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VI. Eine Beziehung zwischen der Euler'schen Geraden und
der Parabel von Kiepert.

Zunächst will ich bemerken, dass die Parabel von Kiepert
auch Parabel von Neuberg genannt wird; Lemoine gebraucht
diese Bezeichnung ohne Zweifel auf Grund der Arbeit Neubergs :

«Mémoire sur le Tétraèdre» in den Mémoires de l'Académie
Royale de Belgique XXXVII. Von dieser Arbeit erhielt ich
Kenntnis, nachdem der erste Teil zu der meinigen bereits
abgeschlossen war. Ich kann nicht umhin, an dieser Stelle dem
hervorragenden Förderer der Dreiecksgeometrie, Herrn Prof. Neuberg
in Lüttich, für seine vielen Anregungen meinen besten Dank
auszusprechen.

Die hervorgehobene Beziehung lässt sich in folgendem
Satz aussprechen:

Trifft irgend eine Tangente der Kiepert'schen Parabel die
Seiten des Grunddreiecks in den Punkten 3t, 93 und S und zieht
man um dieselben als Mittelpunkte die Kreise durch irgend einen
festen Punkt D der Euler'schen Geraden, so ist der Ort ihres
zweiten Schnittpunktes £)' eine zyklische Kurve dritten Grades
mit einer zur Euler'schen Geraden parallelen Asymptote. Der
feste Punkt O ist Doppelpunkt dieser Kurve; seine Tangenten
stehen zueinander senkrecht und berühren ausserdem die Parabel
von Kiepert.

Bei der Darlegung dieses Satzes werden wir Gelegenheit
haben, von derjenigen Methode Gebrauch zn machen, die schon
Descartes zur Lösung des Tangentenproblems angewandt hat.

Nun wollen wir im Geiste Descartes daran gehen, den an
die Spitze gestellten Satz zu beweisen. Descartes ist ja der
eigentliche Begründer der analytischen Methode, von der wir
Gebrauch machen.

Wir benützen die Figur 2; nach dem zugehörigen Texte
ist 93 C p • sin (C — A) — sin2 A : sin (C — A). In Bezug auf ein

rechtwinkliges Koordinatensystem mit dem Anfangspunkt in
B und mit B C zur 4~ x Achse (die 4~ y Achse soll darüber liegen)
sind daher die Koordinaten von 33, wenn noch p • sin • (C — A) P
gesetzt wird:
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x8 BC-93C-cosC
sin A • sin (C — A) 4- (sin2 A — P) cos C : sin (C - A)
sin2 A • cos C — P • cos C 4- sin A • sin C • cos A

— sin A • cos C • sin A : sin (C — A)
— P • cos C 4- sin A • sin C • cos A : sin (C — A) und

y8 (P — sin2 A) • sin C : sin (C — A)

Ähnlich bekommt man für 31:

x« — P 4- sin2 C : sin (C - B); ya 0

Die Gleichungen der Kreise aus 31 und 33 durch einen
festen Punkt O mit den Koordinaten a und b lauten daher*

r _sin2c-Pi2 r _rin-c-py b2 bezw
[ sin(C-B)] ' L sin(B-B)J

[—PcosC4-sinA- sin C-cos AI2 [ P — sin2 A ~~1

x '¦

¦ 4- y sin C
sin(C-A) J L sin(C-A) J

— PcosC4-sinAsinC-cosAl2 l\ P — sin2A ~~|
a ¦ — 4- b sinC I

sin(C —A) J X sin(C —A) J

oder (x2 4- y2 — a2 — b2) sin (C — B)
— 2 x (sin2 C — P) — 2 a tsin2 C - P) bezw.

(x2 4- y2 — a2 - b2) sin (C — A)
— 2 x (— P • cos C + sin A • sin C • cos A)

— 2y (P — sin2A) • sin C — 2 a (— P • cos C 4- sin A • sin C • cos A)
— 2 b (P — sin2 A) • sin C oder

(x2 4- y2 — a2 — b2) sin (0 — B)
— 2 sin2 C (x — a) — 2 P (x — a) und

(x2 + y2 — a2 - b2) sin (C — A)

4- 2 sin A • sin C [— (x — a) cos A-|-(y — b) sin A]
2 P [sin C • (y - b) — cos C • (x — äjj"

