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0. Schenker.

Das Dreieck und die Kiepert'sche Parabel.

I. Geschichtliches.

In den Mitteilungen der naturforschenden Gesellschaft in
Bern aus dem Jahre 1909 habe ich einen kleinen Aufsatz
veröffentlicht, betitelt: «Über eine dem ebenen Dreieck
eingeschriebene Parabel». Seither habe ich in dem Buche von
W. Fuhrmann: «Synthetische Beweise planimetrischer Sätze»

herumgeblättert (das Werk ist mir von Herrn Prof. Sidler f
empfohlen worden) und durch Vergleichung gefunden, dass die
von mir behandelte Parabel mit der Kiepert'schen identisch ist.
In dem Fuhrmann'schen Werke wird die Kiepert'sche Parabel
auf folgende Weise erzeugt: man errichtet über den Seiten eines
Dreiecks ähnliche gleichschenklige Dreiecke, so bestimmen die
Scheitel derselben ein neues Dreieck, dessen Kollineationsachse
mit dem Grunddreieck Tangente an die Kiepert'sche Parabel ist.

Geheimrat Prof. Kiepert an der technischen Hochschule in
Hannover war so freundlich, mir aus der Geschichte seiner
Parabel folgendes mitzuteilen.

Marienbad in Böhmen, Elbschloss, d. 19. 8. 09,

Sehr geehrter Herr Schenker,
Ihre geil. Karte vom 16. d. M. ist mir nach Marienbad, wo

ich augenblicklich zur Kur weile, nachgeschickt worden. Zur
Beantwortung Ihrer Fragen teile ich Ihnen hiedurch mit, dass
ich allerdings noch am Leben bin und als Professor an der
technischen Hochschule in Hannover meine Lehrtätigkeit ausübe.
Die Kiepert'sche Hyperbel und die Kiepert'sche Parabel sind
nach mir genannt. Es handelt sich dabei um ein paar kleine
Abhandlungen, die ich als Student im Jahre 1869 in den
Nouvelles Annales de Math, von Gérano et Bourget veröffentlicht
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hatte. Ich ging dabei von der Lösung der Aufgabe aus: «Über
den Seiten eines Dreiecks ABC sind drei gleichseitige Dreiecke

BCAi, CABi, ABCi, errichtet; man soll das Dreieck ABC
konstruieren, wenn die Scheitel Ai,Bi,Ci, dieser gleichseitigen
Dreiecke gegeben sind».

Ich hatte mich nachher um diese kleinen Aufsätze nicht
mehr gekümmert, da ich ganz in das Fahrwasser von Weier-
strass gekommen war und mich hauptsächlich mit der
Transformation der elliptischen Funktionen und mit der komplexen
Multiplikation dieser Funktionen beschäftigte. Erst vor wenigen
Jahren erfuhr ich, dass sich in Belgien und in England eine
ziemlich umfangreiche Literatur an die kleinen Aufsätze aus
meiner Studentenzeit angeschlossen hatte, und dass man die
oben genannten Kurven nach mir genannt hat. Ich kann Ihnen
aber augenblicklich keine Angaben über diese Literatur machen,
da ich die Sachen hier nicht zur Hand habe.

Herr Professor Neuberg in Lüttich (Liège) hat sich für
diese Literatur besonders interessiert.

Mit freundlichem Grusse

Prof. Dr. L. Kiepert, Geheimer Regierungsrat.

Herr Prof. Neüberg, dem ich hierauf meine Arbeit
übersandte, schrieb mir folgendes:

Hochgeehrter Herr Kollege,

Meinen besten Dank für Ihre interessante Mitteilung. Der
Satz war mir unbekannt und scheint wirklich neu zu sein. Ich
habe versucht, die Frage anders anzugreifen, und schicke Ihnen
meine Untersuchungen, welche den Gegenstand nicht erschöpfen.
Ich werde noch weiter forschen und, wenn ich Erfolg habe, Ihnen
meine Resultate mitteilen.

Meine Resultate könnten vielleicht in derselben Berner
Zeitschrift erscheinen.

Hochachtungsvoll
J. Neuberg.

Wenn wir die ungeheure Literatur ins Auge fassen, die
sich auf dem Gebiete der Geometrie entwickelt hat, so drängt



sich uns unwillkürlich die Frage auf: Aus welchem Bedürfnis ist
diese Literatur entstanden? Waren es Gründe praktischer oder
mehr geistiger Natur, welche eine derartige Literatur ins Leben
rufen konnten? Wir geben der idealen Weltauffassung den

Vorzug und glauben daher, dass auch in der Geometrie das

geistige Bedürfnis vor allem andern schöpferisch gewesen ist.
So verdankt z. B. die Kurven théorie, in moderner Gestalt von
Jakob Steiner geschaffen, ihre Entstehung dem Problem von der
Verdoppelung des Würfels (Delisches Problem), also einem
religiösen Bedürfnis. Zur Lösung desselben erfand Nikomedes die
Konchoide und Diokles die Cissoide. Die Entdeckung der
Kegelschnitte durch Menächmus, einen Schüler Plato's, hängt mit eben
diesem Problem zusammen. Über den Ursprung des delischen
Problems wissen wir folgendes : Der griechische Volksstamm der
Délier ward vom Unglück heimgesucht, suchte Rat beim Orakel
zu Delphi und erhielt den Auftrag, den würfelförmigen Altar des

Orakels zu verdoppeln. Da dies nicht gelang, müsste sich der

Philosoph Plato ins Mittel legen, der seinen Schülern das

Studium des Problems empfahl. Menächmus suchte die Aufgabe
durch Einschiebung zweier mittleren geometrischen Proportionalen
zu lösen ; ist a3 der Inhalt des gegebenen Würfels, so ist 2 a3 der
des gesuchten und dann folgt aus :

a:x=:x:y y:2a; x2 a y
x4

y2 2 a • x, woraus — 2 a x ; x3 2 a3
a2

3_
x a \J2,

die gesuchte Würfelseite. Zur Lösung waren also hier die

Schnittpunkte zweier Parabeln zu bestimmen. Wir wollen uns
auch daran erinnern, dass Euklides, Archimedes und Apollonius,
die drei grössten Mathematiker des Altertums, an der Erforschung
der Kegelschnitte gearbeitet haben. Die vier Bücher des Euklid
über die Kegelschnitte sind leider verloren gegangen. Archimedes
gab eine Quadratur der Parabel sowie der Ellipse. In dem Buche:
«Über Konoide und Sphäroide» behandelte er die durch
Rotation eines Kegelschnittes um eine seiner Hauptachsen
entstehenden Körper.



Bewundernswürdig ist, was Apollonius (der 250—200 v. Chr.
zu Alexandrien lebte) über die Kegeschnitte in 8 Büchern schrieb.
Hierin ist alles von seinen Vorgängern auf diesem Gebiete
enthalten und mit eigenen Entdeckungen zu einem Ganzen vereinigt.
Er erkannte zuerst, dass alle drei Arten von Kegelschnitten an
einem und demselben Kegel erzeugt werden können, ferner dass
durch den Koordinatenzusammenhang : y2 — x2 -\- a x, ein
Kreis, durch y2 x2 -4- a x eine Hyperbel und durch y2=ax
eine Parabel dargestellt wird. Von Apollonius ist auch die
Aufgabe in Angriff genommen worden einen Kreis zu konstruieren,
der drei gegebene Kreise berührt, die von Jakob Steiner gelöst
worden ist. Der grosse Astronom Edmund Halley, der die
Ansicht vertrat, dass es uns nicht zum Ruhme gereiche, so
vieles nicht besser machen zu können, als es die Alten gemacht
haben, veranstaltete selbst eine lateinische Ausgabe der acht
Bücher über die Kegelschnitte (Antwerpen 1710) und stellte die
Bücher des «grossen Geometers», «De sectione rationis» und
« De sectione spatii » nach einem arabischen Text wiederum her
(Oxford 1706). Auch Robert Simson (nach ihm ist die Simsonsche
Gerade benannt) hat sich um die Erhaltung der Werke des

Apollonius verdient gemacht, indem er dessen Bücher « De locis
planis» wieder herstellte (Edinburgh 1749). Chasles führt in
seiner Geschichte der Geometrie aus, dass nach der Zerstörung
des Museums zu Alexandrien im Jahre 642 n. Chr. durch den
Kalifen Omar I. das Signal zur Barbarei und zu einer lang
andauernden Finsternis auf wissenschaftlichem Gebiete gegeben
wurde. Nach langer Nacht für Kunst und Wissenschaft brach
um die Mitte des 15. Jahrhunderts durch Vermittlung Italiens
die Morgenröte eines neuen Zeitalters an. Purbach, Regiomon-
tanus, de Cusa, Leonardo da Vinci, Albrecht Dürer gelten als
Bahnbrecher in der Zeit der Renaissance.

Die Umwälzungen auf dem Gebiete der Astronomie durch
Kopemicus, Kepler, Newton, verhalfen auch den Kegelschnitten
zu ihrem Recht, sodass sie die populärsten Kurven geworden sind.

Die interessanteste Kurve unter den Kegelschnitten ist die
¦ Parabel, dà sie sowohl die Eigenschaften der Ellipse, wie der
Hyperbel in sich vereinigt. Eine einfache Überlegung zeigt, dass
sich ein genügend kleines Stück einer beliebigen1 Kurve als Stück
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einer Parabel betrachten lässt; vielleicht ist Thomas Simpson
durch eine ähnliche Überlegung zu der nach ihm benannten
Formel gelangt. Hätte Archimedes ahnen können, welche nützliche

Anwendung seine Formel für den Inhalt eines
Parabelsegmentes finden sollte, sicherlich würde er es nicht unterlassen
haben auszurufen: Heureka, Heureka, wie damals, als er den

hydrostatischen Auftrieb dazu verwandte, um eine Königskrone
auf ihre Echtheit zu prüfen.

Auch in der Statistik erweist sich die Parabel als sehr brauchbar.

So hat Herr Prof. Kinkelin in Basel dieselbe benützt, um die
Abhängigkeit des Alters von der Zahl der durchschnittlichen
jährlichen Krankentage darzustellen. Ich verweise auf die von
Herrn Kinkelin abgefasste Schrift : Die gegenseitigen Hilfsgesellschaften

der Schweiz im Jahre 1880. Ich erinnere ferner an die
Formel von Woolhouse, die Ausgleichungszwecken in der
Bevölkerungsstatistik dient.

«Geist und Körper sind zwei Welten und im
Menschenorganismus unbegreiflich vereint» sagt der Arzt, Philosoph und
Dichter Ernst Freiherr v. Feuchtersieben in seinen Aphorismen
und seit Plato haben die Philosophen der Freiheit des menschlichen

Geistes das Wort geredet. Diese Ungebundenheit des
Geistes kam dem Schöpfer der neuen Geometrie Jean Victor
Poncelet zugute. Poncelet hatte den Feldzug Napoleons nach
Russland als Lieutenant mitgemacht, war bei Krasnoï schwer
verwundet und als Gefangener nach Saratoff geführt worden.
Um das Unglück, das sein Vaterland und ihn selbst betroffen
hatte, zu vergessen, schuf er in der Gefangenschaft die Grundlagen

zu seinem berühmten Werk: «Traité des propriétés pro-
jectives». Von Poncelet stammt auch das Prinzip der Kontinuität,
wonach Eigenschaften, die von reellen geometrischen Gebilden
gelten, ohne weiteres auch auf imaginäre Gebilde übertragen
werden können und umgekehrt. Hiezu ein Beispiel:

Ein Kegelschnitt ist durch 5 Punkte bestimmt. Da nun
ein Kreis schon durch 3 Punkte gegeben ist, so gehen alle Kreise
durch dieselben 2 imaginären Punkte. Dieselben lassen sich
näher bestimmen, wenn man sich in einem rechtwinkligen
Koordinatensystem auf den Fall beschränkt, wo sich ein Kreis auf
den Koordinatenanfang reduziert, somit die Gleichung hat:
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x2 X" y2 0, oder (x -f- i y (x — i y) 0

Die beiden Richtungen -+- i und — i bestimmen die beiden
imaginären Kreispunkte. Dieselben liegen also auf der unendlich
fernen Geraden. Zwei Gerade, gegeben durch die Gleichungen
x -f- a y 0 und x — a y 0, werden aber von x 0 und y — 0
harmonisch geteilt, woraus folgt:

Zwei zueinander senkrechte Gerade teilen die Verbindungslinie

der imaginären Kreispunkte harmonisch.

II. Aus der Theorie der Winkelgegenpunkte.
(Fig. 1.)

Zieht man vom Punkte P' nach den Ecken des Dreiecks
ABC Strahlen, welche die Gegenseiten in den Punkten A', B', C
treffen mögen, und spiegelt man diese Strahlen an den innern
Winkelhalbierenden des Dreiecks ABC, so treffen sich diese

Spiegelbilder in demselben Punkte P", dem Winkelgegenpunkt
von P\

Beweis: Die gespiegelten Strahlen sollen die Gegenseiten
bezw. in den Punkten A", B" und C" treffen, so hat man bei
Verwendung trimetrischer Koordinaten (s. Kp. IV, AI. 3)

x/ C'B • sin B x2' A'C- sin C x3' B'A sin A
X2' CA • sin A A'B- sin B xi' B' C sin C

Xt" C"B. sinB x2" A"C •sinC x3" B" A sinA
X2" C'A- sin A x3" A"B • sinB xi" B" C sinC

den C B • sin B ist die Länge der Senkrechten aus C auf B C

und C A • sin A die Länge der Senkrechten von C auf AC etc.
Aus ähnlichen Dreiecken folgt sofort das übrige. Multipliziert
man die ersten drei Relationen miteinander, so erhält man den
Satz von Ceva, die drei letzten multipliziert ergeben:

C"B.A"C.B"A
C"A-A"B.B"C

Nach der Umkehrung des Satzes von Ceva schneiden sich daher

AA", BB" und C C" in demselben Punkte P".
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Zufolge der Konstruktion des Winkelgegenpunktes P" gelten
folgende Gleichungen:

xV_xX X^x^, xa' xi"
x2'_ xi"' x3' x2"' x/-x3",,,111also : Xi : x2 : x3 — : :

Xl x2 x3
d. h. die Koordinaten eines Punktes sind den entsprechenden
reciproken Koordinaten des Winkelgegenpunktes proportional.

