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0. Schenker.

Das Dreieck und die Kiepert’'sche Parabel.

I. Geschichtliches.

In den Mitteilungen der naturforschenden Gesellschaft in
Bern aus dem Jahre 1909 habe ich einen kleinen Aufsatz ver-
offentlicht, betitelt: «Uber eine dem ebenen Dreieck einge-
schriebene Parabel»>. Seither habe ich in dem Buche von
W. Fuhrmann: «Synthetische Beweise planimetrischer Sitze»
herumgeblittert (das Werk ist mir von Herrn Prof. Sidler +
empfohlen worden) und durch Vergleichung gefunden, dass die
von mir behandelte Parabel mit der Kiepert’schen identisch ist.
In dem Fuhrmann’schen Werke wird die Kiepert’sche Parabel
auf folgende Weise erzeugt: man errichtet tiber den Seiten eines
Dreiecks #hnliche gleichschenklige Dreiecke, so bestimmen die
Scheitel derselben ein neues Dreieck, dessen Kollineationsachse
mit dem Grunddreieck Tangente an die Kiepert’sche Parabel ist.

Geheimrat Prof. Kiepert an der technischen Hochschule in
Hannover war so freundlich, mir aus der Geschichte seiner
Parabel folgendes mitzuteilen.

Marienbad in Béhmen, Elbschloss, d. 19. 8. 09,

~Sehr geehrter Herr Schenker,

Ihre gefl. Karte vom 16. d. M. ist mir nach Marienbad, wo
ich augenblicklich zur Kur weile, nachgeschickt worden. Zur
Beantwortung Ihrer Fragen teile ich Thnen hiedurch mit, dass
‘ich allerdings noch am Lebén bin und als Professor an der tech-
nischen Hochschule in. Hannover meine Lehrtitigkeit ausibe.
Die Kiepert'sche Hyperbel und die Kiepert'sche Parabel sind
nach mir genannt. Es handelt sich dabei um ein paar kleine
‘Abhandlungen, die ich als Student im Jahre 1869 in den Nou-
velles Annales de Math. von Gérano et Bourget verdffentlicht
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hatte. Ich ging dabei von der Losung der Aufgabe aus: «Uber
den Seiten eines Dreiecks A B C sind drei gleichseitige Dreiecke
BC A;, CAB,;, ABGQC,, errichtet; man soll das Dreieck ABC
konstruieren, wenn die Scheitel A;, By, C;, dieser gleichseitigen
Dreiecke gegeben sind ».

Ich hatte mich nachher um diese kleinen Aufsitze nicht
~ mehr gekiimmert, da ich ganz in das Fahrwasser von Weier-
strass gekommen war und mich hauptsichlich mit der Trans-
formation der elliptischen Funktionen und mit der komplexen
Multiplikation dieser Funktionen beschiftigte. Erst vor wenigen
Jahren erfuhr ich, dass sich in Belgien. und in England eine
ziemlich umfangreiche Literatur an die kleinen Aufsitze aus
meiner Studentenzeit angeschlossen hatte, und dass man die
oben genannten Kurven nach mir genannt hat. Ich kann Ihnen
aber augenblicklich keine Angaben iiber diese Literatur machen,
da ich die Sachen hier nicht zur Hand habe.

' Herr Professor Neuberg in Liittich (Liége) hat sich fiir
diese Literatur besonders interessiert.

Mit freundlichem Grusse
Prof. Dr. L. Kiepert, Geheimer Regierungsrat.

Herr Prof. Neu‘berg, dem ich hierauf meine Arbeit iiber-
sandte, schrieb mir folgendes:

Hochgeehrter Herr Kollege,

Meinen besten Dank fiir Ihre interessante Mitteilung. Der -
Satz war mir unbekannt und scheint wirklich neu zu sein. Ich
habe versucht, die Frage anders anzugreifen, und schicke Ihnen
meine Untersuchungen, welche den Gegenstand nicht erschépfen.
- Ich werde noch weiter forschen und, wenn ich Erfolg habe, Ihnen
meine Resultate mitteilen.

Meine Resultate konnten wellewht n derselben Berner

Zeitschrift erscheinen. 5,
Hochachtungsvoll e
| o J. Neuberg.

Wenn wir dxe ungeheure Literatur ins Auge fassen, die
sich auf dem Gebiete der Geometrie entwickelt hat S0 drangt
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sich uns unwillkiirlich die Frage auf: Aus welchem Bediirfnis ist
diese Literatur entstanden? Waren es Griinde praktischer oder
‘mehr geistiger Natur, welche eine derartige Literatur ins Leben
rufen konnten? Wir geben der idealen Weltauffassung den
Vorzug und glauben daher, dass auch in der Geometrie das
geistige Bediirfnis vor allem andern schopferisch gewesen ist.
So verdankt z. B. die Kurventheorie, in moderner Gestalt von
Jakob Steiner geschaffen, ihre Entstehung dem Problem von der
Verdoppelung des Wiirfels (Delisches Problem), also einem reli-
giosen Bediirfnis. Zur Losung desselben erfand Nikomedes die
Konchoide und Diokles die Cissoide. Die Entdeckung der Kegel-
schnitte durch Menichmus, einen Schiiler Plato’s, hingt mit eben
diesem Problem zusammen. Uber den Ursprung des delischen
Problems wissen wir folgendes: Der griechische Volksstamm der
Delier ward vom Ungliick heimgesucht, suchte Rat beim Orakel
zu Delphi und erhielt den Auftrag, den wiirfelformigen Altar des
Orakels zu verdoppeln. Da dies nicht gelang, musste sich der
Philosoph Plato ins Mitte]l legen, der seinen Schiilern das
Studium des Problems empfahl. Menichmus suchte die Aufgabe
durch Einschiebung zweier mittleren geometrischen Proportionalen
zu losen; ist a® der Inhalt des gegebenen Wiirfels, so ist 2 a® der
des gesuchten und dann folgt aus:

a:x=x:y=y:2a; x?=ay
X4
y*=2a-x, woraus — =2ax;x’=2a’
a
3_
x=a\/2,

die gesuchte Wirfelseite. Zur Losung waren also hier die
Schnittpunkte zweier Parabeln zu bestimmen. Wir wollen uns
auch daran erinnern, dass Euklides, Archimedes und Apollonius,
die dre1 grossten Mathematiker des Altertums, an der Erforschung
der Kegelschnitte gearbeitet haben. Die vier Biicher des Euklid
iiber die Kegelschnitte sind leider verloren gegangen. Archimedes
gab eine Quadratur der Parabel sowie der Ellipse. In dem Buche:
«Uber Konoide und Sphiroide» behandelte er .die durch
Rotation eines Kegelschnittes um eine seiner Hauptachsen ent-
stehenden Korper. !
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Bewundernswiirdig ist, was Apollonius (der 250—200 v. Chr.
zu Alexandrien lebte) iiber die Kegeschnitte in 8 Biichern schrieb.
Hierin ist alles von seinen Vorgéingern auf diesem Gebiete ent-
halten und mit eigenen Entdeckungen zu einem Ganzen vereinigt.
Er erkannte zuerst, dass alle drei Arten von Kegelschnitten an
einem und demselben Kegel erzeugt werden konnen, ferner dass
durch den Koordmatenzusammenhang y =——x2 -|—ax ein
Kreis, durch y?=x% -+ ax eine Hyperbel und durch y2—=ax
eine Parabel dargestellt wird. Von Apollonius ist auch die Auf-
gabe in Angriff genommen worden einen Kreis zu konstruieren,
der drei gegebene Kreise berihrt, die von Jakob Steiner gelost
worden 1st. Der grosse Astronom Edmund Halley, der die
Ansicht vertrat, dass es uns nicht zum Ruhme gereiche, so
vieles nicht besser machen zu kénnen, als es die Alten gemacht
haben, veranstaltete selbst eine lateinische Ausgabe der acht
Biicher iiber die Kegelschnitte (Antwerpen 1710) und stellte die
‘Biicher des <«grossen Geometers», «De sectione rationis» und
«De sectione spatii» nach einem arabischen Text wiederum her
(Oxford 1706). Auch Robert Simson (nach ihm ist die Simsonsche
Gerade benannt) hat sich um die Erhaltung der Werke des
Apollonius verdient gemacht, indem er dessen Biicher «De locis
planis» wieder herstellte (Edinburgh 1749). Chasles fihrt in
seiner Geschichte der Geometrie aus, dass nach der Zerstorung
des Museums zu Alexandrien im Jahre 642 n. Chr. durch den
Kalifen Omar I. das Signal zur Barbarei und zu einer lang an-
dauernden Finsternis auf wissenschaftlichem Gebiete gegeben
wurde. Nach langer Nacht fiir Kunst und Wissenschaft brach
um die Mitte des 15. Jahrhunderts durch Vermittlung Italiens
‘die Morgenréte eines neuen Zeitalters an. Purbach, Regiomon-
tanus, de Cusa, Leonardo da Vinci, Albrecht Durer gelten als
-Bahnbrecher in dér Zeit der Renalssance _
| ‘Die Umwilzungen auf dem Gebiete der Astronomie durch
Kopernicus, Kepler, Newton, verhalfen auch den Kegelschnitten
zu 1hrem Recht, sodass sie d1e populiirsten Kurven geworden sind.

" Die infer essanteste Kurve unter den’ Kegelschmtten ist die
' Palébel da sie ‘sowohl die Eigenschaften der Ellipse, wie dér
'Hyperbel in sich vereinigt. Eine einfache Uberlegung zeigt, dass
sich ein geniigend kleines Stiick einer beliebigén Kurve ils Stiick
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einer Parabel betrachten lisst; vielleicht ist Thomas Simpson
durch eine i#hnliche Uberlegung zu der nach ihm benannten
Formel gelangt. Hatte Archimedes ahnen konnen, welche niitz-
 liche Anwendung seine Formel fir den Inhalt eines Parabel-
segmentes finden sollte, sicherlich wiirde er es nicht unterlassen
haben auszurufen: Heureka, Heureka, wie damals, als er den
hydrostatischen Auftrieb dazu verwandte, um eine Konigskrone
auf ihre Echtheit zu priifen. |

Auch in der Statistik erweist sich die Parabel als sehr brauch-
bar. So hat Herr Prof. Kinkelin in Basel dieselbe beniitzt, um die
Abhingigkeit des Alters von der Zahl der durchschnittlichen
jihrlichen Krankentage darzustellen. Ich verweise auf die von
Herrn Kinkelin abgefasste Schrift: Die gegenseitigen Hilfsgesell-
schaften der Schweiz im Jahre 1880. Ich erinnere ferner an die
Formel von Woolhouse, die Ausgleichungszwecken in der Bevél-
kerungsstatistik dient. _

«Geist und Korper sind zwei Welten und im Menschen-
organismus unbegreiflich vereint» sagt der Arzt, Philosoph und
Dichter Ernst Freiherr v. Feuchtersleben in seinen Aphorismen
und seit Plato haben die Philosophen der Freiheit des mensch-
lichen Geistes das Wort geredet. Diese Ungebundenheit des
Geistes kam dem Schopfer der neuen Geometrie Jean Victor
Poncelet zugute. Poncelet hatte den Feldzug Napoleons nach
Russland als Lieutenant mitgemacht, war bei Krasnoi schwer
verwundet und als Gefangener nach Saratoff gefithrt worden.
Um das Unglick, das sein Vaterland und ihn selbst betroffen
hatte, zu vergessen, schuf er in der Gefangenschaft die Grund-
lagen zu seinem berithmten Werk: «Traité des propriétés pro-
jectives>. Von Poncelet stammt auch das Prinzip der Kontinuitit,
wonach Eigenschaften, die von reellen geometrischen Gebilden
gelten, ohne weiteres auch auf imagindre Gebilde ibertragen
werden konnen und umgekehrt. Hiezu ein Beispiel: |

Ein Kegelschnitt ist durch 5 Punkte bestimmt. Da nun
ein Kreis schon durch 3 Punkte gegeben ist, so gehen alle Kreise
durch dieselben 2 imaginiren Punkte. Dieselben lassen sich
niher bestimmen, wenn man sich in einem rechtwinkligen Koor-
- dinatensystem' auf den Fall beschrinkt, wo sich ein Kreis auf
den Koordinatenanfang reduziert, somit die Gleichung hat:
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x24y2=0, oder (x +1y)(x—iy)=0

Die beiden Richtungen -}i und —1i bestimmen die beiden ima-
gindren Kreispunkte. Dieselben liegen also auf der unendlich
fernen Geraden. Zwei Gerade, gegeben durch die Gleichungen
Xx+ay=0 und x — ay=0, werden aber von x=0 und y =0
harmonisch geteilt, woraus folgt:

Zwel zueinander senkrechte Gerade teilen die Verbindungs-
linie der imaginiren Kreispunkte harmonisch.