Verschiebt man das Koordinatensystem parallel sich selbst
in den Punkt © (a, b), so lauten die beiden letzten Gleichungen
in Bezug auf das neue Koordinatensystem (man hat nämlich x
•durch x 4~ a und y durch y 4~ b zu ersetzen) :

2

2
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(Xa 4- y2 4- 2 a x+2 b y) sin (C - B) — 2 sin2 C • x — 2 P • x
(x2 4- y2 f 2 a x 4- 2 b y) sin (C — A)

4- 2 sin A • sin C (— x cos A 4- y sin A) 2 P • (sin C • y — cos C x)>

Aus diesen beiden Gleichungen bekommt man durch
Elimination von P die Gleichung:

(x2 4- y2 4- 2 a x 4- 2 b y) [— 2 x • sin (C — A)
— 2 • sin (C — B) (sin C y — cos C x)] — 4 • sin A

•sinC(— x-cos A 4-y • sin A) x 4-4 sin2 C • x(sinC-y— cosCx)=0
und dies ist die Gleichung für den Ort der Schnittpunkte der
Kreise aus 21 und 93 durch £) (a, b). Da in dieser Gleichung
die Glieder mit der 0. und 1. Potenz der Veränderlichen fehlen,
so ist der Punkt £> (a, b) Doppelpunkt der Kurve, ferner ist ihre
reelle Asymptote parallel zur Geraden:

— 2x[sin(C-A) — sin(C—B)-cosC] — 2y-sinC-sin(C — B)=0
welche paralleli ist zur Geraden von Euler, wie später die Gleichung
der Euler'schen Geraden zeigt. Die Tangenten* im Doppelpunkt
haben zur Gleichung:

x2 [— 4 a sin (C — A) 4- 4 a • sin (C — B) • cos C 4- 4 sin A • sin C

• cos A — 4 sin2 C • cos C]

4- y2 [- 4 b sin (C — B) • sin C] 4- 4 x y [— b • sin (C — A)
4- b • sin (C — B) • cos C — sin2 A • sin C 4- sin3 C

— a • sin (C — B) • sin C] 0 oder

'r-\2- bsin(C —B).sinC +^[-b.sin(C —A)

4- b • sin (C — B) • cos C — a • sin (C — B) • sin C

— sin2 A • sin C 4" sin3 C]

— a • sin (C — A) 4-a • sin (C — B) • cos C 4- sin A • sin C • cos A
— sin2 C • cos C 0

aus dieser Gleichung ergeben sich 2 Werte für -:
x

^u.xi;ist (l).(l\ -i,X/i \X/2 \X/i \X/2
so stehen die beiden Tangenten zu einander senkrecht, oder
nach obiger Gleichung:



- 30 —

a [sin (C — A) — sin (C — B) • cos C] 4- b • sin (C — B) • sin C

— sin A • sin C • cos A 4- sin2 C • cos C 0

Dies ist die Gleichung der Euler'schen Geraden, denn setzt
sin A_ cos A.

man für a und b die Koordinaten und des Umkreis-
2 2

mittelpunktes in diese Gleichung ein, so kommt :

sin A [sin (C — A) — sin (C — B) • cos C] 4- cos A • sin (C — B) • sin C

— 2 sin A • sin C • cos A 4~ 2 • sin2 C • cos C — 0

oder wegen
— 2 • sin A • sin C • cos A 4~ 2 sin2 C • cos C sin C (sin 2 C — sin 2 A)

— 2 • sin C • cos B • sin (C — A) oder

sin (C — B) • sin (C — A) + sin (B — C) • sin (C — A) 0

Die Koordinaten des Umkreismittelpunktes erfüllen also die

Gleichung der erhaltenen Geraden, somit liegt er auch auf dieser
Geraden. Setzt man aber die Koordinaten des Höhenpunktes:
sin C • cos B und cos B ¦ cos C für a und b in diese Gleichung
ein, so kommt:

sin C • cos B [sin (C — A) — sin (C — B) • cos C] -\- cos B • cos C

• sin (C — B) ¦ sin C — sin A • sin C • cos A 4- sin2 C • cos C — 0
oder
sin C {cos B [sin (C — A) — sin (C — B) • cos C] 4- cos B • cos C