Die Koordinaten von P' sollen in B C, CA und A B bezw.
die Fusspunkte 31', 35' und 6', die von P" bezw. die Fusspunkte
21", 23", 6" bestimmen, so hat man:

31'C xi' 31" C Xl"
; ; somit

33" C x2" 93'C x2'
J_

31' C ¦ 31" C xi/ xi 'J_ _ X
#
xi/ x

S3' C • 53" C
~~

x2'
'
x2" _ x2'

'

l_ ~
x2'

d. h. die 4 Punkte 31', 3t", 33', 93", liegen auf einem Kreis,
dasselbe gilt von den Punkten 33', 33", 6', S", sowie den Punkten
6', 6", 21', 21". Alle drei Kreise sind aber konzentrisch und darum
fallen sie zusammen :

Die Fusspunkte der Senkrechten von 2 Winkelgegenpunkten
auf die Seiten des Grunddreiecks liegen auf demselben Kreis.

III. Die Gleichung des dem Grunddreieck
umschriebenen Kreises.

Die Gleichung irgend eines dem Grunddreieck umschriebenen

Kegelschnitts ist von der Form:

ai • x2 • x3 + B- • x3 • xi -\- a3 • Xi • x2 0

Wie sind ai, a2 und a3 zu bestimmen damit die Gleichung
einen Kreis darstellt? Um diese Frage zu beantworten, führen
wir für xi, X2 und x3 rechtwinklige Koordinaten ein, indem
wir setzen :

Für xi x • cos «i + y • sin a^ — p1?

» X2~= x • cos a2 -f- y • sin «2 — p.„
» x3 x • cos as -\- y • sin «3 — p3,
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x und y sind hiebei die rechtwinkligen Koordinaten des Punktes

Xi, X2, xs. Die a sind die Winkel, welche die Normalen vom
Nullpunkt des rechtwinkligen Koordinatensystems auf die bezw.
Seiten des Grunddreiecks (A B C) mit der positiven Richtung der
x Achse eben dieses Koordinatensystems bilden. Die p sind die

Längen dieser Normalen. Als Bedingungen für den Kreis
bekommt man daher, indem man die Koeffizienten von x2 und y2
einander gleich und denjenigen von xy Null setzt:

ai • cos (or2 + a~) -\- a2 • cos («3 -\- ax -f- a3 • cos (ai -f- a~) 0

ai • sin (a2 -f o:3) -\- a2 • sin (a3 -f- ai) -f- a3 • sin («1 +¦ a2) 0

woraus ai a3 • sin (or3 — ao) : sin (or2 — ai)
a2 a3 • sin («i — a3) : sin (a2 — «1)

oder ai a3 • sin A : sin C

a2 &3 • sin B : sin C

Die Gleichung des dem Dreieck ABC umschriebenen
Kreises (Umkreis) lautet deshalb:

x2 • x3 • sin A -+- x3 • Xi • sin B -\- xi • x2 • sin C 0

Hieraus leitet man sofort den Satz ab:
Die Fusspunkte der Senkrechten aus einem Punkte des

Umkreises auf die Seiten des Grunddreiecks liegen auf einer
Geraden (Simson'sche Gerade genannt).

IV. Über eine dem ebenen Dreieck eingeschriebene Parabel.
(Hiezu Fig. 2)

Die Seiten eines Dreiecks (ABC) umhüllen mit der
Zentralen (A'B'C) der Apollonischen Kreise eine Parabel,

der die folgende Eigenschaft zukommt: Bestimmt
man von irgend einer ihrer Tangenten die Schnittpunkte

(21, 93 und 6) mit den resp. Dreiecksseiten (BC,
CA, AB), so treffen sich die Kreise mit diesen
Schnittpunkten zu Zentren, durch die resp. Dreiecksecken
(A, B, C) in zwei Punkten O und 0'.

Beweis: M sei der Mittelpunkt des Umkreises (siehe

Figur), A', B' und C seien die Zentren der Apollonischen Kreise,
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so stehen bekanntlich A A', BB' und CC bezw. senkrecht zu
AM, BM und CM. Die Seite AB bestimmt mit A'B' auf den
Seiten CA und CB zwei ähnliche Punktreihen (S3... und 21...).
Und die Verbindungsgeraden ihrer entsprechenden Punkte (S3.-,
und 21...) umhüllen unsere Parabel. Zwei Paare entsprechender
Punkte sind A, A' und B, B' und sei 21, 93 ein beliebiges drittes
Paar, so besteht die Relation:

BA' B21

AB'_A93 U
Wenn wir in trimetrischen Koordinaten rechnen und das

Dreieck ABC zum Grunddreieck wählen (also einen beliebigen
Punkt P durch seine Abstände xi, x2 und x3 von den bezw.
Dreiecksseiten bestimmen), so müssen wir zur Bestimmung von
21 und 93 zunächst die Strecken berechnen: B21, C2Ï, A93 und
C93. Setzt man 53B' p, so ist_A93 AB' — p, 33C sinB
— A33. (Der Kreis um ABC hat hiebei den Durchmesser 1),

B2l ?^.A93 nach (1) und C2t B2l — sinA.
AB' w

Man findet aber leicht für AB' und A' B:

AB>= sin2C BA, sin2C

sin(C —A) sin(C —B)
somit wird:

m sin2 C — p • sin (C — A)~ sin(C—A)
~

mp sin B • sin (C — A) — sin2 C -f- p • sin (C — A)
~~

sin (C - A)

cos2A — cos2C .,„ ,~sm2 C -f- p • sm (C — A)

~ sin (C - A)

_
sin2 C — sin2 A — sin2 C -j- p • sin (C — A)

sin (C - A)

SBC [p-sin(C — A) — sin2 A] : sin(C—A)
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„ n, sin (C — A) sin2 C — p • sin (C — A)
B 31 • oder

sin (C - B) sin (C — A)

Rgr
sin2 C — p • sin (C — A)~ sin (C — B)

~ ar sin2 C — p • sin (C — A)
C 31 - — sin A

sin (C - B)

_ sin2 C — p • sin (C — A) — sin A • sin (C — B)
~~

sin (C — B)

_
sin2 C — p • sin (C - A) -j- sin2 B — sin2 C

sin (C — B)
C31 [sin2 B — p • sin (C — A)] : sin (C - B).

Die Strecken BS und AS ergeben sich nach dem Satz des
Menelaus : x

A93- f BS A - CSI

oder

C93- I AS ¦ BS!
1, woraus

BS_CJ3 B 3t _ p • sin (C — A) — sin2 A
AS ~~A33'C2I ~~

sin(C —A)
sin (C — A)

sin2 C — p sin (C — A)
sin2 C — p • sin (C — A) sin (C — B)

sin (C — B)
'

sin2 B — p • sin (C — A)
[p • sin (C — A) — sin2 A] : [sin2 B — p • sin (C — A)]

Also ist B S k [p • sin (C — A) — sin2 A]

AS k [sin2 B - p • sin (C - A)] :

da aber B S -f- A S sin C ist, so wird :

k sin C : [sin2 B — sin2 A]
sin C : (sin B -f- sin A) (sin B — sin A)

„ B + A B-A B-fA B —A
sin L> : 4 sin cos — • cos —! • sin

2 2 2 2
; sin C : sin C • sin (B — A) 1 : sin (B — A) also wird :

BS= [p • sin (C — A) — sin2 A] : sin (B — A)
A S [sin2 B - p • sin (C — A)] : sin (B — A)
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Kommt man überein, dass für einen Punkt im Innern des

Dreiecks alle drei Koordinaten positiv seien, so sind nach dem
vorigen die Koordinaten von 3t, 93 und S:

m «J
C C
œ aj

^-N ^-^<
I

<

CO

1

O cq Ü <r OH .g
'53

1

o
,g
'33

i

o
1 ,g

'53

CL
1 .g

'53

O Ü
(M CM

.S C
'33 !»

O <J
.g Q
'53 te

<T
.s i

i
ce

1 m o <T
H

1

<
1

i

o
O g

'33
1

PQ
1 Oh

o _g 1 g
^^-^ '53 1 '53
a CQ

'53 CM

g
O. '53

Ü CQ

.g _g
'33 '53

<î <i
<M Cl

.3 .s
'53 ^¦^ '33

^—^
1 <H i «Jî

H O
<

1

1

Ü 1
ÇQ

O .g O _c
**—•* 'ce '33

.3 c
02 03

Q. a.

sS s is

Nunmehr kann man die Gleichungen der Kreise aus 31,-

93, und S durch A bezw. B bezw. C aufstellen, wenn man berück-
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sichtigt, dass der Abstand zweier Punkte P' und P" mit den
Koordinaten xi', x2', x.3'und xi", x2", x3" gegeben ist durch:
FF772=(x1'—xi")2sin2A+(x2'-x2")2.sin2B + (x3'-x3")2sin2C

: 2 sin A • sin B • sin C

(siehe die Mitteilungen der naturforschenden Gesellschaft in
Bern 1906),
und dass die Koordinaten der Ecken A, B und C sind;

Xl x2 x3

A
B
C

sin B • sin C

0

0

0

sin C • sin A

0

0

0

sin A • sin B

Gleichung des Kreises aus 31:

TP • sisin (C — A) — sin2 B „~|2-•sinCIsin2A-(sinB-sinC)2 + sin2B
L sin(C —B)

- r fsin2 C - p • sin (C - A) |24- sm 2 C • sm B
L sin(C—B) J

• o a 2 i • OD[ p • sin (C — A) - sin2 B nl2
— sin 2 A • xi -f- sm 2 B x2 — ^— ' — • sm C |

-f sin 2 C x3[¦

sin (C — B)
sin2C —p-sin(C —A) „~l2

• sm B
sin (C — B)

Gleichung des Kreises aus 93:

T (2)

¦ o a TP •sm (C — A) — sin2A n~]2 OD „.2sin 2 A *- i '- • sm C -f- sin 2 B • (sin A ¦ sm C)
L sin (C — A) J

on Tsin2 C — p • sin (C — A) .I2
-j- sin 2 C • I -X • sin A

sin 2 A [,
p sin (C — A)

(3)

p • sin (C — A) — sin2 A „I2 D „
¦ - • sm C I -f- sm 2 B • x22

sin (C — A)
sin2 C — p • sin (C — A) I4- sin 2 CI X3 — r v~ — • sin A

L sin (C — A)

Die gemeinsame Sehne dieser beiden Kreise hat deshalb
•(2) — (3) 0 zur Gleichung oder :
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sin 2 A • sin2 B • sin2 C — sin 2 B • sin2 A • sin2 C

p • sin (C — A) — sin2 A
sin 2 A • 2 xi sin (C — A)

sin C

• ola o p-sin(C —A) —sin2B _,sin 2 B • 2 X2 • • sin C
sin (C — B)

4- sin 2 C • 2 x3 [sin2 C — p • sin (C — A)

f sin A • sin (C — B) — sin B • sin (C — A)

l sin (C - A) • sin (C — B)

oder da sin A • (C — B) — sin B • sin (C — A)

_ cos 2 B — cos 2 C cos 2 C — cos 2 A
_. _ _

cos 2 B — cos 2 A : 2 sin C • sin (A — B) ist
und:

sin 2 A sin2 B sin2 C — sin 2 B • sin2 A sin2 C

— 2 sin A • sin B • sin C [cos A sin B • sin C — cos B • sin A • sin C)
— 2 sin A • sin B • sin C • sin C sin (B — A),

so erhält man daher für (2) — (3):
2 .• sin A • sin B • sin C • sin C • sui (B — A)

• o a o p • sin (C — A) — sin2 A n— sin 2 A • 2 xi .—!—— sin C
sin (C — A)

p • sin (C — A) — sin2 B „1 ' • sin C— sin 2 B • 2 x2
sin (C — B)

-f- sin 2 C ¦ 2s3 [sin2 C - p • sin (C — A)l-. sin C • sin (A — B)
|sin(C —A)-sin(C —B)

Dividiert man noch beiderseits durch 2 • sin C • sin (A — B),
so gewinnt man die Gleichung :

„ „ • « a p • sin (C — A) — sin2 A
— sin A • sin B • sin C sin 2 A • xx

sin (A — B)-sin(C — A)
i od p • sin (C — A) — sin2 B

4- sin 2 B • x2 (4)
sin(B —C).sin(A—B)

i • r> r, p • sin (C — A) — sin2 C
A- sin 2 C • x3. —

r'-i sin(C—A).sin(B—C)
[Zur Abkürzung kann doch p • sin (C — A) P gesetzt

werden]. ' ; '
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welche Gleichung durch Vorrücken der Buchstaben und Indices
unverändert bleibt, womit der vorangestellte Satz bewiesen ist.

Es erübrigt noch die Gleichung unserer Parabel
aufzustellen. Sie ist die Enveloppe der Geraden 3193, deren Gleichung
sein möge:

ai xi 4^ a2 x2 -\- a3 x3 0 (5)

Die Koordinaten von 3t und 93 müssen diese Gleichung
erfüllen und dies gibt uns zur Bestimmung von ai, a2 und a3

oder vielmehr ihrer Verhältnisse die beiden Gleichungen:

a2 (P — sin2 B) • sin C + a3 (sin2 C — P) • sin B 0

ai (P — sin2 A) sin C -\- a3 (sin2 C — P) • sin A 0, so dass

a2 a3 (P — sin2 C) • sin B : (P - sin2 B) • sin C

su a3 (P — sin2 C) • sin A : (P — sin2 A) • sin C

Substituiert man diese Werte von ai und a2 in Gleichung
(5), so bleibt:

(P — sin2 C) • (P - sin2 B) • sin A Xi + (P - sin2 A) (P — sin2 C) x2

4- (P — sin2 B) • (P - sin2 A) x3 0, oder

r)2r • a • r> i • ni ot,r(sin2B+sin2C)BÌnAxiP I xi • sm A -f x2 • sm B -\- x3 • sin C —2 P ^

(sin2 C -\- sin2 A) • sin B x2 (sin2 A -j- sin2 B) sin C x3~| ._
1 ^ g J [ '

-\- sin2 B • sin2 C • sin A • Xi -\- sin2 C • sin2 A • sin B • x2

-\- sin2 A • sin2 B • sin C • x3 0.