Il. Aus der Theorie der Winkelgegenpunkte. =
' (Fig. 1.) ' '

Zieht man vom Punkte P’ nach den Ecken des Dreiecks
A B C Strahlen, welche die Gegenseiten in den Punkten A’, B’, C’
treffen mogen, und spiegelt man diese Strahlen an den innern
Winkelhalbierenden des Dreiecks A BC, so treffen sich diese
Spiegelbilder in demselben Punkte P, dem Winkelgegenpunkt
von P’. . - '

Beweis: Die gespiegelten Strahlen sollen die Gegenseiten
bezw. in den Punkten A’/, B’ und C’’ treffen, so hat man bei
Verwendung trimetrischer Koordinaten (s. Kp. IV, Al 3).

x;/ C'B.sinB x» A'C.sinC, xa’_B’A_ sin A
X2’ C’A-sinA’ x’ A’B.sinB’ x; B/ C sinC
x)//  C'B:sinB x”  A”C.smC x"" B''A sinA
x2’/  C”A-sinA’ xs’/ A”B-sinB’ x;” B’ C sinC

den C’' B-sin B ist die Linge der Senkrechten aus C’ auf BC
und C" A .sin A die Liange der Senkrechten von C’ . auf AC etc.
Aus idhnlichen Dreiecken folgt sofort das iibrige. Multipliziert
man die ersten drei Relationen miteinander, so erhilt man den
Satz von Ceva, die drei letzten multipliziert ergeben:

o CIIB_AIIC.B!IA
CI!A.AIIB'BIIC

Nach der Umkehrung des Satzes von Ceva schneiden sich daher
AA” BB und CC’ in demselben Punkte P".



- 7 _

Zufolge der Konstruktion des Winkelgegenpunktes P’/ gelten-
folgende Glelchungen

Yl XQ.H Xg’ __X._%H:‘ XB’ ler
= ’ — 3 e
Xg’ lel ng _ngl Xll Xg”
- 1 1 1
also: X1 1% i x3' = : :

xlll. XZ/I XSII

d. h. die Koordinaten eines Punkies sind den entsprechenden
reciproken Koordinaten des Winkelgegenpunktes proportional.
Die Koordinaten von P’ sollen in.BC, CA und A B bezw.
die Fusspunkte %', B’ und @€', die von P’ bezw d1e Fusspunkte
A7, B, 6" bestlmmen S0 hat man:

A C x,. WC  x )
= g = ; somit

?l}fl C lef %I C Xz.’

=3

1
91’0-91”0 X1’ X1” X1’ X_li
BC-B"C x2' x'  x L3

~

X2

d. h. die 4 Punkte ', A", B’, B/, liegen auf einem Kreis, das-

selbe gilt von den Punkten QS’ 23” ¢, 6", sowie den Punkten

6,6, W, N’ Alle drei Kreise smd aber konzentrisch und darum
fallen sie zusammen :

Die Fusspunkte der Senkrechten von 2 Winkelgegenpunkten

auf die Seiten des Grunddreiecks liegen auf demselben Kreis.

Ill. Die Gleichung des dem Grunddreieck
umschriebenen Kreises.

Die Gleichung irgend eines dem Grunddreieck umschrie-
benen Kegelschnitts ist von der Form:
al-xz-x3—}—a@-x3-xl—}—a3-x1-X2=0
Wie sind a;, az und ag zu bestimmen damit die Gleichung
einen Kreis darstellt? Um diese Frage zu beantworten, fithren

wir fiir xi, X2 und x; rechtwinklige Koordinaten ein, indem

wir setzen:
Fir xy=x-cose; | y-sine; —p,,

» Xg=—X-C0S &z | y-sinaz — p,,
» Xg3==X-COSa3-Y-Sinaz — p,,
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x und y sind hiebei die rechtwinkligen Koordinaten des Punktes
X1, X3, Xg. Die « sind die Winkel, welche die Normalen vom
Nullpunkt des rechtwinkligen Koordinatensystems auf die bezw.
Seiten des Grunddreiecks (A BC) mit der positiven Richtung der
x Achse eben dieses Koordinatensystems bilden. Die p sind die
Lingen dieser Normalen. Als Bedingungen fiir den Kreis be-
kommt man daher, indem man die Koeffizienten von x? und y? ein-
ander gleich und denjenigen von xy Null setzt:

a1 - €08 (a2 -} ag) + ag - cos (@3 + ;) + ag - cos (a1 + a2) =0
a; - sin (a2 <+ as) -+ az - sin (a5 + 1) + ag - sin (a1 +~ a2) =0

woraus a; = ag - sin (a3 — a2) : sin (g — 1)

as = ag - sin (o; — ag) : sin (a2 — a1)
oder a;=ag-sin A:sinC
as =—as-sin B:sin C

- Die Gleichung des dem Dreieck ABC umschriebenen
Kreises (Umkreis) lautet deshalb:

Xo-Xg+SINA -} X% -sinB4x;-%X:5inC=20

Hieraus leitet man sofort den Satz ab:

Die Fusspunkte der Senkrechten aus einem Punkte des
Umkreises auf die Seiten des Grunddreiecks liegen auf einer
Geraden (Simson’sche Gerade genannt).

IV. Uber eine dem ebenen Dreieck eingeschriebene Parabel.
(Hiezu Fig. 2)

Die Seiten eines Dreiecks (ABC) umhiillen mit der
Zentralen (A’B'C’) der Apollonischen Kreise eine Para-
bel, der die folgende Eigenschaft zukommt: Bestimmt
man von irgend einer ihrer Tangenten die Schnitt-
punkte (A, B und €) mit den resp. Dreiecksseiten (BC,
CA, AB), so treffen sich die Kreise mit diesen Schnitt-
punkten zu Zentren, durch die resp. Dreiecksecken
(A, B, C) in zwei Punkten O und O’

Beweis: M sei der Mittelpunkt des Umkreises (siehe
Figur), A’, B’ und C’ seien die Zentren der Apollonischen Kreise,



— 9

so stehen bekanntlich AA’, BB’ und CC’ bezw. senkrecht zu
AM, BM und CM. Die Seite A B bestimmt mit A’ B’ auf den
Seiten CA und CB zwei ahnliche Punktreihen (3B... und %...).
Und die Verbindungsgeraden ihrer entsprechenden Punkte (...
und %...) umhiillen unsere Parabel. Zwei Paare entsprechender
Punkte sind A, A’ und B, B’ und sei %, B ein beliebiges drlttes
Paar, so besteht die Relatlon

154 @

Wenn wir in trimetrischen Koordinaten rechnen und das
Dreieck ABC zum Grunddreieck wéahlen (also einen beliebigen
Punkt P durch seine Abstinde x;, x; und x3 von den bezw.
Dreiecksseiten bestimmen), so miissen wir zur Bestimmung von
A und B zunichst die Strecken berechnen: B, C¥, ASB und
CB. Setzt man BB =p, so ist AB=AB' —p, BC=sinB
— AB. (Der Kreis um ABC hat hiebei den Durchmesser 1),

B%[_i—g— A B nach (1) und CA=BY — sin A,

Man findet aber leicht fir A B’ und A’ B:

y__8si*C o, s’C
sin (C—A)’ sin (C —B)

somit wird:

sin? C —p - sin (C— A)

AR —
— sin (C— A)
BC — sin B - sin (C— A) — sin®? C 4 p - sin (C — A)
—_— sin (C — A)
cos2A;cosZC_ sin? C +-p - sin (C — A)
— sin (C — A)
_ sin? C—sin® A —sin? C+-p- sin (C.——' A) oder
sin (C — A)

BC=[p-sin(C— A)—sin® A]: sin (C — A)




__sin(C—A) sin? C—p-sin(C—A)

B - - oder
sin (C — B) sin (C — A)
Bgu:sinzC—p-sin C—4A)
— sin (C — B)
C%:Sinz C—p-sin (C—A)'_SinA
sin (C — B)

_ sin?C—p-sin (C—A) —sin A - sin (C — B)

- sin (C — B)

_ sin? C —p-sin (C — A) +4- 5in? B — sin? C oder

sin (C — B)

C?I:[sinzB—p - sin (C—A)] : sin (C — B).
. Die Strecken BE€ und A§ ergeben sich nach dem Satz des

Menelaus: oS /];?S,\ . _

CB. \A(‘ij T woraus
B6 C®B BA p-sin(C—A)—sin®A
AG A3 CYU sin (C — A)
_ sin (C — A)
sin? C — p sin (C—A)
sin’C—p-sin(C—A4A) sin (C — B)
sin (C — B) sin? B —p - sin (C— A)
=[p-sin(C—A) —sin? A]:[sin? B—p - sin (C — A)]
Also i1st BE=k [p-sin(C—A)— sin® A]

AC=k[sin®* B --p-sin (C — A)]:
da aber BG - A€ =sin C ist, so wird:

k=sin C:[sin® B — sin? A]
= sin C: (sin B - sin A) (sin B — sin A)

=sinC:4sinB+A-cosB #-A-cosB—I_A-sinB—_A
2 2 2
=sinC:sinC-sin(B—A)=1:sin(B— A) also wird:

BE@=|[p-sin (C— A) —sin® A]:sin (B — A)
AC=[sin? B—p-sin(C—A)]:sin(B—A)
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Kommt man iiberein, dass fiir einen Punkt im Innern des.
Dreiecks alle drei Koordinaten positiv seien, so sind nach dem
vorigen die Koordinaten von %, B und G:

an) -
= =
w2 /2]
< «
| |
P’ —
. 2l 2« o
] = I = |
ca lao
sl AR
1.8 1|8
ol® ol”
o (4]
fon] =
Ia 'E‘J
(&) <
= =
.a -a
% 7
haA A
- ||A 2|«
. 0§l
w
| 12 giS)
= =
%'a Dg-as
e =
= ‘@
(&) an
= R=!
7 n
< <
= g
0 W0
= o < | |<
|
/M
12 1|2
Ol.e ©l.B
S ~| U
= .8
wm 4]
=9 =
= ) ©

Nunmehr kann man die Gleichungen der Kreise aus U,
B, und € durch A bezw, B bezw. C aufstellen, wenn man beriick--
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sichtigt, dass der Abstand zweier Punkte P’ und P’’ mit den

Koordinaten x;’, x3’, x3' und %"/, x2"’, %3’ gegeben ist durch:
P'P’=(x,"—x1"")’sin 2 A (x2"— 2"’ )*- sin 2 B}~ (x5’ —x3’’)’sin2C
:2smA-sinB-sinC
(siche die Mitteilungen der naturforschenden Gesellschaft in

Bern 1906),
und dass die Koordinaten der Ecken A, B und C sind;
X1 X9 X3
A sin B.sin C 0 0
B 0 sin C-sin A 0
C 0 0 sin A - sin B

Gleichung des Kreises aus U:

AR .
sin B+ {efn B - sin O 4 sin2 B [L2AC —B) —sm B .
| ’ sin (C —B)

s g . 5
—!—sin2C[smC p-sn(C A)-sinBJ

sin (C — B)
:sin2A-x12+sin2B xg_p-sm(C—A) _SmZB.SinC ?
sin (C — B) :
2 (00—
+sin20[x3 sin CsmIzC s1nI(3()3 _ A). - sin B] (2)

Gleichung des Kreises aus 3B:

p - sin (C — A) — sin’A
AW SO _ 2

~+ sin2 C- [sm Csinl()C ini()? 8 i A] (3)

L B
_psnO@—A) —si' 8 o[ +sin2B.xg
sin (C — A) ~

. . n? C—p-sin(C—A) . 3
B0}y —— P . sin A
—+ sin [x3 sin (C— A) sm  ]

- Die. gemeinsame Sehne- dieser beiden Kreise hat deshalb
{2)— (3) MO zur, Gleichung oder: :

2
-sin 2A[ -sinC] +4-sin2B - (sin A - sin C)?

=sm2A [x1




R | Q.

sin2A -sin?B-sin?C —sin2B - sin® A - sin? C
p-sin(C—A)—smn*A

—sin2A.2x; - sin C
sin (C — A)
| SO s
——sin2B-2xz-p sm(.C i) i B-sinC
sin (C — B)

+sin2C- 2 x; [sinzC——p-sin(C-—A)]

| [sinA-sin(C—B)—sinB-sin(C—A)]

sin (C — A) - sin (C — B)

oder da sin A - (C —B) —sin B - sin (C — A)
;_cos2B—- cos2C | cos2C —cos2A

2 T 2

=cos2B—cos2A:2—=sinC-sin(A—B) ist

und: ,
sin2Asin?B.sin? C—sin2 B -sin? A sin? C
—=2sinA-sinB - sinC[cos AsinB - sin C —cos B - sin A - sin C},
S =2sinA:sinB-.sinC-sin Csin (B — A),
S0 erha.lt man daher fir (2) — (3):

+sinA-sinB-sinC-sinC-sin(B— A)
p-sin(C—A)—sin®A

—=sm2A-2x, — sin C
sin (C — A) |
3 ey s
—-sin2B-2xzp sm(.C -A) St B-sinC
sm(C—B)

sin C « sin (A — B)
sin (C—A) - sin (C —B)-

~ Dividiert man noch beiderseits durch 2 - sin C - sm (A — B),
-$0 gewinnt man die Gleichung:

-]— sin 2 C - 2 X3 Iism2 C—p-sin(C— A)]

p - sin (C — A) —sin? A
sin (A —B)-sin(C—A)
p-sin (C— A)—sin? B
sin (B — C) - sin(A — B)

-8in (C— A)— sin? C
sm (C A) - sin (B C)
[Zur Abkurzung kann [ioch p sm (C - A) =P gesetat
werden]. |

—smA-smB-smC=sm2A-x1

+ sin 2 B - Xo (4)

»1—sm2C Xg.
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‘welche Gleichung durch Vorriicken der Buchstaben und Indices
unverindert bleibt, womit der vorangestellte Satz bewiesen ist.
Es eriibrigt noch die Gleichung unserer Parabel aufzu-
stellen. Sie ist die Enveloppe der Geraden AB, deren Gleichung
sein moge:
31X1—|—a,2X2—|—a3X3———0 (5)

