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Zufolge der Konstruktion des Winkelgegenpunktes P" gelten
folgende Gleichungen:

xV_xX X^x^, xa' xi"
x2'_ xi"' x3' x2"' x/-x3",,,111also : Xi : x2 : x3 — : :

Xl x2 x3
d. h. die Koordinaten eines Punktes sind den entsprechenden
reciproken Koordinaten des Winkelgegenpunktes proportional.

Die Koordinaten von P' sollen in B C, CA und A B bezw.
die Fusspunkte 31', 35' und 6', die von P" bezw. die Fusspunkte
21", 23", 6" bestimmen, so hat man:
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d. h. die 4 Punkte 31', 3t", 33', 93", liegen auf einem Kreis,
dasselbe gilt von den Punkten 33', 33", 6', S", sowie den Punkten
6', 6", 21', 21". Alle drei Kreise sind aber konzentrisch und darum
fallen sie zusammen :

Die Fusspunkte der Senkrechten von 2 Winkelgegenpunkten
auf die Seiten des Grunddreiecks liegen auf demselben Kreis.

III. Die Gleichung des dem Grunddreieck
umschriebenen Kreises.

Die Gleichung irgend eines dem Grunddreieck umschriebenen

Kegelschnitts ist von der Form:

ai • x2 • x3 + B- • x3 • xi -\- a3 • Xi • x2 0

Wie sind ai, a2 und a3 zu bestimmen damit die Gleichung
einen Kreis darstellt? Um diese Frage zu beantworten, führen
wir für xi, X2 und x3 rechtwinklige Koordinaten ein, indem
wir setzen :

Für xi x • cos «i + y • sin a^ — p1?

» X2~= x • cos a2 -f- y • sin «2 — p.„
» x3 x • cos as -\- y • sin «3 — p3,
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x und y sind hiebei die rechtwinkligen Koordinaten des Punktes

Xi, X2, xs. Die a sind die Winkel, welche die Normalen vom
Nullpunkt des rechtwinkligen Koordinatensystems auf die bezw.
Seiten des Grunddreiecks (A B C) mit der positiven Richtung der
x Achse eben dieses Koordinatensystems bilden. Die p sind die

Längen dieser Normalen. Als Bedingungen für den Kreis
bekommt man daher, indem man die Koeffizienten von x2 und y2
einander gleich und denjenigen von xy Null setzt:

ai • cos (or2 + a~) -\- a2 • cos («3 -\- ax -f- a3 • cos (ai -f- a~) 0

ai • sin (a2 -f o:3) -\- a2 • sin (a3 -f- ai) -f- a3 • sin («1 +¦ a2) 0

woraus ai a3 • sin (or3 — ao) : sin (or2 — ai)
a2 a3 • sin («i — a3) : sin (a2 — «1)

oder ai a3 • sin A : sin C

a2 &3 • sin B : sin C

Die Gleichung des dem Dreieck ABC umschriebenen
Kreises (Umkreis) lautet deshalb:

x2 • x3 • sin A -+- x3 • Xi • sin B -\- xi • x2 • sin C 0

Hieraus leitet man sofort den Satz ab:
Die Fusspunkte der Senkrechten aus einem Punkte des

Umkreises auf die Seiten des Grunddreiecks liegen auf einer
Geraden (Simson'sche Gerade genannt).

IV. Über eine dem ebenen Dreieck eingeschriebene Parabel.
(Hiezu Fig. 2)

Die Seiten eines Dreiecks (ABC) umhüllen mit der
Zentralen (A'B'C) der Apollonischen Kreise eine Parabel,

der die folgende Eigenschaft zukommt: Bestimmt
man von irgend einer ihrer Tangenten die Schnittpunkte

(21, 93 und 6) mit den resp. Dreiecksseiten (BC,
CA, AB), so treffen sich die Kreise mit diesen
Schnittpunkten zu Zentren, durch die resp. Dreiecksecken
(A, B, C) in zwei Punkten O und 0'.

Beweis: M sei der Mittelpunkt des Umkreises (siehe

Figur), A', B' und C seien die Zentren der Apollonischen Kreise,
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