• sin (C — B) — sin A • cos A 4- sin C • cos C}

• n I d • ,n Ai sin 2 A sin 2 C]
— sin C {cos B • sin (C — A) -

2 2

: sin C | cos B • sin (C — A) 4- cos (C 4- A) • sin (C — A)

sin C j cos B • sin (C — A) — cos B • sin (C — A) J 0;

die Koordinaten des Höhenpunktes erfüllen also die Gleichung
der erhaltenen Geraden, somit liegt er auch auf derselben. Die
Gerade geht also durch den Umkreismittelpunkt und den

Höhenpunkt und ist daher die Euler'sche Gerade. Damit ist ein
Teil des Seite 28 gegebenen Satzes bewiesen; um auch den Rest
zu beweisen, schreiben wir zunächst den Richtungskoeffizienten
für die Tangenten im Doppelpunkt hin:
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y\ _ — b ¦ sin (C — A) 4- b • sin (C — B) • cos C

x/i.2~ 2b ¦ sin (C — B)-sinC
: —a-sin(C — B) • sin C 4-sin3 C — sin2 A-sinC
l

2b- sin(C--B). sin C

±v/[--b •sin^--A)4-b-sin(C—B) • cosC-¦a-sin(C--B). sinC

4- sinsC—sin2 A •sinC]2 — 4bsin!(0--B) • sin C [a • sin (C -A)
— a • sin(C--B). cos C--sinA • ;sinC • cos A 4" sin2C -cosC]

2 b • sin (C — B) • sin C

Die Gleichung dieser Doppelpunktstangenten in Bezug auf
das feste Koordinatensystem durch B lautet daher:

y —b_—b ¦ sin(C— A)-f b • sin (C — B) ¦ cos C

x — a~ 2b-sin(C —B)-sinC
— a • sin (C—B) • sin C 4- sin3 C—sin2 A • sin C

2 b • sin (C - B) • sin C

+ Vl— b-sin(C — A)4-b-sin(C — B) • cosC-a-sin(C -B)sinC
4- sin3C—sin2 A • sin C]2— 4b • sin(C—B) ¦ sinC[a• sin(C — A)

4-

— a • sin (C — B) • cos C — sin A • sin C • cos A -\- sin2 C ¦ cos C]
~~

2bsin(C — B)sinC (1)

Der Doppelpunkt D wird zur Spitze, wenn der Radikand
verschwindet. O liegt dann auf der Kiepert'schen Parabel. Denn
man überzeugt sich ohne weiteres, dass der Null gesetzte Radikand
eine dem Dreieck ABC eingeschriebene Parabel vorstellt, und
dass die Koordinaten ihrer Berührungspunkte auf den Dreiecksseiten

mit denen übereinstimmen, welche die Gleichung der
Kiepert'schen Parabel in trimetrischen Koordinaten liefert.

Liegt nun der Punkt £5 (a, b) auf der Geraden von Euler,
so gilt:

a sin C (sin A • cos A — sin C • cos C) — b • sin (C — B) • sin C :

sin (C — A) — sin (C — B) • cos C
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Die Gleichung (1) schreiben wir in der Form :

{(y — b) 2 b • sin (C — B) • sin C 4- (x — a) [b • sin (C — A)

— b • sin (C — B) • cos C 4- a • sin (C — B) • sin C — sin3 C

4- sin2 A • sin C]}2

(x — a)2 {[- b ¦ sin (C — A) + b • sin (C - B) • cos C — a
• sin (C — B) • sin C 4- sin3 C - sin2 A • sin C]2 — 4b • sin (C — B)

• sin C [a • sin (C — A) — a • sin (C — B) ¦ cos C — sin A • sin C

• cos A 4~ sin2 C • cos C]}

und drücken hier a durch b aus, so kommt mit Wegschaffunç
der Nenner:

[(y—b) • 2 b • sin (C — B) • sin C [sin (C — A) — sin(C — B) ¦ cos C]2

+ {x[sin(C —A) —sin(C—B)-cosC]
— sin C (sin A cos A — sin C • cos C)

4- b • sin (C - B) • sin C} • (b [sin (C — A) - sin (C — B) • cos C]2

— b • sin2 (C - B) sin2 C — sin C (sin2 C — sin2 A) [sin (C — A)

- sin (C — B) cos C ] 4- sin (C — B) • sin C [sin C (sin A
• cos A — sin C • cos C)]}1

{ x [sin (C - A) — sin (C — B) • cos C]

— sin C (sin A ¦ cos A— sin C • cos C) 4~ b • sin (C — B) sin C}2

• {[— b • sin(C - A) 4- b • sin (C —B) • cos C — a • sin (C — B)
• sin C 4- sin3 C — sin2 A • sin C]2 -4b- sin (C — B)