Die Koordinaten von % und B missen diese Gleichung
erfilllen und dies gibt uns zur Bestimmung von a;, a; und ag
oder vielmehr ihrer Verhiltnisse die beiden Gleichungen:

a;(P—sin?B).sinC 4 as(sin? C —P)-sinB=0

a; (P —sin? A)sin C + ag (sin? C — P) - sin A =0, so dass
ag=—ag (P —sin?C).sin B: (P — sin? B) - sin C
ag—ag(P—sin?C)-sin A: (P —sin? A)-sinC

Substituiert man diese Werte von a; und as in Gleichung
(5), so bleibt:

(P —sin? C) - (P — sin®> B) - sin A x;y 4 (P — sin? A) (P — sin? C) x,

~+ (P —sin? B) - (P — sin? A) x3 = 0, oder

(sin? B~-s1n?C) sin A x;

| -2

(sin? C + sin®? A) - sinBxe | (sin? A + sin? B) sin C x3 .
5 aa 5 (6°)

+sin?B-sin?C-sinA-x;}sin2C-sin?A-sinB - x»

' +sin? A-sin? B-sinC-x3=0.
Dies ist eine quadratische Gleichung in P, d. h. durch jeden
Punkt (x;, x2, x3) der Ebene gehen 2 Tangenten an die gesuchte

Kurve; fir einen Punkt der Kurve selbst fallen diese zusammen,
and’ die Bedingung hiefiir ist:

I:(sin2 B - sin? C) - sin A X1 —+ (s1n? C 4 sin? A) - sin B xo

P2 [xl -sin A + Xs-sin B 4 x3 - sin C]—2P[

+

2
+ (sin? A 4 sin? B) - sin C - xg ]

—4(x; - sin A 4 xz - sin B + x5 - sin C). (6°)
-(sin? B - sin?2 C - sin A - x; -}- sin? C - sin? A - sin B x3
—+ sin? A - sin? - B - sin C - x3)
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welches die Gleichung unserer Parabel vorstellt. Dieselbe kann
auch in der Form geschrieben werden:

X, . sin? A (sin? B — sin? C)* -+~ x4’ - sin? B (sin? C — sin? A)*
—+ xg° - sin? C (sin? A — sin® B)’ — 2x; - X3 - sin A - sin B (sin? B
’ — sin® C) - (sin? C — sin? A)
— 2 X+ Xg+sin B - sin C (sin? C — sin? A) - (sin? A — sin? B) (6)
— 2xg - x; sin Csin A (sin? A —sin? B) - (sin? B —sin2 C) =0

Um die Koordinaten des Brennpunktes ermitteln zu kénnen,
erinnern wir uns an die folgende Brennpunktseigenschaft eines
Kegelschnitts:

Die Verbindungsgeraden irgend eines Punktes mit den

beiden Brennpunkten bilden mit den Tangenten aus diesem
Punkt bezw. gleiche Winkel. ‘

Hieraus folgt fir einen dem Grunddreieck (ABC) einge-
schriebenen Kegelschnitt, dass die Koordinaten des einen Brenn-
punktes proportional den reziproken Werten desjenigen des
andern sind.

Im Falle der Parabel ist der eine Brennpunkt (F ~) der
Berithrungspunkt mit der unendlich fernen Geraden, der die
Gleichung zukommt: x;-sin A -+ xs-sin B+ x5-smnC=0.
Dessen Koordinaten x,pco, xppeo Und X3pe0 ergeben sich daher
aus (6%), und

X pew  SIDA X, ~u-sinB 4%, :5inC=0

wie folgt:

Xz | sin B - (sin? C +-sin® A) — sin B (sin? B + sin® )

~+ x5 | sin C - (sin® A - sin® B) — sin C (sin? B - sin® C) =)

sin? C—sin® A sin C _ sin(C— A)
rs'i_n‘“’;Al——— sm2 B S“,’,B - sin(A— B)

und ahnlich:
sin*B—sin*C sinC_ sin(B—C)
X =X — . N X3
sin? A —sin? B sinA  sin (A — B)
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Somit besteht fir x ., , X,,  und x,,  die Relation:

b3 X : Xgp =8I0 (B — C) : sin (C — A) : sin (A — B)

1Fe0 * XoF oo

und somit fir den im Endlichen gelegenen Brennpunkt F:

1 ) 1 ) 1
sin (B— C) ~sin (C — A)  sin (A — B)

"Xyip - Xgp - Xgp =

Dieser Brennpunkt F liegt auf dem dem Grunddreieck ABC
umschriebenen Kreise, weil dieser das Winkelgegenpunktsgebilde
der unendlich fernen Geraden in Bezug auf das Dreieck ABC
ist. In der Tat ersetzt man in der Gleichung x; sin A 4} x; - sin B
-}-x3-sin C=0 der unendlich fernen Geraden x;, x2, X3 resp.

durch l, ~1—, l, so resultiert die Gleichung x;x3-sinA 4-

X0 X X
Xg X1 - 8in B4 x; x5 - sin C =0 des dem Dreieck ABC umschrie-
benen Kreises.
Die Direktrix bestimmt sich als die Polare des Brenn-
punktes F. Die Gleichung der Polaren des durch

2y 2 2, .2 22 9a - .8 X .X. — P
an” X T Ay Xyt ag’ X2 —2a, 8, X, - X, — 28,8, X,- X,

—2a,-a, X, X, =0 gegebenen Kegelschnitts bezogen auf den
Punkt F lautet:

8y,% X+ Xyp o 87 Xy Xpp o 857 Xy + Xgp— 8y + 899 (X, - Xpp + X Xy}

— By Bgg (X Xyp X+ Xpp) — By - 8y (Xy Xy + X - Xgp) =0 (7)

Bemerkung: Dass die Polare eines Kegelschnitts diese
Gleichungsform hat, kann man leicht bestéitigen, indem man die
Gleichung der Kurve durch die Gleichungen zweier Tangenten
und der Beriihrungssehne ausdriickt.

Nun ‘ist a;; = sin A - (sin? B — sin? C)
" am=sinB - (sin? C — sin? A)
asgs = sin C - (sin? A — sin? B)
xir proportional sin (C — A) - sin (A — B)
 Xop  » sin (A — B) - sin (B — C)
Xgg  » sin (B — C) - sin (C — A)



Also geht Gleichung (7) iber in:
sin? A (sin? B — sin? C)? - sin (C — A) - sin (A — B) - x4
~+-sin? B (sin? C — sin? A2 -sin(A—B) -sin(B— C) - x»
- sin? C (sin? A — sin? B)2 - sin (B— C) - sin (C — A) - x,
—sin A - sin B (sin? B — sin? C) - (sin? C — sin? A)
[x1 -sin(A— B)-sin(B—C)+4 x5 -sin(C—A) - sin (A — B)]
—sin B - sin C (sin? C — sin? A) (sin? A — sin? B)
[x2 - sin (B — C) - sin (C— A) + x3 sin (A — B) - sin (B --C)]
—sin C - sin A - (sin? A — sin? B) (sin? B — sin? C)
[x3 - sin (C — A) - sin (A — B) + x; - sin (B — C) - sin (C A)]=
oder indem man beide Seiten durch:
sin (A—B)-sin(B—C)-sin (C— A) dividiert:
sint A - sin (B — C) - x;+4-sin'B - sin (C— A)x2+sinC - sin (A — B)xs
—sin? A -sin? B[xy -sin (B — C) + x3 - sin (C — A)]
— sin? B - sin? C [x3 - sin (C— A) 4 x5 - sin (A — B)]
—sin? C - sin? A [x3-sin(A—B)+4x; -sin (B—C)] =0, oder
x; 8in? A sin (B — C) [sin? A — sin? B — sin? (]

—+ x2 - sin? B - sin (C — A) [sin? B — sin? C — sin® A] )
+ x3-sin? C - sin (A — B) [sin®? C — sin®* A —sin? B] =0

Nun 1st aber:
sin? A — sinZB—sinQC_—_%[I—cos2A-— 1

+cos2B — 1+ cos 2 C]

%[—1—;—c052B+cos2C—0052A]
%[ 2cos A - cos(B— C)-—2coszA]
= EcosA sin B-sin C und ahnlich
sin? B—sin? C —sin2? A—=—2.cosB-sinC-sin A
sin? C — sin? A —sinf B=—2.cosC-sin A - sin B
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Fiihrt man diese Werte in (8) ein und dividiert man sodann
beide Seiten der so erhaltenen Gleichung durch — sin A - sin B-sin C,
50 bleibt:

x;-sinA-cosA-sin(B—C)4x2-sinB:cosB-sin(C— A)
~+x3-8inC-cosC.sin (A — B)=0 (8%)

fiir die Gleichung der Direktrix. Dieselbe geht aber durch den
Hohenpunkt des Dreiecks A BC (mit den Koordinaten cos B -
cos C, cos C - cos A, cos A - cos B) hindurch, weil (8¢) durch die-
selben identisch erfilllt wird, wie es auch sein soll, denn die
Leitlinien aller dem Dreieck A BC eingeschriebenen Parabeln
gehen durch dessen Hohenpunkt, siehe Geiser (1867) pag. 122.

V. Folgerungen aus dem vorigen Kapitel.

Die Gleichungen der Kreise aus A, B und € léssen sich
leicht in homogener Form darstellen.
Wegen der Relation:

X;-sinA 4+ x;-sinB-+x3-snC=sinA-sinB-sinC
kann man die Gleichung des Kreises aus % in der Form schreiben:

sin2 A (sin B - sinC)° (xl sin A + %, - sin B+ % smC)

sin A-sinB-sinC

—=sin2A-x?+sm2B.x?|sin2C. x,.2

x;sin A -+ Xs - sin B4 x3 - sin C
sinA -sinB-sinC
sin? C—p-sin (C— A)

sin (C — B)
X1 -sin A 4 X3 -8in B4 x3.8mC

sin A - sin B . sin C oder
2.cos A - sin (C— B)[x;-sin A 4 X3 - sin B 4 x3 - sin CF =
[sin2A.x?+sin2B-x?4sm2C-x”].sinA. (C— B)

.sin C+ X

—2.s8m2C

'SiIlB « X3
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+[2-sm2B-.-sinB-x;—2sin2C-sinC- x3]
[X1-sin A + X - sin B 4 x5 8in C]
—[4-cosB-p-sin(C—A)xp—4cosC-p-sin(C—A)-x3]
[x1-sm A+ x5 -sin B+ x3 - sin C]
oder wenn p - sin(C — A) =P gesetzt wird:
x?[2-cosA-sin(C—B)-sin® A — 2. cos A - sin(C — B) - sin? A]

+ x,2[2:cos A -sin(C—B)-sin*B —sin2 B sin A . sin(C— B)
—2sm2B-sm?B-}4-cosB-sinB-P]

+ x,2[2-cos A -sin(C —B)sin? C —sin2C . sin A - sin (C— B)
+2-sin2C-sin?C —4-cosC-sinC-P]

+ %1 -x9[4-cosA-sin(C—B)-sinA-sinB
—2.sin2B.sinA -sinB -+ 4cosB-sin A-P]

+ X2-%x3[4-cosA-sin(C—B)-sinB.sinC
—2.5mm2B-sinB:-sinC+2-sin2C-smn-BsinC
44-cosB-sinC-P —4-.cosC-sinB - P]

+ x3%x1[4-cosA-sin(C—B)-sinC-sin A
+2-.sin2C - -sinC-sinA —4.cosC-sinA.P]=0

Koeffizient von x?: 0
Koeffizient von x,°: (sm2B —sin2C)sin’? B
_SingB.CO”B;COS% —2.5in2 Bsin’ B
-+4-cosB-smBP
— snoB cos2C—cos2B +1—- cos2B (1 — cos 2 B)
2 2
—sin2C-sin’B +4-cosB-sinBP
:sin2Bc———082§——}——Sin2C-sin2B+4-cosB-sinB-P

==—sin2B.sin?C —sin2C-sin2B-}4-cosB.-sinB-P
——2.8snA-sinB-smC+4-cosB-sinB-P-




Koeffizient von x:

(sin2 B — sin 2 C) sin? C — sin 2.¢ 2B —c0s20

+2.-5m2C-sin2C—4.co0sC.-sinC-P

=Sin20[1——cos2C+c0320—cos2B] }-sin 2 Bsin? C

2 2
~—~4.c08C-sinC-P

=sin2C-sin? B+4-sin2B-sin?C—4.cosC-sinC-P
—2sinA-sinB.sinC—4.¢cosC-sinC-P

Koeffizient von x; X:
2.sinAsinB(En2B—sin2C—sin2B)+4-cosB-sinA-P
——4.sinA-sinB-sinC.cosC+4-cosB-sinA-P

Koeffizient von x; xs:
2.-sinB-sinC(sin2B —sin2C —sin2 B + sin 2 C)
+ 4P .sin(C—B)
=4.P .sin(C— B)

Koeffizient von x3 x;:
2sinC-sinA(sin2B —sin2C +sin2C)—4cosC-sinA-.P
—4.sinA-sinB-sinC-cos B—4.cosC-sinA-P

Setzt man P:2.sinA-sinB.sinC=P’, so lautet die
Gleichung des Kreises aus U:

—x2 (1—sin2B-P')+ x2(1—sin2C-P)
+2x;x3 (—cosC-|cosB-sinA-P')4 2x:%x3- sin (C— B) P’
+2x3%,-(cosB—cosC-sin A-P')=0

