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Fiihrt man diese Werte in (8) ein und dividiert man sodann
beide Seiten der so erhaltenen Gleichung durch — sin A - sin B-sin C,
50 bleibt:

x;-sinA-cosA-sin(B—C)4x2-sinB:cosB-sin(C— A)
~+x3-8inC-cosC.sin (A — B)=0 (8%)

fiir die Gleichung der Direktrix. Dieselbe geht aber durch den
Hohenpunkt des Dreiecks A BC (mit den Koordinaten cos B -
cos C, cos C - cos A, cos A - cos B) hindurch, weil (8¢) durch die-
selben identisch erfilllt wird, wie es auch sein soll, denn die
Leitlinien aller dem Dreieck A BC eingeschriebenen Parabeln
gehen durch dessen Hohenpunkt, siehe Geiser (1867) pag. 122.

V. Folgerungen aus dem vorigen Kapitel.

Die Gleichungen der Kreise aus A, B und € léssen sich
leicht in homogener Form darstellen.
Wegen der Relation:

X;-sinA 4+ x;-sinB-+x3-snC=sinA-sinB-sinC
kann man die Gleichung des Kreises aus % in der Form schreiben:

sin2 A (sin B - sinC)° (xl sin A + %, - sin B+ % smC)

sin A-sinB-sinC

—=sin2A-x?+sm2B.x?|sin2C. x,.2

x;sin A -+ Xs - sin B4 x3 - sin C
sinA -sinB-sinC
sin? C—p-sin (C— A)

sin (C — B)
X1 -sin A 4 X3 -8in B4 x3.8mC

sin A - sin B . sin C oder
2.cos A - sin (C— B)[x;-sin A 4 X3 - sin B 4 x3 - sin CF =
[sin2A.x?+sin2B-x?4sm2C-x”].sinA. (C— B)

.sin C+ X

—2.s8m2C

'SiIlB « X3
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+[2-sm2B-.-sinB-x;—2sin2C-sinC- x3]
[X1-sin A + X - sin B 4 x5 8in C]
—[4-cosB-p-sin(C—A)xp—4cosC-p-sin(C—A)-x3]
[x1-sm A+ x5 -sin B+ x3 - sin C]
oder wenn p - sin(C — A) =P gesetzt wird:
x?[2-cosA-sin(C—B)-sin® A — 2. cos A - sin(C — B) - sin? A]

+ x,2[2:cos A -sin(C—B)-sin*B —sin2 B sin A . sin(C— B)
—2sm2B-sm?B-}4-cosB-sinB-P]

+ x,2[2-cos A -sin(C —B)sin? C —sin2C . sin A - sin (C— B)
+2-sin2C-sin?C —4-cosC-sinC-P]

+ %1 -x9[4-cosA-sin(C—B)-sinA-sinB
—2.sin2B.sinA -sinB -+ 4cosB-sin A-P]

+ X2-%x3[4-cosA-sin(C—B)-sinB.sinC
—2.5mm2B-sinB:-sinC+2-sin2C-smn-BsinC
44-cosB-sinC-P —4-.cosC-sinB - P]

+ x3%x1[4-cosA-sin(C—B)-sinC-sin A
+2-.sin2C - -sinC-sinA —4.cosC-sinA.P]=0

Koeffizient von x?: 0
Koeffizient von x,°: (sm2B —sin2C)sin’? B
_SingB.CO”B;COS% —2.5in2 Bsin’ B
-+4-cosB-smBP
— snoB cos2C—cos2B +1—- cos2B (1 — cos 2 B)
2 2
—sin2C-sin’B +4-cosB-sinBP
:sin2Bc———082§——}——Sin2C-sin2B+4-cosB-sinB-P

==—sin2B.sin?C —sin2C-sin2B-}4-cosB.-sinB-P
——2.8snA-sinB-smC+4-cosB-sinB-P-




Koeffizient von x:

(sin2 B — sin 2 C) sin? C — sin 2.¢ 2B —c0s20

+2.-5m2C-sin2C—4.co0sC.-sinC-P

=Sin20[1——cos2C+c0320—cos2B] }-sin 2 Bsin? C

2 2
~—~4.c08C-sinC-P

=sin2C-sin? B+4-sin2B-sin?C—4.cosC-sinC-P
—2sinA-sinB.sinC—4.¢cosC-sinC-P

Koeffizient von x; X:
2.sinAsinB(En2B—sin2C—sin2B)+4-cosB-sinA-P
——4.sinA-sinB-sinC.cosC+4-cosB-sinA-P

Koeffizient von x; xs:
2.-sinB-sinC(sin2B —sin2C —sin2 B + sin 2 C)
+ 4P .sin(C—B)
=4.P .sin(C— B)