Dies ist eine quadratische Gleichung in P, d. h. durch jeden
Punkt (xi, x2, x3) der Ebene gehen 2 Tangenten an die gesuchte
Kurve; für einen Punkt der Kurve selbst fallen diese zusammen,
und die Bedingung hiefür ist:

(sin2 B -\- sin2 C) • sin A Xi + (sin2 C + sin2 A) • sin B x2

+ (sin2 A + sin2 B) • sin C • xji

4 (xi • sin A 4- x2 • sin B + x3 • sin C). (6b)

• (sin2 B • sin2 C ¦ sin A • Xi -\- sin2 C • sin2 A • sin B x2

-\- sin2 A • sin2 • B • sin C • Xs)
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welches die Gleichung unserer Parabel vorstellt. Dieselbe kann
auch in der Form geschrieben werden:

X • sin2 A (sin2 B — sin2 C)2 4- x22 • sin2 B (sin2 C — sin2 A)2

+ x32 • sin2 C (sin2 A — sin2 B)2 — 2 xi • x2 • sin A • sin B (sin2 B

— sin2 C) • (sin2 C — sin2 A)

— 2 x2 ¦• x3 • sin B • sin C (sin2 C — sin2 A) • (sin2 A — sin2 B) (6)

— 2 x3 • Xi sin C sin A (sin2 A — sin2 B) • (sin2 B — sin2 C) 0

Um die Koordinaten des Brennpunktes ermitteln zu können,
erinnern wir uns an die folgende Brennpunktseigenschaft eines

Kegelschnitts :

Die Verbindungsgeraden irgend eines Punktes mit den
beiden Brennpunkten bilden mit den Tangenten aus diesem
Punkt bezw. gleiche Winkel.

Hieraus folgt für einen dem Grunddreieck (ABC)
eingeschriebenen Kegelschnitt, dass die Koordinaten des einen
Brennpunktes proportional den reziproken Werten desjenigen des

andern sind.

Im Falle der Parabel ist der eine Brennpunkt (F ~J) der
Berührungspunkt mit der unendlich fernen Geraden, der die

Gleichung zukommt : xi • sin A 4- x2 • sin B + x3 • sin C 0.

Dessen Koordinaten x1FOO, X2FPO und x3F^ ergeben sich daher
aus (6b), und

x1F^, • sin A 4/- x2F(^j • sin B -\- x3FOO • sin C 0

wie folgt:

x2 [sin B • (sin2 C + sin2 A) — sin B (sin2 B + sin2 C)l

4- x3 [sin C • (sin2 A -\- sin2 B) — sin C (sin2 B + sin2 C)l 0

sin2 C — sin2 A sin C sin (C — A)
x2 — x3 - • • x3

sin2 A — sin2 B sin B sin (A — B)
und ähnlich:

sin2 B — sin2 C sin C sin (B — C)
Xi — x2 • • • x3

sin2 A — sin2 B sin A sin A — B)
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Somit besteht für x1F x2F(v und x3Ff>o die Relation:

xifc^ : x*f^ : x3Fc^ — sin (B — c): sin (C — A) : sin (A — B)

und somit für den im Endlichen gelegenen Brennpunkt F:

1 1_ 1
xif • ^f • xsf —

sin (B—Ç
•

sin (C - A)
'

sin (A — B)

Dieser Brennpunkt F liegt auf dem dem Grunddreieck ABC
umschriebenen Kreise, weil dieser das Winkelgegenpunktsgebilde
der unendlich fernen Geraden in Bezug auf das Dreieck ABC
ist. In der Tat ersetzt man in der Gleichung Xi sin A -\- x2 • sin B
4-x3-sinC 0 der unendlich fernen Geraden xi, x2, x3 resp.

durch —, —, —, so resultiert die Gleichung x2 x3 • sin A -f-
Xl X2 X3

X3 xi • sin B -\- xi x2 • sin C 0 des dem Dreieck ABC umschriebenen

Kreises.
Die Direktrix bestimmt sich als die Polare des

Brennpunktes F. Die Gleichung der Polaren des durch

an xi f~ a22 ' x2 "r --3 x3 2 au - a22 • xL • x2 2 a22 • a^ • x.^ • xs

— 2 agg • au • x3 • x1 0 gegebenen Kegelschnitts bezogen auf den

Punkt F lautet:

ail Xl ' X1F "T" a22 ' X2 ' X2F ~T aS8 ' X3 ' X3F ail ' a22 (Xl ' X2F I" X2 Xip)

a22 ' a33 (X2 ' X3F 1 X3 ' X2f) aS3 ' ail (X3 ' X1F i Xl ' X3f) " ' ' '

Bemerkung: Dass die Polare eines Kegelschnitts diese

Gleichungsform hat, kann man leicht bestätigen, indem man die

Gleichung der Kurve durch die Gleichungen zweier Tangenten
und der Berührungssehne ausdrückt.

Nun ist an sin A • (sin2 B — sin2 C)

a22 sin B • (sin2 C — sin2 A)

a33 sin C • (sin2 A — sin2 B)

xif proportional sin (C — A) • sin (A — B)

x2f > sin (A — B) • sin (B — C)

x3f » sin (B — C) • sin (C — A)
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Also geht Gleichung (7) über in:

sin2 A (sin2 B - sin2 C)2 • sin (C — A) • sin (A — B) • x,
4- sin2 B (sin2 C — sin2 A)2 • sin (A — B) • sin (B — C) • x2

4- sin2 C (sin2 A — sin2 B)2 • sin (B — C) • sin (C — A) • x,

— sin A • sin B (sin2 B — sin2 C) • (sin2 C — sin2 A)

[xi • sin (A — B) • sin (B — C) + x2 • sin (C — A) • sin (A - B)l

— sin B • sin C (sin2 C — sin2 A) (sin2 A — sin2 B)
[x2 - sin (B — C) • sin (C — A) + x3 sin (A — B) ¦ sin (ß — C)]

— sin C • sin A • (sin2 A — sin2 B) (sin2 B — sin2 C)

[x3 • sin (C - A) • sin (A — B) 4- xx • sin (B — C) • sin (C —A)] 0

oder indem man beide Seiten durch:

sin A — B) • sin (B — C) • sin (C — A) dividiert :

sin4 A • sin (B — C) • xi+sin4B • sin (C — A)x2+sin4C • sin (A - B)x3

— sin2 A • sin2 B [xi • sin (B — C) + x2 • sin (C — A)]
— sin2 B • sin2 C [x2 • sin (C — A) + x3 ¦ sin (A — B)]
— sin2 C • sin2 A [xs • sin (A — B) + xt • sin (B — C)] 0,

xi sin2 A sin (B — C) [sin2 A — sin2 B — sin2 C]
4- X2 • sin2 B • sin (C — A) [sin2 B — sin2 C — sin2 A]
4- x3 • sin2 C • sin (A - B) [sin2 C — sin2 A — sin2 B] 0

Nun ist aber:

oder

(8)

'--[sin2 A - sin2 B — sin2 C — | 1 — cos 2 A

+ cos 2 B — 1 -+- cos 2 C1

— 1 -j- cos 2 B + cos 2 C — cos 2 A

1

— 2 cos A • cos (B — C) - 2 cos2 A

4
cos A • sin B • sin C

2
und ähnlich

sin2 B
sm"

sin2 C — sin2 A — 2 • cos B • sin C • sin A
sin2 A — sin2 B — 2 • cos C • sin A • sin B
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Führt man diese Werte in (8) ein und dividiert man sodann
beide Seiten der so erhaltenen Gleichung durch — sin A • sin B ¦ sin C,

so bleibt:

xi • sin A • cos A • sin (B — C) -f- x2 • sin B • cos B • sin (C — A)

4- x3 ¦ sin C • cos C • sin (A — B) 0 (8a)

für die Gleichung der Direktrix. Dieselbe geht aber durch den

Höhenpunkt des Dreiecks ABC (mit den Koordinaten cos B •

cos C, cos C ¦ cos A, cos A • cos B) hindurch, weil (8a) durch
dieselben identisch erfüllt wird, wie es auch sein soll, denn die
Leitlinien aller dem Dreieck ABC eingeschriebenen Parabeln
gehen durch dessen Höhenpunkt, siehe Geiser (1867) pag. 122.

V. Folgerungen aus dem vorigen Kapitel.

Die Gleichungen der Kreise aus 31, 93 und S lassen sich
leicht in homogener Form darstellen.

Wegen der Relation:

xi • sin A -\- x2 • sin B -{- x3 • sin C sin A • sin B • sin C

kann man die Gleichung des Kreises aus 31 in der Form schreiben :

• -Kt- r> • ^2/xi • sinA + X2 • sinB + x3 • sinC\2
sm 2 A (sm B ¦ sin -C) :

'
V sm A • sin B • sin C

— sin 2 A • x/ 4- sin 2 B • x22 4- sin 2 C • x32

n _ „ p • sin (C — Ai — sin2 B
— 2 • sin 2 B -

sin (C — B)
Xi sin A 4~ x2 • sin B 4~ x3 • sin C

sin C • x2

— 2 • sin 2 C

sin A • sin B • sin C

sin2 C — p • sin (C — A)

sin (C — B)

t-, Xi • sin A 4- x2 • sin B 4- x3 • sin C
• sm B • x3 — ^

sin A • sin B • sin C oder

2 • cos A • sin (C — B) [xi • sin A 4~ x2 • sin B 4" x3 • sin C]2 —

[sin 2 A • x/ 4- sin 2 B • x22 4- sin 2 C • x^ sin A • (C — B)
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4- [2 • sin 2 B • sin B • x2 — 2 sin 2 C • sin C - x3]

[xi • sin A 4- x2 ¦ sin B 4- x3 sin C]

— [4 • cos B • p • sin (C — A) x2 — 4 cos C • p • sin (C — A) ¦ x3]

[xi • sin A 4- x2 • sin B 4~ x3 ¦ sin C]

oder wenn p • sin (C — A) P gesetzt wird :

xt2 [2 • cos A • sin (C —B) • sin2 A - 2 • cos A • sin (C — B) • sin2 A]

+ x22 [2 • cos A • sin (C —B) • sin2 B — sin 2 B • sin A • sin (C — B)
— 2 sin 2 B • sin2 B 4- 4 • cos B • sin B • P]

4- x32 [2 • cos A • sin(C —'B)sin2 C - sin2C • sin A- sin (C —B)
4- 2 • sin 2 C • sin2 C —4 • cos C • sin C • P]

4- xi • xo [4 • cos A • sin (C — B) • sin A ¦ sin B
— 2 • sin 2 B • sin A • sin B + 4 cos B • sin A • P]

4- x2 • x3 [4 • cos A • sin (C — B) • sin B • sin C

— 2 • sin 2 B • sin B • sin C 4" 2 ¦ sin 2 C • sin • B sin C

4- 4 ¦ cos B • sin C • P - 4 • cos C • sin B • P]

4- x3 xi [4 • cos A • sin(C — B) • sin C • sin A
4- 2 • sin 2 C • sin C • sin A — 4 • cos C • sin A P] 0

Koeffizient von x^: 0

Koeffizient von x32 : (sin 2 B — sin 2 C) sin2 B

COS 2 B — COS 2 C _ ¦ -n ¦ - r,— sin 2 B • 2 • sin 2 B sin2 B

-f 4 • cos B • sin B P

rcos2C—cos2B 1-COS2B 1
sm 2 B 1 (1 — cos 2 B)

— sin 2 C • sin2 B f 4 • cos B • sin B P

sin 2 B cos 2 C —J _ gin 2 C • sin2 B 4- 4 • cos B • sin B • P
2

— sin 2 B • sin2 C - sin 2 C • sin2 B 4- 4 • cos B • sin B • P

— 2 • sin A • sin B • sin C + 4 • cos B • sin B • P
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Koeffizient von x32:

(sin 2 B — sin 2 C) sin2 C — sin 2 C cos 2 B — cos 2 C

sin2C

4- 2 • sin 2 C • sin2 C — 4 • cos C • sin C • P

1 —cos2C cos2C—cos2B+ -] 4- sin 2 B sin2 C

— 4 • cos 0 • sin C • P

sin 2 C • sin2 B 4- sin 2 B • sin2 C — 4 • cos C • sin C • P

2 sin A • sin B • sin C — 4 • cos C • sin C • P

Koeffizient von xi x2:

2 • sin A sin B (sin 2 B — sin 2 C — sin 2 Bj 4- 4 • cos B • sin A • P

— 4 • sin A • sin B • sin C • cos C 4" 4 • cos B • sin A • P

Koeffizient von x2 x3:

2 • sin B • sin C (sin 2 B — sin2 C — sin 2 B + sin 2 C)

4- 4 P • sin (C — B)

4-P-sin(C —B)

Koeffizient von x3 xi:
2 sin C • sin A (sin 2 B — sin 2 C 4- sin 2 C) — 4 cos C • sin A • P

4 • sin A • sin B • sin C • cos B — 4 • cos C • sin A • P

Setzt man P : 2 • sin A • sin B • sin C P', so lautet die

Gleichung des Kreises aus 3t:

— x22 (1 — sin2B.P')4- x32(l —sin2C-P')

4- 2 xi za (— cos C 4- cos B • sin A • P') 4- 2 x2 x3 • sin (C — B) P'

4- 2 x3 xi • (cos B — cos C • sin A • P') 0

Für den Fall von P' 0, reduziert sich die Gleichung auf :

— X22 4~ x32 — 2 xi • x2 • cos C 4~ 2 ¦ x3 • Xi • cos B 0, oder

— x2 (x2 4- 2 xi cos C) 4- x3 (x3 4- 2 xi • cos B) 0
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Spiegelt man den Punkt A an der Seite BC und heisst
das Bild A', so ist x2 4- 2 xi • cos C 0 die Gleichung von CA',
analog ist x3 4- 2xi • cos B 0 die Gleichung von BA'. Der
Kreis geht also durch den Schnittpunkt von C A' mit A B, ferner
durch den Schnittpunkt von AC mit AB, durch den Schnittpunkt
von A C mit B A' und durch den Schnittpunkt von C A' und
BA' hindurch.