Fir den Fall von P’ =0, reduziert sich die Gleichung auf:
—x, 4+ x2—2x;-X2-c08C+2-%3:-%; -cos B=0, oder
— X2 (X2 4+ 2% c08C) + X3 (x3 + 2 X1 -cos B)=0



Spiegelt man den Punkt A an der Seite BC und heisst
das Bild A’, so ist x2 + 2x; - cos C =0 die Gleichung von C A’,
analog ist x3 + 2x,-cos B=0 die Gleichung von B A’. Der
Kreis geht also durch den Schnittpunkt von C A’ mit A B, ferner
durch den Schnittpunkt von AC mit A B, durch den Schnittpunkt
von AC mit BA’ und durch den Schnittpunkt von CA’ und
B A’ hindurch. :

Die Gleichung
— X2 (X2 +2%1-¢08C) +x3(X3 +.2%x1-c0s B)=0
muss in der Form geschrieben werden kénnen:
Xo-X3-8NA-4 X3-%;-8sinB}x;-x2-51nC
+ (a2 X2 —— a3 X3) (X1 - sin A 4+ X2 - sin B } x5 - sin C) =0,

denn die reprisentierende Kurve geht durch A, und ist ein

Kreis, da sie durch die beiden imaginiren Kreispunkte hindurch

geht. Gibt man den beiden letzten Gleichungen die Form:
2X3Xq - cosB—-—Z-xl -X2+-c08C—x2 +x2=0

Xg - X3 (sin A - ag sin C -} a3 - sin B) 4 x5 - x; (sin B 4 a3 . sin A)

+x1+%X3 (8in C + a2 -sin A)+x,2-a;-sin B }x.2- a3.smC=0

so bestimmen sich a; und ag aus den beiden Gleichungen:

—1 1 und 2cos B _ —2-.cosC
ag-sinB  ag-sinC sin B4 ag-sinA  sinC—ag-sin A

woraus folgt:

gy = — 2 '_SIEC ; 2-sin A -4 2a;3-sinA. cos B+-2a3-sin A.-cosC=0
sin
oder
az-sinB+az-sinC=0 2cos Bl — cosC
ag-cosB4az-cosC+1=0 |—smB| smC

a3=sinB : sin(C—B)
ag = —sin C:sin (C— B)
Diese Werte miissen die Gleichung: sin A 4 a; - sin C

~+ ag - sin B =0 erfiillen, da der Koeffizient von x; .- xg Null ist;
in der Tat ist sin A - sin (C — B) — sin? C -} sin? B =0.
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Die Gleichungen der Apollonischen Kreise sind deshalb:
sin(B—C)Zxz-x3-siInA 4 (x28inC —x3sin-B) 2%, -sinA==0
sin (C —A) X xy-x3-8mA—+ (xgsinA—x;-sinC)Xx;-sin A=0
sin (A— B) Zxy - x3-8inA +(x;-sinB—x3-sinA) 5x; -sin A+ 0

Die Durchschnittssehnen dieser Kreise mit dem Umkreis
haben deshalb die Gleichungen :
X2-8InC —x3.-simB=0, x3-sin A — x; - 8in C =0,
X1 -8iInB—3x9-sin A=20
und schneiden sich darum im Winkelgegenpunkt des Schwer-
punktes (Punkt v. Lemoine).

Fiir ein beliebiges P’ lauten die entprechenden Gleichungen:
U.sin(B—C)+[x2(1—sin2B-P")-smnC
—x3(1 —sin2C-P)sinB]L=0
U-sin(C—A)+4[xs(1—sin2C.P)sm A
—x1(1 —sin2A-P)sinC]-L=0
U-sin(A—B)+[x;(1 —sin2A.P')sinB
| —x3(1 —sin2B-P’).sinA]-L=0
wo zur Abkiirzung:
Xp X3+ SINA--}X3-% -sinB4+x,-x-:smC=0U und
X1-8inA+xp-sinB-x3-8inC=1L
gesetzt worden ist. |

Die Durchschittssehnen dieser Kreise mlt dem Umkrelq
haben zu Gleichungen: '

X3(1—sin2B.P)-sinC—x3(1 —sin2C-P’).-sin B=0
x3(1 —sin2C-P)-sin A —x;(1 —sin2A-P).sinC=0
x;(1 —-sin2A.-P).-sinB—x,(1 —sin2B-P’)-sin A =0

und schneiden sich also in demselben Punkt 8, dessen Ort man
durch Elimination von P’ aus zwei der Gleichungen erhilt:

X3 -sin C — x3 - sinB=2P"sin B .sin C (x2 - cos B— x3 - cos )
Xg-sin A — x;-sinC=2.P". sinC»sinA(xs-cosC——m - cos A)

(x2 -sin C —x3-sin B) (x5 - cos C—x; -cos A)-sin A
= (x3 - sin A — x; - sin C) (%2 - c0s B — x5 - cos C) sin B



oder: Xy X3 (sin2C-sin A —sin2B-sin A) ~
| +x3-x1(sin2.A - sin B—sin2C - sin B)
+x;-x(6mMm2B-sinC —sin2A-smnC)=0 oder

X+:Xg-sn2A.-sin(B— C)+4+x5-%x;-51n2B-sin(C—A)
' + %X -%X-8in2C-sin (A ~ B)=0

Der Ort von P ist also ein dem Grunddreieck umschrie-
bener Kegelschnitt, der ausserdem durch seinen Umkreismittel-
punkt und seinen Hohenpunkt hindurchgeht.

Die Kreise aus %, B und € sollen sich in £ und £’ schneiden;
so kann man den Ort dieser Punkte bestimmen, indem man aus
den zugehoérigen Gleichungen P’ eliminiert:

pr_ U.sm(B—C)-+L(x:-sin C'— X3 - sin B) fir % und
—(x3:c08C—x2-cosB)-2-stnB-sinC- L .
P,_TU-sin(O—A)+L(X3-SinA-—~X1-smC)
—(x1c08A —x3-¢c08C)-2smmC.sinA-L
woraus: -- U[(x;cos A — x3-cosC)sin A -sin(B— C)
— (X3 - €08 C — X2 - cos B) - sin B - sin (C — A)]
— L (x; - cos A — x5 - cos C) (x2 - sin C — x3 - sin B) - sin A
—(X3-smA—x;s8inC)-(x3-cosC—x2-cosB)-sin B]=20
nun ist:  (X;:cos A—x3-cos C)sin A -sin (B — C)
— (%3 +c0sC—Xp:cosB)-sinB.sin(C—A)
=x;-siInA-cosA-sin(B - C)-! xo8in B-cos B:sin(C—A4A)
ox e CO.SC(COSZ B-—cos2C n cos2C — cos2A)
2 : 2
=x,sin AcosA-sin(B—C)4 x3-sinB-cosB.sin(C— A)
- x3 - 5in G - cos C - sin (A — B) !
Somit lautet die Gleichung des Ortes fir £ und O’:
—Usin2A - -sin(B—C)-x; +sm2B:sin(C — A) xp
| ~+sin2C - sin (A — B) x3]
—L[sinA(sin2B —sin2C)x3 x3 +-sin B(sin2C —sin2 A)x3- x;
+sinC(sin2A —sin2B)xyxo =0 oder
U-"sin2A'sin(B-—C) x; —LZsm2A - sin (B — C)xzxs-—O

also eine Gleichung vom dritten Grad.

fir B

oder
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Die reprisentierende Kurve, welche zu dieser Gleichung
gehort, geht durch die Ecken des Grunddreiecks, durch die ima-
giniren Kreispunkte, durch den Hohenpunkt und den Umkreis-
mittelpunkt, ausserdem aber durch die Schnittpunkte der Geraden
3x;-8in2 A - sin (B— C) =0 mit dem Kegelschnitt 3x; - x3-sin2A
- sin (B — C) =0, sowie durch den vierten Schnittpunkt des Um-
kreises mit eben diesem Kegelschnitt, endlich auch durch die
Schnittpunkte der Geraden Zsin2A -sin(B—C)-x, =0 mit
der unendlich fernen Geraden, d. h. die Gerade, die durch die
Gleichung gegeben wird, =sin 2 A - sin (B — C)x; =0, d. h. die
Euler’sche Gerade ist Asymptote an unsere Kurve dritter Ordnung.

Herr Prof. Neuberg in Littich hat, angeregt durch meine
Arbeit, den Ort von O und £’ zuerst bestimmt; er fand eine
Gleichung vierten Grades, aus der sich aber ein linearer Faktor
absondern ldsst, so dass unsere Resultate iibereinstimmen.

Aus den Formeln fiir die Koordinaten von %, 8 und € folgt:

Trifft ein Kreis aus M die Geraden, MA, MB und
MC bezw. in den Punkten A;, By, C;, so schneiden seine
Tangenten in A;, B, und C, die entsprechenden Gegen-
seiten des Grunddreiecks in Punkten (¥, B und €) einer
Geraden, welche Tangentean die Parabel von Kiepertist.

Die Kreise aus U, B und € durch A, bezw. B, bezw. C teilen MA,
resp. MB und M C im gleichen Verhaltnis; allgemein gilt der Satz:

Die Kreise aus %, B und €, welche MA, MB und MC
im gleichen Verhaltnis teilen,bestimmen eine Kreisschar.

Beweis: ‘ '

Die Punkte A;, B; und C; teilen M A, bezw. MB und MC
in gleichem Verhiltnis, sodass MA,=MB, =MC, = g; dann

sind die Koordinaten von A;, B; und Ci:

X, } X9 | X3
fir A, cosA-HI-;OS(C—B) l—k-cosB ]f—k-cosC
» By 1 '; k cos A COSB-I—k;:OS(A“C) I—k . cos C
». G 1— —;1_{ .cos A L=k cos B cosC+k-;30$(B—A)




Von der Gleichung des Kreises aus % durch A; brauchen

wir bloss die linke Seite zu notieren; die rechte Seite ist uns
schon bekannt.

Diese linke Seite 1autet:

. Y BYR — ain?
<in 2 A cos A}k - cos(C—B) | sn2B P sin? B
2 sin (C — B)
_ 2
-sinC——1 - k-cosB]

2 S —_— 2
—[—sinZC[M-SinB—1 k-cosC]:...

sin (C — B)
Analog hat man fir den Kreis aus 3B:

P 2A . 2
sin2A|:?'—IE—é———£-sinC—]L 5 k-cosAJ

sin (A — C)
4 sin2B [cosB +k-cos{A— C)]'—’
2
+ﬂm20[gﬁfgé%ﬁmAf-L“k.mscT:a“
sin (A —

Subtrahiert man die beiden Gleichungen, so bekommt man

links, unter Weglassung der Ausdriicke, die beiderseits vom
Gleichheitszeichen vorkommen:

sin 2 A{ [cos A+ kcos(C— B)]z_ (1 ; k)z_ cos? A

2
¥

e
M (l—k)-cosA-sinC}
sin (A — CO)

| 1 —k\2 P—sin?B .
+sin2B{<—2—) . c0? B— ———— -sin C(1—k) - cos B

sin (C — B)
— [cosB+k - cos (A — C)]z}
2
- (o T sin B sin A
+sin2C l(P sin® ) (1 — k) - cos C (sin (C—B) 1 sin (A — C)) }

Die Glieder mit k2 fallen weg; denn
2(C— B) — cos? — cos2(A — OV
sin 2 A[cos (C—B)—cos A] +Sin2B[coszB cos?(A C)J: 0

4 4
und es bleibt:
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sin2A{— k - cos A [cos (B+ C) — cos (C — B)]

sinf A — P :
1— k) o5 A -sin 0}
=+ ( )sin 40 cos A - sin l

+ sin 2 B‘k cos B [cos (C -+ A) — cos (A — (O)]

sin? B — P

Ll L e (C — B)
+sin2C {(P _ sin? C) (1 — k)

-cosB-sinC}

osC c0s2C —cos2A+cos2B—cns2C 1
2. sin (C — B) - sin (A — C) J

=smn2A l+k-cosA-2-sinB-sinC—}-(l—k)M -cOsA- sinC}
| sin (A —C)
A P
+s1n2B {_k-cosB-2-sinA-sinC+ (l—k)w -cosB-sinC}
sin (C — B)

~+ sin 2C (P — sin? C) (1 —k) - cos C - sin C. sin (A — B)
sin (B — C) - sin (C— A)
=4 -k-sin A -sin B-sin C (cos® A — cos® B)

— §in2
gl R e R sinCesin 2 A
sin (C — A)
+(1a—k)w~cosB-sinC- sin 2 B
sin (B— ()
(P — sin® C)

T (B—C)-sin(C—A)

— —4k-sinA-.sinB.sinC-sinC-sin(A — B)
: : P — sin? A
1—k)-sin(A—B)-sinC
+.( ) ( ) Zsin(O — A) -sin (A — B)
-cos A-sm2 A

- cosC-sinC-sin2C-sin (A — B)

Nun wissen wir bereits, dass die rechte Seite der zuge-
horigen Gleichung durch sin C - sin (A — B) teilbar ist, und dass
der Rest durch Vorriicken der Buchstaben und Indices unge-
andert bleibt. Dasselbe gilt aber, wie man sieht, von der linken
Seite, womit der Satz bewiesen ist. -



VI, Eine Beziehung zwischen der Euler’schen Geraden und
der Parabel von Kiepert.

