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Arthur Fischer.

Ueber eine zyklische Fliche vierter
Ordnung.

Eine Kugel von verinderlichem Radius bewege sich so,
dass ihr Zentrum auf einer festen Ellipse fortschreitet und ihre
Fliche durch den Mittelpunkt der Ellipse geht. Die Umbhiillende
dieser einfach unendlichen Schar von Kugeln?!), die als solche

zu den zyklischen Flachen gehort, ist Gegenstand vorliegen-
der Arbeit.

I. Teil.

Untersuchung der Fliche in rechtwinkligen und
Polarkoordinaten.

§ 1. Aufstellung der Flachengleichung in rechtwinkligen
Koordinaten.

Die Ellipse, auf welcher simtliche Kugelmittelpunkte liegen,
bezeichnen wir als Leitellipse. Wir legen sie in die xy-Ebene
eines riumlichen cartesischen Koordinatensystems derart, dass
thre Gleichung _

| b’ x* 4 &’y =a’ b’ (1)
wird, wo a und b die Halbachsen der Ellipse bedeuten.

Sind &, %, { die Koordinaten irgend eines Punktes einer
bestimmten Kugel der Schar, deren Radius 1 und deren Mittel-
punkt (x,y) auf der Leitellipse liegt, so gilt fiir ihn die Kugel-

gleichung »
E—x+@—y)+T="

n Lecornu bezeichnet die Enveloppenflichen von Kugeln al®
~Perisphiaren® Die vorliegende Fliche gehort nach seiner Klassifikation
zu den Perisphiren 2. Gattung.
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die sich, weil die Kugel durch den Mittelpunkt O geht, auf
f=E 47 0 —2@Ex+9y) =0 )

reduziert.

Lisst man den Kugelmittelpunkt die ganze Ellipse durchlaufen,
x und y also alle nach Gleichung (1) moglichen Werte annehmen,
so stellt die Gleichung (2) die einfach unendliche Schar von
- Kugeln dar. Indem man x und y als Parameter auffasst und
zwar X als unabhingigen und y als abhingigen, ergibt sich die
Gleichung der Enveloppe aller Kugeln durch Elimination dex
Parameter x und y aus den Gleichungen

d f

f=0, —=0
dx
und aus Gl (1). Die zweite Bedingung lautet in unserm Falle _
dy —0
dx
oder, wenn man den aus (1) sich ergebenden Wert
d__y o b x
dx a’y
einsetzt:
df:azyg—bzxnr_u. (3)

dx

Durch Elimination der parametrischen Koordinaten x, y des

Kugelmittelpunktes aus den Gleichungen (1), (2) und (3) ergibt
sich:

Fp 2 -2V T EF =0

oder, wenn wir & 7, { durch x, y, z ersetzen:

3.2 : c
(v + 2°) =4(a’* 4 b’ y). 1.
Dies ist die gesuchte Gleichung der Enveloppenflache.
Ist die Leitkurve speziell ein Kreis, also b=a, so reduziert

sie sich auf:

(x* 4y + z2)2: 42’ (x* ). Ia.
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Die Fliche wird, weil der Radius der erzeugenden Kugel kon-
stant ist, zu einer Kanalfliche oder Rohrenfliche, die aus dem
Torus hervorgeht, wenn dessen innerer Radius verschwindet.
Diskussion der Flichengleichung. Die Enveloppen- -
fiiche 1st von der vierten Ordnung. Sie ist, wie man leicht sieht,
in Bezug auf alle drei Koordinatenebenen symmetrisch.
Die homogen gemachte Flichengleichung heisst:

F=(x*4+7v"+ ) — 4w (a2 x> L b2 y?) =0, Ib.
Der Schnitt mit der unendlich fernen Ebene w = 0 ergibt sich zu
(< ¥ 7 =0, @)

d. h. der Richtungskegel ist ein imaginidrer Kreiskegel. Die
Flache ist somit geschlossen und liegt ganz im Endlichen. Die
Gleichung (4) stellt aber auch den unendlich fernen Kugel-
kreis dar, d. h. die Enveloppenfliche geht durch den unendlich
fernen imaginiren Kugelkreis. Diese Tatsache kann man sich
dadurch erkliren, dass jede Kugel durch den unendlich fernen
imaginidren Kugelkreis geht, also auch die Enveloppe aller Kugeln.

Der ,Mittelpunkt“ der Fliche, d. h. der Ursprung x =0,
y =0, z=0, erfullt die Flichengleichung und ist ein Doppel-
punkt. Die Gleichung seines Knotenkegels ist

2_2 2 2
ax 4+ by =0.
Dieser zerfallt in die beiden zur xz-Ebene symmetrischen ima-
giniren Ebenen

a .
y:_—{:_lxa
b

welche Tangentialebenen im Nullpunkt sind. Beide Ebenen-
gleichungen sind fiur x = 0, y = 0 erfiillt; die beiden imaginiren
Tangentialebenen schneiden sich also in der z-Achse, welche
Knotenkante der Fliche im Mittelpunkt ist. Sie schneidet die
Fliche in 4 zusammenfallenden Punkten. Der Nullpunkt ist
deshalb ein biplanarer Doppelpunkt mit zwei konjugiert
imaginéren Tangentialebenen und reeller Knotenkante.

Es fragt sich, ob ausser dem Mittelpunkt noch andere
Punkte Doppelpunkte seien. Damit ein Punkt Doppelpunkt sei,
muss er die Bedingungsgleichungen



Flzg—ljz (x* 4 V4 2)x —22°w'x =0

X

F2=gE= &+ y 4 )y — 26wy =0

| y

F,=2 4y + &) —0
0z .

F=08 = (& ¥ o —0
w

erfillen, und das tun nur der Nullpunkt x =0, y =0,z =0,
w = 1 und die Punkte des unendlich fernen imaginiren Kugel-
kreises: der Mittelpunkt und die Punkte des imaginiren
Kugelkreises sind die einzigen Doppelpunkte der

Fliache. Der imaginire Kugelkreis ist eme Doppelkurve der
Fliche.

§ 2. Schnitte mit Ebenen durch die z-Achse.
Durch die z-Achse legen wir eine beliebige Ebene, die mit

der x-Achse den veranderlichen Winkel ¢ einschliesse. Um eine
einfache Gleichung fiir die Schnittfigur zu erhalten, machen wir
diese Ebene vermittelst der Transformationsgleichungen
| x = x'cos¢ — y'sin¢

y = x'sing -}- y'cosg

% ==g
zur neuen x'z’-Ebene. Die transformierte Fliachengleichung:

(2”2 4 4 2?) = 4a’(x'cos¢ — y'sin @)’
+ 4b® (x'sing + y’cosg)

liefert fir den Schnitt der Fliche mit der x’z’-Ebene y' = 0 die
Gleichung ‘

x? fy? =+ 2\/a,zcosz<p + bsin’p - x/,

die zwei kongruente Kreise darstellt, deren Peripherien den Null-
punkt enthalten und deren Zentren auf der posutlven und nega-
tiven x'-Achse im Abstand

r = Va’cos’p + bsin’yp IL.
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vom Nullpunkt hegen. Jede Ebene durch die z-Achse
schneidet die Fliche in zwel kongruenten Kreisen, deren
Radien durch (II) gegeben sind; wir nennen sie Meridian-
kreise. Die Fliche enthilt also eine einfach unendliche Schar
von Kreisen, d. h. sie ist eine zyklische Flache.

Fihrt man vermittelst

cosp ==, sing=7, r=x4y
7 r |
wieder rechtwinklige Koordinaten ein, so ergibt sich fir die
durch (II) dargestellte Kurve der Mittelpunkte aller Meri- .

diankreise die Gleichung |
(x* -+ ¥ = a’x" + by, - ITa.

die eine der Leitellipse umschriebene Booth’sche elliptische
Lemniskate darstellt. Sie ist die Pedale der Ellipse in Bezug
auf ihren Mittelpunkt und beriihrt diese nur in deren Scheiteln;
also sind diese Berithrungspunkte die einzigen Mittelpunkte von
Meridiankreisen, die auf der Ellipse liegen. Die Radien der zu
ihnen gehorenden Meridiankreise der xz- und yz-Ebene sind also
gleich den Radien der Kugeln, die ihre Mittelpunkte in jenen.
Scheiteln haben, nimlich r’ == a und '’ = b. Diese den Werten
¢ = 0%°und ¢ = 90° entsprechenden Radien bilden zugleich das
Maximum und Minimum fiir r.  Bezeichnen wir jene durch die
xz- und yz-Ebene ausgeschnittenen Kreise als ersten bezw.
zwelten Hauptmeridian, so konnen wir sagen:

Die Radien des ersten und zweiten Hauptmeri-
dians bilden die Extremwerte aller Meridianhalbmesser
und haben die Linge der grossen bezw., kleinen Halb-
achse der Leitellipse.

Fir den Fall, dass b = a wird, fallt die Kurve der Mittel-
punkte simtlicher Meridiankreise mit dem Leitkreis zusammen.

§ 3. Schnitt der Flache mit der xy-Ebene.

Die Schnittkurve der Fliche mit der xy-Ebene, der <« Aqua-
tor», hat die Gleichung

x" 4+ v = 4(@’x* - b’y)). I11.
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Sie ist eine Booth’sche elliptische Lemniskate, die zu einer
Ellipse mit den Halbachsen 2a und 2b gehort. Sie ist zu den
Koordinatenachsen symmetrisch und besteht aus einem geschlos-
senen Blatt um den Nullpunkt; dieser ist ein isolierter
Doppelpunkt oder konjugierter Punkt der Kurve,

Da jede Kugel auf der xy-Ebene einen Kreis ausschneidet,
so ist, wie sich wbrigens auch direkt zeigen lasst, die Schnitt-
kurve die Enveloppe aller durch den Nullpunkt gehender Kreise,
deren Mittelpunkte auf der Ellipse

bis? o aly = ot
liegen. Diese Eigenschaft liasst sich besonders gut verwenden
zur Konstruktion der Kurve. :
Andererseits ist die Aquatorkurve auch der geometrische
Ort der Fusspunkte der Perpendikel vom Nullpunkt auf alle
Tangenten an die Ellpse von den doppelten Halbachsen:

b’x® 4 a’y’ = 4a’b’%, 1V.
wie leicht nachzuweisen ist, d. h. sie 1st die Fusspunktskurve
oder Pedale dieser letztern Ellipse in Bezug auf ihren Mittel-
punkt als Pol. ‘
Fiithrt man in Gl. (ITI) mit Hilfe von

X == pCOS¢ y == gSing
Polarkoordinaten ein, so wird die Polargleichung des Aequators
o) = 4(a’cos’ ¢ + bsin’e) = 41°. Ila.