Koeffizient von x3 x;:
2sinC-sinA(sin2B —sin2C +sin2C)—4cosC-sinA-.P
—4.sinA-sinB-sinC-cos B—4.cosC-sinA-P

Setzt man P:2.sinA-sinB.sinC=P’, so lautet die
Gleichung des Kreises aus U:

—x2 (1—sin2B-P')+ x2(1—sin2C-P)
+2x;x3 (—cosC-|cosB-sinA-P')4 2x:%x3- sin (C— B) P’
+2x3%,-(cosB—cosC-sin A-P')=0

Fir den Fall von P’ =0, reduziert sich die Gleichung auf:
—x, 4+ x2—2x;-X2-c08C+2-%3:-%; -cos B=0, oder
— X2 (X2 4+ 2% c08C) + X3 (x3 + 2 X1 -cos B)=0



Spiegelt man den Punkt A an der Seite BC und heisst
das Bild A’, so ist x2 + 2x; - cos C =0 die Gleichung von C A’,
analog ist x3 + 2x,-cos B=0 die Gleichung von B A’. Der
Kreis geht also durch den Schnittpunkt von C A’ mit A B, ferner
durch den Schnittpunkt von AC mit A B, durch den Schnittpunkt
von AC mit BA’ und durch den Schnittpunkt von CA’ und
B A’ hindurch. :

Die Gleichung
— X2 (X2 +2%1-¢08C) +x3(X3 +.2%x1-c0s B)=0
muss in der Form geschrieben werden kénnen:
Xo-X3-8NA-4 X3-%;-8sinB}x;-x2-51nC
+ (a2 X2 —— a3 X3) (X1 - sin A 4+ X2 - sin B } x5 - sin C) =0,

denn die reprisentierende Kurve geht durch A, und ist ein

Kreis, da sie durch die beiden imaginiren Kreispunkte hindurch

geht. Gibt man den beiden letzten Gleichungen die Form:
2X3Xq - cosB—-—Z-xl -X2+-c08C—x2 +x2=0

Xg - X3 (sin A - ag sin C -} a3 - sin B) 4 x5 - x; (sin B 4 a3 . sin A)

+x1+%X3 (8in C + a2 -sin A)+x,2-a;-sin B }x.2- a3.smC=0

so bestimmen sich a; und ag aus den beiden Gleichungen:

—1 1 und 2cos B _ —2-.cosC
ag-sinB  ag-sinC sin B4 ag-sinA  sinC—ag-sin A

woraus folgt:

gy = — 2 '_SIEC ; 2-sin A -4 2a;3-sinA. cos B+-2a3-sin A.-cosC=0
sin
oder
az-sinB+az-sinC=0 2cos Bl — cosC
ag-cosB4az-cosC+1=0 |—smB| smC

a3=sinB : sin(C—B)
ag = —sin C:sin (C— B)
Diese Werte miissen die Gleichung: sin A 4 a; - sin C

~+ ag - sin B =0 erfiillen, da der Koeffizient von x; .- xg Null ist;
in der Tat ist sin A - sin (C — B) — sin? C -} sin? B =0.
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Die Gleichungen der Apollonischen Kreise sind deshalb:
sin(B—C)Zxz-x3-siInA 4 (x28inC —x3sin-B) 2%, -sinA==0
sin (C —A) X xy-x3-8mA—+ (xgsinA—x;-sinC)Xx;-sin A=0
sin (A— B) Zxy - x3-8inA +(x;-sinB—x3-sinA) 5x; -sin A+ 0

Die Durchschnittssehnen dieser Kreise mit dem Umkreis
haben deshalb die Gleichungen :
X2-8InC —x3.-simB=0, x3-sin A — x; - 8in C =0,
X1 -8iInB—3x9-sin A=20
und schneiden sich darum im Winkelgegenpunkt des Schwer-
punktes (Punkt v. Lemoine).

Fiir ein beliebiges P’ lauten die entprechenden Gleichungen:
U.sin(B—C)+[x2(1—sin2B-P")-smnC
—x3(1 —sin2C-P)sinB]L=0
U-sin(C—A)+4[xs(1—sin2C.P)sm A
—x1(1 —sin2A-P)sinC]-L=0
U-sin(A—B)+[x;(1 —sin2A.P')sinB
| —x3(1 —sin2B-P’).sinA]-L=0
wo zur Abkiirzung:
Xp X3+ SINA--}X3-% -sinB4+x,-x-:smC=0U und
X1-8inA+xp-sinB-x3-8inC=1L
gesetzt worden ist. |

Die Durchschittssehnen dieser Kreise mlt dem Umkrelq
haben zu Gleichungen: '