Zunachst will ich bemerken, dass die Parabel von Kiepert
auch Parabel von Neuberg genannt wird; Lemoine gebraucht
diese Bezeichnung ohne Zweifel auf Grund der Arbeit Neubergs:
«Mémoire sur le Tetraédre» in den Mémoires de I’Académie
Royale de Belgique XXXVII. Von dieser Arbeit erhielt ich
Kenntnis, nachdem der erste Teil zu der meinigen bereits abge-
schlossen war. Ich kann nicht umhin, an dieser Stelle dem her-
vorragenden Forderer der Dreiecksgeometrie, Herrn Prof. Neuberg
in Liittich, fiir seine vielen Anregungen meinen besten Dank
auszusprechen. _

Die hervorgehobene Beziehung lasst sich in folgendem
Satz aussprechen:

Trifft irgend eine Tangente der Kiepert’schen Parabel die
Seiten des Grunddreiecks in den Punkten U, B und € und zieht
man um dieselben als Mittelpunkte die Kreise durch irgend einen
festen Punkt O der Euler’schen Geraden, so ist der Ort ihres
zweiten Schnittpunktes £’ eine zyklische Kurve dritten Grades
mit einer zur Euler’schen Geraden parallelen Asymptote. Der
feste Punkt £ ist Doppelpunkt dieser Kurve; seine Tangenten
stehen zueinander senkrecht und berithren ausserdem die Parabel
von Kiepert.

Bei der Darlegung dieses Satzes werden wir Gelegenheit
haben, von derjenigen Methode Gebrauch zn machen, die schon
Descartes zur Losung des Tangentenproblems angewandt hat.

Nun wollen wir im Geiste Descartes daran gehen, den an
die Spitze gestellten Satz zu beweisen. Descartes ist ja der
eigentliche Begriinder der analytischen Methode, von der wir
Gebrauch machen.

Wir beniitzen die Figur 2; nach dem zugehorigen Texte
ist BC=p-sin (C— A)—sin? A:sin (C — A). In Bezug auf ein
rechtwinkliges Koordinatensystem mit dem Anfangspunkt in
B und mit BO zur + x Achse (die + y Achse soll dariiber liegen).
sind daher die Koordinaten von B, wenn noch p-sin-(C—A)=F
gesetzt wird: :



Xyg=BC—3BC-cosC
—sin A -sin (C— A) 4 (sin? A — P) cos C:sin (C — A)
=gsin? A-cosC—P-.-cosC+sinA-sinC-.cosA
—sin A -cos C-sin A:sin (C— A)
=—P-cosC+HsinA-sinC-cosA:sin(C— A) und

Yp = (P —sin? A) - sin C:sin (C — A)

Ahnlich bekommt man fir %:
xy=—P +sin? C:sin(C— B); y, =0

Die Gleichungen der Kreise aus % und B durch einen
festen Punkt © mit den Koordinaten a und b lauten dahers

[X _ M]‘Sr i [a. A e P]2+ b bezw.

sin (C — B) sin (B — B)
: . 4 . 5 72 B —_ ain? 72
{ . Pcos()j—f-—smA sinC-cosA + y——P_. sin A-sinC
sin (C — A) ] L sin (C — A) ]
s i . sl ’ T T —sin2 72
i PcosC‘—l—smA sin C cosA 4 b__l-'f sin A-sinC
sin (C — A) | i sin (C—A) ]
-oder (x? 4 y? — a? — b?) sin (C — B)
—2x(sin? C— P)=—2asin? C — P) bezw.

(x? 4 y2 — a? — b%) sin (C — A)
—2x(—P-cosC + sinA-sinC-cos A)

—2y(P—sin?A)-sinC=—2a(—P.cosC+}sinA-sinC- cos A)

—2b(P —sin?A)-sinC oder
(x2 +y2-—a2—b2) sin (C — B) ’
—28in?C(x—a)=—2P (x—a) und

(x? + y2 — a2 — b sin (C — A)
+2sinA.sinC[—(x—a)cosA 4 (y—b)sinA]
=2P[sinC-(y —b)—cosC- (x — a)]

Verschiebt man das Koordinatensystem parallel sich selbst
in den Punkt £ (a, b), so lauten die beiden letzten Gleichungen
in Bezug auf das neue Koordinatensystem (man hat nimlich x
«durch x }-a und y durch y | b zu ersetzen):
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(x? +y*+2ax+2by)sin(C—B)-—2smm?C-x=—2P-x
x*+y?*+2ax+42by)sin (C— A)
+2sinA-sinC(—xcosA-+|ysinA)=2P-(sinC-y—cosCx)

Aus diesen beiden Gleichungen bekommt man durch Elimi-
nation von P die Gleichung:

(472 4+2ax+2by)[—2x-sin(C—A)
—2.sm(C—B)(sinCy—cosCx)] —4-sin A
+sinC(—x-cosA+y-sinA)x+4sin? C-x(sinC.y —cos Cx)=0

und dies ist die Gleichung fiir den Ort der Schnittpunkte der
Kreise aus %A und B durch O (a,b). Da in dieser Gleichung
die Glieder mit der 0. und 1. Potenz der Verinderlichen fehlen,
so ist der Punkt © (a, b) Doppelpunkt der Kurve, ferner ist ihre
reelle Asymptote parallel zur Geraden:

—2x [sin(C— A)—sin(C—B)-cosC] —2y-sinC - sin (C—B) =0

welche parallell ist zur Geraden von Euler, wie spiter die Gleichung
der Euler'schen Geraden zeigt. Die Tangenten®im Doppelpunkt.
haben zur Gleichung: '

x2[—4asin(C— A)+4a-sin(C—B)-cosC-+4sinA-sinC
-cos A —4sin? C - cos C]

4 y2[—4bsin(C—B)-sinC] +4xy[—b-sin (C—A)
+ b -sin (C— B) - cos C— sin? A - sin C - sin® C
—a-sin (C—B)-sinC]=0 oder-

; 2
- (1) . bsin (C— B)-sinC —i—z[—b-sin(C——A)
L X

X
+b.sin(C—B)-cosC—a-sin(C—B)-sinC
—sin? A - sin C - sin? (]
—a-sin(C—A)+a-.sin(C—B)-cosC4sinA.sinC-cosA
—sin?C.cosC=0

aus dieser Gleichung ergeben sich 2 Werte fir Y.
X

(0= (3 G-

so stehen die beiden Tangenten zu einander senkrecht, oder
nach obiger Gleichung:



a[sin (C— A)—sin(C—B)-cosC]+b-sin(C— B)-sinC
—sin A-sin C-cosA+4sin?C - cos C=20

Dies ist die Gleichung der Euler’schen Geraden, denn setzt

n A und cos A

man fir a und b die Koordinaten St des Umkreis-

mittelpunktes in diese Gleichung ein, so kommt:
sin A [sin (C—A)—sin(C—B) - cos C] +cos A-sin(C— B) -sin C
—2sinA-sinC-cosA+42.8in?C-cosC=0
oder wegen
—2.sinA-sinC-cosA--2sm?®C-cosC=smmC(sin2C —sin2 A)
= —2-8inC-cosB.sin(C— A) oder

sin (C—B)-sin(C—A)+sin(B—C)-sin(C—A)=0_

Die Koordinaten des Umkreismittelpunktes erfiillen also die
Gleichung der erhaltenen Geraden, somit liegt er auch auf dieser
Geraden. Setzt man aber die Koordinaten des Hohenpunktes:
sin C-cos B und cos B-cos C fir a und b in diese Gleichung
ein, so kommt:

sin C « cos B [sin (C — A) — sin (C — B) - cos C] 4 cos B - cos C
+sin(C—B)-sinC—sinA-sinC-cos A+ sin? C-cosC=0
.oder
sin C {cos B [sin (C— A) — sin (C—B)-cosC]+ cosB - cosC
. sin (C — B) -~ sin A - cos A + sin C - cos C}
———sinC{cosB .sin (C — A) — 31“22A+S“‘220}

zsinC{cosB-sin (C— A) —|—cos(C+_A)-sin(C—A)}

=sinC{cosB-sin(C—A)—costsin(C—A)}:();

-die Koordinaten des Hohenpunktes erfillen also die Gleichung
der erhaltenen Geraden, somit liegt er auch auf derselben. Die
‘Gerade geht also durch den Umkreismittelpunkt und den
Hohenpunkt und ist daher die Euler’sche Gerade. Damit ist ein
Teil des Seite 28 gegebenen Satzes bewiesen; um auch den Rest
zu beweisen, schreiben wir zunichst den Richtungskoeffizienten
fir die Tangenten im Doppelpunkt hin:
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y\ _—b-sin(C—A)+4b-sin(C—B)-cosC
( )1,;* 2b - sin (C— B) -sin C ‘

. —a-sin(C—B)-sin C +sin® C—sin? A-sinC
B 2b - sin (C— B)-sin C

X

+V[—b-sin (C—A)+b-sin(C—B)-cosC—a-sin(C—B)-sinC

~+sin® C—sin? A -sinC)?2 — 4bsin(C—B)-sinC[a-sin (C—A)

—a-sin(C—B)-cos C—sinA -sinC - cos A }-sin?C - cos C]
2b - sin (C—B) - sin C

Die Gleichung dieser Doppelpunktstangenten in Bezug auf
das feste Koordinatensystem durch B lautet daher:

y—b —b-sin(C—A)+b-sin(C—B)-cosC
X—a 2b-sin(C—B) smC

1 —a-sin(C—B)-sinC--8in® C—sin? A -sinC
2b-sin(C— B)-sinC

+[—b-sin(C—A)-}+b-sin(C—B)-cosC —a-sin(C - B)-sinC

-+ sin®C—sin?A - sin C]?*— 4b-sin(C—B)-sinC[a-sin(C— A)

—a-8in(C—B)-cosC—sin A - sinC - cos A} sin? C- cos (]
2b-sin (C—B)-sinC (1)

Der Doppelpunkt © wird zur Spitze, wenn der Radikand
verschwindet. O liegt dann auf der Kiepert’schen Parabel. Denn
man iiberzeugt sich ohne weiteres, dass der Null gesetzte Radikand
eine dem Dreieck ABC eingeschriebene Parabel vorstellt, und
dass die Koordinaten ibhrer Beriihrungspunkte auf den Dreiecks-
seiten mit denen iibereinstimmen, welche die Gleichung der
Kiepert’schen Parabel in trimetrischen Koordinaten liefert.

Liegt nun der Punkt © (a, b) auf der Geraden von Euler,
so gilt:

a=sin C(sinA-cos A—sinC - cos C) — b - sin (C — B) - sin C:
sin (C— A) — sin (C — B) - cos C
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Die Gleichung (1) schreiben wir in der Form:

{(y —1b)2b - sin (C— B) - sin C + (x — a) [b - sin (C — A)
—b-sin(C—B) -cosC+a-sin(C—B)-sinC—sin3C
+ sin? A - sin C]}

—(x—a)?{[—b-sin(C—A)+b-sin(C—B)-cosC—a
. sin (C — B) - sin C - sin® C — sin? A - sin C]>? —4 b - sin (C — B)
-sinCla-sin(C—A)—a-sin(C—B) -cosC—sinA -sin C
-cos A -} sin® C - cos O]}

und driicken hier a durch b aus, so kommt mit Wegschaffung
der Nenner:

[(y—b)-2b-sin (C—B) - sin C [sin (C— A) — sin(C— B) - cos C]?
+{ x[sin(C — A) —sin (C—B) - cos C]
—sinC(sin A cos A — sinC - cos C)

-+ b - sin (C — B) - sin C} - {b [sin (C — A) — sin (C — B) - cos C?
— b - sin? (C — B) sin? C — sin C (sin? C — sin? A) [sin (C — A)
— sin (C — B) cos C ]+ sin(C — B) - sin C [sin C (sin A
-cos A—sin C - cos C)]}]2
={x[sin (C — A) —sin (C—B) - cos (]

— sin C(sinA - cos A—sin C - cos C) b - sin (C — B) sin C}
{[—"b-sin(C—A)+b-sin(C—B)-cosC—a-sin(C—B)
-sin C -+ sin® C —sin? A - sin CJ? — 4 b - sin (C — B)
-sinC[a-sin(C—A)—a-sin(C—B):-cosC

— sinA - sin C - cos A +sin? C - cos C]}
={x[sin (C —A)—sin (C - B) - cos C] —sin C(sin A - cos A
—sinC-cos C) + b - sin (C — B) - sin Cf
: [{b [sin (C — A) —sin (C—B) - cos C]2 — b - sin? (C — B) - sin? C
—sin C (sin? C — sin? A) [sin (C — A) —sin (C— B): cos C]
+sin (C — B) - sin'C - sin C (sin A - cos A — sin C - cos C)}?
—4b-sin(C—B)-sinC[sinC(sin A -cos A—sinC - cos O)
—b-sin(C—B)-sinC—sin C (sin A - cos A — sin C - cos C]
-[sin (C — A) —sin (C — B) - cos CJ? ]
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oder nach Auflésung der Klammern und Reduktion:

(y —b)? [sin (C — A) —sin (C —B) cos C]? - 4 b? sin? (C — B) - sin? C
+4(y —b)-b-sin(C—B) sinC-{x[sin (C—A)
—sin (C —B)-cos C] — sin C(sin A - cos A —sin C - cos C)
+b-sin (C— B) - sin C} - { b - [sin (C — A) — sin (C — B) - cos CJ?
—b - sin? (C — B) - sin? C — sin C (sin? C — sin? A) [sin (C — A)
— sin (C — B) cos C] - sin (C —- B)

. sin C - sin C (sin A - cos A — sin C cos C)}

— 412 sin? (C — B) - sin? C {x [sin (C — A) —sin (C — B) - cos C]
—sinC - (sin A cos A — sin C cos C) + b - sin (C — B) sin C

oder wenn man beide Seiten mit 4b-sin(C — B) - sin C dividiert:

(y —b)? [sin(C—A)—sin(C—B) - cosC}? - bsin(C—B) sinC
4+ (y—b) - | x[sin (C — A) — sin (C — B) cos C]
—sin C(sinA - cos A —sin G- cos C) -}- b - sin (C— B) - sin C}

-{b[sin (C — A) —sin (C — B) cos C]2—bsin? (C — B) (2)

- 8in? C — sin C (sin? C — sin? A) [sin (C — A)
— sin (C — B) cos C] + sin (C — B)
.sin? C (sin A - cos A — sin C - cos C) } =
—Db - sin (C — B) sin C { x [sin (C -- A) — sin (C — B) cos C]
—sin C(sin A - cos A — sinC - cos C) + b - sin (C — B) - sin C °

Fir die Glieder mit b® hat man links:

b? [sin (C — A) — sin (C — B) - cos CJ2 sin (C — B) - sin C
—b?[sin(C—A) —sin(C—B):-cosC]2-sin(C — B)-sinC
~+ b? sin® (C — B) - sin® C==h? - 5in® (C — B) - sin® C

und rechts hat man ebenfalls b - sin® (C — B) - sin® C,

Die Glieder mit der 3. Potenz von b fallen also weg und
es bleibt bloss eine quadratische Gleichung in b.