Hieraus ergibt sich die folgende Konstruktion fir die
Kurve.) Man konstruiere
A (Fig. 1) um den Mittelpunkt

C zwel Kreise mit den Radien
2L 2a und 2b und ziehe einen

Q beliebigen Strahl unter dem |
2b Y g Winkel ¢ gegen die Haupt-
— achse, der die beiden Kreise
2a 'C E D in den Punkten A und B
Fig. 1. schneidet. Zieht man durch A

') Schlémileh: Uebungsbuch zum Studium der hoheren Analysis,
I, S. 106.
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eine Senkrechte und durch B emne Parallele zur Hauptachse,
deren Schnittpunkt Q sei, so ist CQ = ¢ der gesuchte Radius-
vektor, der nur noch auf CA abzutragen ist. — Der Beweis

ergibt sich aus /\ BQD, in welchem
BD = BE = 2bsing CD = 2acos¢
ist, somit
CP’=CQ’ = ¢° = 4(a’cos’¢ + bsin’y) —- 4r°,
Fir die hochsten und tiefsten Punkte der Kurve ergeben
sich die Koordinaten
ML T .
¢ ¢
wenn ¢ die lineare Exzentrizitit der Leitellipse bedeutet. Sie
fallen fir a = b\/2 mit den Scheiteln der kleinen Achse der
Elhpse (1V) zusammen.
Fiir die Koordinaten der vier Wendepunkte findet man

2 — 2
s *ab V3 — 21, y:i——a—b—\/S(Qa——b)V
c(a’ + bY) c(a’+b
Sie sind nur reell, wenn a > by/2. Fir a = b\/ 2 fallen sie 1
die Scheitel der kleinen Achse der Ellipse (IV).

2

, Die Fusspunkt-Eigenschaft des Aequators lasst sich sofort
fir die Fliache verallgemeinern. Ein beliebiger Meridiankreis
(Fig. 2) vom Mittelpunkt C treffe den Aequator im Punkte Q.
Ist dann P irgend ein Punkt dieses Meridiankreises, so ist
<] QPO = 90°. Die in Q zu OQ senkrechte (Gerade t ist eine
Tangente an die Ellipse (IV). Legt man durch sie alle moglichen
Ebenen und fillt von O aus auf jede ein Lot, so liegen alle Fuss-
punkte dieser Lote auf dem Meridiankreis OPQ. Hieraus er-
gibt sich:

Legt man durch alle Tangenten- der Ellipse von
den Halbachsen 2a und 2b alle moglichen Ebenen und
fallt Perpendikel vom Mittelpunkt der Ellipse auf jede
derselben, so i1st der Ort der Fusspunkte die betrach-
tete zyvklische Fliache vierter Ordnung.
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§ 4 Schnitte parallel der xy-Ebene.

Durch eine zur xy-Ebene parallele Ebene von der Glei-
chung z = s = const. wird die Fliche in der in Bezug auf den
jeweiligen Nullpunkt zentrisch symmetrischen Kurve

(" 4y + 8 =4@"x" 4- by (1)
geschnitten, die, wie aus der etwas umgeformten Gleichung
£+ y* + §F — 20 = 4(’x* — b*s® 4 b (2)

ersichtlich ist, zu den spirischen Linien des Perseus gehort.
Sie ist eine bizirkulare C, und besitzt als solche zwei ausser-
ordentliche Brennpunkte, deren Orthogonalprojektionen auf die
xy-Ebene sich mit den Brennpunkten der Leitellipse decken.

Zieht man vom Nullpunkt aus beliebige Strahlen durch
die Kurve, so hat das Produkt der auf jedem dieser Strahlen
vom Nullpunkt aus gemessenen Radienvektoren den konstanten
Wert s* (Potenz).

Fihrt man vermittelst

X = pCos¢, y = esing
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Polarkoordinaten ein, so wird die Gleichung (1):
(08 + ) = 4 o’(a’cos’¢ + bsin’¢),
woraus sich ergibt
T Vort — ¢ + 21'\/?‘?:;2,

wo a’cos’ ¢ 4 b’sin® ¢ = 1’ gesetat ist.

1. Fall: Ist s <<b, so wird ¢ immer reell, also werden
auch alle vier Schnittpunkte eines Strahles durch den Nullpunkt
mit der Kurve reell, d. h.

Alle Ebenen z <b schneiden die Flache in zwei
getrennten, reellen Kurven, die den Nullpunkt um-
schliessen (Fig. 3'), Kurve a).

2. Fall: Ist s = b, so reduziert sich Gl. (2) auf
(x teof +y =a’

welche zwei Kreise vom Radius a darstellt, deren Mittelpunkte
m den beiden Brennpunkten liegen:

Die Ebenen z=-+b schneiden aus der Fliche je
zwel Kreise aus, die sich in der yz-Ebene kreuzen (Fig. 3,
Kurve b).

3. Fall. Ist a> s> b, v
so werden nicht alle Radien-
vektoren reell. Die beiden
Kurven haben kein Flichen- . N x
stiick gemeinsam und schnei- : -/
den die y-Achse nicht.

Fir die vom Nullpunkt
an die Kurve gelegte Tan-
gente miissen die Radien-
vektoren gleich gross sein. Hieraus ergibt sich der Richtungs-
koeffizient dieser Tangente nach Gl. (2)

a2 — g2 Sz
LS \/ —h
') Ueber die Konstruktlon der spirischen Linien vergl. Telxeu a..
Arch. d. Math. (3), 11 (1907), S

&

Fig. 3.
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Uebersteigt der Richtungskoeffizient des Strahls diese Grosse,
s0 werden die Schnittpunkte imaginir, d. h.

Fiir alle Ebenen a>z > b besteht der Schnitt mit
der Fliche aus zweil getrennten, reellen Kurven, die
den Nullpunkt nicht umgeben und von denen jede zur
x-Achse symmetrisch ist (Fig. 3, Kurven ¢ und d).

§ 5. Tangentialebene und Normale.
Schreibt man die Flachengleichung in der Form

F— (@ + ¥ + 2P — 4@ x* + by) = 0

und setzt zur Abkirzung
2:X2+y2+z27 . VL

s0 werden die partiellen Ableitungen von F':
F,=4[R’'—2a’)x F =4R —2b)y F,=4R%
und die Gleichung der Tangentialebene
(X —x)F, + (¥ —yF, +(Z—29F, =0,

wo X, Y, Z die laufenden Koordinaten, x, y, z die Koordinaten
des Berthrungspunktes bedeuten, nimmt die Form an:
22° x(X 4 x) + 2’y (Y - y)
= (x2 + y* + 22)(Xx + Yy 4 Zz). VII.

In allen Punkten des Schnittes der Fliche mit den Koor-
dinatenebenen steht die Tangentialebene auf der betr. Koordi-
natenebene senkrecht, wie sich aus Symmetriegriinden oder auch
durch die folgende Rechnung ergibt: Fir die xz-Ebene z. B. ist
v =0. Die Gleichung der Tangentialebene in den Punkten der
Schnittkurve auf der xz-Ebene ist also:

2a?x(X + x) = (x* 4 22)(Xx + Z2).
Diese Ebene steht auf der xz-Ebene senkrecht.

Die Tangentialebenen in den hochsten bezw. tiefsten Punkten
der Flache, fir die x=-+a, y=0, z=a bezw. x=1a, y=0,
z = — a 1st, haben die Glelchungen

# =~ T,
Ste sind Doppeltangentialebenen.
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Ebenso sind die zu den Beriihrungspunkten x =0, y = +b,
z=">b bezw. x =0, y = + b, z =— b gehorenden Tangential-
ebenen von der Gleichung '

' z=-4+Db
Doppeltangentialebenen. JIhr Schnitt mit der Fliche ist bereits

in § 4 diskutiert worden.
Die Richtungskosinuse der Flichennormalen:

cosa = IL cospp = —— COSy = —2
: o k ! I k ’ 4 ke ’
wo ke VR R — 8V T
1st, werden:
R? — 222
cosu = x
2\/alx? | bty?
2 __ 9phe
cos =5 y VIIL
2\/&41{2 -+ bty?
R2
cosy = z,

z
2\/a4x2 + biy?
sodass die Doppelgleichung der- Normalen 1m Punkte (x, y, z)
der Fliche die Form

X—x Y-y _Z—: IX.

annimmt.
Fiir den Schnittpunkt der Normalen mit der xy-Ebene

findet man hieraus mit Beniitzung der Fkichengleichung:

a’ x . b?y ;
2(a’x” -+ b’y?)’ Y= 2(a’x” + b’y’) W

Bildet man den Ausdruck b?X? - a?Y?, so ergibt sich,
dass die Koordinaten der Schnittpunkte der Flichennormalen
im Punkte (x, y, z) mit der xy-Ebene durch die Gleichung

: b2X® + 2V — alb?

verbunden sind. Sie i1st vom Punkte (X, y, z) unabhingig und
gilt also, wenn X und Y als verinderlich aufgefasst werden, fir
jede beliebige Normale. Wir ersehen hieraus, dass der Ort
der Schnittpunkte aller Fliachennormalen mit der
Aequatorebene die Leitellipse ist.

X =
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Fassen wir insbesondere die Normalen der Fliache lings
der Meridiankreise ins Auge, so ist fiir diese y = mx zu setzen.
In diesem Falle werden die Koordinaten der Spurpunkte nach (1) :

o 2
X e ,__f_._‘ — const, Y = li_ = const, (2)

Va? + b?m? \/32{_,_ bZm?2
d. h. die Fliachennormalen lings eines Meridiankreises
schneiden sich alle in einem Punkte der Leitellipse,
sie bilden einen Kreiskegel.

Es bleibt noch zu zeigen, dass dieser Kegel ein gerader
Kreiskegel ist. Fir die Koordinaten des zum DMeridiankreis
y = mx gehorenden Mittelpunktes ergibt sich

a2 1 b2m2 a2 | h2m2
X____\/a —f—bm’ Y"__m\/a—]—bm. 3)
! 14 m? . 1+ m?
Die Verbindungsgerade dieses Kreismittelpunktes mit dem Spur-
punkte (2) ergibt den Richtungskoeffizienten

Die Achse des
Kreiskegelssteht
also  senkrecht
zur Basis, dem
Mendiankreis.
Die Liénge
der Erzeugenden
dieses Kreis-
kegels 1st gleich
dem Radius 1 der
erzeugenden
Kugel, deren
Mittelpunkt 1im

SpurpunktShegt
(Fig. 4) und es
Fig. 4. ist
4 42
12— 05?2 — x? A a - b'm s
+ az + b2 mZ + aZ + b2m2



oder, wenn m == tg¢ gesetzt wird:
|— Vatcos?g -+ btsin?¢

~ \alcosty | blsinte
Setzen wir zur Abkirzung

t = V/atcos?¢ }- bisin?¢ X.
und beriicksichtigen Gl. II, so wird
t=1-r. XI.