X3(1—sin2B.P)-sinC—x3(1 —sin2C-P’).-sin B=0
x3(1 —sin2C-P)-sin A —x;(1 —sin2A-P).sinC=0
x;(1 —-sin2A.-P).-sinB—x,(1 —sin2B-P’)-sin A =0

und schneiden sich also in demselben Punkt 8, dessen Ort man
durch Elimination von P’ aus zwei der Gleichungen erhilt:

X3 -sin C — x3 - sinB=2P"sin B .sin C (x2 - cos B— x3 - cos )
Xg-sin A — x;-sinC=2.P". sinC»sinA(xs-cosC——m - cos A)

(x2 -sin C —x3-sin B) (x5 - cos C—x; -cos A)-sin A
= (x3 - sin A — x; - sin C) (%2 - c0s B — x5 - cos C) sin B



oder: Xy X3 (sin2C-sin A —sin2B-sin A) ~
| +x3-x1(sin2.A - sin B—sin2C - sin B)
+x;-x(6mMm2B-sinC —sin2A-smnC)=0 oder

X+:Xg-sn2A.-sin(B— C)+4+x5-%x;-51n2B-sin(C—A)
' + %X -%X-8in2C-sin (A ~ B)=0

Der Ort von P ist also ein dem Grunddreieck umschrie-
bener Kegelschnitt, der ausserdem durch seinen Umkreismittel-
punkt und seinen Hohenpunkt hindurchgeht.

Die Kreise aus %, B und € sollen sich in £ und £’ schneiden;
so kann man den Ort dieser Punkte bestimmen, indem man aus
den zugehoérigen Gleichungen P’ eliminiert:

pr_ U.sm(B—C)-+L(x:-sin C'— X3 - sin B) fir % und
—(x3:c08C—x2-cosB)-2-stnB-sinC- L .
P,_TU-sin(O—A)+L(X3-SinA-—~X1-smC)
—(x1c08A —x3-¢c08C)-2smmC.sinA-L
woraus: -- U[(x;cos A — x3-cosC)sin A -sin(B— C)
— (X3 - €08 C — X2 - cos B) - sin B - sin (C — A)]
— L (x; - cos A — x5 - cos C) (x2 - sin C — x3 - sin B) - sin A
—(X3-smA—x;s8inC)-(x3-cosC—x2-cosB)-sin B]=20
nun ist:  (X;:cos A—x3-cos C)sin A -sin (B — C)
— (%3 +c0sC—Xp:cosB)-sinB.sin(C—A)
=x;-siInA-cosA-sin(B - C)-! xo8in B-cos B:sin(C—A4A)
ox e CO.SC(COSZ B-—cos2C n cos2C — cos2A)
2 : 2
=x,sin AcosA-sin(B—C)4 x3-sinB-cosB.sin(C— A)
- x3 - 5in G - cos C - sin (A — B) !
Somit lautet die Gleichung des Ortes fir £ und O’:
—Usin2A - -sin(B—C)-x; +sm2B:sin(C — A) xp
| ~+sin2C - sin (A — B) x3]
—L[sinA(sin2B —sin2C)x3 x3 +-sin B(sin2C —sin2 A)x3- x;
+sinC(sin2A —sin2B)xyxo =0 oder
U-"sin2A'sin(B-—C) x; —LZsm2A - sin (B — C)xzxs-—O

also eine Gleichung vom dritten Grad.

fir B

oder
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Die reprisentierende Kurve, welche zu dieser Gleichung
gehort, geht durch die Ecken des Grunddreiecks, durch die ima-
giniren Kreispunkte, durch den Hohenpunkt und den Umkreis-
mittelpunkt, ausserdem aber durch die Schnittpunkte der Geraden
3x;-8in2 A - sin (B— C) =0 mit dem Kegelschnitt 3x; - x3-sin2A
- sin (B — C) =0, sowie durch den vierten Schnittpunkt des Um-
kreises mit eben diesem Kegelschnitt, endlich auch durch die
Schnittpunkte der Geraden Zsin2A -sin(B—C)-x, =0 mit
der unendlich fernen Geraden, d. h. die Gerade, die durch die
Gleichung gegeben wird, =sin 2 A - sin (B — C)x; =0, d. h. die
Euler’sche Gerade ist Asymptote an unsere Kurve dritter Ordnung.

Herr Prof. Neuberg in Littich hat, angeregt durch meine
Arbeit, den Ort von O und £’ zuerst bestimmt; er fand eine
Gleichung vierten Grades, aus der sich aber ein linearer Faktor
absondern ldsst, so dass unsere Resultate iibereinstimmen.

