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|ya-y2 + P(2x4-p) 0 oder

y2—4p/x + 2

als Gleichung der Enveloppe. Sie ist also eine mit der Kiepert'schen
Parabel y2—2px 0 konfokale und koaxiale Parabel von
doppelt so grossem Parameter (s. Fig. 5).

Die Figuren 6, 7 und 8 sind Spezialfälle unserer zyklischen
Kurven, 6 und 7 sind solche mit Spitzen (auf der Kiepert'schen
Parabel liegend), Fig. 8 ist eine solche mit einem isolierten Punkt.

XI. Die Zylinderfokale als Spezialfall der behandelten
zyklischen Kurven dritten Grades

Unsere zyklische Kurve hat am rechtwinkligen Dreieck
die Gleichung (nach pag. 29, wenn B mit C vertauscht und
C 90° gesetzt wird)

(x2 4- y2 4- 2 a x 4- 2 b y) (sin A • y — sin B x)
-f-2 x y (sin2 B — sin2 A) 0

Wir wollen nun das Koordinatensystem um den Anfangspunkt

0 um den Winkel tp drehen, seien x' und y' die
Koordinaten des laufenden Punktes im neuen gedrehten Koordinatensystem,

so gelten bekanntlich die Transformationsformeln:

x x' cos tp — y' • sin tp ; y — x' sin tp 4- y' • cos tp

die Kurvengleichung geht somit über in:
[x2 4- y2 4~ 2 x (a cos tp 4~ b • sin tp)

4- 2 y (— a • sin tp -\- b • cos tp)] •

• [y (sin A • cos tp -\~ sin B • sin tp)

4- x (sin A • sin tp — sin B • cos tp)]

4~ 2 (x2 — y2) • sin tp • cos tp

4- x • y (cos2 tp — sin2 tp) (sin2 B — sin2 A) 0,

wenn statt x' und y', x und y gesetzt wird, oder:

[x2 4- y2 4~ 2 x (a • cos tp 4~ b sin <p)

4- 2 y (— a • sin tp -\- b cos tp)]

• [y • sin (A 4- <p) — x • cos (A 4~ <p)]

-\- 2 [(x2 — y2) • sin <p ¦ cos tp

4- x • y (cos2 tp — sin2 tp)] (sin2 B — sin2 A) 0
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Setzt man tp — A, so geht diese Gleichung über in :

[x2 4~ y2 4" 2 x (a • cos A — b • sin A)
4- 2 y (a • sin A 4- b • cos A)] • (— x)

— 2 (x2 — y2) sin A • cos A (sin2 B — sin2 A)
4- 2 x y • (sin2 B — sin2 A)2 0

Setzt man weiter:

(a) — (a • sin A 4- b • cos A) ~f- (sin2 B — sin2 A)" -= 0,

so lautet die Gleichung der Kurve :

(b) — [x2 + y2 4- 2 x (a • cos A — b • sin A)] x — 2 (x2 4- y2)
¦ sin A • cos A • (sin2 B — sin2 A) — 0,

wo a und b durch Gleichung (a) zusammenhängen. Nun erfüllen
die Koordinaten des Brennpunktes (—sin A • cos 2 A, cos A- cos 2 A
s. Fig. 3) die Gleichung (a). Die durch sie bestimmte Gerade ist
ausserdem zur Euler'schen Geraden senkrecht d. h. sie ist die
Achse der Kiepert'schen Parabel, welche zum Dreieck ABC
gehört. Die Gleichung (b) bleibt unverändert wenn — y für y
gesetzt wird, d. h., gehört der Punkt O (a, b) der Achse der
Kiepert'schen Parabel an, so ist die zugehörige zyklische Kurve
in Bezug auf diese Achse symmetrisch.

Transformieren wir nun auch die Koordinaten a und b von £),
a' b' seien seine Koordinaten nach der Drehung, so gilt:

a a' cos A 4- b' sin A ; b — a' sin A 4- b' cos A

und darum wird die Gleichung (b) zu:

((b)) ,x2 + y2+2xa')x-f-2(x2-y2)
• sin A • cos A (sin2 B — sin2 A) 0

Die Bedingung (a) lautet nunmehr:

b' (sin2 B — sin2 A)2

ist a' 0, so ist der Punkt O der Schnittpunkt der Parabelachse

mit der Direktrix und die zugehörige zyklische Kurve hat
die Gleichung:

(x2 4- y2) x -j- 2 (x2 — y2) • sin A • cos A (sin2 B — sin2 A) 0

oder (x2 -|- y2) x 4" 2 (x2 — y2) • sin A • cos A cos 2 A 0 oder

2 (x2 4- y2) x 4- (x2 — y2) • sin 4 A 0

4
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Dies ist die Gleichung der Zylinderfokalen (Fig. 9). Diese
Kurve ist von Herrn Prof. Huber in seiner Vorlesung über die:
«Theorie der höhern ebenen Kurven» ziemlich ausführlich
behandelt worden. Zu den dort angegebenen Erzeugungsarten
können wir eine neue hinzufügen, nämlich diejenige, welche mit
der Kiepert'schen Parabel zusammenhängt. Die Zylinderfokale
schneidet die Parabelachse ausser in dem Punkte 0, 0 noch in

sin 4: A
dem Punkte x 0, und dies ist der Brennpunkt der

Li

Parabel, denn aus dem Ausdruck für ihren Halbparameter

p 2 sin (A— B) • sin (B — C) • sin (C — A)

: \/(l — 8 cos A • cos B • cos C)3

folgt für C 90°; p - 2sin (A — B) • cos B ¦ cos A
— 2sin (A — 90 -f A) • cos B • cos A

2 cos 2 A • sin A • sin B

XII. Die Cissoide als Spezialfall der behandelten
zyklischen Kurven.

Wir nehmen die Gleichung ((b)) Seite 49 vor:
((b)) (x24-y2 + 2x.a')x4-2(x2-y2)

• sin A • cos A (sin2 B — sin2 A) 0

Anfangspunkt des Koordinatensystems ist der Punkt G beliebig
auf der Parabelachse liegend 4- x Achse ist die der Parabel

(Richtung Brennpunkt »>- Direktrix) 4~ y Achse die Parallele zur
Direktrix durch O (Richtung Höhenpunkt. »>- Umkreismittelpunkt),

a' ist die Abszisse von O in Bezug auf ein paralleles
Koordinatensystem durch den Scheitel des rechten Winkels. Ist

a' — sin A • cos A (sin2 B — sin2 A)

so lautet die Gleichung ((b)):
(x2 4- y2) x — 2 y2 sin A • cos A (sin2 B — sin2 A) 0

Diese Kurve hat in O eine Spitze, welche nach früherem

auf der Parabel liegt ; in der Tat ist a' — — — — J. Sie

ist die Cissoide des Diokles (Fig. 10).
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