-y2 + Z2)-(v7a4x2+V>b4y2)3]2

-4 a2 b2 c4 (v'bV + \/7?f= 0.

XXVII.

Sie ist für den Nullpunkt erfüllt. Dieser ist also ein Punkt
der Fläche.

§ 11. Schnitte der Zentrafläche mit Ebenen durch die z-Achse.

Der Schnitt der xz-Ebene mit der Zentrafläche hat die
Gleichung /2i 2N.2 2 4 2 0 Ä 2 2 na 4- c J b x — c z 4z^aD c x 0.

Es sind dies die Scheitelgleichungen zweier kongruenter
Kegelschnitte, die durch die Transformation

n P.2

X x' + -

a2 4-c2
auf die Mittelpunktsgleichung

2 / 2 2\ 2 4 2 a2 b C4
b (a 4"c)x ~~ c z —

a2 -j-c2
gebracht werden. Der Schnitt mit der xz-Ebene besteht also

aus zwei kongruenten, durch den Nullpunkt gehenden Hyperbeln,
deren imaginäre Achsen der z-Aehse parallel sind, deren
Mittelpunkte im Abstand

ac2

a2 4- c2

vom Nullpunkt liegen und deren Halbachsen

A1 X^<a Bi: ab
a2-f-c2 2 \Ja.2 + c2

sind. Die lineare Exzentrizität ist

Cx
a2_|_c2

und der Abstand der Brennpunkte vom Nullpunkt ist:
l2a b

a -f- c
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Die eine Hyperbel hat also den rechts liegenden, die andere
den links liegenden Scheitel der grossen Achse der Leitellipse
zum einen Brennpunkt. Die Richtungskoeffizienten der Asymptoten

sind

Al c"

Die Hyperbeln degenerieren nur für den Fall, dass die
Leitellipse ein Kreis ist (c 0) in die doppelt gelegte z-Achse und
für den Fall, dass sich die Ellipse auf ihre grosse Achse reduziert
(b 0), in die doppelt gelegte x-Achse.

Jede dieser beiden Hyperbeln ist der Ort der Endpunkte
der zweiten Hauptkrümmungsradien längs eines der beiden in
der xz-Ebene liegenden Meridiankreise, und zwar gehört zum
rechts liegenden Kreis die rechts liegende Hyperbel. Die Flächen-
Normalen längs eines solchen Kreises sind jedoch nicht Tangenten
der zugehörigen Hyperbel, weil die aufeinanderfolgenden zweiten
Krümmungshalbmesser längs einer Krümmungslinie der ersten
Schar sich nicht im zweiten Krümmungsmittelpunkt schneiden. Für
die hier auftretende Hyperbel ist das sehr deutlich ersichtlich. Alle
Normalen längs des Kreises schneiden sich nämlich nach § 5 im
Scheitel der grossen Achse der Leitellipse. Dieser ist also der
konstante Krümmungsmittelpunkt aller ersten Hauptkrümmungsradien
längs des Kreises. Er ist aber auch Brennpunkt der Hyperbel, und
weil alle Flächennormalen durch ihn gehen, so können sie nicht
Tangenten der Hyperbel sein. Die Parallelen zu den Asymptoten
durch den Brennpunkt der Hyperbel treffen den Kreis in
parabolischen Punkten. Solcher Schnittpunkte sind, wenn wir
nur einen Kreis der xz-Ebene in Betracht ziehen, vier möglich,
aber zwei davon sind ungültig, weil nach § 9 die Abszisse X

eines parabolischen Punktes der xz-Ebene die Grösse a nicht
überschreiten darf. Allfällige Schnittpunkte der Parallelen zur
Asymptote mit dem zweiten Kreis sind deshalb nicht zu zählen,
weil die Normalen in ihnen durch den andern Brennpunkt der
Hyperbel gehen. — Dadurch kommen wir im Einklang mit den
früheren Untersuchungen zum Resultat, dass in jedem Quadrantep
der xz-Ebene nur ein parabolischer Punkt liegt.