Die Gleichung

— x2 (x2 4" 2 xi • cos C) -j- x3 (x3 4- 2 xi • cos B) 0

muss in der Form geschrieben werden können:

X2 • x3 • sin A 4- x3 • Xi • sin B 4~ xi • x2 • sin C

4~ (a2 x2 — a3 x3) (xi • sin A 4~ x2 • sin B -\- x3 • sin C) 0,

denn die repräsentierende Kurve geht durch A, und ist ein
Kreis, da sie durch die beiden imaginären Kreispunkte hindurch
geht. Gibt man den beiden letzten Gleichungen die Form:

2 x3 • xi • cos B — 2 xi • x2 • cos C — x22 -j- x32 0

x2 ¦ x3 (sin A -\- a2 sin C -f- a3 • sin B) 4~ x3 • xi (sin B 4- a3 • sin A)
4- Xi • x2 (sin C 4- a2 • sin A) 4~ x22 • a2 • sin B 4- Xg2 • a-* sin C 0

so bestimmen sich a2 und a3 aus den beiden Gleichungen:

— 1 1 2cosB — 2-cosC
und

a2 • sin B a3 • sin C sin B 4 a3 • sin A sin C 4- a2 • sin A

woraus folgt:

a2 ; 2-sinA-f-2a2-sinA-cosB4-2a3-sinA'CosC=0
sinB

oder
a2 • sin B + aa • sin C 0

a2 • cos B 4- a3 • cos C 4- 1 0

2cosB
— sinB

- cosC
sin C

a3 sin B : sin (C — B)

a2 — sin C : sin (C — B)

Diese Werte müssen die Gleichung : sin A -\- a- • sin C

4- a3 • sin B ™= 0 erfüllen, da der Koeffizient von X2 • xs Null ist ;

in der Tat ist sin A • sin (C — B) — sin2 C 4- sin2 B 0.
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Die Gleichungen der Apollonischen Kreise sind deshalb:

sin (B — C) ^ x2 • x3 • sin A 4- (x2 sin C — x3 sin • B) 2"xi • sin A 0

sin (C — A) S x2 • x3 • sin A 4- (x3 sin A — xi • sin C) 2xi ¦ sin A 0

sin (A — B) Ix2 • x3 • sin A 4- (xi • sin B — x2 • sin A) ^xi • sin A 4" 0

Die Durchschnittssehnen dieser Kreise mit dem Umkreis
haben deshalb die Gleichungen:

x2 • sin C — x3 • sin B 0, x3 • sin A — xi • sin C 0,

xi • sin B — x2 • sin A — 0

und schneiden sich darum im Winkelgegenpunkt des

Schwerpunktes (Punkt v. Lemoine).
Für ein beliebiges P' lauten die entprechenden Gleichungen :

U • sin (B - C) 4- [x2 (1 — sin 2 B • P') ¦ sin C

— X3 (1 — sin 2 C • P') sin B] L 0

U • sin (C — A) 4- [x3 (1 — sin 2 C • P') sin A
— xi (1 — sin 2 A • P') sin C] • L 0

U • sin (A - B) 4> [xi (1 — sin 2 A • P') sin B
— x2 (1 — sin 2 B • P') • sin A] • L 0

wo zur Abkürzung:

x2 x3 • sin A • 4~ x3 • xi • sin B -f- Xi • x2 • sin C U und

xi • sin A 4" x2 • sin B -\~ x3 • sin C L

gesetzt worden ist.
Die Durchschittssehnen dieser Kreise mit dem Umkreis

haben zu Gleichungen :

x2 (1 — sin 2 B • P') • sin C — x3 (1 — sin 2 C • P') • sin B =0
x3 (1 — sin 2 C • P') - sin A — xi (1 — sin 2 A • P') • sin C 0

xi (1 — sin 2 A • P') • sin B — x2 (1 — sin 2 B • P') • sin A 0

und schneiden sich also in demselben Punkt $, dessen Ort man
durch Elimination von P' aus zwei der Gleichungen erhält:

x2 • sin C — x3 • sin B 2 P' sin B • sin C (x2 • cos B — x3 • cos C)

xs • sin A - xi • sin C 2 • P' • sin C • sin A (x3 • cos C — Xi • cos A)

(x2 • sin C — x8 • sin B) (x3 • cos C — xt • cos A) • sin A
(x3 • sin A — Xi • sin C) (x2 • cos B — x3 • cos C) sin B
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oder : x2 • x3 (sin 2 C • sin A — sin 2 B • sin A)

4- x3 • xt (sin 2 A • sin B — sin 2 C • sin B)
4- xi • x2 (sin 2 B • sin C — sin 2 A • sin C) 0 oder

x2 • x3 • sin 2 A • sin (B — C) 4" x3 • xi • sin 2 B • sin (C — A)

f xi • x2 • sin 2 C • sin (A - B) 0

Der Ort von 5p ist also ein dem Grunddreieck umschriebener

Kegelschnitt, der ausserdem durch seinen Umkreismittelpunkt

und seinen Höhenpunkt hindurchgeht.
Die Kreise aus 31, 93 und S sollen sich in G und £)' schneiden ;

so kann man den Ort dieser Punkte bestimmen, indem man aus
den zugehörigen Gleichungen P' eliminiert:

„, U • sin (B — C) 4- L (x2 • sin C — x3 • sin B) „. „,P ; —¦ -— : rar 31 und
— (x3 • cos C — x2 • cos B) • 2 • sin B • sin C • L

p, U • sin (C — A) 4- L (xs • sin A — xi • sin C) ~,

— (xi cos A — x3 • cos C) • 2 sin C • sin A • L

woraus : —- U [(x! cos A — x3 • cos C) sin A • sin (B — C)

— (x3 • cos C — xo • cos B) • sin B • sin (C — A)]

— L [(xi • cos A — x3 • cos C) (x2 • sin C — x3 • sin B) • sin A
— (x3 • sin A — X! sin C) • (x3 • cos C — x2 ¦ cos B) • sin B] — 0

nun ist : (xi • cos A — x3 • cos C) sin A • sin (B — C)

— (x3 • cos C — x2 • cos B) - sin B • sin (C — A)
X! • sin A • cos A • sin (B — C) - \- x2 sin B • cos B • sin (C — A)

„ /cos 2 B — cos 2 C cos 2 C - cos 2 A\
4- x3 • cos C \ oderr \ 2 2 7

— xi sin A cos A • sin (B — C) 4- x2 • sin B • cos B • sin (C — À)
-j- x3 • sin C • cos C • sin (A — B)

Somit lautet die Gleichung des Ortes für C und £)':

— U [sin 2 A • sin (B - C) • Xi 4- sin 2 B • sin (C - A) x2

4- sin 2 C • sin (A — B) x3]

— L [sin A (sin 2 B — sin 2 C) x2 x3 4~ sin B (sin 2 C — sin 2 A) x3 • xi
4- sin C (sin 2 A — sin 2 B) xi x2 — 0 oder

U 3sin 2 A • sin (B — C) • X! — L ^sin 2 A • sin (B — C) x2 x3 0

also eine Gleichung vom dritten Grad.
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Die repräsentierende Kurve, welche zu dieser Gleichung
gehört, geht durch die Ecken des Grunddreiecks, durch die
imaginären Kreispunkte, durch den Höhenpunkt und den Umkreis-
mittelpunkt, ausserdem aber durch die Schnittpunkte der Geraden
2xi • sin 2 A • sin (B — C) 0 mit dem Kegelschnitt 2 x2 • x3 • sin 2 A
• sin (B — C) 0, sowie durch den vierten Schnittpunkt des
Umkreises mit eben diesem Kegelschnitt, endlich auch durch die

Schnittpunkte der Geraden 2 sin 2 A • sin (B — C) • Xi 0 mit
der unendlich fernen Geraden, d. h. die Gerade, die durch die
Gleichung gegeben wird, .2 sin 2 A • sin (B — C) xi =0, d. h. die
Euler'sche Gerade ist Asymptote an unsere Kurve dritter Ordnung.

Herr Prof. Neuberg in Lüttich hat, angeregt durch meine

Arbeit, den Ort von D und O' zuerst bestimmt; er fand eine

Gleichung vierten Grades, aus der sich aber ein linearer Faktor
absondern lässt, so dass unsere Resultate übereinstimmen.

Aus den Formeln für die Koordinaten von 2t, 33 und S folgt:
Trifft ein Kreis aus M die Geraden, M A, M B und

MC bezw. in den Punkten Ai, Bi, Ci, so schneiden seine
Tangenten in Ai, Bi und Ci die entsprechenden Gegenseiten

des Grunddreiecks in Punkten (21,93 undS) einer
Geraden, welche Tangente an die Parabel von Kiepert ist.

Die Kreise aus 21, 93 und S durch A, bezw. B, bezw. C teilen MA,

resp. M B und M C im gleichen Verhältnis ; allgemein gilt der Satz :

Die Kreise aus 21, 33 und 6, welche MA, MB und MC
im gleichen Verhältnis teilen, bestimmen eineKreisschar.

Beweis:
Die Punkte Ai, Bi und Ci teilen M A, bezw. MB und MC

in gleichem Verhältnis, sodass M At M B: M C1 — ;
Li

dann

sind die Koordinaten von Bi und Ci:

1-k
• cos B

cos B + k • cos A—C)

1-k cosB

für A,

» B-

n. Cj

cosA 4k • cos (C—B)
2

1 k
cos A

2
1 k

cos A

1 —k
2

1 —k

cosC

cosC

cos C + k • cos (B—A)
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Von der Gleichung des Kreises aus 2t durch Ai brauchen
wir bloss die linke Seite zu notieren; die rechte Seite ist uns
schon bekannt.

Diese linke Seite lautet:

"P - sin2 B
sm 2A[COsA+k2COS<C^B)j4-sin2B[

sin(C —B)

•sinC cosB
2 J

onrsin2C— P • b 1 —k pl24-sm2C sinB • cos C ==• • •

Lsin(C — B) 2 J

Analog hat man für den Kreis aus 93:

fsin2A— P 1 —k I2
sin 2 A — sino cos A

[sin (A— C) 2 J

or,fcosB + k.cos(A —C)!24- sin 2 B 1

L 2 J

00[P — sin2C 1—k rY4- sin 2 C sin A cos C • • •

[sin (A — C) 2 J

Subtrahiert man die beiden Gleichungen, so bekommt man
links, unter Weglassung der Ausdrücke, die beiderseits vom
Gleichheitszeichen vorkommen :

sin 2 A j |-cosA4-kcos(C-B)j2_ ^1-ky cos2 A

sin2 A - P „]4 (1 — k) • cos A • sin C1
sin (A — C)

/1 - k\2 P — sin2 B _ n „4- sin 2 B —z— • cos2 B — t—^—— • sm C (1— k) • cos B
l \ 2 / sm (C — B)

'1 - k\2 P — sin2 B
— 1 • cos2 B — -T-jp,—^./ sm (C — B)

["cos B 4- k • cos (A - C)'
L 2

+sin2C [(P - sin2 C) (1 - k) • cos C
SmB

1

S1° A )\
|V M \sin(C —B) sin(A —C)/J

Die Glieder mit k2 fallen weg; denn

_ fcos2(C — B) — cos2AI ODrcos2B— cos2(A — C)"|
in 2 A ———— |4-sm2B \=0L - J L * J

sin

und es bleibt
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sin 2 a{ — k • cos A [cos (B 4- C) — cos (C — B)]

„ sin2 A — P n ]
4- (1 — k) cos A • sin C 1

sin (A — C)

4- sin 2 B jk cos B [cos (C 4- A) - cos (A - C)]

sin2 B — P i

_|_ n ti • cos B • sin C 1^[1 Xin(C-B) |

4- sin 2 C j(P - sin2 C) (1 — k)

c rcos 2 C — cos 2 A 4- cos 2 B — cos 2 CI |
[ 2-sin(C-B)-sin(A —C) J)

I sin2 A P
sin 2A \-\- k • cos A ¦ 2 • sin B • sin C 4- (1—k); • cosA- sin Cl

I sin (A — C)

4-sin2B(—k-cosB-2-sinA-sinCf(l—k)S1"2B~ P-cosB-sinC
[ sin (C — B) i

4- sin 2C (P - sin2 C) (1 — k) • cos C ¦ sin C sin (A —B)
sin (B - C) • sin (C — A)

4 • k • sin A • sin B • sin C (cos2 A — cos2 B)
p sin2 A

4- (1 — k) • cos A • sin C • sin 2 A1

sin(C-A)
4- (1 — k)P —

Sin" B
• cos B • sin C • sin 2 B

sin(B —C)

4-(l —k)
(P — sm2 C)

cosC-sinC-sin2C-sin(A-B)'

sin(B — C)-sin(C-A)
— 4 k • sin A • sin B • sin C • sin C • sin (A — B)

+ (1 — k)-sin(A — B)-sinC^1 P — sin2 A

sin (C - A) • sin (A — B)
cos A • sin 2 A

Nun wissen wir bereits, dass die rechte Seite der
zugehörigen Gleichung durch sin C • sin (A — B) teilbar ist, und dass
der Rest durch Vorrücken der Buchstaben und Indices unge-
ändert bleibt. Dasselbe gilt aber, wie man sieht, von der linken
Seite, womit der Satz bewiesen ist.
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VI. Eine Beziehung zwischen der Euler'schen Geraden und
der Parabel von Kiepert.

Zunächst will ich bemerken, dass die Parabel von Kiepert
auch Parabel von Neuberg genannt wird; Lemoine gebraucht
diese Bezeichnung ohne Zweifel auf Grund der Arbeit Neubergs :

«Mémoire sur le Tétraèdre» in den Mémoires de l'Académie
Royale de Belgique XXXVII. Von dieser Arbeit erhielt ich
Kenntnis, nachdem der erste Teil zu der meinigen bereits
abgeschlossen war. Ich kann nicht umhin, an dieser Stelle dem
hervorragenden Förderer der Dreiecksgeometrie, Herrn Prof. Neuberg
in Lüttich, für seine vielen Anregungen meinen besten Dank
auszusprechen.