§ 6. Kubatur und Komplanation.

Um das Volumen des von der Fliche begrenzten Korpers
und dessen Oberfliche zu ermitteln, fihren wir riumliche Polar-
koordinaten ¢ = OP, ¢ = 2 x0Q, %= 2 QOP (Fig. 2) ein
{wobei ¢ eine von IIla verschiedene Bedeutung hat). Von diesen
sind aber nur zwei, z. B. ¢ und 4 als unabhingig zu betrachten.
Fiir o ergibt sich aus der Figur 2: .

0 = 2rcos-, 8y

wo r =\/a’cos?p | bgsirﬂga: _
- Das Volumen des Korpers ist gleich dem achtfachen Vo-
lumen des in einem Oktanten liegenden Teils des Korpers, also?)

Ay ATfe A0
V= f J {‘ggcosf}dgd{}dgp.
3 o §
Fihrt man die Integration nach ¢ und 9 aus und beriicksichtigt
die GL (1), so wird

ﬂf/2
V=4n f V(afcos?y | bsinZe)idy,
64

was sich auch schreiben lisst:

[y
¥ == 4_a3nf V(1 — e?sin2¢)d¢
5

2

p— = ) oder in der bekannten Schreibweise:
a a

) Serret: Differential- und Integralrechnung Nr. 604.



Unsere Aufgabe ist zuniichst, das unbestimmte Integral

J = leagodgo

auf elliptische Normalintegrale zu reduzieren. Wir schreiben zu
diesem Zwecke:

e B GV B et
J'_f(l esmcp) fdgo 902 ’ﬂlidgp
J Ay

sin*¢
o [irg,
A

de
| —~ =F(e,q
fw e, )

L ¥4

das elliptische Normalintegral I. Art und

Nun ist bekanntlich

sin’ g 1 ‘ '
—Iff dp ez { F(ea‘P) — E(e,(p)' }1

wo Ef(e,¢) daé elliptische Normalintegral II. Art bedeutet. Aus
der Rekursionsformel:

J — ‘Sin™egp dp = (m — 2)(1 4 €?) 3 _ m—3 3
" A (m — 1)e? "2 (m—1)e ™!
+ sin™~3¢pcosy 4 ¢

(m — 1)e?
ergibt sich weiter

sin 2(1 + ) 1
[5Eae = ) (Fo #) —E(e,9) ) — 5 Fleyg)

+ sing cos g A ¢
sodass jetzt ‘ 3e? ’
' 1 e?
J =F(e,9) — 2| F(e,¢) — E(e,q) } +2- g (F(e7) —E(eq)}

e? e .
=5 F(e,¢) + 5 singcosg ./ ¢
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wird, oder nach vorgenommener Reduktion:

2
J == f'zfg pdgp = — 1k F(e,q) 4

3 a2

2 a4 b?
3 a2

E(e,q)

aZ — b?

-+ sin ¢ cos o 4 .

a?
Das bestimmte Integral zwischen den Grenzen o und %/, wird

/s

» (2
J— J Ppdp=gy | — WK 426+ H)E],
(

wo K und E die vollstindigen elliptischen Normalintegrale 1.
und II. Art bedeuten. Also ist das Volumen der ganzen zykli-
schen Flache

V-—_-——%aﬁ{Z(f—l—bZ)E— b’K |. XII.

Die.Formel muss natiirlich auch gelten, wenn b = 0, d. h.
wenn die Ellipse sich auf die Strecke 2a reduziert. Dadurch
bekommen wir ein Mittel an die Hand, die Formel XII. zu
priifen. Ist namlich b =0, so wird e=1, also E=1 und

also gleich dem Volumen zweier Kugeln vom Radius a. In der
Tat zerfallt unter der Annahme b =0 der Korper in zwel ge-
trennte, sich berithrende Kugeln vom Radius a.

. Fir den Fall, dass b =a 1st, veremnfacht sich die Formel
XII auf

V = 2afx2. | ~ XHa.

Aus der Komplanationsformel fiir eine in rdumlichen Polar-
koordinaten gegebene Fliche:?') '

) Serret, 1. ¢, Nr. 601.
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o= [T e

ergibt sich, weil in unserm Falle nach GI. .(1)

8 2g1 /] f
90 90ey. SSIMgCOBY
8(}“ r

do

— — 2rsinJd

09
{fe= 4f ftcos‘z&dqu&.

Die ganze Oberfliche ist gleich der achtfachen Oberfliche eines
m einem Oktanten liegenden Teiles, also

A7 /2 7y
0=32 ] tde f cos’3d 9.
0 &

/o |
= 8327tf VI —k%sinpdg
0

o ol ht
wenn k2 — 2 »—mb

ist:

a4

gesetzt wird. Die Oberfliche der ganzen zyklischen Fliche wird
also:

0= 8a’=E,

XIILL
wo E das vdllstiindige elliptische Normalintegral II. Art vom

Modul = {/af — B vorstellt.
5 .

Fir b =0 reduziert sich die Formel, wie erforderlich, auf
0=2-4a%n,

d. h. auf die Oberfliche zweier Kugeln vom Radius a.
Ist b=a, so wird die Formel:

0=—=4a2~2. XIIT a.



§ 7. Die Kriimmungslinien.

Die Differentialgleichung der Kriimmungslinien:
4 oan R
dy dF, ¥, = 0
{ dz dF, F, ’

wird fir die vorliegende zyklische Flache :
1 dx  xd(R) 4 (R*—2a%)dx  x(R*—2a° ) .
Cdy  yd(R) 4+ R —2bhdy  y(B'—2b) | =0
l dz  zd (R} 4 R%dz zR?
Sie lasst sich mit Benutzung der Flachengleichung auf die Form
(xdy — ydx) { 2xzdx +- 2yzdy + (z° — x* — y¥)dz} =0
bringen.

Die Differentialgleichungen der beiden Scharen von Kriim-
mungslinien sind also:

xdy —ydx =0 | (1)

2xzdx 4 2yzdy + (2 — x* — y))dz =0. (2)

Die Integration von Gl. (1) ergibt |
y = kx. XIV.

' Dles ist die Gleichung eines Ebenenbiischels durch die z-Achse,
das die Fliche nach § 2 in den erzeugenden Merldlankrelsen
schneidet. Wir finden also: Die erste Schar der Krim-
mungslinien i1st eben und wird durch die Meridian-
kreise dargestellt.?)

Die Gl. (2) ist eine totale Differentialgleichung von der.
allgemeinen Form

Pdx4+Qdy+Rdz=0.

Eine solche kann leicht integriert werden,*) wenn die Bedingung

(-2 o (2 229

) Dieser Satz kann fiir jede Einhiillende einer einfach unendlichen
Kugelschar verallgemeinert werden. Enz. d. Math. III. D. 5. 4 p. 278,
7 J. H. Graf: Differentialgleichungen, p. 104.
2
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erfillt ist. Dies ist, wie sich leicht nachrechnen lisst, fiir die
vorliegende Differentialgleichung (2) der Fall. Um die Integra-
tion auszufithren, nehme man z als konstant an, also:

xdx+4ydy=0,
integriere und ersetze die auftretende Integrationskonstante durch
eine willkiirliche Funktion von z:

X+ y =9 (3)

Durch totale Differentation folgt hieraus:

2xdx + 2ydy—-é—-dz::0
Vergleicht man diese mit (2), so ergibt sich
—1 @ty =2 —g ()
Z
und durch Integration dieser Differentialgleichung:
P— p(z)y=—22}+2C3z
wo C eine arbitrire Konstante ist. Setzt man diesen Wert in (3)
e, so heisst die integrierte Gleichung (2):
x24y2+22—-2Cz==0. XV.

Dies 1st die Gleichung emmer Kugel, die durch den Null-
punki geht und deren Mittelpunkt auf der z-Achse im Abstand
C von O liegt. Da C willkirlich ist, so folgt: Die zweite
Schar von Krimmungslinien wird durch Kugeln
ausgeschnitten, deren Mittelpunkte in der z-Achse
liegen und die durch den Nullpunkt gehen.

Um die Projektion der zweiten Schar von Krimmungs-
linien auf die y z-Ebene zu finden, eliminieren wir aus (XV) und
aus der Fliachengleichung (I) x und erhalten die Schar von
Kegelschnitten:

a2 C az (%

ze,

Es ist dies die Gleichung einer Schar von Ellipsen, deren
Halbachsen

,_ a0 b — a2 C

a0 cVa FC
sind und deren Scheitel 1m Nullpunkte hegen, mit der. y-Achse
als Scheiteltangente.




— 19 —

In analoger Weise ergibt sich fiir die Projektion auf die
x z-Ebene die Gleichung

o 2P0, BiC

¢? c? :
welche bei verinderlichem C eine Schar von Hyperbeln dar-
stellt, deren Scheitel im Ursprung liegen.

Es 1st klar, dass weder im einen, noch im andern Falle
die ganze Kurve in Betracht fillt. Wir konnen deshalb sagen:
Die Projektionen der zweiten Schar von Krim-
"mungslinien auf die yz-Ebene sind Ellipsenbogen,
auf die xz-Ebene Hyperbelbogen.

?

Fir die Projektion auf die x y-Ebene findet man
c (x2+y2)2—[—202'(xz—1—y2-——20,2) (a2x2 1- b2y2).
+ @+ yz)z == 0
Die Projektion der zweiten Schar der Krimmungs-

linien auf die xy-Ebene ist eine. Schar von Kurven
vierten Grades.

Es ist weiter von Interesse, den Winkel, unter dem sich
die Kugeln und die Fliche schneiden, zu untersuchen. Zunichst
gilt der Satz von Joachimsthal: Liegt eine Krimmungslinie einer
Flache auf emmer Kugel, dann schneidet sich die Kugel mit der
Fliche langs der ganzen Kriimmungslinie unter konstantem
Winkel. Wir brauchen also fir jede Krimmungslinie der zweiten
Schar den Winkel nur in einem Punkte derselben zu bestimmen,
dann ist er lings der ganzen Kriimmungslinie gleich gross. Diese
Bestimmung nehmen wir fir die Punkte des in der x z-Ebene
liegenden Meridians vor. Da dieser Kreis die y-Achse im Null-
punkt berithrt, der Schnittkreis der Kugel mit der xz-Ebene
aber die x-Achse im Nullpunkt tangiert, so schneiden sich beide
Kreise im Nullpunkt und somit auch im zweiten Schnittpunkt,
dem Flichenpunkt, rechtwinklig, wie auch analytisch leicht nach-
zuweisen 1st. Und weil die Tangentialebenen lings dieses Meri-
dians auf der xz-Ebene senkrecht stehen, so schliessen auch
sie einen rechten Winkel ein. Dieser Winkel ist von der Grosse
C unabhingig und bleibt also fiir alle Krimmungslinien der
zweiten Schar derselbe. Mit Beriicksichtigung des Satzes von
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Joachimsthal folgt hieraus: Die Kugeln, auf denen die
zweite Schar von Krimmungslinien liegt, durch-
schneiden die Flach e aberall rechtwinklig?).