¦ sin C [a • sin (C — A) — a • sin (C —B) • cos C

— sin A • sin C • cos A 4- sin2 C • cos C]}

[x [sin (C — A) — sin (C — B) • cos C] — sin C (sin A • cos A

— sin C • cos C) 4- b • sin (C — B) • sin C}2

• [{b [sin (C — A) — sin (C — B) • cos C]2 — b • sin2 (C — B) • sin2 C

— sin C (sin2 C — sin2 A) [sin (C - A) — sin (C - B) • cos CJ

4- sin (C — B) • sin C ¦ sin C (sin A • cos A — sin C • cos C)}2

— 4 b • sin (C — B) ¦ sin C [sin C (sin A • cos A — sin C • cos C)

— b • sin (C — B) • sin C — sin C (sin A • cos A — sin C • cos C]
• [sin (C - A) — sin (C — B) • cos C]2 ]
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oder nach Auflösung der Klammern und Reduktion :

(y _ b)2 [sin (C — A) — sin (C —B) cos C]2 • 4 b2 sin2 (C - B) • sin2 C

4- 4 (y - b) • b • sin (C — B) • sin C • { x [sin (C — A)

— sin (C — B) • cos C] — sin C (sin A • cös A — sin C • cos C)

4- b • sin (C — B) • sin C} • (b • [sin (C - A) — sin (C — B) • cos C]?

— b • sin2 (C — B) • sin2 C — sin C (sin2 C - sin2 A) [sin (C - A)

— sin (C - B) cos C] 4- sin (C — B)
• sin C • sin C (sin A • cos A — sin C cos C)}

=-= 4b2 • sin2 (C — B) • sin2C{x[sin(C-A) —sin(C —B)-cosCl
— sin C ¦ (sin A cos A — sin C cos C) 4" b • sin (C — B) sin C }J

oder wenn man beide Seiten mit 4 b • sin (C — B) • sin C dividiert :

(y — b)2 [sin (C — A) — sin (C — B) • cos C]2 • b sin (C- B) • sin C

4- (y — b) • {x [sin (C — A) - sin (C — B) cos C]

— sin C (sin A • cos A — sin C • cos C) -|- b • sin (C — B) • sin C}

• {b [sin (C — A) — sin (C — B) cos C]2 — b sin2 (C - B) (2)

¦ sin2 C — sin C (sin2 C — sin2 A) [sin (C — A)

— sin (C — B) cos C] + sin (C — B)
¦ sin2 C (sin A • cos A — sin C • cos C)}

b • sin (C — B) sin C {x [sin (C - A) — sin (C - B) cos C]

— sin C (sin A • cos A — sin C • cos C) 4~ b • sin (C — B) • sin C J2

Für die Glieder mit b3 hat man links:
b3 [sin (C — A) - sin (C - B) • cos C]2 sin (C - B) • sin C

— b3 [sin (C — A) — sin (C — B) • cos C]2 • sin (C - B) • sin C

4- b3 sin3 (C — B) • sin3 C b3 • sin3 (C - B) • sin3 C

und rechts hat man ebenfalls b3 • sin3 (C — B) • sin3 C.

Die Glieder mit der 3. Potenz von b fallen also weg und
es bleibt bloss eine quadratische Gleichung in b.

D. h. Bewegt sich der Punkt D (a, b) auf der Geraden von
Euler, so umhüllen die Tangenten durch «0 an die durch ihn
gehende zyklische Kurve einen Kegelschnitt und zwar muss es
eine Parabel sein, deren Direktrix die Euler'sche Gerade ist,
denn zwei zueinander senkrechte Tangenten schneiden sich in ihr.

3
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Setzt man in der Gleichung (2) b 0, so kommt :

y {x [sin (C — A) — sin (C — B) ¦ cos C]

— sin C (sin A • cos A — sin C • cos C)}
• {sin C (sin2 C — sin2 A) [sin (C — A) — sin (C - B) • cos C]

4- sin (C — B) sin2 C (sin A • cos A — sin C cos C)} 0

sin C (sin A cos A— sin C cos C) „,also sind y 0 und x Tangenten3
sin(C-A)—sin(C-B)cosC

an die Parabel. Daraus schliesst man, dass auch die Seiten CA
und A B Parabeltangenten sind, denn die Wahl von B C zur
x Achse war ja eine willkürliche. Unsere Parabel ist also mit
der Kiepert'schen identisch und damit ist auch der zweite Teil
des Satzes auf Seite 27 bewiesen.