Die hervorgehobene Beziehung lässt sich in folgendem
Satz aussprechen:

Trifft irgend eine Tangente der Kiepert'schen Parabel die
Seiten des Grunddreiecks in den Punkten 3t, 93 und S und zieht
man um dieselben als Mittelpunkte die Kreise durch irgend einen
festen Punkt D der Euler'schen Geraden, so ist der Ort ihres
zweiten Schnittpunktes £)' eine zyklische Kurve dritten Grades
mit einer zur Euler'schen Geraden parallelen Asymptote. Der
feste Punkt O ist Doppelpunkt dieser Kurve; seine Tangenten
stehen zueinander senkrecht und berühren ausserdem die Parabel
von Kiepert.

Bei der Darlegung dieses Satzes werden wir Gelegenheit
haben, von derjenigen Methode Gebrauch zn machen, die schon
Descartes zur Lösung des Tangentenproblems angewandt hat.

Nun wollen wir im Geiste Descartes daran gehen, den an
die Spitze gestellten Satz zu beweisen. Descartes ist ja der
eigentliche Begründer der analytischen Methode, von der wir
Gebrauch machen.

Wir benützen die Figur 2; nach dem zugehörigen Texte
ist 93 C p • sin (C — A) — sin2 A : sin (C — A). In Bezug auf ein

rechtwinkliges Koordinatensystem mit dem Anfangspunkt in
B und mit B C zur 4~ x Achse (die 4~ y Achse soll darüber liegen)
sind daher die Koordinaten von 33, wenn noch p • sin • (C — A) P
gesetzt wird:
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x8 BC-93C-cosC
sin A • sin (C — A) 4- (sin2 A — P) cos C : sin (C - A)
sin2 A • cos C — P • cos C 4- sin A • sin C • cos A

— sin A • cos C • sin A : sin (C — A)
— P • cos C 4- sin A • sin C • cos A : sin (C — A) und

y8 (P — sin2 A) • sin C : sin (C — A)

Ähnlich bekommt man für 31:

x« — P 4- sin2 C : sin (C - B); ya 0

Die Gleichungen der Kreise aus 31 und 33 durch einen
festen Punkt O mit den Koordinaten a und b lauten daher*

r _sin2c-Pi2 r _rin-c-py b2 bezw
[ sin(C-B)] ' L sin(B-B)J

[—PcosC4-sinA- sin C-cos AI2 [ P — sin2 A ~~1

x '¦

¦ 4- y sin C
sin(C-A) J L sin(C-A) J

— PcosC4-sinAsinC-cosAl2 l\ P — sin2A ~~|
a ¦ — 4- b sinC I

sin(C —A) J X sin(C —A) J

oder (x2 4- y2 — a2 — b2) sin (C — B)
— 2 x (sin2 C — P) — 2 a tsin2 C - P) bezw.

(x2 4- y2 — a2 - b2) sin (C — A)
— 2 x (— P • cos C + sin A • sin C • cos A)

— 2y (P — sin2A) • sin C — 2 a (— P • cos C 4- sin A • sin C • cos A)
— 2 b (P — sin2 A) • sin C oder

(x2 4- y2 — a2 — b2) sin (0 — B)
— 2 sin2 C (x — a) — 2 P (x — a) und

(x2 + y2 — a2 - b2) sin (C — A)

4- 2 sin A • sin C [— (x — a) cos A-|-(y — b) sin A]
2 P [sin C • (y - b) — cos C • (x — äjj"

Verschiebt man das Koordinatensystem parallel sich selbst
in den Punkt © (a, b), so lauten die beiden letzten Gleichungen
in Bezug auf das neue Koordinatensystem (man hat nämlich x
•durch x 4~ a und y durch y 4~ b zu ersetzen) :

2

2
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(Xa 4- y2 4- 2 a x+2 b y) sin (C - B) — 2 sin2 C • x — 2 P • x
(x2 4- y2 f 2 a x 4- 2 b y) sin (C — A)

4- 2 sin A • sin C (— x cos A 4- y sin A) 2 P • (sin C • y — cos C x)>

Aus diesen beiden Gleichungen bekommt man durch
Elimination von P die Gleichung:

(x2 4- y2 4- 2 a x 4- 2 b y) [— 2 x • sin (C — A)
— 2 • sin (C — B) (sin C y — cos C x)] — 4 • sin A

•sinC(— x-cos A 4-y • sin A) x 4-4 sin2 C • x(sinC-y— cosCx)=0
und dies ist die Gleichung für den Ort der Schnittpunkte der
Kreise aus 21 und 93 durch £) (a, b). Da in dieser Gleichung
die Glieder mit der 0. und 1. Potenz der Veränderlichen fehlen,
so ist der Punkt £> (a, b) Doppelpunkt der Kurve, ferner ist ihre
reelle Asymptote parallel zur Geraden:

— 2x[sin(C-A) — sin(C—B)-cosC] — 2y-sinC-sin(C — B)=0
welche paralleli ist zur Geraden von Euler, wie später die Gleichung
der Euler'schen Geraden zeigt. Die Tangenten* im Doppelpunkt
haben zur Gleichung:

x2 [— 4 a sin (C — A) 4- 4 a • sin (C — B) • cos C 4- 4 sin A • sin C

• cos A — 4 sin2 C • cos C]

4- y2 [- 4 b sin (C — B) • sin C] 4- 4 x y [— b • sin (C — A)
4- b • sin (C — B) • cos C — sin2 A • sin C 4- sin3 C

— a • sin (C — B) • sin C] 0 oder

'r-\2- bsin(C —B).sinC +^[-b.sin(C —A)

4- b • sin (C — B) • cos C — a • sin (C — B) • sin C

— sin2 A • sin C 4" sin3 C]

— a • sin (C — A) 4-a • sin (C — B) • cos C 4- sin A • sin C • cos A
— sin2 C • cos C 0

aus dieser Gleichung ergeben sich 2 Werte für -:
x

^u.xi;ist (l).(l\ -i,X/i \X/2 \X/i \X/2
so stehen die beiden Tangenten zu einander senkrecht, oder
nach obiger Gleichung:
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a [sin (C — A) — sin (C — B) • cos C] 4- b • sin (C — B) • sin C

— sin A • sin C • cos A 4- sin2 C • cos C 0

Dies ist die Gleichung der Euler'schen Geraden, denn setzt
sin A_ cos A.

man für a und b die Koordinaten und des Umkreis-
2 2

mittelpunktes in diese Gleichung ein, so kommt :

sin A [sin (C — A) — sin (C — B) • cos C] 4- cos A • sin (C — B) • sin C

— 2 sin A • sin C • cos A 4~ 2 • sin2 C • cos C — 0

oder wegen
— 2 • sin A • sin C • cos A 4~ 2 sin2 C • cos C sin C (sin 2 C — sin 2 A)

— 2 • sin C • cos B • sin (C — A) oder

sin (C — B) • sin (C — A) + sin (B — C) • sin (C — A) 0

Die Koordinaten des Umkreismittelpunktes erfüllen also die

Gleichung der erhaltenen Geraden, somit liegt er auch auf dieser
Geraden. Setzt man aber die Koordinaten des Höhenpunktes:
sin C • cos B und cos B ¦ cos C für a und b in diese Gleichung
ein, so kommt:

sin C • cos B [sin (C — A) — sin (C — B) • cos C] -\- cos B • cos C

• sin (C — B) ¦ sin C — sin A • sin C • cos A 4- sin2 C • cos C — 0
oder
sin C {cos B [sin (C — A) — sin (C — B) • cos C] 4- cos B • cos C

• sin (C — B) — sin A • cos A 4- sin C • cos C}

• n I d • ,n Ai sin 2 A sin 2 C]
— sin C {cos B • sin (C — A) -

2 2

: sin C | cos B • sin (C — A) 4- cos (C 4- A) • sin (C — A)

sin C j cos B • sin (C — A) — cos B • sin (C — A) J 0;

die Koordinaten des Höhenpunktes erfüllen also die Gleichung
der erhaltenen Geraden, somit liegt er auch auf derselben. Die
Gerade geht also durch den Umkreismittelpunkt und den

Höhenpunkt und ist daher die Euler'sche Gerade. Damit ist ein
Teil des Seite 28 gegebenen Satzes bewiesen; um auch den Rest
zu beweisen, schreiben wir zunächst den Richtungskoeffizienten
für die Tangenten im Doppelpunkt hin:
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y\ _ — b ¦ sin (C — A) 4- b • sin (C — B) • cos C

x/i.2~ 2b ¦ sin (C — B)-sinC
: —a-sin(C — B) • sin C 4-sin3 C — sin2 A-sinC
l

2b- sin(C--B). sin C

±v/[--b •sin^--A)4-b-sin(C—B) • cosC-¦a-sin(C--B). sinC

4- sinsC—sin2 A •sinC]2 — 4bsin!(0--B) • sin C [a • sin (C -A)
— a • sin(C--B). cos C--sinA • ;sinC • cos A 4" sin2C -cosC]

2 b • sin (C — B) • sin C

Die Gleichung dieser Doppelpunktstangenten in Bezug auf
das feste Koordinatensystem durch B lautet daher:

y —b_—b ¦ sin(C— A)-f b • sin (C — B) ¦ cos C

x — a~ 2b-sin(C —B)-sinC
— a • sin (C—B) • sin C 4- sin3 C—sin2 A • sin C

2 b • sin (C - B) • sin C

+ Vl— b-sin(C — A)4-b-sin(C — B) • cosC-a-sin(C -B)sinC
4- sin3C—sin2 A • sin C]2— 4b • sin(C—B) ¦ sinC[a• sin(C — A)

4-

— a • sin (C — B) • cos C — sin A • sin C • cos A -\- sin2 C ¦ cos C]
~~

2bsin(C — B)sinC (1)

Der Doppelpunkt D wird zur Spitze, wenn der Radikand
verschwindet. O liegt dann auf der Kiepert'schen Parabel. Denn
man überzeugt sich ohne weiteres, dass der Null gesetzte Radikand
eine dem Dreieck ABC eingeschriebene Parabel vorstellt, und
dass die Koordinaten ihrer Berührungspunkte auf den Dreiecksseiten

mit denen übereinstimmen, welche die Gleichung der
Kiepert'schen Parabel in trimetrischen Koordinaten liefert.

Liegt nun der Punkt £5 (a, b) auf der Geraden von Euler,
so gilt:

a sin C (sin A • cos A — sin C • cos C) — b • sin (C — B) • sin C :

sin (C — A) — sin (C — B) • cos C
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Die Gleichung (1) schreiben wir in der Form :

{(y — b) 2 b • sin (C — B) • sin C 4- (x — a) [b • sin (C — A)

— b • sin (C — B) • cos C 4- a • sin (C — B) • sin C — sin3 C

4- sin2 A • sin C]}2

(x — a)2 {[- b ¦ sin (C — A) + b • sin (C - B) • cos C — a
• sin (C — B) • sin C 4- sin3 C - sin2 A • sin C]2 — 4b • sin (C — B)

• sin C [a • sin (C — A) — a • sin (C — B) ¦ cos C — sin A • sin C

• cos A 4~ sin2 C • cos C]}

und drücken hier a durch b aus, so kommt mit Wegschaffunç
der Nenner:

[(y—b) • 2 b • sin (C — B) • sin C [sin (C — A) — sin(C — B) ¦ cos C]2

+ {x[sin(C —A) —sin(C—B)-cosC]
— sin C (sin A cos A — sin C • cos C)

4- b • sin (C - B) • sin C} • (b [sin (C — A) - sin (C — B) • cos C]2

— b • sin2 (C - B) sin2 C — sin C (sin2 C — sin2 A) [sin (C — A)

- sin (C — B) cos C ] 4- sin (C — B) • sin C [sin C (sin A
• cos A — sin C • cos C)]}1

{ x [sin (C - A) — sin (C — B) • cos C]

— sin C (sin A ¦ cos A— sin C • cos C) 4~ b • sin (C — B) sin C}2

• {[— b • sin(C - A) 4- b • sin (C —B) • cos C — a • sin (C — B)
• sin C 4- sin3 C — sin2 A • sin C]2 -4b- sin (C — B)

¦ sin C [a • sin (C — A) — a • sin (C —B) • cos C

— sin A • sin C • cos A 4- sin2 C • cos C]}

[x [sin (C — A) — sin (C — B) • cos C] — sin C (sin A • cos A

— sin C • cos C) 4- b • sin (C — B) • sin C}2

• [{b [sin (C — A) — sin (C — B) • cos C]2 — b • sin2 (C — B) • sin2 C

— sin C (sin2 C — sin2 A) [sin (C - A) — sin (C - B) • cos CJ

4- sin (C — B) • sin C ¦ sin C (sin A • cos A — sin C • cos C)}2

— 4 b • sin (C — B) ¦ sin C [sin C (sin A • cos A — sin C • cos C)

— b • sin (C — B) • sin C — sin C (sin A • cos A — sin C • cos C]
• [sin (C - A) — sin (C — B) • cos C]2 ]
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oder nach Auflösung der Klammern und Reduktion :

(y _ b)2 [sin (C — A) — sin (C —B) cos C]2 • 4 b2 sin2 (C - B) • sin2 C

4- 4 (y - b) • b • sin (C — B) • sin C • { x [sin (C — A)

— sin (C — B) • cos C] — sin C (sin A • cös A — sin C • cos C)

4- b • sin (C — B) • sin C} • (b • [sin (C - A) — sin (C — B) • cos C]?