Da die Tangentialebenen der Fliche in den simtlichen
Punkten einer Krimmungslinie der zweiten Schar auf den Tan-
gentialebenen in denselben Punkten an die zugehorige Kugel
senkrecht stehen, so gehen sie alle durch den Mittelpunkt dieser.
Kugel.: Umgekehrt ergibt sich also: Die Gesamtheit aller
von einem festen Punkte der z-Achse aus an die
Fliache gelegter Tangentialebenen berihrt die
Fliache lings einer Krimmungslinie der zweiten
Schar. Der Beweis lisst sich iibrigens auch analytisch sofort:
fithren. Fiir den Punkt X =0, Y =0, Z = C der z-Achse werden
die Gleichungen der Tangentialebenen nach (VII):

2(a’ x> b’ yg)z(xz—f-yz—]—z?)-Cz
oder mit Beniitzung der Flichengleichung:
24 y242Z=2Cz,
Die Berithrungspunkte unterliegen also dieser Bedingung, die
genau mit der Gl. XV der zweiten Schar von Kriimmungslinien
iiberemstimmt.

Aus der Tatsache, dass der Kugelradius die Fliche beriihrt,
nicht aber schneidet, ergibt sich eine einfache Konstruktion der
Krimmungslinien der zweiten Schar: Man befestige einen Faden
in irgend einem Punkte der z-Achse, wihle seine Linge gleich
seiner Entfernung vom Nullpunkt und verbinde sein Ende mit
der Spitze eines Bleistifts. Bewegt man die Bleistiftspitze bei
gespanntem Faden auf der Fliche, so beschreibt sie eine
Krimmungslinie.

) Dieser Satz lisst sich auch aus den allgemeinen Untersuchungen
von Bonnet [Journal de I'école polyt. 20 (1853) p. 117] folgern: Ist fiir
eine Flache das System der einen Kriimmungslinien eben und gehen ihre
Ebenen durch ein und dieselbe Gerade, so liegen die Kriimmungslinien
der andern Schar auf Kugeln, welche die Fliche senkrecht schneiden, und
deren Mittelpunkte in jener Geraden liegen.



II. Teil
Untersuchung der Flache in der Parameter-Darstellung.

I. Kapitel.
Parameterdarstellung der Flache. Die Kurve
der parabolischen Punkte.

§ 8. Die Parameterdarstellung.

Am einfachsten werden die Ausdriicke fir die Parameter-
darstellung der Fliche, wenn man die Krimmungslinien als Pa-
rameterkurven einfithrt und sich auf die in § 7 gefundenen
Eigenschaften derselben stiitzt.

o Eine durch die z-Achse gelegte
Ebene, die mit der xz-Ebene den
Winkel u bildet, schneidet die Fliache
in einem Meridiankreis vom Radius
r und vom Mittelpunkt K (Fig. 5),
der auf der Kurve

1? = a?cos?u -+ b’sin?u
Fig. 5 (nach Gl. II) liegt, und die Kugel

vom Mittelpunkt M auf der z-Achse
und vom Radius v (die auf der Fliche eine Kriimmungslinie der
zweiten Schar ausschneidet) in einem Kreis. Beide Kreise

schneiden sich nach § 7 orthogonal in einem Punkte P der
Flache. Es ist somit '

A\ BPM ~ A APK
Hieraus ergibt sich
AK:r=BM:v
WVE = Zir=v—1z:v
2y
P - v2

Liegt A zwischen O und K, so folgt:

/ 41ty
A0:OK—KA:—_.-1'-—VI-2__ el
CEND:

. 2rv?

24y
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Aber auch wenn A ausserhalb OK liegt, gilt dasselbe. Es wird
also

y = ———sinu ~ XVL

2r3v
2 |- v2

wobei r = \/acos?u -}- b?sin?u.

Dies sind die Koordinaten eines Flichenpunktes in der Para-
meterdarstellung. Die Parameterlinien u = const und v = const
sind die erste und zweite Schar von Kriimmungslinien; u ist der
Winkel der Meridianebene gegen die xz-Ebene, v der Radius
der verinderlichen Kugel, die zu der zweiten Schar von Kriim-
mungslinien gehort.

Um die Fundamentalgréssen aufzustellen, ist es vorteilhaft,
diese Gleichungen auf die Form

VZ . VZ . 2r’v
X = —— cosu y=-—sinu Z=— XVlIa.
r r r? 4 v?
- zu bringen. Wir berechnen zunichst:
i 0z 4c2vd .
—=——-————— sinucosu
du (r2 4 v2)? )
Jr e? .
— =———sinucosu
du r

wobel ¢2 = a2 — b2, Ferner:

éx v { ( : 6z) 81‘1
— =—1!r(—zsinu 4| cosu-— ) —zcosu - —
du 1r? ou, duf
0 . d . d
. . zcosu—{—smu--rE —zsmu-—li,
cu r? du du
sodass

R 2 2
E=S(g§)=%{r2z2 + r? (-5—3-) -+ z? (il-.-)‘—-—-‘?rzﬂ--a—%-

u Ju du du
0z\2
+(52):

’



Setzt man d1e Werte (1) ein und vereinfacht, so ergibt sich

4vit?

r2 (r2 +v2)2
wo t die Bedeutung (X) hat:

t =\/atcos?u + bésin’u.

. 8 2 — v?
Weiter i1st: —z-: r(r ')
av (r2 4 v2)?
dx  4rdv
e ——cosu
ov (r2 + v2)?
B_X— 43v

dv (124 v2)?

und hieraus findet man:

212 813 v3

T du 2 ~+ v2
oder ausgerechnet :

F=0.

2
o-s(i2)-
ov

A=+VEG—F=

Schliesslich wird
4rt

(12 -v2)?
4rv2

@y

und

GERD;

)
or
du
3
(4)

Die Richtungscosinuse der Flichennormalen ergeben sich

am einfachsten aus den Formeln VIII, in denen

4y
f=x"ty o T
x2 4_2 rv?
Va' s+ by’ =2 ure Al
zu setzen ist. Dann wird '
202 a2 (3 2
cosa____cosu.2r v: —a® (r! + v
r? - v?
: 2 92 __h2 (r2 2
cOsp,ﬁ____smu_er b (1.' ~+ v?)
t r? 4 v2
2r3v
CosS y = ——

t (2 4 v2)

VIII a.
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sodass die Gleichung der Tangentialebene die Form annimmt:
X{2r2v?—a?(r2+4v2)}cosu+ Y {2r2v2—b? (r? 4 v?)}sin u
+Z -2r3v=21r3v2. ' (5)

Da wir die Kriimmungslinien als Parameterkurven emge-
fiihrt haben, so muss die Fundamentalgrosse 2. Ordnung:

ducv

2 )
D'=S(cosa- itk ):0 (6)

sein und es gelten dann die Formeln von Rodrigues, von denen
wir nur die beiden

decosy Dz dcosy D" adz
du E du dv G dv

herausgreifen, weil sie sich zur Berechnung der beiden Fundamen-
talgrossen 2. Ordnung:

; 2
D=S(cos‘f"?—x> D”SS(GOSa-§—§>

o u’ v

am besten eignen. Aus (VIIIa) folgt namlich durch Differentiation:

d cos y 2cirv

e sinucos uiaZb?(r? 4 v2)— 212 v2
611 t3 (r2+V2)2 { ( + ) }

decosy 2r° 1r?—v?
ov t (12 4 v2)
Fiihrt man diese Werte in den Formeln von Rodrigues
ein, so wird

2v?

D:"t—rfr2+v2? {2t v2 —a?b? (12 + v2) |
| (7)
o 4r -
t (2 4v2)

Wir stellen hier die gefundenen fundamentalen Grossen
zusammen:



2rv? - 2rv? . 2r2v \
= _———c¢osu y= sinu  z=
r2 4 v? _ r2 }v? r? 4 v?
| 4 42 2
Ee= 4'Vt_2 D=___.~2V 2{2t2v2—a?b2(r2—|—v2)}
r’(r2-v?) rt(r2+4 v2)
F=0 D=0
1 5
G:——éﬂ‘—z— | § 4r :
@F+vF @)
4rvit
N=—""5 X VII.
(2 +v)
ey 2r?v
'=\/DD"' —D"?=—_"""__\/2{2t2v2—a? b (12} v?
A=y vl @)
ds’=Eduw+ 2Fdudv4}Gdvi=
e .(v4t2du2—i—1'4dv2
(1-2—|—v2)2 r
1?2 = a? cos® u -} b? sin® u

t2 =a* cos? u | b*sin®u

Fur die Hauptkrimmungsradien bestehen, weil F =0 und
D" =0, die Formeln :

E G
Ql —_— B 92 e D”_.
Setzt man fir E, D, G, D"’ ihre Werte nach (XVII), so wird
2 18 v2
a= r{2t2 vi— a?b?(r® -} V‘Z)}
X VIIL
t
=~ —— — — 11
T

wie aus (XI) folgt, d. h." der eine Hauptkrimmungsradius
{¢,) 1st immer gleich dem Radius der erzeugenden Kugel.')
Fiir die hochsten und tiefsten Punkte der Fliche (x = - a,

y=0, z=+a) ist u=0 und v=+-a, somit

) Das Resultat gilt allgemein fiir Enveloppenflichen von Kugeln.
Vergl. A. Enneper: Bemerkungen iiber die Enveloppe einer Kugelfiiche.
Nachr. d. kgl. Ges. d. Wissenschaften und d. G. A. Univ. Gottingen 1873,
p. 219.
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Ql‘:——u— 92=-—-—a.

Fir die Sattelpunkte (x =20, y= +b, z=-4b) wird u=90°,
v=-+b, und

0, ==

sl

%%

0, = —b.

Das negative Vorzeichen gibt an, dass die Normale nach
der Seite der Flache hin gerichtet ist, auf der der Mittelpunkt
liegt.

Das Krimmungsmass

K= 1 :DD =1 wird
0, 0 EG — F?

2
= ; : 2t2vz—a?b? (2 4+v?)} XIX.

und die mittlere Krimmung
D"+GD— 2F D’ _+_
£ 0

K=

H =

berechnet sich zu

2t3 {4 t2 vZ — a2b? (r2-4-v2)}. XX.

§ 9. Die Kurve der parabolischen Punkte.