D. h. Bewegt sich der Punkt © (a, b) auf der Geraden von
Euler, so umhillen die Tangenten durch © an die durch ihn
gehende zyklische Kurve einen Kegelschnitt und zwar muss es
eine Parabel sein, deren Direktrix die Euler’sche Gerade ist,
denn zwei zueinander senkrechte Tangenten schneiden sich in ihr.

3
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Setzt man in der Gleichung (2) b=0, so kommt:

y {x [sin (C — A) — sin (C — B) - cos C]
—sinC (sin A - cos A —sin C - eos C) |
-4 sin C (sin? C — sin? A) [sin (C — A) — sin (C — B) - cos C]
—+ sin (C — B) sin? C (sin A - cos A — sin C cos C) | =0

sin C (sin A cos A—sin C cos C)

; ; Tangenten
sin (C—A)—sin(C—B)-cosC _
an die Parabel. Daraus schliesst man, dass auch die Seiten CA
und A B Parabeltangenten sind, denn die Wahl von BC zur
x Achse war ja eine willkiirliche, Unsere Parabel ist also mit
der Kiepert’schen identisch und damit ist auch der zweite Teil

des Satzes auf Seite 27 bewiesen.

| Fir die Tangentenrichtungen im Doppelpunkte © (a, b) der
zyklischen Kurve hat man:

also sind y=0und x =

X

(X> — —b-sin(C— A)—+b-sin (C—B) - cos C
1,2
—a-.sin(C—B)-sinC+ sin® C—sin®? A -sinC

+ V[—bsin(C—A)4b-sin(C—B)cosC—a
+sin (C — B) - sin C +} sin® C — sin? A - sinCJ?
—4bsin(C—B)sinCla-sin (C— A)—a
-sin (C — B)-cos C —sinA-sinC-cosA
1 sin?C-cosC]:2b-sin(C—B) -sinC

Die Tangente ¢ des Winkels dieser beiden Tangenten

1st gleich .
(X) — ()—7> :1 4 (}’_) . (X) oder
Eh &) X XX/

V[—bsin(C—A)+ b-sin (C—B) - cosC
—a-sin (C — B) - sin C 4 sin® C — sin? A
-8in C]? —4b-sin(C—B) -sinC[a-sin(C— A)

—a-sin(C—B):.cos C—sin Asin C - cos A

.+sin20-cos0]-4b - sin? (C — B) . sin? C




4b?sin? (C —B) -sin? C+4b - sin (C— B) - sin C[a - sin (C —A)
- —a-sin(C—B)cosC—sinA-sinCcos A+ sin® C-cos ]

oder wenn man kiirzt und dén reduzierten Ausdruck —c setzt,
den Bruch wegschafft und beide Seiten der erhaltenen Gleichung
ins Quadrat erhebt:

{b[— sin (C — A) 4 sin (C — B) - cos C] —a - sin (C — B) - sin C
+ sin® C — sin2 A - sin C
—4b-sin(C—B)sinCla-sin(C— A) —a-sin(C— B), cosC
—sinAsinC - cos A+ sin? C - cos C]

— ¢2{b - sin (C — B) - sin C +} a [sin (C — A) — sin (C — B)

- cos C] —sin A - sin C - cos A }-sin? C - cos CJ?

fur ¢ = --1 kommt als Spezialfall dieser Kegelschnittschar:

b2 {[—sin (C— A) -} sin (C — B) - cos CJ? +- sin? (C — B) - sin? O}
+ a? {sin? (C — B) - sin? C + [— sin(C — A) + sin (C— B) - cos CJ2}
—2af{sin (C — B) - sin? C (sin? C — sin? Ay — [sin (C — A)

— sin (C — B) cos C] - sin C [— sin A cos A +-sin C cos C)}

—2b{[sin (C — A) — sin (C — B)cos C] - sin C (sin? C — sin2 A)

+ sin (C — B) sin? C [— sin A cos A +- sin C - cos C]}

}-sin? C(sin? C—sin? A+ sin? C[—sin A - cos A+4-sinC-cosCJP=

oder wenn man beide Seiten der Gleichung durch
[— sin (C — A)~+ sin (C — B) - cos C]* 4 sin? (C — B) sin? C
dividiert

b — [sin (C — A) — sin (C— B) - cos C) - sin C (sin? C — sin® A)

—+ sin (C — B) - sin? C (sin C - cos C—sin A - cos A) -

[—sin (C— A) -} sin (C — B) - cos C]2+4- sin?(C — B) - sin2C

—+{a— sin (C -— B) - sin® C (— sin? A - sin? C) — [sin (C —A) 2

—sin(C—B) :cosC]-sinC(sinC-cos C — sinA-cosA

[— sin (C— A)4-sin (C—B): cos C]? +5in?(C—B) - sin2 C

(3]

=0; denn die Summe der Quadrate der 2. Glieder in den
Klammern ist ja:



(sin? C — sin? A)sin?C { [— sin (C — A) - sin (C — B) cos CJ?
+ sin? (C —B) - sin2 C} _ '

+ (sin C - cos C — sin A cos A)? - sin? C | sin’ (C—B):sin*C

- [sin (C — A) — sin (C— B) - cos C? |}

: [— sin (C — A) + sin (C-—B) - cos C]* + sin? (C— B) - sin? C

== (sin? C — sin? A) . sin? C ~+sin? C(sin C - cos C — sin A - cos A)?
wie es sein soll.

Die erhaltene Kurvengleichung ist die eines Kreises vom
Radius 0, d. h. die eines Punktes. Dieser Punkt ist nichts anderes

als der Brennpunkt (F) der Kiepert’'schen Parabel. Dies kann
folgendermassen eingesehen werden. Setzt man im Ausdrucke

fir ¥ die Quadratwurzel = 0, so erhilt man die Gleichung einer
| X
~ Parabel und zwar der Kiepert’schen, denn aus ihrer Form folgt,

dass die x-Achse und die dazu Senkrechte
- sin C(sin A - cos A'— sin C - cos C)
" sin(C — A) —sin(C — B)- cosC
Tangenten dieser Parabel sind. Darum sind alle Dreicckseiten

Tangenten, denn eine jede kann zur x-Achse gewihlt werden.
Nun macht auch dieEuler’sche Gerade auf der x-Achse den Abschnitt

sin C(sin A - cos A—sin C - cos C)
sin (C —A)—sin (C—B) -cos C

darum ist sie die Direktrix der Parabel, welche mit der Kiepert'schen
3 Tangenten und die Direktrix gemein hat, also mit ihr identisch
ist. (Wir haben hiebei als bekannt vorausgesetzt, dass die Direktrix
einer jeden dem Dreieck ABC eingeschriebenen Parabel durch
den Hohenpunkt dieses Dreiecks geht).

Die Berithrungssehne zu den Tangenten b =0 und
a:sinC[sinA -cos A —sin C - cos C]
sin (C:— A) — sin (C— B) - cos C
hat nach der Parabelgleichung die Gleichung:

~—b - [sin(C—A) —sin(C—B)-cosC]—a-sin(C— B)-sin C
+ sin® C —sin* A - sin C=20
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Man weiss, dass sie durch den Brennpunkt geht, ihre Gleichung
wird durch die Koordinaten des erhaltenen Grenzkreises erfiillt,
denn durch Substitution derselben bekommt man:

— [sin (C — A) — sin (C— B) - cos CP? sin C - (sin? C — sin? A)
—sin (C — B) - sin? C (sin C - cos C —sin A - cos A)] sin (C — A)
— sin (C — B) cos C]

— sin? (C — B) - sin® C (sin® C -— sin? A
-+ sin (C — B) sin? C (sin C cos C — sin A cos A) [sin(C — A)
— sin (C — B) cos C]

- sin C (sin? C — sin2 A) {[sin (C — A) — sin (C — B) - cos CJ?
-} sin? (C — B) - sin2 C}
wo der gemeinsame Nenner weggelassen ist oder:

— sin C - (sin C — sin? A){ [sin (C — A) — sin (C — B) cos CT?
~+sin2 C - sin® (C — B) } 4 sin C (sin? C — sin? A) { [sin (C — A)
— sin (C — B) cos CJ? 4 sin? (C — B) - sin2 C} =0

Dieser Grenzkreis liegt, aus Griinden der Symmetrie, auf
der Parabelachse und da er noch auf einer davon verschiedenen
Geraden durch den Brennpunkt liegt, se muss er mit dem Brenn-
punkt zusammenfallen w. z. z. w. Wir haben also den Satz:
Es gibt einen einzigen Punkt O, dessen Tangenten durch die
imaginiren Kreispunkte gehen und zwar ist es der Brennpunkt
der Kiepert’schen Parabel, welcher auch der allen zyklischen
Kurven gemeinsame Brennpunkt ist.

VII. Bestimmung der Asymptoten der behandelten zyklischen
Kurve (allgemein). '

Die allgememne Gleichung derselben lautet: (s. pag. 29)
x*4y*+2ax+2by)[—2x-sin (C—A)
— 2sin (C — B) (sin C - y — cos C x)]
—4-sinA-smC(—x-cosA—+y-smA)x
+4sin?C-x(sinCy—cosCx)=0
Die Gleichung der reellen Asymptote hat die Form:
2 x [cos C - sin (C — B) —sin (C — A)]
—2y-sin(C—B) -sinC4243=0
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denn bekanotlich erhilt man die Gleichungen der Asymptoten,
indem man in der Kurvengleichung die Summe der Glieder
hochsten Grades = Null setzt und dann diese Gleichung in die
linearen Faktoren zerlegt; dann unterscheiden sich die Glei-
chungen der Asymptoten von diesen Faktoren nur durch eine
Konstante. Fiir unsern Fall ist die eine Konstante 43, welche
zu bestimmen ist; zunichst hat man:

2x [cos C:smn(C—B) —sin(C— A)]
—2y-sin(C —B)sinC=— 1

Darum wird die Kurvengleichung, wenn man noch y durch
x und Z; ausdriickt und den Nenner sin? (C — B) - sin® C weg-
schafft:
— J3 x { sin? (C — B) - sin? C 4~ sin2 (C — B) - cos? C
- sin? (C — A) — 2sin (C — A) - sin (C — B) - cos C}
—x2-4.sinA-sinC{—cos A sin?(C— B) - sin®C
—+sin A - sin (C — B) - sin C [sin (C — B) - cos C — sin (C — A)]}
~+ 4 sin* C - sin (C — B) [cos C - sin (C — B) — sin (C — A)] x*
— 4 -sin* C - x2 cos C - sin? (C — B) + Glieder mit x4 bekannte
Glieder = 0.