— b • sin2 (C — B) • sin2 C — sin C (sin2 C - sin2 A) [sin (C - A)

— sin (C - B) cos C] 4- sin (C — B)
• sin C • sin C (sin A • cos A — sin C cos C)}

=-= 4b2 • sin2 (C — B) • sin2C{x[sin(C-A) —sin(C —B)-cosCl
— sin C ¦ (sin A cos A — sin C cos C) 4" b • sin (C — B) sin C }J

oder wenn man beide Seiten mit 4 b • sin (C — B) • sin C dividiert :

(y — b)2 [sin (C — A) — sin (C — B) • cos C]2 • b sin (C- B) • sin C

4- (y — b) • {x [sin (C — A) - sin (C — B) cos C]

— sin C (sin A • cos A — sin C • cos C) -|- b • sin (C — B) • sin C}

• {b [sin (C — A) — sin (C — B) cos C]2 — b sin2 (C - B) (2)

¦ sin2 C — sin C (sin2 C — sin2 A) [sin (C — A)

— sin (C — B) cos C] + sin (C — B)
¦ sin2 C (sin A • cos A — sin C • cos C)}

b • sin (C — B) sin C {x [sin (C - A) — sin (C - B) cos C]

— sin C (sin A • cos A — sin C • cos C) 4~ b • sin (C — B) • sin C J2

Für die Glieder mit b3 hat man links:
b3 [sin (C — A) - sin (C - B) • cos C]2 sin (C - B) • sin C

— b3 [sin (C — A) — sin (C — B) • cos C]2 • sin (C - B) • sin C

4- b3 sin3 (C — B) • sin3 C b3 • sin3 (C - B) • sin3 C

und rechts hat man ebenfalls b3 • sin3 (C — B) • sin3 C.

Die Glieder mit der 3. Potenz von b fallen also weg und
es bleibt bloss eine quadratische Gleichung in b.

D. h. Bewegt sich der Punkt D (a, b) auf der Geraden von
Euler, so umhüllen die Tangenten durch «0 an die durch ihn
gehende zyklische Kurve einen Kegelschnitt und zwar muss es
eine Parabel sein, deren Direktrix die Euler'sche Gerade ist,
denn zwei zueinander senkrechte Tangenten schneiden sich in ihr.

3
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Setzt man in der Gleichung (2) b 0, so kommt :

y {x [sin (C — A) — sin (C — B) ¦ cos C]

— sin C (sin A • cos A — sin C • cos C)}
• {sin C (sin2 C — sin2 A) [sin (C — A) — sin (C - B) • cos C]

4- sin (C — B) sin2 C (sin A • cos A — sin C cos C)} 0

sin C (sin A cos A— sin C cos C) „,also sind y 0 und x Tangenten3
sin(C-A)—sin(C-B)cosC

an die Parabel. Daraus schliesst man, dass auch die Seiten CA
und A B Parabeltangenten sind, denn die Wahl von B C zur
x Achse war ja eine willkürliche. Unsere Parabel ist also mit
der Kiepert'schen identisch und damit ist auch der zweite Teil
des Satzes auf Seite 27 bewiesen.

Für die Tangentenrichtungen im Doppelpunkte £5 (a, b) der

zyklischen Kurve hat man:

©£\ -= — b-sin(C — A) + b-sin(C — B) • cos C
XA,2
— a • sin (C — B) ¦ sin C 4- sin3 C — sin2 A • sin C

±\/l-- b sin (C--A) + b •sin(C--B) cos C-— a

5in(C--B) •sinC4- sin3C — sin2 A -sinlC]2

-4bsin(C — B) sin C [a • sin (C •-A)-— a

sin (C — B) • cos C — sin A • sin C • cos A

4- sin2 C ¦ cos C] : 2 b • sin (C - B) • sin C

Die Tangente c des Winkels dieser beiden Tangenten
i5lsleich

©r@X@/@2
V7 [ — b sin (C — A) 4- b • sin (C — B) • cos C

— a • sin (C — B) • sin C ~f- sin3 C — sin2 A

•sinC]2—4b-sin(C—B)sinC[a-sin(C—A)

— a • sin (C — B) • cos C — sin A sin C • cos A

4- sin2 C • cos CJ • 4 b • sin2 (C - B) • sin2 C
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4 b2 sin2 (C - B) • sin2 C4-4b • sin (C- B) • sin C [a • sin (C — A)

— a • sin (C — B) cos C — sin A • sin C cos A 4~ sin2 C ¦ cos C]

oder wenn man kürzt und den reduzierten Ausdruck ==c setzt,
den Bruch wegschafft und beide Seiten der erhaltenen Gleichung
ins Quadrat erhebt:

{b [- sin (C - A) 4- sin (C - B) • cos C] — a • sin (C — B) • sin C

4- sin3 C — sin2 A • sin C Y

- 4 b ¦ sin (C — B) sin C [a • sin (C— A) — a ¦ sin (C — B), cos C

— sin A sin C • cos A 4~ sin2 C • cos C]

c2 {b • sin (C - B) • sin C + a [sin (C — A) — sin (C - B)
• cos C] — sin A • sin C • cos A 4- sin2 C • cos C }2

für c 4^i kommt als Spezialfall dieser Kegelschnittschar:

b2 {[— sin (C — A) 4- sin (C - B) • cos C]2 + sin2 (C - B) • sin2 C}

4- a2 j sin2 (C — B) • sin2 C + [- sin (C - A) 4- sin (C- B) ¦ cos C]2j

— 2a{sin (C — B) • sin2 C (sin2 C — sin2 A) - [sin (C — A)

— sin (C — B) cos C] • sin C [— sin A cos A 4~ sin C cos C)}
—2 b {[sin (C — A) — sin (C - B) cos C] • sin C (sin2 C — sin2 A)

4- sin (C — B) sin2 C [- sin A cos A 4- sin C • cos C]}
+sin2 C(sin2C—sin2A)24-sin2C[—sin A- cosA4-sinC-cosC]2=0

oder wenn man beide Seiten der Gleichung durch

[— sin (C — A) 4- sin (C — B) • cos C]2 -\- sin2 (C — B) sin2 C

dividiert

b - [sin (C — A) — sin (C — B) • cos C) • sin C (sin2 C — sin2 A) )2

4- sin (C — B) • sin2 C (sin C • cos C — sin A • cos A)

[— sin (C — A) -f- sin (C — B) • cos C]24- sin2(C - B) ¦ sin2C

a - sin (C - B) • sin2 C (— sin2 A 4~ sin2 C) — [sin (C — A)

— sin (C — B) • cos C] • sin C (sin C • cos C — sin A • côs A
[— sin(C—A)4-sin(C—B) •cosC]24-sin2(C—B) • sin2 C

+

=0; denn die Summe der Quadrate der 2. Glieder in den
Klammern ist ja;
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(sin2 C— sin2 A)sin2C {[— sin (C — A) 4- sin (C - B) cos C]2

4-sin2(C — B)- sin2C}

4- (sin C • cos C - sin A cos A)2 • sin2 C {sin2 (C — B) • sin2 C

4- [sin (C — A) — sin (C — B) • cos Ci2}

: [— sin (C - A) 4- sin (C — B) ¦ cos C]2 4- sin2 (C — B) ¦ sin2 C

(sin2 C — sin2 A) • sin2 C 4~ sin2 C (sin C • cos C — sin A • cos A)2

wie es sein soll.
Die erhaltene Kurvengleichung ist die eines Kreises vom

Radius 0, d. h. die eines Punktes. Dieser Punkt ist nichts anderes
als der Brennpunkt (F) der Kiepert'schen Parabel. Dies kann

folgendermassen eingesehen werden. Setzt man im Ausdrucke

für - die Quadratwurzel 0, so erhält man die Gleichung einer
x

Parabel und zwar der Kiepert'schen, denn aus ihrer Form folgt,
dass die x-Achse und die dazu Senkrechte

sin C (sin A • cos A — sin C • cos C)

sin (C — A) - sin(C — B) • cosC

Tangenten dieser Parabel sind. Darum sind alle Dreieckseiten
Tangenten, denn eine jede kann zur x-Achse gewählt werden.
Nun macht auch dieEuler'sche Gerade auf der x-Achse den Abschnitt

sin C (sin A • cos A — sin C • cos C)

sin(C —A) —sin(C —B) • cos C

darum ist sie die Direktrix der Parabel, welche mit der Kiepert'schen
3 Tangenten und die Direktrix gemein hat, also mit ihr identisch
ist. (Wir haben hiebei als bekannt vorausgesetzt, dass die Direktrix
einer jeden dem Dreieck ABC eingeschriebenen Parabel durch
den Höhenpunkt dieses Dreiecks geht).

Die Berührungssehne zu den Tangenten b 0 und

sin C [sin A • cos A — sin C • cos C]
a ~~

sin (C— A) — sin (C — B) • cos C

hat nach der Parabelgleichung die Gleichung:

— b • [sin (C - A) - sin (C — B) • cos C] — a • sin (C - B) • sin C

4~ sin3 C — sin2 A • sin C 0
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Man weiss, dass sie durch den Brennpunkt geht, ihre Gleichung
wird durch die Koordinaten des erhaltenen Grenzkreises erfüllt,
denn durch Substitution derselben bekommt man:

- [sin (C — A) — sin (C — B) • cos C]2 sin C • (sin2 C - sin2 A)
— sin (C — B) ¦ sin2 C (sin C • cos C — sin A - cos A)] sin (C — A)

- sin (C — B) cos C]

- sin2 (C — B) • sin3 C (sin2 C - sin2 A

4- sin (C — B) sin2 C (sin C cos C — sin A cos A) [sin (C — A)

— sin (C — B) cos C]

4- sin C (sin2 C — sin2 A) {[sin (C — A) — sin (C — B) • cos C]2

4- sin2 (C — B) • sin2 C}

wo der gemeinsame Nenner weggelassen ist oder:

— sin C • (sin2 C — sin2 A) {[sin (C — A) — sin (C — B) cos Cl2

4- sin2 C • sin2 (C — B)} 4,- sin C (sin2 C — sin2 A) {[sin (C - A)
— sin (C - B) cos C]2 4- sin2 (C — B) • sin2 C} 0

Dieser Grenzkreis liegt, aus Gründen der Symmetrie, auf
der Parabelachse und da er noch auf einer davon verschiedenen
Geraden durch den Brennpunkt liegt, so muss er mit dem Brennpunkt

zusammenfallen w. z. z. w. Wir haben also den Satz:
Es gibt einen einzigen Punkt Q, dessen Tangenten durch die

imaginären Kreispunkte gehen und zwar ist es der Brennpunkt
der Kiepert'schen Parabel, welcher auch der allen zyklischen
Kurven gemeinsame Brennpunkt ist.

VII. Bestimmung der Asymptoten der behandelten zyklischen
Kurve (allgemein).

Die allgemeine Gleichung derselben lautet: (s. pag. 29)

(x2 4- y2 + 2 a x + 2 b y) [— 2 x • sin (C — A)
— 2 sin (C — B) (sin C • y — cos C x)]

— 4 • sin A • sin C (— x • cos A 4~ y • sin A) x
4- 4 sin2 C • x (sin C y — cos C x) 0

Die Gleichung der reellen Asymptote hat die Form:

2 x [cos C • sin (C — B) —sin (C — A)]
— 2 y • sin (C — B) • sin C 4- A3 0
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denn bekanntlich erhält man die Gleichungen der Asymptoten,
indem man in der Kurvengleichung die Summe der Glieder
höchsten Grades Null setzt und dann diese Gleichung in die
linearen Faktoren zerlegt; dann unterscheiden sich die
Gleichungen der Asymptoten von diesen Faktoren nur durch eine

Konstante. Für unsern Fall ist die eine Konstante fa, welche

zu bestimmen ist; zunächst hat man:

2 x [cos C • sin (C — B) - sin (C — A)J

— 2 y • sin (C - ß) sin C — k
Darum wird die Kurvengleichung, wenn man noch y durch

x und Â3 ausdrückt und den Nenner sin2 (C — B) • sin2 C
wegschafft :

— h x2 { sin2 (C — B) ¦ sin2 C 4- sin2 (C — B) • cos2 C

4- sin2 (C — A) — 2 sin (C — A) ¦ sin (C — B) • cos C}
— x2 • 4 • sin A ¦ sin C { - cos A • sin2 (C — B) • sin2 C

4- sin A • sin (C — B) • sin C [sin (C - B) • cos C — sin (C — A)|}
4- 4 sin4 C ¦ sin (C — B) [cos C • sin (C — B) — sin (C — A)] x2

— 4 • sin4 C • x2 cos C • sin2 (C — B) 4~ Glieder mit x 4- bekannte
Glieder =0.