Für die Tangentenrichtungen im Doppelpunkte £5 (a, b) der

zyklischen Kurve hat man:

©£\ -= — b-sin(C — A) + b-sin(C — B) • cos C
XA,2
— a • sin (C — B) ¦ sin C 4- sin3 C — sin2 A • sin C

±\/l-- b sin (C--A) + b •sin(C--B) cos C-— a

5in(C--B) •sinC4- sin3C — sin2 A -sinlC]2

-4bsin(C — B) sin C [a • sin (C •-A)-— a

sin (C — B) • cos C — sin A • sin C • cos A

4- sin2 C ¦ cos C] : 2 b • sin (C - B) • sin C

Die Tangente c des Winkels dieser beiden Tangenten
i5lsleich

©r@X@/@2
V7 [ — b sin (C — A) 4- b • sin (C — B) • cos C

— a • sin (C — B) • sin C ~f- sin3 C — sin2 A

•sinC]2—4b-sin(C—B)sinC[a-sin(C—A)

— a • sin (C — B) • cos C — sin A sin C • cos A

4- sin2 C • cos CJ • 4 b • sin2 (C - B) • sin2 C



— 35 -
4 b2 sin2 (C - B) • sin2 C4-4b • sin (C- B) • sin C [a • sin (C — A)

— a • sin (C — B) cos C — sin A • sin C cos A 4~ sin2 C ¦ cos C]

oder wenn man kürzt und den reduzierten Ausdruck ==c setzt,
den Bruch wegschafft und beide Seiten der erhaltenen Gleichung
ins Quadrat erhebt:

{b [- sin (C - A) 4- sin (C - B) • cos C] — a • sin (C — B) • sin C

4- sin3 C — sin2 A • sin C Y

- 4 b ¦ sin (C — B) sin C [a • sin (C— A) — a ¦ sin (C — B), cos C

— sin A sin C • cos A 4~ sin2 C • cos C]

c2 {b • sin (C - B) • sin C + a [sin (C — A) — sin (C - B)
• cos C] — sin A • sin C • cos A 4- sin2 C • cos C }2

für c 4^i kommt als Spezialfall dieser Kegelschnittschar:

b2 {[— sin (C — A) 4- sin (C - B) • cos C]2 + sin2 (C - B) • sin2 C}

4- a2 j sin2 (C — B) • sin2 C + [- sin (C - A) 4- sin (C- B) ¦ cos C]2j

— 2a{sin (C — B) • sin2 C (sin2 C — sin2 A) - [sin (C — A)

— sin (C — B) cos C] • sin C [— sin A cos A 4~ sin C cos C)}
—2 b {[sin (C — A) — sin (C - B) cos C] • sin C (sin2 C — sin2 A)

4- sin (C — B) sin2 C [- sin A cos A 4- sin C • cos C]}
+sin2 C(sin2C—sin2A)24-sin2C[—sin A- cosA4-sinC-cosC]2=0

oder wenn man beide Seiten der Gleichung durch

[— sin (C — A) 4- sin (C — B) • cos C]2 -\- sin2 (C — B) sin2 C

dividiert

b - [sin (C — A) — sin (C — B) • cos C) • sin C (sin2 C — sin2 A) )2

4- sin (C — B) • sin2 C (sin C • cos C — sin A • cos A)

[— sin (C — A) -f- sin (C — B) • cos C]24- sin2(C - B) ¦ sin2C

a - sin (C - B) • sin2 C (— sin2 A 4~ sin2 C) — [sin (C — A)

— sin (C — B) • cos C] • sin C (sin C • cos C — sin A • côs A
[— sin(C—A)4-sin(C—B) •cosC]24-sin2(C—B) • sin2 C

+

=0; denn die Summe der Quadrate der 2. Glieder in den
Klammern ist ja;
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(sin2 C— sin2 A)sin2C {[— sin (C — A) 4- sin (C - B) cos C]2