Für den Schnitt der yz-Ebene mit der Zentrafläche lautet
die Gleichung:
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2a2b b2 c±x^y + —X2yi:4
c c

Sie stellt zwei kongruente Kegelschnitte dar, und zwar
sind es

Ellipsen, wenn a > b \/2

Hyperbeln „ a <^ b \/ 2

Parabeln „ a b \/2.
Die y-Achse ist Hauptachse der Kegelschnitte.

Im ersten Falle sind alle Krümmungsradien endlich, die
Fläche weist längs der Meridiankreise in der yz-Ebene keine

parabolischen Punkte auf. Im zweiten Falle gilt dasselbe wie
für den Schnitt mit der xz-Ebene, und im dritten Falle liegt
für beide Parabeln der unendlich ferne Punkt in der y-Achse.
Seine Verbindungsgerade mit dem Kreismittelpunkt trifft die
Fläche in den Punkten x — 0, y + 2 b, z 0, welche die
einzigen parabolischen Punkte der yz-Ebene sind. Alle drei Fälle
decken sich vollständig mit den Resultaten in § 9.

Eine beliebige Ebene durch die z-Achse von der

Gleichung y mx schneidet die Zentrafläche in einer Kurve,
deren Projektion auf die xz-Ebene die Gleichung

c4[x2 (1 4 nr) + z2] - x2 (VV +V,b4X2)3

+ 2 a b c2 x y (y' b2 4- \/ a2 m2

hat. Sie ist von der Form
M x2 4 N z2 4- P x 0

und stellt also zwei kongruente, durch den Nullpunkt gehende
Kegelschnitte dar, deren Hauptachsen mit der Spur der Schnitt-
ebene auf der xy-Ebene zusammenfallen. Auch diese Eigenschaft
haben wir schon früher (S. 33) kennen gelernt.

Die Kegelschnitte können Ellipsen, Hyperbeln oder Parabeln

sein, wenn a >> b \, 2. Sie sind, ausgenommen der Schnitt mit
der yz-Ebene, nur Hyperbeln, wenn a bv/2, und überhaupt
nur Hyperbeln, wenn a<b\/2.
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§ 12. Die Schnittkurve der Zentrafläche mit der xy-Ebene.
Die Schnittkurve mit der xy-Ebene ergibt sich aus (XXVII)

für z 0:

[c4(x24y2x(vW+^)T
4 a2 b2 c4 (vVx2 f y/ a2?)! ^™'

Will man die Gleichung in rationaler Form haben, so geht
man wie folgt vor: Die linke Seite lässt sich, wie sich leicht
nachrechnen lässt und wie aus S. 34 gefolgert wird, identisch
schreiben :

| (a2 -h- c2) VW + (b2 - c2) v/a2?]2 [VW 4- OaVÌ i

sodass die Gleichung der Kurve in

[(a2 4- c2) fo? 4- (b2- c2) Ç/aV]2 [VV? 4- V^aVJ m
4a2b2c4 l '

8 3_

und V/b2x24v/a2y2 0

oder b2 x2 4" a2 y2 0, zerfällt.
Der der letzten Gleichung entsprechende Kurvenzweig reduziert

sich auf den Nullpunkt,
Rechnet man die linke Seite von (1) aus und fasst in

passender Weise zusammen, so wird

3 y/72XxV [b2 (a2 4- c2) \/bV + a2(b2 - c2) \f~7y~2]

-4a2b2c4-b2(a24c2)x2-a2(b2-c2)y2.
Diese Gleichung erhebt man in die dritte Potenz:

27 a2b2x2y2{b6(a24c2)3b2x24-a6(b2 - c2)3 a2y2

4-3a2b2(a24-c2)(b2-c2)\/a2b2x2y2[b2(a24c2VbTx2

4-a2(b2-c2)v/"a27]l {4a2b2c4-b2(a24c2)x2-a2(b2-c2)yf
und ersetzt den Ausdruck in der eckigen Klammer durch den
Wert in der vorangehenden Gleichung. Dann wird die gesuchte
rationale Gleichung der Schnittkurve mit der xy-Ebene:

27a2b2x2y2{b4(a24c2)2[b4(a24-e2)-a2(b2-c2)]x2

+ a4(b2 - c2)2 [a4 (b2- c3)- b2(a24- c2)] y2
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4-4a4b4c4(a2 + c2)(b2-c2)}

{4a2b2cXb2(a24c2)x2 - a2(b2- c2)y2}3. XXVIIIa.
Die Kurve ist also vom 6. Grade. Ihre Schnittpunkte mit den
Koordinatenachsen sind, abgesehen vom Nullpunkt:

2ac2
a2 + c2

2bc2

x-Achse: x H 5—;—n-, je dreifach
o û _1_ n& ' "

y-Achse: y ±b2_c2>
Während die Abschnitte auf der x-Achse immer endlich und
kleiner als a sind, werden die Abschnitte auf der y-Achse für
den Fall b c (a b\/2) unendlich gross.

Zur weitern Untersuchung dieser Schnittpunkte ist es
notwendig, den einen oder andern zum Nullpunkt zu machen, also
die Transformation

— ' 2ac2
x —x +a2+c2

vorzunehmen. Dadurch verschwindet das konstante Glied auf
der rechten Seite und die Kurvengleichung erhält die Form:

(X + a^2)2(Ax2+ Bx + Cy2+D)y-(Ex2 + Fx + G^2)S

Der Schnittpunkt ist also in beiden Fällen ein Doppelpunkt und
die Tangenten in ihm werden:

2ac2
a2 + c2/ B?=° also:

y 0 doppelt.
Die zwei Schnittpunkte mit der x-Achse sind also Spitzen, mit
der x-Achse als gemeinschaftlicher Spitzentangente.

Ganz in gleicher Weise lässt sich zeigen, dass die beiden

Schnittpunkte der Kurve mit der y-Achse Spitzen sind mit der
y-Achse als gemeinschaftlicher Spitzentangente, und zwar gilt
dieses Resultat in allen Fällen, wenn b c bezw. a b y/2 ist.

Um die Richtungen der Asymptoten zu finden, geht
man besser von Gl. XXVIII aus, indem man in ihr die Glieder
höchsten Grades:

3 3
c4 (xa 4- y2) — (s/äFx2 4 VbX2)8 0 (2)

setzt. Führt man zur Abkürzung
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3

'g =1 (3)

y
ein, wo — fi den Richtungskoeffizienten der Asymptoten

bedeutet, so verwandelt sich (2) in

¦-3, 3b2 XlT.2 3b 3/^-T-, b2(a2+c2)Xr772 sTVab < + -2 2Va b ; + al n
2

0.
a(b — c b — c a Ib — cl

Diese kubische Gleichung bringen wir vermittelst der Substitution
b2 3,

$ *l — -fi* 2^vab2
a(b — c

auf die reduzierte Form:

3 3bc4 Vjft- 2bV _
¦ti TT V a b t) H s- 0.'

a2(b2 — c2)2
'

a2(b2 — c2)3

Die Diskriminante dieser kubischen Gleichung wird null und die
Wurzeln sind

™ xa(b" — c

1a 1l»
C"

2r\/ab2,

sodass
a(b" — cJ)

3
__

e _2a2—b2 /b2^
Sl ~ a2 — 2 b2 V a2

3

_
j\T_

^2 — =3 — y a2
•

Hieraus ergeben sich die Richtungskoeffizienten der Asymptoten:

_ ,b. /72a2-b2 X3

'Wl _ ± a V U2 - 2b2/ (4)
b

a
Von den 6 Asymptotenrichtungen sind also 4 imaginär (die
paarweise zusammenfallen) und zwei reell. Aber auch diese sind
nur so lange reell, als a>b\/2. Für a bv/2 wird ^ ~,
die Asymptote ist der y-Achse parallel. Dieser Fall entspricht
in der yz-Ebene der Parabel. Ist a > b \J2, so sind zwei
Asymptotenrichtungen reell.
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Die Gleichungen der Asymptoten selbst können nicht
nach der allgemeinen Theorie bestimmt werden, weil zwei
Richtungen zusammenfallen. Wir gelangen aber zu ihnen, wenn wir
die Asymptoten der Kurve als Normalen in den Wendepunkten
der Äquatorkurve der F4 auffassen.