Ä3 ist nun so zu bestimmen, dass der eine sich hieraus
ergebende Wert von x unendlich wird; dies ist der Fall, wenn
der Koeffizient von x2 0 ist (dies lehrt sofort die Substitution

hieraus folgt:

wo

— A3 4 [sin A • sin2 C • sin (C — B) { — cos Asin (C — B) • sin C

4- sin A • sin (C — B) • cos C — sin A • sin (C — A)}
+ 4 • sin4 C • sin (C — B) • sin (C — A)] : N

N sin2 (C - B) 4- sin2 (C - A)

- 2 sin (C — B) • sin (C — A) • 60s C also :

— Ì 3 [4 sin A • sin2 C • sin (C — B) {— sin (C — B)
• sin (C — A) — sin A • sin (C — A)}

4-4-sin4Csin(C-B)sin(C —A)]: N oder

— h [4 sin A • sin2 C • sin (C — B) sin (C — A)
{ —sin(C-B) —sinA}

4- 4 • sin4 C • sin (C - B) • sin (C — A)] : N oder
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— A3 4 • sin A • sin2 C • sin (C — B) • sin (C — A)

• (- 2 • sinC • cos B) + 4 • sin4 C • sin (C — B) • sin (C — A) : N

oder — — 4 sin3 C sin (C — B)
• sin (C — A) [2 sin A • cos B — sin C] : N

— 4 • sin3 ¦ C ¦ sin (C — B)
¦ sin (C — A) [2 sin A cos B — sin (A 4- B)] : N

— 4 • sin3 C • sin (C — B) • sin (C — A) sin (A — B) : N
— ;3 4 • sin3 C • sin (A — B) • sin (B — C) • sin (C — A) : N

Hiebei ist N sin2 (C — A) 4- sin2 (C — B)
— 2-sin(C —B) -sin(C-A) -cosC

— sin2 C (cos2 A 4~ cos2 B — 2 cos A • cos B • cos C)

4- cos2 C (sin2 A 4- sin2 B — 2 sin A • sin B • cos C)
— 2 sin • C ¦ cos C (sin A • cos A 4~ sin B • cos B
— sin A • cos B ¦ cos C — sin B • cos A • cos C)

sin2 C (cos2 A 4- cos2 B 4- cos2 C

— cos2 C — 2 • cos A • cos B • cos 0)
4- cos2 C • sin2 C —¦ 2 • sin C ¦ cos C (sin A • cos A

4~ sin B • cos B — sin C • cos C)

Nun ist:
cos2 A + cos2 B 4- cos2 C =" (3 4- cos 2 A 4- cos 2 B 4- cos 2 C)

- [3 — 2 cos C • cos (A — B) 4~ 2 cos2 C — 1]
Li

— - [2 — 4 ¦ cos A • cos B • cos Cl 1 — 2 cos A • cos B • cos C
2

darum wird:

N sin2 C [1 — cos2 C — 4 • cos A cos B • cos C] 4~ cos2 C • sin2 C

/sin 2 A4- sin 2B „ '
— 2 • sin C ¦ cos C I ^ sm C • cos C

sin2 C [1 — cos2 C — 4 • cos A • cos B • cos C] 4- cos2 C • sin2 C

— 2 • sin C • cos C • [sin C • cos (A - B) + sin C • cos (A 4- B)]
sin2 C (1 — 4 • cos A • cos B ¦ cos G — 4 • cos A • cos B • cos C)

— sin2 C (1 — 8 • cos A • cos B • cos C)

Substituiert man diesen Wert N in den Ausdruck für hi, so

kommt :
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Aa 4 ¦ sin C • sin (A - B) • sin (B - C) • sin (C — A)

: (1 — 8 • cos A • cos B • cos C)

Nun ist die Gleichung der reellen Asymptote:

2 x [cos C • sin (C — B) — sin (C - A)]
— 2 y • sin (C — B) • in C 4- i- 0

Nach den Regeln der ebenen analytischen Geometrie ist
daher der Abstand derselben vom 0 Punkt (O) :

— l3 : 2 vfcos C • sin (C — B) — sin (C — A)]2 4- sin2 (C — B) sin2 C

der Radikand ist:

[cos C • sin (C - B) - sin (C — A)]2 4- sin2 (C — B) • sin2 C

sin2 (C - B) 4- sin2 (C — A) - 2 • sin (C — B) • sin (C - A) ¦ cos C
sin2 C [1 — 8 • cos A • cos B ¦ cos C]

wie schon gefunden.
Unter Berücksichtigung des Wertes von l~ erhält man

deshalb für den gesuchten Abstand :

*
2 • sin (A — B) • sin (B - C) ¦ sin (C — A)

: y/(l _ 8 • cos A • cos B ¦ cos C)3

und dies ist der Halbparameter der Kiepert'schen Parabel, das
ist der Abstand ihres Brennpunktes von der Direktrix wie
später gezeigt wird. Daraus ergibt sich die Konstruktion der reellen
Asymptote : man verschiebe das AABC parallel sich selbst, bis
C nach Û fällt, in die Lage A' B' C, zeichne den Brennpunkt
der zum /\ A' B' C gehörigen Kiepert'schen Parabel (D), so
schneidet die reelle Asymptote auf der Verlängerung von OD
über Q hinaus das Stück OD' OD ab, aber da die Asymptote
ausserdem zur Geraden von Euler parallel ist, so ist sie völlig
bestimmt, denn durch D kann sie nicht gehen, sonst würde für
den Fall, dass D Doppelpunkt der zyklischen Kurve ist, die
reelle Asymptote mit derselben zwei im endlichen gelegene Punkte
gemein haben, was unzulässig ist (s. Fig. 3).

Wie die reelle Asymptote, so bestimmt sich auch jede der
imaginären Asymptoten. Die eine derselben habe die Gleichung
y 4" i x 4~ h —- 0, wo h eine noch zu bestimmende Konstante
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ist; ersetzt man in der Kurvengleichung y + ix durch — h und

im Reste y durch — i x — 1\, so kommt :

- h (- 2 i x - Xi) [— 2 • x sin (C - A) 4- 2 ¦ sin (C — B)
• sin C • i • x 4- 2 • sin (C — B) • cos C ¦ x]

4- (2 ax — 2 b i x) [— 2 x • sin (C - A) 4- 2 sin (C — B)
¦ sin C • i x 4- 2 sin (C — B • cos C • x]

4- - sin A ¦ sin C • x2 • cos A 4~ 4 • sin A • sin C • sin A • i • x2

— 4 • sin3 C • i • x2 - 4 • sin2 C -cos C • x2 0 oder

— h [i • sin (C - A) 4- sin (C — ß) • sin C — i • sin (C — ß) • cos C] x2

- (a — b i) L— sin (C - A) 4- sin (C - B) • sin C

• i 4- sin (C — B) • cos C] x2

— (sin A • sin C • cos A 4~ sin A • sin C • sin A • i

— sin3 C • i — sin2 • C • cos C) x2 4~ Glieder mit x 0 ;

li muss so bestimmt werden, dass in dieser Gleichung die Glieder

mit x2 wegfallen (dies lehrt die Substitution x — wo man
x'

nach der Substitution x' 0 zu setzen hat).
Hieraus ergibt sich zur Bestimmung von h die Gleichung:

— h [i sin (C —A) + sin (C - B) ¦ sin C — i • sin (C —B) .cosC]

- (a i 4- b) [i • sin (C — A) 4- sin (C - B)
• sin C - i • sin (C - B) • cos Cj

— sin C (sin A • cos A — sin C • cos C)

— i sin C (sin2 A — sin2 C) — 0, oder :

/?i 4- b 4- a i 4~
sin C (sin A • cos A — sin C • cos C) 4- i • sin C (sin2 A — sin2 C)

i • sin (C — A) 4- sin (C — B) • sin C — i sin (C — B) • cos C

oder indem man Zähler und Nenner des Bruches mit

sin (C — B) • sin C — i sin (C — A) 4- i sin (C - B) • cos C

multipliziert :

h 4,- b 4- a i 4~ [sin C (sin A • cos A — sin C • cos C)

4- i sin C • (sin2 A — sin2 C)] •

• [sin (C — B) ¦ sin C — i sin (C - A) 4- i sin (C — B) • cos C]
sin2 (C — B) 4- sin2 (C - A) — 2 • sin (C — B) • sin (C - A). cos C
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Für die zweite imaginäre Asymptote y — ix j-A2=0 erhält
man analog:

h — -\-h — a.i-\- [sin C (sin A • cos A — sin C • cos C)
— i sin C (sin2 A — sin2 C)] •

• [sin (C — B) ¦ sin C 4- i sin (C — A) - i sin (C — B) • cos C]
sin2 (C — B) 4- sin2 (C — A) — 2 • sin (C — B) • sin (C — A) • cos C

hieraus Ài ~\- h -\- 2 b 4~ [2 sin2 C • sin A • cos A sin (C — B)
— 2 sin3 C • cos C • sin (C — B) 4- 2 sin2 A • sin C • sin (C — A)

— 2 sin2 A • sin C • cos C • sin (B — C)

— 2 sin3 C • sin (C — A) 4- 2 sin3 C • cos C ¦ sin (C - B)] : N, wo

N sin2(C — B)4-sin2(C — A) — 2 sin (C-B) • sin(C-A). cos C

oder h -\- h -= 4~ - h 4~ [sin 2 A • sin C (cos A • sin C

— sin A • cos C) • sin (C — B)
4- 2 sin C • sin (C — A) (sin2 A — sin2 C)] : N oder

4- 2 b 4- [2 sin C • sin (C — A) • sin A • sin (C — B)

4- 2 sin C • sin (C —A) ¦ sin B sin (A — C)] : N

4- 2 b 4- 2 sin C • sin (C — A)
[sin A sin (C — B) — sin B • sin (C — A)]

N

4- 2 b 4- sin C • sin (C — A) •

(cos 2 B — cos 2 C — cos 2 A 4 cos 2 C)

+2b +

N

2 sin2 C • sin (C — A) • sin (A — B)
N

Wie schon gefunden, ist

N sin2 C (1 — 8 • cos A • cos B • cos C) also :

Ài4X + 2b + ^(^-A)-sin(-^-^
1 — 8 • cos A • cos ß • cos C

und dies ist die negative doppelte Ordinate des Schnittpunktes
der imaginären Asymptoten y-)-ix-f li=0 und y — ix4X2—0.
Seine positive Ordinate wird also :

sin (C — A) • sin (B — A)-b + 1 — 8 • cos A • cos B • cos C
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und sein Abstand von der Seite B C (s. Fig. 3) :

sin (C — A) • sin (B — A) : (1 — 8 • cos A • cos • B • cos C)

Aus Gründen der Analogie sind seine Abstände von den
Seiten C A und A B :

sin (A — B) ¦ sin (C — B) : (1 — 8 • cos A • cos B cos C) bezw.

sin (B — C) • sin (A — C) : (1 — 8 • cos A • cos B • cos C)

Dies sind die Abstände des Brennpunktes der Kiepert'schen
Parabel von den Seiten des Grunddreiecks ABC, wie nachher

gezeigt wird. Unsere zyklischen Kurven 3. Ordnung haben also

gemeinsame imaginäre Asymptoten, welche durch die imaginären
Kreispunkte und durch den Brennpunkt der Kiepert'schen
Parabel gehen. Der Brennpunkt der Kiepert'schen Parabel ist also
auch ein gemeinsamer Brennpunkt dieser zyklischen Kurven.

VIII. Die Abstände des Brennpunktes der Kiepert'schen
Parabel von den Seiten des Qrunddreiecks ABC.

Der Abstand dieses Brennpunktes von der Seite BC ist
nach Seite 35:

d [sin (C — A) — sin (C — B) • cos C] ¦ sin C (sin2 C — sin2 A)

4- sin (C — B) • sin2 C (sin C • cos C — sin A • cos A)
P- sin (C — A) 4- sin (C — B) • cos C]2 4- sin2 (C — B) • sin^C

Der Nenner ist wie bereits gefunden

sin2 C (1 — 8 • cos A • cos B • cos C)

Der Zähler kann in die Form gebracht werden

[sin (C — A) - sin (C — B) • cos CJ ¦ sin C • sin B • sin (C — A)
— sin (C - B) • sin2 C • cos B sin (C - A)

——sin (C—B) • sin (C—A) ¦ sin C • sin A 4- sin2 (C - A) sin C • sin B
sin (C — A) • sin C [sin (C — A) ¦ sin B — (C — B) • sin A)

sin (C — A) • sin C • - (cos 2 A — cos_2 C 4- cos2C — cos 2 B)

sin (C — A) ¦ sin2 C • sin (B - A)

Darum ist der Abstand des Brennpunktes von der Seite BC:

sin (A — C) • sin (A — B) : (1 — 8 • cos A • cos B • cos • C)
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Die Abstände von den Seiten CA und AB werden analog
sein :

sin (B — A) • sin (B — C) : (1 — 8 • cos A • cos B • cos C)

bezw.
sin (C — B) : sin (C — A) : (1 — 8 ¦ cos A ¦ cos B ¦ cos C)

IX. Der Abstand des Brennpunktes der Kiepert'schen Parabel
von der Euler'schen Geraden oder der Halbparameter der

Kiepert'schen Parabel.

Derselbe ist offenbar gleich dem doppelten Seitenabstand

sin (A — C) • sin (A — B) : (1 — 8 • cos A • cos B • cos C)

multipliziert mit dem Cosinus des Winkels, den die Euler'sche
Gerade mit der x-Achse bildet- Die Tangente dieses Winkels
ist (s. pag. 30) :

sin (C — B) ¦ cos C — sin (C — A)
sin C • sin (C — B)

somit sein Cosinus

1 : v / 1 i fsin(C-B)-cosC-sin(C-A)J2 oder
V r sin2 C • sin2 (C — B)

sin C • (C — B) :

Vsin2 C • sin2 (C—B) 4- [sin (C — B) • cos C - sin (C—A)]2"

sin(C —B)-sinC:
Vsin2 (C — B) 4- sir7(C — A) - 2 ¦ sin (C — B) • sin (C — A)]2 • cos C

sin (C — B) : \/l — 8 • cos A • cos B • cos C

somit ist der gesuchte Halbparameter:

p 2 • sin (A — B) • sin (B - C) • sin (C — A) :

V(l — 8 • cos A • cos B • cos C)3

X. Untersuchung einer an der Kiepert'schen Parabel
erhaltenen Kegelschnittschar.

Die Form der Gleichung für die auf Seite 35 erhaltene
Kegelschnittschar sagt unmittelbar aus, dass alle Kurven der
Schar durch die Schnittpunkte der Euler'schen Geraden mit der
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Kiepert'schen Parabel hindurch gehen und in denselben die

Kiepert'sche Parabel berühren. Wir haben hier also ein System
von sich doppelt berührenden Kegelschnitten. Die Kiepert'sche
Parabel gehört selbst zu diesem System und ebenso ihre Direktrix
(c 0, resp. c — oo).

Wählt man die Achse der Kiepert'schen Parabel zur x-Achse
und ihre Scheiteltangente als y-Achse eines rechtwinkligen
Koordinatensystems, so lautet die Parabelgleichung:
y2 — 2 p x 0 (p Halbparameter) und die der Euler'schen

Geraden: x— — —, somit die der Kegelschnittschar:

y2-2px c2 (X+|Y oder

y2_c2x2_px(2+c2)_^_PÌ 0 (1)
4

Für c2 — — 1 kommt :

y24-x2 — px4-^ 0 oder
4

y+(*-5Y-o
d. i. die Gleichung eines unendlich kleinen Kreises im Brennpunkt.