Die zyklische Flache ist in irgend einem Punkte elliptisch
oder hyperbolisch gekrimmt, je nachdem K =0, d.h. (nach XIX)
je nachdem
2t2v2 = a?b?(r? 4 v?)
abr
\/ 212 — a?h? o
Sie 1st in den Punkten parabolisch gekrimmt, in denen k=0,
also

abr
P — 2
7 v \/2 tzl.— azb'-’ ( )
Setzt man diesen Wert. in der Parameterdarstellung (XVI) der

Flache ein, .so erhdlt man die Kurve der parabolischen
Punkte in der Parameterdarstellung:




¥ == Kiihai XXL

7 — ?E\/gtz — aZh3.

Diese Kurve trennt die elliptischen von den hyperbolischen
Punkten der Fliche. Da v fur den Nullpunkt gleigh null ist
und fiir die Punkte eines Meridians bis zum Aquator bestindig
zunimmt, so folgt aus (1): Die Kurve der parabolischen
Punkte teilt die Flache derart, dass das den Null-
punkt enthaltende Flichenstick die hyperbolischen,
das ihn ausschliessende Stiick die elliptischen Punkte
enthélt. |
Fir den Schnittpunkt mit der xy-Ebene (z = 0) ergibt sich

aus XXI: :

a’h?

2

t2 =

und hieraus:

: a  [2a? —b? b /a2 =32
B *\/z—(“-m conn =1\ e
ab\/3
\/2 (a® I b?)

Die Koordinaten der 4 Spurpunkte der Kurve der parabo-
lischen Punkte sind also:

ab?
x =+ e + b—2)V3(a2 —21?)
—~——\/3(2aZ — b?). @
s = c(a2 + b?)

Sie sind nur reell, wenn a > b\/2. Diese Durchstosspunkte haben
fir den Aquator die Bedeutung von Wendepunkten, und ihre
Koordinaten stimmen mit den in (V) gefundenen iiberein. Ist
a = b\/2, so wird x=0, y =4 2h, d. h. die Kurve kreuzt die
y-Achse.

e
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Die Projektion der Kurve der 'pa'rabolischen Punkte auf die
xy-Ebene ergibt sich durch Elimination von u aus den beiden
ersten Gleichungen XXI, die auch geschrieben werden konnen:

In entsprechender Weise ergeben sich die Projektionen auf die
beiden andern Koordinatenebenen. Man erhilt so:
Projektion auf die xy-Ebene: '

(atx? |- bty?)? = atbi(a?x? |} b?y?). XXII.
Projektion auf die xz-Ebene: | ,
{(at — b4)x? — b*z? P = atb?(8¢2x? — b%z?).  XXIIL
Projektion auf die yz-Ebene: | ' '
y? {b2y?(a? — 2b2) 4 a2b222 ) {(at — bt)y? 4 atz?
— afh4(a’z? } 3c?y?)?(2a%? — b?). XXIV.
Ist‘insbesondere_azb\/ﬁ, so werden diese Gleichungen:
Projektion auf die xy-Ebene:

(4x? -} y2)? = 4b?(2x% 4 y?). XXTIIa.
Projektion auf die xz-Ebene: : '
(3x% — 22) (3% — 22 — 4b%) =0. XXII1a.

Projektion auf die yz-Ebene: -
b2yz(3y? - 422)2 = 2/8(222 + 3y?).  XXIVa.

Durch Nachpriifung der Ableitung zeigt sich, dass der zweite
Faktor der Gl. XXIIIa unmoglich 0 sein kann, so dass die Pro-
jektion der Kurve der parabohischen Punkte auf die xz-Ebene
die Gleichung

z=x\3 XXIIIb.
besitzt. Die Kurve der parabolischen Punkte wird also fiir diese
Flache durch eine gegen die xy-Ebene unter 60° geneigte, durch
die y-Achse gehende Ebene ausgeschnitten.

Die Kurve der parabolischen Punkte kann auch als Schnitt

der Hessiana mit der zyklischen Fliche aufgefasst werden. Die
Gleichung der Hessiana oder Kernfléche:



Fll F12 F13 F14

H— F2l F.‘3 F23 F24 — 0
F3l F32 F33 F34 ,
F4l F42 F43 _F44

wo F das homogen gemachte Gleichungspolynom der zyklischen
Flache bedeutet, wird

R? —2a% 4 2x? 2xy 2xz 2a’x

2xy R? —-2b?+2y? 2yz 2b%y

2xz 2yz R?>4-222 0 =
4a’x 4b%y 0 — (a%x® 4 b?y?)

oder ausgerechnet und nach Potenzen geordnet:

R (a2x® 4 b?y?) - 2R @R%a%x® — b2y%) + 2¢* <Py -
+-22°(a*x* 4 b'y")} — 42°b(R? 4- 22°) (27" - b’y%) =0, XXV.
St R=x*fy' 2
- Diese Gleichung der Hessiana ist, wie die Theorie verlangt, vomy

- 8. Grade. Die Kernfliche liegt ganz im Endlichen. Der Null-
punkt ist ein isolierter vierfacher Punkt der Fliche. Die Glei-
chungen der Schnittkurven der Kernfliche mit den Koordinaten-
ebenen sind:
xy-Ebene: (x° 4+ v (a’x* 4 b’y%) 4+ 2¢°(a’x* — bPy* 4 3¢ Xy

—4a°b°@° x4 b'y’) =0.

xz:Ebene: (x* 4 2°)° 4 2(x° + ) | A(x* + 2°) 4- 2a%2*}

— 4a°b*(x* } 382°) =0.
yzEbene: (y° + 29 — 2(y° + 2°) | (y* + 2°) — 2b%2* |

— 4a°b%(y° + 872°) =0.
Sie stellen einfache, geschlossene Kurven dar. Zu der Fliche
gehort, wie sich durch Nullsetzen der von diesen Gleichungen
abgespaltenen Faktoren ergibt, auch die z-Achse.

Der Schnitt dieser Hessiana mit der zyklischen Fliche, die
Kurve der parabolischen Punkte, ist von der Ordnung 32. Ihre
Projektion auf die xy-Ebene wird durch Elimination von z aus
(I) und (XXV) erhalten. Das Resultat der Elimination ist die
bereits gefundene Gleichung XXII:

(atx® 1 b'y)? = a*bt(a2x® - by,



Der Nullpunkt ist ein isolierter Doppelpunkt der Kurve. Fir

die Schnittpunkte mit dem Strahl y = mx findet man die Koor-

.dinaten: .
2h\VZ LM, @bmV@ T

X= at } b*m? y=ct a' + bim? -
wenn man vom Nullpunkt selber absieht. Man sieht hieraus,
dass jeder durch den Nullpunkt gehende Halbstrahl die Kurve
ausser dem Nullpunkt nur noch in einem Punkt schneidet,
dessen Koordinaten stets reell und endlich sind; die Kurve be-
steht daher aus einem geschlossenen Blatt um 0.

Die Abschnitte der Kurve auf der x-Achse («¢) und der .
y-Achse (8) berechnen sich aus den letzten Formeln fir m = o,
m = oo, Bestimmt man ferner aus der Flichengleichung I das
dazu gehorige z, so bekommt man:

2 # AR

x-Achse: x=a=% y=0 z:i%\/%?—b?
;

y-Achse: x=0-" yzﬁz% z:i%\/2b2—32

Die Ausdriicke ¢ und g lassen sich sehr leicht konstruieren. Wir
untersuchen die Projektion der Kurve fiir folgende Spezialfille :

1) a<< b\/i Die Abschnitte « und g auf den Koordinaten-
Achsen werden

a>a> g f<<2b.

Fir den Grenzfall a—b wird e=a, 8 =a und die Projektion
v der Kurve der parabolischen Punkte
""""" AT wird ein Kreis vom Radius a (Leit-

P kreis).
Ty R\ Sehen wir von diesemn Grenz-
\/\—/ / fall ab, so erhalten wir eine ovale
- A Kurve mit zwei Einbuchtungen in
G ST N der y-Achse. Die ganze Kurve liegt
Fig. 6. innerhalb der Schnittkurve der

Fliche mit der xy-Ebene (Aequator)
und ist symmetrisch zu den Koordinatenachsen (Fig. 6).
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9) a=>b\/2. Die Achsenabschnitte werden
g =1 % =4 2b.

Die Kurve der parabolischen Punkte geht also, wie bereits S. 27
konstatiert wurde, durch die Punkte der y-Achse, in welchen die
zyklische Fliche die y-Achse schneidet (Fig. 7).

3) a>by2. In diesem Falle ist

¢ < % 8> 2bh.

Alle Schnittpunkte mit der y-Achse liegen ausserhalb der Fliache
und konnen daher nicht realisiert werden. Die Kurve durch-
schneidet den Aquator in 4 reellen Punkten (Fig. 8).

Fig. 7. Fig. 8.

Hieraus und aus der Diskussion der Spurpunkte (S. 27) er-
gibt sich in den drei Fillen fiir die Kurve der parabolischen
Punkte selber folgender Verlauf:

1) a<b\{/2. Die Raumkurve besteht aus zwei getrennten,
geschlossenen Ziigen, die zur xy-Ebene symmetrisch liegen.

2) a=>bV/2. Die Raumkurve zerfillt in zwei ebene Kurven,
die sich in der y-Achse kreuzen, und deren Ebenen ‘gegen die
Aequatorebene unter 60° geneigt sind.

3) a>b\/2. Die beiden Ziige der Raumkurve werden durch
die y z-Ebene getrennt und liegen zu dieser symmetrisch. Sie
durchschneiden den Aequator je in zwei Punkten.

Anschliessend an diese Untersuchungén sollen noch die
Kreispunkte betrachtet werden. Soll ein Punkt der Flache
ein Kreispunkt oder Nabelpunkt sein, so muss die Bedingung

E:F:G=D:D":D"”
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oder weil F=0,D'=0

| E:G=D:D"
erfilllt sein. Durch Einsetzen der Werte kommt man dadurch
auf die Bedingung

: 12 4 v =0,
die, weil r nie 0 wird, fir reelle Flichenpunkte nie erfiillt wird;
d. h. die zyklische Fliche hat keine reellen Kreispunkte.
Lasst man auch imaginire Werte zu, so entsprechen der eben
aufgestellten Bedingung (nach XVI) Punkte der Fliche, deren
Koordinaten unendlich gross sind. Diese Punkte bilden in ihrer
Gesamtheit nach S. 31 den unendlich fernen Kugelkreis,
welcher somit eine Kurve sphiarischer Krimmung (Nabel-
linie) der zyklischen Fliche ist.

Il. Kapitel.
Die Zentraﬂéiche.

§ 10. Die Gleichungen der Zentrafliche in Parameterform
und in rechtwinkligen Koordinaten.

Aus dem friher gefundenen Resultat (XVIII), dass der eine
 Hauptkriimmungsradius in jedem Flichenpunkt der Grosse und
Richtung nach mit dem Radius der durch ihn gehenden erzeu-
genden Kugel dbereinstimmt, folgt, dass der Ort der Endpunkte
dieser erstem Hauptkrimmungsradien mit dem Ort der Mittel-
~ punkte der umbhillten Kugeln zusammenfillt, d.h. der den
Meridiankreisen entsprechende erste Mantel der Zentra-
flache wird durch die Leitellipse dargestellt.!)