Durch Differentiation der Kurvengleichung
/ 2 i 212 t 2 2 i i 2 2-,
(x 4-y) =4(a x 4-b y)

findet man für den Richtungskoeffizienten der Normalen:

y x2 + y2 - 2b2
m — —

x x2 4" y2 — 2 a2

Setzt man hierin die Koordinaten der Wendepunkte nach den
Formeln (V) ein, so findet man

b //2a2-W
m ±âVla^2b2/

wie in (4). Diese Methode führt bedeutend rascher zum Ziele,
aber wir erhalten nur die reellen Asymptoten, so lange uns die
Koordinaten der imaginären Wendepunkte unbekannt sind.

Die Gleichungen der Normalen in den Wendepunkten oder
der Asymptoten werden jetzt

y — y1 m(x — x\.
Setzt man für x1,yl die Koordinaten der Wendepunkte ein, so
erhält man 4 reelle Asymptoten, die paarweise parallel sind.
Ihre Gleichungen sind :

a(a2 — 2b2) \fsf^-~2~W- y 4- b(2a2 — b2)\/2a2 —b2- x

+ abc \f3i2a2 — b2)^2 — 2b2)

a(a2 — 2b2) V/ä^r2b2"- y — b(2a2 — b2) ^2aT=&~- x

4 abc V'3(2a2 —b2)(a2—2b2).
Ist speziell a b \/2, so wird x 0, d. h. die Asymptoten fallen
mit der y-Achse zusammen.

Die Abschnitte der Asymptoten auf den Koordinatenachsen
sind

(x-Achse) «, — \/3(a2 — 2b2) wo a > b \/2X 2a2 — b2

<y-Achse) ß1=
b° \/3(2a2-b2),

a2 — 2 bJ

XXIX.
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während die Koordinaten der Spitzen dem absoluten Werte nach
(S. 39)
< uu ^

2ac2
(x-Achse) ' a

(y-Achse) /*2

2a2 — b2

2bc2

a2 — 2b3
sind. Es ist leicht einzusehen, dass stets

»i < »a ßi> ßr
Die Kurve, die zugleich Evolute der Fusspunktskurve

der Leitellipse ist, hat in den drei Fällen a < b\j2, a b\2t
a>by2 die in den Figuren 9, 10, 11 gezeichnete Gestalt.

Fig. 9. Fig. 10.

Fig. 11.
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§ 13. Diskussion der Zentrafläche.
Gestützt auf die gemachten Untersuchungen ist es möglich,

eine Vorstellung von der Zentrafläche zu erhalten. Den ersten
Mantel, der in die Leitellipse ausartet, schliessen wir von einer
weitern Betrachtung aus und beschränken uns auf den zweiten

Mantel. Da dieser seine Gestalt ändert, je nachdem a b\/2
ist, so müssen wir die drei Fälle getrennt behandeln. In allen
Fällen sind die Schnitte durch die z-Achse Kegelschnitte.

1. Fall: a<b\/27 (Fig. 13). Wir fassen zunächst die
Schnitte mit den Koordinatenebenen

ins Auge. A, B (Fig. 12)
seien die parabolischen Punkte
in der xz-Ebene; C, D
diejenigen in der yz-Ebene. Denken
wir uns einen Punkt auf dem
einen, rechts von der z-Achse

liegenden Meridian-Kreis der
F4 in der xz-Ebene wandernd
von Sx bis A, so beschreibt
der Endpunkt des zugehörigen
zweiten Hauptkrümmungs-

Fig. 12.