4-sin2(C — B)- sin2C}

4- (sin C • cos C - sin A cos A)2 • sin2 C {sin2 (C — B) • sin2 C

4- [sin (C — A) — sin (C — B) • cos Ci2}

: [— sin (C - A) 4- sin (C — B) ¦ cos C]2 4- sin2 (C — B) ¦ sin2 C

(sin2 C — sin2 A) • sin2 C 4~ sin2 C (sin C • cos C — sin A • cos A)2

wie es sein soll.
Die erhaltene Kurvengleichung ist die eines Kreises vom

Radius 0, d. h. die eines Punktes. Dieser Punkt ist nichts anderes
als der Brennpunkt (F) der Kiepert'schen Parabel. Dies kann

folgendermassen eingesehen werden. Setzt man im Ausdrucke

für - die Quadratwurzel 0, so erhält man die Gleichung einer
x

Parabel und zwar der Kiepert'schen, denn aus ihrer Form folgt,
dass die x-Achse und die dazu Senkrechte

sin C (sin A • cos A — sin C • cos C)

sin (C — A) - sin(C — B) • cosC

Tangenten dieser Parabel sind. Darum sind alle Dreieckseiten
Tangenten, denn eine jede kann zur x-Achse gewählt werden.
Nun macht auch dieEuler'sche Gerade auf der x-Achse den Abschnitt

sin C (sin A • cos A — sin C • cos C)

sin(C —A) —sin(C —B) • cos C

darum ist sie die Direktrix der Parabel, welche mit der Kiepert'schen
3 Tangenten und die Direktrix gemein hat, also mit ihr identisch
ist. (Wir haben hiebei als bekannt vorausgesetzt, dass die Direktrix
einer jeden dem Dreieck ABC eingeschriebenen Parabel durch
den Höhenpunkt dieses Dreiecks geht).

Die Berührungssehne zu den Tangenten b 0 und

sin C [sin A • cos A — sin C • cos C]
a ~~

sin (C— A) — sin (C — B) • cos C

hat nach der Parabelgleichung die Gleichung:

— b • [sin (C - A) - sin (C — B) • cos C] — a • sin (C - B) • sin C

4~ sin3 C — sin2 A • sin C 0
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Man weiss, dass sie durch den Brennpunkt geht, ihre Gleichung
wird durch die Koordinaten des erhaltenen Grenzkreises erfüllt,
denn durch Substitution derselben bekommt man:

- [sin (C — A) — sin (C — B) • cos C]2 sin C • (sin2 C - sin2 A)
— sin (C — B) ¦ sin2 C (sin C • cos C — sin A - cos A)] sin (C — A)

- sin (C — B) cos C]

- sin2 (C — B) • sin3 C (sin2 C - sin2 A

4- sin (C — B) sin2 C (sin C cos C — sin A cos A) [sin (C — A)

— sin (C — B) cos C]

4- sin C (sin2 C — sin2 A) {[sin (C — A) — sin (C — B) • cos C]2

4- sin2 (C — B) • sin2 C}

wo der gemeinsame Nenner weggelassen ist oder:

— sin C • (sin2 C — sin2 A) {[sin (C — A) — sin (C — B) cos Cl2

4- sin2 C • sin2 (C — B)} 4,- sin C (sin2 C — sin2 A) {[sin (C - A)
— sin (C - B) cos C]2 4- sin2 (C — B) • sin2 C} 0

Dieser Grenzkreis liegt, aus Gründen der Symmetrie, auf
der Parabelachse und da er noch auf einer davon verschiedenen
Geraden durch den Brennpunkt liegt, so muss er mit dem Brennpunkt

zusammenfallen w. z. z. w. Wir haben also den Satz:
Es gibt einen einzigen Punkt Q, dessen Tangenten durch die

imaginären Kreispunkte gehen und zwar ist es der Brennpunkt
der Kiepert'schen Parabel, welcher auch der allen zyklischen
Kurven gemeinsame Brennpunkt ist.

VII. Bestimmung der Asymptoten der behandelten zyklischen
Kurve (allgemein).

Die allgemeine Gleichung derselben lautet: (s. pag. 29)

(x2 4- y2 + 2 a x + 2 b y) [— 2 x • sin (C — A)
— 2 sin (C — B) (sin C • y — cos C x)]

— 4 • sin A • sin C (— x • cos A 4~ y • sin A) x
4- 4 sin2 C • x (sin C y — cos C x) 0

Die Gleichung der reellen Asymptote hat die Form:

2 x [cos C • sin (C — B) —sin (C — A)]
— 2 y • sin (C — B) • sin C 4- A3 0
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