Sind «, 3, y die Richtungswinkel der Flichennormalen, so
wird der zweite Mantel der Zentrafliche durch die Gleichungen
- dargestellt: '

X=X 19 C0s«, Y=Y, +ocos3 z=1z -+ o cosy,
wo X, ¥,,% die Koordinaten eines Punktes der zyklischen Fliche
und x, y, z die laufenden Koordinaten der Zentrafliiche sind

') Die Verallgemeinerung dieses Satzes heisst: Von den beiden
Miinteln der Zentrafliche einer Enveloppenfliche, die eine einfach unend-
liche Schar von Kugeln umhiillt, reduziert sich der den Kreisen entspre-
chende auf die Kurve der Mittelpunkte der umhiillten Kugeln. — Monge:
Applications. 5° éd.-1850 p. 376.



und ¢, den einen Hauptkrimmungsradius darstellt. Setzt man
hierin die Werte aus den Formeln XVI, VIIIa und XVIII ein,
so ergibt sich

2 8% v* cos u (t* — b? r%)

r[2t' v — 2b2(r2—|—v2)]

Dabe1 1st t?— b’ r’ =a® ¢ cos® u.

In gleicher Weise ergeben sich die Werte fir y und z. Wir
erhalten also folgende Parameterdarstellung fir den zweiten
Mantel der Zentrafliche:

X ==

2 at c? v2 cos® u

X = — 5
r[2tzvzwa‘b2(r2+v2)}
2b* c?v?sin® u : |
y=— 2 9 2,2/(.2 2 XXVI.
r|2t°v' — a’b’ (r* 4 v¥)
- 2a%b*r?y
. =

2¢*v —a’b’ (i --}—vg).

Um aus ihnen die Gleichungen fiir rechtwinklige Koordi-
naten zu erhalten, sind u und v zu eliminieren. Durch Division
der ersten und zweiten Formel ergibt sich zuniichst:

(1)

tgu—

Ist u = const, so 1st auch — const: den Parameterlinien
X

u = const, d. h. den Meridiankreisen, entsprechen somit die Schnitt-
kurven, die Ebenen durch die z-Achse aus dem Kegel der Nor-.
malen lings des Kreises ausschneiden. Wir stossen damit schon
" auf das erste wichtige Resultat: Alle durch die z-Achse ge-
legten Ebenen schneiden den zweiten Mantel der Zentra-
flache in Kegelschnitten, die durch den Nullpunkt gehen, und:

Die Endpunkte der zweiten Hauptkrimmungsradien
langsder Meridiankreise der zyklischen Fliche liegen auf
einem Kegelschnitt, dessen Ebene durch die z-Achse
geht. Ueber die Art der Kegelschnitte konnen wir aber vor-
laufig noch nichts aussagen.

Aus der ersten und dritten Gleichung XXVI folgt durch
Division:

3



X
@ —_—— o 5 . v
at ¢t 27 (a4 b’tg’ u)’
Setzen wir fiir tgu den Wert aus (1) ein, so ergibt sich
nach einiger Umrechnung folgende erste Beziehung fiir v:
3 3 ’ 43
U ¢z
\/b2 X2 +\/a2 Yy :\/a—zl;g Vz. (2)
Eine- weitere Gleichung fiir v konnen wir aus der zweiten

Gleichung XXVI finden, wenn wir in dieser den Wert (1) fur
tg u substituieren. Durch Auflésung nach v2 folgt zunichst

o = a’b’r’y
(21; —a’b)ry4-2b*Psin’ u

und hieraus mit Beniitzung von (1):

\/( +\/b2x2) 3)
[2az—b2+(2b2— 2)\/%22-_%_;] y\/1+:/?;§ — 2ac2~§

Diese zweite Gleichung fir v kombinieren wir nun mit (2).
Bs wird, wenn zugleich Zihler und Nenner der rechten Seite
3

v’ =a’ b’y

mit \/bx erweitert und die ganze Gleichung mit

Vi ey

dividiert wird:

\/\2}'02'1&"+\78t2 Y=

ctz2 .

_\/[(Za b)Y (b ady 2]\/\7b3i2+\7a2y2-—-2abc“’

/
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Durch lingere Umformung erhilt man hieraus die gesuchte
Gleichung des zweiten Mantels der Zentrafliche:

[ty — (Va1 y) |
—4a’b* ¢t (\7sz:2 -4 \3/ a’ y2)3: 0.

Sie 1st fiir den Nullpunkt erfiillt, Dieser ist also ein Punkt
der Flache.

XXVIL

§ 11. Schnitte der Zentrafliche mit Ebenen durch die z-Achse.
Der Schmtt der xz-Ebene mit der Zentrafliche hat die
Gleichung |
(32—|— )b’ x*—¢' z2i2a b’ ¢’ x =0.
Es sind dies die Scheitelgleichungen zweier kongruenter
Kegelschnitte, die durch die Transformation

, — ac?
X—X -} ——
32 _I__ (32
“auf die Mittelpunktsgleichung
b’ (a’4-¢°) x* — ¢* 2’ =Z e
el

gebracht werden. Der Schnitt mit der xz-Ebene besteht also
aus zwel kongruenten, durch den Nullpunkt gehenden Hyperbeln,
deren imaginire Achsen der z-Achse parallel sind, deren Mittel-
punkte im Abstand

ac?
+ -
a2l e
vom Nullpunkt liegen und deren Halbachsen
A ac? <8 B ab

1

T atfer 2 TV e
sind. Die lineare Exzentrizitat ist
C,—_ 2
~ a2 4-¢? 2
aund der Abstand der Brennpunkte vom Nullpunkt ist:

' , ' ab’
A +C=a Al—clz“m_
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Die eine Hyperbel hat also den rechts liegenden, die andere
den links liegenden Scheitel der grossen Achse der Leitellipse
zam einen Brennpunkt. Die Richtungskoeffizienten der Asymp-
toten sind
Bl
A

Die Hyperbeln degenerieren nur fiir den Fall, dass die Leit-
ellipse ein Kreis ist (¢c=0) in die doppelt gelegte z-Achse und
fir den Fall, dass sich die Ellipse auf ihre grosse Achse reduziert
(b =0), in die doppelt gelegte x-Achse.

- Jede dieser beiden Hyperbeln ist der Ort der Endpunkte
der zweiten Hauptkrimmungsradien lings eines der beiden in
der xz-Ebene liegenden Meridiankreise, und zwar gehort zum -
rechts liegenden Kreis die rechts liegende Hyperbel. Die Flichen-
Normalen lings eines solchen Kreises sind jedoch nicht Tangenten
der zugehorigen Hyperbel, weil die aufeinanderfolgenden zweiten
Krimmungshalbmesser lings einer Krimmungslinie der ersten
Schar sich nicht im zweiten Krimmungsmittelpunkt schneiden. Fir
die hier auftretende Hyperbel ist das sehr deutlich ersichtlich. Alle
Normalen lings des Kreises schneiden sich nimlich nach § 5 im
Scheitel der grossen Achse der Leitellipse. Dieser ist also der kon-
stante Kriimmungsmittelpunkt aller ersten Hauptkriimmungsradien
lings des Kreises. Er ist aber auch Brennpunkt der Hyperbel, und
weil alle Flachennormalen durch ihn gehen, so konnen sie nicht
Tangenten der Hyperbel sein. Die Parallelen zu den Asymptoten
durch den Brennpunkt der Hyperbel treffen den Kreis in para-
bolischen Punkten. Solcher Schnittpunkte sind, wenn wir
nur einen Kreis der xz-Ebene in Betracht ziehen, vier moglich,
aber zwel davon sind ungiltig, weil nach § 9 die Ahszisse x
eines parabolischen Punktes der xz-Ebene die Grosse a nicht
iiberschreiten darf. Allfillige Schnittpunkte der Parallelen zur
Asymptote mit dem zweiten Kreis sind deshalb nicht zu zéhlen,
weil die Normalen in ihnen durch den andern Brennpunkt der
Hyperbel gehen. — Dadurch kommen wir im Einklang mit den
fritheren Untersuchungen zum Resultat, dass in jedem Quadrantep
der xz-Ebene nur ein parabolischer Punkt liegt.

Fir den Schnitt der yz-Ebene mit der Zentrafliche lautet
die Gleichung:

+ = DT e
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2a’ bv+ 4£a-)2"
c

Sie stellt zwei kongruente Kegelschnitte dar, und zwar
sind es

i

C

Ellipsen, wenn a > b\/2
Hyperbeln , a~ b\2
Parabeln , a=b V2.

D1e ‘v-Achse ist Hauptachse der Kegelschnitte.

Im ersten Falle sind alle Krimmungsradien endlich, die
Flache weist lings der Meridiankreise in der yz-Ebene keine
parabolischen Punkte auf. Im zweiten Falle gilt dasselbe wie
fir den Schnitt mit der xz-Ebene, und im dritten Falle liegt
fiir beide Parabeln der unendlich ferne Punkt in der y-Achse.
Seine Verbindungsgerade mit dem Kreismittelpunkt trifft die
Fliche in den Punkten x==0, y=+42b, z =0, welche die ein-
zigen parabolischen Punkte der yz-Ebene sind. Alle drei Fille
decken sich vollstindig mit den Resultaten in § 9.

. Eine beliebige Ebene durch die z-Achse von der
Gleichung y =m x schneidet die Zentrafliche in einer Kurve,
deren Projektion auf die xz-Ebene die Gleichung

J 2(1—}—m)—l—41——x(\/a \/bm)3

. 3 3_ __\3
=-4-2abc’x \/(Vlb“)—f—\/au3 mz)

hat. Sie ist von der Form

und stellt also zwei kongruente, durch den Nullpunkt gehende
Kegelschnitte dar, deren Hauptachsen mit der Spur der Schnitt-
ebene auf der xy-Ebene zusammenfallen. Auch diese Eigenschaft
haben - wir schon frither (S. 33) kennen gelernt.

' .Die Kegelschnitte konnen Ellipsen, Hyperbeln oder Parabeln
sein, wenn a>b\/2, Sie sind, ausgenommen der Schnitt mit
der yz-Ebene, nur Hyperbeln, wenn a="hb\/2, und tiberhaupt
nur Hypelbeln wenn a < b\/2.
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§ 12. Die Schnittkurve der Zentraﬂﬁcﬁe mit der xy-Ebene.

Die Schnittkurve mit der xy-Ebene ergibt sich aus (XXVII)
fir z=0:

[ et (xP -+ yz)- _ (\:} S _I_& x y2)3]2
—4a' b ¢ (\71';2—1-1_2 + \?vaﬁ;é)?