¦•v

Fig. 13.
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radius den unendlichen Hyperbelbogen Sx A1 (Fig. 13). Wandert der
Punkt weiter von A nach O, so schreitet der Kriimmungsmittel-
punkt auf der Hyperbel von A2 (im Unendbchen) nach O. Dem

Weg von O, bis B entspricht der unendliche Bogen OBx und
dem letzten Stück BS, der unendliche Ast B2Sr Ganz

entsprechendes gilt für den zweiten, zu diesem kongruenten
Meridiankreis der xz-Ebene. Ihm ist die zweite Hyperbel der xz-
Ebene zugeordnet. Durchwandert ein Punkt beide Kreise, was
ohne Sprung möglich ist, so muss auch der zugehörige
Krümmungsmittelpunkt die beiden Hyperbeln ohne Sprung durchlaufen
können.

Dasselbe lässt sich sagen für die yz-Ebene und überhaupt
ifür je de durch die z-Achse gelegte Ebene. Die Zentrafläche lässt

Fig. 14.

sich ihrer Gestalt nach am besten vergleichen mit der Fläche,
die von einer durch den Nullpunkt gehenden Hyperbel, deren
Scheiteltangente die z-Achse ist, bei der Drehung um die z-Achse
beschrieben wird. Nimmt man an dieser Fläche die durch die

aufgestellten Eigenschaften erforderlichen Veränderungen vor,
so gelangt man zu einem ziemlich klaren Bild der Fläche. Diese
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scheint demnach aus zwei Mänteln zu bestehen; aber die eben>

gemachten kinematischen Betrachtungen zeigen,. dass diese im
Unendlichen in gleicher Weise zusammenhängen, wie die vier
Äste zweier kongruenter Schnitthyperbeln.

2. Fall: a b\/2. (Fig. 14.) Die Fläche hat im wesentlichen

dieselbe Gestalt wie im 1. Fall, nur ist hier der Schnitt
mit der yz-Ebene eine Parabel. Die Hälfte dieser Koordinatenebene,

die die positive y-Achse enthält, weist daher auch nur
einen einzigen parabolischen Punkt auf (in S4).

3. F a 11 : a > b \j2. (Fig. 15.) Um eine Anschauung von
der Fläche zu bekommen, denken wir sie uns durch die yz-Ebene-

/•//

¦z?

¦s, '¦.<*

Fig. 15.

entzweigeschnitten. Dann entstehen auf der positiven Seite-
dieser Ebene zwei Mäntel. Der Mantel I enthält die Kurven
Gl Sj Kt und Aj S1 Bv der Mantel II die Kurven Ht Ss und
J2 S4, sowie die beiden Ellipsen S3 0 und S4 0 und die Hyperbel

•E^Fg. Beide Mäntel schneiden sich im Endlichen nicht. Auf"
der negativen Seite der yz-Ebene sei der zu 1 symmetrische
Mantel mit III, der zu II symmetrische mit IV bezeichnet. Längs
der yz-Ebene hängen II und IV zusammen und im Unendlichen»
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einerseits I und IV und anderseits II und III. Die Fläche ist
also einfach zusammenhängend; denn geht man z. B. von I aus,
so kann man ohne Sprung nach IV, von da nach II und von
II nach III gelangen.

Zum Schlüsse suchen wir noch die den Parameterkurven
entsprechenden Kurven der Krümmungsmittelpunkte, 1\ und r2.

Für die Krümmungslinien u const (Meridiankreise) wird
Tj auf einen Punkt der Leitellipse reduziert. r2 ist ein
Kegelschnitt, dessen Ebene durch die z-Achse geht (S. 33).

Für die Krümmungslinien v const — k ist rx die
Leitellipse. r2 ist der Schnitt der aus Gl. (2) § 10 sich für v k

ergebenden Fläche

vX^XWw-
die sich rational schreiben lässt:

r41j272 \3
b2x2 4- a2y2 —

a a
27c4k2x2y2z2

mit der F4, also der Schnitt eines Kegels 6. Osdnung, dessen

Spitze in 0 hegt, mit der zyklischen Fläche.