Die x-Koordinate des Mittelpunktes eines durch Gleichung
(1) gegebenen Kegelschnittes sei a, so lautet seine Gleichung
bezüglich eines parallelen Koordinatensystems durch denselben :

2 2

y2 - c2 (x 4- af - p (x 4- a) (2 + c2) — —'JL 0 oder
4

y2 — c x2 - x [2 a c2 + p (2 4- c2)]

p
I (2 f c2) a+ —-2] - c2 ß2 0

Da nun der Koordinatenanfang im Mittelpunkt des
Kegelschnittes liegt, so muss das Glied mit x wegfallen
cl. h.

a= p(24-c2)
2 c2

und die Kurvengleichung ist:
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y2 _ C2 X2 _ p [(2 + C2) (_ p) I2_|_Ç^ + Ç2_p-j

-P2;
4 c2

£+î£ 0 oder
4 c2

a - [ (24-c2)2 c2-pl 2(2 + c2)2
y2^—c2x2— p —p-—! —4 -I — P -—¦ — 0 oder

L 2 c2 4 J " -"4 c2

y2 _ C2 x2 _ J2_. [_ 2 (2 + c2)2 4- c4 4- (2 4- c2)2 ] 0 oder
4 c2

y2 — c2 x2—_-^-[—4—4c2] 0
4c2

oder

y2 — c2 x2 1 p2d4-c2)_0"""
c2

oder

c2 x2 — y2 P2(lfc2) 0
c2

oder

X2 V2 10
P2 (1 + c2) P2(l+c2)

c4 c2

Die eine Achse des Kegelschnitts ist gleich :

2p\/l4-c2
c2

die andere ist gleich:
i • 2 p • Vi 4- c2

c

Setzt man c tg tp, so kommt :

2p 2pi
u.

cos tp tg2 tp sin tp

für die beiden Achsen des Kegelschnitts, das Achsenverhältnis
ist also:

sintp
—r~ : cos tp • tg- tp cotg tp : i

i

d. h. für einen reellen Winkel tp ist die eine Achse imaginär.
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Die Gleichung der Asymptoten ist:

(Anfangspunkt des Koordinatensystems ist der Parabelscheitel)
oder

Hr-y4cx4- — 4 — 0 oder
c 2

C D
4^cy4-c2x4-p4 — 0 oder

(x + |)±cy4-p o

2 reelle Asymptoten haben wir, wenn c reell ist; dies ist
der Fall, wenn die Kiepert'sche Parabel dem Punkte G die konvexe
Seite zukehrt, wovon man sich leicht überzeugt. Für c 0 reduziert

sich die Asymptotengleichung auf p 0, d. i. die unendlich
ferne Gerade. Der Kegelschnitt ist die Kiepert'sche Parabel selbst.

c oo ergibt als Grenzfall die Euler'sche Gerade x — —. Die

Hyperbeln der Kegelschnittschar verlaufen also zwischen der
Euler'schen Geraden und der Kiepert'schen Parabel im einen

Zweige. (Fig. 4). Die Grenzen für den andern Zweig sind die
unendlich ferne Gerade und die Euler'sche Gerade. Ist c rein

.imaginär, so haben wir Ellipsen, die Grenzfälle sind die

Kiepert'sche Parabel (c 0) und ihr Brennpunkt (c ~\- i).
(Fig. 5). Hat c die Form A4~Bi, so haben wir imaginäre
Kegelschnitte mit imaginären Asymptoten.

Für die Asymptoten:

(x + |)±cy + p o

bestimmen wir die Enveloppe in bekannter Weise. Wir differenzieren

die Gleichung nach c und erhalten:

c (2 x 4- p) + y 0 oder c — + y:2x4-p
Trägt man diesen Wert für c in die Asymptotengleichung

ein, so kommt mit Wegschaffung des Nenners?
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|ya-y2 + P(2x4-p) 0 oder

y2—4p/x + 2

als Gleichung der Enveloppe. Sie ist also eine mit der Kiepert'schen
Parabel y2—2px 0 konfokale und koaxiale Parabel von
doppelt so grossem Parameter (s. Fig. 5).

Die Figuren 6, 7 und 8 sind Spezialfälle unserer zyklischen
Kurven, 6 und 7 sind solche mit Spitzen (auf der Kiepert'schen
Parabel liegend), Fig. 8 ist eine solche mit einem isolierten Punkt.

XI. Die Zylinderfokale als Spezialfall der behandelten
zyklischen Kurven dritten Grades

Unsere zyklische Kurve hat am rechtwinkligen Dreieck
die Gleichung (nach pag. 29, wenn B mit C vertauscht und
C 90° gesetzt wird)

(x2 4- y2 4- 2 a x 4- 2 b y) (sin A • y — sin B x)
-f-2 x y (sin2 B — sin2 A) 0

Wir wollen nun das Koordinatensystem um den Anfangspunkt

0 um den Winkel tp drehen, seien x' und y' die
Koordinaten des laufenden Punktes im neuen gedrehten Koordinatensystem,

so gelten bekanntlich die Transformationsformeln:

x x' cos tp — y' • sin tp ; y — x' sin tp 4- y' • cos tp

die Kurvengleichung geht somit über in:
[x2 4- y2 4~ 2 x (a cos tp 4~ b • sin tp)

4- 2 y (— a • sin tp -\- b • cos tp)] •

• [y (sin A • cos tp -\~ sin B • sin tp)

4- x (sin A • sin tp — sin B • cos tp)]

4~ 2 (x2 — y2) • sin tp • cos tp

4- x • y (cos2 tp — sin2 tp) (sin2 B — sin2 A) 0,

wenn statt x' und y', x und y gesetzt wird, oder:

[x2 4- y2 4~ 2 x (a • cos tp 4~ b sin <p)

4- 2 y (— a • sin tp -\- b cos tp)]

• [y • sin (A 4- <p) — x • cos (A 4~ <p)]

-\- 2 [(x2 — y2) • sin <p ¦ cos tp

4- x • y (cos2 tp — sin2 tp)] (sin2 B — sin2 A) 0
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Setzt man tp — A, so geht diese Gleichung über in :

[x2 4~ y2 4" 2 x (a • cos A — b • sin A)
4- 2 y (a • sin A 4- b • cos A)] • (— x)

— 2 (x2 — y2) sin A • cos A (sin2 B — sin2 A)
4- 2 x y • (sin2 B — sin2 A)2 0

Setzt man weiter:

(a) — (a • sin A 4- b • cos A) ~f- (sin2 B — sin2 A)" -= 0,

so lautet die Gleichung der Kurve :

(b) — [x2 + y2 4- 2 x (a • cos A — b • sin A)] x — 2 (x2 4- y2)
¦ sin A • cos A • (sin2 B — sin2 A) — 0,

wo a und b durch Gleichung (a) zusammenhängen. Nun erfüllen
die Koordinaten des Brennpunktes (—sin A • cos 2 A, cos A- cos 2 A
s. Fig. 3) die Gleichung (a). Die durch sie bestimmte Gerade ist
ausserdem zur Euler'schen Geraden senkrecht d. h. sie ist die
Achse der Kiepert'schen Parabel, welche zum Dreieck ABC
gehört. Die Gleichung (b) bleibt unverändert wenn — y für y
gesetzt wird, d. h., gehört der Punkt O (a, b) der Achse der
Kiepert'schen Parabel an, so ist die zugehörige zyklische Kurve
in Bezug auf diese Achse symmetrisch.

Transformieren wir nun auch die Koordinaten a und b von £),
a' b' seien seine Koordinaten nach der Drehung, so gilt:

a a' cos A 4- b' sin A ; b — a' sin A 4- b' cos A

und darum wird die Gleichung (b) zu:

((b)) ,x2 + y2+2xa')x-f-2(x2-y2)
• sin A • cos A (sin2 B — sin2 A) 0

Die Bedingung (a) lautet nunmehr:

b' (sin2 B — sin2 A)2

ist a' 0, so ist der Punkt O der Schnittpunkt der Parabelachse

mit der Direktrix und die zugehörige zyklische Kurve hat
die Gleichung:

(x2 4- y2) x -j- 2 (x2 — y2) • sin A • cos A (sin2 B — sin2 A) 0

oder (x2 -|- y2) x 4" 2 (x2 — y2) • sin A • cos A cos 2 A 0 oder

2 (x2 4- y2) x 4- (x2 — y2) • sin 4 A 0

4
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Dies ist die Gleichung der Zylinderfokalen (Fig. 9). Diese
Kurve ist von Herrn Prof. Huber in seiner Vorlesung über die:
«Theorie der höhern ebenen Kurven» ziemlich ausführlich
behandelt worden. Zu den dort angegebenen Erzeugungsarten
können wir eine neue hinzufügen, nämlich diejenige, welche mit
der Kiepert'schen Parabel zusammenhängt. Die Zylinderfokale
schneidet die Parabelachse ausser in dem Punkte 0, 0 noch in

sin 4: A
dem Punkte x 0, und dies ist der Brennpunkt der

Li

Parabel, denn aus dem Ausdruck für ihren Halbparameter

p 2 sin (A— B) • sin (B — C) • sin (C — A)

: \/(l — 8 cos A • cos B • cos C)3

folgt für C 90°; p - 2sin (A — B) • cos B ¦ cos A
— 2sin (A — 90 -f A) • cos B • cos A

2 cos 2 A • sin A • sin B

XII. Die Cissoide als Spezialfall der behandelten
zyklischen Kurven.

Wir nehmen die Gleichung ((b)) Seite 49 vor:
((b)) (x24-y2 + 2x.a')x4-2(x2-y2)

• sin A • cos A (sin2 B — sin2 A) 0

Anfangspunkt des Koordinatensystems ist der Punkt G beliebig
auf der Parabelachse liegend 4- x Achse ist die der Parabel

(Richtung Brennpunkt »>- Direktrix) 4~ y Achse die Parallele zur
Direktrix durch O (Richtung Höhenpunkt. »>- Umkreismittelpunkt),

a' ist die Abszisse von O in Bezug auf ein paralleles
Koordinatensystem durch den Scheitel des rechten Winkels. Ist

a' — sin A • cos A (sin2 B — sin2 A)

so lautet die Gleichung ((b)):
(x2 4- y2) x — 2 y2 sin A • cos A (sin2 B — sin2 A) 0

Diese Kurve hat in O eine Spitze, welche nach früherem

auf der Parabel liegt ; in der Tat ist a' — — — — J. Sie

ist die Cissoide des Diokles (Fig. 10).
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XIII. Die Wendepunkte der behandelten symmetrischen
zyklischen Kurven.

Ihre Gleichungen sind in der Form enthalten:

(x2 + y2 4- 2 a x) x -f 2 B (x2 — y2) 0

in homogener Gestalt:

x3 + x y2 4- 2 x2 (a 4- B) z — 2 B • y2 • z 0

Darum ist nach der üblichen Bezeichnung:

f, 3 x2 4- y2 4- 4 x (a 4- B) z

f2 2 y • x - 4 B • y • z ; f3 2 x2 (a 4- B) — 2 B • y2

fi,i 6x+4(a4-B)z; fi,2 2y: fu 4 x (a 4-B)
f2)i 2 y ; fa,a 2 x - 4 B • z; f2,3--4By
f3,i-4x(a4~B); f3,2--4B-y; f3,3 0

Bekanntlich ist die Gleichung der Hessiane:

oder

M,l fl,2 fl,3

f2,l f2,2 f2,3

f3,l f3,2 f3,3

0

oder mit Benutzung obiger Werte für die f:
6 x + 4 (a 4- B) z, 2 y, 4 x (a 4- B)

2y, 2 x — 4 B • z — 4 B • y
4(a4-B)x, -4B-y, 0

0

oder

oder

[6 x 4- 4 (a 4- B) z] • 16 • B2 • y2 — 32 • x • y2 • B ¦ (a 4- B)
32 x • y2 • B • (a 4- B) — 32 (a + B)2 • x2 • (x — 2B • z) 0

[3x 4- 2(a + B)z] B2 • y2 4- 2 x • y2 • B (a 4- B) 4- (a 4- B)2
• x2 (x — 2 B • z) 0 oder

x3 (a4-B)2 4-x • y2 [3B2 4- 2 (a4-ß)B] —2x2 • z • B(a4-B)2
4- 2 y2 • z • B2 (a I- B) 0 oder

x3 (a 4- B)2 4- x y2 [3 B2 4- 2 (a 4- B) B] — B (a 4- B) [2 x2 (a -f- B)
— 2 y2 • B] • z 0

oder in Verbindung mit der Gleichung der Kurve Seite 51 :
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x3 [B (a 4- B) 4- (a 4- B)2]i+ y2 • x [B (a 4- B) 4- 3 B2

4- 2 (a 4- B) B] 0 woraus :

y\2= 2 B2 + 3 a • B 4- a2 (l\2= 2 B2 4-3 a B 4-a2
x/

"

6B24-3aB '°ei\x/ 3 B (2 B 4-a)
Substituiei't man den sich hieraus ergebenden Wert für y2

in die Kurvengleichung ((b)), so erhält man eine Gleichung 3. Grades

in x. Die zugehörigen Ordinaten folgen aus dem Werte für —.
x

Sollen speziell die beiden symmetrisch zur x-Achse liegenden

Wendepunkte in die imaginären Kreispunkte hineinfallen,
so muss sein :

y\2_ 1_ 2B24-3aB4-a2_
x/ 3B 2B + a

woraus folgt:
3 B (2 B + a) - 2 B2 — 3 a B — a2 0 oder

4B'2 aa, also a + 2B
für a 2 B heisst die Gleichung der Kurve :

(x2 4- y2) x 4- 2 B (2 x2 - y2) 0 und für a - 2 B

(x24-y2)x — 2B(x24-y2) 0 oder x2 + y2 0 und x 2B
In letzterem Falle zerfällt also die Kurve in die Direktrix

der Kiepert'schen Parabel und in ihren Brennpunkt, denn 2 B
bedeutet ihren Halbparameter.

Berichtigung:
Seite 13, Zeile 6, lies sin (C — B) statt (C — B).

» 18, am Fusse, lies sin (C — B) statt (C—B).
» 27, Zeile 6, lies Tétraèdre statt Tétraèdre.
» Seite 30, drittletzte Zeile, lies Seite 27 statt 28.
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