Will man die Gleichung in rationaler Form haben, so geht
man wie folgt vor: Die linke Seite lisst sich, wie sich leicht
nachrechnen lisst und wie aus S. 34 gefolgert wird, identisch
schreiben :

} : S . N— 320 3224
|2+ A V'x* + (0 — ) Valy ] Vb’ Vel

sodass die Gleichung der Kurve in

[+ VR =+(b_02)\/a 7y [ +\7a2y"'_ 1)

XXVIIL

=4 a b2 4
und \/b2 =] \/a ==
oder b? x2 +a?y? = O zerfallt.

Der der letzten Gleichung entsprechende Kurvenzweig redu-
ziert sich auf den Nullpunkt.

Rechnet man die linke Seite von (1) aus und fasst in
passender Weise zusammen, so wird

3 3
3\/a b x2 2[b —}—02)\/32;3—f—az(b2-~cz)\/a2y2
. =4a bzc4—b2(az—}—cg)xz—ag(b?—cz) V.
Diese G‘rleichung erhebt man in die dritte Potenz:
7 b’ y? (a +c) b2 x° }—as(b —c)3a2y2

+ a’ (bz—c)\/a ]}_- 4a bzc4~—b2(a, + ') x° —ag(bg—cg) i
und ersetzt den Ausdruck in der eckigen Klammer durch den
Wert in der vorangehenden Gleichung. Dann wird die gesuchte
rationale Gleichung der Schnittkurve mit der xy-Ebene:

27 2 b” x° y? {b* (a® 4 ¢®)*[b* (a® + ¢°) — a®(b® — )| x°
+ a0 — ) [a* (b2 — &) — bi(a2 D] ¥°
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—|—4 a' b*¢* (2’ 4 ¢°) (b° — &%)}
={4a’ b’ c'—b*(a’+ ) x* — a?(b*— ) y*}’. XXVIIIa.
Die Kurve ist also vom 6. Grade. Ihre Schnittpunkte mit den
Koordinatenachsen sind, abgesehen vom Nullpunkt:

2

x-Achse: X ===} —22%_9—2-, je dreifach
2bc?

y-Achse: ==} P2 cczv » »

Wihrend die Abschnitte auf der x-Achse immer endlich und
kleiner als a sind, werden die Abschnitte auf der y-Achse fiir

den Fall b—=c (a = b\/2) unendlich gross.

Zur weitern Untersuchung dieser Schnittpunkte ist es not-
wendig, den einen oder andern zum Nullpunkt zu machen, also
die Transformation

x=x' 4—&2_[_02

vorzunehmen. Dadurch verschwindet das konstante Glied auf
der rechten Seite und die Kurvengleichung erhalt die Form:

2 2 3
(x+ - j‘r" ) (AX 4 Bx 4 Cy 4 D)y'=(BEx* 4 Fx+ Gy)
Der Schnittpunkt ist also in beiden Fillen ein Doppelpunkt und
die Tangenten in ihm werden:

(_Z;ac32)2Dy2=0 also:
a Hc )

y =0 doppelt.
Die zwei Schnittpunkte mit der x-Achse sind also Spitzen, mlt'
der x-Achse als gemeinschaftlicher Spitzentangente.
Ganz in gleicher Weise lasst sich zeigen, dass die beiden
Schnittpunkte der Kurve mit der y-Achse Spitzen sind mit der
y-Achse als gemeinschaftlicher Spitzentangente und zwar gilt

dieses Resultat in allen Fillen, wenn b—c bezw. a_ =k V2 ist.

Um die Richtungen der Asymptoten zu ﬁnden, geht
man besser von Gl. XXVIII aus, indem man in ibr die Glieder
hochsten Grades:

ct (x* 4 y?) — (i/a4 x2 4 E)\‘/134 y2)’=0 (2)

setzt. Fiithrt man zur Abkiirzung
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3

Y
\/X2 B (3)

ein, wo %z_lu den Richtungskoeffizienten der Asymptoten be-

deutet, so verwandelt sich (2) in .
3 b2 ’ ] 3b ° h? (a2 4-c?)

By 00 \ap @ - st =0,

’+3(b2—02)\ +b2—c\/ +aQ(b3_cz) |

Diese kubische Gleichung bringen wir vermittelst der Substitution

\/a b?

g:’]‘——

aw—c
auf die reduzierte Form:
. 3bct 2b*c’
iy — YT V *b q 4—“‘55—2"—2 = 0.
a*( %) a?( c?)’

Die Diskriminante dieser kubischen Gleichung wird null und die
Wurzeln sind

2¢? ¢
= — ab?
i1 a,(b?'— 02) \/
c? y .
Np == Ny == (b2 2) Vab?,
a(b> — ¢
sodass
3
22— /P
17 g2 %h? \ a?
3
I

Hieraus ergeben sich die Richtungskoeffizienten der Asymptoten:
‘b / a2 __ bz)s
= i— a \/ (az — 2b? 4)

b .
= ptg = + = 1.
a

Von den 6 Asymptotenrichtungen sind also 4 imaginir (die paar-
weise zusammenfallen) und zwei reell. Aber auch diese sind
nur so lange reell, als a>b{/2. Fir a=b\/2 wird g4, = oo,
die Asymptote ist der y-Achse parallel. Dieser Fall entspricht
in der yz-Ebene der Parabel. Ist a > b\/2 so sind zwei Asymp-
totenrichtungen reell.
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Die Gleichungen der Asymptoten selbst kénnen nicht
nach der allgemeinen Theorie bestimmt werden, weil zwei Rich-
tungen zusammenfallen. Wir gelangen aber zu ithnen, wenn wir
die Asymptoten der Kurve als Normalen in den Wendepunkten
der Aquatorkurve der F, auffassen.

Durch Differentiation der Kurvengleichung

(¢ +yP = 45"+ by
findet man fiir den Richtungskoeffizienten der Normalen:
y x| yt—2b
_ x x4 y% - 2a2
Setzt man hierin die Koordinaten der Wendepunkte nach den
Formeln (V) em, so findet man |

b / ( 2a? — b%\?

m:i—zf\/ \a? — 2b2)
wie 1n (4). Diese Methode fithrt bedeutend rascher zum Zle]e _
aber wir erhalten nur die reellen Asymptoten, so lange uns die
Koordinaten der imaginiren Wendepunkte unbekannt sind.

Die Gleichungen der Normalen in den Wendepunkten oder

der Asymptoten werden jetzt

y—y,=mE—x)
Setzt man ftir x,,y, die Koordinaten der Wendepunkte ein, so
‘erhidlt man 4 reelle Asymptoten, die paarweise parallel sind.
Thre Gleichungen sind:

a(a? — 2b?) Va2 — 2b2. y 4 b(2a% — b2)\/2a7 — b2 x
= -}-abc {/8(2a7 — b?)(a? — 21?)

a(a? — 2b?) Va? — 2b%- y — b(2a2 — b2)\/2a? — b2
=} abc V/3(2a2 — b?)(a?— 2b?).

Ist speziell a=—b\/2, so wird x=0, d h. die Asymptoten fallen

mit der y-Achse zusammen.
Die Abschnitte der Asymptoten auf den Koordinatenachsen

n — -

XXIX.

sind
(x-Achse) €, == SYCRET \/.‘:’»(a2 — 2b?) wo a>b\/2
{y-Achse) B, = ~—~b—— V3 (2a? — b?),

a? — 2hb?



wihrend die Koordinaten der Spitzen dem absoluten Werte nach
(S. 39)

2ac?
(x-Aehse) tty == 247 — 17
2bc?
-Achse 3 == -
(y ) | b= o
sind. Es ist leicht emnzusehen, dass stets
@ <oy 3y > Py

Die Kurve, die zugleich Evolute der Fusspunktskurve
der Leitellipse ist, hat in den drei Fallen a<b\2 a=h\2,
a>b\/2 die in den Figuren 9, 10, 11 gezeichnete Gestalt.

Y

do S . X 0 S x

Fig. 9. Fig. 10.

Fig. 11.
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§ 13. Diskussion der Zentrafldche.

Gestiitzt auf die gemachten Untersuchungen ist es moglich,.
eine Vorstellung von der Zentrafliche zu erhalten. Den ersten
Mantel, der in die Leitellipse ausartet, schliessen wir von einer
weitern Betrachtung aus und beschrinken uns auf den zweiten

Mantel. Da dieser seine Gestalt #ndert, je nachdem aéb\/z—

ist, so miissen wir die drei Fille getrennt behandeln. In allen
Fallen sind die Schnitte durch die z-Achse Kegelschnitte.

1. Fall: a < by2. (Fig. 13). Wir fassen zunichst die
Schnitte mit den Koordinaten-
ebenen ins Auge. A, B (Fig. 12)
seien die parabolischen Punkte

in der xz-Ebene; C, D dieje- - . i
nigen in der yz-Ebene. Denken -
- wir uns einen Punkt auf dem \

einen, rechts von der z-Achse :
liegenden Meridian-Kreis der [ _* \—//

F, in der xz-Ebene wandernd 7 8 v
von S, bis A, so beschreibt )

der Endpunkt des zugehorigen Fig. 12.
zweiten =~ Hauptkrammungs-

™~
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radius den unendlichen Hyperbelbogen S, A, (Fig. 13). Wandert der
Punkt weiter von A nach O, so schreitet der Kriimmungsmittel-
punkt auf der Hyperbel von A, (im Unendlichen) nach O. Dem
Weg von O, bis B entspricht der unendliche Bogen OB, und
-dem letzten Stick BS, der unendliche Ast B,S,. Ganz ent-
sprechendes gilt fiir den zweiten, zu diesem kongruenten Meri-
diankreis der xz-Ebene. Ihm ist die zweite Hyperbel der xz-
Ebene zugeordnet. Durchwandert ein Punkt beide Kreise, was
ohne Sprung moglich ist, so muss auch der zugehorige Krim-
mungsmittelpunkt die beiden Hyperbeln ohne Sprung durchlaufen
koénnen. | : :
Dasselbe lisst sich sagen fiir die yz-Ebene und uberhaupt
“fiir je de durch die z-Achse gelegte Ebene. Die Zentrafliche lisst

kA

Fig. 14.

sich 1hrer Gestalt nach am besten vergleichen mit der Fliche,
die von emer durch den Nullpunkt gehenden Hyperbel, deren
Scheiteltangente die z-Achse ist, bei der Drehung um die z-Achse
beschrieben wird. Nimmt man an dieser Fliche die durch die
aufgestellten Eigenschaften erforderlichen Verinderungen vor,
so gelangt man zu einem ziemlich klaren Bild der Flache. Diese
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scheint demnach aus zwei Minteln zu bestehen; aber die eben:
gemachten kinematischen Betrachtungen zeigen, dass diese im.
Unendlichen in gleicher Weise zusammenhingen, wie die vier
Aste zweier kongruenter Schnitthyperbeln. 2
2. Fall: a=b\/2. (Fig. 14.) Die Fliche hat im wesent--
lichen dieselbe Gestalt wie im 1. Fall, nur ist hier der Schnitt
mit der yz-Ebene eine Parabel. Die Hailfte dieser Koordinaten-
ebene, die die positive y-Achse enthilt, weist daher auch nur:
einen einzigen parabolischen Punkt auf (in §,). |

| 3. Fall: a>by2. (Fig. 15) Um eine Anschauung von
der Fliche zu bekommen, denken wir sie uns durch die yz- Ebene=

Fig. 15.