13 ist nun so zu bestimmen, dass der eme sich hieraus
ergebende Wert von x unendlich wird; dies ist der Fall, wenn
der Koeffizient von %2 =0 ist (dies lehrt sofort die Substitution

X =5 ;17), hieraus folgt:

— A3 =4[sinA - sin? C - sin (C — B) | — cos A sin (C — B) - sin C
+ sin A - sin (C — B) - cos C — sin A - sin (C — A) }

+4.sm*C-sin(C—B)-sin(C—A)]:N WO
N =sin? (C — B) +} sin? (C — A)
— 2sin(C—B) -sin(C— A)- ¢os C also:

— }3=[4sin A - sin? C - sin (C — B) {— sin (C — B)
-sin (C — A) —sin A - sin (C — A)}
+4.8m*C.sm(C—B)-sin(C—A)]: N oder
— l3=[4sin A - sin? C - sin (C — B) sin (C — A)
{—sin (C —B) — sinA}
+4-sinfC-sm(C— B)-sin(C—A)]:N ‘oder
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—A3=4-sinA - sin? C . sin (C — B) : sin (C — A)
(—2-sinC-cosB)44 sin*C-sin(C—B) -sin(C—A):N

oder — — 4 sin® C sin (C — B)
-sin(C— A)[2sinA-cosB—sinC]: N
=—4.smn3.C.sin (C—B)
-sin (C— A)[2sin Acos B—-sin(A 4+ B)]: N
=—4-8in3C-sin(C—B)-sin(C— A)sin(A—B): N
—Ag=4-s1n3C.sin(A—B)-sin(B—C)-sin(C— A):N -

Hiebei ist N =sin? (C — A) + sin? (C — B)
—2-sm(C—B)-sin(C—A)-cosC
—=sin? C (cos® A 4 cos? B—2cos A - cos B - cos C)
—+cos? C(sin? A +}-sin? B— 2sin A - sin B - cos C)
—2sin-C-cosC(sinA-cosA-+}sinB-cosB
—sinA-cosB:cosC—sinB - cosA - cos ()
= sin?® O (cos® A + cos? B 4 cos? C
—¢0s? C—2-cos A-cos B cos ()
+c0s?2C-smn?C—2.sinC-cosC(sin A - cos A
+ sin B - cos B—sin C - cos C)

Nun ist:

0052A+0052B+-00530:—;—(3+coSZA—|—cos2B+cos2 C)

,—_%[3_20030-cos(A—B)+2cos'~’c- 1]
:%[2—4-(;osA-cosB-cosC]:l—ZcosA‘ cos B .cos C

darum wird:
N=—sin?C[l—cos?C—4-cosAcosB:cosC] - cos®C -smn?C
sin2A-4sin2B .
—2-sin0-cosC( + —smO-cosC)

2

=sn?C |1 —cos? C—4-cos A - cosB-cosC]+4 cos? C-sin? C

- —2.sinC-cosC-[sinC-cos(A— B)—4sinC- cos (A -+ B)]

—sin?C(1 —4-cosA-cosB-cosC—4.cosA.cosB- cos ()
==sin? C(1 —8-cos A - cos B - cos )

Substituiert man diesen Wert N in den Ausdruck fir 43, so
kommt:
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— A3=4.sinC-sin (A — B)-sin (B — C) -sin (C— A)
:(1—8-cos A-cosB-cosC)

Nun ist die Gleichung der reellen Asymptote:

2x [cos C - sin (C — B) — sin (C — A)]
—2y-sin(C—B):-srinC+ 43 =

~Nach den Regeln der ebenen analytischen Geometrie ist
daher der Abstand derselben vom O Punkt (D):

— 43 :2V[eos C - sin (C — B) — sin (C — A)]* + sin? (C — B)sin2C
der Radikand ist:

[cos C - sin (C — B) — sin (C — A)J° -} sin? (C — B) - sin? C
==sin? (C — B) +sin? (C-—A)— 2.sin (C—B) -sin (C— A) - cos C
=sin’ C[1 — 8-cos A - cos B - cos C]

wie schon gefunden.
. Unter Beriicksichtigung des Wertes von 43 erhilt man des-
halb fir den gesuchten Abstand:

" 2.sin (A — B)-sin(B — C) - sin (C — A)
:\/(1 —8-cos A - cos B - cos C)?

und dies ist der Halbparameter der Kiepert’schen Parabel, das
ist der Abstand ihres Brennpunktes von der -Direktrix wie
spiter gezeigt wird, Daraus ergibt sich die Konstruktion der reellen
Asymptote: man verschiebe das /\ A BC parallel sich selbst, bis
C nach © fallt, in die Lage A’ B’ (’, zeichne den Brennpunkt
der zum /\ A'B’C’ gehorigen Kiepert’'schen Parabel (D), so
schneidet, die reelle Asymptote auf der Verlingerung von 9D
tiber © hinaus das Stick O D'=9D ab, aber da die Asymptote
ausserdem zur Geraden von Euler parallel ist, so ist sie vollig
bestimmt, denn durch D kann sie nicht gehen, sonst wiirde fir
den Fall, dass D Doppelpunkt der zyklischen Kurve ist, die
reelle Asymptote mit derselben zwei im endlichen gelegene Punkte
gemein haben, was unzuliissig st (s. Fig. 3).

Wie die reelle Asymptote, so bestimmt sich auch jede der
imaginiren Asymptoten. Die eine derselben habe die Gleichung
y—+ix 44 ==0, wo 4; eine noch zu bestimmende Konstante
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ist; ersetzt man in der Kurvengleichung y } ix durch — %; und
im Reste y durch —ix — 4;, so kommt:

— M (—2ix —A4)[—2 -xsin(C—A)+2:5sin(C— B)
.sinC+1-x+2-sin(C—B).cosC - x]
+(2ax—2bix)[—2x-sin(C — A) -+ 2sin (C — B)
.sinC-ix+2sin(C— B:cosC-x]
+4sinA-sinC-x?-cosA+4.sinA-sinC-sinA-1-x?
—4.sm3C-1-x>—4-s81in?C-cosC-x2=0 oder

— 2y [i - sin (C—A) -+ sin (C—B)-sin C — i - sin (C — B) - cos C] x*
= —(a—Dbi)|—sin(C—A)-+sin(C—B)-sinC
14 sin (C — B) - cos (] x*
—(sinA-sinC-cos A—+sinA-sinC-sinA-i
— s1n? C -1 —sin® . C - cos C) x2 4 Glieder mit x = 0;

A muss so bestimmt werden, dass in dieser Gleichung die Glieder

mit x? wegfallen (dies lehrt die Substitution x -—=l, WO man
X
nach der Substitution x’ =0 zu setzen hat).
Hieraus ergibt sich zur Bestimmung von 4, die Gleichung:

— Ml [isin (C—A)4sin(C —B)-sinC—1-sin (C—B)-cosC]=
= —(ai4+b)[1-sin(C—A)+4 sin(C — B)
-sin C — 1. sin (C — B) - cos C|
—sinC(sin A-cos A—sinC- cosO)
—1isin C (sin? A —sin® C) =0, oder:
h=-+b-+ai+
sin C(sinA-cos A —sinC-cosC) +1-sinC(sin® A — sin? 0)
1-sin(C— A)+4sin(C—B)-sinC—isin(C—B):cosC

oder indem man Zihler und Nenner des Bruches mit
sin(C—B)-sinC —isin(C—A)+isin(C —B)-cosC
multipliziert:
M=-+b-+4ai-+[sinC(sin A -cos A—sinC - cos C)
+1sinC - (sin? A — sin? )] -
- [sin (C — B) - sin C — i sin (C — A) +isin (C — B) - cos C]
sin? (C —B) 4 sin?* (C—A) —2.sin (C—B) - sin (C — A).cos C
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Fiir die zweite imaginire Asymptote y —1ix 4 12—0 erhilt
man analog:
b= +b—ai4[sinC(sinA-cos A—sinC - cosC)
—1sin C (sin? A —sin® O)] -

- [sin (C—B)-sin C+}1sin (C — A) — isin (C — B) - cos C]
sin? (C— B) 4+ sin?(C—A)— 2-sin(C—B)-sin(C—A):cos C
hieraus 4 +4,=—4+2b 4 [2s102 C - sin A - cos A sin (C— B)

—2sin®C-cosC-sin (C— B)+2sin? A-sin C-sin (C— A)

—2sin* A-sinC-cos C-smn (B— ()

—2sin3C-sin{C — A)+2sin3C-cosC-sin(C—B)]: N, wo
N = sin? (C—B)4-sin? (C—A)—2sin (C—B) - sin (C—A)-cos C
oder M+2=—=—+2b4[sin2A-sinC(cos A-sinC

—sin A - cos C) - sin (C — B)
-+ 2sinC - sin (C— A) (sin®? A —sin® C)]: N oder
=—-4+2b 4 [2sinC-sin(C— A)-sinA . sin (C— B)
—+2smnC.sin(C—A)-sinBsin(A—C)]: N
=+2b-+42sinC - sin (C— A)
[sin A sin (C — B) — sin B - sin (C — A)]
N
=42b—+4sinC.sin(C-—A)-
(cos2B —cos2C —cos2 A+ cos2C)

N
T N TR B
=+2b+281n C.sin (C—A)-sin(A—B)
N
Wie schon gefunden, ist
N=sm*C(1—8-cosA-cosB- cos () also:

: 2sin (C—A) - sin (A — B)
y) lo=-+2b-+4
L 1—8-cosA-cosB:cosC

und dies ist die negative doppelte Ordinate des Schnittpunktes
der imaginaren Asymptoten y +1x -+~4; =0 und y—ix—2,=0.
Seine positive Ordinate wird also:

b4 sin(C— A)-sin(B—A)
1—8-cosA:-cos B-cosC
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und sein Abstand von der Seite B C (s. Fig. 3):

sin (C—A) -sin(B—A):(1— 8.cos A - cos - B cos C)

Aus Griinden der Analogie sind seine Abstinde von den
Seiten CA und A B:

sin (A— B) -sin (C— B): (1 — 8- cos A - cos B cos C) bezw.

sin(B—C)-sin(A—C):(1 —8-cosA-cosB-cosC)

Dies sind die Abstiinde des Brennpunktes der Kiepert’schen
Parabel von den-Seiten des Grunddreiecks A B C, wie nachher
gezeigt wird. Unsere zyklischen Kurven 3. Ordnung haben also
gemeinsame imaginire Asymptoten, welche durch die imaginiren
Kreispunkte und durch den Brennpunkt der Kiepert’schen Pa-

rabel gehen. Der Brennpunkt der Kiepert’schen Parabel ist also
auch ein gemeinsamer Brennpunkt dieser zyklischen Kurven.

VIlI. Die Abstinde des Brennpunktes der Kiepert'schen
Parabel von den Seiten des Grunddreiecks ABC.

Der Abstand dieses Brennpunktes von der Seite BC ist
nach Seite 35:

d =[sin (C — A) — sin (C — B) - cos C] - sin C (sin? C — sin? A)
+sin(C — B)-sin? C(sin C- cos C—sin A - cos A)
[ sin (C— A)+sin (C— B)-cos C]? + sin? (C—B) -sin? C
Der Nenner ist wie bereits gefunden
—sm? C(1—8-cos A-cosB-cosC)
Der Zahler kann in die Form gebracht werden
[sin (C —A) —sin (C — B) - cos C] - sin C - sin B - sin (C — A)
—sin (C — B) - sin? C - cos Bsin (C — A) :
=—sin(C—B)-sin(C—A)-sinC-sin A 4 sin? (C — A)sin C-sin B
=—sin(C—A)-sin C[sin(C - A)-sin B — (C—B) -sin A)
=sln(C—A)-sinC- % (cos2A —cos2C —|—(£s_207—— cos 2 B)
==gin (C — A) - sin? C - sin (B -— A)
Darum ist der Abstand des Brennpunktes von der Seite BC:
sin (A—C):-sin(A—B):(1—8-cosA-cosB-cos- ()
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Die Abstinde von den Seiten CA und AB werden analog
seln :

sin(B— A)-sin(B—C):(1 —8:cosA-cosB-cos ()
bezw. |

sin (C—B):sin(C—A):(1—8:-cosA-cosB-cos ()

IX. Der Abstand des Brennpunktes der Kiepert’schen Parabel
von der Euler’schen Geraden oder der Halbparameter der
Kiepert’schen Parabel,

Derselbe ist offenbar gleich dem doppelten Seitenabstand
sin(A—C)-sin(A—B):(1—8-cosA-cosB - cosC)

multipliziert mit dem Cosinus des Winkels, den die Euler’sche
Gerade mit der x-Achse bildet: Die Tangente dieses Winkels
st (s. pag. 30):
sin (C — B) - cos C—sin (C— A)
sin C - sin (C — B)

somit sein Cosiius
1 \/ 14 'sin (C — B)-cos C —sin (C— A) |2 ol
sin® C - sin® (C — B)
—sinC-(C—B):
\/sin? C-sin? (C—B) 4 [sin (C — B) - cos C — sin(C— A) |2
= sin (C — B) + sin C:
Vsin? (C — B) + sin? (C — A) — 2 - sin (C— B) - sin (C — A)J? - cos C

—sin (C —B):\/l—-—S -cos A - cosB-cosC
somit ist der gesuchte Halbparameter:
p=2-sin(A—B)-sin(B —0C)-sin(C— A):
\/(1 — 8-cos A. cos B-cos C)®

X. Untersuchung einer an der Kiepert’schen Parabel
erhaltenen Kegelschnittschar.

Die Form der Gleichung fir die auf Seite 35 erhaltene
Kegelschmttschar sagt unmittelbar aus, dass alle Kurven der
Schar durch die Schnittpunkte der Euler’schen Geraden mit der
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Kiepert'schen Parabel hindurch gehen und in denselben die
Kiepert'sche Parabel berithren. Wir haben hier also ein System
von sich doppelt berithrenden Kegelschnitten. Die Kiepert’sche
Parabel gehort selbst zu diesem System und ebenso ihre Direktrix
(c =0, resp. ¢ =), |

Wahlt man die Achse der Kiepert’schen Parabel zur x-Achse
und ihre Scheiteltangente als y-Achse eines rechtwinkligen Koordi-
natensystems, so lautet die Parabelgleichung:
y2 —-2px=0 (p = Halbparameter) und die der Euler’schen

Geraden: x= — EI, somit die der Kegelschnittschar:
y —2px=c¢? (x —{—IZ—))H oder
o2, ol
y‘-’—-(',2x2—-—px(2—f—c'3)-—-(—3~—zp—-4—_0 (1)
Fiar ¢ = — 1 kommt:
y2+x2—px+%—=0 oder
> P\’
2 X ——)=—0
y —I—( 2)
d. 1. die Gleichung eines unendlich kleinen Kreises im Brenn-

punkt.

