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x2 X" y2 0, oder (x -f- i y (x — i y) 0

Die beiden Richtungen -+- i und — i bestimmen die beiden
imaginären Kreispunkte. Dieselben liegen also auf der unendlich
fernen Geraden. Zwei Gerade, gegeben durch die Gleichungen
x -f- a y 0 und x — a y 0, werden aber von x 0 und y — 0
harmonisch geteilt, woraus folgt:

Zwei zueinander senkrechte Gerade teilen die Verbindungslinie

der imaginären Kreispunkte harmonisch.

II. Aus der Theorie der Winkelgegenpunkte.
(Fig. 1.)

Zieht man vom Punkte P' nach den Ecken des Dreiecks
ABC Strahlen, welche die Gegenseiten in den Punkten A', B', C
treffen mögen, und spiegelt man diese Strahlen an den innern
Winkelhalbierenden des Dreiecks ABC, so treffen sich diese

Spiegelbilder in demselben Punkte P", dem Winkelgegenpunkt
von P\

Beweis: Die gespiegelten Strahlen sollen die Gegenseiten
bezw. in den Punkten A", B" und C" treffen, so hat man bei
Verwendung trimetrischer Koordinaten (s. Kp. IV, AI. 3)

x/ C'B • sin B x2' A'C- sin C x3' B'A sin A
X2' CA • sin A A'B- sin B xi' B' C sin C

Xt" C"B. sinB x2" A"C •sinC x3" B" A sinA
X2" C'A- sin A x3" A"B • sinB xi" B" C sinC

den C B • sin B ist die Länge der Senkrechten aus C auf B C

und C A • sin A die Länge der Senkrechten von C auf AC etc.
Aus ähnlichen Dreiecken folgt sofort das übrige. Multipliziert
man die ersten drei Relationen miteinander, so erhält man den
Satz von Ceva, die drei letzten multipliziert ergeben:

C"B.A"C.B"A
C"A-A"B.B"C

Nach der Umkehrung des Satzes von Ceva schneiden sich daher

AA", BB" und C C" in demselben Punkte P".
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Zufolge der Konstruktion des Winkelgegenpunktes P" gelten
folgende Gleichungen:

xV_xX X^x^, xa' xi"
x2'_ xi"' x3' x2"' x/-x3",,,111also : Xi : x2 : x3 — : :

Xl x2 x3
d. h. die Koordinaten eines Punktes sind den entsprechenden
reciproken Koordinaten des Winkelgegenpunktes proportional.

Die Koordinaten von P' sollen in B C, CA und A B bezw.
die Fusspunkte 31', 35' und 6', die von P" bezw. die Fusspunkte
21", 23", 6" bestimmen, so hat man:

31'C xi' 31" C Xl"
; ; somit

33" C x2" 93'C x2'
J_

31' C ¦ 31" C xi/ xi 'J_ _ X
#
xi/ x

S3' C • 53" C
~~

x2'
'
x2" _ x2'

'

l_ ~
x2'

d. h. die 4 Punkte 31', 3t", 33', 93", liegen auf einem Kreis,
dasselbe gilt von den Punkten 33', 33", 6', S", sowie den Punkten
6', 6", 21', 21". Alle drei Kreise sind aber konzentrisch und darum
fallen sie zusammen :

Die Fusspunkte der Senkrechten von 2 Winkelgegenpunkten
auf die Seiten des Grunddreiecks liegen auf demselben Kreis.

III. Die Gleichung des dem Grunddreieck
umschriebenen Kreises.

Die Gleichung irgend eines dem Grunddreieck umschriebenen

Kegelschnitts ist von der Form:

ai • x2 • x3 + B- • x3 • xi -\- a3 • Xi • x2 0

Wie sind ai, a2 und a3 zu bestimmen damit die Gleichung
einen Kreis darstellt? Um diese Frage zu beantworten, führen
wir für xi, X2 und x3 rechtwinklige Koordinaten ein, indem
wir setzen :

Für xi x • cos «i + y • sin a^ — p1?

» X2~= x • cos a2 -f- y • sin «2 — p.„
» x3 x • cos as -\- y • sin «3 — p3,
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