“entzweigeschnitten. Dann entstehen auf der positiven Seite-
dieser Ebene zwei Mintel. Der Mantel I enthilt die Kurven
G, S, K, und A S, B,, der Mantel II die Kurven H, S, und
J, S,, sowie die beideni Ellipsen S, O und S, O und die Hyperbel
-E,OF,. Beide Mintel schneiden sich im Endlichen nicht. Auf
der negativen Seite der yz-Ebene sei der zu I symmetrische
Mantel mit III, der zu Il symmetrische mit IV bezeichnet. Lings.
der yz-Ebene hidngen II und IV zusammen und im Unendlichen



emerseits I und IV und anderseits 1I und III. Die Fliche ist
also einfach zusammenhingend; denn geht man z. B. von I aus,
so kann man ohne Sprung nach IV, von da nach II und von
II nach III gelangen.

Zum Schlusse suchen wir noch die den Parameterkurven
entsprechenden Kurven der Krimmungsmittelpunkte, 7°, und I,

Fir die Kriimmungslinien u= const (Meridiankreise) wird
I, auf einen Punkt der Leitellipse reduziert. I, ist ein Kegel-
bchmtt dessen Kbene durch die z-Achse geht (S. 33).

Fur die Krummungshmen v =const =k 1st I dle Leit-
“ellipse. I, ist der Schnitt der aus Gl (2) § 10 sich fur v=k
ergebenden Flache

die sich rational schreiben lasst:
o5 5 s c4k2z2
(b x2 4 a?y? — T
mit der F,, also der Schnitt eines Kegels 6. Or,dnung, dessen
Spitze 1n O bhegt, mit der zyklischen Fliche.

3
) = 27¢tk2x2y?z2

III. Kapitel:
Konforme Abbildung.

§ 14. Einfithrung isothermer Parameter.
In XVII ergab sich fir das Linienelement\'der Flache:

4
d52 = (1.2 _I_ v2)2 ( r“ dll2 + ﬁdvg)
Dasselbe lisst sich auch schreiben
4 1
def o= v (L e _dz). 1).
S (ra+vz)2 (rﬁ +v4 V‘, ,.“(.)

Indem nun in der Klammer der Koeffizient von du?eine reine
Funktion von u ist und ebenso der Koeffizient von dv? eine reine
Funktion von v, so ist-es moglich, durch die Substitution

du, = — du



s, M =

eine Einteilung der Fliche in unendlich kleine Quadrate herzu-
stellen. Setzt man die Werte fiir u und v, die sich aus

u, = —-1-3-- du
1 8
| ] . 2
m [Lavmt ®
J V2 v S

ergeben, im Ausdruck (1) fir das Linienelement ein, so wird der

Faktor vor der Klammer eine Funktion von u, und v,, also

d s® = @ (uy, vy) (duf —{—dv?) - 3)
Es handelt sich nun darum, das noch nicht berechnete Integral
fur u, in (2) auszumitteln. Dieses wird, wenn man fir ¢t und r

die Werte aus (XVII) einsetzt:
u __f /a* cos® u -t b* sin u

(a-‘ cos? u -} b? sin? u)?

zf\/ at }-b*tgZu du
(a® -} b? tg?u)® cos?u
Vermittelst der Substitution

L
b tg¢
lasst sich dasselbe auf die Form bringen:

tgu=

== f V(a2 cos2 P —|— b? sin? )3

oder wenn _——:——li = % = e?
a a
gesetzt wird, wo e <1:
1y e 1 S
17 a2 ]V (1 —e?sin? )P
oder in der iblichen Schreibweise:
ne 2 iwfp‘

Nach bekannten Formeln ﬁndet man hieraus durch Emiuhrung
des elliptischen Normalmtegrals II. Art E (e, ¢):

e? sin ¢ cos
1-——-—E(, H— SIn@peosg

Die neuen (thermlschen) Parameter u,, v, driicken sich also fol-
gendermassen durch die alten aus:
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e* sin ¢ cos ¢

u = —~~E(e,[)—{-— Ao
v =t XXX,
v
WO \*-arct a’—2 i)
| L . <b2 tgu

§ 15. Konforme Abbildung der Fldche auf einen ebenen Streifen
und auf die Fliche eines Kreises.

Eine konforme Abbildung einer Fliche auf eine Ebene wird
dadurch erzielt, dass man die thermischen Parameter der Fliche
als rechtwinklige Punktkoordinaten in der Ebene deutet.!) Sind
x, y die rechtwinkligen Koordinaten des Punktes in der Ebene,
der das Bild des Punktes (u, v,) der Fliache ist, so ist also
zu setzen:

g = = ﬁE(e fP)+*qu)cos¢
Ag¢
1 XXXI.
y:‘rl:—;a :
wo wiederum ¢ sich aus
1 v 2 e e
=7 b? tgu

bestimmt. Durch diese Formeln wird die konforme Abbildung
vermittelt. Fir verschiedene Werte von u ergeben sich die
folgenden Werte, in denen E das vollstindige elliptische Norma]

integral II. Art:
E=E (e, ]—5)
2

bedeutet:

) G. Scheffers: Anwendung der Diff. und Int. Rechnung auf I;eo
metrie. Il. Bd. p. 71. -



u tgg 72 X
0° oo 2 _1 E

2 b

90° 0 7T 0

180° — o0 % }_ E
2 b

2700 0 2. 2g
b

360° o0 dn 35
2 | b

Fiar alle folgenden Werte von u nimmt x periodisch zu, und

zwar fir je 90° um -l—E

b

¥

Fir v=0wird y =4 o<
w V- oo wird y=0.

Die Fliche 1st also

konform abgebildet auf einen

zur y-Achse parallelen Strei-

fen von der Breite é E

(Fig. 16). Der Mittelpunkt BE
der Fliche (v =0) wird in
den unendlich fernen Punkt

ZE

£

der y-Achse abgebildet, der

Aequator (v = oo) in die

x-Achse. ,
Der ersten Schar von

Krimmungslinien  (Meri-
diankreise) entsprechen Pa- w00
rallele zur y-Achse, der

zweiten Schar Parallele zur
x-Achse.

u-180°

Fig. 16.

v-270°

u-360°

Es bietet nun keine Schwierigkeiten, diesen Streifen — und
damit also auch die Fliche — konform auf das Innere des Ein-

4
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heitskreises abzubilden. Legen wir der Ebene des Kreises das
Koordinatensystem &, % zu Grunde, so vermittelt die Funktion?)

¢ 1 i)
s il 4% XXXIL
S+in+1
wo E wieder das vollstindige elliptische Normalintegral 1I. Art
bedeutet, die gewiinschte Abbildung. Hieraus wird

.92 2* -y ]
.§H+n2 12 e cosMx (1)
E+1)" 4+ 4E
b
— I J i
K _—e " sin Mx (2)
E+1° 4o 4E

Durch Elimination von x aus (1) und (2) resultiert die Gleichung

b
14 e 2B
§2_25 b7t +n2_1: ’
l—e 2E
die einen Kreis darstellt, dessen Mittelpunkt im Abstand
bn
14e 28’7
p—L1te = ®
1—e 2E°
vom Ursprung auf der -§-Achse liegt und dessen Radius
b
2e iE 7
L b
1—e 2E’

ist. Fur v =const. wird y = const. und damit p und r, const.;

d. h. der zweiten Schar von Krimmungslinien auf der .

Fliche entsprechen Kreise, deren Mittelpunkte auf
der &-Achse liegen.

Durch Elmination von y aus (1) und (2) folgt die Glei-
chung

bz
§2—|—n2—2ncotgﬁx—1=0,

die wiederum einen Kreis darstellt, diesmal vom Radius

Y A. R. Forsyth: Theory of Functions of a complex Variable,
p. 508. ;
W. F. Osgood: Lehrbuch der Funktionentheorie I, p. 402.



Sein Zentrum liegt im Abstand
q = cot, b—” X
*1E

auf der n-Achse.
Hieraus findet man

o 1 2
ry —q =1.

Die Strecken r,, q und 1 bilden also ein rechiwinkliges Dreieck,
r, und q sind variabel, aber die Kathete 1 bleibt fest. Alle
Kreise, welche der obigen Gleichung entsprechen, gehen also
durch den festen Punkt, der im Abstand 1 auf der &-Achse liegt
— und ebenso durch den symmetrischen Punkt der negativen
S-Achse.

Fiar u = const. wird x = const. und somit q und r, const.,
d. h. der ersten Schar von Kriimmungslinien (den Meri-
diankreisen) entspricht im Bilde ein Kreisbiischel durch
zwel feste Punkte, dessen Achse mit der x4-Achse zu-
sammenfallt.

Das gegenseitige Entsprechen von Kurven ergibt sich aus
folgenden zwei Tabellen:

u X q Iz
0 —l E _ )

0 v 1 V2
90° 0 0 1
1 _

180° | BE +1 \/2
700 | %E - -

| _

360° %E —1 V2




v Y p T
—

0 —+ o0 +1 0

oo 0 —_too oo

Die Figur 17 (sie 1st der Anschaulichkeit wegen um 90°
gedreht) stellt die konform abgebildete Fliche dar.

X

Fig. 17.

Literatur.

Encyklopiddie der mathematischen Wissenschaften 1II D 5 (R. v. Lilien-
thal), 1903.

G. Monge: Application de I'Analyse a la Géométrie H* éd., revue par
M. Liouville. 1850.

Ribaucour: Sur les courbes enveloppes de cercles et sur les surfaces
enveloppes de sphéres. Bull. soc. phil. Paris. 5 (1868).

A. Enneper; Die zyklischen Flichen. Z. f. Math. u. Ph. 14 (1869).

— Bemerkungen iiber die Enveloppe einer Kugelfliche. Nachrichten

(xottingen 1873.

L. Lecornu: Sur les surfaces enveloppes de sphéres. J. de 1’école polyt.
53 (1883).



	Ueber eine zyklische Fläche vierter Ordnung
	Untersuchung der Fläche in rechtwinkligen und Polarkoordinaten
	Untersuchung der Fläche in der Parameter-Darstellung
	Literatur