Die x-Koordinate des Mittelpunktes eines durch Gleichung
(1) gegebenen Kegelschnittes sei «, so lautet seine Gleichung
beziiglich eines parallelen Koordinatensystems durch denselben:

v —c(x+af —px-e (2+ c?) — Pi:;E%:O oder
Y —ox! —x[2ec | p @+
—p|@+eet TP | —ea =0

Da nun der Koordinatenanfang im Mittelpunkt des Kegel-
schnittes liegt, so muss das Glied mit x wegfallen

d. h.
_p@+e)

o 2¢?

und die Kurvengleichung ist:
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Y R =P [(2 + &) (—p) & 24;;2) +°: p]

232
—p? (24 ) - oder
4 c?
i [ (2-1-0")2 (2—1—02)‘“’ 0 oder
4 4c?
y?— 2 x2 — l)—é — 2@+ P4t + 2+ ]=0 oder
yz__c2 Xz__4_cz [—'4:—402]:() Odel‘
2 2
c? x24 Pl o) j— ¢ ):0 oder
c
‘ 2 (1 - o2
c"’xz-—-y‘-"_——-—~p (L c):0 oder
o2
2 2
X _ y —1—0
pPd+4+c)  pPdAHe)
ct o?

Die eine Achse des Kegelschnitts st gleich:
2p Vi -+ ¢?

c2

die andere ist gleich:

i-2p-\/1—|—c"~’

c

Setzt man ¢ —tg ¢, so kommt:
2p 2p1
cos ¢ tg? gp "sing

- fir die beiden Achsen des Kegelschmtts das Achsenverhiltnis
st also: ¥

ﬂp:cosg-tg‘-’gpzcotggo:i
1

d. h. fir einen reellen Winkel ¢ ist die eine Achse imagindr.



Die Gleichung der Asymptoten ist:

+y+ c[x—kp——(zz;cz)] =)

(Anfangspunkt des Koordinatensystems ist der Parabelscheitel)
oder

iy+cx+£+%):0 oder
c

c2p |
snlt foat i A S oder

¢? (H—g)ichrpf—O

2 reelle Asymptoten haben wir, wenn c reell ist; dies ist
der Fall, wenn die Kiepert’sche Parabel dem Punkte £ die konvexe
Seite zukehrt, wovon man sich leicht tiberzeugt. Fiir ¢ = 0 redu-
ziert sich die Asymptotengleichung auf p=0, d. 1. die unendlich
ferne Gerade. Der Kegelschnitt ist die Kiepert'sche Parabel selbst.

¢ = c~ ergibt als Grenzfall die Euler'sche Gerade x = — g Die

Hyperbeln der Kegelschnittschar verlaufen also zwischen der
Euler’schen Geraden und der Kiepert’schen Parabel im einen
Zweige. (Fig. 4). Die Grenzen fiir den andern Zweig sind die
unendlich ferne Gerade und die Euler’'sche Gerade. Ist ¢ rein
.imaginir, so haben wir Ellipsen, die Grenzfille sind die
Kiepert'sche Parabel (c=0) und ihr Brennpunkt (c= -} i).
(Fig. 5). Hat ¢ die Form A B1i, so haben wir imaginiire Kegel-
schnitte mit imaginiren Asymptoten.
Far die Asymptoten:

cg(XJrg)icy—l—p:O

bestimmen wir die Enveloppe in bekannter Weise. Wi differen-
zieren die Gleichung nach ¢ und erhalten:

c@x+4p)+y=0 oder c=Fy:2x-}p

Trigt man diesen Wert fir ¢ in die Asymptotengleichung
ein, so kommt mit Wegschaffung des Nenners:
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1 9 9
5 V—y 4p@x+4p=0 oder
eep (s B) =0

als Gleichung der Enveloppe. Sie ist also eine mit der Kiepert’schen
Parabel y? — 2px=0 konfokale und koaxiale Parabel von
doppelt so grossem Parameter (s. Fig. 5).

Die Figuren 6,7 und 8 sind Spezialfille unserer zyklischen
Kurven, 6 und 7 sind solche mit Spitzen (auf der Kiepert’schen
Parabel liegend), Fig. 8 1st eine solche mit einem isolierten Punkt,

XI. Die Zylinderfokale als Spezialfall der behandelten
zyklischen Kurven dritten Grades.

Unsere zyklische Kurve hat am rechtwinkligen Dreieck
die Gleichung (nach pag. 29, wenn B mit C vertauscht und
C=90° gesetzt wird)

(x4 y*+2ax+2by)(sin A:y—sinBx)
“+2xy(sin? B—sin?A)=0 |

Wir wollen nun das Koordinatensystem um den Anfangs-
punkt £ um den Winkel ¢ drehen, seien x’ und y’ die Koor-
dinaten des laufenden Punktes im neuen gedrehten Koordinaten-
system, so gelten bekanntlich die Transformationsformeln:

x=x"cos¢ —y -sing; y=x"sing+y’ -cose¢
die Kurvengleichung geht somit iber in:
x2 4+ y*+2x(acos¢ -+ b-sin¢)
+2y(—a-sing +b-cosg)]-
[y (sin A - cos ¢ } sin B - sin ¢)
+ x (sin A - sin ¢ — sin B - cos ¢)]
~+ 2 (x2—y?)-sing-.cos¢
+ x - y(cos® ¢ — sin? ¢) (sin? B — sin? A) =0,
wenn statt x’ und y’, x und y gesetzt wird, oder:
[x2+y24+2x(a-cos¢ +bsing)
+ 2y (— a-sin ¢ - bcos ¢)]
- [y - sin (A + ¢) — x - cos (A + ¢)]
+2[(x2—7y2)-sing-cos ¢
-+ x -y (cos? ¢ — sin? ¢)] (sin? B — sin? A) ==
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Setzt man ¢ = — A, so geht diese Gleichung iiber in:
[x24v*4+2x(a-cosA—Db-sinA)
+2y(a-sin A4 b-.cos A)]: (— x)

— 2(x2 — y?)sin A - cos A (sin? B —sin? A)
+2xy - (sin? B--sin2 AY==0
Setzt man weiter:
(a) — (a-sin A 4 b-cos A) -} (sin? B — sin2 A)’ =0,
so lautet die Gleichung der Kurve:
by —[x*4y*+2x(a-cosA—b-.sinA)]x—2(x*4 y?)
-sin A - cos A - (sin® B —sin? A) — 0,
wo a und b durch Gleichung (a) zusammenhingen. Nun erfiillen
die Koordinaten des Brennpunktes (——sin A-cos2 A, cosA-cos2A
s. Fig. 3) die Gleichung (a). Die durch sie bestimmte Gerade ist
ausserdem zur Kuler’schen Geraden senkrecht d. h. sie 1st die
Achse der Kiepert’schen Parabel, welche zum Dreieck A BC
gehort. Die Gleichung (b) bleibt unverindert wenn -- y fir y
gesetzt wird, d. h., gehort der Punkt £ (a,b) der Achse der
Kiepert’'schen Parabel an, so 1st die zugehorige zyklische Kurve
in Bezug auf diese Achse symmetrisch.
Transformieren wir nun auch die Koordinaten a und b von O,
a’ b’ seien seine Koordinaten nach der Drehung, so gilt:
a—a cosA 4+ b .sinA; b==—a"sinA 4+ b"cos A
und darum wird die Gleichung (b) zu:
(b)) (x* +y* +2xa’)x -+ 2 (x* —y?)
-sin A - cos A (sin? B—sin? A)=0
[he Bedingung (a) lautet nunmehr:
b’ = (sin? B — sin? A)

13t a’ =0, so 1st der Punkt © der Schmttpunkt der Parabel-
achse mit der Direktrix und die zugehiorige zyklische Kurve hat
die Gleichung:

(x*+y)x+2(x2—y?)-sinA-.cos A (sin? B—sin? A)=20
oder (x? - y?)x+2(x2—y*)-sinA-cosAcos2A=0 oder
2(x*4-y)xF+(x*—y*)-sin4 A=0




Dies ist die Gleichung der Zylinderfokalen (Fig. 9). Diese
Kurve i1st von Herrn Prof. Huber in seiner Vorlesung uber die:
« Theorie der hohern ebenen Kurven» ziemlich ausfithrlich be-
handelt worden. Zu den dort angegebenen Erzeugungsarten
konnen wir eine neue hinzufiigen, namlich diejenige, welche mit
der Kiepert’schen Parabel zusammenhingt. Die Zylinderfokale

schneidet die Parabelachse ausser in dem Punkte 0, O noch in

dem Punkte x = an 4. &

, 0, und dies 1st der Brennpunkt der

Parabel, denn aus dem Ausdruck fir ihren Halbparameter
p=2sin (A— B)-sin (B — ) sin (C — A)
:\/(1—8cos A - cos B - cos C)®
folgt fir C=90% p— — 2sin(A— B)-cos B-cos A
=—28n(A—90-+4 A)-cosB-cos A

—2cos2A-sinA -sinB= 31n24é.

XII. Die Cissoide als Spezialfall der behandelten
zyklischen Kurven.
Wir nehmen die Gleichung ((b)) Seite 49 vor:
((b)) (x*+y*+2x-a) x+2(x*—y?)
-sinA-cos A(sin? B —sin? A)=0
Anfangspunkt des Koordinatensystems ist der Punkt £ beliebig
auf der Parabelachse liegend -+ x Achse ist die der Parabel
(Richtung Brennpunkt »> Direktrix) 4 vy Achse die Parallele zur
Direktrix durch £ (Richtung Hoéhenpunkt w» Umkreismittel-
punkt). a’ ist die Abszisse von © in Bezug auf ein paralleles
Koordinatensystem durch den Scheitel des rechten Winkels. Ist
a’ = —sin A - cos A (sin? B — sin® A)
so lautet die Gleichung ((b)):
x>+ y>)x—2y?sinA - -cosA(sin? B —sin? A)=0
Diese Kurve hat in O eine Spitze, welche nach fritherem

auf der Parabel liegt; (in der Tat ist a’ = — smf - —Izl) Sie

ist die Cissoide des Diokles (Fig. 10).



XIIll. Die Wendepunkte der behandelten symmetrischen
zyklischen Kurven.

Ihre Gleichungen sind in der Form enthalten:
(x*+y +2ax)x4+2B(x2—y})=0 oder
in homogener Gestalt:
x4+ xy’+2x*(a+B)z--2B-y*.-z=0
Darum ist nach der iblichen Bezeichnung:

fhb=8x>+4+y*+4x(a+ B)z
f,=2y -x—4B.y.z; i=2x(a-} B)—2B.y?
f1,1=6X+4(a "}“B)Z; f1’2:2y; f1’3:4x(aw'_ B)
fr1=2y; fho=2x —4B-2; f3-== — 4By
fsn=4x(a+ B); f50=——4B-y; f33=0

Bekanntlich 1st die Gleichung der Hessiane:

fi1f12 fig |
for fop fo3 | =0
fi1 f30 f53
oder mit Benutzung obiger Werte fiir die f:
6x+4(a—+ B)z, 2y, 4x (a+ B)
2y, 2x —4B-z —4B:y (=0
4(a -} B) x, —4B-.y, 0

oder
—[6x+4(a+B)z]-16 -B*-y*—32.x.y*-B-.(a-} B)
—32x-y?-B-(a+B)—32(a+}+BpP -x*.x—2B-2)=0

oder
Bx+2(@+B)2] By +2x-y B+t B)+(atBy
-x2(x—2B.2z)=0 oder
x5(a+B)° 4x-y?*[8B2+2(a+B)B]—2x%.z2-B(a{B)?
+2y2-z-B*(a-{+B)=0 oder
x*(a+BPF+xy’ [3B°+2(a+ B)B]—B(a+ B)[2x*(a + B)
—2y2.-B].2z=0

oder in Verbindung mit der Gleichun'g der Kurve Seite H1:



x'[B@-+B) +@+BPJ+y - x[B(a+B)+ 3B

+2(@-+4B)B]=0 woraus :
(X)‘z__2B2~|~3aoB+a2 oder (X>2___2B2+3aB—]—aZ
X 6B24-3aB X 3B (2B a)

Substituiert man den sich hieraus ergebenden Wert fiir y?2
in die Kurvengleichung ((b)), so erhilt man eine Gleichung 3. Grades

in x. Die zugehorigen Ordinaten folgen aus dem Werte fiir .
X
Sollen speziell die beiden symmetrisch zur x-Achse liegen-
den Wendepunkte in die imagindren Kreispunkte hineinfallen,
SO muss sein:
l)z__ 1 .2B9+3aB—l—a‘3___1
( 3B 2B+ a -

X,
woraus folgt:
3B2B+a)--2B*—3aB—a?=0 oder
4B? =a? also a=+-2B

fir a =2 B heisst die Gleichung der Kurve:
(x*+4+y)x+2B@2x* —y?)=0 und fir a=—2B

x4+ y)x—2B(x>+y%) =0 oder x* +y°=0 und x=2B
In letzterem Falle zerfillt also die Kurve in die Direktrix

der Kiepert'schen Parabel und in ihren Brennpunkt, denn 2 B
bedeutet 1thren Halbparameter.

Berichtigung:
Seite 13, Zeile 6, lies sin (C — B) statt (C — B).
» 18, am Fusse, lies sin (C — B) statt (C— B).
» 27, Zeile 6, lies Tétraedre statt Tetraedre.
» Seite 30, drittletzte Zeile, lies Seite 27 statt 28.
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