III. Kapitel:
Konforme Abbildung.

§ 14. Einführung isothermer Parameter.
In XVII ergab sich für das Linienelement der Fläche:

4 /v4t2
ds2 (— du2 + rwY

(r2 4- v2)2 V r2 ;
st sich auch schreiben

ds2 — .r4 v4 (— du2 4- — dv2 V
(r2 4- v2)2 V r6 v4 /

Dasselbe lässt sich auch schreiben

(1)

Indem nun in der Klammer der Koeffizient von du2 eine reine
Funktion von u ist und ebenso der Koeffizient von dv2 eine reine
Funktion von v, so ist es möglich, durch die Substitution

du, — du
1

r8

dv, — dv
1

V2
¦
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eine Einteilung der Fläche in unendlich kleine Quadrate
herzustellen. Setzt man die Werte für u und v, die sich aus

t du
.3

dv --L (2)

V

ergeben, im Ausdruck (1) für das Linienelement ein, so wird der
Faktor vor der Klammer eine Funktion von ux und v., also

d s2 <Z> (ui, Vl) (du? 4- dv?). (3)

Es handelt sich nun darum, das noch nicht berechnete Integral
für Uj in (2) auszumitteln. Dieses wird, wenn man für t und r
die Werte aus (XVTI) einsetzt:

C / a4 cos2 u
J V (a2 cos2 u

j- b4 sin2 u
4- b2 sin2 u)3

a4 4- b4 tg2 u du
(a2 4- b2 tg2 uy cos2 u

Vermittelst der Substitution
a2 1

tgU TXt^
lässt sich dasselbe auf die Form bringen:

d tpui=-ab./Vpa2 cos2 tp 4- b2 sin2 tp)3
' -b2

a2

gesetzt wird, wo e <4 :

b2 c2
oder wenn r, -5- e2

Ul==-èJv
d. «jp

\J (1 — e2 sin2 cp)3

oder in der üblichen Schreibweise:

Ul 93 A 3

Nach bekannten Formeln findet man hieraus durch Einführung
des elliptischen Normalintegrals II. Art E (e, go):

1 „ e2 sin op cos cp
u _ E(e|V)4 _Jt Z.

b b /\q>
Die neuen (thermischen) Parameter uv vt drücken sich also fol-
gendermassen durch die alten aus:
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1 _. e2 sin tp cos tp

u1 --E(e,fJf.) + - r L
b b A*/1

1
v

V

/a2 1
wo tp are tg — • -—

\b2 tg u

§ 15. Konforme Abbildung der Fläche auf einen ebenen Streifen

und auf die Fläche eines Kreises.

Eine konforme Abbildung einer Fläche auf eine Ebene wird
dadurch erzielt, dass man die thermischen Parameter der Fläche
als rechtwinklige Punktkoordinaten in der Ebene deutet.1) Sind

x, y die rechtwinkligen Koordinaten des Punktes in der Ebene,
der das Bild des Punktes (uv vx) der Fläche ist, so ist also

zu setzen:
1 „ e2 sin tp cos tr

x u1 --k E(e,g») + -—ï- L

b b /\tp
1 XXXI.

y vi=~v'
wo wiederum tp sich aus

a2 1

b tgu
bestimmt. Durch diese Formeln wird die konforme Abbildung
vermittelt. Für verschiedene Werte von u ergeben sich die
folgenden Werte, in denen E das vollständige elliptische Normalintegral

II. Art:

E

bedeutet :

-*(*t)

') G. Schef fers: Anwendung der Diff. und Int. Rechnung auf
Geometrie. II. Bd. p. 71.
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u tg«? <f x

0° co
2

-Ie
b

90° 0 rt 0

180° — oo
3 je
~2~ b

270° 0 2 TV *E
b

360° oo
5/r

2
*E
b

Für alle folgenden Werte von u nimmt x periodisch zu, und

zwar für je 90° um -r- E.