Aus den Formeln fiir die Koordinaten von %, 8 und € folgt:

Trifft ein Kreis aus M die Geraden, MA, MB und
MC bezw. in den Punkten A;, By, C;, so schneiden seine
Tangenten in A;, B, und C, die entsprechenden Gegen-
seiten des Grunddreiecks in Punkten (¥, B und €) einer
Geraden, welche Tangentean die Parabel von Kiepertist.

Die Kreise aus U, B und € durch A, bezw. B, bezw. C teilen MA,
resp. MB und M C im gleichen Verhaltnis; allgemein gilt der Satz:

Die Kreise aus %, B und €, welche MA, MB und MC
im gleichen Verhaltnis teilen,bestimmen eine Kreisschar.

Beweis: ‘ '

Die Punkte A;, B; und C; teilen M A, bezw. MB und MC
in gleichem Verhiltnis, sodass MA,=MB, =MC, = g; dann

sind die Koordinaten von A;, B; und Ci:

X, } X9 | X3
fir A, cosA-HI-;OS(C—B) l—k-cosB ]f—k-cosC
» By 1 '; k cos A COSB-I—k;:OS(A“C) I—k . cos C
». G 1— —;1_{ .cos A L=k cos B cosC+k-;30$(B—A)




Von der Gleichung des Kreises aus % durch A; brauchen

wir bloss die linke Seite zu notieren; die rechte Seite ist uns
schon bekannt.

Diese linke Seite 1autet:

. Y BYR — ain?
<in 2 A cos A}k - cos(C—B) | sn2B P sin? B
2 sin (C — B)
_ 2
-sinC——1 - k-cosB]

2 S —_— 2
—[—sinZC[M-SinB—1 k-cosC]:...

sin (C — B)
Analog hat man fir den Kreis aus 3B:

P 2A . 2
sin2A|:?'—IE—é———£-sinC—]L 5 k-cosAJ

sin (A — C)
4 sin2B [cosB +k-cos{A— C)]'—’
2
+ﬂm20[gﬁfgé%ﬁmAf-L“k.mscT:a“
sin (A —

Subtrahiert man die beiden Gleichungen, so bekommt man

links, unter Weglassung der Ausdriicke, die beiderseits vom
Gleichheitszeichen vorkommen:

sin 2 A{ [cos A+ kcos(C— B)]z_ (1 ; k)z_ cos? A

2
¥

e
M (l—k)-cosA-sinC}
sin (A — CO)

| 1 —k\2 P—sin?B .
+sin2B{<—2—) . c0? B— ———— -sin C(1—k) - cos B

sin (C — B)
— [cosB+k - cos (A — C)]z}
2
- (o T sin B sin A
+sin2C l(P sin® ) (1 — k) - cos C (sin (C—B) 1 sin (A — C)) }

Die Glieder mit k2 fallen weg; denn
2(C— B) — cos? — cos2(A — OV
sin 2 A[cos (C—B)—cos A] +Sin2B[coszB cos?(A C)J: 0

4 4
und es bleibt:
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sin2A{— k - cos A [cos (B+ C) — cos (C — B)]

sinf A — P :
1— k) o5 A -sin 0}
=+ ( )sin 40 cos A - sin l

+ sin 2 B‘k cos B [cos (C -+ A) — cos (A — (O)]

sin? B — P

Ll L e (C — B)
+sin2C {(P _ sin? C) (1 — k)

-cosB-sinC}

osC c0s2C —cos2A+cos2B—cns2C 1
2. sin (C — B) - sin (A — C) J

=smn2A l+k-cosA-2-sinB-sinC—}-(l—k)M -cOsA- sinC}
| sin (A —C)
A P
+s1n2B {_k-cosB-2-sinA-sinC+ (l—k)w -cosB-sinC}
sin (C — B)

~+ sin 2C (P — sin? C) (1 —k) - cos C - sin C. sin (A — B)
sin (B — C) - sin (C— A)
=4 -k-sin A -sin B-sin C (cos® A — cos® B)

— §in2
gl R e R sinCesin 2 A
sin (C — A)
+(1a—k)w~cosB-sinC- sin 2 B
sin (B— ()
(P — sin® C)

T (B—C)-sin(C—A)

— —4k-sinA-.sinB.sinC-sinC-sin(A — B)
: : P — sin? A
1—k)-sin(A—B)-sinC
+.( ) ( ) Zsin(O — A) -sin (A — B)
-cos A-sm2 A

- cosC-sinC-sin2C-sin (A — B)

Nun wissen wir bereits, dass die rechte Seite der zuge-
horigen Gleichung durch sin C - sin (A — B) teilbar ist, und dass
der Rest durch Vorriicken der Buchstaben und Indices unge-
andert bleibt. Dasselbe gilt aber, wie man sieht, von der linken
Seite, womit der Satz bewiesen ist. -
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