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Von den 12 zuletzt eingeführten Geraden schneiden sich
daher noch 8 mal je 3 in einem nämlichen Punkte. Nämlich
wir haben

API
B Q \ N Umkreiszentrum des Dreiecks IK L,
CR)
Ap
Bq
Cr
AP
BQ'I
Cr'
Ap

n' Umkreiszentrum des Dreiecks 1kl,

ri Umkreiszentrum des Dreiecks ikl,

N' — Umkreiszentrum des Dreiecks i K L.

Bq'
CR')
Ap'l
BQ — N" Umkreiszentrum des Dreiecks Ik L,
CR')
AP'
Bq
Cr'
AP'

n" Umkreiszentrum des Dreiecks iKl,

Bq' t N'" — Umkreiszentrum des Dreiecks IKl,
crJ
Ap'l
BQ'
Cr

n'" Umkreiszentrum des Dreiecks lkL.

4.

8.

Dies vorausgesetzt haben wir auf den in 6 eingeführten
12 Geraden je die Punkte

APNN', BQNN", CRNN'"
Apnn', Bqnn", Crnn'"
AP'n"N'", BQ'n'"N', CR'n'N"
Ap'N"n'", Bq'N'"n', Cr'N'n".

§3.
Da AK Ak AL Al, so liegen die vier-Punkte K,

k, L, 1 auf einem Kreise vom Mittelpunkt A. Auf diesem Kreise
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hat das Viereck K k L1 die Eigenschaft, dass von den Gegenseiten

Kk und LI jede durch den Pol der andern geht. Da ferner

AK — A E • AC, so ist der obige Kreis A orthogonal zum Kreise
um BC als Durchmesser.

Betrachten wir einen beliebigen Kreis, dessen Mittelpunkt
wir A nennen, ziehen in diesem Kreise irgend eine Sehne LI,
deren Pol wir mit B bezeichnen, und legen durch B irgend eine
zweite Sehne Kk, so liegt der Pol C von Kk auf der Polaren

von B d. h. auf der Geraden L1. Sei endlich -y M H, so ist

H der Pol der Geraden B C.

Dies vorausgesetzt ist die Figur ABCHKkLl identisch
mit der in §§ 1 und 2 ebenso bezeichneten Figur. Denn die
Geraden BKk und CL1 stehen respektive senkrecht zu AC und
zu AB, und somit ist H der Höhenpunkt des Dreiecks ABC, und
da A K und A k respektive senkrecht zu C K und C k stehen, so
sind K und k die Schnittpunkte des Höhenperpendikels B E von
ABC mit dem um A C als Durchmesser beschriebenen Kreise,
und analog sind L und 1 die Schnittpunkte des Höhenperpendikels

C F von ABC mit dem um A B als Durchmesser
beschriebenen Kreise.

Im Viereck KkLl ist der eine Diagonalpunkt H I j i

und die zwei andern Diagonalpunkte seien u und u', nämlich

u==|K1 u' !KLU
I kl/ I kl.

Dies vorausgesetzt liegen u und u' auf den Polaren B C von H
in Bezug auf den Kreis A, und man hat (BC, u u') — 1.

Die Polare von u' ist die Gerade Hu, und auf dieser
liegen die Pole der Geraden u'KL und u'kl, d. h. :

Die Punkte p j^K und P Ick liegen auf Hu"

Die Polare von u ist die Gerade H u', und auf dieser liegen
die Pole der Geraden u K1 und u k L, d. h. :

Die Punkte P' — I gl und p' { &L ]iegen auf Hu,
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Wir erhalten also den Satz:
Die Geraden P p und P' p' gehen durch den Punkt H, und

schneiden BC respektive in den Punkten u und u'.
Betrachten wir jetzt ebenso die Vierecke Llli und IiKk,

so haben wir die folgenden Resultate:
Seien u, v, w, u', v', w' die Punkte:

U IkL' V ill' liK'
u' jKL v' |LI w'=!IK

9'
u i kr y hi' iik '

so liegen u, u' auf der Geraden BC; v, v' auf der
Geraden CA; w, w' auf der Geraden AB, und teilen je
diese Strecken harmonisch, d. h. :

(BC, uu') — 1, (CA,vv') -l, (AB,ww') -l. 10.

Ferner gehen die Geraden:

Pp, P'p', Qq,Q'q', Rr,R'r' 11.

alle durch den Höhenpunkt H des Dreiecks ABC, und
die Geraden HPp und HP'p' schneiden BC respektive
in den Punkten u und u'; die Geraden HQq und HQ'q'
schneiden CA in den Punkten v und v'; die Geraden
HRr und HR'r' schneiden AB in den Punkten w und w'.

In Folge von 10 haben wir daher die harmonischen
Strahlsysteme:

HB kK)
HC IL
Hu Pp
Hu' P'p'J

¦1,

HC IL
HA il

HA il
HB kK
Hw Rr
Hw' R'r'

12.
Hv Qq
Hv'Q'q'J

Das Viereck P p P' p' hat zu Diagonalpunkten B, C, H,
Das Viereck Q q Q' q' hat zu Diagonalpunkten C, A, H,
Das Viereck RrB'r' hat zu Diagonalpunkten A,B,H,

und wir haben die harmonischen Punktsysteme:
(Pp, Hu)=-1, (Qq, Hv) -1, (Rr, Hw) - 1,

(P'p', Hu') — 1, (Q'q', Hv') - 1, (R'r', Hw') 1,

und ferner auf den durch die Ecken A, B, C des Stammdreiecks
gehenden Strahlen die harmonischen Punktsysteme:

13.

14.
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(AK, Rr') - 1, (BL, Pp') - 1, (CI, Qq') - 1,

(Ak,rR') -l, (Bl,pF)=-l, (Ci,qQ') -l,
(AL,QQ') -1, (Bl, RR') -1, (CK,PP') -1,
(AI, qq') -l, (Bi,rr') -1, (Ck,pp') -1.

Durch jeden der Punkte u, v, w, u', v', w' gehen
4 Strahlen, die in Folge der harmonischen Relationen 2

ein System von 4 harmonischen Strahlen bilden:

15.

nun
je

uKl
ukL
uPpH
uu'BC
u'KL
u'kl
u'P'p'H
u'uBC

-1,
vLi
vll
vQqH
vv'CA
v'LI
v'li
v'Q'q'H
v'vCA

-1.

1,

wlk
wiK
wRrH
ww'AB
w'IK
w'ik
w'R'r'H
w'wAB,

1, 16.

-1. .17.

Durch jede Ecke des Dreiecks ABC gehen 2 Systeme von
je 4 harmonischen Strahlen, wo aber das betreffende
Höhenperpendikel beiden Systemen angehört:

ABww' ] BCuu' | CAvv'
AHIi
AkrR' _ BHKk

' BlpP' -1, CHLl
CiqQ'

AKr'R j BLp'P J Clq'Q
ACvv' 1 BAww' CBuu'
AHIi
Alqq'
ALQQ'

BHKk
' Birr'

BIRR'
-1, CHLl

Ckpp'
CKPP'

-1,

18.

§4.
Die Dreiecke ABC, IKL, ikl liegen perspektivisch mit

dem gemeinsamen perspektivischen Zentrum H, und somit liegen
die Punkte

BC
KL
kl

u I =v'
CA AB

IK =w
ik

in einer Geraden, der gemeinsamen perspektivischen Axe der


	