Für v 0 wird y + °°
„ v + oo wird y 0.

Die Fläche ist also
konform abgebildet aufeinen

zur y-Achse parallelen Strei-
4

fen von der Breite — E
b

(Fig. 16). Der Mittelpunkt
der Fläche (v 0) wird in
den unendlich fernen Punkt
der y-Achse abgebildet, der
Aequator (v oo) in die
x-Achse.

Der ersten Schar von
Krümmungslinien
(Meridiankreise) entsprechen
Parallele zur y-Achse, der
zweiten Schar Parallele zur
x-Achse.

Es bietet nun keine Schwierigkeiten, diesen Streifen — und
damit also auch die Fläche — konform auf das Innere des Ein-

4

y

A B D C A
i£ 0 i£ iE iE

O" 90" U-. w 70° i(ß°

Fig. 16.
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heitskreises abzubilden. Legen wir der Ebene des Kreises das

Koordinatensystem t\ zu Grunde, so vermittelt die Funktion*)

S + in-l j*W> XXXII.
XiXi

wo E wieder das vollständige elliptische Normalintegral IL Art
bedeutet, die gewünschte Abbildung. Hieraus wird

+ n— 1 ~^y byr
—^ 5" e cos — X (1)(ij+lf + i?2 4E

_ 5ü
2 « 4E y bfC

5 5- e sin — x. (2)
(£4-l)a + ij 4E

Durch Elimination von x aus (1) und (2) resultiert die Gleichung
b?r

2 0,l+e 2E y
2 -, n

1—e 2E y

die einen Kreis darstellt, dessen Mittelpunkt im Abstand
hn

1 J_ p~ 2ÌT y

P ^^T^- (3)

1—e 2E
3

vom Ursprung auf der £-Achse liegt und dessen Radius

r
2e 4E r

1 ~"b7T

1 —e 2E y

ist. Für v const, wird y const, und damit p und rt const.;
d. h. der zweiten Schar von Krümmungslinien auf der
Fläche entsprechen Kreise, deren Mittelpunkte auf
der £-Achse liegen.

Durch Elimination von y aus (1) und (2) folgt die
Gleichung

i + n — 2 n cotg -X x — i o,

die wiederum einen Kreis darstellt, diesmal vom Radius

') A. R. Forsyth: Theory of Functions of a complex Variable,
p. 508.

W. F. Osgood: Lehrbuch der Funktionentheorie I, p. 402.
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sin
b n

Sein Zentrum liegt im Abstand
b/f

q cotg — x
4E

auf der >j-Achse.
Hieraus findet man

-q2 l.
Die Strecken r2, q und 1 bilden also ein rechtwinkliges Dreieck,
r0 und q sind variabel, aber die Kathete 1 bleibt fest. Alle
Kreise, welche der obigen Gleichung entsprechen, gehen also
durch den festen Punkt, der im Abstand 1 auf der S-Achse liegt
— und ebenso durch den symmetrischen Punkt der negativen
i'-Achse.

Für u const, wird x const, und somit q und r,, const.,
d. h. der ersten Schar von Krümmungslinien (den
Meridiankreisen) entspricht im Bilde ein Kreisbüschel durch
zwei feste Punkte, dessen Achse mit der ij-Achse
zusammenfällt.

Das gegenseitige Entsprechen von Kurven ergibt sich aus

folgenden zwei Tabellen:

u X i q 1'2

0°
i ~bE -i \J2

90° o 0 1

180°
b + 1 \f*

270° 2E
b

CO oo

360° 3-E
b

1

— 1 \/2 1
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V y P ri

0

oo

4" co

0

±1
-f- oo

0

oo

Die Figur 17 (sie ist der Anschaulichkeit wegen um 90°

gedreht) stellt die konform abgebildete Fläche dar.

Fig. 17.
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